
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Game Engine Architecture

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Game Engine Architecture

Jason Gregory

A K Peters, Ltd.

Wellesley, Massachusetts

www.allitebooks.com

http://www.allitebooks.org

A K Peters/CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2009 by Taylor and Francis Group, LLC
A K Peters/CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-13: 978-1-4398-6526-2 (Ebook-PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author
and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders
of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been
acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means,
now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance
Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the A K Peters Web site at
http://www.akpeters.com

www.allitebooks.com

http://www.copyright.com
http://www.copyright.com/
http://www.taylorandfrancis.com
http://www.akpeters.com
http://www.allitebooks.org

Dedicated to
Trina, Evan and Quinn Gregory,

in memory of our heros,
Joyce Osterhus and Kenneth Gregory.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

 Foreword xiii

 Preface xvii

I Foundations 1

1 Introduction 3

1.1 Structure of a Typical Game Team 5

1.2 What Is a Game? 8

1.3 What Is a Game Engine? 11

1.4 Engine Differences Across Genres 13

1.5 Game Engine Survey 25

1.6 Runtime Engine Architecture 28

1.7 Tools and the Asset Pipeline 49

2 Tools of the Trade 57

2.1 Version Control 57

2.2 Microsoft Visual Studio 66

2.3 Profi ling Tools 85

www.allitebooks.com

http://www.allitebooks.org

viii Contents

2.4 Memory Leak and Corruption Detection 87

2.5 Other Tools 88

3 Fundamentals of Software
 Engineering for Games 91

3.1 C++ Review and Best Practices 91

3.2 Data, Code, and Memory in C/C++ 98

3.3 Catching and Handling Errors 128

4 3D Math for Games 137

4.1 Solving 3D Problems in 2D 137

4.2 Points and Vectors 138

4.3 Matrices 151

4.4 Quaternions 169

4.5 Comparison of Rotational Representations 177

4.6 Other Useful Mathematical Objects 181

4.7 Hardware-Accelerated SIMD Math 185

4.8 Random Number Generation 192

II Low-Level Engine Systems 195

5 Engine Support Systems 197

5.1 Subsystem Start-Up and Shut-Down 197

5.2 Memory Management 205

5.3 Containers 223

5.4 Strings 242

5.5 Engine Confi guration 252

6 Resources and the File System 261

6.1 File System 262

6.2 The Resource Manager 272

7 The Game Loop and Real-Time Simulation 303

7.1 The Rendering Loop 303

7.2 The Game Loop 304

www.allitebooks.com

http://www.allitebooks.org

ix Contents

7.3 Game Loop Architectural Styles 307

7.4 Abstract Timelines 310

7.5 Measuring and Dealing with Time 312

7.6 Multiprocessor Game Loops 324

7.7 Networked Multiplayer Game Loops 333

8 Human Interface Devices (HID) 339

8.1 Types of Human Interface Devices 339

8.2 Interfacing with a HID 341

8.3 Types of Inputs 343

8.4 Types of Outputs 348

8.5 Game Engine HID Systems 349

8.6 Human Interface Devices in Practice 366

9 Tools for Debugging and Development 367

9.1 Logging and Tracing 367

9.2 Debug Drawing Facilities 372

9.3 In-Game Menus 379

9.4 In-Game Console 382

9.5 Debug Cameras and Pausing the Game 383

9.6 Cheats 384

9.7 Screen Shots and Movie Capture 384

9.8 In-Game Profi ling 385

III Graphics and Motion 397

10 The Rendering Engine 399

10.1 Foundations of Depth-Buffered
 Triangle Rasterization 400

10.2 The Rendering Pipeline 444

10.3 Advanced Lighting and Global Illumination 469

10.4 Visual Effects and Overlays 481

11 Animation Systems 491

11.1 Types of Character Animation 491

11.2 Skeletons 496

x Contents

11.3 Poses 499

11.4 Clips 504

11.5 Skinning and Matrix Palette Generation 518

11.6 Animation Blending 523

11.7 Post-Processing 542

11.8 Compression Techniques 545

11.9 Animation System Architecture 552

11.10 The Animation Pipeline 553

11.11 Action State Machines 568

11.12 Animation Controllers 593

12 Collision and Rigid Body Dynamics 595

12.1 Do You Want Physics in Your Game? 596

12.2 Collision/Physics Middleware 601

12.3 The Collision Detection System 603

12.4 Rigid Body Dynamics 630

12.5 Integrating a Physics Engine into Your Game 666

12.6 A Look Ahead: Advanced Physics Features 684

IV Gameplay 687

13 Introduction to Gameplay Systems 689

13.1 Anatomy of a Game World 690

13.2 Implementing Dynamic Elements: Game Objects 695

13.3 Data-Driven Game Engines 698

13.4 The Game World Editor 699

14 Runtime Gameplay Foundation Systems 711

14.1 Components of the Gameplay
 Foundation System 711

14.2 Runtime Object Model Architectures 715

14.3 World Chunk Data Formats 734

14.4 Loading and Streaming Game Worlds 741

14.5 Object References and World Queries 750

14.6 Updating Game Objects in Real Time 757

xi Contents

14.7 Events and Message-Passing 773

14.8 Scripting 794

14.9 High-Level Game Flow 817

V Conclusion 819

15 You Mean There’s More? 821

15.1 Some Engine Systems We Didn’t Cover 821

15.2 Gameplay Systems 823

 References 827

 Index 831

xiii

Foreword

The very fi rst video game was built entirely out of hardware, but rapid ad-
vancements in microprocessors have changed all that. These days, video

games are played on versatile PCs and specialized video game consoles that
use soft ware to make it possible to off er a tremendous variety of gaming ex-
periences. It’s been 50 years since those fi rst primitive games, but the industry
is still considered by many to be immature. It may be young, but when you
take a closer look, you will fi nd that things have been developing rapidly.
Video games are now a multibillion-dollar industry covering a wide range of
demographics.

Video games come in all shapes and sizes, falling into categories or
“genres” covering everything from solitaire to massively multiplayer online
role-playing games, and these games are played on virtually anything with a
microchip in it. These days, you can get games for your PC, your cell phone,
as well as a number of diff erent specialized gaming consoles—both handheld
and those that connect to your home TV. These specialized home consoles
tend to represent the cutt ing edge of gaming technology, and the patt ern of
these platforms being released in cycles has come to be called console “gen-
erations.” The powerhouses of this latest generation are Microsoft ’s Xbox 360
and Sony’s PLAYSTATION 3, but the ever-present PC should never be over-
looked, and the extremely popular Nintendo Wii represents something new
this time around.

xiv Foreword

The recent explosion of downloadable and casual games has added even
more complexity to the diverse world of commercial video games. Even so,
big games are still big business. The incredible computing power available
on today’s complicated platforms has made room for increased complexity in
the soft ware. Naturally, all this advanced soft ware has to be created by some-
one, and that has driven up the size of development teams—not to mention
development costs. As the industry matures, we’re always looking for bett er,
more effi cient ways to build our products, and development teams have be-
gun compensating for the increased complexity by taking advantage of things
like reusable soft ware and middleware.

With so many diff erent styles of game on such a wide array of platforms,
there cannot be any single ideal soft ware solution. However, certain patt erns
have developed, and there is a vast menu of potential solutions out there. The
problem today is choosing the right solution to fi t the needs of the particular
project. Going deeper, a development team must consider all the diff erent as-
pects of a project and how they fi t together. It is rare to fi nd any one soft ware
package that perfectly suits every aspect of a new game design.

Those of us who are now veterans of the industry found ourselves pio-
neering unknown territory. Few programmers of our generation have Com-
puter Science degrees (Matt ’s is in Aeronautical Engineering, and Jason’s is
in Systems Design Engineering), but these days many colleges are starting to
programs and degrees in video games. The students and developers of today
need a good place to turn to for solid game-development information. For
pure high-end graphics, there are a lot of sources of very good information
from research to practical jewels of knowledge. However, these sources are
oft en not directly applicable to production game environments or suff er from
not having actual production-quality implementations. For the rest of game
development, there are so-called beginner books that so gloss over the details
and act as if they invented everything without giving references that they are
just not useful or oft en even accurate. Then there are high-end specialty books
for various niches like physics, collision, AI, etc. But these can be needlessly
obtuse or too high level to be understood by all, or the piecemeal approach just
doesn’t all fi t together. Many are even so directly tied to a particular piece of
technology as to become rapidly dated as the hardware and soft ware change.

Then there is the Internet, which is an excellent supplementary tool for
knowledge gathering. However, broken links, widely inaccurate data, and
variable-to-poor quality oft en make it not useful at all unless you know ex-
actly what you are aft er.

Enter Jason Gregory, himself an industry veteran with experience at
Naughty Dog—one of the most highly regarded video game studios in the

xv Foreword

world. While teaching a course in game programming at USC, Jason found
himself facing a shortage of textbooks covering the fundamentals of video-
game architecture. Luckily for the rest of us, he has taken it upon himself to
fi ll that gap.

What Jason has done is pull together production-quality knowledge actu-
ally used in shipped game projects and bring together the entire game-devel-
opment picture. His experience has allowed him to bring together not only
the ideas and techniques but also actual code samples and implementation
examples to show you how the pieces come together to actually make a game.
The references and citations make it a great jumping-off point to dig deeper
into any particular aspect of the process. The concepts and techniques are the
actual ones we use to create games, and while the examples are oft en ground-
ed in a technology, they extend way beyond any particular engine or API.

This is the kind of book we wanted when we were gett ing started, and we
think it will prove very instructive to people just starting out as well as those
with experience who would like some exposure to the larger context.

Jeff Lander
Matt hew Whiting

xvii

Preface

Welcome to Game Engine Architecture. This book aims to present a com-
plete discussion of the major components that make up a typical com-

mercial game engine. Game programming is an immense topic, so we have a
lot of ground to cover. Nevertheless, I trust you’ll fi nd that the depth of our
discussions is suffi cient to give you a solid understanding of both the theory
and the common practices employed within each of the engineering disci-
plines we’ll cover. That said, this book is really just the beginning of a fasci-
nating and potentially life-long journey. A wealth of information is available
on all aspects of game technology, and this text serves both as a foundation-
laying device and as a jumping-off point for further learning.

Our focus in this book will be on game engine technologies and architec-
ture. This means we’ll cover both the theory underlying the various subsys-
tems that comprise a commercial game engine and also the data structures,
algorithms, and soft ware interfaces that are typically used to implement them.
The line between the game engine and the game is rather blurry. We’ll fo-
cus primarily on the engine itself, including a host of low-level foundation
systems, the rendering engine, the collision system, the physics simulation,
character animation, and an in-depth discussion of what I call the gameplay
foundation layer. This layer includes the game’s object model, world editor,
event system, and scripting system. We’ll also touch on some aspects of game-

xviii Preface

play programming, including player mechanics, cameras, and AI. However,
by necessity, the scope of these discussions will be limited mainly to the ways
in which gameplay systems interface with the engine.

This book is intended to be used as a course text for a two- or three-course
college-level series in intermediate game programming. Of course, it can also
be used by amateur soft ware engineers, hobbyists, self-taught game program-
mers, and existing members of the game industry alike. Junior engineers can
use this text to solidify their understanding of game mathematics, engine ar-
chitecture, and game technology. And some senior engineers who have de-
voted their careers to one particular specialty may benefi t from the bigger
picture presented in these pages, as well.

To get the most out of this book, you should have a working knowledge
of basic object-oriented programming concepts and at least some experience
programming in C++. Although a host of new and exciting languages are be-
ginning to take hold within the game industry, industrial-strength 3D game
engines are still writt en primarily in C or C++, and any serious game pro-
grammer needs to know C++. We’ll review the basic tenets of object-oriented
programming in Chapter 3, and you will no doubt pick up a few new C++
tricks as you read this book, but a solid foundation in the C++ language is best
obtained from [39], [31], and [32]. If your C++ is a bit rusty, I recommend you
refer to these or similar books to refresh your knowledge as you read this text.
If you have no prior C++ experience, you may want to consider reading at least
the fi rst few chapters of [39], or working through a few C++ tutorials online,
before diving into this book.

The best way to learn computer programming of any kind is to actually
write some code. As you read through this book, I strongly encourage you to
select a few topic areas that are of particular interest to you and come up with
some projects for yourself in those areas. For example, if you fi nd character
animation interesting, you could start by installing Ogre3D and exploring its
skinned animation demo. Then you could try to implement some of the anima-
tion blending techniques described in this book, using Ogre. Next you might
decide to implement a simple joypad-controlled animated character that can
run around on a fl at plane. Once you have something relatively simple work-
ing, expand upon it! Then move on to another area of game technology. Rinse
and repeat. It doesn’t particularly matt er what the projects are, as long as
you’re practicing the art of game programming, not just reading about it.

Game technology is a living, breathing thing that can never be entirely
captured within the pages of a book. As such, additional resources, errata,
updates, sample code, and project ideas will be posted from time to time on
this book’s website at htt p://gameenginebook.com.

www.allitebooks.com

http://www.allitebooks.org

xix Preface

Acknowledgments

No book is created in a vacuum, and this one is certainly no exception. This
book would not have been possible without the help of my family, friends,
and colleagues in the game industry, and I’d like to extend warm thanks to
everyone who helped me to bring this project to fruition.

Of course, the ones most impacted by a project like this one are invariably
the author’s family. So I’d like to start by off ering a special thank-you to my
wife Trina, who has been a pillar of strength during this diffi cult time, tak-
ing care of our two boys Evan (age 5) and Quinn (age 3) day aft er day (and
night aft er night!) while I holed myself up to get yet another chapter under
my belt, forgoing her own plans to accommodate my schedule, doing my
chores as well as her own (more oft en than I’d like to admit), and always giv-
ing me kind words of encouragement when I needed them the most. I’d also
like to thank my eldest son Evan for being patient as he endured the absence
of his favorite video game playing partner, and his younger brother Quinn
for always welcoming me home aft er a long day’s work with huge hugs and
endless smiles.

I would also like to extend special thanks to my editors, Matt Whiting and
Jeff Lander. Their insightful, targeted, and timely feedback was always right
on the money, and their vast experience in the game industry has helped to
give me confi dence that the information presented in these pages is as accu-
rate and up-to-date as humanly possible. Matt and Jeff were both a pleasure
to work with, and I am honored to have had the opportunity to collaborate
with such consummate professionals on this project. I’d like to thank Jeff in
particular for putt ing me in touch with Alice Peters and helping me to get this
project off the ground in the fi rst place.

A number of my colleagues at Naughty Dog also contributed to this
book, either by providing feedback or by helping me with the structure
and topic content of one of the chapters. I’d like to thank Marshall Robin
and Carlos Gonzalez-Ochoa for their guidance and tutelage as I wrote the
rendering chapter, and Pål-Kristian Engstad for his excellent and insightful
feedback on the text and content of that chapter. I’d also like to thank Chris-
tian Gyrling for his feedback on various sections of the book, including the
chapter on animation (which is one of his many specialties). My thanks also
go to the entire Naughty Dog engineering team for creating all of the in-
credible game engine systems that I highlight in this book. Special thanks
go to Keith Schaeff er of Electronic Arts for providing me with much of the
raw content regarding the impact of physics on a game, found in Section
12.1. I’d also like to thank Paul Keet of Electronic Arts and Steve Ranck, the

xx Preface

lead engineer on the Hydro Thunder project at Midway San Diego, for their
mentorship and guidance over the years. While they did not contribute to
the book directly, their infl uences are echoed on virtually every page in one
way or another.

This book arose out of the notes I developed for a course called ITP-485:
Programming Game Engines, which I have been teaching under the auspices
of the Information Technology Program at the University of Southern Cali-
fornia for approximately three years now. I would like to thank Dr. Anthony
Borquez, the director of the ITP department at the time, for hiring me to de-
velop the ITP-485 course curriculum in the fi rst place. I’d also like to extend
warm thanks to Ashish Soni, the current ITP director, for his continued sup-
port and encouragement as ITP-485 continues to evolve.

My extended family and friends also deserve thanks, in part for their un-
wavering encouragement, and in part for entertaining my wife and our two
boys on so many occasions while I was working. I’d like to thank my sister- and
brother-in-law, Tracy Lee and Doug Provins, my cousin-in-law Matt Glenn,
and all of our incredible friends, including: Kim and Drew Clark, Sherilyn
and Jim Kritzer, Anne and Michael Scherer, and Kim and Mike Warner. My
father Kenneth Gregory wrote a book on investing in the stock market when
I was a teenager, and in doing so he inspired me to write a book. For this and
so much more, I am eternally grateful to him. I’d also like to thank my mother
Erica Gregory, in part for her insistence that I embark on this project, and in
part for spending countless hours with me when I was a child, beating the art
of writing into my cranium—I owe my writing skills (not to mention my work
ethic… and my rather twisted sense of humor…) entirely to her!

Last but certainly not least, I’d like to thank Alice Peters and Kevin Jack-
son-Mead, as well as the entire A K Peters staff , for their Herculean eff orts
in publishing this book. Alice and Kevin have both been a pleasure to work
with, and I truly appreciate both their willingness to bend over backwards to
get this book out the door under very tight time constraints, and their infi nite
patience with me as a new author.

Jason Gregory
April 2009

I
Foundations

1
Introduction

When I got my fi rst game console in 1979—a way-cool Intellivision sys-
tem by Matt el—the term “game engine” did not exist. Back then, video

and arcade games were considered by most adults to be nothing more than
toys, and the soft ware that made them tick was highly specialized to both
the game in question and the hardware on which it ran. Today, games are
a multi-billion-dollar mainstream industry rivaling Hollywood in size and
popularity. And the soft ware that drives these now-ubiquitous three-dimen-
sional worlds—game engines like id Soft ware’s Quake and Doom engines, Epic
Games’ Unreal Engine 3 and Valve’s Source engine—have become fully fea-
tured reusable soft ware development kit s that can be licensed and used to
build almost any game imaginable.

While game engines vary widely in the details of their architecture and
implementation, recognizable coarse-grained patt erns are emerging across
both publicly licensed game engines and their proprietary in-house counter-
parts. Virtually all game engines contain a familiar set of core components, in-
cluding the rendering engine, the collision and physics engine, the animation
system, the audio system, the game world object model, the artifi cial intelli-
gence system, and so on. Within each of these components, a relatively small
number of semi-standard design alternatives are also beginning to emerge.

There are a great many books that cover individual game engine subsys-
tems, such as three-dimensional graphics, in exhaustive detail. Other books

3

4 1. Introduction

cobble together valuable tips and tricks across a wide variety of game technol-
ogy areas. However, I have been unable to fi nd a book that provides its reader
with a reasonably complete picture of the entire gamut of components that
make up a modern game engine. The goal of this book, then, is to take the
reader on a guided hands-on tour of the vast and complex landscape of game
engine architecture.

In this book you will learn

 how real industrial-strength production game engines are architected;

 how game development teams are organized and work in the real
world;

 which major subsystems and design patt erns appear again and again in
virtually every game engine;

 the typical requirements for each major subsystem;

 which subsystems are genre- or game-agnostic, and which ones are typ-
ically designed explicitly for a specifi c genre or game;

 where the engine normally ends and the game begins.

We’ll also get a first-hand glimpse into the inner workings of some popu-
lar game engines, such as Quake and Unreal , and some well-known mid-
dleware packages, such as the Havok Physics library, the OGRE rendering
engine, and Rad Game Tools’ Granny 3D animation and geometry man-
agement toolkit.

Before we get started, we’ll review some techniques and tools for large-
scale soft ware engineering in a game engine context, including

 the diff erence between logical and physical soft ware architecture;

 confi guration management, revision control, and build systems;
 some tips and tricks for dealing with one of the common development

environments for C and C++, Microsoft Visual Studio.

In this book I assume that you have a solid understanding of C++ (the
language of choice among most modern game developers) and that you un-
derstand basic soft ware engineering principles. I also assume you have some
exposure to linear algebra, three-dimensional vector and matrix math, and
trigonometry (although we’ll review the core concepts in Chapter 4). Ideally
you should have some prior exposure to the basic concepts of real-time and
event-driven programming. But never fear—I will review these topics briefl y,
and I’ll also point you in the right direction if you feel you need to hone your
skills further before we embark.

5 1.1. Structure of a Typical Game Team

1.1. Structure of a Typical Game Team

Before we delve into the structure of a typical game engine, let’s fi rst take a
brief look at the structure of a typical game development team. Game stu-
dios are usually composed of fi ve basic disciplines: engineers, artists, game
designers, producers, and other management and support staff (marketing,
legal, information technology/technical support, administrative, etc.). Each
discipline can be divided into various subdisciplines. We’ll take a brief look
at each below.

1.1.1. Engineers

The engineers design and implement the soft ware that makes the game, and
the tools, work. Engineers are oft en categorized into two basic groups: runtime
programmers (who work on the engine and the game itself) and tools program-
mers (who work on the off -line tools that allow the rest of the development
team to work eff ectively). On both sides of the runtime/tools line, engineers
have various specialties. Some engineers focus their careers on a single engine
system, such as rendering, artifi cial intelligence, audio, or collision and phys-
ics. Some focus on gameplay programming and scripting, while others prefer
to work at the systems level and not get too involved in how the game actu-
ally plays. Some engineers are generalists—jacks of all trades who can jump
around and tackle whatever problems might arise during development.

Senior engineers are sometimes asked to take on a technical leadership
role. Lead engineers usually still design and write code, but they also help to
manage the team’s schedule, make decisions regarding the overall technical
direction of the project, and sometimes also directly manage people from a
human resources perspective.

Some companies also have one or more technical directors (TD), whose
job it is to oversee one or more projects from a high level, ensuring that the
teams are aware of potential technical challenges, upcoming industry devel-
opments, new technologies, and so on. The highest engineering-related posi-
tion at a game studio is the chief technical offi cer (CTO), if the studio has one.
The CTO’s job is to serve as a sort of technical director for the entire studio, as
well as serving a key executive role in the company.

1.1.2. Artists

As we say in the game industry, “content is king.” The artists produce all of
the visual and audio content in the game, and the quality of their work can
literally make or break a game. Artists come in all sorts of fl avors:

6 1. Introduction

 Concept artists produce sketches and paintings that provide the team
with a vision of what the fi nal game will look like. They start their work
early in the concept phase of development, but usually continue to pro-
vide visual direction throughout a project’s life cycle. It is common for
screen shots taken from a shipping game to bear an uncanny resem-
blance to the concept art.

 3D modelers produce the three-dimensional geometry for everything
in the virtual game world. This discipline is typically divided into
two subdisciplines: foreground modelers and background model-
ers. The former create objects, characters, vehicles, weapons, and the
other objects that populate the game world, while the latt er build
the world’s static background geometry (terrain, buildings, bridges,
etc.).

 Texture artists create the two-dimensional images known as textures,
which are applied to the surfaces of 3D models in order to provide de-
tail and realism.

 Lighting artists lay out all of the light sources in the game world, both
static and dynamic, and work with color, intensity, and light direction to
maximize the artfulness and emotional impact of each scene.

 Animators imbue the characters and objects in the game with motion.
The animators serve quite literally as actors in a game production,
just as they do in a CG fi lm production. However, a game animator
must have a unique set of skills in order to produce animations that
mesh seamlessly with the technological underpinnings of the game
engine.

 Motion capture actors are oft en used to provide a rough set of motion
data, which are then cleaned up and tweaked by the animators before
being integrated into the game.

 Sound designers work closely with the engineers in order to produce and
mix the sound eff ects and music in the game.

 Voice actors provide the voices of the characters in many games.

 Many games have one or more composers, who compose an original
score for the game.

As with engineers, senior artists are oft en called upon to be team lead-
ers. Some game teams have one or more art directors—very senior artists who
manage the look of the entire game and ensure consistency across the work of
all team members.

7

1.1.3. Game Designers

The game designers’ job is to design the interactive portion of the player’s
experience, typically known as gameplay. Diff erent kinds of designers work
at diff erent levels of detail. Some (usually senior) game designers work at the
macro level, determining the story arc, the overall sequence of chapters or lev-
els, and the high-level goals and objectives of the player. Other designers work
on individual levels or geographical areas within the virtual game world, lay-
ing out the static background geometry, determining where and when en-
emies will emerge, placing supplies like weapons and health packs, designing
puzzle elements, and so on. Still other designers operate at a highly technical
level, working closely with gameplay engineers and/or writing code (oft en in
a high-level scripting language). Some game designers are ex-engineers, who
decided they wanted to play a more active role in determining how the game
will play.

Some game teams employ one or more writers. A game writer’s job can
range from collaborating with the senior game designers to construct the story
arc of the entire game, to writing individual lines of dialogue.

As with other disciplines, some senior designers play management roles.
Many game teams have a game director, whose job it is to oversee all aspects
of a game’s design, help manage schedules, and ensure that the work of indi-
vidual designers is consistent across the entire product. Senior designers also
sometimes evolve into producers.

1.1.4. Producers

The role of producer is defi ned diff erently by diff erent studios. In some game
companies, the producer’s job is to manage the schedule and serve as a hu-
man resources manager. In other companies, producers serve in a senior game
design capacity. Still other studios ask their producers to serve as liaisons be-
tween the development team and the business unit of the company (fi nance,
legal, marketing, etc.). Some smaller studios don’t have producers at all. For
example, at Naughty Dog, literally everyone in the company, including the
two co-presidents, play a direct role in constructing the game; team man-
agement and business duties are shared between the senior members of the
studio.

1.1.5. Other Staff

The team of people who directly construct the game is typically supported by
a crucial team of support staff . This includes the studio’s executive manage-

1.1. Structure of a Typical Game Team

8 1. Introduction

ment team, the marketing department (or a team that liaises with an external
marketing group), administrative staff , and the IT department, whose job is
to purchase, install, and confi gure hardware and soft ware for the team and to
provide technical support.

1.1.6. Publishers and Studios

The marketing, manufacture, and distribution of a game title are usually
handled by a publisher, not by the game studio itself. A publisher is typically
a large corporation, like Electronic Arts, THQ, Vivendi, Sony, Nintendo, etc.
Many game studios are not affi liated with a particular publisher. They sell
each game that they produce to whichever publisher strikes the best deal with
them. Other studios work exclusively with a single publisher, either via a long-
term publishing contract, or as a fully owned subsidiary of the publishing
company. For example, THQ’s game studios are independently managed, but
they are owned and ultimately controlled by THQ. Electronic Arts takes this
relationship one step further, by directly managing its studios. First-party de-
velopers are game studios owned directly by the console manufacturers (Sony,
Nintendo, and Microsoft). For example, Naughty Dog is a fi rst-party Sony
developer. These studios produce games exclusively for the gaming hardware
manufactured by their parent company.

1.2. What Is a Game?

We probably all have a prett y good intuitive notion of what a game is. The
general term “game” encompasses board games like chess and Monopoly, card
games like poker and blackjack, casino games like roulett e and slot machines,
military war games, computer games, various kinds of play among children,
and the list goes on. In academia we sometimes speak of “game theory,” in
which multiple agents select strategies and tactics in order to maximize their
gains within the framework of a well-defi ned set of game rules. When used
in the context of console or computer-based entertainment, the word “game”
usually conjures images of a three-dimensional virtual world featuring a hu-
manoid, animal, or vehicle as the main character under player control. (Or for
the old geezers among us, perhaps it brings to mind images of two-dimen-
sional classics like Pong, Pac-Man, or Donkey Kong.) In his excellent book, A
Theory of Fun for Game Design, Raph Koster defi nes a “game” to be an inter-
active experience that provides the player with an increasingly challenging
sequence of patt erns which he or she learns and eventually masters [26]. Ko-
ster’s assertion is that the activities of learning and mastering are at the heart

www.allitebooks.com

http://www.allitebooks.org

9 1.2. What Is a Game?

of what we call “fun,” just as a joke becomes funny at the moment we “get it”
by recognizing the patt ern.

For the purposes of this book, we’ll focus on the subset of games that
comprise two- and three-dimensional virtual worlds with a small number of
players (between one and 16 or thereabouts). Much of what we’ll learn can
also be applied to Flash games on the Internet, pure puzzle games like Tetris,
or massively multiplayer online games (MMOG). But our primary focus will
be on game engines capable of producing fi rst-person shooters, third-person
action/platform games, racing games, fi ghting games, and the like.

1.2.1. Video Games as Soft Real-Time Simulations

Most two- and three-dimensional video games are examples of what comput-
er scientists would call soft real-time interactive agent-based computer simulations.
Let’s break this phrase down in order to bett er understand what it means.

In most video games, some subset of the real world—or an imaginary
world—is modeled mathematically so that it can be manipulated by a com-
puter. The model is an approximation to and a simplifi cation of reality (even
if it’s an imaginary reality), because it is clearly impractical to include every
detail down to the level of atoms or quarks. Hence, the mathematical model
is a simulation of the real or imagined game world. Approximation and sim-
plifi cation are two of the game developer’s most powerful tools. When used
skillfully, even a greatly simplifi ed model can sometimes be almost indistin-
guishable from reality—and a lot more fun.

An agent-based simulation is one in which a number of distinct entities
known as “agents” interact. This fi ts the description of most three-dimen-
tsional computer games very well, where the agents are vehicles, characters,
fi reballs, power dots, and so on. Given the agent-based nature of most games,
it should come as no surprise that most games nowadays are implemented in
an object-oriented, or at least loosely object-based, programming language.

All interactive video games are temporal simulations, meaning that the vir-
tual game world model is dynamic—the state of the game world changes over
time as the game’s events and story unfold. A video game must also respond
to unpredictable inputs from its human player(s)—thus interactive temporal
simulations. Finally, most video games present their stories and respond to
player input in real-time , making them interactive real-time simulations. One
notable exception is in the category of turn-based games like computerized
chess or non-real-time strategy games. But even these types of games usually
provide the user with some form of real-time graphical user interface . So for
the purposes of this book, we’ll assume that all video games have at least some
real-time constraints.

10 1. Introduction

At the core of every real-time system is the concept of a deadline. An obvi-
ous example in video games is the requirement that the screen be updated
at least 24 times per second in order to provide the illusion of motion. (Most
games render the screen at 30 or 60 frames per second because these are mul-
tiples of an NTSC monitor’s refresh rate.) Of course, there are many other
kinds of deadlines in video games as well. A physics simulation may need
to be updated 120 times per second in order to remain stable. A character’s
artifi cial intelligence system may need to “think” at least once every second to
prevent the appearance of stupidity. The audio library may need to be called
at least once every 1/60 second in order to keep the audio buff ers fi lled and
prevent audible glitches.

A “soft ” real-time system is one in which missed deadlines are not cata-
strophic. Hence all video games are soft real-time systems—if the frame rate
dies, the human player generally doesn’t! Contrast this with a hard real-time
system, in which a missed deadline could mean severe injury to or even the
death of a human operator. The avionics system in a helicopter or the control-
rod system in a nuclear power plant are examples of hard real-time systems.

Mathematical models can be analytic or numerical. For example, the ana-
lytic (closed-form) mathematical model of a rigid body falling under the infl u-
ence of constant acceleration due to gravity is typically writt en as follows:

 y(t) = ½ g t2 + v0 t + y0 . (1.1)

An analytic model can be evaluated for any value of its independent variables,
such as the time t in the above equation, given only the initial conditions v0

and y0 and the constant g. Such models are very convenient when they can be
found. However many problems in mathematics have no closed-form solu-
tion. And in video games, where the user’s input is unpredictable, we cannot
hope to model the entire game analytically.

A numerical model of the same rigid body under gravity might be

 y(t + Δt) = F(y(t), ẏ (t), ÿ(t), …) . (1.2)

That is, the height of the rigid body at some future time (t + Δt) can be found as
a function of the height and its fi rst and second time derivatives at the current
time t. Numerical simulations are typically implemented by running calcula-
tions repeatedly, in order to determine the state of the system at each discrete
time step. Games work in the same way. A main “game loop” runs repeatedly,
and during each iteration of the loop, various game systems such as artifi cial
intelligence, game logic, physics simulations, and so on are given a chance to
calculate or update their state for the next discrete time step. The results are
then “rendered” by displaying graphics, emitt ing sound, and possibly pro-
ducing other outputs such as force feedback on the joypad.

11

1.3. What Is a Game Engine?

The term “ game engine” arose in the mid-1990s in reference to fi rst-person
shooter (FPS) games like the insanely popular Doom by id Soft ware. Doom was
architected with a reasonably well-defi ned separation between its core soft -
ware components (such as the three-dimensional graphics rendering system,
the collision detection system, or the audio system) and the art assets, game
worlds, and rules of play that comprised the player’s gaming experience. The
value of this separation became evident as developers began licensing games
and re-tooling them into new products by creating new art, world layouts,
weapons, characters, vehicles, and game rules with only minimal changes to
the “engine” soft ware. This marked the birth of the “mod community ”—a
group of individual gamers and small independent studios that built new
games by modifying existing games, using free toolkits provided by the origi-
nal developers. Towards the end of the 1990s, some games like Quake III Arena
and Unreal were designed with reuse and “ modding” in mind. Engines were
made highly customizable via scripting languages like id’s Quake C, and en-
gine licensing began to be a viable secondary revenue stream for the develop-
ers who created them. Today, game developers can license a game engine and
reuse signifi cant portions of its key soft ware components in order to build
games. While this practice still involves considerable investment in custom
soft ware engineering, it can be much more economical than developing all of
the core engine components in-house.

The line between a game and its engine is oft en blurry. Some engines
make a reasonably clear distinction, while others make almost no att empt
to separate the two. In one game, the rendering code might “know” specifi -
cally how to draw an orc. In another game, the rendering engine might pro-
vide general-purpose material and shading facilities, and “orc-ness” might
be defi ned entirely in data. No studio makes a perfectly clear separation
between the game and the engine, which is understandable considering that
the defi nitions of these two components oft en shift as the game’s design so-
lidifi es.

Arguably a data-driven architecture is what differentiates a game en-
gine from a piece of software that is a game but not an engine. When a
game contains hard-coded logic or game rules, or employs special-case
code to render specific types of game objects, it becomes difficult or im-
possible to reuse that software to make a different game. We should prob-
ably reserve the term “game engine” for software that is extensible and
can be used as the foundation for many different games without major
modification.

1.3. What Is a Game Engine?

12 1. Introduction

Clearly this is not a black-and-white distinction. We can think of a gamut
of reusability onto which every engine falls. Figure 1.1 takes a stab at the loca-
tions of some well-known games/engines along this gamut.

One would think that a game engine could be something akin to Apple
QuickTime or Microsoft Windows Media Player—a general-purpose piece of
soft ware capable of playing virtually any game content imaginable. However
this ideal has not yet been achieved (and may never be). Most game engines
are carefully craft ed and fi ne-tuned to run a particular game on a particular
hardware platform. And even the most general-purpose multiplatform en-
gines are really only suitable for building games in one particular genre, such
as fi rst-person shooters or racing games. It’s safe to say that the more general-
purpose a game engine or middleware component is, the less optimal it is for
running a particular game on a particular platform.

This phenomenon occurs because designing any effi cient piece of soft -
ware invariably entails making trade-off s, and those trade-off s are based on
assumptions about how the soft ware will be used and/or about the target
hardware on which it will run. For example, a rendering engine that was de-
signed to handle intimate indoor environments probably won’t be very good
at rendering vast outdoor environments. The indoor engine might use a BSP
tree or portal system to ensure that no geometry is drawn that is being oc-
cluded by walls or objects that are closer to the camera. The outdoor engine,
on the other hand, might use a less-exact occlusion mechanism, or none at all,
but it probably makes aggressive use of level-of-detail (LOD) techniques to
ensure that distant objects are rendered with a minimum number of triangles,
while using high resolution triangle meshes for geometry that is close to the
camera.

The advent of ever-faster computer hardware and specialized graphics
cards, along with ever-more-effi cient rendering algorithms and data struc-
tures, is beginning to soft en the diff erences between the graphics engines of
diff erent genres. It is now possible to use a fi rst-person shooter engine to build
a real-time strategy game, for example. However, the trade-off between gener-

Can be “modded” to
build any game in a

specific genre
Can be used to build any

game imaginable
Cannot be used to build

more than one game
Can be customized to

make very similar games

Quake III
Engine

Unreal
Engine

3
Hydro Thunder

Engine
Probably

impossible

PacMan

Figure 1.1. Game engine reusability gamut.

13 1.4. Engine Differnces Across Genres

ality and optimality still exists. A game can always be made more impressive
by fi ne-tuning the engine to the specifi c requirements and constraints of a
particular game and/or hardware platform.

1.4. Engine Differences Across Genres

Game engines are typically somewhat genre specifi c. An engine designed
for a two-person fi ghting game in a boxing ring will be very diff erent from a
massively multiplayer online game (MMOG) engine or a fi rst-person shooter
(FPS) engine or a real-time strategy (RTS) engine. However, there is also a
great deal of overlap—all 3D games, regardless of genre, require some form
of low-level user input from the joypad, keyboard, and/or mouse, some form
of 3D mesh rendering, some form of heads-up display (HUD) including text
rendering in a variety of fonts, a powerful audio system, and the list goes on.
So while the Unreal Engine, for example, was designed for fi rst-person shoot-
er games, it has been used successfully to construct games in a number of
other genres as well, including the wildly popular third-person shooter Gears
of War by Epic Games; the character-based action-adventure game Grimm, by
American McGee’s Shanghai-based development studio, Spicy Horse; and
Speed Star, a futuristic racing game by South Korea-based Acro Games.

Let’s take a look at some of the most common game genres and explore
some examples of the technology requirements particular to each.

1.4.1. First-Person Shooters (FPS)

The fi rst-person shooter (FPS) genre is typifi ed by games like Quake , Unreal
Tournament, Half-Life, Counter-Strike, and Call of Duty (see Figure 1.2). These
games have historically involved relatively slow on-foot roaming of a poten-
tially large but primarily corridor-based world. However, modern fi rst-person
shooters can take place in a wide variety of virtual environments including
vast open outdoor areas and confi ned indoor areas. Modern FPS traversal me-
chanics can include on-foot locomotion, rail-confi ned or free-roaming ground
vehicles, hovercraft , boats, and aircraft . For an overview of this genre, see
htt p://en.wikipedia.org/wiki/First-person_shooter.

First-person games are typically some of the most technologically chal-
lenging to build, probably rivaled in complexity only by third-person shooter/
action/platformer games and massively multiplayer games. This is because
fi rst-person shooters aim to provide their players with the illusion of being
immersed in a detailed, hyperrealistic world. It is not surprising that many of
the game industry’s big technological innovations arose out of the games in
this genre.

14 1. Introduction

First-person shooters typically focus on technologies, such as

 effi cient rendering of large 3D virtual worlds;
 a responsive camera control/aiming mechanic;
 high-fi delity animations of the player’s virtual arms and weapons;
 a wide range of powerful hand-held weaponry;
 a forgiving player character motion and collision model, which oft en

gives these games a “fl oaty” feel;
 high-fi delity animations and artifi cial intelligence for the non-player

characters (the player’s enemies and allies);
 small-scale online multiplayer capabilities (typically supporting up to

64 simultaneous players), and the ubiquitous “death match” gameplay
mode.

The rendering technology employed by fi rst-person shooters is almost
always highly optimized and carefully tuned to the particular type of envi-

Figure 1.2. Call of Duty 2 (Xbox 360/PLAYSTATION 3).

15

ronment being rendered. For example, indoor “dungeon crawl” games oft en
employ binary space partitioning (BSP) trees or portal -based rendering sys-
tems. Outdoor FPS games use other kinds of rendering optimizations such as
occlusion culling , or an offl ine sectorization of the game world with manual
or automated specifi cation of which target sectors are visible from each source
sector.

Of course, immersing a player in a hyperrealistic game world requires
much more than just optimized high-quality graphics technology. The charac-
ter animations, audio and music, rigid-body physics, in-game cinematics, and
myriad other technologies must all be cutt ing-edge in a fi rst-person shooter.
So this genre has some of the most stringent and broad technology require-
ments in the industry.

1.4.2. Platformers and Other Third-Person Games

“ Platformer” is the term applied to third-person character-based action games
where jumping from platform to platform is the primary gameplay mechanic.
Typical games from the 2D era include Space Panic, Donkey Kong, Pitfall!, and

1.4. Engine Differnces Across Genres

Figure 1.3. Jak & Daxter: The Precursor Legacy.

16 1. Introduction

Super Mario Brothers. The 3D era includes platformers like Super Mario 64, Crash
Bandicoot, Rayman 2, Sonic the Hedgehog, the Jak and Daxter series (Figure 1.3),
the Ratchet & Clank series, and more recently Super Mario Galaxy. See htt p://
en.wikipedia.org/wiki/Platformer for an in-depth discussion of this genre.

In terms of their technological requirements, platformers can usually be
lumped together with third-person shooters and third-person action/adven-
ture games, like Ghost Recon, Gears of War (Figure 1.4), and Uncharted: Drake’s
Fortune.

Third-person character-based games have a lot in common with fi rst-per-
son shooters, but a great deal more emphasis is placed on the main character’s
abilities and locomotion modes. In addition, high-fi delity full-body character
animations are required for the player’s avatar, as opposed to the somewhat
less-taxing animation requirements of the “fl oating arms” in a typical FPS
game. It’s important to note here that almost all fi rst-person shooters have an
online multiplayer component, so a full-body player avatar must be rendered
in addition to the fi rst-person arms. However the fi delity of these FPS player
avatars is usually not comparable to the fi delity of the non-player characters

Figure 1.4. Gears of War.

17

in these same games; nor can it be compared to the fi delity of the player avatar
in a third-person game.

In a platformer, the main character is oft en cartoon-like and not particu-
larly realistic or high-resolution. However, third-person shooters oft en feature
a highly realistic humanoid player character. In both cases, the player charac-
ter typically has a very rich set of actions and animations.

Some of the technologies specifi cally focused on by games in this genre
include

 moving platforms, ladders, ropes, trellises, and other interesting loco-
motion modes;

 puzzle-like environmental elements;
 a third-person “follow camera ” which stays focused on the player char-

acter and whose rotation is typically controlled by the human player via
the right joypad stick (on a console) or the mouse (on a PC—note that
while there are a number of popular third-person shooters on PC, the
platformer genre exists almost exclusively on consoles);

 a complex camera collision system for ensuring that the view point
never “clips” through background geometry or dynamic foreground
objects.

1.4.3. Fighting Games

 Fighting games are typically two-player games involving humanoid char-
acters pummeling each other in a ring of some sort. The genre is typifi ed
by games like Soul Calibur and Tekken (see Figure 1.5). The Wikipedia page
htt p://en.wikipedia.org/wiki/Fighting_game provides an overview of this
genre.

Traditionally games in the fi ghting genre have focused their technology
eff orts on

 a rich set of fi ghting animations;
 accurate hit detection;
 a user input system capable of detecting complex butt on and joystick

combinations;
 crowds, but otherwise relatively static backgrounds.

Since the 3D world in these games is small and the camera is centered
on the action at all times, historically these games have had litt le or no need
for world subdivision or occlusion culling . They would likewise not be ex-
pected to employ advanced three-dimensional audio propagation models, for
example.

1.4. Engine Differnces Across Genres

18 1. Introduction

State-of-the-art fi ghting games like EA’s Fight Night Round 3 (Figure 1.6)
have upped the technological ante with features like

 high-defi nition character graphics, including realistic skin shaders with
subsurface scatt ering and sweat eff ects;

 high-fi delity character animations;
 physics-based cloth and hair simulations for the characters.

It’s important to note that some fi ghting games like Heavenly Sword take
place in a large-scale virtual world, not a confi ned arena. In fact, many people
consider this to be a separate genre, sometimes called a brawler. This kind of
fi ghting game can have technical requirements more akin to those of a fi rst-
person shooter or real-time strategy game.

Figure 1.5. Tekken 3 (PlayStation).

www.allitebooks.com

http://www.allitebooks.org

19

1.4.4. Racing Games

The racing genre encompasses all games whose primary task is driving a car
or other vehicle on some kind of track. The genre has many subcategories.
Simulation-focused racing games (“sims”) aim to provide a driving experi-
ence that is as realistic as possible (e.g., Gran Turismo). Arcade racers favor
over-the-top fun over realism (e.g., San Francisco Rush, Cruisin’ USA, Hydro
Thunder). A relatively new subgenre explores the subculture of street racing
with tricked out consumer vehicles (e.g., Need for Speed, Juiced). Kart racing is
a subcategory in which popular characters from platformer games or cartoon
characters from TV are re-cast as the drivers of whacky vehicles (e.g., Mario
Kart, Jak X, Freaky Flyers). “Racing” games need not always involve time-based
competition. Some kart racing games, for example, off er modes in which play-
ers shoot at one another, collect loot, or engage in a variety of other timed
and untimed tasks. For a discussion of this genre, see htt p://en.wikipedia.org/
wiki/Racing_game.

1.4. Engine Differnces Across Genres

Figure 1.6. Fight Night Round 3 (PLAYSTATION 3).

20 1. Introduction

A racing game is oft en very linear, much like older FPS games. However,
travel speed is generally much faster than in a FPS. Therefore more focus is
placed on very long corridor-based tracks, or looped tracks, sometimes with
various alternate routes and secret short-cuts. Racing games usually focus all
their graphic detail on the vehicles, track, and immediate surroundings. How-
ever, kart racers also devote signifi cant rendering and animation bandwidth
to the characters driving the vehicles. Figure 1.7 shows a screen shot from the
latest installment in the well-known Gran Turismo racing game series, Gran
Turismo 5.

Some of the technological properties of a typical racing game include the
following techniques.

 Various “tricks” are used when rendering distant background elements,
such as employing two-dimensional cards for trees, hills, and mountains.

 The track is oft en broken down into relatively simple two-dimension-
al regions called “sectors.” These data structures are used to optimize
rendering and visibility determination, to aid in artifi cial intelligence
and path fi nding for non-human-controlled vehicles, and to solve many
other technical problems.

Figure 1.7. Gran Turismo 5 (PLAYSTATION 3).

21

 The camera typically follows behind the vehicle for a third-person per-
spective, or is sometimes situated inside the cockpit fi rst-person style.

 When the track involves tunnels and other “tight” spaces, a good deal
of eff ort is oft en put into ensuring that the camera does not collide with
background geometry.

1.4.5. Real-Time Strategy (RTS)

The modern real-time strategy (RTS) genre was arguably defi ned by Dune II:
The Building of a Dynasty (1992). Other games in this genre include Warcraft ,
Command & Conquer, Age of Empires, and Starcraft . In this genre, the player
deploys the batt le units in his or her arsenal strategically across a large play-
ing fi eld in an att empt to overwhelm his or her opponent. The game world is
typically displayed at an oblique top-down viewing angle. For a discussion of
this genre, see htt p://en.wikipedia.org/wiki/Real-time_strategy.

The RTS player is usually prevented from signifi cantly changing the
viewing angle in order to see across large distances. This restriction permits

Figure 1.8. Age of Empires.

1.4. Engine Differnces Across Genres

22 1. Introduction

developers to employ various optimizations in the rendering engine of an RTS
game.

Older games in the genre employed a grid-based (cell-based) world con-
struction, and an orthographic projection was used to greatly simplify the ren-
derer. For example, Figure 1.8 shows a screen shot from the classic RTS Age
of Empires.

Modern RTS games sometimes use perspective projection and a true 3D
world, but they may still employ a grid layout system to ensure that units and
background elements, such as buildings, align with one another properly. A
popular example, Command & Conquer 3, is shown in Figure 1.9.

Some other common practices in RTS games include the following tech-
niques.

Figure 1.9. Command & Conquer 3.

23

 Each unit is relatively low-res, so that the game can support large num-
bers of them on-screen at once.

 Height-fi eld terrain is usually the canvas upon which the game is de-
signed and played.

 The player is oft en allowed to build new structures on the terrain in ad-
dition to deploying his or her forces.

 User interaction is typically via single-click and area-based selection of
units, plus menus or toolbars containing commands, equipment, unit
types, building types, etc.

1.4.6. Massively Multiplayer Online Games (MMOG)

The massively multiplayer online game (MMOG) genre is typifi ed by games
like Neverwinter Nights, EverQuest, World of Warcraft , and Star Wars Galaxies, to
name a few. An MMOG is defi ned as any game that supports huge numbers of
simultaneous players (from thousands to hundreds of thousands), usually all

1.4. Engine Differnces Across Genres

Figure 1.10. World of Warcraft.

24 1. Introduction

playing in one very large, persistent virtual world (i.e., a world whose internal
state persists for very long periods of time, far beyond that of any one player’s
gameplay session). Otherwise, the gameplay experience of an MMOG is oft en
similar to that of their small-scale multiplayer counterparts. Subcategories of
this genre include MMO role-playing games (MMORPG), MMO real-time
strategy games (MMORTS), and MMO fi rst-person shooters (MMOFPS). For a
discussion of this genre, see htt p://en.wikipedia.org/wiki/MMOG. Figure 1.10
shows a screen shot from the hugely popular MMORPG World of Warcraft .

At the heart of all MMOGs is a very powerful batt ery of servers. These
servers maintain the authoritative state of the game world, manage users sign-
ing in and out of the game, provide inter-user chat or voice-over-IP (VoIP)
services, etc. Almost all MMOGs require users to pay some kind of regular
subscription fee in order to play, and they may off er micro-transactions within
the game world or out-of-game as well. Hence, perhaps the most important
role of the central server is to handle the billing and micro-transactions which
serve as the game developer’s primary source of revenue.

Graphics fi delity in an MMOG is almost always lower than its non-mas-
sively multiplayer counterparts, as a result of the huge world sizes and ex-
tremely large numbers of users supported by these kinds of games.

1.4.7. Other Genres

There are of course many other game genres which we won’t cover in depth
here. Some examples include

 sports, with subgenres for each major sport (football, baseball, soccer,
golf, etc.);

 role-playing games (RPG);
 God games, like Populus and Black & White;
 environmental/social simulation games, like SimCity or The Sims;
 puzzle games like Tetris;
 conversions of non-electronic games, like chess, card games, go, etc.;
 web-based games, such as those off ered at Electronic Arts’ Pogo site;
 and the list goes on.

We have seen that each game genre has its own particular technologi-
cal requirements. This explains why game engines have traditionally diff ered
quite a bit from genre to genre. However, there is also a great deal of tech-
nological overlap between genres, especially within the context of a single
hardware platform. With the advent of more and more powerful hardware,

25

diff erences between genres that arose because of optimization concerns are
beginning to evaporate. So it is becoming increasingly possible to reuse the
same engine technology across disparate genres, and even across disparate
hardware platforms.

1.5. Game Engine Survey

1.5.1. The Quake Family of Engines

The fi rst 3D fi rst-person shooter (FPS) game is generally accepted to be Castle
Wolfenstein 3D (1992). Writt en by id Soft ware of Texas for the PC platform, this
game led the game industry in a new and exciting direction. Id Soft ware went
on to create Doom, Quake , Quake II, and Quake III. All of these engines are very
similar in architecture, and I will refer to them as the Quake family of engines.
Quake technology has been used to create many other games and even other
engines. For example, the lineage of Medal of Honor for the PC platform goes
something like this:

 Quake I II (Id);

 Sin (Ritual);

 F.A.K.K. 2 (Ritual);

 Medal of Honor: Allied Assault (2015 & Dreamworks Interactive);
 Medal of Honor: Pacifi c Assault (Electronic Arts, Los Angeles).

Many other games based on Quake technology follow equally circuitous paths
through many diff erent games and studios. In fact, Valve’s Source engine (used
to create the Half-Life games) also has distant roots in Quake technology.

The Quake and Quake II source code is freely available, and the original
Quake engines are reasonably well architected and “clean” (although they
are of course a bit outdated and writt en entirely in C). These code bases serve
as great examples of how industrial-strength game engines are built. The full
source code to Quake and Quake II is available on id’s website at htt p://www.
idsoft ware.com/business/techdownloads.

If you own the Quake and/or Quake II games, you can actually build the
code using Microsoft Visual Studio and run the game under the debugger
using the real game assets from the disk. This can be incredibly instructive.
You can set break points, run the game, and then analyze how the engine
actually works by stepping through the code. I highly recommend down-
loading one or both of these engines and analyzing the source code in this
manner.

1.5. Game Engine Survey

http://www.idsoft
http://www.idsoft

26 1. Introduction

1.5.2. The Unreal Family of Engines

Epic Games Inc. burst onto the FPS scene in 1998 with its legendary game Un-
real . Since then, the Unreal Engine has become a major competitor to Quake
technology in the FPS space. Unreal Engine 2 (UE2) is the basis for Unreal
Tournament 2004 (UT2004) and has been used for countless “mods,” university
projects, and commercial games. Unreal Engine 3 (UE3) is the next evolution-
ary step, boasting some of the best tools and richest engine feature sets in
the industry, including a convenient and powerful graphical user interface for
creating shaders and a graphical user interface for game logic programming
called Kismet. Many games are being developed with UE3 lately, including of
course Epic’s popular Gears of War.

The Unreal Engine has become known for its extensive feature set and
cohesive, easy-to-use tools. The Unreal Engine is not perfect, and most devel-
opers modify it in various ways to run their game optimally on a particular
hardware platform. However, Unreal is an incredibly powerful prototyping
tool and commercial game development platform, and it can be used to build
virtually any 3D fi rst-person or third-person game (not to mention games in
other genres as well).

The Unreal Developer Network (UDN) provides a rich set of documenta-
tion and other information about the various versions of the Unreal Engine
(see htt p://udn.epicgames.com). Some of the documentation on Unreal Engine
2 is freely available, and “mods” can be constructed by anyone who owns a
copy of UT2004. However, access to the balance of the UE2 docs and all of the
UE3 docs are restricted to licensees of the engine. Unfortunately, licenses are
extremely expensive, and hence out of reach for all independent game devel-
opers and most small studios as well. But there are plenty of other useful web-
sites and wikis on Unreal. One popular one is htt p://www.beyondunreal.com.

1.5.3. The Half Life Source Engine

 Source is the game engine that drives the smash hit Half-Life 2 and its sequels
HL2: Episode One, HL2: Episode Two, Team Fortress 2, and Portal (shipped to-
gether under the title The Orange Box). Source is a high-quality engine, rivaling
Unreal Engine 3 in terms of graphics capabilities and tool set.

1.5.4. Microsoft’s XNA Game Studio

Microsoft ’s XNA Game Studio is an easy-to-use and highly accessible game
development platform aimed at encouraging players to create their own
games and share them with the online gaming community, much as YouTube
encourages the creation and sharing of home-made videos.

http://www.beyondunreal.com

27

XNA is based on Microsoft ’s C# language and the Common Language
Runtime (CLR). The primary development environment is Visual Studio or
its free counterpart, Visual Studio Express. Everything from source code
to game art assets are managed within Visual Studio. With XNA, develop-
ers can create games for the PC platform and Microsoft ’s Xbox 360 console.
Aft er paying a modest fee, XNA games can be uploaded to the Xbox Live
network and shared with friends. By providing excellent tools at essentially
zero cost, Microsoft has brilliantly opened the fl oodgates for the average
person to create new games. XNA clearly has a bright and fascinating future
ahead of it.

1.5.5. Other Commercial Engines

There are lots of other commercial game engines out there. Although indie
developers may not have the budget to purchase an engine, many of these
products have great online documentation and/or wikis that can serve as a
great source of information about game engines and game programming in
general. For example, check out the C4 Engine by Terathon Soft ware (htt p://
www.terathon.com), a company founded by Eric Lengyel in 2001. Docu-
mentation for the C4 Engine can be found on Terathon’s website, with ad-
ditional details on the C4 Engine wiki (htt p://www.terathon.com/wiki/index.
php?title=Main_Page).

1.5.6. Proprietary in-House Engines

Many companies build and maintain proprietary in-house game engines.
Electronic Arts built many of its RTS games on a proprietary engine called
SAGE, developed at Westwood Studios. Naughty Dog’s Crash Bandicoot, Jak
and Daxter series, and most recently Uncharted: Drake’s Fortune franchises were
each built on in-house engines custom-tailored to the PlayStation, PlayStation
2, and PLAYSTATION 3 platforms, respectively. And of course, most commer-
cially licensed game engines like Quake , Source, or the Unreal Engine started
out as proprietary in-house engines.

1.5.7. Open Source Engines

Open source 3D game engines are engines built by amateur and professional
game developers and provided online for free. The term “open source” typi-
cally implies that source code is freely available and that a somewhat open de-
velopment model is employed, meaning almost anyone can contribute code. Li-
censing, if it exists at all, is oft en provided under the Gnu Public License (GPL)
or Lesser Gnu Public License (LGPL). The former permits code to be freely used

1.5. Game Engine Survey

http://www.terathon.com
http://www.terathon.com/wiki/index

28 1. Introduction

by anyone, as long as their code is also freely available; the latt er allows the
code to be used even in proprietary for-profi t applications. Lots of other free
and semi-free licensing schemes are also available for open source projects.

There are a staggering number of open source engines available on the
web. Some are quite good, some are mediocre, and some are just plain aw-
ful! The list of game engines provided online at htt p://cg.cs.tu-berlin.de/~ki/
engines.html will give you a feel for the sheer number of engines that are out
there.

OGRE 3D is a well-architected, easy-to-learn, and easy-to-use 3D render-
ing engine. It boasts a fully featured 3D renderer including advanced lighting
and shadows , a good skeletal character animation system, a two-dimensional
overlay system for heads-up display s and graphical user interface s, and a
post-processing system for full-screen eff ects like bloom . OGRE is, by its au-
thors’ own admission, not a full game engine, but it does provide many of the
foundational components required by prett y much any game engine.

Some other well-known open source engines are listed here.
 Panda3D is a script-based engine. The engine’s primary interface is the

Python custom scripting language. It is designed to make prototyping
3D games and virtual worlds convenient and fast.

 Yake is a relatively new fully featured game engine built on top of
OGRE .

 Crystal Space is a game engine with an extensible modular architecture.
 Torque and Irrlicht are also well-known and widely used engines.

1.6. Runtime Engine Architecture

A game engine generally consists of a tool suite and a runtime component.
We’ll explore the architecture of the runtime piece fi rst and then get into tools
architecture in the following section.

Figure 1.11 shows all of the major runtime components that make up a
typical 3D game engine. Yeah, it’s big! And this diagram doesn’t even account
for all the tools. Game engines are defi nitely large soft ware systems.

Like all soft ware systems, game engines are built in layers. Normally up-
per layers depend on lower layers, but not vice versa. When a lower layer
depends upon a higher layer, we call this a circular dependency. Dependency
cycles are to be avoided in any soft ware system, because they lead to un-
desirable coupling between systems, make the soft ware untestable, and in-
hibit code reuse. This is especially true for a large-scale system like a game
engine.

www.allitebooks.com

http://www.allitebooks.org

29 1.6. Runtime Engine Architecture

Gameplay Foundations

Event/Messaging
System

Dynamic Game
Object Model

Scripting System

World Loading /
Streaming

Static World
Elements

Real-Time Agent-
Based Simulation

High-Level Game Flow System/FSM

Skeletal Animation

Animation
Decompression

Inverse
Kinematics (IK)

Game-Specific
Post-Processing

Sub-skeletal
Animation

LERP and
Additive Blending

Animation
Playback

Animation State
Tree & Layers

Profiling & Debugging

Memory &
Performance Stats

In-Game Menus
or Console

Recording &
Playback

Hierarchical
Object Attachment

3rd Party SDKs

Havok, PhysX,
ODE etc.

DirectX, OpenGL,
libgcm, Edge, etc. Boost++ STL / STLPort etc.Kynapse EuphoriaGranny, Havok

Animation, etc.

OS

Drivers

Hardware (PC, XBOX360, PS3, etc.)

Platform Independence Layer

Atomic Data
TypesPlatform Detection Collections and

Iterators Threading LibraryHi-Res TimerFile System Network Transport
Layer (UDP/TCP)

Graphics
Wrappers

Physics /Coll.
Wrapper

Core Systems

Module Start-Up
and Shut-Down

Parsers (CSV,
XML, etc.)

Assertions Unit Testing Math Library Strings and
Hashed String Ids

Debug Printing
and LoggingMemory Allocation

Engine Config
(INI files etc.)

Profiling / Stats
Gathering

Object Handles /
Unique Ids

RTTI / Reflection
& Serialization

Curves &
Surfaces Library

Random Number
Generator

Localization
Services

Asynchronous
File I/O

Movie Player

Memory Card I/O
(Older Consoles)

Resources (Game Assets)

Resource Manager

Texture
Resource

Material
Resource

3D Model
Resource

Font
Resource

Collision
Resource

Physics
Parameters

Game
World/Map etc.Skeleton

Resource

Human Interface
Devices (HID)

Physical Device
I/O

Game-Specific
Interface

Audio

Audio Playback /
Management

DSP/Effects

3D Audio Model

Online Multiplayer

Match-Making &
Game Mgmt.

Game State
Replication

Object Authority
PolicyScene Graph / Culling Optimizations

LOD SystemOcclusion & PVSSpatial Subdivision
(BSP Tree, kd-Tree, …)

Visual Effects

Particle & Decal
Systems Post Effects

HDR Lighting PRT Lighting,
Subsurf. Scatter

Environment
Mapping

Light Mapping &
Dynamic Shadows

Front End

Heads-Up Display
(HUD)

Full-Motion Video
(FMV)

In-Game MenusIn-Game GUI Wrappers / Attract
Mode

In-Game Cinematics
(IGC)

Collision & Physics

Shapes/
Collidables

Rigid Bodies Phantoms

Ray/Shape
Casting (Queries)

Forces &
Constraints

Physics /Collision
World

Ragdoll
Physics

GAME-SPECIFIC SUBSYSTEMS

Game-Specific Rendering

Terrain Rendering Water Simulation
& Rendering

etc.

Player Mechanics

Collision Manifold Movement

State Machine &
Animation

Game Cameras

Player -Follow
Camera

Debug Fly-
Through Cam

Fixed Cameras Scripted/Animated
Cameras

AI

Sight Traces &
Perception Path Finding (A*)

Goals & Decision-
Making

Actions
(Engine Interface)

Camera-Relative
Controls (HID)

Weapons Power-Ups etc.Vehicles Puzzles

Low-Level Renderer

Primitive
Submission

Viewports &
Virtual Screens

Materials &
Shaders

Texture and
Surface Mgmt.

Graphics Device Interface

Static & Dynamic
Lighting Cameras Text & Fonts

Debug Drawing
(Lines etc.)

Skeletal Mesh
Rendering

Figure 1.11. Runtime game engine architecture.

30 1. Introduction

What follows is a brief overview of the components shown in the diagram
in Figure 1.11. The rest of this book will be spent investigating each of these
components in a great deal more depth and learning how these components
are usually integrated into a functional whole.

1.6.1. Target Hardware

The target hardware layer, shown in isolation in Figure 1.12, represents the
computer system or console on which the game will run. Typical platforms
include Microsoft Windows- and Linux-based PCs, the Apple iPhone and
Macintosh, Microsoft ’s Xbox and Xbox 360, Sony’s PlayStation, PlayStation 2,
PlayStation Portable (PSP), and PLAYSTATION 3, and Nintendo’s DS, Game-
Cube, and Wii. Most of the topics in this book are platform-agnostic, but we’ll
also touch on some of the design considerations peculiar to PC or console
development, where the distinctions are relevant.

Hardware (PC, XBOX360, PS3, etc.)

Figure 1.12. Hardware layer.

Drivers

Figure 1.13. Device driver layer.

1.6.2. Device Drivers

As depicted in Figure 1.13, device drivers are low-level soft ware components
provided by the operating system or hardware vendor. Drivers manage hard-
ware resources and shield the operating system and upper engine layers from
the details of communicating with the myriad variants of hardware devices
available.

1.6.3. Operating System

On a PC, the operating system (OS) is running all the time. It orchestrates the
execution of multiple programs on a single computer, one of which is your
game. The OS layer is shown in Figure 1.14. Operating systems like Microsoft
Windows employ a time-sliced approach to sharing the hardware with mul-
tiple running programs, known as pre-emptive multitasking . This means that
a PC game can never assume it has full control of the hardware—it must “play
nice” with other programs in the system.

31 1.6. Runtime Engine Architecture

OS

Figure 1.14. Operating system layer.

3rd Party SDKs

Havok, PhysX,
ODE etc.

DirectX, OpenGL,
libgcm, Edge, etc. Boost++ STL / STLPort etc.Kynapse EuphoriaGranny, Havok

Animation, etc.

Figure 1.15. Third-party SDK layer.

On a console, the operating system is oft en just a thin library layer that is
compiled directly into your game executable. On a console, the game typically
“owns” the entire machine. However, with the introduction of the Xbox 360
and PLAYSTATION 3, this is no longer strictly the case. The operating sys-
tem on these consoles can interrupt the execution of your game, or take over
certain system resources, in order to display online messages, or to allow the
player to pause the game and bring up the PS3’s Xross Media Bar or the Xbox
360’s dashboard, for example. So the gap between console and PC develop-
ment is gradually closing (for bett er or for worse).

1.6.4. Third-Party SDKs and Middleware

Most game engines leverage a number of third-party soft ware development
kit s (SDKs) and middleware, as shown in Figure 1.15. The functional or class-
based interface provided by an SDK is oft en called an application program-
ming interface (API). We will look at a few examples.

1.6.4.1. Data Structures and Algorithms

Like any soft ware system, games depend heavily on collection data structures
and algorithms to manipulate them. Here are a few examples of third-party
libraries which provide these kinds of services.

 STL. The C++ standard template library provides a wealth of code and
algorithms for managing data structures, strings, and stream-based
I/O.

 STLport . This is a portable, optimized implementation of STL.

 Boost . Boost is a powerful data structures and algorithms library,
designed in the style of STL. (The online documentation for Boost is
also a great place to learn a great deal about computer science!)

 Loki . Loki is a powerful generic programming template library which is
exceedingly good at making your brain hurt!

32 1. Introduction

Game developers are divided on the question of whether to use template
libraries like STL in their game engines. Some believe that the memory alloca-
tion patt erns of STL, which are not conducive to high-performance program-
ming and tend to lead to memory fragmentation (see Section 5.2.1.4), make
STL unusable in a game. Others feel that the power and convenience of STL
outweigh its problems, and that most of the problems can in fact be worked
around anyway. My personal belief is that STL is all right for use on a PC, be-
cause its advanced virtual memory system renders the need for careful mem-
ory allocation a bit less crucial (although one must still be very careful). On a
console, with limited or no virtual memory facilities and exorbitant cache miss
costs, you’re probably bett er off writing custom data structures that have pre-
dictable and/or limited memory allocation patt erns. (And you certainly won’t
go far wrong doing the same on a PC game project either.)

1.6.4.2. Graphics

Most game rendering engines are built on top of a hardware interface library,
such as the following:

 Glide is the 3D graphics SDK for the old Voodoo graphics cards. This
SDK was popular prior to the era of hardware transform and lighting
(hardware T&L) which began with DirectX 8.

 OpenGL is a widely used portable 3D graphics SDK.
 DirectX is Microsoft ’s 3D graphics SDK and primary rival to OpenGL .
 libgcm is a low-level direct interface to the PLAYSTATION 3’s RSX graph-

ics hardware, which was provided by Sony as a more effi cient alterna-
tive to OpenGL.

 Edge is a powerful and highly-effi cient rendering and animation engine
produced by Naughty Dog and Sony for the PLAYSTATION 3 and used
by a number of fi rst- and third-party game studios.

1.6.4.3. Collision and Physics

Collision detection and rigid body dynamics (known simply as “physics”
in the game development community) are provided by the following well-
known SDKs.

 Havok is a popular industrial-strength physics and collision engine.

 PhysX is another popular industrial-strength physics and collision en-
gine, available for free download from NVIDIA.

 Open Dynamics Engine (ODE) is a well-known open source physics/col-
lision p ackage.

33

1.6.4.4. Character Animation

A number of commercial animation packages exist, including but certainly
not limited to the following.

 Granny . Rad Game Tools’ popular Granny toolkit includes robust 3D
model and animation exporters for all the major 3D modeling and ani-
mation packages like Maya, 3D Studio MAX, etc., a runtime library for
reading and manipulating the exported model and animation data, and
a powerful runtime animation system. In my opinion, the Granny SDK
has the best-designed and most logical animation API of any I’ve seen,
commercial or proprietary, especially its excellent handling of time.

 Havok Animation . The line between physics and animation is becoming
increasingly blurred as characters become more and more realistic. The
company that makes the popular Havok physics SDK decided to create
a complimentary animation SDK, which makes bridging the physics-
animation gap much easier than it ever has been.

 Edge. The Edge library produced for the PS3 by the ICE team at Naughty
Dog, the Tools and Technology group of Sony Computer Entertainment
America, and Sony’s Advanced Technology Group in Europe includes
a powerful and effi cient animation engine and an effi cient geometry-
processing engine for rendering.

1.6.4.5. Artifi cial Intelligence

 Kynapse . Until recently, artifi cial intelligence (AI) was handled in a cus-
tom manner for each game. However, a company called Kynogon has
produced a middleware SDK called Kynapse. This SDK provides low-
level AI building blocks such as path fi nding, static and dynamic object
avoidance, identifi cation of vulnerabilities within a space (e.g., an open
window from which an ambush could come), and a reasonably good
interface between AI and animation.

1.6.4.6. Biomechanical Character Models

 Endorphin and Euphoria . These are animation packages that produce
character motion using advanced biomechanical models of realistic hu-
man movement.

As we mentioned above, the line between character animation and phys-
ics is beginning to blur. Packages like Havok Animation try to marry physics
and animation in a traditional manner, with a human animator providing the
majority of the motion through a tool like Maya and with physics augmenting
that motion at runtime. But recently a fi rm called Natural Motion Ltd. has pro-

1.6. Runtime Engine Architecture

34 1. Introduction

duced a product that att empts to redefi ne how character motion is handled in
games and other forms of digital media.

Its fi rst product, Endorphin , is a Maya plug-in that permits animators
to run full biomechanical simulations on characters and export the resulting
animations as if they had been hand-animated. The biomechanical model ac-
counts for center of gravity, the character’s weight distribution, and detailed
knowledge of how a real human balances and moves under the infl uence of
gravity and other forces.

Its second product, Euphoria , is a real-time version of Endorphin intend-
ed to produce physically and biomechanically accurate character motion at
runtime under the infl uence of unpredictable forces.

1.6.5. Platform Independence Layer

Most game engines are required to be capable of running on more than one
hardware platform. Companies like Electronic Arts and Activision/Blizzard,
for example, always target their games at a wide variety of platforms, because
it exposes their games to the largest possible market. Typically, the only game
studios that do not target at least two diff erent platforms per game are fi rst-
party studios, like Sony’s Naughty Dog and Insomniac studios. Therefore,
most game engines are architected with a platform independence layer, like
the one shown in Figure 1.16. This layer sits atop the hardware, drivers, oper-
ating system, and other third-party soft ware and shields the rest of the engine
from the majority of knowledge of the underlying platform.

By wrapping or replacing the most commonly used standard C library
functions, operating system calls, and other foundational application pro-
gramming interfaces (APIs), the platform independence layer ensures consis-
tent behavior across all hardware platforms. This is necessary because there is
a good deal of variation across platforms, even among “standardized” librar-
ies like the standard C library.

Platform Independence Layer

Atomic Data
TypesPlatform Detection Collections and

Iterators Threading LibraryHi-Res TimerFile System Network Transport
Layer (UDP/TCP)

Graphics
Wrappers

Physics /Coll.
Wrapper

Figure 1.16. Platform independence layer.

1.6.6. Core Systems

Every game engine, and really every large, complex C++ soft ware application,
requires a grab bag of useful soft ware utilities. We’ll categorize these under
the label “core systems.” A typical core systems layer is shown in Figure 1.17.
Here are a few examples of the facilities the core layer usually provides.

35

 Assertions are lines of error-checking code that are inserted to catch logi-
cal mistakes and violations of the programmer’s original assumptions.
Assertion checks are usually stripped out of the fi nal production build
of the game.

 Memory management. Virtually every game engine implements its own
custom memory allocation system(s) to ensure high-speed allocations
and deallocations and to limit the negative eff ects of memory fragmen-
tation (see Section 5.2.1.4).

 Math library. Games are by their nature highly mathematics-intensive. As
such, every game engine has at least one, if not many, math libraries. These
libraries provide facilities for vector and matrix math, quaternion rota-
tions, trigonometry, geometric operations with lines, rays, spheres, frusta,
etc., spline manipulation, numerical integration, solving systems of equa-
tions, and whatever other facilities the game programmers require.

 Custom data structures and algorithms. Unless an engine’s designers de-
cided to rely entirely on a third-party package such as STL, a suite of
tools for managing fundamental data structures (linked lists, dynamic
arrays, binary trees, hash maps, etc.) and algorithms (search, sort, etc.)
is usually required. These are oft en hand-coded to minimize or elimi-
nate dynamic memory allocation and to ensure optimal runtime perfor-
mance on the target platform(s).

A detailed discussion of the most common core engine systems can be
found in Part II.

1.6.7. Resource Manager

Present in every game engine in some form, the resource manager provides
a unifi ed interface (or suite of interfaces) for accessing any and all types of
game assets and other engine input data. Some engines do this in a highly
centralized and consistent manner (e.g., Unreal ’s packages, OGRE 3D ’s Re-
sourceManager class). Other engines take an ad hoc approach, oft en leaving
it up to the game programmer to directly access raw fi les on disk or within
compressed archives such as Quake ’s PAK fi les. A typical resource manager
layer is depicted in Figure 1.18.

1.6. Runtime Engine Architecture

Core Systems

Module Start-Up
and Shut-Down

Parsers (CSV,
XML, etc.)

Assertions Unit Testing Math Library Strings and
Hashed String Ids

Debug Printing
and LoggingMemory Allocation

Engine Config
(INI files etc.)

Profiling / Stats
Gathering

Object Handles /
Unique Ids

RTTI / Reflection
& Serialization

Curves &
Surfaces Library

Random Number
Generator

Localization
Services

Asynchronous
File I/O

Movie Player

Memory Card I/O
(Older Consoles)

Figure 1.17. Core engine systems.

36 1. Introduction

Low-Level Renderer

Primitive
Submission

Viewports &
Virtual Screens

Materials &
Shaders

Texture and
Surface Mgmt.

Graphics Device Interface

Static & Dynamic
Lighting Cameras Text & Fonts

Debug Drawing
(Lines etc.)

Skeletal Mesh
Rendering

Figure 1.19. Low-level rendering engine.

Resources (Game Assets)

Resource Manager

Texture
Resource

Material
Resource

3D Model
Resource

Font
Resource

Collision
Resource

Physics
Parameters

Game
World/Map etc.Skeleton

Resource

Figure 1.18. Resource manager.

1.6.8. Rendering Engine

The rendering engine is one of the largest and most complex components of
any game engine. Renderers can be architected in many diff erent ways. There
is no one accepted way to do it, although as we’ll see, most modern rendering
engines share some fundamental design philosophies, driven in large part by
the design of the 3D graphics hardware upon which they depend.

One common and eff ective approach to rendering engine design is to em-
ploy a layered architecture as follows.

1.6.8.1. Low-Level Renderer

The low-level renderer , shown in Figure 1.19, encompasses all of the raw ren-
dering facilities of the engine. At this level, the design is focused on rendering
a collection of geometric primitives as quickly and richly as possible, without
much regard for which portions of a scene may be visible. This component is
broken into various subcomponents, which are discussed below.

Graphics Device Interface

Graphics SDKs, such as DirectX and OpenGL, require a reasonable amount of
code to be writt en just to enumerate the available graphics devices, initialize
them, set up render surfaces (back-buff er, stencil buff er etc.), and so on. This

37

is typically handled by a component that I’ll call the graphics device interface
(although every engine uses its own terminology).

For a PC game engine, you also need code to integrate your renderer with
the Windows message loop. You typically write a “ message pump ” that ser-
vices Windows messages when they are pending and otherwise runs your
render loop over and over as fast as it can. This ties the game’s keyboard poll-
ing loop to the renderer’s screen update loop. This coupling is undesirable,
but with some eff ort it is possible to minimize the dependencies. We’ll explore
this topic in more depth later.

Other Renderer Components

The other components in the low-level renderer cooperate in order to collect
submissions of geometric primitives (sometimes called render packet s), such as
meshes, line lists, point lists, particles , terrain patches, text strings, and what-
ever else you want to draw, and render them as quickly as possible.

The low-level renderer usually provides a viewport abstraction with an
associated camera -to-world matrix and 3D projection parameters, such as fi eld
of view and the location of the near and far clip plane s. The low-level renderer
also manages the state of the graphics hardware and the game’s shaders via
its material system and its dynamic lighting system. Each submitt ed primitive
is associated with a material and is aff ected by n dynamic lights. The mate-
rial describes the texture (s) used by the primitive, what device state sett ings
need to be in force, and which vertex and pixel shader to use when rendering
the primitive. The lights determine how dynamic lighting calculations will
be applied to the primitive. Lighting and shading is a complex topic, which
is covered in depth in many excellent books on computer graphics, including
[14], [42], and [1].

1.6.8.2. Scene Graph/Culling Optimizations

The low-level renderer draws all of the geometry submitt ed to it, without
much regard for whether or not that geometry is actually visible (other than
back-face culling and clipping triangles to the camera frustum). A higher-level
component is usually needed in order to limit the number of primitives sub-
mitt ed for rendering, based on some form of visibility determination. This
layer is shown in Figure 1.20.

For very small game worlds, a simple frustum cull (i.e., removing objects
that the camera cannot “see”) is probably all that is required. For larger game
worlds, a more advanced spatial subdivision data structure might be used to
improve rendering effi ciency, by allowing the potentially visible set (PVS)
of objects to be determined very quickly. Spatial subdivisions can take many

1.6. Runtime Engine Architecture

38 1. Introduction

forms, including a binary space partitioning (BSP) tree, a quadtree , an octree ,
a kd-tree , or a sphere hierarchy . A spatial subdivision is sometimes called a
 scene graph, although technically the latt er is a particular kind of data struc-
ture and does not subsume the former. Portals or occlusion culling methods
might also be applied in this layer of the rendering engine.

Ideally, the low-level renderer should be completely agnostic to the type
of spatial subdivision or scene graph being used. This permits diff erent game
teams to reuse the primitive submission code, but craft a PVS determination
system that is specifi c to the needs of each team’s game. The design of the
OGRE 3D open source rendering engine (htt p://www.ogre3d.org) is a great
example of this principle in action. OGRE provides a plug-and-play scene
graph architecture. Game developers can either select from a number of pre-
implemented scene graph designs, or they can provide a custom scene graph
implementation.

1.6.8.3. Visual Effects

Modern game engines support a wide range of visual eff ects , as shown in
Figure 1.21, including

 particle system s (for smoke, fi re, water splashes, etc.);
 decal systems (for bullet holes, foot prints, etc.);
 light mapping and environment mapping;
 dynamic shadows;
 full-screen post eff ects , applied aft er the 3D scene has been rendered to

an off screen buff er.

Scene Graph / Culling Optimizations

LOD SystemOcclusion & PVSSpatial Subdivision
(BSP Tree, kd-Tree, …)

Figure 1.20. A typical scene graph/spatial subdivision layer, for culling optimization.

Visual Effects

Particle & Decal
Systems Post Effects

HDR Lighting PRT Lighting,
Subsurf. Scatter

Environment
Mapping

Light Mapping &
Dynamic Shadows

Figure 1.21. Visual effects.

www.allitebooks.com

http://www.ogre3d.org
http://www.allitebooks.org

39

Some examples of full-screen post eff ects include

 high dynamic range (HDR) lighting and bloom ;
 full-screen anti-aliasing (FSAA);
 color correction and color-shift eff ects, including bleach bypass , satura-

tion and de-saturation eff ects, etc.

It is common for a game engine to have an eff ects system component that
manages the specialized rendering needs of particles, decals, and other vi-
sual eff ects . The particle and decal systems are usually distinct components
of the rendering engine and act as inputs to the low-level renderer . On the
other hand, light mapping , environment mapping, and shadows are usually
handled internally within the rendering engine proper. Full-screen post ef-
fects are either implemented as an integral part of the renderer or as a separate
component that operates on the renderer’s output buff ers.

1.6.8.4. Front End

Most games employ some kind of 2D graphics overlaid on the 3D scene for
various purposes. These include

 the game’s heads-up display (HUD);
 in-game menus, a console, and/or other development tools, which may or

may not be shipped with the fi nal product;

 possibly an in-game graphical user interface (GUI), allowing the player to
manipulate his or her character’s inventory, confi gure units for batt le, or
perform other complex in-game tasks.

This layer is shown in Figure 1.22. Two-dimensional graphics like these are
usually implemented by drawing textured quads (pairs of triangles) with an
orthographic projection . Or they may be rendered in full 3D, with the quads
bill-boarded so they always face the camera .

We’ve also included the full-motion video (FMV) system in this layer. This
system is responsible for playing full-screen movies that have been recorded

1.6. Runtime Engine Architecture

Front End

Heads-Up Display
(HUD)

Full-Motion Video
(FMV)

In-Game MenusIn-Game GUI Wrappers / Attract
Mode

In-Game Cinematics
(IGC)

Figure 1.22. Front end graphics.

40 1. Introduction

earlier (either rendered with the game’s rendering engine or using another
rendering package).

A related system is the in-game cinematics (IGC) system. This component
typically allows cinematic sequences to be choreographed within the game it-
self, in full 3D. For example, as the player walks through a city, a conversation
between two key characters might be implemented as an in-game cinematic.
IGCs may or may not include the player character(s). They may be done as a
deliberate cut-away during which the player has no control, or they may be
subtly integrated into the game without the human player even realizing that
an IGC is taking place.

1.6.9. Profi ling and Debugging Tools

Games are real-time systems and, as such, game engineers oft en need to profi le
the performance of their games in order to optimize performance. In addition,
memory resources are usually scarce, so developers make heavy use of mem-
ory analysis tools as well. The profi ling and debugging layer, shown in Figure
1.23, encompasses these tools and also includes in-game debugging facilities,
such as debug drawing, an in-game menu system or console, and the ability to
 record and play back gameplay for testing and debugging purposes.

There are plenty of good general-purpose soft ware profi ling tools avail-
able, including

 Intel’s VTune,
 IBM’s Quantify and Purify (part of the PurifyPlus tool suite),

 Compuware’s Bounds Checker.

However, most game engines also incorporate a suite of custom profi ling
and debugging tools. For example, they might include one or more of the fol-
lowing:

 a mechanism for manually instrumenting the code, so that specifi c sec-
tions of code can be timed;

 a facility for displaying the profi ling statistics on-screen while the game
is running;

 a facility for dumping performance stats to a text fi le or to an Excel
spreadsheet;

 a facility for determining how much memory is being used by the en-
gine, and by each subsystem, including various on-screen displays;

 the ability to dump memory usage, high-water mark, and leakage stats
when the game terminates and/or during gameplay;

Profiling & Debugging

Memory &
Performance Stats

In-Game Menus
or Console

Recording &
Playback

Figure 1.23. Profi l-
ing and debugging
tools.

41 1.6. Runtime Engine Architecture

 tools that allow debug print statements to be peppered throughout the
code, along with an ability to turn on or off diff erent categories of debug
output and control the level of verbosity of the output;

 the ability to record game events and then play them back. This is tough
to get right, but when done properly it can be a very valuable tool for
tracking down bugs.

1.6.10. Collision and Physics

 Collision detection is important for every game. Without it, objects would in-
terpenetrate, and it would be impossible to interact with the virtual world
in any reasonable way. Some games also include a realistic or semi-realistic
dynamics simulation . We call this the “physics system” in the game industry,
although the term rigid body dynamics is really more appropriate, because we
are usually only concerned with the motion (kinematics) of rigid bodies and
the forces and torques (dynamics) that cause this motion to occur. This layer
is depicted in Figure 1.24.

Collision and physics are usually quite tightly coupled. This is because
when collisions are detected, they are almost always resolved as part of the
physics integration and constraint satisfaction logic. Nowadays, very few
game companies write their own collision /physics engine. Instead, a third-
party SDK is typically integrated into the engine.

 Havok is the gold standard in the industry today. It is feature-rich and
performs well across the boards.

 PhysX by NVIDIA is another excellent collision and dynamics engine.
It was integrated into Unreal Engine 3 and is also available for free as
a standalone product for PC game development. PhysX was originally
designed as the interface to Ageia’s new physics accelerator chip. The

Collision & Physics

Shapes/
Collidables

Rigid Bodies Phantoms

Ray/Shape
Casting (Queries)

Forces &
Constraints

Physics /Collision
World

Ragdoll
Physics

Figure 1.24. Collision and physics subsystem.

42 1. Introduction

SDK is now owned and distributed by NVIDIA, and the company is
adapting PhysX to run on its latest GPUs.

Open source physics and collision engines are also available. Perhaps the
best-known of these is the Open Dynamics Engine (ODE). For more informa-
tion, see htt p://www.ode.org. I-Collide, V-Collide, and RAPID are other popu-
lar non-commercial collision detection engines. All three were developed at the
University of North Carolina (UNC). For more information, see htt p://www.
cs.unc.edu/~geom/I_COLLIDE/index.html, htt p://www.cs.unc.edu/~geom/V_
COLLIDE/index.html, and htt p://www.cs.unc.edu/~geom/OBB/OBBT.html.

1.6.11. Animation

Any game that has organic or semi-organic characters (humans, animals, car-
toon characters, or even robots) needs an animation system. There are fi ve
basic types of animation used in games:

 sprite/texture an imation,
 rigid body hierarchy animation,
 skeletal animation,
 vertex animation, and
 morph targets.

Skeletal animation permits a detailed 3D character mesh to be posed by
an animator using a relatively simple system of bones. As the bones move, the
vertices of the 3D mesh move with them. Although morph targets and vertex
animation are used in some engines, skeletal animation is the most prevalent
animation method in games today; as such, it will be our primary focus in this
book. A typical skeletal animation system is shown in Figure 1.25.

Skeletal Animation

Animation
Decompression

Inverse
Kinematics (IK)

Game-Specific
Post-Processing

Sub-skeletal
Animation

LERP and
Additive Blending

Animation
Playback

Animation State
Tree & Layers

Figure 1.25. Skeletal animation subsystem.

http://www.ode.org
http://www.cs.unc.edu/~geom/I_COLLIDE/index.html
http://www.cs.unc.edu/~geom/I_COLLIDE/index.html
http://www.cs.unc.edu/~geom/V_
http://www.cs.unc.edu/~geom/OBB/OBBT.html

43

You’ll notice in Figure 1.11 that Skeletal Mesh Rendering is a component
that bridges the gap between the renderer and the animation system. There
is a tight cooperation happening here, but the interface is very well defi ned.
The animation system produces a pose for every bone in the skeleton, and
then these poses are passed to the rendering engine as a palett e of matrices.
The renderer transforms each vertex by the matrix or matrices in the palett e,
in order to generate a fi nal blended vertex position. This process is known as
skinning.

There is also a tight coupling between the animation and physics systems,
when rag dolls are employed. A rag doll is a limp (oft en dead) animated char-
acter, whose bodily motion is simulated by the physics system. The physics
system determines the positions and orientations of the various parts of the
body by treating them as a constrained system of rigid bodies. The animation
system calculates the palett e of matrices required by the rendering engine in
order to draw the character on-screen.

1.6.12. Human Interface Devices (HID)

Every game needs to process input from the player, obtained from various
human interface device s (HIDs) including

 the keyboard and mouse,
 a joypad, or
 other specialized game controllers, like steering wheels, fi shing rods,

dance pads, the WiiMote, etc.

We sometimes call this component the player I/O component, because we
may also provide output to the player through the HID , such as force feed-
back /rumble on a joypad or the audio produced by the WiiMote. A typical
HID layer is shown in Figure 1.26.

The HID engine component is sometimes architected to divorce the
low-level details of the game controller(s) on a particular hardware platform
from the high-level game controls. It massages the raw data coming from the
hardware, introducing a dead zone around the center point of each joypad
stick, de-bouncing butt on-press inputs, detecting butt on-down and butt on-
up events, interpreting and smoothing accelerometer inputs (e.g., from the
PLAYSTATION 3 Sixaxis controller), and more. It oft en provides a mecha-
nism allowing the player to customize the mapping between physical controls
and logical game functions. It sometimes also includes a system for detecting
chords (multiple butt ons pressed together), sequences (butt ons pressed in se-
quence within a certain time limit), and gestures (sequences of inputs from the
butt ons, sticks, accelerometers, etc.).

1.6. Runtime Engine Architecture

Human Interface
Devices (HID)

Physical Device
I/O

Game-Specific
Interface

Figure 1.26. The
player input/out-
put system, also
known as the hu-
man interface de-
vice (HID) layer.

44 1. Introduction

1.6.13. Audio

Audio is just as important as graphics in any game engine. Unfortunately,
 audio oft en gets less att ention than rendering, physics, animation, AI, and
gameplay. Case in point: Programmers oft en develop their code with their
speakers turned off ! (In fact, I’ve known quite a few game programmers
who didn’t even have speakers or headphones.) Nonetheless, no great game
is complete without a stunning audio engine. The audio layer is depicted in
Figure 1.27.

Audio engines vary greatly in sophistication. Quake ’s and Unreal ’s au-
dio engines are prett y basic, and game teams usually augment them with
custom functionality or replace them with an in-house solution. For DirectX
platforms (PC and Xbox 360), Microsoft provides an excellent audio tool suite
called XACT . Electronic Arts has developed an advanced, high-powered au-
dio engine internally called SoundR!OT. In conjunction with fi rst-party stu-
dios like Naughty Dog, Sony Computer Entertainment America (SCEA) pro-
vides a powerful 3D audio engine called Scream, which has been used on
a number of PS3 titles including Naughty Dog’s Uncharted: Drake’s Fortune.
However, even if a game team uses a pre-existing audio engine, every game
requires a great deal of custom soft ware development, integration work, fi ne-
tuning, and att ention to detail in order to produce high-quality audio in the
fi nal product.

1.6.14. Online Multiplayer/Networking

Many games permit multiple human players to play within a single virtual
world. Multiplayer games come in at least four basic fl avors.

 Single-screen multiplayer. Two or more human interface devices (joypads,
keyboards, mice, etc.) are connected to a single arcade machine, PC, or
console. Multiple player characters inhabit a single virtual world, and a
single camera keeps all player characters in frame simultaneously. Ex-
amples of this style of multiplayer gaming include Smash Brothers, Lego
Star Wars, and Gauntlet.

 Split-screen multiplayer. Multiple player characters inhabit a single vir-
tual world, with multiple HIDs att ached to a single game machine, but
each with its own camera, and the screen is divided into sections so that
each player can view his or her character.

 Networked multiplayer. Multiple computers or consoles are networked
together, with each machine hosting one of the players.

 Massively multiplayer online games (MMOG). Literally hundreds of
thousands of users can be playing simultaneously within a giant, per-

Audio

Audio Playback /
Management

DSP/Effects

3D Audio Model

Figure 1.27. Audio
subsystem.

45

sistent, online virtual world hosted by a powerful batt ery of central
servers.

The multiplayer networking layer is shown in Figure 1.28.
Multiplayer games are quite similar in many ways to their single-player

counterparts. However, support for multiple players can have a profound
impact on the design of certain game engine components. The game world
object model, renderer, human input device system, player control system,
and animation systems are all aff ected. Retrofi tt ing multiplayer features into
a pre-existing single-player engine is certainly not impossible, although it can
be a daunting task. Still, many game teams have done it successfully. That
said, it is usually bett er to design multiplayer features from day one, if you
have that luxury.

It is interesting to note that going the other way—converting a multi-
player game into a single-player game—is typically trivial. In fact, many game
engines treat single-player mode as a special case of a multiplayer game, in
which there happens to be only one player. The Quake engine is well known
for its client-on-top-of-server mode, in which a single executable, running on a
single PC, acts both as the client and the server in single-player campaigns.

1.6.15. Gameplay Foundation Systems

The term gameplay refers to the action that takes place in the game, the rules
that govern the virtual world in which the game takes place, the abilities of
the player character(s) (known as player mechanics) and of the other characters
and objects in the world, and the goals and objectives of the player(s). Game-
play is typically implemented either in the native language in which the rest
of the engine is writt en, or in a high-level scripting language—or sometimes
both. To bridge the gap between the gameplay code and the low-level engine
systems that we’ve discussed thus far, most game engines introduce a layer

1.6. Runtime Engine Architecture

Gameplay Foundations

Event/Messaging
System

Dynamic Game
Object Model

Scripting System

World Loading /
Streaming

Static World
Elements

Real-Time Agent-
Based Simulation

High-Level Game Flow System/FSM

Hierarchical
Object Attachment

Figure 1.29. Gameplay foundation systems.

Online Multiplayer

Match-Making &
Game Mgmt.

Game State
Replication

Object Authority
Policy

Figure 1.28. On-
line multiplayer
subsystem.

46 1. Introduction

that I’ll call the gameplay foundations layer (for lack of a standardized name).
Shown in Figure 1.29, this layer provides a suite of core facilities, upon which
game-specifi c logic can be implemented conveniently.

1.6.15.1. Game Worlds and Object Models

The gameplay foundations layer introduces the notion of a game world, con-
taining both static and dynamic elements. The contents of the world are usu-
ally modeled in an object-oriented manner (oft en, but not always, using an
object-oriented programming language). In this book, the collection of object
types that make up a game is called the game object model. The game object
model provides a real-time simulation of a heterogeneous collection of objects
in the virtual game world.

Typical types of game objects include

 static background geometry, like buildings, roads, terrain (oft en a spe-
cial case), etc.;

 dynamic rigid bodies, such as rocks, soda cans, chairs, etc.;
 player characters (PC);
 non-player characters (NPC);
 weapons;
 projectiles;
 vehicles;
 lights (which may be present in the dynamic scene at run time, or only

used for static lighting offl ine);
 cameras;
 and the list goes on.

The game world model is intimately tied to a soft ware object model, and
this model can end up pervading the entire engine. The term soft ware object
model refers to the set of language features, policies, and conventions used to
implement a piece of object-oriented soft ware. In the context of game engines,
the soft ware object model answers questions, such as:

 Is your game engine designed in an object-oriented manner?
 What language will you use? C? C++? Java? OCaml?
 How will the static class hierarchy be organized? One giant monolithic

hierarchy? Lots of loosely coupled components?
 Will you use templates and policy-based design, or traditional polymor-

phism?
 How are objects referenced? Straight old pointers? Smart pointers?

Handles?

47

 How will objects be uniquely identifi ed? By address in memory only?
By name? By a global unique identifi er (GUID)?

 How are the lifetimes of game objects managed?
 How are the states of the game objects simulated over time?

We’ll explore soft ware object models and game object models in consider-
able depth in Section 14.2.

1.6.15.2. Event System

Game objects invariably need to communicate with one another. This can be
accomplished in all sorts of ways. For example, the object sending the message
might simply call a member function of the receiver object. An event-driven
architecture, much like what one would fi nd in a typical graphical user inter-
face, is also a common approach to inter-object communication. In an event-
driven system, the sender creates a litt le data structure called an event or mes-
sage, containing the message’s type and any argument data that are to be sent.
The event is passed to the receiver object by calling its event handler function.
Events can also be stored in a queue for handling at some future time.

1.6.15.3. Scripting System

Many game engines employ a scripting language in order to make develop-
ment of game-specifi c gameplay rules and content easier and more rapid.
Without a scripting language, you must recompile and relink your game ex-
ecutable every time a change is made to the logic or data structures used in the
engine. But when a scripting language is integrated into your engine, changes
to game logic and data can be made by modifying and reloading the script
code. Some engines allow script to be reloaded while the game continues to
run. Other engines require the game to be shut down prior to script recompi-
lation. But either way, the turn-around time is still much faster than it would
be if you had to recompile and relink the game’s executable.

1.6.15.4. Artifi cial Intelligence Foundations

Traditionally, artifi cial intelligence (AI) has fallen squarely into the realm of
game-specifi c soft ware—it was usually not considered part of the game en-
gine per se. More recently, however, game companies have recognized pat-
terns that arise in almost every AI system, and these foundations are slowly
starting to fall under the purview of the engine proper.

A company called Kynogon has developed a commercial AI engine called
 Kynapse , which acts as an “AI foundation layer” upon which game-specifi c
AI logic can be quite easily developed. Kynapse provides a powerful suite of
features, including

1.6. Runtime Engine Architecture

48 1. Introduction

 a network of path nodes or roaming volumes, that defi nes areas or paths
where AI characters are free to move without fear of colliding with static
world geometry;

 simplifi ed collision information around the edges of each free-roaming
area;

 knowledge of the entrances and exits from a region, and from where in
each region an enemy might be able to see and/or ambush you;

 a path-fi nding engine based on the well-known A* algorithm;
 hooks into the collision system and world model, for line-of-sight (LOS)

traces and other perceptions;
 a custom world model which tells the AI system where all the entities of

interest (friends, enemies, obstacles) are, permits dynamic avoidance of
moving objects, and so on.

Kynapse also provides an architecture for the AI decision layer, including
the concept of brains (one per character), agents (each of which is responsible
for executing a specifi c task, such as moving from point to point, fi ring on an
enemy, searching for enemies, etc.), and actions (responsible for allowing the
character to perform a fundamental movement, which oft en results in playing
animations on the character’s skeleton).

1.6.16. Game-Specifi c Subsystems

On top of the gameplay foundation layer and the other low-level engine com-
ponents, gameplay programmers and designers cooperate to implement the
features of the game itself. Gameplay systems are usually numerous, highly
varied, and specifi c to the game being developed. As shown in Figure 1.30,
these systems include, but are certainly not limited to the mechanics of the
player character, various in-game camera systems, artifi cial intelligence for
the control of non-player characters (NPCs), weapon systems, vehicles, and

GAME-SPECIFIC SUBSYSTEMS

Game-Specific Rendering

Terrain Rendering Water Simulation
& Rendering

etc.

Player Mechanics

Collision Manifold Movement

State Machine &
Animation

Game Cameras

Player -Follow
Camera

Debug Fly-
Through Cam

Fixed Cameras Scripted/Animated
Cameras

AI

Sight Traces &
Perception Path Finding (A*)

Goals & Decision-
Making

Actions
(Engine Interface)

Camera-Relative
Controls (HID)

Weapons Power-Ups etc.Vehicles Puzzles

Figure 1.30. Game-specifi c subsystems.

www.allitebooks.com

http://www.allitebooks.org

49 1.7. Tools and the Asset Pipeline

the list goes on. If a clear line could be drawn between the engine and the
game, it would lie between the game-specifi c subsystems and the gameplay
foundations layer. Practically speaking, this line is never perfectly distinct.
At least some game-specifi c knowledge invariably seeps down through the
gameplay foundations layer and sometimes even extends into the core of the
engine itself.

1.7. Tools and the Asset Pipeline

Any game engine must be fed a great deal of data, in the form of game assets,
confi guration fi les, scripts, and so on. Figure 1.31 depicts some of the types of
game assets typically found in modern game engines. The thicker dark-grey
arrows show how data fl ows from the tools used to create the original source
assets all the way through to the game engine itself. The thinner light-grey ar-
rows show how the various types of assets refer to or use other assets.

1.7.1. Digital Content Creation Tools

Games are multimedia applications by nature. A game engine’s input data
comes in a wide variety of forms, from 3D mesh data to texture bitmaps to
animation data to audio fi les. All of this source data must be created and ma-
nipulated by artists. The tools that the artists use are called digital content cre-
ation (DCC) applications.

A DCC application is usually targeted at the creation of one particular
type of data—although some tools can produce multiple data types. For ex-
ample, Autodesk’s Maya and 3ds Max are prevalent in the creation of both
3D meshes and animation data. Adobe’s Photoshop and its ilk are aimed at
creating and editing bitmaps (textures). SoundForge is a popular tool for cre-
ating audio clips. Some types of game data cannot be created using an off -
the-shelf DCC app. For example, most game engines provide a custom editor
for laying out game worlds. Still, some engines do make use of pre-existing
tools for game world layout. I’ve seen game teams use 3ds Max or Maya as a
world layout tool, with or without custom plug-ins to aid the user. Ask most
game developers, and they’ll tell you they can remember a time when they
laid out terrain height fi elds using a simple bitmap editor, or typed world
layouts directly into a text fi le by hand. Tools don’t have to be prett y—game
teams will use whatever tools are available and get the job done. That said,
tools must be relatively easy to use, and they absolutely must be reliable, if a
game team is going to be able to develop a highly polished product in a timely
manner.

50 1. Introduction

Digital Content Creation (DCC) Tools

Game World

Game
Object

Mesh

Skeletal Hierarchy
Exporter

Skel.
Hierarchy

Animation
Exporter

Animation
Curves

TGA
Texture

DXT Compression DXT
Texture

World Editor

Game Object
Definition Tool

Material
Game Obj.
Template

Animation
Set

Animation Tree
Editor

Animation
Tree

Game
Object

Game
Object

Asset
Conditioning

Pipeline

GAME

WAV
sound

Audio Manager
Tool

Sound
Bank

Mesh Exporter

PhotoshopPhotoshop

Sound Forge or Audio ToolSound Forge or Audio Tool

Game
Object

Maya, 3DSMAX, etc.Maya, 3DSMAX, etc.

Custom Material
Plug-In

Houdini/Other Particle ToolHoudini/Other Particle Tool

Particle
System

Particle Exporter

Figure 1.31. Tools and the asset pipeline.

1.7.2. Asset Conditioning Pipeline

The data formats used by digital content creation (DCC) applications are rare-
ly suitable for direct use in-game. There are two primary reasons for this.

1. The DCC app’s in-memory model of the data is usually much more
complex than what the game engine requires. For example, Maya stores
a directed acyclic graph (DAG) of scene nodes, with a complex web
of interconnections. It stores a history of all the edits that have been
performed on the fi le. It represents the position, orientation, and scale
of every object in the scene as a full hierarchy of 3D transformations,
decomposed into translation, rotation, scale, and shear components. A

51

game engine typically only needs a tiny fraction of this information in
order to render the model in-game.

2. The DCC application’s fi le format is oft en too slow to read at run time,
and in some cases it is a closed proprietary format.

Therefore, the data produced by a DCC app is usually exported to a more ac-
cessible standardized format, or a custom fi le format, for use in-game.

Once data has been exported from the DCC app, it oft en must be fur-
ther processed before being sent to the game engine. And if a game studio
is shipping its game on more than one platform, the intermediate fi les might
be processed diff erently for each target platform. For example, 3D mesh data
might be exported to an intermediate format, such as XML or a simple binary
format. Then it might be processed to combine meshes that use the same ma-
terial, or split up meshes that are too large for the engine to digest. The mesh
data might then be organized and packed into a memory image suitable for
loading on a specifi c hardware platform.

The pipeline from DCC app to game engine is sometimes called the asset
conditioning pipeline . Every game engine has this in some form.

1.7.3. 3D Model/Mesh Data

The visible geometry you see in a game is typically made up of two kinds of
data.

1.7.3.1. Brush Geometry

 Brush geometry is defi ned as a collection of convex hulls, each of which is de-
fi ned by multiple planes. Brushes are typically created and edited directly in
the game world editor. This is what some would call an “old school” approach
to creating renderable geometry, but it is still used.

Pros:

 fast and easy to create;
 accessible to game designers—oft en used to “block out” a game level for

prototyping purposes;
 can serve both as collision volumes and as renderable geometry.

Cons:

 low-resolution – diffi cult to create complex shapes;
 cannot support articulated objects or animated characters.

1.7.3.2. 3D Models (Meshes)

For detailed scene elements, 3D models (also referred to as meshes) are superior
to brush geometry. A mesh is a complex shape composed of triangles and ver-

1.7. Tools and the Asset Pipeline

52 1. Introduction

tices. (A mesh might also be constructed from quads or higher-order subdivi-
sion surfaces. But on today’s graphics hardware, which is almost exclusively
geared toward rendering rasterized triangles, all shapes must eventually be
translated into triangles prior to rendering.) A mesh typically has one or more
materials applied to it, in order to defi ne visual surface properties (color, re-
fl ectivity, bumpiness, diff use texture , etc.). In this book, I will use the term
“mesh ” to refer to a single renderable shape, and “model” to refer to a com-
posite object that may contain multiple meshes, plus animation data and other
metadata for use by the game.

Meshes are typically created in a 3D modeling package such as 3ds Max,
 Maya, or Soft Image. A relatively new tool called ZBrush allows ultra high-
resolution meshes to be built in a very intuitive way and then down-converted
into a lower-resolution model with normal maps to approximate the high-
frequency detail.

Exporters must be writt en to extract the data from the digital content
creation (DCC) tool (Maya, Max, etc.) and store it on disk in a form that
is digestible by the engine. The DCC apps provide a host of standard or
semi-standard export formats, although none are perfectly suited for game
development (with the possible exception of COLLADA). Therefore, game
teams oft en create custom fi le formats and custom exporters to go with
them.

1.7.4. Skeletal Animation Data

A skeletal mesh is a special kind of mesh that is bound to a skeletal hierarchy
for the purposes of articulated animation. Such a mesh is sometimes called a
skin, because it forms the skin that surrounds the invisible underlying skel-
eton. Each vertex of a skeletal mesh contains a list of indices indicating to
which joint(s) in the skeleton it is bound. A vertex usually also includes a
set of joint weights, specifying the amount of infl uence each joint has on the
vertex.

In order to render a skeletal mesh , the game engine requires three distinct
kinds of data.

1. the mesh itself,

2. the skeletal hierarchy (joint names, parent-child relationships and the
base pose the skeleton was in when it was originally bound to the mesh),
and

3. one or more animation clips, which specify how the joints should move
over time.

53

The mesh and skeleton are oft en exported from the DCC application as a sin-
gle data fi le. However, if multiple meshes are bound to a single skeleton, then
it is bett er to export the skeleton as a distinct fi le. The animations are usually
exported individually, allowing only those animations which are in use to be
loaded into memory at any given time. However, some game engines allow
a bank of animations to be exported as a single fi le, and some even lump the
mesh, skeleton, and animations into one monolithic fi le.

An unoptimized skeletal animation is defi ned by a stream of 4 × 3 matrix
samples, taken at a frequency of at least 30 frames per second, for each of the
joints in a skeleton (of which there are oft en 100 or more). Thus animation data
is inherently memory-intensive. For this reason, animation data is almost al-
ways stored in a highly compressed format. Compression schemes vary from
engine to engine, and some are proprietary. There is no one standardized for-
mat for game-ready animation data.

1.7.5. Audio Data

Audio clips are usually exported from Sound Forge or some other audio pro-
duction tool in a variety of formats and at a number of diff erent data sam-
pling rates. Audio fi les may be in mono, stereo, 5.1, 7.1, or other multichannel
confi gurations. Wave fi les (.wav) are common, but other fi le formats such as
PlayStation ADPCM fi les (.vag and .xvag) are also commonplace. Audio clips
are oft en organized into banks for the purposes of organization, easy loading
into the engine, and streaming.

1.7.6. Particle Systems Data

Modern games make use of complex particle eff ects. These are authored by
artists who specialize in the creation of visual eff ects . Third-party tools, such
as Houdini, permit fi lm-quality eff ects to be authored; however, most game
engines are not capable of rendering the full gamut of eff ects that can be cre-
ated with Houdini. For this reason, many game companies create a custom
particle eff ect editing tool, which exposes only the eff ects that the engine actu-
ally supports. A custom tool might also let the artist see the eff ect exactly as it
will appear in-game.

1.7.7. Game World Data and the World Editor

The game world is where everything in a game engine comes together. To my
knowledge, there are no commercially available game world editors (i.e., the
game world equivalent of Maya or Max). However, a number of commercially
available game engines provide good world editors.

1.7. Tools and the Asset Pipeline

54 1. Introduction

 Some variant of the Radiant game editor is used by most game engines
based on Quake technology;

 The Half-Life 2 Source engine provides a world editor called Hammer;

 UnrealEd is the Unreal Engine’s world editor. This powerful tool also
serves as the asset manager for all data types that the engine can con-
sume.

Writing a good world editor is diffi cult, but it is an extremely important
part of any good game engine.

1.7.8. Some Approaches to Tool Architecture

A game engine’s tool suite may be architected in any number of ways. Some
tools might be standalone pieces of soft ware, as shown in Figure 1.32. Some
tools may be built on top of some of the lower layers used by the runtime en-
gine, as Figure 1.33 illustrates. Some tools might be built into the game itself.
For example, Quake - and Unreal -based games both boast an in-game console
that permits developers and “modders” to type debugging and confi guration
commands while running the game.

As an interesting and unique example, Unreal ’s world editor and asset
manager, UnrealEd , is built right into the runtime game engine. To run the
editor, you run your game with a command-line argument of “editor.” This
unique architectural style is depicted in Figure 1.34. It permits the tools to
have total access to the full range of data structures used by the engine and

OS

Drivers

Hardware (PC, XBOX360, PS3, etc.)

3rd Party SDKs

Platform Independence Layer

Core Systems

Run-Time Engine

Tools and World Builder

Figure 1.32. Standalone tools architecture.

55

avoids a common problem of having to have two representations of every
data structure – one for the runtime engine and one for the tools. It also means
that running the game from within the editor is very fast (because the game
is actually already running). Live in-game editing, a feature that is normally
very tricky to implement, can be developed relatively easily when the editor is
a part of the game. However, an in-engine editor design like this does have its
share of problems. For example, when the engine is crashing, the tools become
unusable as well. Hence a tight coupling between engine and asset creation
tools can tend to slow down production.

OS

Drivers

Hardware (PC, XBOX360, PS3, etc.)

3rd Party SDKs

Platform Independence Layer

Core Systems

Run-Time Engine Tools and World Builder

Figure 1.33. Tools built on a framework shared with the game.

OS

Drivers

Hardware (PC, XBOX360, PS3, etc.)

3rd Party SDKs

Platform Independence Layer

Core Systems

Run-Time Engine

Other Tools

World Builder

Figure 1.34. UnrealEngine’s tool architecture.

1.7. Tools and the Asset Pipeline

57

2
 Tools of the Trade

Before we embark on our journey across the fascinating landscape of game
engine architecture, it is important that we equip ourselves with some ba-

sic tools and provisions. In the next two chapters, we will review the soft ware
engineering concepts and practices that we will need during our voyage. In
Chapter 2, we’ll explore the tools used by the majority of professional game
engineers. Then in Chapter 3, we’ll round out our preparations by reviewing
some key topics in the realms of object-oriented programming, design pat-
terns, and large-scale C++ programming.

Game development is one of the most demanding and broad areas of soft -
ware engineering, so believe me, we’ll want to be well equipped if we are to
safely navigate the sometimes-treacherous terrain we’ll be covering. For some
readers, the contents of this chapter and the next will be very familiar. How-
ever, I encourage you not to skip these chapters entirely. I hope that they will
serve as a pleasant refresher; and who knows—you might even pick up a new
trick or two.

2.1. Version Control

A version control system is a tool that permits multiple users to work on a
group of fi les collectively. It maintains a history of each fi le, so that changes

58 2. Tools of the Trade

can be tracked and reverted if necessary. It permits multiple users to modify
fi les—even the same fi le—simultaneously, without everyone stomping on
each other’s work. Version control gets its name from its ability to track the
version history of fi les. It is sometimes called source control, because it is pri-
marily used by computer programmers to manage their source code. Howev-
er, version control can be used for other kinds of fi les as well. Version control
systems are usually best at managing text fi les, for reasons we will discover
below. However, many game studios use a single version control system to
manage both source code fi les (which are text) and game assets like textures,
3D meshes, animations, and audio fi les (which are usually binary).

2.1.1. Why Use Version Control?

Version control is crucial whenever soft ware is developed by a team of mul-
tiple engineers. Version control

 provides a central repository from which engineers can share source
code;

 keeps a history of the changes made to each source fi le;

 provides mechanisms allowing specifi c versions of the code base to be
tagged and later retrieved;

 permits versions of the code to be branched off from the main develop-
ment line, a feature oft en used to produce demos or make patches to
older versions of the soft ware.

A source control system can be useful even on a single-engineer project. Al-
though its multiuser capabilities won’t be relevant, its other abilities, such
as maintaining a history of changes, tagging versions, creating branches for
demos and patches, tracking bugs, etc., are still invaluable.

2.1.2. Common Version Control Systems

Here are the most common source control systems you’ll probably encounter
during your career as a game engineer.

 SCCS and RCS. The Source Code Control System (SCCS) and the Revi-
sion Control System (RCS) are two of the oldest version control systems.
Both employ a command-line interface. They are prevalent primarily on
UNIX platforms.

 CVS. The Concurrent Version System (CVS) is a heavy-duty profession-
al-grade command-line-based source control system, originally built on
top of RCS (but now implemented as a standalone tool). CVS is preva-

www.allitebooks.com

http://www.allitebooks.org

59 2.1. Version Control

lent on UNIX systems but is also available on other development plat-
forms such as Microsoft Windows. It is open source and licensed under
the Gnu General Public License (GPL). CVSNT (also known as WinCVS)
is a native Windows implementation that is based on, and compatible
with, CVS.

 Subversion. Subversion is an open source version control system aimed
at replacing and improving upon CVS. Because it is open source and
hence free, it is a great choice for individual projects, student projects,
and small studios.

 Git. This is an open source revision control system that has been
used for many venerable projects, including the Linux kernel. In the
git development model, the programmer makes changes to fi les and
commits the changes to a branch. The programmer can then merge
his changes into any other code branch quickly and easily, because git
“knows” how to rewind a sequence of diff s and reapply them onto
a new base revision—a process git calls rebasing. The net result is a
revision control system that is highly effi cient and fast when dealing
with multiple code branches. More information on git can be found at
htt p://git-scm.com/.

 Perforce. Perforce is a professional-grade source control system, with
both text-based and GUI interfaces. One of Perforce’s claims to fame is
its concept of change lists. A change list is a collection of source fi les that
have been modifi ed as a logical unit. Change lists are checked into the
repository atomically – either the entire change list is submitt ed, or none
of it is. Perforce is used by many game companies, including Naughty
Dog and Electronic Arts.

 NxN Alienbrain. Alienbrain is a powerful and feature-rich source control
system designed explicitly for the game industry. Its biggest claim to
fame is its support for very large databases containing both text source
code fi les and binary game art assets, with a customizable user interface
that can be targeted at specifi c disciplines such as artists, producers, or
programmers.

 ClearCase. ClearCase is professional-grade source control system aimed
at very large-scale soft ware projects. It is powerful and employs a
unique user interface that extends the functionality of Windows Explor-
er. I haven’t seen ClearCase used much in the game industry, perhaps
because it is one of the more expensive version control systems.

 Microsoft Visual SourceSafe. SourceSafe is a light-weight source control
package that has been used successfully on some game projects.

60 2. Tools of the Trade

2.1.3. Overview of Subversion and TortoiseSVN

I have chosen to highlight Subversion in this book for a few reasons. First off ,
it’s free, which is always nice. It works well and is reliable, in my experience.
A Subversion central repository is quite easy to set up; and as we’ll see, there
are already a number of free repository servers out there, if you don’t want to
go to the trouble of sett ing one up yourself. There are also a number of good
Windows and Mac Subversion clients, such as the freely available Tortois-
eSVN for Windows. So while Subversion may not be the best choice for a large
commercial project (I personally prefer Perforce for that purpose), I fi nd it
perfectly suited to small personal and educational projects. Let’s take a look at
how to set up and use Subversion on a Microsoft Windows PC development
platform. As we do so, we’ll review core concepts that apply to virtually any
version control system.

Subversion, like most other version control systems, employs a client-
server architecture. The server manages a central repository, in which a ver-
sion-controlled directory hierarchy is stored. Clients connect to the server and
request operations, such as checking out the latest version of the directory
tree, committ ing new changes to one or more fi les, tagging revisions, branch-
ing the repository, and so on. We won’t discuss sett ing up a server here; we’ll
assume you have a server, and instead we will focus on sett ing up and using
the client. You can learn how to set up a Subversion server by reading Chap-
ter 6 of [37]. However you probably will never need to do so, because you
can always fi nd free Subversion servers. For example, Google provides free
Subversion code hosting at htt p://code.google.com/.

2.1.4. Setting up a Code Repository on Google

The easiest way to get started with Subversion is to visit htt p://code.google.
com/ and set up a free Subversion repository. Create a Google user name and
password if you don’t already have one, then navigate to Project Hosting un-
der Developer Resources (see Figure 2.1). Click “Create a new project,” then
enter a suitable unique project name, like “mygoogleusername-code.” You can
enter a summary and/or description if you like, and even provide tags so that
other users all over the world can search for and fi nd your repository. Click
the “Create Project” butt on and you’re off to the races.

Once you’ve created your repository, you can administer it on the Google
Code website. You can add and remove users, control options, and perform a
wealth of advanced tasks. But all you really need to do next is set up a Subver-
sion client and start using your repository.

61

2.1.5. Installing TortoiseSVN

TortoiseSVN is a popular front-end for Subversion. It extends the functionality
of the Microsoft Windows Explorer via a convenient right-click menu and over-
lay icons to show you the status of your version-controlled fi les and folders.

To get TortoiseSVN, visit htt p://tortoisesvn.tigris.org/. Download the lat-
est version from the download page. Install it by double-clicking the .msi fi le
that you’ve downloaded and following the installation wizard’s instructions.

Once TortoiseSVN is installed, you can go to any folder in Windows Ex-
plorer and right-click—TortoiseSVN’s menu extensions should now be vis-
ible. To connect to an existing code repository (such as one you created on
Google Code), create a folder on your local hard disk and then right-click
and select “SVN Checkout….” The dialog shown in Figure 2.2 will appear.
In the “URL of repository” fi eld, enter your repository’s URL. If you are using
Google Code, it should be htt ps://myprojectname.googlecode.com/svn/trunk,
where myprojectname is whatever you named your project when you fi rst cre-
ated it (e.g., “mygoogleusername-code”).

If you forget the URL of your repository, just log in to htt p://code.google.
com/, go to “Project Hosting” as before, sign in by clicking the “Sign in” link
in the upper right-hand corner of the screen, and then click the Sett ings link,
also found in the upper right-hand corner of the screen. Click the “My Profi le”
tab, and you should see your project listed there. Your project’s URL is htt ps://
myprojectname.googlecode.com/svn/trunk, where myprojectname is whatever
name you see listed on the “My Profi le” tab.

You should now see the dialog shown in Figure 2.3. The user name
should be your Google login name. The password is not your Google login

2.1. Version Control

Figure 2.1. Google Code home page, Project Hosting link.

62 2. Tools of the Trade

password—it is an automatically generated password that can be obtained by
signing in to your account on Goggle’s “Project Hosting” page and clicking
on the “Sett ings” link. (See above for details.) Checking the “Save authenti-
cation” option on this dialog allows you to use your repository without ever
having to log in again. Only select this option if you are working on your own
personal machine—never on a machine that is shared by many users.

 Once you’ve authenticated your user name, TortoiseSVN will download
(“check out”) the entire contents of your repository to your local disk. If you
just set up your repository, this will be … nothing! The folder you created
will still be empty. But now it is connected to your Subversion repository on
Google (or wherever your server is located). If you refresh your Windows
Explorer window (hit F5), you should now see a litt le green and white check-
mark on your folder. This icon indicates that the folder is connected to a Sub-
version repository via TortoiseSVN and that the local copy of the repository
is up-to-date.

2.1.6. File Versions, Updating, and Committing

As we’ve seen, one of the key purposes of any source control system like Sub-
version is to allow multiple programmers to work on a single soft ware code
base by maintaining a central repository or “master” version of all the source
code on a server. The server maintains a version history for each fi le, as shown
in Figure 2.4. This feature is crucial to large-scale multiprogrammer soft ware
development. For example, if someone makes a mistake and checks in code
that “breaks the build,” you can easily go back in time to undo those changes
(and check the log to see who the culprit was!). You can also grab a snapshot
of the code as it existed at any point in time, allowing you to work with, dem-
onstrate, or patch previous versions of the soft ware.

Figure 2.2. TortoiseSVN initial check-out dialog. Figure 2.3. TortoiseSVN user authentication dialog.

63

 Each programmer gets a local copy of the code on his or her machine. In
the case of TortoiseSVN, you obtain your initial working copy by “ checking
out” the repository, as described above. Periodically you should update your
local copy to refl ect any changes that may have been made by other program-
mers. You do this by right-clicking on a folder and selecting “SVN Update”
from the pop-up menu.

You can work on your local copy of the code base without aff ecting the
other programmers on the team (Figure 2.5). When you are ready to share
your changes with everyone else, you commit your changes to the repository
(also known as submitt ing or checking in). You do this by right-clicking on the
folder you want to commit and selecting “ SVN Commit…” from the pop-up

2.1. Version Control

Figure 2.6. TortoiseSVN Commit dialog.

Foo.cpp (version 1)

Foo.cpp (version 2)

Foo.cpp (version 3)

Foo.cpp (version 4)

Bar.cpp (version 1)

Bar.cpp (version 2)

Bar.cpp (version 3)

Figure 2.4. File version histories.

Foo.cpp (version 4)

Foo.cpp (local edits)

Figure 2.5. Editing the local copy of a ver-
sion-controlled fi le.

64 2. Tools of the Trade

menu. You will get a dialog like the one shown in Figure 2.6, asking you to
confi rm the changes.

During a commit operation, Subversion generates a diff between your lo-
cal version of each fi le and the latest version of that same fi le in the repository.
The term “diff ” means diff erence, and it is typically produced by performing
a line-by-line comparison of the two versions of the fi le. You can double-click
on any fi le in the TortoiseSVN Commit dialog (Figure 2.6) to see the diff s be-
tween your version and the latest version on the server (i.e., the changes you
made). Files that have changed (i.e., any fi les that “have diff s”) are committ ed.
This replaces the latest version in the repository with your local version, add-
ing a new entry to the fi le’s version history. Any fi les that have not changed
(i.e., your local copy is identical to the latest version in the repository) are
ignored by default during a commit. An example commit operation is shown
in Figure 2.7.

If you created any new fi les prior to the commit, they will be listed as
“non-versioned” in the Commit dialog. You can check the litt le check boxes
beside them in order to add them to the repository. Any fi les that you deleted
locally will likewise show up as “missing”—if you check their check boxes,
they will be deleted from the repository. You can also type a comment in the
Commit dialog. This comment is added to the repository’s history log, so that
you and others on your team will know why these fi les were checked in.

2.1.7. Multiple Check-Out, Branching, and Merging

Some version control systems require exclusive check-out. This means that you
must fi rst indicate your intentions to modify a fi le by checking it out and lock-
ing it. The fi le(s) that are checked out to you are writable on your local disk
and cannot be checked out by anyone else. All other fi les in the repository are
read-only on your local disk. Once you’re done editing the fi le, you can check
it in, which releases the lock and commits the changes to the repository for ev-
eryone else to see. The process of exclusively locking fi les for editing ensures
that no two people can edit the same fi le simultaneously.

Subversion, CVS, Perforce, and many other high-quality version control
systems also permit multiple check-out.; i.e., you can be editing a fi le while
someone else is editing that same fi le. Whichever user’s changes are commit-
ted fi rst become the latest version of the fi le in the repository. Any subsequent
commits by other users require that programmer to merge his or her changes
with the changes made by the programmer(s) who committ ed previously.

Because more than one set of changes (diff s) have been made to the same
fi le, the version control system must merge the changes in order to produce a
fi nal version of the fi le. This is oft en not a big deal, and in fact many confl icts

Foo.cpp (version 5)

Foo.cpp (version 4)

Figure 2.7. Com-
mitting local edits
to the repository.

65

can be resolved automatically by the version control system. For example, if
you changed function f() and another programmer changed function g(),
then your edits would have been to a diff erent range of lines in the fi le than
those of the other programmer. In this case, the merge between your changes
and his or her changes will usually resolve automatically without any con-
fl icts. However, if you were both making changes to the same function f(),
then the second programmer to commit his or her changes will need to do a
 three-way merge (see Figure 2.8).

For three-way merges to work, the version control server has to be smart
enough to keep track of which version of each fi le you currently have on your
local disk. That way, when you merge the fi les, the system will know which ver-
sion is the base version (the common ancestor, such as version 4 in Figure 2.8).

Subversion permits multiple check-out, and in fact it doesn’t require you
to check out fi les explicitly at all. You simply start editing the fi les locally—all
fi les are writable on your local disk at all times. (By the way, this is one reason
that Subversion doesn’t scale well to large projects, in my opinion. To deter-
mine which fi les you have changed, Subversion must search the entire tree of
source fi les, which can be slow. Version control systems like Perforce, which
explicitly keep track of which fi les you have modifi ed, are usually easier to
work with when dealing with large amounts of code. But for small projects,
Subversion’s approach works just fi ne.)

2.1. Version Control

Foo.cpp (joe_b) Foo.cpp (suzie_q) joe_b and suzie_q both
start editing Foo .cpp at

the same time

Foo.cpp (version 4)

Foo.cpp (joe_b) Foo.cpp (version 5) suzie_q commits her
changes first

joe_b must now do a 3-way
merge , which involves 2 sets

of diffs:

Foo.cpp (version 6)

Foo.cpp (joe_b) Foo.cpp (version 5)

Foo.cpp (version 4)

Foo.cpp (version 4)

version 4 to his local version
version 4 to version 5

Figure 2.8. Three-way merge due to local edits by two different users.

66 2. Tools of the Trade

When you perform a commit operation by right-clicking on any folder
and selecting “SVN Commit…” from the pop-up menu, you may be prompt-
ed to merge your changes with changes made by someone else. But if no one
has changed the fi le since you last updated your local copy, then your changes
will be committ ed without any further action on your part. This is a very con-
venient feature, but it can also be dangerous. It’s a good idea to always check
your commits carefully to be sure you aren’t committ ing any fi les that you
didn’t intend to modify. When TortoiseSVN displays its Commit Files dialog,
you can double-click on an individual fi le in order to see the diff s you made
prior to hitt ing the “OK” butt on.

2.1.8. Deleting Files

When a fi le is deleted from the repository, it’s not really gone. The fi le still ex-
ists in the repository, but its latest version is simply marked “deleted” so that
users will no longer see the fi le in their local directory trees. You can still see
and access previous versions of a deleted fi le by right-clicking on the folder in
which the fi le was contained and selecting “Show log” from the TortoiseSVN
menu.

You can undelete a deleted fi le by updating your local directory to the
version immediately before the version in which the fi le was marked deleted.
Then simply commit the fi le again. This replaces the latest deleted version of
the fi le with the version just prior to the deletion, eff ectively undeleting the
fi le.

2.2. Microsoft Visual Studio

Compiled languages, such as C++, require a compiler and linker in order to
transform source code into an executable program. There are many com-
pilers/linkers available for C++, but for the Microsoft Windows platform
the most commonly used package is probably Microsoft Visual Studio. The
fully featured Professional Edition of the product can be purchased at any
store that sells Windows soft ware. And Visual Studio Express, its lighter-
weight cousin, is available for free download at htt p://www.microsoft .com/
express/download/. Documentation on Visual Studio is available online at the
Microsoft Developer’s Network (MSDN) site (htt p://msdn.microsoft .com/en-
us/library/52f3sw5c.aspx).

Visual Studio is more than just a compiler and linker. It is an integrated
development environment (IDE), including a slick and fully featured text editor
for source code and a powerful source-level and machine-level debugger. In

http://www.microsoft

67

this book, our primary focus is the Windows platform, so we’ll investigate
Visual Studio in some depth. Much of what you learn below will be applicable
to other compilers, linkers, and debuggers, so even if you’re not planning on
ever using Visual Studio, I suggest you skim this section for useful tips on us-
ing compilers, linkers, and debuggers in general.

2.2.1. Source Files, Headers, and Translation Units

A program writt en in C++ is comprised of source fi les. These typically have a .c,
.cc, .cxx, or .cpp extension, and they contain the bulk of your program’s source
code. Source fi les are technically known as translation units, because the com-
piler translates one source fi le at a time from C++ into machine code.

A special kind of source fi le, known as a header fi le, is oft en used in order to
share information, such as type declarations and function prototypes, between
translation units. Header fi les are not seen by the compiler. Instead, the C++
 preprocessor replaces each #include statement with the contents of the corre-
sponding header fi le prior to sending the translation unit to the compiler. This
is a subtle but very important distinction to make. Header fi les exist as distinct
fi les from the point of view of the programmer—but thanks to the preproces-
sor’s header fi le expansion, all the compiler ever sees are translation units.

2.2.2. Libraries, Executables, and Dynamic Link Libraries

When a translation unit is compiled, the resulting machine code is placed in
an object fi le (fi les with a .obj extension under Windows, or .o under UNIX-
based operating systems). The machine code in an object fi le is

 relocatable, meaning that the memory addresses at which the code re-
sides have not yet been determined, and

 unlinked, meaning that any external references to functions and global
data that are defi ned outside the translation unit have not yet been re-
solved.

Object fi les can be collected into groups called libraries. A library is simply
an archive, much like a Zip or tar fi le, containing zero or more object fi les. Li-
braries exist merely as a convenience, permitt ing a large number of object fi les
to be collected into a single easy-to-use fi le.

Object fi les and libraries are linked into an executable by the linker. The
executable fi le contains fully resolved machine code that can be loaded and
run by the operating system . The linker’s jobs are

 to calculate the fi nal relative addresses of all the machine code, as it will
appear in memory when the program is run, and

2.2. Microsoft Visual Studio

68 2. Tools of the Trade

 to ensure that all external references to functions and global data made
by each translation unit (object fi le) are properly resolved.

It’s important to remember that the machine code in an executable fi le is still
relocatable, meaning that the addresses of all instructions and data in the fi le
are still relative to an arbitrary base address, not absolute. The fi nal absolute
base address of the program is not known until the program is actually loaded
into memory, just prior to running it.

A dynamic link library (DLL) is a special kind of library that acts like a
hybrid between a regular static library and an executable. The DLL acts like
a library, because it contains functions that can be called by any number of
diff erent executables. However, a DLL also acts like an executable, because it
can be loaded by the operating system independently, and it contains some
start-up and shut-down code that runs much the way the main() function in
a C++ executable does.

The executables that use a DLL contain partially linked machine code. Most
of the function and data references are fully resolved within the fi nal execut-
able, but any references to external functions or data that exist in a DLL re-
main unlinked. When the executable is run, the operating system resolves the
addresses of all unlinked functions by locating the appropriate DLLs, load-
ing them into memory if they are not already loaded, and patching in the
necessary memory addresses. Dynamically linked libraries are a very useful
operating system feature, because individual DLLs can be updated without
changing the executable(s) that use them.

2.2.3. Projects and Solutions

Now that we understand the diff erence between libraries, executables, and
dynamic link libraries (DLLs), let’s see how to create them. In Visual Studio,
a project is a collection of source fi les which, when compiled, produce a library,
an executable, or a DLL. Projects are stored in project fi les with a .vcproj ex-
tension. In Visual Studio .NET 2003 (version 7), Visual Studio 2005 (version 8),
and Visual Studio 2008 (version 9), .vcproj fi les are in XML format, so they are
reasonably easy for a human to read and even edit by hand if necessary.

All versions of Visual Studio since version 7 (Visual Studio 2003) employ
 solution fi les (fi les with a .sln extension) as a means of containing and manag-
ing collections of projects. A solution is a collection of dependent and/or in-
dependent projects intended to build one or more libraries, executables and/
or DLLs. In the Visual Studio graphical user interface , the Solution Explorer is
usually displayed along the right or left side of the main window, as shown
in Figure 2.9.

www.allitebooks.com

http://www.allitebooks.org

69

The Solution Explorer is a tree view. The solution itself is at the root, with
the projects as its immediate children. Source fi les and headers are shown as
children of each project. A project can contain any number of user-defi ned
folders, nested to any depth. Folders are for organizational purposes only and
have nothing to do with the folder structure in which the fi les may reside
on-disk. However it is common practice to mimic the on-disk folder structure
when sett ing up a project’s folders.

2.2.4. Build Confi gurations

The C/C++ preprocessor, compiler, and linker off er a wide variety of options
to control how your code will be built. These options are normally specifi ed
on the command line when the compiler is run. For example, a typical com-
mand to build a single translation unit with the Microsoft compiler might look
like this:

C:\> cl /c foo.cpp /Fo foo.obj /Wall /Od /Zi

This tells the compiler/linker to compile but not link (/c) the translation unit
named foo.cpp, output the result to an object fi le named foo.obj (/Fo foo.obj),
turn on all warnings (/Wall), turn off all optimizations (/Od), and generate
debugging information (/Zi).

Modern compilers provide so many options that it would be impracti-
cal and error prone to specify all of them every time you build your code.
That’s where build confi gurations come in. A build confi guration is really just
a collection of preprocessor, compiler, and linker options associated with a
particular project in your solution. You can defi ne any number of build con-

2.2. Microsoft Visual Studio

Figure 2.9. The VisualStudio Solution Explorer window.

70 2. Tools of the Trade

fi gurations, name them whatever you want, and confi gure the preprocessor,
compiler, and linker options diff erently in each confi guration. By default, the
same options are applied to every translation unit in the project, although you
can override the global project sett ings on an individual translation unit basis.
(I recommend avoiding this if at all possible, because it becomes diffi cult to
tell which .cpp fi les have custom sett ings and which do not.)

Most projects have at least two build confi gurations, typically called
“Debug” and “Release.” The release build is for the fi nal shipping soft ware,
while the debug build is for development purposes. A debug build runs more
slowly than a release build, but it provides the programmer with invaluable
information for developing and debugging the program.

2.2.4.1. Common Build Options

This section lists some of the most common options you’ll want to control via
build confi gurations for a game engine project.

Preprocessor Settings

The C++ preprocessor handles the expansion of #included fi les and the defi -
nition and substitution of #defined macros. One extremely powerful feature
of all modern C++ preprocessors is the ability to defi ne preprocessor macros
via command-line options (and hence via build confi gurations). Macros de-
fi ned in this way act as though they had been writt en into your source code
with a #define statement. For most compilers, the command line option for
this is –D or /D, and any number of these directives can be used.

This feature allows you to communicate various build options to your
code, without having to modify the source code itself. As a ubiquitous exam-
ple, the symbol _DEBUG is always defi ned for a debug build, while in release
builds the symbol NDEBUG is defi ned instead. The source code can check these
fl ags and in eff ect “know” whether it is being built in debug or release mode.
This is known as conditional compilation. For example:

void f()
{
#ifdef _DEBUG
 printf(“Calling function f()\n”);
#endif
 // ...
}

The compiler is also free to introduce “magic” preprocessor macros into
your code, based on its knowledge of the compilation environment and target
platform. For example, the macro __cplusplus is defi ned by most C/C++

71

compilers when compiling a C++ fi le. This allows code to be writt en that auto-
matically adapts to being compiled for C or C++.

As another example, every compiler identifi es itself to the source code
via a “magic” preprocessor macro. When compiling code under the Microsoft
compiler, the macro _MSC_VER is defi ned; when compiling under the GNU
compiler (gcc), the macro _GNUC_ is defi ned instead, and so on for the oth-
er compilers. The target platform on which the code will be run is likewise
identifi ed via macros. For example, when building for a 32-bit Windows
machine, the symbol _WIN32 is always defi ned. These key features permit
cross-platform code to be writt en, because they allow your code to “know”
what compiler is compiling it and on which target platform it is destined to
be run.

Compiler Settings

One of the most common compiler options controls whether or not the com-
piler should include debugging information with the object fi les it produces.
This information is used by debuggers to step through your code, display the
values of variables, and so on. Debugging information makes your executa-
bles larger on disk and also opens the door for hackers to reverse-engineer
your code. So, it is always stripped from the fi nal shipping version of your
executable. However, during development, debugging information is invalu-
able and should always be included in your builds.

The compiler can also be told whether or not to expand inline functions.
When inline function expansion is turned off , every inline function appears
only once in memory, at a distinct address. This makes the task of tracing
through the code in the debugger much simpler, but obviously comes at the
expense of the execution speed improvements normally achieved by inlin-
ing.

Inline function expansion is but one example of generalized code trans-
formations known as optimizations. The aggressiveness with which the com-
piler att empts to optimize your code, and the kinds of optimizations its uses,
can be controlled via compiler options. Optimizations have a tendency to re-
order the statements in your code, and they also cause variables to be stripped
out of the code altogether, or moved around, and can cause CPU registers to
be reused for new purposes later in the same function. Optimized code usu-
ally confuses most debuggers, causing them to “lie” to you in various ways,
and making it diffi cult or impossible to see what’s really going on. As a result,
all optimizations are usually turned off in a debug build. This permits every
variable and every line of code to be scrutinized as it was originally coded.
But, of course, such code will run much more slowly than its fully optimized
counterpart.

2.2. Microsoft Visual Studio

72 2. Tools of the Trade

Linker Settings

The linker also exposes a number of options. You can control what type of
output fi le to produce—an executable or a DLL. You can also specify which
external libraries should be linked into your executable, and which directory
paths to search in order to fi nd them. A common practice is to link with de-
bug libraries when building a debug executable and with optimized libraries
when building in release mode.

Linker options also control things like stack size, the preferred base ad-
dress of your program in memory, what type of machine the code will run on
(for machine-specifi c optimizations), and a host of other minutia with which
we will not concern ourselves here.

2.2.4.2. Typical Build Confi gurations

Game projects oft en have more than just two build confi gurations. Here are a
few of the common confi gurations I’ve seen used in game development.

 Debug. A debug build is a very slow version of your program, with all
optimizations turned off , all function inlining disabled, and full debug-
ging information included. This build is used when testing brand new
code and also to debug all but the most trivial problems that arise dur-
ing development.

 Release. A release build is a faster version of your program, but with
debugging information and assertions still turned on. (See Section
3.3.3.3 for a discussion of assertions.) This allows you to see your game
running at a speed representative of the fi nal product, but still gives you
some opportunity to debug problems.

 Production. A production confi guration is intended for building the fi nal
game that you will ship to your customers. It is sometimes called a “Fi-
nal” build or “Disk” build. Unlike a release build, all debugging informa-
tion is stripped out of a production build, all assertions are usually turned
off , and optimizations are cranked all the way up. A production build is
very tricky to debug, but it is the fastest and leanest of all build types.

 Tools. Some game studios utilize code libraries that are shared between
offl ine tools and the game itself. In this scenario, it oft en makes sense
to defi ne a “Tools” build, which can be used to conditionally compile
shared code for use by the tools. The tools build usually defi nes a pre-
processor macro (e.g., TOOLS_BUILD) that informs the code that it is be-
ing built for use in a tool. For example, one of your tools might require
certain C++ classes to expose editing functions that are not needed by
the game. These functions could be wrapped in an #ifdef TOOLS_

73

BUILD directive. Since you usually want both debug and release ver-
sions of your tools, you will probably fi nd yourself creating two tools
builds, named something like “ToolsDebug” and “ToolsRelease.”

Hybrid Builds

A hybrid build is a build confi guration in which the majority of the translation
units are built in release mode, but a small subset of them is built in debug
mode. This permits the segment of code that is currently under scrutiny to be
easily debugged, while the rest of the code continues to run at full speed.

With a text-based build system like make, it is quite easy to set up a hybrid
build which permits users to specify the use of debug mode on a per-transla-
tion-unit basis. In a nutshell, we defi ne a make variable called something like
$HYBRID_SOURCES, which lists the names of all translation units (.cpp fi les)
that should be compiled in debug mode for our hybrid build. We set up build
rules for compiling both debug and release versions of every translation unit,
and arrange for the resulting object fi les (.obj/.o) to be placed into two diff er-
ent folders, one for debug and one for release. The fi nal link rule is set up to
link with the debug versions of the object fi les listed in $HYBRID_SOURCES
and with the release versions of all other object fi les. If we’ve set it up properly,
make’s dependency rules will take care of the rest.

Unfortunately, this is not so easy to do in Visual Studio, because its build
confi gurations are designed to be applied on a per-project basis, not per trans-
lation unit. The crux of the problem is that we cannot easily defi ne a list of
the translation units that we want to build in debug mode. However, if your
source code is already organized into libraries, you can set up a “Hybrid”
build confi guration at the solution level, which picks and chooses between
debug and release builds on a per-project (and hence per-library) basis. This
isn’t as fl exible as having control on a per-translation-unit basis, but it does
work reasonably well if your libraries are suffi ciently granular.

Build Confi gurations and Testability

The more build confi gurations your project supports, the more diffi cult test-
ing becomes. Although the diff erences between the various confi gurations
may be slight, there’s a fi nite probability that a critical bug may exist in one
of them but not in the others. Therefore, each build confi guration must be
tested equally thoroughly. Most game studios do not formally test their debug
builds, because the debug confi guration is primarily intended for internal use
during initial development of a feature and for the debugging of problems
found in one of the other confi gurations. However, if your testers spend most
of their time testing your release confi guration, then you cannot simply make
a production build of your game the night before Gold Master and expect it

2.2. Microsoft Visual Studio

74 2. Tools of the Trade

to have an identical bug profi le to that of the release build. Practically speak-
ing, the test team must test both your release and production builds equally
throughout alpha and beta, to ensure that there aren’t any nasty surprises
lurking in your production build. In terms of testability, there is a clear advan-
tage to keeping your build confi gurations to a minimum, and in fact some stu-
dios have no production build for this reason—they simply ship their release
build once it has been thoroughly tested.

2.2.4.3. Project Confi guration Tutorial

Right-clicking on any project in the Solution Explorer and selecting “Proper-
ties…” from the menu brings up the project’s “Property Pages” dialog. The
tree view on the left shows various categories of sett ings. Of these, the three
we will use most are

 Confi guration Properties/General,
 Confi guration Properties/Debugging,
 Confi guration Properties/C++,
 Confi guration Properties/Linker.

Confi gurations Drop-Down Combo Box

Notice the drop-down combo box labeled “Confi guration:” at the top-left cor-
ner of the window. All of the properties displayed on these property pages ap-
ply separately to each build confi guration. If you set a property for the debug
confi guration, this does not necessarily mean that the same sett ing exists for
the release confi guration.

If you click on the combo box to drop down the list, you’ll fi nd that you
can select a single confi guration or multiple confi gurations, including “All
confi gurations.” As a rule of thumb, try to do most of your build confi guration
editing with “All confi gurations” selected. That way, you won’t have to make
the same edits multiple times, once for each confi guration—and you don’t risk
sett ing things up incorrectly in one of the confi gurations by accident. How-
ever, be aware that some sett ings need to be diff erent between the debug and
release confi gurations. For example, function inlining and code optimization
sett ings should of course be diff erent between debug and release builds.

General Tab

On the General tab, shown in Figure 2.10, the most useful fi elds are the fol-
lowing.

 Output directory. This defi nes where the fi nal product(s) of the build will
go—namely the executable, library, or DLL that the compiler/linker ul-
timately outputs.

75

 Intermediate directory. This defi nes where intermediate fi les, primarily
object fi les (.obj extension), are placed during a build. Intermediate fi les
are never shipped with your fi nal program—they are only required
during the process of building your executable, library, or DLL. Hence,
it is a good idea to place intermediate fi les in a diff erent directory than
the fi nal products (.exe, .lib or .dll fi les).

Note that VisualStudio provides a macro facility which may be used
when specifying directories and other sett ings in the “Project Property Pages”
dialog. A macro is essentially a named variable that contains a global value and
that can be referred to in your project confi guration sett ings.

Macros are invoked by writing the name of the macro enclosed in paren-
theses and prefi xed with a dollar sign (e.g., $(ConfigurationName)). Some
commonly used macros are listed below.

 $(TargetFileName). The name of the fi nal executable, library, or DLL
fi le being built by this project.

 $(TargetPath). The full path of the folder containing the fi nal execut-
able, library, or DLL.

 $(ConfigurationName). The name of the build confi g, typically “De-
bug” or “Release.”

2.2. Microsoft Visual Studio

Figure 2.10. Visual Studio project property pages—General page.

76 2. Tools of the Trade

 $(OutDir). The value of the “Output Directory” fi eld specifi ed in this
dialog.

 $(IntDir). The value of the “Intermediate Directory” fi eld in this
dialog.

 $(VCInstallDir). The directory in which Visual Studio’s standard C
library is currently installed.

The benefi t of using macros instead of hard-wiring your confi guration
sett ings is that a simple change of the global macro’s value will automatically
aff ect all confi guration sett ings in which the macro is used. Also, some macros
like $(ConfigurationName) automatically change their values depending
on the build confi guration, so using them can permit you to use identical set-
tings across all your confi gurations.

To see a complete list of all available macros, click in either the “Output
Directory” fi eld or the “Intermediate Directory” fi eld on the “General” tab,
click the litt le arrow to the right of the text fi eld, select “Edit…” and then click
the “Macros” butt on in the dialog that comes up.

Debugging Tab

The “Debugging” tab is where the name and location of the executable to
debug is specifi ed. On this page, you can also specify the command-line
argument(s) that should be passed to the program when it runs. We’ll discuss
debugging your program in more depth below.

C/C++ Tab

The C/C++ tab controls compile-time language sett ings—things that aff ect
how your source fi les will be compiled into object fi les (.obj extension). The
sett ings on this page do not aff ect how your object fi les are linked into a fi nal
executable or DLL.

You are encouraged to explore the various subpages of the C/C++ tab to
see what kinds of sett ings are available. Some of the most commonly used set-
tings include the following.

 General Tab/Include Directories. This fi eld lists the on-disk directories that
will be searched when looking for #included header fi les.
Important: It is always best to specify these directories using relative
paths and/or with Visual Studio macros like $(OutDir) or $(IntDir).
That way, if you move your build tree to a diff erent location on disk or to
another computer with a diff erent root folder, everything will continue
to work properly.

 General Tab/Debug Information. This fi eld controls whether or not debug
information is generated. Typically both debug and release confi gura-

77

tions include debugging information so that you can track down prob-
lems during development of your game. The fi nal production build will
have all the debug info stripped out to prevent hacking.

 Preprocessor Tab/Preprocessor Defi nitions. This very handy fi eld lists any
number of C/C++ preprocessor symbols that should be defi ned in the
code when it is compiled. See Preprocessor Sett ings in Section 2.2.4.1 for a
discussion of preprocessor-defi ned symbols.

Linker Tab

The “Linker” tab lists properties that aff ect how your object code fi les will be
linked into an executable or DLL. Again, you are encouraged to explore the
various subpages. Some commonly used sett ings follow.

 General Tab/Output File. This sett ing lists the name and location of the
fi nal product of the build, usually an executable or DLL.

 General Tab/Additional Library Directories. Much like the C/C++ Include
Directories fi eld, this fi eld lists zero or more directories that will be
searched when looking for libraries and object fi les to link into the fi nal
executable.

 Input Tab/Additional Dependencies. This fi eld lists external libraries that you
want linked into your executable or DLL. For example, the Ogre libraries
would be listed here if you are building an Ogre-enabled application.

Note that Visual Studio employs various “magic spells” to specify librar-
ies that should be linked into an executable. For example, a special #pragma
instruction in your source code can be used to instruct the linker to automati-
cally link with a particular library. For this reason, you may not see all of the
libraries you’re actually linking to in the “Additional Dependencies” fi eld. (In
fact, that’s why they are called additional dependencies.) You may have noticed,
for example, that Direct X applications do not list all of the DirectX libraries
manually in their “Additional Dependencies” fi eld. Now you know why.

2.2.4.4. Creating New .vcproj Files

With so many preprocessor, compiler, and linker options, all of which must
be set properly, creating a new project may seem like an impossibly daunting
task. I usually take one of the following two approaches when creating a new
Visual Studio project.

Use a Wizard

Visual Studio provides a wide variety of wizards to create new projects of
various kinds. If you can fi nd a wizard that does what you want, this is the
easiest way to create a new project.

2.2. Microsoft Visual Studio

78 2. Tools of the Trade

Copy an Existing Project

If I am creating a project that is similar to an existing project that I know al-
ready works, I’ll oft en just copy that .vcproj fi le and then modify it as neces-
sary. In Visual Studio 2005, this is very easy. You simply copy the .vcproj fi le
on disk, then add the newly copied project to your solution by right-clicking
the solution in the Solution Explorer and selecting “Add…” and “Existing
project…” from the pop-up menus.

One caveat when copying project fi les is that the name of the project is
stored inside the .vcproj fi le itself. So when you load up the new project for the
fi rst time in Visual Studio 2005, it will still have the original name. To rectify
this, you can simply select the project in the Solution Explorer window, and
hit F2 to rename it appropriately.

Another problem arises when the name of the executable, library, or DLL
that the project creates is specifi ed explicitly in the .vcproj fi le. For example,
the executable might be specifi ed as “C:\MyGame\bin\MyGame.exe” or
“$(OutDir)\MyGame.exe.” In this case, you’ll need to open the .vcproj fi le
and do a global search-and-replace of the executable, library, or DLL name
and/or its directory path. This is not too diffi cult. Project fi les are XML, so you
can rename your copied .vcproj fi le to have an “.xml” extension and then open
it in Visual Studio (or any other XML or raw text editor). One elegant solution
to this problem is to use Visual Studio’s macro system when specifying all out-
put fi les in your project. For example, if you specify the output executable as
“$(OutDir)\$(ProjectName).exe”, then the project’s name will automati-
cally be refl ected in the name of the output executable fi le.

I should mention that using a text editor to manipulate .vcproj fi les is not
always to be avoided. In fact, the practice is quite common, at least in my ex-
perience. For example, let’s say you decided to move the folder containing all
of your graphics header fi les to a new path on disk. Rather than manually open
each project in turn, open the Project Property Pages window, navigate to the
C/C++ tab, and fi nally update the include path manually, it’s much easier and
less error-prone to edit the fi les as XML text and do a search-and-replace. You
can even do a “Replace in fi les” operation in Visual Studio for mass edits.

2.2.5. Debugging Your Code

One of the most important skills any programmer can learn is how to eff ec-
tively debug code. This section provides some useful debugging tips and
tricks. Some are applicable to any debugger and some are specifi c to Microsoft
Visual Studio. However, you can usually fi nd an equivalent to Visual Studio’s
debugging features in other debuggers, so this section should prove useful
even if you don’t use Visual Studio to debug your code.

79

2.2.5.1. The Start-Up Project

A Visual Studio solution can contain more than one project. Some of these
projects build executables, while others build libraries or DLLs. It’s possible
to have more than one project that builds an executable in a single solution.
However, you cannot debug more than one program at a time. For this reason,
Visual Studio provides a sett ing known as the “Start-Up Project.” This is the
project that is considered “current” for the purposes of the debugger.

The start-up project is highlighted in bold in the Solution Explorer.
Hitt ing F5 to run your program in the debugger will run the .exe built by the
start-up project (if the start-up project builds an executable).

2.2.5.2. Break Points

Break points are the bread and butt er of code debugging. A break point in-
structs the program to stop at a particular line in your source code so that you
can inspect what’s going on.

In Visual Studio, select a line and hit F9 to toggle a break point. When you
run your program and the line of code containing the break point is about to
be executed, the debugger will stop the program. We say that the break point
has been “hit.” A litt le arrow will show you which line of code the CPU’s pro-
gram counter is currently on. This is shown in Figure 2.11.

2.2. Microsoft Visual Studio

Figure 2.11. Setting a break point in Visual Studio.

2.2.5.3. Stepping through Your Code

Once a break point has been hit, you can single-step your code by hitt ing the
F10 key. The yellow program-counter arrow moves to show you the lines as
they execute. Hitt ing F11 steps into a function call (i.e., the next line of code
you’ll see is the fi rst line of the called function), while F10 steps over that func-

80 2. Tools of the Trade

tion call (i.e., the debugger calls the function at full speed and then breaks
again on the line right aft er the call).

2.2.5.4. The Call Stack

The call stack window, shown in Figure 2.12, shows you the stack of functions
that have been called at any given moment during the execution of your code.
To display the call stack (if it is not already visible), go to the “Debug” menu
on the main menu bar, select “Windows,” and then “Call Stack.”

Once a break point has been hit (or the program is manually paused), you
can move up and down the call stack by double-clicking on entries in the “Call
Stack” window. This is very useful for inspecting the chain of function calls
that were made between main() and the current line of code. For example,
you might trace back to the root cause of a bug in a parent function which has
manifested itself in a deeply nested child function.

Figure 2.12. The call stack window.

2.2.5.5. The Watch Window

As you step through your code and move up and down the call stack, you will
want to be able to inspect the values of the variables in your program. This
is what watch windows are for. To open a watch window, go to the “Debug”
menu, select “Windows…,” then select “Watch…,” and fi nally select one of
“Watch 1” through “Watch 4.” (Visual Studio allows you to open up to four
watch windows simultaneously.) Once a watch window is open, you can type
the names of variables into the window or drag expressions in directly from
your source code.

As you can see in Figure 2.13, variables with simple data types are shown
with their values listed immediately to the right of their names. Complex
data types are shown as litt le tree views that can be easily expanded to “drill

81

down” into virtually any nested structure. The base class of a class is always
shown as the fi rst child of an instance of a derived class. This allows you to
inspect not only the class’ data members, but also the data members of its base
class(es).

You can type virtually any valid C/C++ expression into the watch window,
and Visual Studio will evaluate that expression and att empt to display the
resulting value. For example, you could type “5+3” and Visual Studio will
display “8.” You can cast variables from one type to another by using C or C++
casting syntax. For example, typing “(float)myIntegerVariable * 0.5f”
in the watch window will display the value of myIntegerVariable divided
by two, as a fl oating-point value.

You can even call functions in your program from within the watch window.
Visual Studio re-evaluates the expressions typed into the watch window(s)
automatically, so if you invoke a function in the watch window, it will be
called every time you hit a break point or single-step your code. This allows
you to leverage the functionality of your program in order to save yourself
work when trying to interpret the data that you’re inspecting in the debug-
ger. For example, let’s say that your game engine provides a function called
quatToAngleDeg() which converts a quaternion to an angle of rotation in
degrees. You can call this function in the watch window in order to easily in-
spect the rotation angle of any quaternion from within the debugger.

You can also use various suffi xes on the expressions in the watch window
in order to change the way Visual Studio displays the data, as shown in Fig-
ure 2.14.

 The “,d” suffi x forces values to be displayed in decimal notation.

 The “,x” suffi x forces values to be displayed in hexadecimal notation.

2.2. Microsoft Visual Studio

Figure 2.13. Visual Studio’s watch window.

82 2. Tools of the Trade

 The “,n” suffi x (where n is any positive integer) forces Visual Studio to
treat the value as an array with n elements. This allows you to expand
array data that is referenced through a pointer.

Be careful when expanding very large data structures in the watch window, be-
cause it can sometimes slow the debugger down to the point of being unusable.

2.2.5.6. Data Break Points

Regular break points trip when the CPU’s program counter hits a particular
machine instruction or line of code. However, another incredibly useful fea-
ture of modern debuggers is the ability to set a break point that trips when-
ever a specifi c memory address is writt en to (i.e., changed). These are called
data break points, because they are triggered by changes to data, or sometimes
hardware break points, because they are implemented via a special feature of the
CPU’s hardware—namely the ability to raise an interrupt when a predefi ned
memory address is writt en to.

Here’s how data break points are typically used. Let’s say you are tracking
down a bug that manifests itself as a zero (0.0f) value mysteriously appear-
ing inside a member variable of a particular object called m_angle that should
always contain a nonzero angle. You have no idea which function might be
writing that zero into your variable. However, you do know the address of the
variable. (You can just type “&object.m_angle” into the watch window to
fi nd its address.) To track down the culprit, you can set a data break point on
the address of object.m_angle, and then simply let the program run. When
the value changes, the debugger will stop automatically. You can then inspect
the call stack to catch the off ending function red-handed.

To set a data break point in Visual Studio, take the following steps.

 Bring up the “Breakpoints” window found on the “Debug” menu under
“Windows” and then “Breakpoints” (Figure 2.15).

 Select the “New” drop-down butt on in the upper-left corner of the win-
dow.

Figure 2.14. Comma suffi xes in the Visual Studio watch window.

83

 Select “New Data Breakpoint.”
 Type in the raw address or an address-valued expression, such as

“&myVariable” (Figure 2.16).

The “Byte count” fi eld should almost always contain the value 4. This is
because 32-bit Pentium CPUs can really only inspect 4-byte (32-bit) values na-
tively. Specifying any other data size requires the debugger to do some trickery
which tends to slow your program’s execution to a crawl (if it works at all).

2.2.5.7. Conditional Break Points

You’ll also notice in the “Break Points” window that you can set conditions
and hit counts on any type break point—data break points or regular line-of-
code break points.

A conditional break point causes the debugger to evaluate the C/C++ expres-
sion you provide every time the break point is hit. If the expression is true, the
debugger stops your program and gives you a chance to see what’s going on.
If the expression is false, the break point is ignored and the program contin-
ues. This is very useful for sett ing break points that only trip when a function
is called on a particular instance of a class. For example, let’s say you have
a game level with 20 tanks on-screen, and you want to stop your program

Figure 2.16. Defi ning a data break point.

Figure 2.15. The Visual Studio break points window.

2.2. Microsoft Visual Studio

84 2. Tools of the Trade

when the third tank, whose memory address you know to be 0x12345678,
is running. By sett ing the break point’s condition express to something like
“(unsigned)this == 0x12345678”, you can restrict the break point only to
the class instance whose memory address (this pointer) is 0x12345678.

Specifying a hit count for a break point causes the debugger to decrement
a counter every time the break point is hit, and only actually stop the program
when that counter reaches zero. This is really useful for situations where your
break point is inside a loop, and you need to inspect what’s happening during
the 376th iteration of the loop (e.g., the 376th element in an array). You can’t
very well sit there and hit the F5 key 375 times! But you can let the hit count
feature of Visual Studio do it for you.

One note of caution: Conditional break points cause the debugger to eval-
uate the conditional expression every time the break point is hit, so they can
bog down the performance of the debugger and your game.

2.2.5.8. Debugging Optimized Builds

I mentioned above that it can be very tricky to debug problems using a release
build, due primarily to the way the compiler optimizes the code. Ideally, every
programmer would prefer to do all of his or her debugging in a debug build.
However, this is oft en not possible. Sometimes a bug occurs so rarely that
you’ll jump at any chance to debug the problem, even if it occurs in a release
build on someone else’s machine. Other bugs only occur in your release build,
but magically disappear whenever you run the debug build. These dreaded
release-only bugs are sometimes caused by uninitialized variables, because vari-
ables and dynamically allocated memory blocks are oft en set to zero in debug
mode, but are left containing garbage in a release build. Other common causes
of release-only bugs include code that has been accidentally omitt ed from the
release build (e.g., when important code is erroneously placed inside an asser-
tion statement), data structures whose size or data member packing changes
between debug and release builds, bugs that are only triggered by inlining or
compiler-introduced optimizations, and (in rare cases) bugs in the compiler’s
optimizer itself, causing it to emit incorrect code in a fully optimized build.

Clearly, it behooves every programmer to be capable of debugging prob-
lems in a release build, unpleasant as it may seem. The best ways to reduce the
pain of debugging optimized code is to practice doing it and to expand your
skill set in this area whenever you have the opportunity. Here are a few tips.

 Learn to read and step through disassembly in the debugger. In a release build,
the debugger oft en has trouble keeping track of which line of source
code is currently being executed. Thanks to instruction reordering,
you’ll oft en see the program counter jump around erratically within the

85

function when viewed in source code mode. However, things become
sane again when you work with the code in disassembly mode (i.e., step
through the assembly language instructions individually). Every C/C++
programmer should be at least a litt le bit familiar with the architecture
and assembly language of their target CPU(s). That way, even if the de-
bugger is confused, you won’t be.

 Use registers to deduce variables’ values or addresses. The debugger will
sometimes be unable to display the value of a variable or the contents of
an object in a release build. However, if the program counter is not too
far away from the initial use of the variable, there’s a good chance its ad-
dress or value is still stored in one of the CPU’s registers. If you can trace
back through the disassembly to where the variable is fi rst loaded into
a register, you can oft en discover its value or its address by inspecting
that register. Use the register window, or type the name of the register
into a watch window, to see its contents.

 Inspect variables and object contents by address. Given the address of a vari-
able or data structure, you can usually see its contents by casting the
address to the appropriate type in a watch window. For example, if we
know that an instance of the Foo class resides at address 0x1378A0C0, we
can type “(Foo*)0x1378A0C0” in a watch window, and the debugger
will interpret that memory address as if it were a pointer to a Foo object.

 Leverage static and global variables. Even in an optimized build, the de-
bugger can usually inspect global and static variables. If you cannot de-
duce the address of a variable or object, keep your eye open for a static
or global that might contain its address, either directly or indirectly. For
example, if we want to fi nd the address of an internal object within the
physics system, we might discover that it is in fact stored in a member
variable of the global PhysicsWorld object.

 Modify the code. If you can reproduce a release-only bug relatively eas-
ily, consider modifying the source code to help you debug the problem.
Add print statements so you can see what’s going on. Introduce a global
variable to make it easier to inspect a problematic variable or object in
the debugger. Add code to detect a problem condition or to isolate a
particular instance of a class.

2.3. Profi ling Tools

Games are typically high-performance real-time programs. As such, game en-
gine programmers are always looking for ways to speed up their code. There

2.3. Profi ling Tools

86 2. Tools of the Trade

is a well-known, albeit rather unscientifi c, rule of thumb known as the Pareto
principle (see htt p://en.wikipedia.org/wiki/Pareto_principle). It is also known
as the 80-20 rule, because it states that in many situations, 80% of the eff ects
of some event come from only 20% of the possible causes. In computer sci-
ence, we oft en use a variant of this principle known as the 90-10 rule, which
states that 90% of the wall clock time spent running any piece of soft ware is
accounted for by only 10% of the code. In other words, if you optimize 10% of
your code, you can potentially realize 90% of all the gains in execution speed
you’ll ever realize.

So, how do you know which 10% of your code to optimize? For that, you
need a profi ler. A profi ler is a tool that measures the execution time of your
code. It can tell you how much time is spent in each function. You can then di-
rect your optimizations toward only those functions that account for the lion’s
share of the execution time.

Some profi lers also tell you how many times each function is called. This
is an important dimension to understand. A function can eat up time for two
reasons: (a) it takes a long time to execute on its own, or (b) it is called fre-
quently. For example, a function that runs an A* algorithm to compute the
optimal paths through the game world might only be called a few times each
frame, but the function itself may take a signifi cant amount of time to run. On
the other hand, a function that computes the dot product may only take a few
cycles to execute, but if you call it hundreds of thousands of times per frame,
it might drag down your game’s frame rate.

Even more information can be obtained, if you use the right profi ler. Some
profi lers report the call graph, meaning that for any given function, you can
see which functions called it (these are known as parent functions) and which
functions it called (these are known as child functions or descendants). You can
even see what percentage of the function’s time was spent calling each of its
descendants and the percentage of the overall running time accounted for by
each individual function.

Profi lers fall into two broad categories.

1. Statistical profi lers. This kind of profi ler is designed to be unobtrusive,
meaning that the target code runs at almost the same speed, wheth-
er or not profi ling is enabled. These profi lers work by sampling the
CPU’s program counter register periodically and noting which func-
tion is currently running. The number of samples taken within each
function yields an approximate percentage of the total running time
that is eaten up by that function. Intel’s VTune is the gold standard in
statistical profi lers for Windows machines employing Intel Pentium
processors, and it is now also available for Linux. See htt p://www.

87

intel.com/cd/soft ware/products/ asmo-na /eng /vtune /239144.htm for
details.

2. Instrumenting profi lers. This kind of profi ler is aimed at providing the
most accurate and comprehensive timing data possible, but at the ex-
pense of real-time execution of the target program—when profi ling is
turned on, the target program usually slows to a crawl. These profi lers
work by preprocessing your executable and inserting special prologue
and epilogue code into every function. The prologue and epilogue code
calls into a profi ling library, which in turn inspects the program’s call
stack and records all sorts of details, including which parent function
called the function in question and how many times that parent has
called the child. This kind of profi ler can even be set up to monitor every
line of code in your source program, allowing it to report how long each
line is taking to execute. The results are stunningly accurate and com-
prehensive, but turning on profi ling can make a game virtually unplay-
able. IBM’s Rational Quantify, available as part of the Rational Purify
Plus tool suite, is an excellent instrumenting profi ler. See htt p://www.
ibm.com/developerworks/rational/library/957.html for an introduction
to profi ling with Quantify.

Microsoft has also published a profi ler that is a hybrid between the two
approaches. It is called LOP, which stands for low-overhead profi ler. It uses
a statistical approach, sampling the state of the processor periodically, which
means it has a low impact on the speed of the program’s execution. However,
with each sample it analyzes the call stack, thereby determining the chain of
parent functions that resulted in each sample. This allows LOP to provide
information normally not available with a statistical profi ler, such as the dis-
tribution of calls across parent functions.

2.3.1. List of Profi lers

There are a great many profi ling tools available. See htt p://en.wikipedia.org/
wiki/List_of_performance_analysis_tool for a reasonably comprehensive list.

2.4. Memory Leak and Corruption Detection

Two other problems that plague C and C++ programmers are memory leaks
and memory corruption. A memory leak occurs when memory is allocated
but never freed. This wastes memory and eventually leads to a potentially
fatal out-of-memory condition. Memory corruption occurs when the program
inadvertently writes data to the wrong memory location, overwriting the im-

2.4. Memory Leak and Corruption Detection

http://www.ibm.com/developerworks/rational/library/957.html
http://www.ibm.com/developerworks/rational/library/957.html

88 2. Tools of the Trade

portant data that was there—while simultaneously failing to update the mem-
ory location where that data should have been writt en. Blame for both of these
problems falls squarely on the language feature known as the pointer.

A pointer is a powerful tool. It can be an agent of good when used prop-
erly—but it can also be all-too-easily transformed into an agent of evil. If a
pointer points to memory that has been freed, or if it is accidentally assigned
a nonzero integer or fl oating-point value, it becomes a dangerous tool for cor-
rupting memory, because data writt en through it can quite literally end up
anywhere. Likewise, when pointers are used to keep track of allocated mem-
ory, it is all too easy to forget to free the memory when it is no longer needed.
This leads to memory leaks.

Clearly good coding practices are one approach to avoiding pointer-re-
lated memory problems. And it is certainly possible to write solid code that
essentially never corrupts or leaks memory. Nonetheless, having a tool to help
you detect potential memory corruption and leak problems certainly can’t
hurt. Thankfully, many such tools exist.

My personal favorite is IBM’s Rational Purify, which comes as part of the
Purify Plus tool kit. Purify instruments your code prior to running it, in order
to hook into all pointer dereferences and all memory allocations and dealloca-
tions made by your code. When you run your code under Purify, you get a
live report of the problems—real and potential—encountered by your code.
And when the program exits, you get a detailed memory leak report. Each
problem is linked directly to the source code that caused the problem, making
tracking down and fi xing these kinds of problems relatively easy. You can fi nd
more information on Purify at htt p://www-306.ibm.com/soft ware/awdtools
/purify.

Another popular tool is Bounds Checker by CompuWare. It is similar
to Purify in purpose and functionality. You can fi nd more information on
Bounds Checker at htt p://www.compuware.com/products/devpartner/visualc
.htm.

2.5. Other Tools

There are a number of other commonly used tools in a game programmer’s
toolkit. We won’t cover them in any depth here, but the following list will
make you aware of their existence and point you in the right direction if you
want to learn more.

 Diff erence tools. A diff erence tool, or diff tool, is a program that com-
pares two versions of a text fi le and determines what has changed be-

http://www.compuware.com/products/devpartner/visualc

89

tween them. (See htt p://en.wikipedia.org/wiki/Diff for a discussion of
diff tools.) Diff s are usually calculated on a line-by-line basis, although
modern diff tools can also show you a range of characters on a changed
line that have been modifi ed. Most version control systems come with
a diff tool. Some programmers like a particular diff tool and confi gure
their version control soft ware to use the tool of their choice. Popular
tools include ExamDiff (htt p://www.prestosoft .com/edp_examdiff .asp),
AraxisMerge (htt p://www.araxis.com), WinDiff (available in the Op-
tions Packs for most Windows versions and available from many inde-
pendent websites as well), and the GNU diff tools package (htt p://www.
gnu.org/soft ware/diff utils/diff utils.html).

 Three-way merge tools. When two people edit the same fi le, two inde-
pendent sets of diff s are generated. A tool that can merge two sets of
diff s into a fi nal version of the fi le that contains both person’s changes
is called a three-way merge tool. The name “three-way” refers to the
fact that three versions of the fi le are involved: the original, user A’s
version, and user B’s version. (See htt p://en.wikipedia.org/wiki/3-way_
merge#Three-way_merge for a discussion of two-way and three-way
merge technologies.) Many merge tools come with an associated diff
tool. Some popular merge tools include AraxisMerge (htt p://www.arax-
is.com) and WinMerge (htt p://winmerge.org). Perforce also comes with
an excellent three-way merge tool (htt p://www.perforce.com/perforce/
products/merge.html).

 Hex editors. A hex editor is a program used for inspecting and modify-
ing the contents of binary fi les. The data are usually displayed as in-
tegers in hexadecimal format, hence the name. Most good hex editors
can display data as integers from one byte to 16 bytes each, in 32- and
64-bit fl oating point format and as ASCII text. Hex editors are particu-
larly useful when tracking down problems with binary fi le formats or
when reverse-engineering an unknown binary format—both of which
are relatively common endeavors in game engine development circles.
There are quite literally a million diff erent hex editors out there; I’ve
had good luck with HexEdit by Expert Commercial Soft ware (htt p://
www.expertcomsoft .com/index.html), but your mileage may vary.

As a game engine programmer you will undoubtedly come across other
tools that make your life easier, but I hope this chapter has covered the main
tools you’ll use on a day-to-day basis.

2.5. Other Tools

http://www.prestosoft
http://www.araxis.com
http://www.gnu.org/soft
http://www.gnu.org/soft
http://www.arax-is.com
http://www.arax-is.com
http://www.arax-is.com
http://www.perforce.com/perforce/
http://www.expertcomsoft

91

3
Fundamentals of Software

Engineering for Games

In this chapter, we’ll briefl y review the basic concepts of object-oriented pro-
gramming and then delve into some advanced topics which should prove

invaluable in any soft ware engineering endeavor (and especially when creat-
ing games). As with Chapter 2, I hope you will not to skip this chapter en-
tirely; it’s important that we all embark on our journey with the same set of
tools and supplies.

3.1. C++ Review and Best Practices

3.1.1. Brief Review of Object-Oriented Programming

Much of what we’ll discuss in this book assumes you have a solid understand-
ing of the principles of object-oriented design. If you’re a bit rusty, the follow-
ing section should serve as a pleasant and quick review. If you have no idea
what I’m talking about in this section, I recommend you pick up a book or two
on object-oriented programming (e.g., [5]) and C++ in particular (e.g., [39] and
[31]) before continuing.

3.1.1.1. Classes and Objects

A class is a collection of att ributes (data) and behaviors (code) which together
form a useful, meaningful whole. A class is a specifi cation describing how in-

92 3. Fundamentals of Software Engineering for Games

dividual instances of the class, known as objects, should be constructed. For
example, your pet Rover is an instance of the class “dog.” Thus there is a one-
to-many relationship between a class and its instances.

3.1.1.2. Encapsulation

Encapsulation means that an object presents only a limited interface to the out-
side world; the object’s internal state and implementation details are kept hid-
den. Encapsulation simplifi es life for the user of the class, because he or she
need only understand the class’ limited interface, not the potentially intricate
details of its implementation. It also allows the programmer who wrote the
class to ensure that its instances are always in a logically consistent state.

3.1.1.3. Inheritance

Inheritance allows new classes to be defi ned as extensions to pre-existing class-
es. The new class modifi es or extends the data, interface, and/or behavior of
the existing class. If class Child extends class Parent, we say that Child in-
herits from or is derived from Parent. In this relationship, the class Parent is
known as the base class or superclass, and the class Child is the derived class
or subclass. Clearly, inheritance leads to hierarchical (tree-structured) relation-
ships between classes.

Inheritance creates an “is-a” relationship between classes. For example,
a circle is a type of shape. So if we were writing a 2D drawing application,
it would probably make sense to derive our Circle class from a base class
called Shape.

We can draw diagrams of class hierarchies using the conventions defi ned
by the Unifi ed Modeling Language (UML). In this notation, a rectangle repre-
sents a class, and an arrow with a hollow triangular head represents inheritance.
The inheritance arrow points from child class to parent. See Figure 3.1 for an ex-
ample of a simple class hierarchy represented as a UML static class diagram.

Shape

Circle Rectangle Triangle

Figure 3.1. UML static class diagram depicting a simple class hierarchy.

 Multiple In heritance

Some languages support multiple inheritance (MI), meaning that a class can
have more than one parent class. In theory MI can be quite elegant, but in

93 3.1. C++ Review and Best Practices

practice this kind of design usually gives rise to a lot of confusion and techni-
cal diffi culties (see htt p://en.wikipedia.org/wiki/Multiple_inheritance). This is
because multiple inheritance transforms a simple tree of classes into a poten-
tially complex graph. A class graph can have all sorts of problems that never
plague a simple tree—for example, the deadly diamond (htt p://en.wikipedia.
org/wiki/Diamond_problem), in which a derived class ends up containing two
copies of a grandparent base class (see Figure 3.2). In C++, virtual inheritance al-
lows one to avoid this doubling of the grandparent’s data.

Most C++ soft ware developers avoid multiple inheritance completely or
only permit it in a limited form. A common rule of thumb is to allow only
simple, parentless classes to be multiply inherited into an otherwise strictly
single-inheritance hierarchy. Such classes are sometimes called mix-in classes

ClassA

ClassB ClassC

ClassD

ClassA

ClassA

ClassB

ClassB’s
memory layout:

ClassA’s
memory layout:

ClassA

ClassC

ClassC’s
memory layout:

ClassA

ClassB

ClassD’s
memory layout:

ClassA

ClassC

ClassD

Figure 3.2. “Deadly diamond” in a multiple inheritance hierarchy.

+Draw()

Shape

+Draw()

Circle

+Draw()

Rectangle

+Draw()

Triangle

+Animate()

Animator

Animator is a hypothetical mix -in
class that adds animation
functionality to whatever class it
is inherited by.

Figure 3.3. Example of a mix-in class.

94 3. Fundamentals of Software Engineering for Games

because they can be used to introduce new functionality at arbitrary points in a
class tree. See Figure 3.3 for a somewhat contrived example of a mix-in class.

3.1.1.4. Polymorphism

Polymorphism is a language feature that allows a collection of objects of diff er-
ent types to be manipulated through a single common interface. The common
interface makes a heterogeneous collection of objects appear to be homoge-
neous, from the point of view of the code using the interface.

For example, a 2D painting program might be given a list of various
shapes to draw on-screen. One way to draw this heterogeneous collection of
shapes is to use a switch statement to perform diff erent drawing commands
for each distinct type of shape.

void drawShapes(std::list<Shape*> shapes)
{
 std::list<Shape*>::iterator pShape = shapes.begin();
 std::list<Shape*>::iterator pEnd = shapes.end();

 for (; pShape != pEnd; ++pShape)
 {

switch (pShape->mType)
 {
 case CIRCLE:
 // draw shape as a circle
 break;

 case RECTANGLE:
 // draw shape as a rectangle
 break;

 case TRIANGLE:
 // draw shape as a triangle
 break;
 //...
 }
 }
}

The problem with this approach is that the drawShapes() function needs
to “know” about all of the kinds of shapes that can be drawn. This is fi ne in a
simple example, but as our code grows in size and complexity, it can become
diffi cult to add new types of shapes to the system. Whenever a new shape
type is added, one must fi nd every place in the code base where knowledge
of the set of shape types is embedded—like this switch statement—and add a
case to handle the new type.

The solution is to insulate the majority of our code from any knowledge of
the types of objects with which it might be dealing. To accomplish this, we can

95

defi ne classes for each of the types of shapes we wish to support. All of these
classes would inherit from the common base class Shape. A virtual function—
the C++ language’s primary polymorphism mechanism—would be defi ned
called Draw(), and each distinct shape class would implement this function
in a diff erent way. Without “knowing” what specifi c types of shapes it has
been given, the drawing function can now simply call each shape’s Draw()
function in turn.

struct Shape
{

virtual void Draw() = 0; // pure virtual function
};

struct Circle : public Shape
{

virtual void Draw()
 {
 // draw shape as a circle
 }
};

struct Rectangle : public Shape
{

virtual void Draw()
 {
 // draw shape as a rectangle
 }

};

struct Triangle : public Shape
{

void Draw()
 {
 // draw shape as a triangle
 }
};

void drawShapes(std::list<Shape*> shapes)
{

 std::list<Shape*>::iterator pShape = shapes.begin();
 std::list<Shape*>::iterator pEnd = shapes.end();

 for (; pShape != pEnd; ++pShape)
 {
 pShape->Draw();
 }
}

3.1. C++ Review and Best Practices

96 3. Fundamentals of Software Engineering for Games

3.1.1.5. Composition and Aggregation

Composition is the practice of using a group of interacting objects to accomplish
a high-level task. Composition creates a “has-a” or “uses-a” relationship be-
tween classes. (Technically speaking, the “has-a” relationship is called com-
position, while the “uses-a” relationship is called aggregation.) For example, a
space ship has an engine, which in turn has a fuel tank. Composition/aggrega-
tion usually results in the individual classes being simpler and more focused.
Inexperienced object-oriented programmers oft en rely too heavily on inheri-
tance and tend to underutilize aggregation and composition.

As an example, imagine that we are designing a graphical user interface
for our game’s front end. We have a class Window that represents any rectan-
gular GUI element. We also have a class called Rectangle that encapsulates
the mathematical concept of a rectangle. A naïve programmer might derive
the Window class from the Rectangle class (using an “is-a” relationship). But
in a more fl exible and well-encapsulated design, the Window class would refer
to or contain a Rectangle (employing a “has-a” or “uses-a” relationship). This
makes both classes simpler and more focused and allows the classes to be
more easily tested, debugged, and reused.

3.1.1.6. Design Patterns

When the same type of problem arises over and over, and many diff erent pro-
grammers employ a very similar solution to that problem, we say that a design
patt ern has arisen. In object-oriented programming, a number of common de-
sign patt erns have been identifi ed and described by various authors. The most
well-known book on this topic is probably the “Gang of Four” book [17].

Here are a few examples of common general-purpose design patt erns.

 Singleton. This patt ern ensures that a particular class has only one in-
stance (the singleton instance) and provides a global point of access to it.

 Iterator. An iterator provides an effi cient means of accessing the indi-
vidual elements of a collection, without exposing the collection’s under-
lying implementation. The iterator “knows” the implementation details
of the collection, so that its users don’t have to.

 Abstract factory. An abstract factory provides an interface for creating
families of related or dependent classes without specifying their con-
crete classes.

The game industry has its own set of design patt erns, for addressing
problems in every realm from rendering to collision to animation to audio.
In a sense, this book is all about the high-level design patt erns prevalent in
modern 3D game engine design.

97

3.1.2. Coding Standards: Why and How Much?

Discussions of coding conventions among engineers can oft en lead to heated
“religious” debates. I do not wish to spark any such debate here, but I will go
so far as to suggest that following at least some minimal coding standards is a
good idea. Coding standards exist for two primary reasons.

1. Some standards make the code more readable, understandable, and
maintainable.

2. Other conventions help to prevent programmers from shooting them-
selves in the foot. For example, a coding standard might encourage the
programmer to use only a smaller, more testable, and less error-prone
subset of the whole language. The C++ language is rife with possibili-
ties for abuse, so this kind of coding standard is particularly important
when using C++.

In my opinion, the most important things to achieve in your coding con-
ventions are the following.

 Interfaces are king. Keep your interfaces (.h fi les) clean, simple, minimal,
easy to understand, and well-commented.

 Good names encourage understanding and avoid confusion. Stick to intuitive
names that map directly to the purpose of the class, function, or vari-
able in question. Spend time up-front identifying a good name. Avoid
a naming scheme that requires programmers to use a look-up table in
order to decipher the meaning of your code. Remember that high-level
programming languages like C++ are intended for humans to read. (If
you disagree, just ask yourself why you don’t write all your soft ware
directly in machine language.)

 Don’t clutt er the global namespace. Use C++ namespaces or a common
naming prefi x to ensure that your symbols don’t collide with symbols
in other libraries. (But be careful not to overuse namespaces, or nest
them too deeply.) Name #defined symbols with extra care; remember
that C++ preprocessor macros are really just text substitutions, so they
cut across all C/C++ scope and namespace boundaries.

 Follow C++ best practices. Books like the Eff ective C++ series by Scott Mey-
ers [31, 32], Meyers’ Eff ective STL [33], and Large-Scale C++ Soft ware De-
sign by John Lakos [27] provide excellent guidelines that will help keep
you out of trouble.

 Be consistent. The rule I try to use is as follows: If you’re writing a body
of code from scratch, feel free to invent any convention you like—then
stick to it. When editing pre-existing code, try to follow whatever con-
ventions have already been established.

3.1. C++ Review and Best Practices

98 3. Fundamentals of Software Engineering for Games

 Make errors stick out. Joel Spolsky wrote an excellent article on coding
conventions, which can be found at htt p://www.joelonsoft ware.com /
articles /Wrong.html. Joel suggests that the “cleanest” code is not neces-
sarily code that looks neat and tidy on a superfi cial level, but rather the
code that is writt en in a way that makes common programming errors
easier to see. Joel’s articles are always fun and educational, and I highly
recommend this one.

3.2. Data, Code, and Memory in C/C++

3.2.1. Numeric Representations

Numbers are at the heart of everything that we do in game engine development
(and soft ware development in general). Every soft ware engineer should under-
stand how numbers are represented and stored by a computer. This section will
provide you with the basics you’ll need throughout the rest of the book.

3.2.1.1. Numeric Bases

People think most naturally in base ten, also known as decimal notation. In this
notation, ten distinct digits are used (0 through 9), and each digit from right
to left represents the next highest power of 10. For example, the number 7803
= (7×103) + (8×102) + (0×101) + (3×100) = 7000 + 800 + 0 + 3.

In computer science, mathematical quantities such as integers and real-
valued numbers need to be stored in the computer’s memory. And as we know,
computers store numbers in binary format, meaning that only the two digits 0
and 1 are available. We call this a base-two representation, because each digit
from right to left represents the next highest power of 2. Computer scientists
sometimes use a prefi x of “0b” to represent binary numbers. For example, the
binary number 0b1101 is equivalent to decimal 13, because 0b1101 = (1×23) +
(1×22) + (0×21) + (1×20) = 8 + 4 + 0 + 1 = 13.

Another common notation popular in computing circles is hexadecimal, or
base 16. In this notation, the 10 digits 0 through 9 and the six lett ers A through
F are used; the lett ers A through F replace the decimal values 10 through 15,
respectively. A prefi x of “0x” is used to denote hex numbers in the C and C++
programming languages. This notation is popular because computers gener-
ally store data in groups of 8 bits known as bytes, and since a single hexadeci-
mal digit represents 4 bits exactly, a pair of hex digits represents a byte. For
example, the value 0xFF = 0b11111111 = 255 is the largest number that can be
stored in 8 bits (1 byte). Each digit in a hexadecimal number, from right to left ,
represents the next power of 16. So, for example, 0xB052 = (11×163) + (0×162) +
(5×161) + (2×160) = (11×4096) + (0×256) + (5×16) + (2×1) = 45,138.

http://www.joelonsoft

99 3.2. Data, Code, and Memory in C/C++

3.2.1.2. Signed and Unsigned Integers

In computer science, we use both signed and unsigned integers. Of course,
the term “unsigned integer” is actually a bit of a misnomer—in mathematics,
the whole numbers or natural numbers range from 0 (or 1) up to positive infi nity,
while the integers range from negative infi nity to positive infi nity. Neverthe-
less, we’ll use computer science lingo in this book and stick with the terms
“signed integer” and “unsigned integer.”

Most modern personal computers and game consoles work most easily
with integers that are 32 bits or 64 bits wide (although 8- and 16-bit integers
are also used a great deal in game programming as well). To represent a 32-
bit unsigned integer, we simply encode the value using binary notation (see
above). The range of possible values for a 32-bit unsigned integer is 0x00000000
(0) to 0xFFFFFFFF (4,294,967,295).

To represent a signed integer in 32 bits, we need a way to diff erentiate be-
tween positive and negative vales. One simple approach would be to reserve
the most signifi cant bit as a sign bit—when this bit is zero the value is positive,
and when it is one the value is negative. This gives us 31 bits to represent the
magnitude of the value, eff ectively cutt ing the range of possible magnitudes
in half (but allowing both positive and negative forms of each distinct magni-
tude, including zero).

Most microprocessors use a slightly more effi cient technique for encod-
ing negative integers, called two’s complement notation. This notation has only
one representation for the value zero, as opposed to the two representations
possible with simple sign bit (positive zero and negative zero). In 32-bit two’s
complement notation, the value 0xFFFFFFFF is interpreted to mean –1, and
negative values count down from there. Any value with the most signifi cant
bit set is considered negative. So values from 0x00000000 (0) to 0x7FFFFFFF
(2,147,483,647) represent positive integers, and 0x80000000 (–2,147,483,648) to
0xFFFFFFFF (–1) represent negative integers.

3.2.1.3. Fixed-Point Notation

Integers are great for representing whole numbers, but to represent fractions
and irrational numbers we need a diff erent format that expresses the concept
of a decimal point.

One early approach taken by computer scientists was to use fi xed-point
notation. In this notation, one arbitrarily chooses how many bits will be used
to represent the whole part of the number, and the rest of the bits are used
to represent the fractional part. As we move from left to right (i.e., from the
most signifi cant bit to the least signifi cant bit), the magnitude bits represent
decreasing powers of two (…, 16, 8, 4, 2, 1), while the fractional bits represent

100 3. Fundamentals of Software Engineering for Games

decreasing inverse powers of two (1/2 , 1/4 , 1/8 , 1/16 , …). For example, to store the
number –173.25 in 32-bit fi xed-point notation, with one sign bit, 16 bits for the
magnitude and 15 bits for the fraction, we fi rst convert the sign, the whole part
and fractional part into their binary equivalents individually (negative = 0b1,
173 = 0b0000000010101101, and 0.25 = 1/4 = 0b010000000000000). Then we pack
those values together into a 32-bit integer. The fi nal result is 0x8056A000. This
is illustrated in Figure 3.4.

The problem with fi xed-point notation is that it constrains both the range
of magnitudes that can be represented and the amount of precision we can
achieve in the fractional part. Consider a 32-bit fi xed-point value with 16 bits
for the magnitude, 15 bits for the fraction, and a sign bit. This format can only
represent magnitudes up to ±65,535, which isn’t particularly large. To over-
come this problem, we employ a fl oating-point representation.

3.2.1.4. Floating-Point Notation

In fl oating-point notation, the position of the decimal place is arbitrary and is
specifi ed with the help of an exponent. A fl oating-point number is broken into
three parts: the mantissa, which contains the relevant digits of the number on
both sides of the decimal point, the exponent, which indicates where in that
string of digits the decimal point lies, and a sign bit, which of course indicates
whether the value is positive or negative. There are all sorts of diff erent ways
to lay out these three components in memory, but the most common standard
is IEEE-754. It states that a 32-bit fl oating-point number will be represented
with the sign in the most signifi cant bit, followed by 8 bits of exponent, and
fi nally 23 bits of mantissa.

The value v represented by a sign bit s, an exponent e and a mantissa m is
v = s × 2(e – 127) × (1 + m).

The sign bit s has the value +1 or –1. The exponent e is biased by 127 so
that negative exponents can be easily represented. The mantissa begins with
an implicit 1 that is not actually stored in memory, and the rest of the bits are
interpreted as inverse powers of two. Hence the value represented is really 1
+ m, where m is the fractional value stored in the mantissa.

31 15 0

magnitude (16 bits) fraction (15 bits)

1 = –173.25

sign

0x80 0x56 0xA0 0x00

1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3.4. Fixed-point notation with 16-bit magnitude and 16-bit fraction.

101

For example, the bit patt ern shown in Figure 3.5 represents the value
0.15625, because s = 0 (indicating a positive number), e = 0b01111100 = 124,
and m = 0b0100… = 0×2–1 + 1×2–2 = ¼. Therefore,

 v = s × 2(e – 127) × (1 + m)
= (+1) × 2(124 – 127) × (1 + 1/4)

 = 2–3 × 5/4 (3.1)
 = 1/8 × 5/4

 = 0.125 × 1.25 = 0.15625.

The Trade-Off between Magnitude and Precision

The precision of a fl oating-point number increases as the magnitude decreases,
and vice versa. This is because there are a fi xed number of bits in the mantissa,
and these bits must be shared between the whole part and the fractional part
of the number. If a large percentage of the bits are spent representing a large
magnitude, then a small percentage of bits are available to provide fractional
precision. In physics the term signifi cant digits is typically used to describe this
concept (htt p://en.wikipedia.org/wiki/Signifi cant_digits).

To understand the trade-off between magnitude and precision, let’s look
at the largest possible fl oating-point value, FLT_MAX ≈ 3.403×1038, whose rep-
resentation in 32-bit IEEE fl oating-point format is 0x7F7FFFFF. Let’s break this
down:

 The largest absolute value that we can represent with a 23-bit mantissa
is 0x00FFFFFF in hexadecimal, or 24 consecutive binary ones—that’s 23
ones in the mantissa, plus the implicit leading one.

 An exponent of 255 has a special meaning in the IEEE-754 format—it is
used for values like not-a-number (NaN) and infi nity—so it cannot be
used for regular numbers. Hence the maximum 8-bit exponent is actu-
ally 254, which translates into 127 aft er subtracting the implicit bias of
127.

So FLT_MAX is 0x00FFFFFF×2127 = 0xFFFFFF00000000000000000000000000. In
other words, our 24 binary ones were shift ed up by 127 bit positions, leav-
ing 127 – 23 = 104 binary zeros (or 104/4 = 26 hexadecimal zeros) aft er the

3.2. Data, Code, and Memory in C/C++

0

31 23 0

exponent (8 bits)

0 1 1 1 1 1 0 0 0 1 0

mantissa (23 bits)sign

= 0.15625

Figure 3.5. IEEE-754 32-bit fl oating-point format.

102 3. Fundamentals of Software Engineering for Games

least signifi cant digit of the mantissa. Those trailing zeros don’t correspond
to any actual bits in our 32-bit fl oating-point value—they just appear out of
thin air because of the exponent. If we were to subtract a small number (where
“small” means any number composed of fewer than 26 hexadecimal digits)
from FLT_MAX, the result would still be FLT_MAX, because those 26 least sig-
nifi cant hexadecimal digits don’t really exist!

The opposite eff ect occurs for fl oating-point values whose magnitudes
are much less than one. In this case, the exponent is large but negative, and
the signifi cant digits are shift ed in the opposite direction. We trade the ability
to represent large magnitudes for high precision. In summary, we always have
the same number of signifi cant digits (or really signifi cant bits) in our fl oating-
point numbers, and the exponent can be used to shift those signifi cant bits into
higher or lower ranges of magnitude.

Another subtlety to notice is that there is a fi nite gap between zero and the
smallest nonzero value we can represent with any fl oating-point notation. The
smallest nonzero magnitude we can represent is FLT_MIN = 2–126 ≈ 1.175×10–38,
which has a binary representation of 0x00800000 (i.e., the exponent is 0x01,
or –126 aft er subtracting the bias, and the mantissa is all zeros, except for the
implicit leading one). There is no way to represent a nonzero magnitude that
is smaller than 1.175×10–38, because the next smallest valid value is zero. Put
another way, the real number line is quantized when using a fl oating-point
representation.

For a particular fl oating-point representation, the machine epsilon is de-
fi ned to be the smallest fl oating-point value ε that satisfi es the equation, 1 +
ε ≠ 1. For an IEEE-754 fl oating-point number, with its 23 bits of precision, the
value of ε is 2–23, which is approximately 1.192×10–7. The most signifi cant digit
of ε falls just inside the range of signifi cant digits in the value 1.0, so adding
any value smaller than ε to 1.0 has no eff ect. In other words, any new bits con-
tributed adding a value smaller than ε will get “chopped off ” when we try to
fi t the sum into a mantissa with only 23 bits.

The concepts of limited precision and the machine epsilon have real im-
pacts on game soft ware. For example, let’s say we use a fl oating-point vari-
able to track absolute game time in seconds. How long can we run our game
before the magnitude of our clock variable gets so large that adding 1/30th of
a second to it no longer changes its value? The answer is roughly 12.9 days.
That’s longer than most games will be left running, so we can probably get
away with using a 32-bit fl oating-point clock measured in seconds in a game.
But clearly it’s important to understand the limitations of the fl oating-point
format, so that we can predict potential problems and take steps to avoid them
when necessary.

103

IEEE Floating-Point Bit Tricks

See [7], Section 2.1, for a few really useful IEEE fl oating-point “bit tricks” that
can make fl oating-point calculations lightning-fast.

3.2.1.5. Atomic Data Types

As you know, C and C++ provide a number of atomic data types. The C and
C++ standards provide guidelines on the relative sizes and signedness of these
data types, but each compiler is free to defi ne the types slightly diff erently in
order to provide maximum performance on the target hardware.

 char. A char is usually 8 bits and is generally large enough to hold an
ASCII or UTF-8 character (see Section 5.4.4.1). Some compilers defi ne
char to be signed, while others use unsigned chars by default.

 int, short, long. An int is supposed to hold a signed integer value
that is the most effi cient size for the target platform; it is generally de-
fi ned to be 32 bits wide on Pentium class PCs. A short is intended to
be smaller than an int and is 16 bits on many machines. A long is as
large as or larger than an int and may be 32 or 64 bits, depending on
the hardware.

 float. On most modern compilers, a float is a 32-bit IEEE-754 fl oat-
ing-point value.

 double. A double is a double-precision (i.e., 64-bit) IEEE-754 fl oating-
point value.

 bool. A bool is a true/false value. The size of a bool varies widely across
diff erent compilers and hardware architectures. It is never implemented
as a single bit, but some compilers defi ne it to be 8 bits while others use
a full 32 bits.

Compiler-Specifi c Sized Types

The standard C/C++ atomic data types were designed to be portable and
therefore nonspecifi c. However, in many soft ware engineering endeavors, in-
cluding game engine programming, it is oft en important to know exactly how
wide a particular variable is. The Visual Studio C/C++ compiler defi nes the fol-
lowing extended keywords for declaring variables that are an explicit number
of bits wide: __int8, __int16, __int32, and __int64.

SIMD Types

The CPUs on many modern computers and game consoles have a special-
ized type of arithmetic logic unit (ALU) referred to as a vector processor or
vector unit. A vector processor supports a form of parallel processing known
as single instruction, multiple data (SIMD), in which a mathematical operation

3.2. Data, Code, and Memory in C/C++

104 3. Fundamentals of Software Engineering for Games

is performed on multiple quantities in parallel, using a single machine in-
struction. In order to be processed by the vector unit, two or more quanti-
ties are packed into a 64- or 128-bit CPU register. In game programming,
the most commonly used SIMD register format packs four 32-bit IEEE-754
fl oating-point quantities into a 128-bit SIMD register. This format allows us to
perform calculations such as vector dot products and matrix multiplications
much more effi ciently than would be possible with a SISD (single instruction,
single data) ALU.

Each microprocessor has a diff erent name for its SIMD instruction set,
and the compilers that target those microprocessors use a custom syntax to
declare SIMD variables. For example, on a Pentium class CPU, the SIMD in-
struction set is known as SSE (streaming SIMD extensions), and the Microsoft
Visual Studio compiler provides the built-in data type __m128 to represent a
four-fl oat SIMD quantity. The PowerPC class of CPUs used on the PLAYSTA-
TION 3 and Xbox 360 calls its SIMD instruction set Altivec, and the Gnu C++
compiler uses the syntax vector float to declare a packed four-fl oat SIMD
variable. We’ll discuss how SIMD programming works in more detail in Sec-
tion 4.7.

Portable Sized Types

Most other compilers have their own “sized” data types, with similar seman-
tics but slightly diff erent syntax. Because of these diff erences between compil-
ers, most game engines achieve source code portability by defi ning their own
custom atomic data types. For example, at Naughty Dog we use the following
atomic types:

 F32 is a 32-bit IEEE-754 fl oating-point value.

 U8, I8, U16, I16, U32, I32, U64, and I64 are unsigned and signed 8-,
16-, 32-, and 64-bit integers, respectively.

 U32F and I32F are “fast” unsigned and signed 32-bit values, respec-
tively. Each of these data types acts as though it contains a 32-bit value,
but it actually occupies 64 bits in memory. This permits the PS3’s cen-
tral PowerPC-based processor (called the PPU) to read and write these
variables directly into its 64-bit registers, providing a signifi cant speed
boost over reading and writing 32-bit variables.

 VF32 represents a packed four-fl oat SIMD value.

OGRE ’s Atomic Data Types

OGRE defi nes a number of atomic types of its own. Ogre::uint8, Ogre::
uint16 and Ogre::uint32 are the basic unsigned sized integral types.

105

Ogre ::Real defi nes a real fl oating-point value. It is usually defi ned to
be 32 bits wide (equivalent to a float), but it can be redefi ned globally to be
64 bits wide (like a double) by defi ning the preprocessor macro OGRE_DOU-
BLE_PRECISION to 1. This ability to change the meaning of Ogre::Real is
generally only used if one’s game has a particular requirement for double-
precision math, which is rare. Graphics chips (GPUs) always perform their
math with 32-bit or 16-bit fl oats, the CPU/FPU is also usually faster when
working in single-precision, and SIMD vector instructions operate on 128-bit
registers that contain four 32-bit fl oats each. Hence most games tend to stick
to single-precision fl oating-point math.

The data types Ogre ::uchar, Ogre::ushort, Ogre::uint and
Ogre::ulong are just shorthand notations for C/C++’s unsigned char, un-
signed short, and unsigned long, respectively. As such, they are no more
or less useful than their native C/C++ counterparts.

The types Ogre ::Radian and Ogre::Degree are particularly interest-
ing. These classes are wrappers around a simple Ogre::Real value. The pri-
mary role of these types is to permit the angular units of hard-coded literal
constants to be documented and to provide automatic conversion between
the two unit systems. In addition, the type Ogre::Angle represents an angle
in the current “default” angle unit. The programmer can defi ne whether the
default will be radians or degrees when the OGRE application fi rst starts
up.

Perhaps surprisingly, OGRE does not provide a number of sized atomic
data types that are commonplace in other game engines. For example, it de-
fi nes no signed 8-, 16-, or 64-bit integral types. If you are writing a game en-
gine on top of OGRE, you will probably fi nd yourself defi ning these types
manually at some point.

3.2.1.6. Multi-Byte Values and Endianness

Values that are larger than eight bits (one byte) wide are called multi-byte quan-
tities. They’re commonplace on any soft ware project that makes use of integers
and fl oating-point values that are 16 bits or wider. For example, the integer
value 4660 = 0x1234 is represented by the two bytes 0x12 and 0x34. We call
0x12 the most signifi cant byte (MSB) and 0x34 the least signifi cant byte (LSB).
In a 32-bit value, such as 0xABCD1234, the MSB is 0xAB and the LSB is 0x34.
The same concepts apply to 64-bit integers and to 32- and 64-bit fl oating-point
values as well.

Multi-byte integers can be stored into memory in one of two ways, and
diff erent microprocessors may diff er in their choice of storage method (see
Figure 3.6).

3.2. Data, Code, and Memory in C/C++

106 3. Fundamentals of Software Engineering for Games

 Litt le-endian. If a microprocessor stores the least signifi cant byte (LSB) of
a multi-byte value at a lower memory address than the most signifi cant
byte (MSB), we say that the processor is litt le-endian. On a litt le-endian
machine, the number 0xABCD1234 would be stored in memory using
the consecutive bytes 0x34, 0x12, 0xCD, 0xAB.

 Big-endian. If a microprocessor stores the most signifi cant byte (MSB) of
a multi-byte value at a lower memory address than the least signifi cant
byte (LSB), we say that the processor is big-endian. On a big-endian ma-
chine, the number 0xABCD1234 would be stored in memory using the
bytes 0xAB, 0xCD, 0x12, 0x34.

Most programmers don’t need to think much about endianness. How-
ever, when you’re a game programmer, endianness can become a bit of a thorn
in your side. This is because games are usually developed on a PC or Linux ma-
chine running an Intel Pentium processor (which is litt le-endian), but run on
a console such as the Wii, Xbox 360, or PLAYSTATION 3—all three of which
utilize a variant of the PowerPC processor (which can be confi gured to use
either endianness, but is big-endian by default). Now imagine what happens
when you generate a data fi le for consumption by your game engine on an
Intel processor and then try to load that data fi le into your engine running on
a PowerPC processor. Any multi-byte value that you wrote out into that data
fi le will be stored in litt le-endian format. But when the game engine reads the
fi le, it expects all of its data to be in big-endian format. The result? You’ll write
0xABCD1234, but you’ll read 0x3412CDAB, and that’s clearly not what you
intended!

There are at least two solutions to this problem.

1. You could write all your data fi les as text and store all multi-byte num-
bers as sequences of decimal digits, one character (one byte) per digit.
This would be an ineffi cient use of disk space, but it would work.

U32 value = 0xABCD1234;
U8* pBytes = (U8*)&value;

Big-endian

0xAB

0xCD

pBytes + 0x0

0x12

0x34

pBytes + 0x1

pBytes + 0x2

pBytes + 0x3

Little-endian

0x34

0x12

0xCD

0xAB

pBytes + 0x0

pBytes + 0x1

pBytes + 0x2

pBytes + 0x3

Figure 3.6. Big- and little-endian representations of the value 0xABCD1234.

107

2. You can have your tools endian-swap the data prior to writing it into a
binary data fi le. In eff ect, you make sure that the data fi le uses the endi-
anness of the target microprocessor (the game console), even if the tools
are running on a machine that uses the opposite endianness.

Integer Endian-Swapping

 Endian-swapping an integer is not conceptually diffi cult. You simply start at
the most signifi cant byte of the value and swap it with the least signifi cant
byte; you continue this process until you reach the half-way point in the value.
For example, 0xA7891023 would become 0x231089A7.

The only tricky part is knowing which bytes to swap. Let’s say you’re writ-
ing the contents of a C struct or C++ class from memory out to a fi le. To
properly endian-swap this data, you need to keep track of the locations and
sizes of each data member in the struct and swap each one appropriately
based on its size. For example, the structure

struct Example
{
 U32 m_a;
 U16 m_b;
 U32 m_c;
};

might be writt en out to a data fi le as follows:

void writeExampleStruct(Example& ex, Stream& stream)
{
 stream.writeU32(swapU32(ex.m_a));
 stream.writeU16(swapU16(ex.m_b));
 stream.writeU32(swapU32(ex.m_c));
}

and the swap functions might be defi ned like this:

inline U16 swapU16(U16 value)
{
 return ((value & 0x00FF) << 8)
 | ((value & 0xFF00) >> 8);
}

inline U32 swapU32(U32 value)
{

 return ((value & 0x000000FF) << 24)
 | ((value & 0x0000FF00) << 8)
 | ((value & 0x00FF0000) >> 8)
 | ((value & 0xFF000000) >> 24);
}

3.2. Data, Code, and Memory in C/C++

108 3. Fundamentals of Software Engineering for Games

You cannot simply cast the Example object into an array of bytes and
blindly swap the bytes using a single general-purpose function. We need to
know both which data members to swap and how wide each member is; and each
data member must be swapped individually.

Floating-Point Endian-Swapping

Let’s take a brief look at how fl oating-point endian-swapping diff ers from in-
teger endian-swapping. As we’ve seen, an IEEE-754 fl oating-point value has
a detailed internal structure involving some bits for the mantissa, some bits
for the exponent, and a sign bit. However, you can endian-swap it just as if it
were an integer, because bytes are bytes. You can reinterpret fl oats as integers
by using C++’s reinterpret_cast operator on a pointer to the fl oat; this is
known as type punning. But punning can lead to optimization bugs when strict
aliasing is enabled. (See htt p://cocoawithlove.com/2008/04/using-pointers-to-
recast-in-c-is-bad.html for an excellent description of this problem.) One con-
venient approach is to use a union, as follows:

union U32F32
{
 U32 m_asU32;
 F32 m_asF32;
};

inline F32 swapF32(F32 value)
{
 U32F32 u;
 u.m_asF32 = value;

 // endian-swap as integer
 u.m_asU32 = swapU32(u.m_asU32);

 return u.m_asF32;
}

3.2.2. Declarations, Defi nitions, and Linkage

3.2.2.1. Translation Units Revisited

As we saw in Chapter 2, a C or C++ program is comprised of translation units.
The compiler translates one .cpp fi le at a time, and for each one it generates
an output fi le called an object fi le (.o or .obj). A .cpp fi le is the smallest unit of
translation operated on by the compiler; hence, the name “ translation unit.”
An object fi le contains not only the compiled machine code for all of the func-
tions defi ned in the .cpp fi le, but also all of its global and static variables. In ad-
dition, an object fi le may contain unresolved references to functions and global
variables defi ned in other .cpp fi les.

109 3.2. Data, Code, and Memory in C/C++

???
Unresolved Reference

???

Multiply-Defined Symbol

???

foo.cpp

U32 gGlobalA ;

U32 gGlobalB ;

void f ()
{
 // ...
 gGlobalC = 5.3f;
 gGlobalD = -2;
 // ...
}

extern U 32 gGlobalC ;

bar.cpp

F32 gGlobalC ;

void g ()
{
 // ...
 U32 a = gGlobalA ;
 // ...
 f();
 // ...
 gGlobalB = 0;
}

extern U 32 gGlobalA ;
extern U 32 gGlobalB ;
extern void f ();

spam.cpp

U32 gGlobalA ;

void h()
{
 // ...
}

Figure 3.9. The two most common linker errors.

foo.cpp

U32 gGlobalA ;

U32 gGlobalB ;

void f()
{
 // ...
 gGlobalC = 5.3f;
 // ...
}

extern U 32 gGlobalC ;

bar.cpp

F32 gGlobalC ;

void g ()
{
 // ...
 U32 a = gGlobalA ;
 // ...
 f();
 // ...
 gGlobalB = 0;
}

extern U 32 gGlobalA ;
extern U 32 gGlobalB ;
extern void f ();

Figure 3.7. Unresolved external references in two translation units.

foo.cpp

U32 gGlobalA ;

U32 gGlobalB ;

void f ()
{
 // ...
 gGlobalC = 5.3f;
 // ...
}

extern U 32 gGlobalC ;

bar.cpp

F32 gGlobalC ;

void g()
{
 // ...
 U32 a = gGlobalA ;
 // ...
 f();
 // ...
 gGlobalB = 0;
}

extern U 32 gGlobalA ;
extern U 32 gGlobalB ;
extern void f ();

Figure 3.8. Fully resolved external references after successful linking.

110 3. Fundamentals of Software Engineering for Games

The compiler only operates on one translation unit at a time, so whenever
it encounters a reference to an external global variable or function, it must
“go on faith” and assume that the entity in question really exists, as shown
in Figure 3.7. It is the linker’s job to combine all of the object fi les into a fi nal
executable image. In doing so, the linker reads all of the object fi les and at-
tempts to resolve all of the unresolved cross-references between them. If it is
successful, an executable image is generated containing all of the functions,
global variables, and static variables, with all cross-translation-unit references
properly resolved. This is depicted in Figure 3.8.

The linker’s primary job is to resolve external references, and in this ca-
pacity it can generate only two kinds of errors:

1. The target of an extern reference might not be found, in which case the
linker generates an “unresolved symbol” error.

2. The linker might fi nd more than one variable or function with the same
name, in which case it generates a “multiply defi ned symbol” error.

These two situations are shown in Figure 3.9.

3.2.2.2. Declaration versus Defi nition

In the C and C++ languages, variables and functions must be declared and de-
fi ned before they can be used. It is important to understand the diff erence be-
tween a declaration and a defi nition in C and C++.

 A declaration is a description of a data object or function. It provides the
compiler with the name of the entity and its data type or function signature
(i.e., return type and argument type(s)).

 A defi nition, on the other hand, describes a unique region of memory in
the program. This memory might contain a variable, an instance of a
struct or class, or the machine code of a function.

In other words, a declaration is a reference to an entity, while a defi nition is the
entity itself. A defi nition is always a declaration, but the reverse is not always
the case—it is possible to write a pure declaration in C and C++ that is not a
defi nition.

Functions are defi ned by writing the body of the function immediately af-
ter the signature, enclosed in curly braces:

foo.cpp

// definition of the max() function
int max(int a, int b)
{

111

 return (a > b) ? a : b;
}

// definition of the min() function
int min(int a, int b)
{
 return (a <= b) ? a : b;
}

A pure declaration can be provided for a function so that it can be used in
other translation units (or later in the same translation unit). This is done by
writing a function signature followed by a semicolon, with an optional prefi x
of extern:

foo.h

extern int max(int a, int b); // a function declaration

int min(int a, int b); // also a declaration (the
 // ‘extern’ is optional/
 // assumed)

Variables and instances of classes and structs are defi ned by writing the
data type followed by the name of the variable or instance, and an optional
array specifi er in square brackets:

foo.cpp

// All of these are variable definitions:
U32 gGlobalInteger = 5;
F32 gGlobalFloatArray[16];
MyClass gGlobalInstance;

A global variable defi ned in one translation unit can optionally be declared for
use in other translation units by using the extern keyword:

foo.h

// These are all pure declarations:
extern U32 gGlobalInteger;
extern F32 gGlobalFloatArray[16];
extern MyClass gGlobalInstance;

Multiplicity of Declarations and Defi nitions

Not surprisingly, any particular data object or function in a C/C++ program
can have multiple identical declarations, but each can have only one defi ni-
tion. If two or more identical defi nitions exist in a single translation unit,
the compiler will notice that multiple entities have the same name and
fl ag an error. If two or more identical defi nitions exist in diff erent transla-

3.2. Data, Code, and Memory in C/C++

112 3. Fundamentals of Software Engineering for Games

tion units, the compiler will not be able to identify the problem, because
it operates on one translation unit at a time. But in this case, the linker
will give us a “multiply defi ned symbol” error when it tries to resolve the
cross-references.

Defi nitions in Header Files and Inlining

It is usually dangerous to place defi nitions in header fi les. The reason for this
should be prett y obvious: If a header fi le containing a defi nition is #included
into more than one .cpp fi le, it’s a sure-fi re way of generating a “multiply de-
fi ned symbol” linker error.

 Inline function defi nitions are an exception to this rule, because each in-
vocation of an inline function gives rise to a brand new copy of that function’s
machine code, embedded directly into the calling function. In fact, inline func-
tion defi nitions must be placed in header fi les if they are to be used in more
than one translation unit. Note that it is not suffi cient to tag a function declara-
tion with the inline keyword in a .h fi le and then place the body of that func-
tion in a .cpp fi le. The compiler must be able to “see” the body of the function
in order to inline it. For example:

foo.h

// This function definition will be inlined properly.
inline int max(int a, int b)
{
 return (a > b) ? a : b;

}

// This declaration cannot be inlined because the
// compiler cannot “see” the body of the function.
inline int min(int a, int b);

foo.cpp

// The body of min() is effectively “hidden” from the
// compiler, and so it can ONLY be inlined within
// foo.cpp.
int min(int a, int b)
{
 return (a <= b) ? a : b;
}

The inline keyword is really just a hint to the compiler. It does a cost/
benefi t analysis of each inline function, weighing the size of the function’s
code versus the potential performance benefi ts of inling it, and the compiler
gets the fi nal say as to whether the function will really be inlined or not. Some
compilers provide syntax like __forceinline, allowing the programmer

113

to bypass the compiler’s cost/benefi t analysis and control function inlining
directly.

3.2.2.3. Linkage

Every defi nition in C and C++ has a property known as linkage. A defi nition
with external linkage is visible to and can be referenced by translation units
other than the one in which it appears. A defi nition with internal linkage can
only be “seen” inside the translation unit in which it appears and thus cannot
be referenced by other translation units. We call this property linkage because
it dictates whether or not the linker is permitt ed to cross-reference the entity
in question. So, in a sense, linkage is the translation unit’s equivalent of the
 public: and private: keywords in C++ class defi nitions.

By default, defi nitions have external linkage. The static keyword is
used to change a defi nition’s linkage to internal. Note that two or more identi-
cal static defi nitions in two or more diff erent .cpp fi les are considered to be
distinct entities by the linker (just as if they had been given diff erent names),
so they will not generate a “multiply defi ned symbol” error. Here are some
examples:

foo.cpp

// This variable can be used by other .cpp files
// (external linkage).
U32 gExternalVariable;

// This variable is only usable within foo.cpp (internal
// linkage).
static U32 gInternalVariable;

// This function can be called from other .cpp files
// (external linkage).
void externalFunction()
{
 // ...
}

// This function can only be called from within foo.cpp
// (internal linkage).
static void internalFunction()
{
 // ...
}

bar.cpp

// This declaration grants access to foo.cpp’s variable.
extern U32 gExternalVariable;

3.2. Data, Code, and Memory in C/C++

114 3. Fundamentals of Software Engineering for Games

// This ‘gInternalVariable’ is distinct from the one
// defined in foo.cpp – no error. We could just as
// well have named it gInternalVariableForBarCpp – the
// net effect is the same.
static U32 gInternalVariable;

// This function is distinct from foo.cpp’s
// version – no error. It acts as if we had named it
// internalFunctionForBarCpp().
static void internalFunction()
{
 // ...
}

// ERROR – multiply defined symbol!
void externalFunction()
{
 // ...
}

Technically speaking, declarations don’t have a linkage property at all, be-
cause they do not allocate any storage in the executable image; therefore, there
is no question as to whether or not the linker should be permitt ed to cross-
reference that storage. A declaration is merely a reference to an entity defi ned
elsewhere. However, it is sometimes convenient to speak about declarations
as having internal linkage, because a declaration only applies to the transla-
tion unit in which it appears. If we allow ourselves to loosen our terminology
in this manner, then declarations always have internal linkage—there is no
way to cross-reference a single declaration in multiple .cpp fi les. (If we put a
declaration in a header fi le, then multiple .cpp fi les can “see” that declaration,
but they are in eff ect each gett ing a distinct copy of the declaration, and each
copy has internal linkage within that translation unit.)

This leads us to the real reason why inline function defi nitions are permit-
ted in header fi les: It is because inline functions have internal linkage by de-
fault, just as if they had been declared static. If multiple .cpp fi les #include
a header containing an inline function defi nition, each translation unit gets a
private copy of that function’s body, and no “multiply defi ned symbol” errors
are generated. The linker sees each copy as a distinct entity.

3.2.3. C/C++ Memory Layout

A program writt en in C or C++ stores its data in a number of diff erent places in
memory. In order to understand how storage is allocated and how the various

115

types of C/C++ variables work, we need to understand the memory layout of
a C/C++ program.

3.2.3.1. Executable Image

When a C/C++ program is built, the linker creates an executable fi le. Most UN-
IX-like operating system s, including many game consoles, employ a popular
executable fi le format called the executable and linking format (ELF). Executable
fi les on those systems therefore have an .elf extension. The Windows execut-
able format is similar to the ELF format; executables under Windows have
an .exe extension. Whatever its format, the executable fi le always contains a
partial image of the program as it will exist in memory when it runs. I say a
“partial” image because the program generally allocates memory at runtime
in addition to the memory laid out in its executable image.

The executable image is divided into contiguous blocks called segments
or sections. Every operating system lays things out a litt le diff erently, and the
layout may also diff er slightly from executable to executable on the same op-
erating system. But the image is usually comprised of at least the following
four segments:

1. Text segment. Sometimes called the code segment, this block contains ex-
ecutable machine code for all functions defi ned by the program.

2. Data segment. This segment contains all initialized global and static vari-
ables. The memory needed for each global variable is laid out exactly
as it will appear when the program is run, and the proper initial values
are all fi lled in. So when the executable fi le is loaded into memory, the
initialized global and static variables are ready to go.

3. BSS segment. “BSS” is an outdated name which stands for “block started
by symbol.” This segment contains all of the uninitialized global and stat-
ic variables defi ned by the program. The C and C++ languages explicitly
defi ne the initial value of any uninitialized global or static variable to be
zero. But rather than storing a potentially very large block of zeros in
the BSS section, the linker simply stores a count of how many zero bytes
are required to account for all of the uninitialized globals and statics in
the segment. When the executable is loaded into memory, the operating
system reserves the requested number of bytes for the BSS section and
fi lls it with zeros prior to calling the program’s entry point (e.g. main()
or WinMain()).

4. Read-only data segment. Sometimes called the rodata segment, this seg-
ment contains any read-only (constant) global data defi ned by the pro-
gram. For example, all fl oating-point constants (e.g., const float kPi

3.2. Data, Code, and Memory in C/C++

116 3. Fundamentals of Software Engineering for Games

= 3.141592f;) and all global object instances that have been declared
with the const keyword (e.g., const Foo gReadOnlyFoo;) reside in
this segment. Note that integer constants (e.g., const int kMaxMon-
sters = 255;) are oft en used as manifest constants by the compiler,
meaning that they are inserted directly into the machine code wherever
they are used. Such constants occupy storage in the text segment, but
they are not present in the read-only data segment.

Global variables, i.e., variables defi ned at fi le scope outside any function or
class declaration, are stored in either the data or BSS segments, depending on
whether or not they have been initialized. The following global will be stored
in the data segment, because it has been initialized:
foo.cpp

F32 gInitializedGlobal = -2.0f;

and the following global will be allocated and initialized to zero by the operat-
ing system , based on the specifi cations given in the BSS segment, because it
has not been initialized by the programmer:
foo.cpp

F32 gUninitializedGlobal;

We’ve seen that the static keyword can be used to give a global vari-
able or function defi nition internal linkage, meaning that it will be “hidden”
from other translation units. The static keyword can also be used to declare
a global variable within a function. A function-static variable is lexically scoped
to the function in which it is declared (i.e., the variable’s name can only be
“seen” inside the function). It is initialized the fi rst time the function is called
(rather than before main() is called as with fi le-scope statics). But in terms of
memory layout in the executable image, a function-static variable acts identi-
cally to a fi le-static global variable—it is stored in either the data or BSS seg-
ment based on whether or not it has been initialized.

void readHitchhikersGuide(U32 book)
{
 static U32 sBooksInTheTrilogy = 5; // data segment
 static U32 sBooksRead; // BSS segment
 // ...
}

3.2.3.2. Program Stack

When an executable program is loaded into memory and run, the operating
system reserves an area of memory for the program stack. Whenever a function
is called, a contiguous area of stack memory is pushed onto the stack—we call
this block of memory a stack frame. If function a() calls another function b(),

117

a new stack frame for b() is pushed on top of a()’s frame. When b() returns,
its stack frame is popped, and execution continues wherever a() left off .

A stack frame stores three kinds of data:

1. It stores the return address of the calling function, so that execution may
continue in the calling function when the called function returns.

2. The contents of all relevant CPU registers are saved in the stack frame.
This allows the new function to use the registers in any way it sees fi t,
without fear of overwriting data needed by the calling function. Upon
return to the calling function, the state of the registers is restored so that
execution of the calling function may resume. The return value of the
called function, if any, is usually left in a specifi c register so that the call-
ing function can retrieve it, but the other registers are restored to their
original values.

3. The stack frame also contains all local variables declared by the func-
tion; these are also known as automatic variables. This allows each dis-
tinct function invocation to maintain its own private copy of every local
variable, even when a function calls itself recursively. (In practice, some
local variables are actually allocated to CPU registers rather than being
stored in the stack frame but, for the most part, such variables operate as
if they were allocated within the function’s stack frame.) For example:

3.2. Data, Code, and Memory in C/C++

a()’s
stack
frame

saved CPU registers

return address

aLocalsA1[5]

localA2

a()’s
stack
frame

saved CPU registers

return address

aLocalsA1[5]

localA2

a()’s
stack
frame

saved CPU registers

return address

aLocalsA1[5]

localA2

b()’s
stack
frame

saved CPU registers

return address

localB1

localB2

b()’s
stack
frame

saved CPU registers

return address

localB1

localB2

saved CPU registers

return address

localC1

c()’s
stack
frame

function a() is called function b() is called function c() is called

Figure 3.10. Stack frames.

118 3. Fundamentals of Software Engineering for Games

 void someFunction()
 {
 U32 anInteger;
 // ...
 }

Pushing and popping stack frames is usually implemented by adjusting
the value of a single register in the CPU, known as the stack pointer. Figure
3.10 illustrates what happens when the functions shown below are executed.

void c()
{
 U32 localC1;
 // ...
}

F32 b()
{
 F32 localB1;
 I32 localB2;

 // ...

 c(); // call function c()

 // ...

 return localB1;
}

void a()
{
 U32 aLocalsA1[5];

 // ...

 F32 localA2 = b(); // call function b()

 // ...
}

When a function containing automatic variables returns, its stack frame
is abandoned and all automatic variables in the function should be treated as
if they no longer exist. Technically, the memory occupied by those variables
is still there in the abandoned stack frame—but that memory will very likely
be overwritt en as soon as another function is called. A common error involves
returning the address of a local variable, like this:

119

U32* getMeaningOfLife()
{
 U32 anInteger = 42;
 return &anInteger;
}

You might get away with this if you use the returned pointer immediately and
don’t call any other functions in the interim. But more oft en than not, this kind
of code will crash—in ways that can be diffi cult to debug.

3.2.3.3. Dynamic Allocation Heap

Thus far, we’ve seen that a program’s data can be stored as global or static
variables or as local variables. The globals and statics are allocated within the
executable image, as defi ned by the data and BSS segments of the executable
fi le. The locals are allocated on the program stack. Both of these kinds of stor-
age are statically defi ned, meaning that the size and layout of the memory
is known when the program is compiled and linked. However, a program’s
memory requirements are oft en not fully known at compile time. A program
usually needs to allocate additional memory dynamically.

To allow for dynamic allocation, the operating system maintains a block
of memory that can be allocated by a running program by calling malloc()
and later returned to the pool for use by other programs by calling free().
This memory block is known as heap memory, or the free store. When we al-
locate memory dynamically, we sometimes say that this memory resides on
the heap.

In C++, the global new and delete operators are used to allocate and free
memory to and from the heap. Be wary, however—individual classes may
overload these operators to allocate memory in custom ways, and even the
global new and delete operators can be overloaded, so you cannot simply as-
sume that new is always allocating from the heap.

We will discuss dynamic memory allocation in more depth in Chap-
ter 6. For additional information, see htt p://en.wikipedia.org/wiki/Dynamic_
memory_allocation.

3.2.4. Member Variables

C structs and C++ classes allow variables to be grouped into logical units.
It’s important to remember that a class or struct declaration allocates no
memory. It is merely a description of the layout of the data—a cookie cutt er
which can be used to stamp out instances of that struct or class later on.
For example:

3.2. Data, Code, and Memory in C/C++

120 3. Fundamentals of Software Engineering for Games

struct Foo // struct declaration
{
 U32 mUnsignedValue;
 F32 mFloatValue;
 bool mBooleanValue;
};

Once a struct or class has been declared, it can be allocated (defi ned) in
any of the ways that an atomic data type can be allocated, for example,

 as an automatic variable, on the program stack;
 void someFunction()
 {
 Foo localFoo;
 // ...
 }

 as a global, fi le-static or function-static;
 Foo gFoo;
 static Foo sFoo;

 void someFunction()
 {
 static Foo sLocalFoo;
 // ...
 }

 dynamically allocated from the heap. In this case, the pointer or refer-
ence variable used to hold the address of the data can itself be allocated
as an automatic, global, static, or even dynamically.

 Foo* gpFoo = NULL; // global pointer to a Foo

 void someFunction()
 {
 // allocate a Foo instance from the heap
 gpFoo = new Foo;

 // ...

 // allocate another Foo, assign to local
 // pointer
 Foo* pAnotherFoo = new Foo;

 // ...

 // allocate a POINTER to a Foo from the heap
 Foo** ppFoo = new Foo*;
 (*ppFoo) = pAnotherFoo;
 }

121

3.2.4.1. Class-Static Members

As we’ve seen, the static keyword has many diff erent meanings depending
on context:

 When used at fi le scope, static means “restrict the visibility of this
variable or function so it can only be seen inside this .cpp fi le.”

 When used at function scope, static means “this variable is a global,
not an automatic, but it can only be seen inside this function.”

 When used inside a struct or class declaration, static means “this
variable is not a regular member variable, but instead acts just like a
global.”

Notice that when static is used inside a class declaration, it does not
control the visibility of the variable (as it does when used at fi le scope)—
rather, it diff erentiates between regular per-instance member variables
and per-class variables that act like globals. The visibility of a class-static
variable is determined by the use of public:, protected: or private:
keywords in the class declaration. Class-static variables are automatically
included within the namespace of the class or struct in which they are
declared. So the name of the class or struct must be used to disambigu-
ate the variable whenever it is used outside that class or struct (e.g.,
Foo::sVarName).

Like an extern declaration for a regular global variable, the declaration
of a class-static variable within a class allocates no memory. The memory for
the class-static variable must be defi ned in a .cpp fi le. For example:

foo.h

class Foo
{
public:
 static F32 sClassStatic; // allocates no
 // memory!
};

foo.cpp

F32 Foo::sClassStatic = -1.0f; // define memory and
 // init

3.2.5. Object Layout in Memory

It’s useful to be able to visualize the memory layout of your classes and
structs. This is usually prett y straightforward—we can simply draw a box
for the struct or class, with horizontal lines separating data members. An

3.2. Data, Code, and Memory in C/C++

122 3. Fundamentals of Software Engineering for Games

example of such a diagram for the struct Foo listed below is shown in Fig-
ure 3.11.

struct Foo
{
 U32 mUnsignedValue;
 F32 mFloatValue;
 I32 mSignedValue;
};

The sizes of the data members are important and should be represented
in your diagrams. This is easily done by using the width of each data member
to indicate its size in bits—i.e., a 32-bit integer should be roughly four times
the width of an 8-bit integer (see Figure 3.12).

struct Bar
{
 U32 mUnsignedValue;
 F32 mFloatValue;
 bool mBooleanValue; // diagram assumes this is 8 bits

};

3.2.5.1. Alignment and Packing

As we start to think more carefully about the layout of our structs and classes
in memory, we may start to wonder what happens when small data members
are interspersed with larger members. For example:

struct InefficientPacking
{
 U32 mU1; // 32 bits
 F32 mF2; // 32 bits
 U8 mB3; // 8 bits
 I32 mI4; // 32 bits
 bool mB5; // 8 bits
 char* mP6; // 32 bits
};

You might imagine that the compiler simply packs the data members into
memory as tightly as it can. However, this is not usually the case. Instead,
the compiler will typically leave “holes” in the layout, as depicted in Fig-
ure 3.13. (Some compilers can be requested not to leave these holes by us-
ing a preprocessor directive like #pragma pack , or via command-line op-
tions; but the default behavior is to space out the members as shown in Fig-
ure 3.13.)

mU1

mF2

mB3

mI4

mB5

mP6

+0x0

+0x4

+0x8

+0xC

+0x10

+0x14

Figure 3.13. Ineffi cient
struct packing due to
mixed data member
sizes.

mUnsignedValue

mFloatValue

mSignedValue

+0x0

+0x4

+0x8

Figure 3.11. Memory
layout of a simple
struct.

mUnsignedValue

mFloatValue

mBooleanValue

+0x0

+0x4

+0x8

Figure 3.12. A memory
layout using width to
indicate member sizes.

123

Why does the compiler leave these “holes?” The reason lies in the fact that
every data type has a natural alignment which must be respected in order to
permit the CPU to read and write memory eff ectively. The alignment of a data
object refers to whether its address in memory is a multiple of its size (which is
generally a power of two):

 An object with one-byte alignment resides at any memory address.
 An object with two-byte alignment resides only at even addresses (i.e.,

addresses whose least signifi cant nibble is 0x0, 0x2, 0x4, 0x8, 0xA, 0xC,
or 0xE).

 An object with four-byte alignment resides only at addresses that are a
multiple of four (i.e., addresses whose least signifi cant nibble is 0x0, 0x4,
0x8, or 0xC).

 A 16-byte aligned object resides only at addresses that are a multiple of
16 (i.e., addresses whose least signifi cant nibble is 0x0).

Alignment is important because many modern processors can actually
only read and write properly aligned blocks of data. For example, if a program
requests that a 32-bit (four-byte) integer be read from address 0x6A341174, the
memory controller will load the data happily because the address is four-byte
aligned (in this case, its least signifi cant nibble is 0x4). However, if a request is
made to load a 32-bit integer from address 0x6A341173, the memory control-
ler now has to read two four-byte blocks: the one at 0x6A341170 and the one
at 0x6A341174. It must then mask and shift the two parts of the 32-bit integer
and logically OR them together into the destination register on the CPU. This
is shown in Figure 3.14.

Some microprocessors don’t even go this far. If you request a read or write
of unaligned data, you might just get garbage. Or your program might just
crash altogether! (The PlayStation 2 is a notable example of this kind of intol-
erance for unaligned data.)

Diff erent data types have diff erent alignment requirements. A good rule
of thumb is that a data type should be aligned to a boundary equal to the
width of the data type in bytes. For example, 32-bit values generally have a
four-byte alignment requirement, 16-bit values should be two-byte aligned,
and 8-bit values can be stored at any address (one-byte aligned). On CPUs that
support SIMD vector math, the SIMD registers each contain four 32-bit fl oats,
for a total of 128 bits or 16 bytes. And as you would guess, a four-fl oat SIMD
vector typically has a 16-byte alignment requirement.

This brings us back to those “holes” in the layout of struct Ineffi-
cientPacking shown in Figure 3.13. When smaller data types like 8-bit bools
are interspersed with larger types like 32-bit integers or floats in a structure

3.2. Data, Code, and Memory in C/C++

124 3. Fundamentals of Software Engineering for Games

or class, the compiler introduces padding (holes) in order to ensure that every-
thing is properly aligned. It’s a good idea to think about alignment and pack-
ing when declaring your data structures. By simply rearranging the members
of struct InefficientPacking from the example above, we can eliminate
some of the wasted padding space, as shown below and in Figure 3.15:

 struct MoreEfficientPacking
 {
 U32 mU1; // 32 bits (4-byte aligned)
 F32 mF2; // 32 bits (4-byte aligned)
 I32 mI4; // 32 bits (4-byte aligned)
 char* mP6; // 32 bits (4-byte aligned)
 U8 mB3; // 8 bits (1-byte aligned)
 bool mB5; // 8 bits (1-byte aligned)
 };

You’ll notice in Figure 3.15 that the size of the structure as a whole is
now 20 bytes, not 18 bytes as we might expect, because it has been padded
by two bytes at the end. This padding is added by the compiler to ensure
proper alignment of the structure in an array context. That is, if an array of
these structs is defi ned and the fi rst element of the array is aligned, then the
padding at the end guarantees that all subsequent elements will also be aligned
properly.

The alignment of a structure as a whole is equal to the largest alignment
requirement among its members. In the example above, the largest mem-
ber alignment is four-byte, so the structure as a whole should be four-byte

CPU

alignedValue

0x6A341170

0x6A341174

0x6A341178

register

-alignedValue

0x6A341170

0x6A341174

0x6A341178

un-

-alignedValue

un-shift

shift

-alignedValueun-

Aligned read from
0x6A341174

Unaligned read from
0x6A341173

CPU

register

Figure 3.14. Aligned and unaligned reads of a 32-bit integer.

(pad)

mU1

mF2

mB3

mI4

mB5

mP6

+0x0

+0x4

+0x8

+0xC

+0x10

Figure 3.15. More ef-
fi cient packing by
grouping small mem-
bers together.

125

aligned. I usually like to add explicit padding to the end of my structs, to make
the wasted space visible and explicit, like this:

 struct BestPacking
 {
 U32 mU1; // 32 bits (4-byte aligned)
 F32 mF2; // 32 bits (4-byte aligned)
 I32 mI4; // 32 bits (4-byte aligned)
 char* mP6; // 32 bits (4-byte aligned)
 U8 mB3; // 8 bits (1-byte aligned)
 bool mB5; // 8 bits (1-byte aligned)

U8 _pad[2]; // explicit padding
 };

3.2.5.2. Memory Layout of C++ Classes

Two things make C++ classes a litt le diff erent from C structures in terms of
memory layout: inheritance and virtual functions.

When class B inherits from class A, B’s data members simply appear im-
mediately aft er A’s in memory, as shown in Figure 3.16. Each new derived
class simply tacks its data members on at the end, although alignment re-
quirements may introduce padding between the classes. (Multiple inheritance
does some whacky things, like including multiple copies of a single base class
in the memory layout of a derived class. We won’t cover the details here, be-
cause game programmers usually prefer to avoid multiple inheritance alto-
gether anyway.)

If a class contains or inherits one or more virtual functions, then four ad-
ditional bytes (or however many bytes a pointer occupies on the target hard-
ware) are added to the class layout, typically at the very beginning of the
class’ layout. These four bytes are collectively called the virtual table pointer
or vpointer, because they contain a pointer to a data structure known as the
virtual function table or vtable. The vtable for a particular class contains pointers
to all the virtual functions that it declares or inherits. Each concrete class has
its own virtual table, and every instance of that class has a pointer to it, stored
in its vpointer.

The virtual function table is at the heart of polymorphism, because it al-
lows code to be writt en that is ignorant of the specifi c concrete classes it is deal-
ing with. Returning to the ubiquitous example of a Shape base class with de-
rived classes for Circle, Rectangle, and Triangle, let’s imagine that Shape
defi nes a virtual function called Draw(). The derived classes all override
this function, providing distinct implementations named Circle::Draw(),
Rectangle::Draw(), and Triangle::Draw(). The virtual table for any
class derived from Shape will contain an entry for the Draw() function, but
that entry will point to diff erent function implementations, depending on the

3.2. Data, Code, and Memory in C/C++

A

B

+0x0

+sizeof(A)

Figure 3.16. Effect of
inheritance on class
layout.

126 3. Fundamentals of Software Engineering for Games

concrete class. Circle’s vtable will contain a pointer to Circle::Draw(),
while Rectangle’s virtual table will point to Rectangle::Draw(), and Tri-
angle’s vtable will point to Triangle::Draw(). Given an arbitrary point-
er to a Shape (Shape* pShape), the code can simply dereference the vtable
pointer, look up the Draw() function’s entry in the vtable, and call it. The
result will be to call Circle::Draw() when pShape points to an instance
of Circle, Rectangle::Draw() when pShape points to a Rectangle, and
Triangle::Draw() when pShape points to a Triangle.

These ideas are illustrated by the following code excerpt. Notice that the
base class Shape defi nes two virtual functions, SetId() and Draw(), the lat-
ter of which is declared to be pure virtual. (This means that Shape provides
no default implementation of the Draw() function, and derived classes must
override it if they want to be instantiable.) Class Circle derives from Shape,
adds some data members and functions to manage its center and radius, and
overrides the Draw()function; this is depicted in Figure 3.17. Class Triangle
also derives from Shape. It adds an array of Vector3 objects to store its three
vertices and adds some functions to get and set the individual vertices. Class
Triangle overrides Draw() as we’d expect, and for illustrative purposes it
also overrides SetId(). The memory image generated by the Triangle class
is shown in Figure 3.18.

class Shape
{
public:

virtual void SetId(int id) { m_id = id; }
 int GetId() const { return m_id; }

virtual void Draw() = 0; // pure virtual – no impl.

private:
 int m_id;
};

Shape::m_id

Circle::m_center

Circle::m_radius

vtable pointer pointer to SetId ()

pointer to Draw ()

+0x00

+0x04

+0x08

+0x14

pShape1

Instance of Circle Circle’s Virtual Table

Circle::Draw()
{
 // code to draw a Circle
}

Shape::SetId(int id)
{
 m_id = id;
}

Figure 3.17. pShape1 points to an instance of class Circle.

127

class Circle : public Shape
{
public:
 void SetCenter(const Vector3& c) { m_center=c; }
 Vector3 GetCenter() const { return m_center; }

 void SetRadius(float r) { m_radius = r; }
 float GetRadius() const { return m_radius; }

virtual void Draw()
 {
 // code to draw a circle
 }

private:
 Vector3 m_center;
 float m_radius;
};

class Triangle : public Shape
{
public:
 void SetVertex(int i, const Vector3& v);
 Vector3 GetVertex(int i) const { return m_vtx[i]; }

virtual void Draw()
 {
 // code to draw a triangle
 }

virtual void SetId(int id)
 {
 Shape::SetId(id);

Figure 3.18. pShape2 points to an instance of class Triangle.

Shape::m_id

Triangle ::m_vtx[0]

Triangle ::m_vtx[1]

vtable pointer pointer to SetId ()

pointer to Draw ()

+0x00

+0x04

+0x08

+0x14

pShape2

Instance of Triangle Triangle’s Virtual Table

Triangle ::Draw()
{
 // code to draw a Triangle
}

Triangle ::SetId(int id)
{
 Shape ::SetId(id);

 // do additional work
 // specific to Triangles
}

Triangle ::m_vtx[2]+0x20

3.2. Data, Code, and Memory in C/C++

128 3. Fundamentals of Software Engineering for Games

 // do additional work specific to Triangles...
 }

private:
 Vector3 m_vtx[3];
};

// -----------------------------

void main(int, char**)
{
Shape* pShape1 = new Circle;
 Shape* pShape2 = new Triangle;

 // ...

 pShape1->Draw();
 pShape2->Draw();

 // ...
}

3.3. Catching and Handling Errors

There are a number of ways to catch and handle error conditions in a game
engine. As a game programmer, it’s important to understand these diff erent
mechanisms, their pros and cons, and when to use each one.

3.3.1. Types of Errors

In any soft ware project there are two basic kinds of error conditions: user er-
rors and programmer errors. A user error occurs when the user of the program
does something incorrect, such as typing an invalid input, att empting to open
a fi le that does not exist, etc. A programmer error is the result of a bug in the
code itself. Although it may be triggered by something the user has done, the
essence of a programmer error is that the problem could have been avoided if
the programmer had not made a mistake, and the user has a reasonable expec-
tation that the program should have handled the situation gracefully.

Of course, the defi nition of “user” changes depending on context. In the
context of a game project, user errors can be roughly divided into two catego-
ries: errors caused by the person playing the game and errors caused by the
people who are making the game during development. It is important to keep
track of which type of user is aff ected by a particular error and handle the er-
ror appropriately.

129

There’s actually a third kind of user—the other programmers on your
team. (And if you are writing a piece of game middleware soft ware, like
Havok or OpenGL, this third category extends to other programmers all over
the world who are using your library.) This is where the line between user er-
rors and programmer errors gets blurry. Let’s imagine that programmer A writes
a function f(), and programmer B tries to call it. If B calls f() with invalid
arguments (e.g., a NULL pointer, or an out-of-range array index), then this
could be seen as a user error by programmer A, but it would be a program-
mer error from B’s point of view. (Of course, one can also argue that program-
mer A should have anticipated the passing of invalid arguments and should
have handled them gracefully, so the problem really is a programmer error,
on A’s part.) The key thing to remember here is that the line between user and
programmer can shift depending on context—it is rarely a black-and-white
distinction.

3.3.2. Handling Errors

When handling errors, the requirements diff er signifi cantly between the two
types. It is best to handle user errors as gracefully as possible, displaying some
helpful information to the user and then allowing him or her to continue
working—or in the case of a game, to continue playing. Programmer errors,
on the other hand, should not be handled with a graceful “inform and contin-
ue” policy. Instead, it is usually best to halt the program and provide detailed
low-level debugging information, so that a programmer can quickly identify
and fi x the problem. In an ideal world, all programmer errors would be caught
and fi xed before the soft ware ships to the public.

3.3.2.1. Handling Player Errors

When the “user” is the person playing your game, errors should obviously be
handled within the context of gameplay. For example, if the player att empts to
reload a weapon when no ammo is available, an audio cue and/or an anima-
tion can indicate this problem to the player without taking him or her “out of
the game.”

3.3.2.2. Handling Developer Errors

When the “user” is someone who is making the game, such as an artist, ani-
mator or game designer, errors may be caused by an invalid asset of some sort.
For example, an animation might be associated with the wrong skeleton, or a
texture might be the wrong size, or an audio fi le might have been sampled at
an unsupported sample rate. For these kinds of developer errors, there are two
competing camps of thought.

3.3. Catching and Handling Errors

130 3. Fundamentals of Software Engineering for Games

On the one hand, it seems important to prevent bad game assets from
persisting for too long. A game typically contains literally thousands of assets,
and a problem asset might get “lost,” in which case one risks the possibility of
the bad asset surviving all the way into the fi nal shipping game. If one takes
this point of view to an extreme, then the best way to handle bad game assets
is to prevent the entire game from running whenever even a single problem-
atic asset is encountered. This is certainly a strong incentive for the developer
who created the invalid asset to remove or fi x it immediately.

On the other hand, game development is a messy and iterative process,
and generating “perfect” assets the fi rst time around is rare indeed. By this
line of thought, a game engine should be robust to almost any kind of problem
imaginable, so that work can continue even in the face of totally invalid game
asset data. But this too is not ideal, because the game engine would become
bloated with error-catching and error-handling code that won’t be needed
once the development pace sett les down and the game ships. And the prob-
ability of shipping the product with “bad” assets becomes too high.

In my experience, the best approach is to fi nd a middle ground between
these two extremes. When a developer error occurs, I like to make the error
obvious and then allow the team to continue to work in the presence of the
problem. It is extremely costly to prevent all the other developers on the team
from working, just because one developer tried to add an invalid asset to the
game. A game studio pays its employees well, and when multiple team mem-
bers experience downtime, the costs are multiplied by the number of people
who are prevented from working. Of course, we should only handle errors in
this way when it is practical to do so, without spending inordinate amounts of
engineering time, or bloating the code.

As an example, let’s suppose that a particular mesh cannot be loaded. In
my view, it’s best to draw a big red box in the game world at the places that
mesh would have been located, perhaps with a text string hovering over each
one that reads, “Mesh blah-dee-blah failed to load.” This is superior to printing
an easy-to-miss message to an error log. And it’s far bett er than just crashing
the game, because then no one will be able to work until that one mesh refer-
ence has been repaired. Of course, for particularly egregious problems it’s fi ne
to just spew an error message and crash. There’s no silver bullet for all kinds
of problems, and your judgment about what type of error handling approach
to apply to a given situation will improve with experience.

3.3.2.3. Handling Programmer Errors

The best way to detect and handle programmer errors (a.k.a. bugs) is oft en
to embed error-checking code into your source code and arrange for failed

131

error checks to halt the program. Such a mechanism is known as an assertion
system; we’ll investigate assertions in detail in Section 3.3.3.3. Of course, as we
said above, one programmer’s user error is another programmer’s bug; hence,
assertions are not always the right way to handle every programmer error.
Making a judicious choice between an assertion and a more graceful error
handling technique is a skill that one develops over time.

3.3.3. Implementation of Error Detection and Handling

We’ve looked at some philosophical approaches to handling errors. Now let’s
turn our att ention to the choices we have as programmers when it comes to
implementing error detection and handling code.

3.3.3.1. Error Return Codes

A common approach to handling errors is to return some kind of failure code
from the function in which the problem is fi rst detected. This could be a Bool-
ean value indicating success or failure or it could be an “impossible” value,
one that is outside the range of normally returned results. For example, a
function that returns a positive integer or fl oating-point value could return a
negative value to indicate that an error occurred. Even bett er than a Boolean or
an “impossible” return value, the function could be designed to return an enu-
merated value to indicate success or failure. This clearly separates the error
code from the output(s) of the function, and the exact nature of the problem
can be indicated on failure (e.g., enum Error { kSuccess, kAssetNot-
Found, kInvalidRange, ... };).

The calling function should intercept error return codes and act appro-
priately. It might handle the error immediately. Or it might work around the
problem, complete its own execution, and then pass the error code on to what-
ever function called it.

3.3.3.2. Exceptions

Error return codes are a simple and reliable way to communicate and respond
to error conditions. However, error return codes have their drawbacks. Per-
haps the biggest problem with error return codes is that the function that
detects an error may be totally unrelated to the function that is capable of
handling the problem. In the worst-case scenario, a function that is 40 calls
deep in the call stack might detect a problem that can only be handled by
the top-level game loop, or by main(). In this scenario, every one of the 40
functions on the call stack would need to be writt en so that it can pass an
appropriate error code all the way back up to the top-level error-handling
function.

3.3. Catching and Handling Errors

132 3. Fundamentals of Software Engineering for Games

One way to solve this problem is to throw an exception. Structured excep-
tion handling (SEH) is a very powerful feature of C++. It allows the function
that detects a problem to communicate the error to the rest of the code with-
out knowing anything about which function might handle the error. When an
exception is thrown, relevant information about the error is placed into a data
object of the programmer’s choice known as an exception object. The call stack
is then automatically unwound, in search of a calling function that wrapped
its call in a try-catch block. If a try-catch block is found, the exception object
is matched against all possible catch blocks and if a match is found, the cor-
responding catch block’s code is executed. The destructors of any automatic
variables are called as needed during the stack unwinding.

The ability to separate error detection from error handling in such a clean
way is certainly att ractive, and exception handling is an excellent choice for
some soft ware projects. However, SEH adds a lot of overhead to the program.
Every stack frame must be augmented to contain additional information re-
quired by the stack unwinding process. Also, the stack unwind is usually very
slow—on the order of two to three times more expensive than simply return-
ing from the function. Also, if even one function in your program (or a library
that your program links with) uses SEH, your entire program must use SEH.
The compiler can’t know which functions might be above you on the call stack
when you throw an exception.

Therefore, there’s a prett y strong argument for turning off structured ex-
ception handling in your game engine altogether. This is the approach em-
ployed at Naughty Dog and also on most of the projects I’ve worked on at
Electronic Arts and Midway. Console game engines should probably never
use SEH, because of a console’s limited memory and processing bandwidth.
However, a game engine that is intended to be run on a personal computer
might be able to use SEH without any problems.

There are many interesting articles on this topic on the web. Here are links
to a few of them:

 htt p://www.joelonsoft ware.com/items/2003/10/13.html
 htt p://www.nedbatchelder.com/text/exceptions-vs-status.html
 htt p://www.joelonsoft ware.com/items/2003/10/15.html

3.3.3.3. Assertions

An assertion is a line of code that checks an expression. If the expression evalu-
ates to true, nothing happens. But if the expression evaluates to false, the pro-
gram is stopped, a message is printed, and the debugger is invoked if possible.
Steve Maguire provides an in-depth discussion of assertions in his must-read
book, Writing Solid Code [30].

http://www.joelonsoft
http://www.nedbatchelder.com/text/exceptions-vs-status.html
http://www.joelonsoft

133

Assertions check a programmer’s assumptions. They act like land mines
for bugs. They check the code when it is fi rst writt en to ensure that it is func-
tioning properly. They also ensure that the original assumptions continue to
hold for long periods of time, even when the code around them is constantly
changing and evolving. For example, if a programmer changes code that
used to work, but accidentally violates its original assumptions, they’ll hit
the land mine. This immediately informs the programmer of the problem
and permits him or her to rectify the situation with minimum fuss. Without
assertions , bugs have a tendency to “hide out” and manifest themselves later
in ways that are diffi cult and time-consuming to track down. But with as-
sertions embedded in the code, bugs announce themselves the moment they
are introduced—which is usually the best moment to fi x the problem, while
the code changes that caused the problem are fresh in the programmer’s
mind.

Assertions are implemented as a #define macro, which means that the
assertion checks can be stripped out of the code if desired, by simply changing
the #define. The cost of the assertion checks can usually be tolerated during
development, but stripping out the assertions prior to shipping the game can
buy back that litt le bit of crucial performance if necessary.

Assertion Implementation

Assertions are usually implemented via a combination of a #defined macro
that evaluates to an if/else clause, a function that is called when the asser-
tion fails (the expression evaluates to false), and a bit of assembly code that
halts the program and breaks into the debugger when one is att ached. Here’s
a typical implementation:

#if ASSERTIONS_ENABLED
 // define some inline assembly that causes a break
 // into the debugger – this will be different on each
 // target CPU
 #define debugBreak() asm { int 3 }

 // check the expression and fail if it is false
 #define ASSERT(expr) \
 if (expr) { } \
 else \
 { \
 reportAssertionFailure(#expr, \
 __FILE__, \
 __LINE__); \
 debugBreak(); \
 }

3.3. Catching and Handling Errors

134 3. Fundamentals of Software Engineering for Games

#else
 #define ASSERT(expr) // evaluates to nothing
#endif

Let’s break down this defi nition so we can see how it works:

 The outer #if/#else/#endif is used to strip assertions from the
code base. When ASSERTIONS_ENABLED is nonzero, the ASSERT()
macro is defi ned in its fully glory, and all assertion checks in the code
will be included in the program. But when assertions are turned off ,
ASSERT(expr) evaluates to nothing, and all instances of it in the code
are eff ectively removed.

 The debugBreak() macro evaluates to whatever assembly-language
instructions are required in order to cause the program to halt and the
debugger to take charge (if one is connected). This diff ers from CPU to
CPU, but it is usually a single assembly instruction.

 The ASSERT() macro itself is defi ned using a full if/else statement (as
opposed to a lone if). This is done so that the macro can be used in any
context, even within other unbracketed if/else statements.

Here’s an example of what would happen if ASSERT() were defi ned
using a solitary if:

 #define ASSERT(expr) if (!(expr)) debugBreak()

 void f()
 {
 if (a < 5)
 ASSERT(a >= 0);
 else
 doSomething(a);
 }

This expands to the following incorrect code:
 void f()
 {

 if (a < 5)
 if (!(a >= 0))
 debugBreak();
 else // Oops! Bound to the wrong if()!
 doSomething(a);
 }

 The else clause of an ASSERT() macro does two things. It displays
some kind of message to the programmer indicating what went wrong,

135

and then it breaks into the debugger. Notice the use of #expr as the fi rst
argument to the message display function. The pound (#) preprocessor
operator causes the expression expr to be turned into a string, thereby
allowing it to be printed out as part of the assertion failure message.

 Notice also the use of __FILE__ and __LINE__. These compiler-defi ned
macros magically contain the .cpp fi le name and line number of the line
of code on which they appear. By passing them into our message dis-
play function, we can print the exact location of the problem.

I highly recommend the use of assertions in your code. However, it’s im-
portant to be aware of their performance cost. You may want to consider de-
fi ning two kinds of assertion macros. The regular ASSERT() macro can be left
active in all builds, so that errors are easily caught even when not running
in debug mode. A second assertion macro, perhaps called SLOW_ASSERT(),
could be activated only in debug builds. This macro could then be used in
places where the cost of assertion checking is too high to permit inclusion
in release builds. Obviously SLOW_ASSERT() is of lower utility, because it is
stripped out of the version of the game that your testers play every day. But at
least these assertions become active when programmers are debugging their
code.

It’s also extremely important to use assertions properly. They should be
used to catch bugs in the program itself—never to catch user errors. Also, as-
sertions should always cause the entire game to halt when they fail. It’s usu-
ally a bad idea to allow assertions to be skipped by testers, artists, designers,
and other non-engineers. (This is a bit like the boy who cried wolf: if assertions
can be skipped, then they cease to have any signifi cance, rendering them inef-
fective.) In other words, assertions should only be used to catch fatal errors. If
it’s OK to continue past an assertion, then it’s probably bett er to notify the user
of the error in some other way, such as with an on-screen message, or some
ugly bright-orange 3D graphics. For a great discussion on the proper usage of
assertions, see htt p://www.wholesalealgorithms.com/blog9.

3.3. Catching and Handling Errors

http://www.wholesalealgorithms.com/blog9

137

4
3D Math for Games

A game is a mathematical model of a virtual world simulated in real-time on
a computer of some kind. Therefore, mathematics pervades everything we do
in the game industry. Game programmers make use of virtually all branches
of mathematics, from trigonometry to algebra to statistics to calculus. How-
ever, by far the most prevalent kind of mathematics you’ll be doing as a game
programmer is 3D vector and matrix math (i.e., 3D linear algebra).

Even this one branch of mathematics is very broad and very deep, so we
cannot hope to cover it in any great depth in a single chapter. Instead, I will
att empt to provide an overview of the mathematical tools needed by a typical
game programmer. Along the way, I’ll off er some tips and tricks which should
help you keep all of the rather confusing concepts and rules straight in your
head. For an excellent in-depth coverage of 3D math for games, I highly rec-
ommend Eric Lengyel’s book on the topic [28].

4.1. Solving 3D Problems in 2D

Many of the mathematical operations we’re going to learn about in the follow-
ing chapter work equally well in 2D and 3D. This is very good news, because
it means you can sometimes solve a 3D vector problem by thinking and draw-
ing pictures in 2D (which is considerably easier to do!) Sadly, this equivalence

138 4. 3D Math for Games

Figure 4.1. A point rep-
resented in Cartesian
coordinates.

Py

x
z

y

Pz Px

P

Ph
P

h

r

Pr

θ

Pθ

Figure 4.2. A
point represent-
ed in cylindrical
coordinates.

between 2D and 3D does not hold all the time. Some operations, like the cross
product, are only defi ned in 3D, and some problems only make sense when all
three dimensions are considered. Nonetheless, it almost never hurts to start by
thinking about a simplifi ed two-dimensional version of the problem at hand.
Once you understand the solution in 2D, you can think about how the prob-
lem extends into three dimensions. In some cases, you’ll happily discover that
your 2D result works in 3D as well. In others, you’ll be able to fi nd a coor-
dinate system in which the problem really is two-dimensional. In this book,
we’ll employ two-dimensional diagrams wherever the distinction between 2D
and 3D is not relevant.

4.2. Points and Vectors

The majority of modern 3D games are made up of three-dimensional objects
in a virtual world. A game engine needs to keep track of the positions, orien-
tations, and scales of all these objects, animate them in the game world, and
transform them into screen space so they can be rendered on screen. In games,
3D objects are almost always made up of triangles, the vertices of which are
represented by points. So before we learn how to represent whole objects in
a game engine, let’s fi rst take a look the point and its closely related cousin,
the vector.

4.2.1. Points and Cartesian Coordinates

Technically speaking, a point is a location in n-dimensional space. (In games,
n is usually equal to 2 or 3.) The Cartesian coordinate system is by far the
most common coordinate system employed by game programmers. It uses
two or three mutually perpendicular axes to specify a position in 2D or 3D
space. So a point P is represented by a pair or triple of real numbers, (Px , Py)
or (Px , Py , Pz).

Of course, the Cartesian coordinate system is not our only choice. Some
other common systems include:

 Cylindrical coordinates . This system employs a vertical “height” axis h, a
radial axis r emanating out from the vertical, and a yaw angle theta (θ).
In cylindrical coordinates, a point P is represented by the triple of num-
bers (Ph , Pr , Pθ). This is illustrated in Figure 4.2.

 Spherical coordinates . This system employs a pitch angle phi (φ), a yaw
angle theta (θ), and a radial measurement r. Points are therefore rep-
resented by the triple of numbers (Pr , Pφ , Pθ). This is illustrated in Fig-
ure 4.3.

139 4.2. Points and Vectors

Figure 4.3. A point
represented in spherical
coordinates.

r

θ

φ

Pr

P

Pθ

Pφ

Right-Handed

x
z

y

Left-Handed

x

y

z

Figure 4.4. Left- and right-handed Cartesian coordinate systems.

Cartesian coordinates are by far the most widely used coordinate system
in game programming. However, always remember to select the coordinate
system that best maps to the problem at hand. For example, in the game Crank
the Weasel by Midway Home Entertainment, the main character Crank runs
around an art-deco city picking up loot. I wanted to make the items of loot
swirl around Crank’s body in a spiral, gett ing closer and closer to him until
they disappeared. I represented the position of the loot in cylindrical coor-
dinates relative to the Crank character’s current position. To implement the
spiral animation, I simply gave the loot a constant angular speed in θ, a small
constant linear speed inward along its radial axis r, and a very slight constant
linear speed upward along the h-axis so the loot would gradually rise up to
the level of Crank’s pants pockets. This extremely simple animation looked
great, and it was much easier to model using cylindrical coordinates than it
would have been using a Cartesian system.

4.2.2. Left-Handed vs. Right-Handed Coordinate Systems

In three-dimensional Cartesian coordinates, we have two choices when ar-
ranging our three mutually perpendicular axes: right-handed (RH) and left -
handed (LH). In a right-handed coordinate system, when you curl the fi ngers
of your right hand around the z-axis with the thumb pointing toward positive
z coordinates, your fi ngers point from the x-axis toward the y-axis. In a left -
handed coordinate system the same thing is true using your left hand.

The only diff erence between a left -handed coordinate system and a right-
handed coordinate system is the direction in which one of the three axes is
pointing. For example, if the y-axis points upward and x points to the right,
then z comes toward us (out of the page) in a right-handed system, and away
from us (into the page) in a left -handed system. Left - and right-handed Carte-
sian coordinate systems are depicted in Figure 4.4.

140 4. 3D Math for Games

It is easy to convert from LH to RH coordinates and vice-versa. We sim-
ply fl ip the direction of any one axis, leaving the other two axes alone. It’s
important to remember that the rules of mathematics do not change between
LH and RH coordinate systems. Only our interpretation of the numbers—our
mental image of how the numbers map into 3D space—changes. Left -handed
and right-handed conventions apply to visualization only, not to the underly-
ing mathematics. (Actually, handedness does matt er when dealing with cross
products in physical simulations, but we can safely ignore these subtleties
for the majority of our game programming tasks. For more information, see
htt p://en.wikipedia.org/wiki/Pseudovector .)

The mapping between the numerical representation and the visual repre-
sentation is entirely up to us as mathematicians and programmers. We could
choose to have the y-axis pointing up, with z forward and x to the left (RH)
or right (LH). Or we could choose to have the z-axis point up. Or the x-axis
could point up instead—or down. All that matt ers is that we decide upon a
mapping, and then stick with it consistently.

That being said, some conventions do tend to work bett er than others for
certain applications. For example, 3D graphics programmers typically work
with a left -handed coordinate system, with the y-axis pointing up, x to the
right and positive z pointing away from the viewer (i.e., in the direction the
virtual camera is pointing). When 3D graphics are rendered onto a 2D screen
using this particular coordinate system, increasing z-coordinates correspond
to increasing depth into the scene (i.e., increasing distance away from the vir-
tual camera). As we will see in subsequent chapters, this is exactly what is
required when using a z-buff ering scheme for depth occlusion.

4.2.3. Vectors

A vector is a quantity that has both a magnitude and a direction in n-dimensional
space. A vector can be visualized as a directed line segment extending from a
point called the tail to a point called the head. Contrast this to a scalar (i.e., an
ordinary real-valued number), which represents a magnitude but has no di-
rection. Usually scalars are writt en in italics (e.g., v) while vectors are writt en
in boldface (e.g., v).

A 3D vector can be represented by a triple of scalars (x, y, z), just as a point
can be. The distinction between points and vectors is actually quite subtle.
Technically, a vector is just an off set relative to some known point. A vector
can be moved anywhere in 3D space—as long as its magnitude and direction
don’t change, it is the same vector.

A vector can be used to represent a point, provided that we fi x the tail of
the vector to the origin of our coordinate system. Such a vector is sometimes

141 4.2. Points and Vectors

called a position vector or radius vector. For our purposes, we can interpret any
triple of scalars as either a point or a vector, provided that we remember that
a position vector is constrained such that its tail remains at the origin of the
chosen coordinate system. This implies that points and vectors are treated in
subtly diff erent ways mathematically. One might say that points are absolute,
while vectors are relative.

The vast majority of game programmers use the term “vector” to refer
both to points (position vectors) and to vectors in the strict linear algebra sense
(purely directional vectors). Most 3D math libraries also use the term “vector”
in this way. In this book, we’ll use the term “direction vector ” or just “direc-
tion” when the distinction is important. Be careful to always keep the diff er-
ence between points and directions clear in your mind (even if your math
library doesn’t). As we’ll see in Section 4.3.6.1, directions need to be treated
diff erently from points when converting them into homogeneous coordinates
for manipulation with 4 × 4 matrices, so gett ing the two types of vector mixed
up can and will lead to bugs in your code.

4.2.3.1. Cartesian Basis Vectors

It is oft en useful to defi ne three orthogonal unit vectors (i.e., vectors that are mu-
tually perpendicular and each with a length equal to one), corresponding to
the three principal Cartesian axes. The unit vector along the x-axis is typically
called i, the y-axis unit vector is called j, and the z-axis unit vector is called k.
The vectors i, j, and k are sometimes called Cartesian basis ve ctors .

Any point or vector can be expressed as a sum of scalars (real numbers)
multiplied by these unit basis vectors. For example,

 (5, 3, –2) = 5i + 3j – 2k.

4.2.4. Vector Operations

Most of the mathematical operations that you can perform on scalars can be
applied to vectors as well. There are also some new operations that apply only
to vectors.

4.2.4.1. Multiplication by a Scalar

Multiplication of a vector a by a scalar s is accomplished by multiplying the
individual components of a by s:
 sa = (sax , say , saz).

Multiplication by a scalar has the eff ect of scaling the magnitude of the
vector, while leaving its direction unchanged, as shown in Figure 4.5. Multi-
plication by –1 fl ips the direction of the vector (the head becomes the tail and
vice-versa).

142 4. 3D Math for Games

a + b

–b b

a
a – b

Figure 4.6. Vector addition and subtraction.

The scale factor can be diff erent along each axis. We call this nonuniform
scale , and it can be represented as the component-wise product of a scaling vector
s and the vector in question, which we’ll denote with the ⊗ operator. Techni-
cally speaking, this special kind of product between two vectors is known as
the Hadamard product . It is rarely used in the game industry—in fact, nonuni-
form scaling is one of its only commonplace uses in games:

 (4.1)

As we’ll see in Section 4.3.7.3, a scaling vector s is really just a compact way to
represent a 3 × 3 diagonal scaling matrix S. So another way to write Equation
(4.1) is as follows:

4.2.4.2. Addition and Subtraction

The addition of two vectors a and b is defi ned as the vector whose components
are the sums of the components of a and b. This can be visualized by placing the
head of vector a onto the tail of vector b—the sum is then the vector from the
tail of a to the head of b:

 a + b = [(ax + bx), (ay + by), (az + bz)].

Vector subtraction a – b is nothing more than addition of a and –b (i.e., the
result of scaling b by –1, which fl ips it around). This corresponds to the vector

v 2v

v

Figure 4.5. Multiplication of a vector by the scalar 2.

 (, ,) .x x y y z zs a s a s a⊗ =s a

0 0
[] 0 0 [].

0 0

x

x y z y x x y y z z

z

s
a a a s s a s a s a

s

⎡ ⎤
⎢ ⎥

= =⎢ ⎥
⎢ ⎥⎣ ⎦

aS

143 4.2. Points and Vectors

a

ax

ay

|a|

Figure 4.7. Magnitude of a vector (shown in 2D for ease of illustration).

whose components are the diff erence between the components of a and the
components of b:

 a – b = [(ax – bx), (ay – by), (az – bz)].

Vector addition and subtraction are depicted in Figure 4.6.

Adding and Subtracting Points and Directions

 You can add and subtract direction vectors freely. However, technically speak-
ing, points cannot be added to one another—you can only add a direction
vector to a point, the result of which is another point. Likewise, you can take
the diff erence between two points, resulting in a direction vector. These opera-
tions are summarized below:

 direction + direction = direction

 direction – direction = direction

 point + direction = point

 point – point = direction

 point + point = nonsense (don’t do it!)

4.2.4.3. Magnitude

The magnitude of a vector is a scalar representing the length of the vector as
it would be measured in 2D or 3D space. It is denoted by placing vertical bars
around the vector’s boldface symbol. We can use the Pythagorean theorem to
calculate a vector’s magnitude, as shown in Figure 4.7:

2 2 2 .x y za a a= + +a

4.2.4.4. Vector Operations in Action

Believe it or not, we can already solve all sorts of real-world game problems
given just the vector operations we’ve learned thus far. When trying to solve a
problem, we can use operations like addition, subtraction, scaling, and mag-
nitude to generate new data out of the things we already know. For example,

144 4. 3D Math for Games

if we have the current position vector of an A.I. character P1, and a vector v
representing her current velocity , we can fi nd her position on the next frame
P2 by scaling the velocity vector by the frame time interval Δt, and then adding
it to the current position. As shown in Figure 4.8, the resulting vector equation
is P2 = P1 + (Δt)v. (This is known as explicit Euler integration —it’s actually only
valid when the velocity is constant, but you get the idea.)

As another example, let’s say we have two spheres, and we want to know
whether they intersect. Given that we know the center points of the two
spheres, C1 and C2, we can fi nd a direction vector between them by simply
subtracting the points, d = C2 – C1. The magnitude of this vector d = |d| de-
termines how far apart the spheres’ centers are. If this distance is less than the
sum of the spheres’ radii, they are intersecting; otherwise they’re not. This is
shown in Figure 4.9.

Square roots are expensive to calculate on most computers, so game
programmers should always use the squared magnitude whenever it is valid to do
so:

Using the squared magnitude is valid when comparing the relative lengths of
two vectors (“is vector a longer than vector b?”), or when comparing a vector’s
magnitude to some other (squared) scalar quantity. So in our sphere-sphere
intersection test, we should calculate d2 = and compare this to the squared
sum of the radii, (r1 + r2)2 for maximum speed. When writing high-perfor-
mance soft ware, never take a square root when you don’t have to!

vΔt

1P

2P

y

x

Figure 4.8. Simple vec-
tor addition can be used
to fi nd a character’s po-
sition in the next frame,
given her position and
velocity ln the current
frame.

1C

2C

y

x

1r

2r
d

2C – 1C

Figure 4.9. A sphere-sphere intersection test involves only vector subtraction, vector mag-
nitude, and fl oating-point comparison operations.

()

2 2 2 2 .x y za a a= + +a

4.2.4.5. Normalization and Unit Vectors

A unit vector is a vector with a magnitude (length) of one. Unit vectors are very
useful in 3D mathematics and game programming, for reasons we’ll see below.

2d

145 4.2. Points and Vectors

Given an arbitrary vector v of length v = , we can convert it to a unit
vector u that points in the same direction as v, but has unit length. To do this,
we simply multiply v by the reciprocal of its magnitude. We call this normal-
ization :

4.2.4.6. Normal Vectors

A vector is said to be normal to a surface if it is perpendicular to that surface.
Normal vectors are highly useful in games and computer graphics. For ex-
ample, a plane can be defi ned by a point and a normal vector. And in 3D
graphics, lighting calculations make heavy use of normal vectors to defi ne
the direction of surfaces relative to the direction of the light rays impinging
upon them.

Normal vectors are usually of unit length, but they do not need to be. Be
careful not to confuse the term “normalization” with the term “normal vec-
tor.” A normalized vector is any vector of unit length. A normal vector is any
vector that is perpendicular to a surface, whether or not it is of unit length.

4.2.4.7. Dot Product and Projection

Vectors can be multiplied, but unlike scalars there are a number of diff erent
kinds of vector multiplication. In game programming, we most oft en work
with the following two kinds of multiplication:

 the dot product (a.k.a. scalar product or inner product), and

 the cross product (a.k.a. vector product or outer product).

The dot product of two vectors yields a scalar; it is defi ned by adding the
products of the individual components of the two vectors:

 (a scalar).

The dot product can also be writt en as the product of the magnitudes of the
two vectors and the cosine of the angle between them:

The dot product is commutative (i.e., the order of the two vectors can be
reversed) and distributive over addition:

1
.

v
= =

v
u v

v

x x y y z za b a b a b d⋅ = + + =a b

v

 cos() .⋅ = θa b a b

 ;⋅ = ⋅a b b a

 () .⋅ + = ⋅ + ⋅a b c a b a c

146 4. 3D Math for Games

And the dot product combines with scalar multiplication as follows:

Vector Projection

If u is a unit vector (= 1), then the dot product (a ⋅ u) represents the length
of the projection of vector a onto the infi nite line defi ned by the direction of
u, as shown in Figure 4.10. This projection concept works equally well in 2D
or 3D and is highly useful for solving a wide variety of three-dimensional
problems.

Figure 4.10. Vector projection using the dot product.

 () .s s s⋅ = ⋅ = ⋅a b a b a b

u

Magnitude as a Dot Product

The squared magnitude of a vector can be found by taking the dot product of
that vector with itself. Its magnitude is then easily found by taking the square
root:

This works because the cosine of zero degrees is 1, so all that is left is

Dot Product Tests

Dot products are great for testing if two vectors are collinear or perpendicular,
or whether they point in roughly the same or roughly opposite directions. For
any two arbitrary vectors a and b, game programmers oft en use the following
tests, as shown in Figure 4.11:

 Collinear. (a ⋅ b) = = ab (i.e., the angle between them is exactly 0
degrees—this dot product equals +1 when a and b are unit vectors).

 Collinear but opposite. (a ⋅ b) = –ab (i.e., the angle between them is 180
degrees—this dot product equals –1 when a and b are unit vectors).

2 ;

.

= ⋅

= ⋅

a a a

a a a

2 .=a a a

 a b

147 4.2. Points and Vectors

 Perpendicular. (a ⋅ b) = 0 (i.e., the angle between them is 90 degrees).

 Same direction. (a ⋅ b) > 0 (i.e., the angle between them is less than 90
degrees).

 Opposite directions. (a ⋅ b) < 0 (i.e., the angle between them is greater than
90 degrees).

Some Other Applications of the Dot Product

Dot products can be used for all sorts of things in game programming. For ex-
ample, let’s say we want to fi nd out whether an enemy is in front of the player
character or behind him. We can fi nd a vector from the player’s position P to
the enemy’s position E by simple vector subtraction (v = E – P). Let’s assume
we have a vector f pointing in the direction that the player is facing . (As we’ll
see in Section 4.3.10.3, the vector f can be extracted directly from the player’s
model-to-world matrix .) The dot product d = v ⋅ f can be used to test whether
the enemy is in front of or behind the player—it will be positive when the
enemy is in front and negative when the enemy is behind.

(a · b) = ab

(a · b) = –ab

(a · b) = 0

(a · b) > 0

(a · b) < 0

a
b

a

b

a

b

a

b

b

a

Figure 4.11. Some common dot product tests.

Figure 4.12. The dot product can be used to fi nd the height of a point above or below a
plane.

148 4. 3D Math for Games

The dot product can also be used to fi nd the height of a point above or
below a plane (which might be useful when writing a moon-landing game for
example). We can defi ne a plane with two vector quantities: a point Q lying
anywhere on the plane, and a unit vector n that is perpendicular (i.e., normal)
to the plane. To fi nd the height h of a point P above the plane, we fi rst calculate
a vector from any point on the plane (Q will do nicely) to the point in ques-
tion P. So we have v = P – Q. The dot product of vector v with the unit-length
normal vector n is just the projection of v onto the line defi ned by n. But that
is exactly the height we’re looking for. Therefore, h = v ⋅ n = (P – Q) ⋅ n. This
is illustrated in Figure 4.12.

4.2.4.8. Cross Product

The cross product (also known as the outer product or vector product) of two vec-
tors yields another vector that is perpendicular to the two vectors being multi-
plied, as shown in Figure 4.13. The cross product operation is only defi ned in
three dimensions:

Magnitude of the Cross Product

The magnitude of the cross product vector is the product of the magnitudes of
the two vectors and the sine of the angle between them. (This is similar to the
defi nition of the dot product, but it replaces the cosine with the sine.)

The magnitude of the cross product is equal to the area of the par-
allelogram whose sides are a and b, as shown in Figure 4.14. Since a triangle
is one-half of a parallelogram, the area of a triangle whose vertices are speci-
fi ed by the position vectors V1 , V2 , and V3 can be calculated as one-half of the
magnitude of the cross product of any two of its sides:

a × b

a b

Figure 4.13. The cross
product of vectors a
and b (right-handed).

V2

V1

V3

a = (V2 – V1)
b = (V3 – V1)

|a × b|

Figure 4.14. Area of a parallelogram expressed as the magnitude of a cross product.

[(), (), ()]
() () () .

y z z y z x x z x y y x

y z z y z x x z x y y x

a b a b a b a b a b a b
a b a b a b a b a b a b

= −

= −

a b
i

− −

j k+ − + −

×

1
triangle 2 1 3 12 () () .A = − × −V V V V

 sin() .× = θa b a b

×a b

149

Direction of the Cross Product

When using a right-handed coordinate system, you can use the right-hand rule
to determine the direction of the cross product. Simply cup your fi ngers such
that they point in the direction you’d rotate vector a to move it on top of vector
b, and the cross product (a × b) will be in the direction of your thumb.

Note that the cross product is defi ned by the left -hand rule when using
a left -handed coordinate system. This means that the direction of the cross
product changes depending on the choice of coordinate system. This might
seem odd at fi rst, but remember that the handedness of a coordinate system
does not aff ect the mathematical calculations we carry out—it only changes
our visualization of what the numbers look like in 3D space. When converting
from a RH system to a LH system or vice-versa, the numerical representations
of all the points and vectors stay the same, but one axis fl ips. Our visualization
of everything is therefore mirrored along that fl ipped axis. So if a cross prod-
uct just happens to align with the axis we’re fl ipping (e.g., the z-axis), it needs
to fl ip when the axis fl ips. If it didn’t, the mathematical defi nition of the cross
product itself would have to be changed so that the z-coordinate of the cross
product comes out negative in the new coordinate system. I wouldn’t lose too
much sleep over all of this. Just remember: when visualizing a cross product,
use the right-hand rule in a right-handed coordinate system and the left -hand
rule in a left -handed coordinate system.

Properties of the Cross Product

The cross product is not commutative (i.e., order matt ers):

 a × b ≠ b × a.

However, it is anti-commutative :

 a × b = – b × a.

The cross product is distributive over addition:

 a × (b + c) = (a × b) + (a × c).

And it combines with scalar multiplication as follows:

 (sa) × b = a × (sb) = s(a × b).

The Cartesian basis vectors are related by cross products as follows:

() () ,
() () ,
() () .

× =− × =

× =− × =

× =− × =

j k k j i
k i i k j

i j j i k

4.2. Points and Vectors

150 4. 3D Math for Games

These three cross products defi ne the direction of positive rotations about the
Cartesian axes. The positive rotations go from x to y (about z), from y to z
(about x) and from z to x (about y). Notice how the rotation about the y-axis
“reversed” alphabetically, in that it goes from z to x (not from x to z). As we’ll
see below, this gives us a hint as to why the matrix for rotation about the y-axis
looks inverted when compared to the matrices for rotation about the x- and
z-axes.

The Cross Product in Action

The cross product has a number of applications in games. One of its most
common uses is for fi nding a vector that is perpendicular to two other vectors.
As we’ll see in Section 4.3.10.2, if we know an object’s local unit basis vectors,
(ilocal , jlocal , and klocal), we can easily fi nd a matrix representing the object’s
orientation. Let’s assume that all we know is the object’s klocal vector—i.e., the
direction in which the object is facing. If we assume that the object has no roll
about klocal , then we can fi nd ilocal by taking the cross product between klocal

(which we already know) and the world-space up vector jworld (which equals
[0 1 0]). We do so as follows: ilocal = normalize(jworld × klocal). We can then fi nd
jlocal by simply crossing ilocal and klocal as follows: jlocal = klocal × ilocal.

A very similar technique can be used to fi nd a unit vector normal to the
surface of a triangle or some other plane. Given three points on the plane P1 ,

P2 , and P3 , the normal vector is just n = normalize[(P2 – P1) × (P3 – P1)].
Cross products are also used in physics simulations. When a force is ap-

plied to an object, it will give rise to rotational motion if and only if it is ap-
plied off -center. This rotational force is known as a torque , and it is calculated
as follows. Given a force F, and a vector r from the center of mass to the point
at which the force is applied, the torque N = r × F.

4.2.5. Linear Interpolation of Points and Vectors

In games, we oft en need to fi nd a vector that is midway between two known
vectors. For example, if we want to smoothly animate an object from point A
to point B over the course of two seconds at 30 frames per second, we would
need to fi nd 60 intermediate positions between A and B.

A linear interpolation is a simple mathematical operation that fi nds an in-
termediate point between two known points. The name of this operation is
oft en shortened to LERP. The operation is defi ned as follows, where β ranges
from 0 to 1 inclusive:

(, ,) (1)
[(1) , (1) , (1)].x x y y z zA B A B A B

= β = − β + β

= − β + β − β + β − β + β

L LERP A B A B

151 4.3. Matrices

Geometrically, L = LERP(A, B, β) is the position vector of a point that lies
β percent of the way along the line segment from point A to point B, as shown
in Figure 4.15. Mathematically, the LERP function is just a weighted average of
the two input vectors, with weights (1 – β) and β, respectively. Notice that the
weights always add to 1, which is a general requirement for any weighted
average.

4.3. Matrices

A matrix is a rectangular array of m × n scalars. Matrices are a convenient way
of representing linear transformations such as translation, rotation, and scale.

A matrix M is usually writt en as a grid of scalars Mrc enclosed in square
brackets, where the subscripts r and c represent the row and column indices
of the entry, respectively. For example, if M is a 3 × 3 matrix, it could be writ-
ten as follows:

We can think of the rows and/or columns of a 3 × 3 matrix as 3D vectors.
When all of the row and column vectors of a 3 × 3 matrix are of unit magni-
tude, we call it a special orthogonal matrix. This is also known as an isotropic
matrix, or an orthonormal matrix. Such matrices represent pure rotations.

Under certain constraints, a 4 × 4 matrix can represent arbitrary 3D trans-
formations , including translations , rotations , and changes in scale . These are
called transformation matrices , and they are the kinds of matrices that will be
most useful to us as game engineers. The transformations represented by a
matrix are applied to a point or vector via matrix multiplication. We’ll inves-
tigate how this works below.

An affi ne matrix is a 4 × 4 transformation matrix that preserves parallelism
of lines and relative distance ratios, but not necessarily absolute lengths and
angles. An affi ne matrix is any combination of the following operations: rota-
tion, translation, scale and/or shear.

4.3.1. Matrix Multiplication

 The product P of two matrices A and B is writt en P = AB. If A and B are
transformation matrices, then the product P is another transformation matrix
that performs both of the original transformations. For example, if A is a scale
matrix and B is a rotation, the matrix P would both scale and rotate the points

A
L = LERP(A, B, 0.4)

Bβ = 0

β = 1

β = 0.4

Figure 4.15. Linear in-
terpolation (LERP) be-
tween points A and B,
with β = 0.4.

11 12 13

21 22 23

31 32 33

.
M M M
M M M
M M M

⎡ ⎤
⎢ ⎥

=⎢ ⎥
⎢ ⎥⎣ ⎦

M

152 4. 3D Math for Games

or vectors to which it is applied. This is particularly useful in game program-
ming, because we can precalculate a single matrix that performs a whole se-
quence of transformations and then apply all of those transformations to a
large number of vectors effi ciently.

To calculate a matrix product, we simply take dot products between the
rows of the nA × mA matrix A and the columns of the nB × mB matrix B. Each dot
product becomes one component of the resulting matrix P. The two matrices
can be multiplied as long as the inner dimensions are equal (i.e., mA = nB). For
example, if A and B are 3 × 3 matrices, then

 P = AB,

Matrix multiplication is not commutative. In other words, the order in
which matrix multiplication is done matt ers:

 AB ≠ BA .

We’ll see exactly why this matt ers in Section 4.3.2.
Matrix multiplication is oft en called concatenation, because the product

of n transformation matrices is a matrix that concatenates, or chains together,
the original sequence of transformations in the order the matrices were mul-
tiplied.

4.3.2. Representing Points and Vectors as Matrices

Points and vectors can be represented as row matrices (1 × n) or column matrices
(n × 1), where n is the dimension of the space we’re working with (usually 2 or
3). For example, the vector v = (3, 4, –1) can be writt en either as

or as

The choice between column and row vectors is a completely arbitrary
one, but it does aff ect the order in which matrix multiplications are writt en.
This happens because when multiplying matrices, the inner dimensions of the
two matrices must be equal, so:

11 row1 col1

21 row2 col1

31 row3 col1

;
;
;

P
P
P

= ⋅

= ⋅

= ⋅

A B
A B
A B

12 row1 col2

22 row2 col2

32 row3 col2

;
;
;

P
P
P

= ⋅

= ⋅

= ⋅

A B
A B
A B

13 row1 col3

23 row2 col3

33 row3 col3

;
;
.

P
P
P

= ⋅

= ⋅

= ⋅

A B
A B
A B

 1 [3 4 1] ,= −v

T
2 1

3
4 .
1

⎡ ⎤
⎢ ⎥

= =⎢ ⎥
⎢ ⎥−⎣ ⎦

v v

153 4.3. Matrices

 to multiply a 1 × n row vector by an n × n matrix, the vector must appear
to the left of the matrix (), whereas

 to multiply an n × n matrix by an n × 1 column vector, the vector must
appear to the right of the matrix ().

If multiple transformation matrices A, B, and C are applied in order to a
vector v, the transformations “read” from left to right when using row vectors,
but from right to left when using column vectors. The easiest way to remember
this is to realize that the matrix closest to the vector is applied fi rst. This is il-
lustrated by the parentheses below:

 v’ = ( ( ( vA ) B ) C ) Row vectors: read left -to-right;

 v’ = ( C ( B ( Av ) ) ) Column vectors: read right-to-left .

In this book we’ll adopt the row vector convention, because the left -to-right
order of transformations is most intuitive to read for English-speaking people.
That said, be very careful to check which convention is used by your game
engine, and by other books, papers, or web pages you may read. You can
usually tell by seeing whether vector-matrix multiplications are writt en with
the vector on the left (for row vectors) or the right (for column vectors) of the
matrix. When using column vectors, you’ll need to transpose all the matrices
shown in this book.

4.3.3. The Identity Matrix

The identity matrix is a matrix that, when multiplied by any other matrix,
yields the very same matrix. It is usually represented by the symbol I. The
identity matrix is always a square matrix with 1’s along the diagonal and 0’s
everywhere else:

 AI = IA ≡ A .

4.3.4. Matrix Inversion

The inverse of a matrix A is another matrix (denoted A–1) that undoes the eff ects
of matrix A. So, for example, if A rotates objects by 37 degrees about the z-axis,
then A–1 will rotate by –37 degrees about the z-axis. Likewise, if A scales objects
to be twice their original size, then A–1 scales objects to be half-sized. When a ma-
trix is multiplied by its own inverse, the result is always the identity matrix, so

 1 1n n n n× × ×′ =v v M

 1 1n n n n× × ×′ =v M v

 3 3

1 0 0
0 1 0 ;
0 0 1

×

⎡ ⎤
⎢ ⎥

=⎢ ⎥
⎢ ⎥⎣ ⎦

I

154 4. 3D Math for Games

 Not all matrices have inverses. However, all affi ne matri-
ces (combinations of pure rotations, translations, scales, and shears) do have
inverses. Gaussian elimination or LU decomposition can be used to fi nd the
inverse, if one exists.

Since we’ll be dealing with matrix multiplication a lot, it’s important to
note here that the inverse of a sequence of concatenated matrices can be writt en
as the reverse concatenation of the individual matrices’ inverses. For example,

 (ABC)–1 = C–1  B–1 A–1.

4.3.5. Transposition

The transpose of a matrix M is denoted MT. It is obtained by refl ecting the en-
tries of the original matrix across its diagonal. In other words, the rows of the
original matrix become the columns of the transposed matrix, and vice-versa:

The transpose is useful for a number of reasons. For one thing, the inverse
of an orthonormal (pure rotation) matrix is exactly equal to its transpose—
which is good news, because it’s much cheaper to transpose a matrix than it is
to fi nd its inverse in general. Transposition can also be important when mov-
ing data from one math library to another, because some libraries use column
vectors while others expect row vectors. The matrices used by a row-vector-
based library will be transposed relative to those used by a library that employs
the column vector convention.

As with the inverse, the transpose of a sequence of concatenated matrices
can be rewritt en as the reverse concatenation of the individual matrices’ trans-
poses. For example,

 (ABC)T = CT   BT  AT.

This will prove useful when we consider how to apply transformation matri-
ces to points and vectors.

4.3.6. Homogeneous Coordinates

 You may recall from high-school algebra that a 2 × 2 matrix can represent a
rotation in two dimensions. To rotate a vector r through an angle of φ degrees
(where positive rotations are counter-clockwise), we can write

1 1() () .− −≡ ≡A A A A I

cos sin
[] [] .sin cosx y x yr r r r

φ φ⎡ ⎤
′ ′ = ⎢ ⎥− φ φ⎣ ⎦

T

.
a b c a d g
d e f
g h i c f i

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

e hb

155 4.3. Matrices

It’s probably no surprise that rotations in three dimensions can be represented
by a 3 × 3 matrix. The two-dimensional example above is really just a three-
dimensional rotation about the z-axis, so we can write

The question naturally arises: Can a 3 × 3 matrix be used to represent
translations? Sadly, the answer is no. The result of translating a point r by a
translation t requires adding the components of t to the components of r in-
dividually:

Matrix multiplication involves multiplication and addition of matrix ele-
ments, so the idea of using multiplication for translation seems promising.
But, unfortunately, there is no way to arrange the components of t within a 3 ×
3 matrix such that the result of multiplying it with the column vector r yields
sums like (rx + tx).

The good news is that we can obtain sums like this if we use a 4 × 4 matrix.
What would such a matrix look like? Well, we know that we don’t want any
rotational eff ects, so the upper 3 × 3 should contain an identity matrix. If we
arrange the components of t across the bott om-most row of the matrix and
set the fourth element of the r vector (usually called w) equal to 1, then taking
the dot product of the vector r with column 1 of the matrix will yield (1 × rx) +
(0 × ry) + (0 × rz) + (tx × 1) = (rx + tx), which is exactly what we want. If the bott om
right-hand corner of the matrix contains a 1 and the rest of the fourth column
contains zeros, then the resulting vector will also have a 1 in its w component.
Here’s what the fi nal 4 × 4 translation matrix looks like:

When a point or vector is extended from three dimensions to four in this
manner, we say that it has been writt en in homogeneous coordinates. A point in
homogeneous coordinates always has w = 1. Most of the 3D matrix math done
by game engines is performed using 4 × 4 matrices with four-element points
and vectors writt en in homogeneous coordinates.

 cos sin 0
[] [] sin cos 0 .

0 0 1
x y z x y zr r r r r r

⎡ ⎤φ φ
⎢ ⎥

′ ′ ′ = − φ φ⎢ ⎥
⎢ ⎥⎣ ⎦

 [() () ()].x x y y z zr t r t r t+ = + + +r t

1 0 0 0
0 1 0 0

[1] 0 0 1 0
1

 [() () () 1].

x y z

x y z

x x y y z z

r r r

t

r t r t r t

⎡ ⎤
⎢ ⎥
⎢ ⎥+ = ⎢ ⎥
⎢ ⎥
⎣ ⎦

= + + +

r t

t t

156 4. 3D Math for Games

4.3.6.1. Transforming Direction Vectors

Mathematically, points (position vectors) and direction vectors are treated in
subtly diff erent ways. When transforming a point by a matrix, the translation,
rotation, and scale of the matrix are all applied to the point. But when trans-
forming a direction by a matrix, the translational eff ects of the matrix are ig-
nored. This is because direction vectors have no translation per se—applying
a translation to a direction would alter its magnitude, which is usually not
what we want.

In homogeneous coordinates, we achieve this by defi ning points to have
their w components equal to one, while direction vectors have their w com-
ponents equal to zero. In the example below, notice how the w = 0 component
of the vector v multiplies with the t vector in the matrix, thereby eliminating
translation in the fi nal result:

Technically, a point in homogeneous (four-dimensional) coordinates can
be converted into non-homogeneous (three-dimensional) coordinates by di-
viding the x, y, and z components by the w component:

This sheds some light on why we set a point’s w component to one and a vec-
tor’s w component to zero. Dividing by w = 1 has no eff ect on the coordinates
of a point, but dividing a pure direction vector’s components by w = 0 would
yield infi nity. A point at infi nity in 4D can be rotated but not translated, be-
cause no matt er what translation we try to apply, the point will remain at in-
fi nity. So in eff ect, a pure direction vector in three-dimensional space acts like
a point at infi nity in four-dimensional homogeneous space.

4.3.7. Atomic Transformation Matrices

Any affi ne transformation matrix can be created by simply concatenating a
sequence of 4 × 4 matrices representing pure translations, pure rotations, pure
scale operations, and/or pure shears. These atomic transformation building
blocks are presented below. (We’ll omit shear from these discussions, as it
tends to be used only rarely in games.)

Notice that all affi ne 4 × 4 transformation matrices can be partitioned into
four components:

 [0] [(0) 0] [0].1
⎡ ⎤

= + =⎢ ⎥
⎣ ⎦

U 0
v vU t vUt

 [] .
yx z

x y z w
w w w

⎡ ⎤
≡⎢ ⎥⎣ ⎦

3 3 3 1

1 3
.1

× ×

×

⎡ ⎤
⎢ ⎥
⎣ ⎦

U 0
t

157 4.3. Matrices

 the upper 3 × 3 matrix U, which represents the rotation and/or scale,

 a 1 × 3 translation vector t,
 a 3 × 1 vector of zeros 0 = [0 0 0]T, and

 a scalar 1 in the bott om-right corner of the matrix.

When a point is multiplied by a matrix that has been partitioned like this, the
result is as follows:

4.3.7.1. Translation

 The following matrix translates a point by the vector t:

or in partitioned shorthand:

To invert a pure translation matrix, simply negate the vector t (i.e., negate tx ,
ty , and tz).

4.3.7.2. Rotation

 All 4 × 4 pure rotation matrices have the form:

The t vector is zero and the upper 3 × 3 matrix R contains cosines and sines of
the rotation angle, measured in radians.

The following matrix represents rotation about the x-axis by an angle φ:

3 3 3 1
 1 3 1 3

1 3
[1] [1] [() 1].1

× ×
× ×

×

⎡ ⎤
′ = = +⎢ ⎥

⎣ ⎦

U 0
r r rU tt

1 0 0 0
0 1 0 0

[1] 0 0 1 0
1

 [() () () 1] ,

x y z

x y z

x x y y z z

r r r

t

r t r t r t

⎡ ⎤
⎢ ⎥
⎢ ⎥+ = ⎢ ⎥
⎢ ⎥
⎣ ⎦

= + + +

r t

t t

 [1] [() 1].1
⎡ ⎤

= +⎢ ⎥
⎣ ⎦

I 0
r r tt

 [1] [1].1
⎡ ⎤

=⎢ ⎥
⎣ ⎦

R 0
r rR0

1 0 0 0
0 cos sin 0

rotate (,) [1] .0 sin cos 0
0 0 0 1

x x y zr r r

⎡ ⎤
⎢ ⎥φ φ⎢ ⎥φ = ⎢ ⎥− φ φ
⎢ ⎥
⎣ ⎦

r

158 4. 3D Math for Games

The matrix below represents rotation about the y-axis by an angle θ. Notice
that this one is transposed relative to the other two—the positive and negative
sine terms have been refl ected across the diagonal:

This matrix represents rotation about the z-axis by an angle γ:

Here are a few observations about these matrices:

 The 1 within the upper 3 × 3 always appears on the axis we’re rotating
about, while the sine and cosine terms are off -axis.

 Positive rotations go from x to y (about z), from y to z (about x), and from
z to x (about y). The z to x rotation “wraps around,” which is why the
rotation matrix about the y-axis is transposed relative to the other two.
(Use the right-hand or left -hand rule to remember this.)

 The inverse of a pure rotation is just its transpose. This works because
inverting a rotation is equivalent to rotating by the negative angle. You
may recall that cos(–θ) = cos(θ) while sin(–θ) = –sin(θ), so negating the
angle causes the two sine terms to eff ectively switch places, while the
cosine terms stay put.

4.3.7.3. Scale

 The following matrix scales the point r by a factor of sx along the x-axis, sy

along the y-axis, and sz along the z-axis:

cos 0 sin 0
0 1 0 0

rotate (,) [1] .sin 0 cos 0
0 0 0 1

y x y zr r r

θ − θ⎡ ⎤
⎢ ⎥
⎢ ⎥θ = ⎢ ⎥θ θ
⎢ ⎥
⎣ ⎦

r

 cos sin 0 0
sin cos 0 0

rotate (,) [1] .0 0 1 0
0 0 0 1

z x y zr r r

γ γ⎡ ⎤
⎢ ⎥− γ γ⎢ ⎥γ = ⎢ ⎥
⎢ ⎥
⎣ ⎦

r

0 0 0
0 0 0

[1] 0 0 0
0 0 0 1

 [1].

x

y
x y z

z

x x y y z z

s
s

r r r s

s r s r s r

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎣ ⎦

=

r S

159 4.3. Matrices

or in partitioned shorthand:

Here are some observations about this kind of matrix:

 To invert a scaling matrix, simply substitute sx , sy , and sz with their re-
ciprocals (i.e., 1/sx , 1/sy , and 1/sz).

 When the scale factor along all three axes is the same (sx = sy = sz), we call
this uniform scale. Spheres remain spheres under uniform scale, whereas
under nonuniform scale they become ellipsoids. To keep the mathemat-
ics of bounding sphere checks simple and fast, many game engines im-
pose the restriction that only uniform scale may be applied to render-
able geometry or collision primitives.

 When a uniform scale matrix Su and a rotation matrix R are concat-
enated, the order of multiplication is unimportant (i.e., SuR = RSu). This
only works for uniform scale!

4.3.8. 4 × 3 Matrices

 The rightmost column of an affi ne 4 × 4 matrix always contains the vector
[0 0 0 1]T. As such, game programmers oft en omit the fourth column to
save memory. You’ll encounter 4 × 3 affi ne matrices frequently in game math
libraries.

4.3.9. Coordinate Spaces

We’ve seen how to apply transformations to points and direction vectors us-
ing 4 × 4 matrices. We can extend this idea to rigid objects by realizing that
such an object can be thought of as an infi nite collection of points. Applying
a transformation to a rigid object is like applying that same transformation to
every point within the object. For example, in computer graphics an object is
usually represented by a mesh of triangles, each of which has three vertices
represented by points. In this case, the object can be transformed by applying
a transformation matrix to all of its vertices in turn.

We said above that a point is a vector whose tail is fi xed to the origin of
some coordinate system. This is another way of saying that a point (position
vector) is always expressed relative to a set of coordinate axes. The triplet of
numbers representing a point changes numerically whenever we select a new
set of coordinate axes. In Figure 4.16, we see a point P represented by two
diff erent position vectors—the vector PA gives the position of P relative to the

3 3
3 3[1] [1].1

×
×

⎡ ⎤
=⎢ ⎥

⎣ ⎦

S 0
r r S0

160 4. 3D Math for Games

“A” axes, while the vector PB gives the position of that same point relative to a
diff erent set of axes “B.”

In physics, a set of coordinate axes represents a frame of reference, so
we sometimes refer to a set of axes as a coordinate frame (or just a frame).
People in the game industry also use the term coordinate space (or simply
space) to refer to a set of coordinate axes. In the following sections, we’ll look
at a few of the most common coordinate spaces used in games and computer
graphics.

4.3.9.1. Model Space

When a triangle mesh is created in a tool such as Maya or 3DStudioMAX, the
positions of the triangles’ vertices are specifi ed relative to a Cartesian coordi-
nate system which we call model space (also known as object space or local space).
The model space origin is usually placed at a central location within the object,
such as at its center of mass, or on the ground between the feet of a humanoid
or animal character.

Most game objects have an inherent directionality. For example, an air-
plane has a nose, a tail fi n, and wings that correspond to the front, up, and
left /right directions. The model space axes are usually aligned to these natural
directions on the model, and they’re given intuitive names to indicate their
directionality as illustrated in Figure 4.17.

 Front. This name is given to the axis that points in the direction that the
object naturally travels or faces. In this book, we’ll use the symbol F to
refer to a unit basis vector along the front axis.

 Up. This name is given to the axis that points towards the top of the
object. The unit basis vector along this axis will be denoted U.

 Left or right. The name “left ” or “right” is given to the axis that points
toward the left or right side of the object. Which name is chosen de-
pends on whether your game engine uses left -handed or right-handed

xA

yA xB

yB

PA = (2, 3)
PB = (1, 5)

Figure 4.16. Position vectors for the point P relative to different coordinate axes.

161 4.3. Matrices

coordinates. The unit basis vector along this axis will be denoted L or R,
as appropriate.

The mapping between the (front, up, left) labels and the (x, y, z) axes is com-
pletely arbitrary. A common choice when working with right-handed axes is
to assign the label front to the positive z-axis, the label left to the positive x-axis,
and the label up to the positive y-axis (or in terms of unit basis vectors, F = k,
L = i, and U = j). However, it’s equally common for +x to be front and +z to be
right (F = i, R = k, U = j). I’ve also worked with engines in which the z-axis is
oriented vertically. The only real requirement is that you stick to one conven-
tion consistently throughout your engine.

As an example of how intuitive axis names can reduce confusion, consid-
er Euler angles (pitch, yaw, roll), which are oft en used to describe an aircraft ’s
orientation. It’s not possible to defi ne pitch, yaw, and roll angles in terms of
the (i, j, k) basis vectors because their orientation is arbitrary. However, we can
defi ne pitch, yaw, and roll in terms of the (L, U, F) basis vectors, because their
orientations are clearly defi ned. Specifi cally,

 pitch is rotation about L or R,

 yaw is rotation about U, and

 roll is rotation about F.

4.3.9.2. World Space

World space is a fi xed coordinate space, in which the positions, orientations,
and scales of all objects in the game world are expressed. This coordinate
space ties all the individual objects together into a cohesive virtual world.

The location of the world-space origin is arbitrary, but it is oft en placed
near the center of the playable game space to minimize the reduction in fl oat-
ing-point precision that can occur when (x, y, z) coordinates grow very large.
Likewise, the orientation of the x-, y-, and z-axes is arbitrary, although most

le�

front

up

Figure 4.17. One possible choice of the model-space front, left and up axis basis vectors for
an airplane.

162 4. 3D Math for Games

of the engines I’ve encountered use either a y-up or a z-up convention. The
y-up convention was probably an extension of the two-dimensional conven-
tion found in most mathematics textbooks, where the y-axis is shown going
up and the x-axis going to the right. The z-up convention is also common, be-
cause it allows a top-down orthographic view of the game world to look like
a traditional two-dimensional xy-plot.

As an example, let’s say that our aircraft ’s left wingtip is at (5, 0, 0) in mod-
el space. (In our game, front vectors correspond to the positive z-axis in model
space with y up, as shown in Figure 4.17.) Now imagine that the jet is facing
down the positive x-axis in world space, with its model-space origin at some
arbitrary location, such as (–25, 50, 8). Because the F vector of the airplane,
which corresponds to +z in model space, is facing down the +x-axis in world
space, we know that the jet has been rotated by 90 degrees about the world
y-axis. So if the aircraft were sitt ing at the world space origin, its left wingtip
would be at (0, 0, –5) in world space. But because the aircraft ’s origin has been
translated to (–25, 50, 8), the fi nal position of the jet’s left wingtip in model
space is (–25, 50, [8 – 5]) = (–25, 50, 3). This is illustrated in Figure 4.18.

We could of course populate our friendly skies with more than one Lear
jet. In that case, all of their left wingtips would have coordinates of (5, 0, 0)
in model space. But in world space, the left wingtips would have all sorts of
interesting coordinates, depending on the orientation and translation of each
aircraft .

4.3.9.3. View Space

View space (also known as camera space) is a coordinate frame fi xed to the cam-
era. The view space origin is placed at the focal point of the camera. Again,
any axis orientation scheme is possible. However, a y-up convention with z

Airport z W

xW

xM

z M

(5,0,0)M

(–25,50,3)W

(–25,50,8)W

Aircraft:

Left
Wingtip:

Figure 4.18. A lear jet whose left wingtip is at (5, 0, 0) in model space. If the jet is rotated by 90
degrees about the world-space y-axis, and its model-space origin translated to (–25, 50, 8) in
world space, then its left wingtip would end up at (–25, 50, 3) when expressed in world space
coordinates.

163 4.3. Matrices

increasing in the direction the camera is facing (left -handed) is typical because
it allows z coordinates to represent depths into the screen . Other engines and
APIs, such as OpenGL , defi ne view space to be right-handed, in which case the
camera faces towards negative z, and z coordinates represent negative depths.

4.3.10. Change of Basis

In games and computer graphics, it is oft en quite useful to convert an object’s
position, orientation, and scale from one coordinate system into another. We
call this operation a change of basis .

4.3.10.1. Coordinate Space Hierarchies

Coordinate frames are relative. That is, if you want to quantify the position,
orientation, and scale of a set of axes in three-dimensional space, you must
specify these quantities relative to some other set of axes (otherwise the num-
bers would have no meaning). This implies that coordinate spaces form a hi-
erarchy—every coordinate space is a child of some other coordinate space, and
the other space acts as its parent. World space has no parent; it is at the root
of the coordinate-space tree, and all other coordinate systems are ultimately
specifi ed relative to it, either as direct children or more-distant relatives.

4.3.10.2. Building a Change of Basis Matrix

The matrix that transforms points and directions from any child coordinate
system C to its parent coordinate system P can be writt en C P→M (pronounced
“C to P”). The subscript indicates that this matrix transforms points and direc-
tions from child space to parent space. Any child-space position vector PC can
be transformed into a parent-space position vector PP as follows:

Left-Handed

x

z

y

Right-Handed

z

x

y Virtual
Screen

Virtual
Screen

Figure 4.19. Left- and right-handed examples of view space, also known as camera space.

164 4. 3D Math for Games

In this equation,

 iC is the unit basis vector along the child space x-axis, expressed in par-
ent space coordinates;

 jC is the unit basis vector along the child space y-axis, in parent space;

 kC is the unit basis vector along the child space z-axis, in parent space;
 tC is the translation of the child coordinate system relative to parent

space.

This result should not be too surprising. The tC vector is just the transla-
tion of the child space axes relative to parent space, so if the rest of the ma-
trix were identity, the point (0, 0, 0) in child space would become tC in parent
space, just as we’d expect. The iC , jC , and kC unit vectors form the upper 3 × 3
of the matrix, which is a pure rotation matrix because these vectors are of unit
length. We can see this more clearly by considering a simple example, such as
a situation in which child space is rotated by an angle γ about the z-axis, with
no translation. The matrix for such a rotation is given by

 (4.2)

But in Figure 4.20, we can see that the coordinates of the iC and jC vectors,
expressed in parent space, are iC = [cos γ sin γ 0] and jC = [–sin γ cos γ 0].
When we plug these vectors into our formula for C P→M , with kC = [0 0 1], it
exactly matches the matrix rotatez(r, γ) from Equation (4.2).

Scaling the Child Axes

Scaling of the child coordinate system is accomplished by simply scaling the
unit basis vectors appropriately. For example, if child space is scaled up by a

 cos sin 0 0
sin cos 0 0

rotate (,) [1] .0 0 1 0
0 0 0 1

z x y zr r r

γ γ⎡ ⎤
⎢ ⎥− γ γ⎢ ⎥γ = ⎢ ⎥
⎢ ⎥
⎣ ⎦

r

C P

;
0
0
0
0

0
0

.0
1

P C C P

C

C

C

C

Cx Cy Cz

Cx Cy Cz

Cx Cy Cz

Cx Cy Cz

i i i
j j j
k k k
t

→

→

=

⎡ ⎤
⎢ ⎥
⎢ ⎥=⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥=⎢ ⎥
⎢ ⎥
⎣ ⎦

P P M
i
j

M k
t

tt

165 4.3. Matrices

factor of two, then the basis vectors iC , jC , and kC will be of length 2 instead
of unit length.

4.3.10.3. Extracting Unit Basis Vectors from a Matrix

 The fact that we can build a change of basis matrix out of a translation and
three Cartesian basis vectors gives us another powerful tool: Given any affi ne
4 × 4 transformation matrix, we can go in the other direction and extract the
child-space basis vectors iC , jC , and kC from it by simply isolating the appropri-
ate rows of the matrix (or columns if your math library uses column vectors).

This can be incredibly useful. Let’s say we are given a vehicle’s model-
to-world transform as an affi ne 4 × 4 matrix (a very common representation).
This is really just a change of basis matrix, transforming points in model space
into their equivalents in world space. Let’s further assume that in our game,
the positive z-axis always points in the direction that an object is facing. So, to
fi nd a unit vector representing the vehicle’s facing direction, we can simply ex-
tract kC directly from the model-to-world matrix (by grabbing its third row).
This vector will already be normalized and ready to go.

4.3.10.4. Transforming Coordinate Systems versus Vectors

We’ve said that the matrix C P→M transforms points and directions from child
space into parent space. Recall that the fourth row of C P→M contains tC , the
translation of the child coordinate axes relative to the world space axes. There-
fore, another way to visualize the matrix C P→M is to imagine it taking the
parent coordinate axes and transforming them into the child axes. This is the
reverse of what happens to points and direction vectors. In other words, if a
matrix transforms vectors from child space to parent space, then it also trans-
forms coordinate axes from parent space to child space. This makes sense when
you think about it—moving a point 20 units to the right with the coordinate
axes fi xed is the same as moving the coordinate axes 20 units to the left with
the point fi xed. This concept is illustrated in Figure 4.21.

x

y

cos(γ)

sin(γ)

–sin(γ)

cos(γ)

γ

γ

iC

jC

Figure 4.20. Change of basis when child axes are rotated by an angle γ relative to parent.

166 4. 3D Math for Games

Of course, this is just another point of potential confusion. If you’re think-
ing in terms of coordinate axes, then transformations go in one direction, but
if you’re thinking in terms of points and vectors, they go in the other direction!
As with many confusing things in life, your best bet is probably to choose
a single “canonical” way of thinking about things and stick with it. For ex-
ample, in this book we’ve chosen the following conventions:

 Transformations apply to vectors (not coordinate axes).

 Vectors are writt en as rows (not columns).

Taken together, these two conventions allow us to read sequences of ma-
trix multiplications from left to right and have them make sense (e.g.,

 D A A B B C C D→ → →=P P M M M). Obviously if you start thinking about the coordi-
nate axes moving around rather than the points and vectors, you either have
to read the transforms from right to left , or fl ip one of these two conventions
around. It doesn’t really matt er what conventions you choose as long as you
fi nd them easy to remember and work with.

That said, it’s important to note that certain problems are easier to think
about in terms of vectors being transformed, while others are easier to work
with when you imagine the coordinate axes moving around. Once you get good
at thinking about 3D vector and matrix math, you’ll fi nd it prett y easy to fl ip
back and forth between conventions as needed to suit the problem at hand.

4.3.11. Transforming Normal Vectors

 A normal vector is a special kind of vector, because in addition to (usually!) be-
ing of unit length, it carries with it the additional requirement that it should
always remain perpendicular to whatever surface or plane it is associated with.
Special care must be taken when transforming a normal vector, to ensure that
both its length and perpendicularity properties are maintained.

x

y

x'

y'
y

x

P'
P P

Figure 4.21. Two ways to interpret a transformation matrix. On the left, the point moves
against a fi xed set of axes. On the right, the axes move in the opposite direction while the
point remains fi xed.

167

In general, if a point or (non-normal) vector can be rotated from space A to
space B via the 3   ×   3 marix A B→M , then a normal vector n will be transformed
from space A to space B via the inverse transpose of that matrix, 1 T

A B()−
→M . We

will not prove or derive this result here (see [28], Section 3.5 for an excellent
derivation). However, we will observe that if the matrix A B→M contains only
uniform scale and no shear, then the angles between all surfaces and vectors in
space B will be the same as they were in space A. In this case, the matrix A B→M
will actually work just fi ne for any vector, normal or non-normal. However,
if A B→M contains nonuniform scale or shear (i.e., is non-orthogonal), then the
angles between surfaces and vectors are not preserved when moving from
space A to space B. A vector that was normal to a surface in space A will not
necessarily be perpendicular to that surface in space B. The inverse transpose
operation accounts for this distortion, bringing normal vectors back into per-
pendicularity with their surfaces even when the transformation involves non-
uniform scale or shear.

4.3.12. Storing Matrices in Memory

 In the C and C++ languages, a two-dimensional array is oft en used to store a
matrix. Recall that in C/C++ two-dimensional array syntax, the fi rst subscript
is the row and the second is the column, and that the column index varies fast-
est as you move through memory sequentially.

float m[4][4]; // [row][col], col varies fastest

// "flatten" the array to demonstrate ordering
float* pm = &m[0][0];
ASSERT(&pm[0] == &m[0][0]);
ASSERT(&pm[1] == &m[0][1]);
ASSERT(&pm[2] == &m[0][2]);
// etc.

We have two choices when storing a matrix in a two-dimensional C/C++
array. We can either

store the vectors (1. iC , jC , kC , tC) contiguously in memory (i.e., each row
contains a single vector), or
store the vectors 2. strided in memory (i.e., each column contains one vector).

The benefi t of approach (1) is that we can address any one of the four vec-
tors by simply indexing into the matrix and interpreting the four contiguous
values we fi nd there as a 4-element vector. This layout also has the benefi t of
matching up exactly with row vector matrix equations (which is another reason
why I’ve selected row vector notation for this book). Approach (2) is some-
times necessary when doing fast matrix-vector multiplies using a vector-en-

4.3. Matrices

168 4. 3D Math for Games

abled (SIMD) microprocessor, as we’ll see later in this chapter. In most game
engines I’ve personally encountered, matrices are stored using approach (1),
with the vectors in the rows of the two-dimensional C/C++ array. This is shown
below:

float M[4][4];

M[0][0]=ix; M[0][1]=iy; M[0][2]=iz; M[0][3]=0.0f;
M[1][0]=jx; M[1][1]=jy; M[1][2]=jz; M[1][3]=0.0f;
M[2][0]=kx; M[2][1]=ky; M[2][2]=kz; M[2][3]=0.0f;
M[3][0]=tx; M[3][1]=ty; M[3][2]=tz; M[3][3]=1.0f;

The matrix M looks like this when viewed in a debugger:

M[][]
 [0]
 [0] ix
 [1] iy
 [2] iz
 [3] 0.0000

 [1]
 [0] jx
 [1] jy
 [2] jz
 [3] 0.0000

 [2]
 [0] kx
 [1] ky
 [2] kz
 [3] 0.0000

 [3]
 [0] tx
 [1] ty
 [2] tz
 [3] 1.0000

One easy way to determine which layout your engine uses is to fi nd a
function that builds a 4 × 4 translation matrix. (Every good 3D math library
provides such a function.) You can then inspect the source code to see where
the elements of the t vector are being stored. If you don’t have access to the
source code of your math library (which is prett y rare in the game industry),
you can always call the function with an easy-to-recognize translation like
(4, 3, 2), and then inspect the resulting matrix. If row 3 contains the values 4.0,
3.0, 2.0, 1.0, then the vectors are in the rows, otherwise the vectors are in
the columns.

169 4.4. Quaternions

4.4. Quaternions

 We’ve seen that a 3   ×   3 matrix can be used to represent an arbitrary rotation in
three dimensions. However, a matrix is not always an ideal representation of
a rotation, for a number of reasons:

We need nine fl oating-point values to represent a rotation, which seems 1.
excessive considering that we only have three degrees of freedom—
pitch, yaw, and roll.
Rotating a vector requires a vector-matrix multiplication, which involves 2.
three dot products, or a total of nine multiplications and six additions.
We would like to fi nd a rotational representation that is less expensive
to calculate, if possible.
In games and computer graphics, it’s oft en important to be able to fi nd 3.
rotations that are some percentage of the way between two known rota-
tions. For example, if we are to smoothly animate a camera from some
starting orientation A to some fi nal orientation B over the course of a
few seconds, we need to be able to fi nd lots of intermediate rotations be-
tween A and B over the course of the animation. It turns out to be diffi -
cult to do this when the A and B orientations are expressed as matrices.

Thankfully, there is a rotational representation that overcomes these three
problems. It is a mathematical object known as a quaternion. A quaternion
looks a lot like a four-dimensional vector, but it behaves quite diff erently.
We usually write quaternions using non-italic, non-boldface type, like this:
q = [qx qy qz qw].

Quaternions were developed by Sir William Rowan Hamilton in 1843 as
an extension to the complex numbers. They were fi rst used to solve prob-
lems in the area of mechanics. Technically speaking, a quaternion obeys a
set of rules known as a four-dimensional normed division algebra over the real
numbers. Thankfully, we won’t need to understand the details of these rather
esoteric algebraic rules. For our purposes, it will suffi ce to know that the unit-
length quaternions (i.e., all quaternions obeying the constraint qx

2 + qy
2 + qz

2 +
qw

2 = 1) represent three-dimensional rotations.
There are a lot of great papers, web pages, and presentations on quater-

nions available on the web, for further reading. Here’s one of my favorites:
htt p://graphics.ucsd.edu/courses/cse169_w05/CSE169_04.ppt.

4.4.1. Unit Quaternions as 3D Rotations

A unit quaternion can be visualized as a three-dimensional vector plus a
fourth scalar coordinate. The vector part qV is the unit axis of rotation, scaled

170 4. 3D Math for Games

by the sine of the half-angle of the rotation. The scalar part qS is the cosine of
the half-angle. So the unit quaternion q can be writt en as follows:

where a is a unit vector along the axis of rotation, and θ is the angle of rota-
tion. The direction of the rotation follows the right-hand rule , so if your thumb
points in the direction of a, positive rotations will be in the direction of your
curved fi ngers.

Of course, we can also write q as a simple four-element vector:

A unit quaternion is very much like an axis+angle representation of a ro-
tation (i.e., a four-element vector of the form [a θ]). However, quaternions
are more convenient mathematically than their axis+angle counterparts, as we
shall see below.

4.4.2. Quaternion Operations

Quaternions support some of the familiar operations from vector algebra,
such as magnitude and vector addition. However, we must remember that the
sum of two unit quaternions does not represent a 3D rotation, because such a
quaternion would not be of unit length. As a result, you won’t see any quater-
nion sums in a game engine, unless they are scaled in some way to preserve
the unit length requirement.

4.4.2.1. Quaternion Multiplication

 One of the most important operations we will perform on quaternions is that
of multiplication. Given two quaternions p and q representing two rotations P
and Q, respectively, the product pq represents the composite rotation (i.e., ro-
tation Q followed by rotation P). There are actually quite a few diff erent kinds
of quaternion multiplication, but we’ll restrict this discussion to the variety
used in conjunction with 3D rotations, namely the Grassman product. Using
this defi nition, the product pq is defi ned as follows:

 pq () () .S V S V V V S S V Vp q p q⎡ ⎤= + + × − ⋅⎣ ⎦q p p q p q

 2 2

q []
[sin cos] ,

V Sq
θ θ

=

=

q
a

2

2

2

2

q [], where
sin ,
sin ,
sin ,

 cos .

x y z w

x Vx x

y Vy y

z Vz z

w S

q q q q
q q a
q q a
q q a
q q

θ

θ

θ

θ

=

= =

= =

= =

= =

171 4.4. Quaternions

Notice how the Grassman product is defi ned in terms of a vector part, which
ends up in the x, y, and z components of the resultant quaternion, and a scalar
part, which ends up in the w component.

4.4.2.2. Conjugate and Inverse

 The inverse of a quaternion q is denoted q–1 and is defi ned as a quaternion
which, when multiplied by the original, yields the scalar 1 (i.e., qq–1 = 0i + 0j
+ 0k + 1). The quaternion [0 0 0 1] represents a zero rotation (which makes
sense since sin(0) = 0 for the fi rst three components, and cos(0) = 1 for the last
component).

In order to calculate the inverse of a quaternion, we must fi rst defi ne a
quantity known as the conjugate. This is usually denoted q* and it is defi ned
as follows:

In other words, we negate the vector part but leave the scalar part unchaged.
Given this defi nition of the quaternion conjugate, the inverse quaternion

q–1 is defi ned as follows:

Our quaternions are always of unit length (i.e., |q| = 1), because they represent
3D rotations. So, for our purposes, the inverse and the conjugate are identical:

This fact is incredibly useful, because it means we can always avoid doing
the (relatively expensive) division by the squared magnitude when inverting
a quaternion, as long as we know a priori that the quaternion is normalized.
This also means that inverting a quaternion is generally much faster than in-
verting a 3   ×   3 matrix—a fact that you may be able to leverage in some situa-
tions when optimizing your engine.

Conjugate and Inverse of a Product

 The conjugate of a quaternion product (pq) is equal to the reverse product of
the conjugates of the individual quaternions:

Likewise the inverse of a quaternion product is equal to the reverse product of
the inverses of the individual quaternions:

 (4.3)

 q * [].V Sq= −q

1
2

q*
q .

q
− =

1q q* [] when q 1.V Sq− = = − =q

(pq)* q* p* .=

1 1 1(pq) q p .− − −=

172 4. 3D Math for Games

This is analogous to the reversal that occurs when transposing or inverting
matrix products.

4.4.3. Rotating Vectors with Quaternions

How can we apply a quaternion rotation to a vector ? The fi rst step is to rewrite
the vector in quaternion form . A vector is a sum involving the unit basis vectors
i, j, and k. A quaternion is a sum involving i, j, and k, but with a fourth scalar
term as well. So it makes sense that a vector can be writt en as a quaternion
with its scalar term qS equal to zero. Given the vector v, we can write a cor-
responding quaternion v = [v 0] = [vx vy vz 0].

In order to rotate a vector v by a quaternion q, we pre-multiply the vec-
tor (writt en in its quaternion form v) by q and then post-multiply it by the
inverse quaternion, q–1. Therefore, the rotated vector v’ can be found as fol-
lows:

This is equivalent to using the quaternion conjugate, because our quaternions
are always unit length:

 (4.4)

The rotated vector v’ is obtained by simply extracting it from its quaternion
form v’.

Quaternion multiplication can be useful in all sorts of situations in real
games. For example, let’s say that we want to fi nd a unit vector describing the
direction in which an aircraft is fl ying. We’ll further assume that in our game,
the positive z-axis always points toward the front of an object by convention.
So the forward unit vector of any object in model space is always FM ≡ [0 0 1]
by defi nition. To transform this vector into world space, we can simply take
our aircraft ’s orientation quaternion q and use it with Equation (4.4) to rotate
our model-space vector FM into its world space equivalent FW (aft er converting
these vectors into quaternion form, of course):

4.4.3.1. Quaternion Concatenation

 Rotations can be concatenated in exactly the same way that matrix-based trans-
formations can, by multiplying the quaternions together. For example, consid-
er three distinct rotations, represented by the quaternions q1 , q2 , and q3 , with
matrix equivalents R1 , R2 , and R3. We want to apply rotation 1 fi rst, followed
by rotation 2 and fi nally rotation 3. The composite rotation matrix Rnet can be
found and applied to a vector v as follows:

v rotate(q,) qvq* .′= =v

1 1F qF q q [0 0 1 0] q .W M
− −= =

1v rotate(q,) qvq .−′= =v

173 4.4. Quaternions

Likewise, the composite rotation quaternion qnet can be found and applied to
vector v (in its quaternion form, v) as follows:

Notice how the quaternion product must be performed in an order opposite
to that in which the rotations are applied (q3q2q1). This is because quaternion
rotations always multiply on both sides of the vector, with the uninverted
quaternions on the left and the inverted quaternions on the right. As we saw
in Equation (4.3), the inverse of a quaternion product is the reverse product of
the individual inverses, so the uninverted quaternions read right-to-left while
the inverted quaternions read left -to-right.

4.4.4. Quaternion-Matrix Equivalence

 We can convert any 3D rotation freely between a 3   ×   3 matrix representation
R and a quaternion representation q. If we let q = [qV qS] = [qVx qVy qVz qS] =
[x y z w], then we can fi nd R as follows:

 Likewise, given R we can fi nd q as follows (where q[0] = qVx , q[1] = qVy ,
q[2] = qVz , and q[3] = qS). This code assumes that we are using row vectors
in C/C++ (i.e., that the rows of matrix R[row][col] correspond to the rows
of the matrix R shown above). The code was adapted from a Gamasutra article
by Nick Bobic, published on July 5, 1998, which is available here: htt p://www.
gamasutra.com/view/feature/3278/rotating_objects_using_quaternions.php.
For a discussion of some even faster methods for converting a matrix to a
quaternion, leveraging various assumptions about the nature of the matrix,
see htt p://www.euclideanspace.com/maths/geometry/rotations/conversions/
matrixToQuaternion/index.htm.

void matrixToQuaternion(
 const float R[3][3],
 float q[/*4*/])
{
 float trace = R[0][0] + R[1][1] + R[2][2];

net 1 2 3

1 2 3 net

;

.

=

′= =

R R R R

v vR R R vR

net 3 2 1

1 1 1 1
3 2 1 1 2 3 net net

q q q q ;

v q q q vq q q q vq .− − − −

=

′= =

2 2

2 2

2 2

1 2 2 2 2 2 2

2 2 1 2 2 2 2 .

2 2 2 2 1 2 2

y z xy zw xz yw

xy zw x z yz xw

xz yw yz xw x y

⎡ ⎤− − + −
⎢ ⎥

= − − − +⎢ ⎥
⎢ ⎥

+ − − −⎣ ⎦

R

http://www.gamasutra.com/view/feature/3278/rotating_objects_using_quaternions.php
http://www.gamasutra.com/view/feature/3278/rotating_objects_using_quaternions.php
http://www.euclideanspace.com/maths/geometry/rotations/conversions/

174 4. 3D Math for Games

 // check the diagonal
 if (trace > 0.0f)
 {
 float s = sqrt(trace + 1.0f);
 q[3] = s * 0.5f;

 float t = 0.5f / s;
 q[0] = (R[2][1] - R[1][2]) * t;
 q[1] = (R[0][2] - R[2][0]) * t;
 q[2] = (R[1][0] - R[0][1]) * t;
 }
 else
 {
 // diagonal is negative
 int i = 0;
 if (R[1][1] > R[0][0]) i = 1;
 if (R[2][2] > R[i][i]) i = 2;

 static const int NEXT[3] = {1, 2, 0};
 j = NEXT[i];
 k = NEXT[j];

 float s = sqrt ((R[i][i]
 - (R[j][j] + R[k][k]))
 + 1.0f);

 q[i] = s * 0.5f;

 float t;
 if (s != 0.0) t = 0.5f / s;
 else t = s;

 q[3] = (R[k][j] - R[j][k]) * t;
 q[j] = (R[j][i] + R[i][j]) * t;
 q[k] = (R[k][i] + R[i][k]) * t;
 }
}

4.4.5. Rotational Linear Interpolation

 Rotational interpolation has many applications in the animation, dynamics
and camera systems of a game engine. With the help of quaternions, rotations
can be easily interpolated just as vectors and points can.

The easiest and least computationally intensive approach is to perform
a four-dimensional vector LERP on the quaternions you wish to interpolate.
Given two quaternions qA and qB representing rotations A and B, we can
fi nd an intermediate rotation qLERP that is β percent of the way from A to B as
follows:

175

Notice that the resultant interpolated quaternion had to be renormalized. This
is necessary because the LERP operation does not preserve a vector’s length
in general.

Geometrically, qLERP = LERP(qA , qB , β) is the quaternion whose orientation
lies β percent of the way from orientation A to orientation B, as shown (in two
dimensions for clarity) in Figure 4.22. Mathematically, the LERP operation re-
sults in a weighed average of the two quaternions, with weights (1 – β) and β
(notice that (1 – β) + β = 1).

4.4.5.1. Spherical Linear Interpolation

 The problem with the LERP operation is that it does not take account of the
fact that quaternions are really points on a four-dimensional hypersphere. A
LERP eff ectively interpolates along a chord of the hypersphere, rather than
along the surface of the hypersphere itself. This leads to rotation animations
that do not have a constant angular speed when the parameter β is changing
at a constant rate. The rotation will appear slower at the end points and faster
in the middle of the animation.

LERP
(1)q q

q LERP(q ,q ,)
(1)q q

(1)

(1)
normalize .

(1)

(1)

A B
A B

A B

T
Ax Bx

Ay By

Az Bz

Aw Bw

q q

q q

q q

q q

− β + β
= β =

− β + β

⎛ ⎞− β + β⎡ ⎤
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥− β + β⎜ ⎟⎢ ⎥= ⎜ ⎟⎢ ⎥− β + β⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎜ ⎟− β + β⎣ ⎦⎝ ⎠

qA (β = 0)

qLERP = LERP(qA, qB, 0.4)

qB (β = 1)

Figure 4.22. Linear interpolation (LERP) between quaternions qA and qB.

4.4. Quaternions

176 4. 3D Math for Games

To solve this problem, we can use a variant of the LERP operation known
as spherical linear interpolation, or SLERP for short. The SLERP operation uses
sines and cosines to interpolate along a great circle of the 4D hypersphere,
rather than along a chord, as shown in Figure 4.23. This results in a constant
angular speed when β varies at a constant rate.

The formula for SLERP is similar to the LERP formula, but the weights
(1 – β) and β are replaced with weights wp and wq involving sines of the angle
between the two quaternions.

where

The cosine of the angle between any two unit-length quaternions can
be found by taking their four-dimensional dot product. Once we know
cos(θ), we can calculate the angle θ and the various sines we need quite
easily:

qA (β = 0)

qLERP = LERP(qA, qB, 0.4)

qB (β = 1)

qSLERP = SLERP(qA , qB, 0.4)

0. 4 al ong chord
0. 4 a lo ng ar c

Figure 4.23. Spherical linear interpolation along a great circle arc of a 4D hypersphere.

SLERP(p,q,) p q,p qw wβ = +

sin((1))
,

sin()
sin()

.
sin()

p

q

w

w

− β θ
=

θ

βθ
=

θ

1

cos() p q ;

cos (p q).
x x y y z z w wp q p q p q p q

−

θ = = + + +

θ=

⋅

⋅

177

4.4.5.2. To SLERP or Not to SLERP (That’s Still the Question)

The jury is still out on whether or not to use SLERP in a game engine. Jonathan
Blow wrote a great article positing that SLERP is too expensive, and LERP’s
quality is not really that bad—therefore, he suggests, we should understand
SLERP but avoid it in our game engines (see htt p://number-none.com/prod-
uct/Understanding%20Slerp,%20Then%20Not%20Using%20It/index.html).
On the other hand, some of my colleagues at Naughty Dog have found that
a good SLERP implementation performs nearly as well as LERP. (For exam-
ple, on the PS3’s SPUs, Naughty Dog’s Ice team’s implementation of SLERP
takes 20 cycles per joint, while its LERP implementation takes 16.25 cycles per
joint.) Therefore, I’d personally recommend that you profi le your SLERP and
LERP implementations before making any decisions. If the performance hit
for SLERP isn’t unacceptable, I say go for it, because it may result in slightly
bett er-looking animations. But if your SLERP is slow (and you cannot speed
it up, or you just don’t have the time to do so), then LERP is usually good
enough for most purposes.

4.5. Comparison of Rotational Representations

We’ve seen that rotations can be represented in quite a few diff erent ways.
This section summarizes the most common rotational representations and
outlines their pros and cons. No one representation is ideal in all situations.
Using the information in this section, you should be able to select the best
representation for a particular application.

4.5.1. Euler Angles

 We briefl y explored Euler angles in Section 4.3.9.1. A rotation represented via
Euler angles consists of three scalar values: yaw, pitch, and roll. These quanti-
ties are sometimes represented by a 3D vector [θY θP θR].

The benefi ts of this representation are its simplicity, its small size (three
fl oating-point numbers), and its intuitive nature—yaw, pitch, and roll are easy
to visualize. You can also easily interpolate simple rotations about a single axis.
For example, it’s trivial to fi nd intermediate rotations between two distinct yaw
angles by linearly interpolating the scalar θY. However, Euler angles cannot be
interpolated easily when the rotation is about an arbitrarily-oriented axis.

In addition, Euler angles are prone to a condition known as gimbal lock .
This occurs when a 90-degree rotation causes one of the three principal axes
to “collapse” onto another principal axis. For example, if you rotate by 90
degrees about the x-axis, the y-axis collapses onto the z-axis. This prevents

4.5. Comparison of Rotational Representations

178 4. 3D Math for Games

any further rotations about the original y-axis, because rotations about y and z
have eff ectively become equivalent.

Another problem with Euler angles is that the order in which the rotations
are performed around each axis matt ers. The order could be PYR, YPR, RYP,
and so on, and each ordering may produce a diff erent composite rotation.
No one standard rotation order exists for Euler angles across all disciplines
(although certain disciplines do follow specifi c conventions). So the rotation
angles [θY θP θR] do not uniquely defi ne a particular rotation—you need to
know the rotation order to interpret these numbers properly.

A fi nal problem with Euler angles is that they depend upon the mapping
from the x-, y -, and z-axes onto the natural front, left /right, and up directions for
the object being rotated. For example, yaw is always defi ned as rotation about
the up axis, but without additional information we cannot tell whether this
corresponds to a rotation about x, y, or z.

4.5.2. 3 × 3 M atrices

 A 3 × 3 matrix is a convenient and eff ective rotational representation for a
number of reasons. It does not suff er from gimbal lock , and it can represent
arbitrary rotations uniquely. Rotations can be applied to points and vectors in
a straightforward manner via matrix multiplication (i.e., a series of dot prod-
ucts). Most CPUs and all GPUs now have built-in support for hardware-accel-
erated dot products and matrix multiplication. Rotations can also be reversed
by fi nding an inverse matrix, which for a pure rotation matrix is the same
thing as fi nding the transpose—a trivial operation. And 4 × 4 matrices off er a
way to represent arbitrary affi ne transformations—rotations, translations, and
scaling—in a totally consistent way.

However, rotation matrices are not particularly intuitive. Looking at a big
table of numbers doesn’t help one picture the corresponding transformation
in three-dimensional space. Also, rotation matrices are not easily interpolated.
Finally, a rotation matrix takes up a lot of storage (nine fl oating-point num-
bers) relative to Euler angles.

4.5.3. Axis + Angle

 We can represent rotations as a unit vector defi ning the axis of rotation plus a
scalar for the angle of rotation. This is known as an axis+angle representation,
and it is sometimes denoted by the four-dimensional vector [a θ] , where a
is the axis of rotation and θ the angle in radians. In a right-handed coordinate
system, the direction of a positive rotation is defi ned by the right-hand rule,
while in a left -handed system we use the left -hand rule instead.

179

The benefi ts of the axis+angle representation are that it is reasonably intu-
itive and also compact (only requires four fl oating-point numbers, as opposed
to the nine required for a 3 × 3 matrix).

One important limitation of the axis+angle representation is that rota-
tions cannot be easily interpolated. Also, rotations in this format cannot be
applied to points and vectors in a straightforward way—one needs to convert
the axis+angle representation into a matrix or quaternion fi rst.

4.5.4. Quaternions

 As we’ve seen, a unit-length quaternion can represent 3D rotations in a man-
ner analogous to the axis+angle representation. The primary diff erence be-
tween the two representations is that a quaternion’s axis of rotation is scaled
by the sine of the half angle of rotation, and instead of storing the angle in the
fourth component of the vector, we store the cosine of the half angle.

The quaternion formulation provides two immense benefi ts over the
axis+angle representation. First, it permits rotations to be concatenated and
applied directly to points and vectors via quaternion multiplication. Second,
it permits rotations to be easily interpolated via simple LERP or SLERP op-
erations. Its small size (four fl oating-point numbers) is also a benefi t over the
matrix formulation.

4.5.5. SQT Transformations

 By itself, a quaternion can only represent a rotation, whereas a 4   ×   4 matrix
can represent an arbitrary affi ne transformation (rotation, translation, and
scale). When a quaternion is combined with a translation vector and a scale
factor (either a scalar for uniform scaling or a vector for nonuniform scaling),
then we have a viable alternative to the 4   ×   4 matrix representation of affi ne
transformations. We sometimes call this an SQT transform, because it contains
a scale factor, a quaternion for rotation, and a translation vector.

or

SQT transforms are widely used in computer animation because of their
smaller size (eight fl oats for uniform scale, or ten fl oats for nonuniform scale,
as opposed to the 12 fl oating-point numbers needed for a 4   ×   3 matrix) and
their ability to be easily interpolated. The translation vector and scale factor
are interpolated via LERP, and the quaternion can be interpolated with either
LERP or SLERP.

SQT [q] (uniform scale),s s= t

SQT [q] (non-uniform scale vector).= s t s

4.5. Comparison of Rotational Representations

180 4. 3D Math for Games

4.5.6. Dual Quaternions

 Complete transformations involving rotation, translation, and scale can be
represented using a mathematical object known as a dual quaternion. A dual
quaternion is like an ordinary quaternion, except that its four components are
dual numbers instead of regular real-valued numbers. A dual number can be
writt en as the sum of a non-dual part and a dual part as follows: 0ˆ .a a aε= +ε

Here ε is a magical number called the dual unit, defi ned as 2 0.ε = (This is
analogous to the imaginary number 1i = − used when writing a complex
number as the sum of a real and an imaginary part: .c a ib= +)

Because each dual number can be represented by two real numbers
(the non-dual and dual parts), a dual quaternion can be represented by an
eight-element vector. It can also be represented as the sum of two ordinary
quaternions, where the second one is multiplied by the dual unit, as follows:

A full discussion of dual numbers and dual quaternions is beyond our

scope here. However, a number of excellent articles on them exist online and
in the literature. I recommend starting with htt ps://www.cs.tcd.ie/publica-
tions/tech-reports/reports.06/TCD-CS-2006-46.pdf.

4.5.7. Rotations and Degrees of Freedom

The term “degrees of freedom ” (or DOF for short) refers to the number of mu-
tually-independent ways in which an object’s physical state (position and ori-
entation) can change. You may have encountered the phrase “six degrees of
freedom” in fi elds such as mechanics, robotics, and aeronautics. This refers
to the fact that a three-dimensional object (whose motion is not artifi cially
constrained) has three degrees of freedom in its translation (along the x-, y-,
and z-axes) and three degrees of freedom in its rotation (about the x-, y-, and
z-axes), for a total of six degrees of freedom.

The DOF concept will help us to understand how diff erent rotational rep-
resentations can employ diff erent numbers of fl oating-point parameters, yet
all specify rotations with only three degrees of freedom. For example, Euler
angles require three fl oats, but axis+angle and quaternion representations use
four fl oats, and a 3   ×   3 matrix takes up nine fl oats. How can these representa-
tions all describe 3-DOF rotations?

The answer lies in constraints . All 3D rotational representations employ
three or more fl oating-point parameters, but some representations also have
one or more constraints on those parameters. The constraints indicate that the
parameters are not independent—a change to one parameter induces changes
to the other parameters in order to maintain the validity of the constraint(s).

0q̂ q q .ε= +ε

http://www.cs.tcd.ie/publica-tions/tech-reports/reports.06/TCD-CS-2006-46.pdf
http://www.cs.tcd.ie/publica-tions/tech-reports/reports.06/TCD-CS-2006-46.pdf
http://www.cs.tcd.ie/publica-tions/tech-reports/reports.06/TCD-CS-2006-46.pdf

181

If we subtract the number of constraints from the number of fl oating-point
parameters, we arrive at the number of degrees of freedom—and this number
should always be three for a 3D rotation:

 NDOF = Nparameters – Nconstraints. (4.5)

The following list shows Equation (4.5) in action for each of the rotational
representations we’ve encountered in this book.

 Euler Angles. 3 parameters – 0 constraints = 3 DOF.

 Axis+Angle. 4 parameters – 1 constraint = 3 DOF.
 Constraint: Axis is constrained to be unit length.

 Quaternion. 4 parameters – 1 constraint = 3 DOF.
 Constraint: Quaternion is constrained to be unit length.

 3   ×   3 Matrix. 9 parameters – 6 constraints = 3 DOF.
 Constraints: All three rows and all three columns must be of unit length

(when treated as three-element vectors).

4.6. Other Useful Mathematical Objects

As game engineers, we will encounter a host of other mathematical objects,
in addition to points, vectors, matrices and quaternions. This section briefl y
outlines the most common of these.

4.6.1. Lines, Rays, and Line Segments

An infi nite line can be represented by a point P0 plus a unit vector u in the
direction of the line. A parametric equation of a line traces out every possible
point P along the line by starting at the initial point P0 and moving an arbi-
trary distance t along the direction of the unit vector u. The infi nitely large set
of points P becomes a vector function of the scalar parameter t:

 P(t) = P0 + t  u, where    –∞ < t < +∞. (4.73)

This is depicted in Figure 4.24.

t = 0
t = 1

t = 2
t = 3

t = –1

uP0

Figure 4.24. Parametric equation of a line.

4.6. Other Useful Mathematical Objects

182 4. 3D Math for Games

x
z

y

C r

Figure 4.27. Point-radius representation of a sphere.

A ray is a line that extends to infi nity in only one direction. This is easily
expressed as P(t) with the constraint t ≥ 0, as shown in Figure 4.25.

A line segment is bounded at both ends by P0 and P1. It too can be repre-
sented by P(t), in either one of the following two ways (where L = P1 – P0 and
L = |L| is the length of the line segment):

 1. P(t) = P0 + tu, where 0 ≤ t ≤ L, or

 2. P(t) = P0 + tL, where 0 ≤ t ≤ 1.

The latt er format, depicted in Figure 4.26, is particularly convenient because
the parameter t is normalized; in other words, t always goes from zero to one,
no matt er which particular line segment we are dealing with. This means we
do not have to store the constraint L in a separate fl oating-point parameter; it
is already encoded in the vector L = Lu (which we have to store anyway).

t = 0
t = 1

t = 2
t = 3uP0

Figure 4.25. Parametric equation of a ray.

t = 0

t = 1
L = P1 – P0

P0

P1

t = 0.5

Figure 4.26. Parametric equation of a line segment, with normalized parameter t.

4.6.2. Spheres

Spheres are ubiquitous in game engine programming. A sphere is typically
defi ned as a center point C plus a radius r, as shown in Figure 4.27. This packs

183

nicely into a four-element vector, [Cx Cy Cz r]. As we’ll see below when we dis-
cuss SIMD vector processing, there are distinct benefi ts to being able to pack
data into a vector containing four 32-bit fl oats (i.e., a 128-bit package).

4.6.3. Planes

 A plane is a 2D surface in 3D space. As you may recall from high school alge-
bra, the equation of a plane is oft en writt en as follows:

 Ax + By + Cz + D = 0.

This equation is satisfi ed only for the locus of points P = [x y z] that lie on
the plane.

Planes can be represented by a point P0 and a unit vector n that is normal
to the plane. This is sometimes called point-normal form , as depicted in Fig-
ure 4.28.

It’s interesting to note that when the parameters A, B, and C from the tra-
ditional plane equation are interpreted as a 3D vector, that vector lies in the di-
rection of the plane normal. If the vector [A B C] is normalized to unit length,
then the normalized sub-vector [a b c] = n, and the normalized parameter

2 2 2d D A B C= + + is just the distance from the plane to the origin . The sign
of d is positive if the plane’s normal vector (n) is pointing toward the origin
(i.e., the origin is on the “front” side of the plane) and negative if the normal
is pointing away from the origin (i.e., the origin is “behind” the plane). In
fact, the normalized equation ax + by + cz + d = 0 is just another way of writing
(n P) = –   d, which means that when any point P on the plane is projected onto
the plane normal n, the length of that projection will be –   d.

A plane can actually be packed into a four-element vector, much like a
sphere can. To do so, we observe that to describe a plane uniquely, we need
only the normal vector n = [a b c] and the distance from the origin d. The
four-element vector L = [n d] = [a b c d] is a compact and convenient way
to represent and store a plane in memory. Note that when P is writt en in ho-
mogeneous coordinates with w = 1, the equation (L P) = 0 is yet another way
of writing (n P) = –   d. (These equations are satisfi ed for all points P that lie
on the plane L.)

Planes defi ned in four-element vector form can be easily transformed
from one coordinate space to another. Given a matrix A B→M that transforms
points and (non-normal) vectors from space A to space B, we already know
that to transform a normal vector such as the plane’s n vector, we need to use
the inverse transpose of that matrix, 1 T

A B()−
→M . So it shouldn’t be a big surprise

to learn that applying the inverse transpose of a matrix to a four-element plane
vector L will, in fact, correctly transform that plane from space A to space B.

P0

n

Figure 4.28. A plane
in point-normal form.

4.6. Other Useful Mathematical Objects

184 4. 3D Math for Games

We won’t derive or prove this result any further here, but a thorough explana-
tion of why this litt le “trick” works is provided in Section 4.2.3 of [28].

4.6.4. Axis-Aligned Bounding Boxes (AABB)

An axis-aligned bounding box (AABB) is a 3D cuboid whose six rectangular
faces are aligned with a particular coordinate frame’s mutually orthogonal
axes. As such, an AABB can be represented by a six-element vector containing
the minimum and maximum coordinates along each of the 3 principal axes,
[xmin , xmax , ymin , ymax , zmin , zmax], or two points Pmin and Pmax.

This simple representation allows for a particularly convenient and in-
expensive method of testing whether a point P is inside or outside any given
AABB. We simply test if all of the following conditions are true:

 Px ≥ xmin and Px ≤ xmax and
 Py ≥ ymin and Py ≤ ymax and

Pz ≥ zmin  and Pz ≤ zmax.

Because intersection tests are so speedy, AABBs are oft en used as an “early
out” collision check; if the AABBs of two objects do not intersect, then there is
no need to do a more detailed (and more expensive) collision test.

4.6.5. Oriented Bounding Boxes (OBB)

An oriented bounding box (OBB) is a cuboid that has been oriented so
as to align in some logical way with the object it bounds. Usually an OBB
aligns with the local-space axes of the object. Hence it acts like an AABB
in local space, although it may not necessarily align with the world space
axes.

Various techniques exist for testing whether or not a point lies within
an OBB, but one common approach is to transform the point into the OBB’s
“aligned” coordinate system and then use an AABB intersection test as pre-
sented above.

4.6.6. Frusta

As shown in Figure 4.29, a frustum is a group of six planes that defi ne a trun-
cated pyramid shape. Frusta are commonplace in 3D rendering because they
conveniently defi ne the viewable region of the 3D world when rendered via a
perspective projection from the point of view of a virtual camera. Four of the
planes bound the edges of the screen space, while the other two planes repre-
sent the the near and far clipping planes (i.e., they defi ne the minimum and
maximum z coordinates possible for any visible point).

Near

Far

Left

Right

Top

Bottom

Figure 4.29. A frustum.

185 4.7. Hardware-Accelerated SIMD Math

One convenient representation of a frustum is as an array of six planes,
each of which is represented in point-normal form (i.e., one point and one
normal vector per plane).

Testing whether a point lies inside a frustum is a bit involved, but the basic
idea is to use dot products to determine whether the point lies on the front or
back side of each plane. If it lies inside all six planes, it is inside the frustum.

A helpful trick is to transform the world-space point being tested, by
applying the camera’s perspective projection to it. This takes the point from
world space into a space known as homogeneous clip space. In this space, the
frustum is just an axis-aligned cuboid (AABB). This permits much simpler in/
out tests to be performed.

4.6.7. Convex Polyhedral Regions

A convex polyhedral region is defi ned by an arbitrary set of planes, all with nor-
mals pointing inward (or outward). The test for whether a point lies inside
or outside the volume defi ned by the planes is relatively straightforward; it
is similar to a frustum test, but with possibly more planes. Convex regions
are very useful for implementing arbitrarily-shaped trigger regions in games.
Many engines employ this technique; for example, the Quake engine’s ubiqui-
tous brushes are just volumes bounded by planes in exactly this way.

4.7. Hardware-Accelerated SIMD Math

SIMD stands for “single instruction multiple data .” This refers to the ability of
most modern microprocessors to perform a single mathematical operation on
multiple data items in parallel, using a single machine instruction. For exam-
ple, the CPU might multiply four pairs of fl oating-point numbers in parallel
with a single instruction. SIMD is widely used in game engine math libraries,
because it permits common vector operations such as dot products and matrix
multiplication to be performed extremely rapidly.

Intel fi rst introduced MMX instructions with their Pentium line of CPUs
in 1994. These instructions permitt ed SIMD calculations to be performed on
8-, 16-, and 32-bit integers packed into special 64-bit MMX registers. Intel fol-
lowed this up with various revisions of an extended instruction set called
Streaming SIMD Extensions, or SSE, the fi rst version of which appeared in the
Pentium III processor. The SSE instruction set utilizes 128-bit registers that can
contain integer or IEEE fl oating-point data.

The SSE mode most commonly used by game engines is called packed 32-
bit fl oating-point mode. In this mode, four 32-bit float values are packed into

186 4. 3D Math for Games

a single 128-bit register; four operations such as additions or multiplications
are performed in parallel on four pairs of fl oats using a single instruction. This
is just what the doctor ordered when multiplying a four-element vector by a
4   ×   4 matrix!

4.7.1.1. SSE Registers

In packed 32-bit fl oating-point mode, each 128-bit SSE register contains four
32-bit fl oats. The individual fl oats within an SSE register are conveniently re-
ferred to as [x y z w], just as they would be when doing vector/matrix math
in homogeneous coordinates on paper (see Figure 4.30). To see how the SSE
registers work, here’s an example of a SIMD instruction:

 addps xmm0, xmm1

The addps instruction adds the four fl oats in the 128-bit XMM0 register with
the four fl oats in the XMM1 register, and stores the four results back into
XMM0. Put another way:

 xmm0.x = xmm0.x + xmm1.x;
 xmm0.y = xmm0.y + xmm1.y;
 xmm0.z = xmm0.z + xmm1.z;
    xmm0.w = xmm0.w + xmm1.w.

The four fl oating-point values stored in an SSE register can be extracted
to or loaded from memory or registers individually, but such operations tend
to be comparatively slow. Moving data between the x87 FPU registers and the
SSE registers is particularly bad, because the CPU has to wait for either the x87
or the SSE unit to spit out its pending calculations. This stalls out the CPU’s
entire instruction execution pipeline and results in a lot of wasted cycles. In a
nutshell, code that mixes regular float mathematics with SSE mathematics
should be avoided like the plague.

To minimize the costs of going back and forth between memory, x87 FPU
registers, and SSE registers, most SIMD math libraries do their best to leave
data in the SSE registers for as long as possible. This means that even scalar
values are left in SSE registers, rather than transferring them out to float
variables. For example, a dot product between two vectors produces a scalar
result, but if we leave that result in an SSE register it can be used later in other

x y z w

32 bits 32 bits 32 bits 32 bits

Figure 4.30. The four components of an SSE register in 32-bit fl oating-point mode.

187 4.7. Hardware-Accelerated SIMD Math

vector calculations without incurring a transfer cost. Scalars are represented
by duplicating the single fl oating-point value across all four “slots” in an SSE
register. So to store the scalar s in an SSE register, we’d set x = y = z = w = s.

4.7.1.2. The __m128 Data Type

Using one of these magic SSE 128-bit values in C or C++ is quite easy. The
Microsoft Visual Studio compiler provides a predefi ned data type called
__m128. This data type can be used to declare global variables, automatic vari-
ables, and even class and structure members. In many cases, variables of this
type will be stored in RAM. But when used in calculations, __m128 values are
manipulated directly in the CPU’s SSE registers. In fact, declaring automatic
variables and function arguments to be of type __m128 oft en results in the
compiler storing those values directly in SSE registers, rather than keeping
them in RAM on the program stack.

Alignment of __m128 Variables

 When an __m128 variable is stored in RAM, it is the programmer’s responsi-
bility to ensure that the variable is aligned to a 16-byte address boundary. This
means that the hexadecimal address of an __m128 variable must always end
in the nibble 0x0. The compiler will automatically pad structures and classes
so that if the entire struct or class is aligned to a 16-byte boundary, all of the
__m128 data members within it will be properly aligned as well. If you de-
clare an automatic or global struct/class containing one or more __m128s, the
compiler will align the object for you. However, it is still your responsibility
to align dynamically allocated data structures (i.e., data allocated with new or
malloc()); the compiler can’t help you there.

4.7.1.3. Coding with SSE Intrinsics

SSE mathematics can be done in raw assembly language, or via inline assem-
bly in C or C++. However, writing code like this is not only non-portable, it’s
also a big pain in the butt . To make life easier, modern compilers provide
intrinsics —special commands that look and behave like regular C functions,
but are really boiled down to inline assembly code by the compiler. Many in-
trinsics translate into a single assembly language instruction, although some
are macros that translate into a sequence of instructions.

In order to use the __m128 data type and SSE intrinsics, your .cpp fi le
must #include <xmmintrin.h>.

As an example, let’s take another look at the addps assembly language
instruction. This instruction can be invoked in C/C++ using the intrinsic _mm
_add_ps(). Here’s a side-by-side comparison of what the code would look
like with and without the use of the intrinsic.

188 4. 3D Math for Games

__m128 addWithAssembly(
 __m128 a,
 __m128 b)
{
 __m128 r;
 __asm
 {
 movaps xmm0,
 xmmword ptr [a]
 movaps xmm1,
 xmmword ptr [b]
 addps xmm0, xmm1
 movaps xmmword ptr [r],
 xmm0
 }
 return r;
}

__m128 addWithIntrinsics(
 __m128 a,
 __m128 b)
{
 __m128 r =

_mm_add_ps(a, b);
 return r;
}

In the assembly language version, we have to use the __asm keyword to
invoke inline assembly instructions, and we must create the linkage between
the input parameters a and b and the SSE registers xmm0 and xmm1 manually,
via movaps instructions. On the other hand, the version using intrinsics is
much more intuitive and clear, and the code is smaller. There’s no inline as-
sembly, and the SSE instruction looks just like a regular function call.

If you’d like to experiment with these example functions, they can be in-
voked via the following test bed main() function. Notice the use of another
intrinsic, _mm_load_ps(), which loads values from an in-memory array of
floats into an __m128 variable (i.e., into an SSE register). Also notice that
we are forcing our four global float arrays to be 16-byte aligned via the
__declspec(align(16)) directive—if we omit these directives, the pro-
gram will crash.

#include <xmmintrin.h>

// ... function definitions from above ...

__declspec(align(16)) float A[]={2.0f,-1.0f,3.0f,4.0f};
__declspec(align(16)) float B[]={-1.0f,3.0f,4.0f,2.0f};
__declspec(align(16)) float C[]={0.0f,0.0f,0.0f,0.0f};
__declspec(align(16)) float D[]={0.0f,0.0f,0.0f,0.0f};

int main(int argc, char* argv[])
{

 // load a and b from floating-point data arrays above
 __m128 a = _mm_load_ps(&A[0]);
 __m128 b = _mm_load_ps(&B[0]);

189

 // test the two functions
 __m128 c = addWithAssembly(a, b);
 __m128 d = addWithIntrinsics(a, b);

 // store the original values back to check that they
 // weren’t overwritten

_mm_store_ps(&A[0], a);
_mm_store_ps(&B[0], b);

 // store results into float arrays so we can print
 // them

_mm_store_ps(&C[0], c);
_mm_store_ps(&D[0], d);

 // inspect the results
 printf(“%g %g %g %g\n”, A[0], A[1], A[2], A[3]);
 printf(“%g %g %g %g\n”, B[0], B[1], B[2], B[3]);
 printf(“%g %g %g %g\n”, C[0], C[1], C[2], C[3]);
 printf(“%g %g %g %g\n”, D[0], D[1], D[2], D[3]);

 return 0;
}

4.7.1.4. Vector-Matrix Multiplication with SSE

 Let’s take a look at how vector-matrix multiplication might be implemented
using SSE instructions. We want to multiply the 1 × 4 vector v with the 4 × 4
matrix M to generate a result vector r.

The multiplication involves taking the dot product of the row vector v
with the columns of matrix M. So to do this calculation using SSE instructions,
we might fi rst try storing v in an SSE register (__m128), and storing each of
the columns of M in SSE registers as well. Then we could calculate all of the
products vkMĳ in parallel using only four mulps instructions, like this:

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

;

[] []

((((

))))

x y z w x y z w

x x x x

y y y y

z z z z

w w w w

M M M M
M M M M

r r r r v v v v M M M M
M M M M

v M v M v M v M
v M v M v M v M
v M v M v M v M
v M v M v M v M

=

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥+ + + +⎢ ⎥=⎢ ⎥+ + + +
⎢ ⎥

+ + + +⎣ ⎦

r vM

 .

4.7. Hardware-Accelerated SIMD Math

190 4. 3D Math for Games

__m128 mulVectorMatrixAttempt1(__m128 v,
 __m128 Mcol1, __m128 Mcol2,
 __m128 Mcol3, __m128 Mcol4)
{
 __m128 vMcol1 = _mm_mul_ps(v, Mcol1);
 __m128 vMcol2 = _mm_mul_ps(v, Mcol2);
 __m128 vMcol3 = _mm_mul_ps(v, Mcol3);
 __m128 vMcol4 = _mm_mul_ps(v, Mcol4);
 // ... then what?
}

The above code would yield the following intermediate results:

 vMcol1 = [vxM11 vyM21 vzM31 vwM41];
 vMcol2 = [vxM12 vyM22 vzM32 vwM42];
 vMcol3 = [vxM13 vyM23 vzM33 vwM43];
 vMcol4 = [vxM14 vyM24 vzM34 vwM44].

But the problem with doing it this way is that we now have to add “across
the registers” in order to generate the results we need. For example, rx =
(vxM11 + vyM21 + vzM31 + vwM41), so we’d need to add the four components of
vMcol1 together. Adding across a register like this is diffi cult and ineffi cient,
and moreover it leaves the four components of the result in four separate SSE
registers, which would need to be combined into the single result vector r. We
can do bett er.

The “trick” here is to multiply with the rows of M, not its columns.
That way, we’ll have results that we can add in parallel, and the fi nal sums
will end up in the four components of a single SSE register representing
the output vector r. However, we don’t want to multiply v as-is with the
rows of M—we want to multiply vx with all of row 1, vy with all of row 2,
vz with all of row 3, and vw with all of row 4. To do this, we need to replicate
a single component of v, such as vx, across a register to yield a vector like
[vx vx vx vx]. Then we can multiply the replicated component vectors by the
appropriate rows of M.

Thankfully there’s a powerful SSE instruction which can replicate values
like this. It is called shufps, and it’s wrapped by the intrinsic _mm_shuffle_
ps(). This beast is a bit complicated to understand, because it’s a general-
purpose instruction that can shuffl e the components of an SSE register around
in arbitrary ways. However, for our purposes we need only know that the
following macros replicate the x, y, z or w components of a vector across an
entire register:

#define SHUFFLE_PARAM(x, y, z, w) \
 ((x) | ((y) << 2) | ((z) << 4) | ((w) << 6))

191

#define _mm_replicate_x_ps(v) \
 _mm_shuffle_ps((v), (v), SHUFFLE_PARAM(0, 0, 0, 0))

#define _mm_replicate_y_ps(v) \
 _mm_shuffle_ps((v), (v), SHUFFLE_PARAM(1, 1, 1, 1))

#define _mm_replicate_z_ps(v) \
 _mm_shuffle_ps((v), (v), SHUFFLE_PARAM(2, 2, 2, 2))

#define _mm_replicate_w_ps(v) \
 _mm_shuffle_ps((v), (v), SHUFFLE_PARAM(3, 3, 3, 3))

Given these convenient macros, we can write our vector-matrix multipli-
cation function as follows:

__m128 mulVectorMatrixAttempt2(__m128 v,
 __m128 Mrow1, __m128 Mrow2,
 __m128 Mrow3, __m128 Mrow4)
{
 __m128 xMrow1 = _mm_mul_ps(_mm_replicate_x_ps(v),

 Mrow1);
 __m128 yMrow2 = _mm_mul_ps(_mm_replicate_y_ps(v),

Mrow2);
 __m128 zMrow3 = _mm_mul_ps(_mm_replicate_z_ps(v),

Mrow3);
 __m128 wMrow4 = _mm_mul_ps(_mm_replicate_w_ps(v),

 Mrow4);

 __m128 result = _mm_add_ps(xMrow1, yMrow2);
 result = _mm_add_ps(result, zMrow3);
 result = _mm_add_ps(result, wMrow4);

 return result;
}

This code produces the following intermediate vectors:

 xMrow1 = [vxM11 vxM12 vxM13 vxM14];
 yMrow2 = [vyM21 vyM22 vyM23 vyM24];
  zMrow3 = [vzM31 vzM32 vzM33 vzM34];
     wMrow4 = [vwM41 vwM42 vwM43 vwM44].

Adding these four vectors in parallel produces our result r:

4.7. Hardware-Accelerated SIMD Math

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

((((

.

))))

x x x x

y y y y

z z z z

w w w w

v M v M v M v M
v M v M v M v M
v M v M v M v M
v M v M v M v M

⎡ ⎤
⎢ ⎥+ + + +⎢ ⎥=⎢ ⎥+ + + +
⎢ ⎥

+ + + +⎣ ⎦

r

192 4. 3D Math for Games

On some CPUs, the code shown above can be optimized even further by
using a rather handy multiply-and-add instruction, usually denoted madd. This
instruction multiplies its fi rst two arguments and then adds the result to its
third argument. Unfortunately SSE doesn’t support a madd instruction, but we
can fake it reasonably well with a macro like this:

#define _mm_madd_ps(a, b, c) \
 _mm_add_ps(_mm_mul_ps((a), (b)), (c))

__m128 mulVectorMatrixFinal(__m128 v,
 __m128 Mrow1, __m128 Mrow2,
 __m128 Mrow3, __m128 Mrow4)
{
 __m128 result;
 result = _mm_mul_ps (_mm_replicate_x_ps(v), Mrow1);
 result = _mm_madd_ps(_mm_replicate_y_ps(v), Mrow2,

 result);
 result = _mm_madd_ps(_mm_replicate_z_ps(v), Mrow3,

 result);
 result = _mm_madd_ps(_mm_replicate_w_ps(v), Mrow4,

 result);
 return result;
}

We can of course perform matrix-matrix multiplication using a similar
approach. Check out htt p://msdn.microsoft .com for a full listing of the SSE
intrinsics for the Microsoft Visual Studio compiler.

4.8. Random Number Generation

Random numbers are ubiquitous in game engines, so it behooves us to have
a brief look at the two most common random number generators, the linear
congruential generator and the Mersenne Twister. It’s important to realize that
random number generators are just very complicated but totally deterministic
pre-defi ned sequences of numbers. For this reason, we call the sequences they
produce pseudo-random. What diff erentiates a good generator from a bad one
is how long the sequence of numbers is before it repeats (its period), and how
well the sequences hold up under various well-known randomness tests.

4.8.1. Linear Congruential Generators

Linear congruential generators are a very fast and simple way to generate a
sequence of pseudo-random numbers. Depending on the platform, this algo-
rithm is sometimes used in the standard C library’s rand() function. How-

193

ever, your mileage may vary, so don’t count on rand() being based on any
particular algorithm. If you want to be sure, you’ll be bett er off implementing
your own random number generator.

The linear congruential algorithm is explained in detail in the book Nu-
merical Recipes in C, so I won’t go into the details of it here.

What I will say is that this random number generator does not produce
particularly high-quality pseudo-random sequences. Given the same initial
seed value, the sequence is always exactly the same. The numbers produced
do not meet many of the criteria widely accepted as desirable, such as a long
period, low- and high-order bits that have similarly-long periods, and absence
of sequential or spatial correlation between the generated values.

4.8.2. Mersenne Twister

The Mersenne Twister pseudo-random number generator algorithm was de-
signed specifi cally to improve upon the various problems of the linear con-
gruential algorithm. Wikipedia provides the following description of the ben-
efi ts of the algorithm:

It was designed to have a colossal period of 21. 19937 − 1 (the creators of the
algorithm proved this property). In practice, there is litt le reason to use
larger ones, as most applications do not require 219937 unique combina-
tions (219937 ≈ 4.3 × 106001).

It has a very high order of dimensional equidistribution (see linear 2.
congruential generator). Note that this means, by default, that there is
negligible serial correlation between successive values in the output se-
quence.

It passes numerous tests for statistical randomness, including the strin-3.
gent Diehard tests.

It is fast.4.

Various implementations of the Twister are available on the web, includ-
ing a particularly cool one that uses SIMD vector instructions for an extra
speed boost, called SFMT (SIMD-oriented fast Mersenne Twister). SFMT can
be downloaded from htt p://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
SFMT/index.html.

4.8.3. Mother-of-All and Xorshift

In 1994, George Marsaglia, a computer scientist and mathematician best known
for developing the Diehard batt ery of tests of randomness (htt p://www.stat.
fsu.edu/pub/diehard), published a pseudo-random number generation algo-

4.8. Random Number Generation

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
http://www.stat

194 4. 3D Math for Games

rithm that is much simpler to implement and runs faster than the Mersenne
Twister algorithm. He claimed that it could produce a sequence of 32-bit pseu-
do-random numbers with a period of non-repetition of 2250. It passed all of the
Diehard tests and still stands today as one of the best pseudo-random number
generators for high-speed applications. He called his algorithm the Mother of
All Pseudo-Random Number Generators , because it seemed to him to be the only
random number generator one would ever need.

Later, Marsaglia published another generator called Xorshift , which is be-
tween Mersenee and Mother-of-All in terms of randomness, but runs slightly
faster than Mother.

You can read about George Marsaglia at htt p://en.wikipedia.org/wiki/
George_Marsaglia, and about the Mother-of-All generator at ft p://ft p.forth.
org/pub/C/mother.c and at htt p://www.agner.org/random. You can down-
load a PDF of George’s paper on Xorshift at htt p://www.jstatsoft .org/v08/i14/
paper.

http://www.agner.org/random
http://www.jstatsoft

Part II
Low-Level

Engine Systems

5
Engine Support Systems

Every game engine requires some low-level support systems that manage
mundane but crucial tasks, such as starting up and shutt ing down the en-

gine, confi guring engine and game features, managing the engine’s memory
usage, handling access to fi le system(s), providing access to the wide range of
heterogeneous asset types used by the game (meshes, textures, animations,
audio, etc.), and providing debugging tools for use by the game development
team. This chapter will focus on the lowest-level support systems found in
most game engines. In the chapters that follow, we will explore some of the
larger core systems, including resource management, human interface devic-
es, and in-game debugging tools.

5.1. Subsystem Start-Up and Shut-Down

 A game engine is a complex piece of soft ware consisting of many interacting
subsystems. When the engine fi rst starts up, each subsystem must be confi g-
ured and initialized in a specifi c order. Interdependencies between subsys-
tems implicitly defi ne the order in which they must be started—i.e., if sub-
system B depends on subsystem A, then A will need to be started up before B
can be initialized. Shut-down typically occurs in the reverse order, so B would
shut down fi rst, followed by A.

197

198 5. Engine Support Systems

5.1.1. C++ Static Initialization Order (or Lack Thereof)

 Since the programming language used in most modern game engines is C++,
we should briefl y consider whether C++’s native start-up and shut-down se-
mantics can be leveraged in order to start up and shut down our engine’s sub-
systems. In C++, global and static objects are constructed before the program’s
entry point (main(), or WinMain() under Windows) is called. However,
these constructors are called in a totally unpredictable order. The destructors
of global and static class instances are called aft er main() (or WinMain())
returns, and once again they are called in an unpredictable order. Clearly this
behavior is not desirable for initializing and shutt ing down the subsystems
of a game engine, or indeed any soft ware system that has interdependencies
between its global objects.

This is somewhat unfortunate, because a common design patt ern for im-
plementing major subsystems such as the ones that make up a game engine
is to defi ne a singleton class (oft en called a manager) for each subsystem. If C++
gave us more control over the order in which global and static class instances
were constructed and destroyed, we could defi ne our singleton instances as
globals, without the need for dynamic memory allocation. For example, we
could write:

class RenderManager
{
public:
 RenderManager()
 {
 // start up the manager...
 }

 ~RenderManager()
 {
 // shut down the manager...
 }

 // ...
};

// singleton instance
static RenderManager gRenderManager;

Alas, with no way to directly control construction and destruction order, this
approach won’t work.

5.1.1.1. Construct On Demand

 There is one C++ “trick” we can leverage here. A static variable that is declared
within a function will not be constructed before main() is called, but rather

199 5.1. Subsystem Start-Up and Shut-Down

on the fi rst invocation of that function. So if our global singleton is function-
static, we can control the order of construction for our global singletons.

class RenderManager
{
public:

 // Get the one and only instance.
static RenderManager& get()

 {
 // This function-static will be constructed on the
 // first call to this function.

static RenderManager sSingleton;
 return sSingleton;
 }

 RenderManager()
 {
 // Start up other managers we depend on, by
 // calling their get() functions first...

VideoManager::get();
TextureManager::get();

 // Now start up the render manager.
 // ...
 }

 ~RenderManager()
 {
 // Shut down the manager.
 // ...
 }
};

You’ll fi nd that many soft ware engineering textbooks suggest this de-
sign, or a variant that involves dynamic allocation of the singleton as shown
below.

static RenderManager& get()
 {
 static RenderManager* gpSingleton = NULL;
 if (gpSingleton == NULL)
 {
 gpSingleton = new RenderManager;
 }
 ASSERT(gpSingleton);
 return *gpSingleton;
 }

200 5. Engine Support Systems

Unfortunately, this still gives us no way to control destruction order. It
is possible that C++ will destroy one of the managers upon which the
RenderManager depends for its shut-down procedure, prior to the
RenderManager’s destructor being called. In addition, it’s diffi cult to predict
exactly when the RenderManager singleton will be constructed, because the
construction will happen on the fi rst call to RenderManager::get()—and
who knows when that might be? Moreover, the programmers using the class
may not be expecting an innocuous-looking get() function to do something
expensive, like allocating and initializing a heavy-weight singleton. This is an
unpredictable and dangerous design. Therefore we are prompted to resort to
a more direct approach that gives us greater control.

5.1.2. A Simple Approach That Works

 Let’s presume that we want to stick with the idea of singleton managers for
our subsystems. In this case, the simplest “brute-force” approach is to defi ne
explicit start-up and shut-down functions for each singleton manager class.
These functions take the place of the constructor and destructor, and in fact
we should arrange for the constructor and destructor to do absolutely nothing.
That way, the start-up and shut-down functions can be explicitly called in the
required order from within main() (or from some over-arching singleton object
that manages the engine as a whole). For example:

class RenderManager
{
public:
 RenderManager()
 {

// do nothing
 }

 ~RenderManager()
 {

// do nothing
 }

 void startUp()
 {
 // start up the manager...
 }

 void shutDown()
 {
 // shut down the manager...
 }

201

 // ...
};

class PhysicsManager { /* similar... */ };

class AnimationManager { /* similar... */ };

class MemoryManager { /* similar... */ };

class FileSystemManager { /* similar... */ };

// ...

RenderManager gRenderManager;
PhysicsManager gPhysicsManager;
AnimationManager gAnimationManager;
TextureManager gTextureManager;

VideoManager gVideoManager;
MemoryManager gMemoryManager;
FileSystemManager gFileSystemManager;
// ...

int main(int argc, const char* argv)
{
 // Start up engine systems in the correct order.
 gMemoryManager. startUp();
 gFileSystemManager. startUp();
 gVideoManager. startUp();
 gTextureManager. startUp();
 gRenderManager. startUp();
 gAnimationManager. startUp();
 gPhysicsManager. startUp();
 // ...

 // Run the game.
 gSimulationManager. run();

 // Shut everything down, in reverse order.
 // ...
 gPhysicsManager. shutDown();
 gAnimationManager. shutDown();
 gRenderManager. shutDown();
 gFileSystemManager. shutDown();
 gMemoryManager. shutDown();

 return 0;
}

5.1. Subsystem Start-Up and Shut-Down

202 5. Engine Support Systems

There are “more elegant” ways to accomplish this. For example, you could
have each manager register itself into a global priority queue and then walk
this queue to start up all the managers in the proper order. You could defi ne
the manger-to-manager dependency graph by having each manager explicitly
list the other managers upon which it depends and then write some code to
calculate the optimal start-up order given their interdependencies. You could
use the construct-on-demand approach outlined above. In my experience, the
brute-force approach always wins out, because:

It’s simple and easy to implement.•
It’s explicit. You can see and understand the start-up order immediately •
by just looking at the code.
It’s easy to debug and maintain. If something isn’t starting early enough, •
or is starting too early, you can just move one line of code.

One minor disadvantage to the brute-force manual start-up and shut-
down method is that you might accidentally shut things down in an order
that isn’t strictly the reverse of the start-up order. But I wouldn’t lose any sleep
over it. As long as you can start up and shut down your engine’s subsystems
successfully, you’re golden.

5.1.3. Some Examples from Real Engines

Let’s take a brief look at some examples of engine start-up and shut-down
taken from real game engines.

5.1.3.1. Ogre3D

Ogre3D is by its authors’ admission a rendering engine, not a game engine
per se. But by necessity it provides many of the low-level features found in
full-fl edged game engines, including a simple and elegant start-up and shut-
down mechanism. Everything in Ogre is controlled by the singleton object
Ogre::Root. It contains pointers to every other subsystem in Ogre and man-
ages their creation and destruction. This makes it very easy for a programmer
to start up Ogre—just new an instance of Ogre::Root and you’re done.

Here are a few excerpts from the Ogre source code so we can see what
it’s doing:

OgreRoot.h

class _OgreExport Root : public Singleton<Root>
{
 // <some code omitted...>

 // Singletons
 LogManager* mLogManager;

203

 ControllerManager* mControllerManager;
 SceneManagerEnumerator* mSceneManagerEnum;
 SceneManager* mCurrentSceneManager;
 DynLibManager* mDynLibManager;
 ArchiveManager* mArchiveManager;
 MaterialManager* mMaterialManager;
 MeshManager* mMeshManager;
 ParticleSystemManager* mParticleManager;
 SkeletonManager* mSkeletonManager;
 OverlayElementFactory* mPanelFactory;
 OverlayElementFactory* mBorderPanelFactory;
 OverlayElementFactory* mTextAreaFactory;
 OverlayManager* mOverlayManager;
 FontManager* mFontManager;
 ArchiveFactory *mZipArchiveFactory;
 ArchiveFactory *mFileSystemArchiveFactory;
 ResourceGroupManager* mResourceGroupManager;
 ResourceBackgroundQueue* mResourceBackgroundQueue;
 ShadowTextureManager* mShadowTextureManager;

 // etc.
};

OgreRoot.cpp

Root::Root(const String& pluginFileName,
 const String& configFileName,
 const String& logFileName):
 mLogManager(0),
 mCurrentFrame(0),
 mFrameSmoothingTime(0.0f),
 mNextMovableObjectTypeFlag(1),
 mIsInitialised(false)
{
 // superclass will do singleton checking
 String msg;

 // Init
 mActiveRenderer = 0;
 mVersion
 = StringConverter::toString(OGRE_VERSION_MAJOR)
 + "."
 + StringConverter::toString(OGRE_VERSION_MINOR)
 + "."
 + StringConverter::toString(OGRE_VERSION_PATCH)
 + OGRE_VERSION_SUFFIX + " "
 + "(" + OGRE_VERSION_NAME + ")";
 mConfigFileName = configFileName;

 // Create log manager and default log file if there
 // is no log manager yet

5.1. Subsystem Start-Up and Shut-Down

204 5. Engine Support Systems

 if(LogManager::getSingletonPtr() == 0)
 {
 mLogManager = new LogManager();
 mLogManager->createLog(logFileName, true, true);
 }

 // Dynamic library manager
 mDynLibManager = new DynLibManager();
 mArchiveManager = new ArchiveManager();

 // ResourceGroupManager
 mResourceGroupManager = new ResourceGroupManager();

 // ResourceBackgroundQueue
 mResourceBackgroundQueue
 = new ResourceBackgroundQueue();

 // and so on...

Ogre provides a templated Ogre::Singleton base class from which all of its
singleton (manager) classes derive. If you look at its implementation, you’ll
see that Ogre::Singleton does not use deferred construction, but instead
relies on Ogre::Root to explicitly new each singleton. As we discussed above,
this is done to ensure that the singletons are created and destroyed in a well-
defi ned order.

5.1.3.2. Naughty Dog’s Uncharted: Drake’s Fortune

The Uncharted: Drake’s Fortune engine created by Naughty Dog Inc. uses a
similar explicit technique for starting up its subsystems. You’ll notice by look-
ing at the following code that engine start-up is not always a simple sequence
of allocating singleton instances. A wide range of operating system services,
third party libraries, and so on must all be started up during engine initial-
ization. Also, dynamic memory allocation is avoided wherever possible, so
many of the singletons are statically-allocated objects (e.g., g_fileSystem,
g_languageMgr, etc.) It’s not always prett y, but it gets the job done.

Err BigInit()
{
 init_exception_handler();

 U8* pPhysicsHeap = new(kAllocGlobal, kAlign16)
 U8[ALLOCATION_GLOBAL_PHYS_HEAP];
 PhysicsAllocatorInit(pPhysicsHeap,
 ALLOCATION_GLOBAL_PHYS_HEAP);

 g_textDb.Init();
 g_textSubDb.Init();

205 5.2. Memory Management

 g_spuMgr.Init();

 g_drawScript.InitPlatform();

 PlatformUpdate();

 thread_t init_thr;
 thread_create(&init_thr, threadInit, 0, 30,
 64*1024, 0, "Init");

 char masterConfigFileName[256];
 snprintf(masterConfigFileName,
 sizeof(masterConfigFileName),
 MASTER_CFG_PATH);
 {
 Err err = ReadConfigFromFile(
 masterConfigFileName);
 if (err.Failed())
 {
 MsgErr("Config file not found (%s).\n",
 masterConfigFileName);
 }
 }

 memset(&g_discInfo, 0, sizeof(BootDiscInfo));
 int err1 = GetBootDiscInfo(&g_discInfo);
 Msg("GetBootDiscInfo() : 0x%x\n", err1);
 if(err1 == BOOTDISCINFO_RET_OK)
 {
 printf("titleId : [%s]\n",
 g_discInfo.titleId);
 printf("parentalLevel : [%d]\n",
 g_discInfo.parentalLevel);
 }

 g_fileSystem.Init(g_gameInfo.m_onDisc);

 g_languageMgr.Init();
 if (g_shouldQuit) return Err::kOK;

 // and so on...

5.2. Memory Management

 As game developers, we are always trying to make our code run more quickly.
The performance of any piece of soft ware is dictated not only by the algo-
rithms it employs, or the effi ciency with which those algorithms are coded,

206 5. Engine Support Systems

but also by how the program utilizes memory (RAM). Memory aff ects perfor-
mance in two ways:

 1. Dynamic memory allocation via malloc() or C++’s global operator new
is a very slow operation. We can improve the performance of our code
by either avoiding dynamic allocation altogether or by making use of
custom memory allocators that greatly reduce allocation costs.

On modern CPUs, the performance of a piece of soft ware is oft en 2.
dominated by its memory access patt erns . As we’ll see, data that is located
in small, contiguous blocks of memory can be operated on much more
effi ciently by the CPU than if that same data were to be spread out across
a wide range of memory addresses. Even the most effi cient algorithm,
coded with the utmost care, can be brought to its knees if the data upon
which it operates is not laid out effi ciently in memory.

In this section, we’ll learn how to optimize our code’s memory utilization
along these two axes.

5.2.1. Optimizing Dynamic Memory Allocation

 Dynamic memory allocation via malloc() and free() or C++’s global new
and delete operators—also known as heap allocation—is typically very slow.
The high cost can be att ributed to two main factors. First, a heap allocator is
a general-purpose facility, so it must be writt en to handle any allocation size,
from one byte to one gigabyte. This requires a lot of management overhead,
making the malloc() and free() functions inherently slow. Second, on most
operating systems a call to malloc() or free() must fi rst context-switch from
user mode into kernel mode, process the request, and then context-switch
back to the program. These context switches can be extraordinarily expensive.
One rule of thumb oft en followed in game development is:

Keep heap allocations to a minimum, and never allocate from the
heap within a tight loop.

Of course, no game engine can entirely avoid dynamic memory alloca-
tion, so most game engines implement one or more custom allocators. A
custom allocator can have bett er performance characteristics than the oper-
ating system’s heap allocator for two reasons. First, a custom allocator can
satisfy requests from a preallocated memory block (itself allocated using
malloc() or new, or declared as a global variable). This allows it to run in
user mode and entirely avoid the cost of context-switching into the operat-

207

ing system. Second, by making various assumptions about its usage pat-
terns, a custom allocator can be much more effi cient than a general-purpose
heap allocator.

In the following sections, we’ll take a look at some common kinds of cus-
tom allocators. For additional information on this topic, see Christian Gyr-
ling’s excellent blog post, htt p://www.swedishcoding.com/2008/08/31/are-we-
out-of-memory.

5.2.1.1. Stack-Based Allocators

 Many games allocate memory in a stack-like fashion. Whenever a new game
level is loaded, memory is allocated for it. Once the level has been loaded,
litt le or no dynamic memory allocation takes place. At the conclusion of
the level, its data is unloaded and all of its memory can be freed. It makes
a lot of sense to use a stack-like data structure for these kinds of memory
allocations.

A stack allocator is very easy to implement. We simply allocate a large con-
tiguous block of memory using malloc() or global new, or by declaring a
global array of bytes (in which case the memory is eff ectively allocated out of
the executable’s BSS segment). A pointer to the top of the stack is maintained.
All memory addresses below this pointer are considered to be in use, and all
addresses above it are considered to be free. The top pointer is initialized to
the lowest memory address in the stack. Each allocation request simply moves
the pointer up by the requested number of bytes. The most-recently allocated
block can be freed by simply moving the top pointer back down by the size
of the block.

It is important to realize that with a stack allocator, memory cannot be
freed in an arbitrary order. All frees must be performed in an order oppo-
site to that in which they were allocated. One simple way to enforce these
restrictions is to disallow individual blocks from being freed at all. Instead,
we can provide a function that rolls the stack top back to a previously-marked
location, thereby freeing all blocks between the current top and the roll-back
point.

It’s important to always roll the top pointer back to a point that lies
at the boundary between two allocated blocks, because otherwise new al-
locations would overwrite the tail end of the top-most block. To ensure
that this is done properly, a stack allocator oft en provides a function that
returns a marker representing the current top of the stack. The roll-back
function then takes one of these markers as its argument. This is depicted
in Figure 5.1. The interface of a stack allocator oft en looks something like
this.

5.2. Memory Management

http://www.swedishcoding.com/2008/08/31/are-we-out-of-memory
http://www.swedishcoding.com/2008/08/31/are-we-out-of-memory
http://www.swedishcoding.com/2008/08/31/are-we-out-of-memory

208 5. Engine Support Systems

class StackAllocator
{
public:
 // Stack marker: Represents the current top of the
 // stack. You can only roll back to a marker, not to
 // arbitrary locations within the stack.
 typedef U32 Marker;

 // Constructs a stack allocator with the given total
 // size.
 explicit StackAllocator(U32 stackSize_bytes);

 // Allocates a new block of the given size from stack
 // top.
 void* alloc(U32 size_bytes);

 // Returns a marker to the current stack top.
 Marker getMarker();

 // Rolls the stack back to a previous marker.
 void freeToMarker(Marker marker);

 // Clears the entire stack (rolls the stack back to
 // zero).
 void clear();

Obtain marker after allocating blocks A and B.

A B

Allocate additional blocks C , D and E.

A B C D E

Free back to marker.

A B

Figure 5.1. Stack allocation, and freeing back to a marker.

209

private:
 // ...
};

Double-Ended Stack Allocators

A single memory block can actually contain two stack allocators—one which
allocates up from the bott om of the block and one which allocates down from
the top of the block. A double-ended stack allocator is useful because it uses
memory more effi ciently by allowing a trade-off to occur between the memory
usage of the bott om stack and the memory usage of the top stack. In some situ-
ations, both stacks may use roughly the same amount of memory and meet in
the middle of the block. In other situations, one of the two stacks may eat up
a lot more memory than the other stack, but all allocation requests can still be
satisfi ed as long as the total amount of memory requested is not larger than
the block shared by the two stacks. This is depicted in Figure 5.2.

In Midway’s Hydro Thunder arcade game, all memory allocations are
made from a single large block of memory managed by a double-ended stack
allocator. The bott om stack is used for loading and unloading levels (race
tracks), while the top stack is used for temporary memory blocks that are al-
located and freed every frame. This allocation scheme worked extremely well
and ensured that Hydro Thunder never suff ered from memory fragmentation
problems (see Section 5.2.1.4). Steve Ranck, Hydro Thunder’s lead engineer, de-
scribes this allocation technique in depth in [6], Section 1.9.

Lower Upper

Figure 5.2. A double-ended stack allocator.

5.2. Memory Management

5.2.1.2. Pool Allocators

 It’s quite common in game engine programming (and soft ware engineering in
general) to allocate lots of small blocks of memory, each of which are the same
size. For example, we might want to allocate and free matrices, or iterators, or
links in a linked list, or renderable mesh instances. For this type of memory
allocation patt ern, a pool allocator is oft en the perfect choice.

A pool allocator works by preallocating a large block of memory whose
size is an exact multiple of the size of the elements that will be allocated. For
example, a pool of 4   ×   4 matrices would be an exact multiple of 64 bytes (16 el-
ements per matrix times four bytes per element). Each element within the pool
is added to a linked list of free elements; when the pool is fi rst initialized, the
free list contains all of the elements. Whenever an allocation request is made,

210 5. Engine Support Systems

we simply grab the next free element off the free list and return it. When an
element is freed, we simply tack it back onto the free list. Both allocations and
frees are O(1) operations, since each involves only a couple of pointer ma-
nipulations, no matt er how many elements are currently free. (The notation
O(1) is an example of big “O” notation. In this case it means that the execution
time of both allocations and frees are roughly constant and do not depend on
things like the number of elements currently in the pool. See Section 5.3.3 for
an explanation of big “O” notation.)

The linked list of free elements can be a singly-linked list, meaning that
we need a single pointer (four bytes on most machines) for each free ele-
ment. Where should we obtain the memory for these pointers? Certainly
they could be stored in a separate preallocated memory block, occupying
(sizeof(void*) * numElementsInPool) bytes. However, this is unduly
wasteful. We need only realize that the blocks on the free list are, by defi nition,
free memory blocks. So why not use the free blocks themselves to store the
free list’s “next” pointers? This litt le “trick” works as long as elementSize >=
sizeof(void*).

If each element is smaller than a pointer, then we can use pool element in-
dices instead of pointers to implement our linked list. For example, if our pool
contains 16-bit integers, then we can use 16-bit indices as the “next pointers”
in our linked list. This works as long as the pool doesn’t contain more than 216

= 65,536 elements.

5.2.1.3. Aligned Allocations

As we saw in Section 3.2.5.1, every variable and data object has an alignment
requirement. An 8-bit integer variable can be aligned to any address, but a
32-bit integer or fl oating-point variable must be 4-byte aligned, meaning its
address can only end in the nibbles 0x0, 0x4, 0x8 or 0xC. A 128-bit SIMD vector
value generally has a 16-byte alignment requirement, meaning that its mem-
ory address can end only in the nibble 0x0. On the PS3, memory blocks that
are to be transferred to an SPU via the direct memory access (DMA) controller
should be 128-bit aligned for maximum DMA throughput, meaning they can
only end in the bytes 0x00 or 0x80.

All memory allocators must be capable of returning aligned memory
blocks. This is relatively straightforward to implement. We simply allocate
a litt le bit more memory than was actually requested, adjust the address of
the memory block upward slightly so that it is aligned properly, and then re-
turn the adjusted address. Because we allocated a bit more memory than was
requested, the returned block will still be large enough, even with the slight
upward adjustment.

211

In most implementations, the number of additional bytes allocated is
equal to the alignment. For example, if the request is for a 16-byte aligned
memory block, we would allocate 16 additional bytes. This allows for the
worst-case address adjustment of 15 bytes, plus one extra byte so that we can
use the same calculations even if the original block is already aligned. This
simplifi es and speeds up the code at the expense of one wasted byte per al-
location. It’s also important because, as we’ll see below, we’ll need those extra
bytes to store some additional information that will be used when the block
is freed.

We determine the amount by which the block’s address must be adjusted
by masking off the least-signifi cant bits of the original block’s memory ad-
dress, subtracting this from the desired alignment, and using the result as
the adjustment off set. The alignment should always be a power of two (four-
byte and 16-byte alignments are typical), so to generate the mask we simply
subtract one from the alignment. For example, if the request is for a 16-byte
aligned block, then the mask would be (16 – 1) = 15 = 0x0000000F. Taking
the bitwise AND of this mask and any misaligned address will yield the
amount by which the address is misaligned. For example, if the originally-
allocated block’s address is 0x50341233, ANDing this address with the mask
0x0000000F yields 0x00000003, so the address is misaligned by three bytes.
To align the address, we add (alignment – misalignment) = (16 – 3) = 13 =
0xD bytes to it. The fi nal aligned address is therefore 0x50341233 + 0xD =
0x50341240.

Here’s one possible implementation of an aligned memory allocator:

// Aligned allocation function. IMPORTANT: 'alignment'
// must be a power of 2 (typically 4 or 16).
void* allocateAligned(U32 size_bytes, U32 alignment)
{
 // Determine total amount of memory to allocate.
 U32 expandedSize_bytes = size_bytes + alignment;

 // Allocate an unaligned block & convert address to a
 // U32.
 U32 rawAddress
 = (U32)allocateUnaligned(expandedSize_bytes);

 // Calculate the adjustment by masking off the lower
 // bits of the address, to determine how "misaligned"
 // it is.
 U32 mask = (alignment – 1);
 U32 misalignment = (rawAddress & mask);
 U32 adjustment = alignment – misalignment;

5.2. Memory Management

212 5. Engine Support Systems

 // Calculate the adjusted address, and return as a
 // pointer.
 U32 alignedAddress = rawAddress + adjustment;
 return (void*)alignedAddress;
}

When this block is later freed, the code will pass us the adjusted address,
not the original address we allocated. How, then, do we actually free the mem-
ory? We need some way to convert an adjusted address back into the original,
possibly misaligned address.

To accomplish this, we simply store some meta-information in those
extra bytes we allocated in order to align the data in the fi rst place. The
smallest adjustment we might make is one byte. That’s enough room to
store the number of bytes by which the address was adjusted (since it will
never be more than 256). We always store this information in the byte im-
mediately preceding the adjusted address (no matt er how many bytes of
adjustment we actually added), so that it is trivial to fi nd it again, given the
adjusted address. Here’s how the modifi ed allocateAligned() function
would look.

// Aligned allocation function. IMPORTANT: ‘alignment’
// must be a power of 2 (typically 4 or 16).
void* allocateAligned(U32 size_bytes, U32 alignment)
{
 // Clients must call allocateUnaligned() and
 // freeUnaligned() if alignment == 1.
 ASSERT(alignment > 1);

 // Determine total amount of memory to allocate.
 U32 expandedSize_bytes = size_bytes + alignment;

 // Allocate an unaligned block & convert address to a
 // U32.
 U32 rawAddress
 = (U32)allocateUnaligned(expandedSize_bytes);

 // Calculate the adjustment by masking off the lower
 // bits of the address, to determine how “misaligned”
 // it is.
 U32 mask = (alignment – 1);
 U32 misalignment = (rawAddress & mask);
 U32 adjustment = alignment – misalignment;

 // Calculate the adjusted address, and return as a
 // pointer.
 U32 alignedAddress = rawAddress + adjustment;

213

 // Store the adjustment in the four bytes immediately
 // preceding the adjusted address that we’re
 // returning.

 U32* pAdjustment = (U32*)(alignedAddress – 4);
*pAdjustment = adjustment;

 return (void*)alignedAddress;
}

And here’s how the corresponding freeAligned() function would be imple-
mented.

void freeAligned(void* p)
{
 U32 alignedAddress = (U32)p;
 U8* pAdjustment = (U8*)(alignedAddress – 4);
 U32 adjustment = (U32)*pAdjustment;

 U32 rawAddress = alignedAddress – adjustment;

freeUnaligned((void*)rawAddress);
}

5.2.1.4. Single-Frame and Double-Buffered Memory Allocators

Virtually all game engines allocate at least some temporary data during the
game loop. This data is either discarded at the end of each iteration of the loop
or used on the next frame and then discarded. This allocation patt ern is so
common that many engines support single- and double-buff ered allocators.

Single-Frame Allocators

A single-frame allocator is implemented by reserving a block of memory and
managing it with a simple stack allocator as described above. At the beginning
of each frame, the stack’s “top” pointer is cleared to the bott om of the memory
block. Allocations made during the frame grow toward the top of the block.
Rinse and repeat.

StackAllocator g_singleFrameAllocator;

// Main Game Loop
while (true)
{
 // Clear the single-frame allocator’s buffer every
 // frame.
 g_singleFrameAllocator. clear();

5.2. Memory Management

214 5. Engine Support Systems

 // ...

 // Allocate from the single-frame buffer. We never
 // need to free this data! Just be sure to use it
 // only this frame.
 void* p = g_singleFrameAllocator.alloc(nBytes);

 // ...
}

One of the primary benefi ts of a single-frame allocator is that allocated
memory needn’t ever be freed—we can rely on the fact that the allocator will
be cleared at the start of every frame. Single-frame allocators are also blind-
ingly fast. The one big negative is that using a single-frame allocator requires
a reasonable level of discipline on the part of the programmer. You need to
realize that a memory block allocated out of the single-frame buff er will only
be valid during the current frame. Programmers must never cache a pointer to
a single-frame memory block across the frame boundary!

Double-Buffered Allocators

A double-buff ered allocator allows a block of memory allocated on frame i to
be used on frame (i + 1). To accomplish this, we create two single-frame stack
allocators of equal size and then ping-pong between them every frame.

class DoubleBufferedAllocator
{
 U32 m_curStack;
 StackAllocator m_stack[2];

public:

 void swapBuffers()
 {
 m_curStack = (U32)!m_curStack;
 }

 void clearCurrentBuffer()
 {
 m_stack[m_curStack]. clear();
 }

 void* alloc(U32 nBytes)
 {
 return m_stack[m_curStack].alloc(nBytes);
 }

 // ...
};

215

// ...

DoubleBufferedAllocator g_doubleBufAllocator;

// Main Game Loop
while (true)
{
 // Clear the single-frame allocator every frame as

// before.
g_singleFrameAllocator.clear();

 // Swap the active and inactive buffers of the double
 // buffered allocator.
 g_doubleBufAllocator. swapBuffers();

 // Now clear the newly active buffer, leaving last
 // frame’s buffer intact.
 g_doubleBufAllocator. clearCurrentBuffer();

 // ...

 // Allocate out of the current buffer, without
 // disturbing last frame’s data. Only use this data
 // this frame or next frame. Again, this memory never
 // needs to be freed.
 void* p = g_doubleBufAllocator.alloc(nBytes);

 // ...
}

This kind of allocator is extremely useful for caching the results of asyn-
chronous processing on a multicore game console like the Xbox 360 or the
PLAYSTATION 3. On frame i, we can kick off an asynchronous job on one of
the PS3’s SPUs, handing it the address of a destination buff er that has been
allocated from our double-buff ered allocator. The job runs and produces its
results some time before the end of frame i, storing them into the buff er we
provided. On frame (i + 1), the buff ers are swapped. The results of the job
are now in the inactive buff er, so they will not be overwritt en by any double-
buff ered allocations that might be made during this frame. As long as we use
the results of the job before frame (i + 2), our data won’t be overwritt en.

5.2.2. Memory Fragmentation

 Another problem with dynamic heap allocations is that memory can become
fragmented over time. When a program fi rst runs, its heap memory is entirely
free. When a block is allocated, a contiguous region of heap memory of the

5.2. Memory Management

216 5. Engine Support Systems

appropriate size is marked as “in use,” and the remainder of the heap remains
free. When a block is freed, it is marked as such, and adjacent free blocks are
merged into a single, larger free block. Over time, as allocations and dealloca-
tions of various sizes occur in random order, the heap memory begins to look
like a patchwork of free and used blocks. We can think of the free regions as
“holes” in the fabric of used memory. When the number of holes becomes
large, and/or the holes are all relatively small, we say the memory has become
fragmented. This is illustrated in Figure 5.3.

The problem with memory fragmentation is that allocations may fail
even when there are enough free bytes to satisfy the request. The crux of the
problem is that allocated memory blocks must always be contiguous. For ex-
ample, in order to satisfy a request of 128 kB, there must exist a free “hole”
that is 128 kB or larger. If there are 2 holes, each of which is 64 kB in size, then
enough bytes are available but the allocation fails because they are not contigu-
ous bytes.

free

After one allocation...

After eight allocations...

After eight allocations and three frees...

After n allocations and m frees...

freeused

Figure 5.3. Memory fragmentation.

217

Memory fragmentation is not as much of a problem on operating sys-
tems that support virtual memory . A virtual memory system maps discontigu-
ous blocks of physical memory known as pages into a virtual address space, in
which the pages appear to the application to be contiguous. Stale pages can
be swapped to the hard disk when physical memory is in short supply and
reloaded from disk when they are needed. For a detailed discussion of how
virtual memory works, see htt p://lyle.smu.edu/~kocan/7343/fall05/slides/
chapter08.ppt. Most embedded systems cannot aff ord to implement a virtual
memory system. While some modern consoles do technically support it, most
console game engines still do not make use of virtual memory due to the in-
herent performance overhead.

5.2.2.1. Avoiding Fragmentation with Stack and Pool Allocators

 The detrimental eff ects of memory fragmentation can be avoided by using
stack and/or pool allocators.

A stack allocator is impervious to fragmentation because allocations are •
always contiguous, and blocks must be freed in an order opposite to
that in which they were allocated. This is illustrated in Figure 5.4.

A pool allocator is also free from fragmentation problems. Pools • do be-
come fragmented, but the fragmentation never causes premature out-
of-memory conditions as it does in a general-purpose heap. Pool alloca-
tion requests can never fail due to a lack of a large enough contiguous
free block, because all of the blocks are exactly the same size. This is
shown in Figure 5.5.

5.2. Memory Management

Figure 5.4. A stack allocator is free from fragmentation problems.

Single free block, always contiguousAllocated blocks , always contiguous

deallocation

allocation

Allocated and free blocks all the same size

Figure 5.5. A pool allocator is not degraded by fragmentation.

218 5. Engine Support Systems

5.2.2.2. Defragmentation and Relocation

 When diff erently-sized objects are being allocated and freed in a random or-
der, neither a stack-based allocator nor a pool-based allocator can be used. In
such cases, fragmentation can be avoided by periodically defragmenting the
heap. Defragmentation involves coalescing all of the free “holes” in the heap
by shift ing allocated blocks from higher memory addresses down to lower
addresses (thereby shift ing the holes up to higher addresses). One simple al-
gorithm is to search for the fi rst “hole” and then take the allocated block im-
mediately above the hole and shift it down to the start of the hole. This has the
eff ect of “bubbling up” the hole to a higher memory address. If this process is
repeated, eventually all the allocated blocks will occupy a contiguous region
of memory at the low end of the heap’s address space, and all the holes will
have bubbled up into one big hole at the high end of the heap. This is illus-
trated in Figure 5.6.

The shift ing of memory blocks described above is not particularly tricky
to implement. What is tricky is accounting for the fact that we’re moving al-
located blocks of memory around. If anyone has a pointer into one of these al-
located blocks, then moving the block will invalidate the pointer.

The solution to this problem is to patch any and all pointers into a shift ed
memory block so that they point to the correct new address aft er the shift .
This procedure is known as pointer relocation . Unfortunately, there is no gen-
eral-purpose way to fi nd all the pointers that point into a particular region

A B C D E

A B C D E

A B C D E

A B C D E

A B C D E

Figure 5.6. Defragmentation by shifting allocated blocks to lower addresses.

219

of memory. So if we are going to support memory defragmentation in our
game engine, programmers must either carefully keep track of all the pointers
manually so they can be relocated, or pointers must be abandoned in favor of
something inherently more amenable to relocation, such as smart pointers or
handles.

A smart pointer is a small class that contains a pointer and acts like a
pointer for most intents and purposes. But because a smart pointer is a class,
it can be coded to handle memory relocation properly. One approach is to
arrange for all smart pointers to add themselves to a global linked list. When-
ever a block of memory is shift ed within the heap, the linked list of all smart
pointers can be scanned, and each pointer that points into the shift ed block of
memory can be adjusted appropriately.

A handle is usually implemented as an index into a non-relocatable ta-
ble which itself contains the pointers. When an allocated block is shift ed in
memory, the handle table can be scanned and all relevant pointers found and
updated automatically. Because the handles are just indices into the pointer
table, their values never change no matt er how the memory blocks are shift ed,
so the objects that use the handles are never aff ected by memory relocation.

Another problem with relocation arises when certain memory blocks can-
not be relocated. For example, if you are using a third-party library that does
not use smart pointers or handles, it’s possible that any pointers into its data
structures will not be relocatable. The best way around this problem is usu-
ally to arrange for the library in question to allocate its memory from a special
buff er outside of the relocatable memory area. The other option is to simply
accept that some blocks will not be relocatable. If the number and size of the
non-relocatable blocks are both small, a relocation system will still perform
quite well.

It is interesting to note that all of Naughty Dog’s engines have supported
defragmentation. Handles are used wherever possible to avoid the need to re-
locate pointers. However, in some cases raw pointers cannot be avoided. These
pointers are carefully tracked and relocated manually whenever a memory
block is shift ed due to defragmentation. A few of Naughty Dog’s game object
classes are not relocatable for various reasons. However, as mentioned above,
this doesn’t pose any practical problems, because the number of such objects
is always very small, and their sizes are tiny when compared to the overall
size of the relocatable memory area.

Amortizing Defragmentation Costs

Defragmentation can be a slow operation because it involves copying memory
blocks. However, we needn’t fully defragment the heap all at once. Instead,
the cost can be amortized over many frames. We can allow up to N allocated

5.2. Memory Management

220 5. Engine Support Systems

blocks to be shift ed each frame, for some small value of N like 8 or 16. If our
game is running at 30 frames per second, then each frame lasts 1/30 of a sec-
ond (33 ms). So the heap can usually be completely defragmented in less than
one second without having any noticeable eff ect on the game’s frame rate. As
long as allocations and deallocations aren’t happening at a faster rate than
the defragmentation shift s, the heap will remain mostly defragmented at all
times.

This approach is only valid when the size of each block is relatively small,
so that the time required to move a single block does not exceed the time al-
lott ed to relocation each frame. If very large blocks need to be relocated, we
can oft en break them up into two or more subblocks, each of which can be
relocated independently. This hasn’t proved to be a problem in Naughty Dog’s
engine, because relocation is only used for dynamic game objects, and they
are never larger than a few kilobytes—and usually much smaller.

5.2.3. Cache Coherency

 To understand why memory access patt erns aff ect performance, we need
fi rst to understand how modern processors read and write memory. Access-
ing main system RAM is always a slow operation, oft en taking thousands of
processor cycles to complete. Contrast this with a register access on the CPU
itself, which takes on the order of tens of cycles or sometimes even a single
cycle. To reduce the average cost of reading and writing to main RAM, mod-
ern processors utilize a high-speed memory cache.

A cache is a special type of memory that can be read from and writt en to
by the CPU much more quickly than main RAM. The basic idea of memory
caching is to load a small chunk of memory into the high-speed cache when-
ever a given region of main RAM is fi rst read. Such a memory chunk is called
a cache line and is usually between 8 and 512 bytes, depending on the micro-
processor architecture. On subsequent read operations, if the requested data
already exists in the cache, it is loaded from the cache directly into the CPU’s
registers—a much faster operation than reading from main RAM. Only if the
required data is not already in the cache does main RAM have to be accessed.
This is called a cache miss . Whenever a cache miss occurs, the program is forced
to wait for the cache line to be refreshed from main RAM.

Similar rules may apply when writing data to RAM. The simplest kind
of cache is called a write-through cache ; in such a cache design, all writes to
the cache are simply mirrored to main RAM immediately. However, in a
write-back (or copy-back) cache design, data is fi rst writt en into the cache and
the cache line is only fl ushed out to main RAM under certain circumstances,
such as when a dirty cache line needs to be evicted in order to read in a new

221

cache line from main RAM, or when the program explicitly requests a fl ush to
occur.

Obviously cache misses cannot be totally avoided, since data has to move
to and from main RAM eventually. However, the trick to high-performance
computing is to arrange your data in RAM and code your algorithms in such
a way that the minimum number of cache misses occur. We’ll see exactly how
to accomplish this below.

5.2.3.1. Level 1 and Level 2 Caches

When caching techniques were fi rst developed, the cache memory was locat-
ed on the motherboard, constructed from a faster and more expensive type
of memory module than main RAM in order to give it the required boost in
speed. However, cache memory was expensive, so the cache size was usually
quite small—on the order of 16 kB. As caching techniques evolved, an even
faster type of cache memory was developed that was located on the CPU die
itself. This gave rise to two distinct types of cache memory: an on-die level 1
(L1) cache and an on-motherboard level 2 (L2) cache. More recently, the L2
cache has also migrated onto the CPU die (see Figure 5.7).

The rules for moving data back and forth between main RAM are of course
complicated by the presence of a level 2 cache. Now, instead of data hopping
from RAM to cache to CPU and back again, it must make two hops—fi rst from
main RAM to the L2 cache, and then from L2 cache to L1 cache. We won’t go
into the specifi cs of these rules here. (They diff er slightly from CPU to CPU
anyway.) But suffi ce it to say that RAM is slower than L2 cache memory, and
L2 cache is slower than L1 cache. Hence L2 cache misses are usually more
expensive than L1 cache misses, all other things being equal.

5.2. Memory Management

CPU Die

CPU
L1

Cache
L2

Cache
Main RAMslower slowestfast

Figure 5.7. Level 1 and level 2 caches.

222 5. Engine Support Systems

A load-hit-store is a particularly bad kind of cache miss, prevalent on the
PowerPC architectures found in the Xbox 360 and PLAYSTATION 3, in which
the CPU writes data to a memory address and then reads the data back before
it has had a chance to make its way through the CPU’s instruction pipeline and
out into the L1 cache. See htt p://assemblyrequired.crashworks.org/2008/07/08/
load-hit-stores-and-the-_ _restrict-keyword for more details.

5.2.3.2. Instruction Cache and Data Cache

When writing high-performance code for a game engine or for any other per-
formance-critical system, it is important to realize that both data and code are
cached. The instruction cache (I-cache) is used to preload executable machine
code before it runs, while the data cache (D-cache) is used to speed up reading
and writing of data to main RAM. Most processors separate the two caches
physically. Hence it is possible for a program to slow down because of an I-
cache miss or because of a D-cache miss.

5.2.3.3. Avoiding Cache Misses

The best way to avoid D-cache misses is to organize your data in contiguous
blocks that are as small as possible and then access them sequentially. This
yields the minimum number of cache misses. When the data is contiguous
(i.e., you don’t “jump around” in memory a lot), a single cache miss will load
the maximum amount of relevant data in one go. When the data is small, it
is more likely to fi t into a single cache line (or at least a minimum number
of cache lines). And when you access your data sequentially (i.e., you don’t
“jump around” within the contiguous memory block), you achieve the mini-
mum number of cache misses, since the CPU never has to reload a cache line
from the same region of RAM.

Avoiding I-cache misses follows the same basic principle as avoiding D-
cache misses. However, the implementation requires a diff erent approach.
The compiler and linker dictate how your code is laid out in memory, so you
might think you have litt le control over I-cache misses. However, most C/C++
linkers follow some simple rules that you can leverage, once you know what
they are:

The machine code for a single function is almost always contiguous in •
memory. That is, the linker almost never splits a function up in order
to intersperse another function in the middle. (Inline functions are the
exception to this rule—more on this topic below.)

Functions are laid out in memory in the order they appear in the •
translation unit’s source code (.cpp fi le).

223

Therefore, functions in a single translation unit are always contiguous •
in memory. That is, the linker never splits up a complied translation unit
(.obj fi le) in order to intersperse code from some other translation unit.

So, following the same principles that apply to avoiding D-cache misses,
we should follow the rules of thumb listed below.

Keep high-performance code • as small as possible, in terms of number of
machine language instructions. (The compiler and linker take care of
keeping our functions contiguous in memory.)
Avoid calling functions• from within a performance-critical section of
code.
If you do have to call a function, place it as • close as possible to the calling
function—preferably immediately before or aft er the calling function
and never in a diff erent translation unit (because then you completely
lose control over its proximity to the calling function).
Use inline functions judiciously. Inlining a small function can be a big •
performance boost. However, too much inlining bloats the size of the
code, which can cause a performance-critical section of code to no
longer fi t within the cache. Let’s say we write a tight loop that processes
a large amount of data—if the entire body of that loop doesn’t fi t into
the cache, then we are signing up for two I-cache misses during every
iteration of the loop. In such a situation, it is probably best to rethink the
algorithm and/or implementation so that less code is required within
critical loops.

5.3. Containers

Game programmers employ a wide variety of collection-oriented data struc-
tures, also known as containers or collections. The job of a container is always
the same—to house and manage zero or more data elements; however, the
details of how they do this varies greatly, and each type of container has its
pros and cons. Common container data types include, but are certainly not
limited to, the following.

Array• . An ordered, contiguous collection of elements accessed by index.
The length of the array is usually statically defi ned at compile time. It
may be multidimensional. C and C++ support these natively (e.g., int
a[5]).
Dynamic array• . An array whose length can change dynamically at
runtime (e.g., STL’s std::vector)

5.3. Containers

224 5. Engine Support Systems

Linked list• . An ordered collection of elements not stored contiguously
in memory but rather linked to one another via pointers (e.g., STL’s
std::list).
Stack• . A container that supports the last-in-fi rst-out (LIFO) model
for adding and removing elements, also known as push/pop (e.g.,
std::stack).
Queue• . A container that supports the fi rst-in-fi rst-out (FIFO) model for
adding and removing elements (e.g., std::queue).
Deque• . A double-ended queue—supports effi cient insertion and removal
at both ends of the array (e.g., std::deque).

Priority queue• . A container that permits elements to be added in any or-
der and then removed in an order defi ned by some property of the ele-
ments themselves (i.e., their priority). It can be thought of as a list that
stays sorted at all times. A priority queue is typically implemented as a
binary search tree (e.g., std::priority_queue).

Tree• . A container in which elements are grouped hierarchically. Each ele-
ment (node) has zero or one parent and zero or more children. A tree is
a special case of a DAG (see below).

Binary search tree (BST)• . A tree in which each node has at most two chil-
dren, with an order property to keep the nodes sorted by some well-de-
fi ned criteria. There are various kinds of binary search trees, including
red-black trees, splay trees, SVL trees, etc.

Binary heap• . A binary tree that maintains itself in sorted order, much like
a binary search tree, via two rules: the shape property, which specifi es that
the tree must be fully fi lled and that the last row of the tree is fi lled from
left to right; and the heap property, which states that every node is, by some
user-defi ned criterion, “greater than” or “equal to” all of its children.

Dictionary• . A table of key-value pairs. A value can be “looked up” ef-
fi ciently given the corresponding key. A dictionary is also known as a
map or hash table, although technically a hash table is just one possible
implementation of a dictionary (e.g., std::map, std::hash_map).

Set• . A container that guarantees that all elements are unique according to
some criteria. A set acts like a dictionary with only keys, but no values.

Graph• . A collection of nodes connected to one another by unidirectional
or bidirectional pathways in an arbitrary patt ern.

Directed acyclic graph (DAG)• . A collection of nodes with unidirectional
(i.e., directed) interconnections, with no cycles (i.e., there is no non-empty
path that starts and ends on the same node).

225

5.3.1. Container Operations

Game engines that make use of container classes inevitably make use of vari-
ous commonplace algorithms as well. Some examples include:

Insert.• Add a new element to the container. The new element might be
placed at the beginning of the list, or the end, or in some other location;
or the container might not have a notion of ordering at all.

Remove.• Remove an element from the container; may require a fi nd op-
eration (see below). However if an iterator is available that refers to the
desired element, it may be more effi cient to remove the element using
the iterator.

Sequential access (iteration).• Accessing each element of the container in
some “natural” predefi ned order.

Random access.• Accessing elements in the container in an arbitrary or-
der.

Find.• Search a container for an element that meets a given criterion.
There are all sorts of variants on the fi nd operation, including fi nding
in reverse, fi nding multiple elements, etc. In addition, diff erent types of
data structures and diff erent situations call for diff erent algorithms (see
htt p://en.wikipedia.org/wiki/Search_algorithm).

Sort• . Sort the contents of a container according to some given criteria.
There are many diff erent sorting algorithms, including bubble sort, se-
lection sort, insertion sort, quicksort, and so on. (See htt p://en.wikipedia.
org/wiki/Sorting_algorithm for details.)

5.3.2. Iterators

An iterator is a litt le class that “knows” how to effi ciently visit the elements
in a particular kind of container. It acts like an array index or pointer—it
refers to one element in the container at a time, it can be advanced to the
next element, and it provides some sort of mechanism for testing whether
or not all elements in the container have been visited. As an example, the
fi rst of the following two code snippets iterates over a C-style array using a
pointer, while the second iterates over an STL linked list using almost identi-
cal syntax.

void processArray(int container[], int numElements)
{
 int* pBegin = &container[0];
 int* pEnd = &container[numElements];

5.3. Containers

225

5.3.1. Container Operations

Game engines that make use of container classes inevitably make use of vari-
ous commonplace algorithms as well. Some examples include:

Insert.• Add a new element to the container. The new element might be
placed at the beginning of the list, or the end, or in some other location;
or the container might not have a notion of ordering at all.

Remove.• Remove an element from the container; may require a fi nd op-
eration (see below). However if an iterator is available that refers to the
desired element, it may be more effi cient to remove the element using
the iterator.

Sequential access (iteration).• Accessing each element of the container in
some “natural” predefi ned order.

Random access.• Accessing elements in the container in an arbitrary or-
der.

Find.• Search a container for an element that meets a given criterion.
There are all sorts of variants on the fi nd operation, including fi nding
in reverse, fi nding multiple elements, etc. In addition, diff erent types of
data structures and diff erent situations call for diff erent algorithms (see
htt p://en.wikipedia.org/wiki/Search_algorithm).

Sort• . Sort the contents of a container according to some given criteria.
There are many diff erent sorting algorithms, including bubble sort, se-
lection sort, insertion sort, quicksort, and so on. (See htt p://en.wikipedia.
org/wiki/Sorting_algorithm for details.)

5.3.2. Iterators

An iterator is a litt le class that “knows” how to effi ciently visit the elements
in a particular kind of container. It acts like an array index or pointer—it
refers to one element in the container at a time, it can be advanced to the
next element, and it provides some sort of mechanism for testing whether
or not all elements in the container have been visited. As an example, the
fi rst of the following two code snippets iterates over a C-style array using a
pointer, while the second iterates over an STL linked list using almost identi-
cal syntax.

void processArray(int container[], int numElements)
{
 int* pBegin = &container[0];
 int* pEnd = &container[numElements];

5.3. Containers

226 5. Engine Support Systems

 for (int* p = pBegin; p != pEnd; ++p)
 {
 int element = *p;
 // process element...
 }
}

void processList(std::list<int>& container)
{
 std::list<int>:: iterator pBegin = container.begin();
 std::list<int>:: iterator pEnd = container.end();
 std::list<inf>:: iterator p;

 for (p = pBegin; p != pEnd; ++p)
 {
 int element = *p;
 // process element...
 }
}

The key benefi ts to using an iterator over att empting to access the con-
tainer’s elements directly are:

Direct access would break the container class’ encapsulation. An iterator, •
on the other hand, is typically a friend of the container class, and as such
it can iterate effi ciently without exposing any implementation details
to the outside world. (In fact, most good container classes hide their
internal details and cannot be iterated over without an iterator.)

An iterator can simplify the process of iterating. Most iterators act like •
array indices or pointers, so a simple loop can be writt en in which the
iterator is incremented and compared against a terminating condition—
even when the underlying data structure is arbitrarily complex. For
example, an iterator can make an in-order depth-fi rst tree traversal look
no more complex than a simple array iteration.

5.3.2.1. Preincrement versus Postincrement

Notice in the above example that we are using C++’s preincrement operator ,
++p, rather than the postincrement operator , p++. This is a subtle but some-
times important optimization. The preincrement operator returns the value of
the operand aft er the increment has been performed, whereas postincrement
returns the previous, unincremented value. Hence preincrement can simply
increment the pointer or iterator in place and return a reference to it. Postin-
crement must cache the old value, then increment the pointer or iterator, and
fi nally return the cached value. This isn’t a big deal for pointers or integer

228 5. Engine Support Systems

tion. If an algorithm executes a subalgorithm n times, and the subalgorithm is
O(log n), then the resulting algorithm would be O(n log n).

To select an appropriate container class, we should look at the opera-
tions that we expect to be most common, then select the container whose per-
formance characteristics for those operations are most favorable. The most
common orders you’ll encounter are listed here from fastest to slowest: O(1),
O(log n), O(n), O(n log n), O(n2), O(nk) for k > 2.

We should also take the memory layout and usage characteristics
of our containers into account. For example, an array (e.g., int a[5] or
std::vector) stores its elements contiguously in memory and requires no
overhead storage for anything other than the elements themselves. (Note that
a dynamic array does require a small fi xed overhead.) On the other hand, a
linked list (e.g., std::list) wraps each element in a “link” data structure
that contains a pointer to the next element and possibly also a pointer to the
previous element, for a total of up to eight bytes of overhead per element. Also,
the elements in a linked list need not be contiguous in memory and oft en
aren’t. A contiguous block of memory is usually much more cache-friendly
than a set of disparate memory blocks. Hence, for high-speed algorithms, ar-
rays are usually bett er than linked lists in terms of cache performance (unless
the nodes of the linked list are themselves allocated from a small, contiguous
memory block of memory, which is rare but not entirely unheard of). But a
linked list is bett er for situations in which speed of inserting and removing
elements is of prime importance.

5.3.4. Building Custom Container Classes

 Many game engines provide their own custom implementations of the com-
mon container data structures. This practice is especially prevalent in console
game engines and games targeted at mobile phone and PDA platforms. The
reasons for building these classes yourself include:

Total control.• You control the data structure’s memory requirements, the
algorithms used, when and how memory is allocated, etc.

Opportunities for optimization.• You can optimize your data structures
and algorithms to take advantage of hardware features specifi c to the
console(s) you are targeting; or fi ne-tune them for a particular applica-
tion within your engine.

Customizability.• You can provide custom algorithms not prevalent in
third-party libraries like STL (for example, searching for the n most-
relevant elements in a container, instead of just the single most-rele-
vant).

229

Elimination of external dependencies.• Since you built the soft ware your-
self, you are not beholden to any other company or team to maintain it.
If problems arise, they can be debugged and fi xed immediately, rather
than waiting until the next release of the library (which might not be
until aft er you have shipped your game!)

We cannot cover all possible data structures here, but let’s look at a few
common ways in which game engine programmers tend to tackle contain-
ers.

5.3.4.1. To Build or Not to Build

We will not discuss the details of how to implement all of these data types
and algorithms here—a plethora of books and online resources are available
for that purpose. However, we will concern ourselves with the question of
where to obtain implementations of the types and algorithms that you need.
As game engine designers, we have a number of choices:

Build the needed data structures manually.1.

Rely on third-party implementations. Some common choices include2.

the C++ standard template library (STL),a.

a variant of STL, such as STLport,b.

the powerful and robust Boost libraries (htt p://www.boost.org).c.

Both STL and Boost are att ractive, because they provide a rich and power-
ful set of container classes covering prett y much every type of data structure
imaginable. In addition, both of these packages provide a powerful suite of
template-based generic algorithms—implementations of common algorithms,
such as fi nding an element in a container, which can be applied to virtually
any type of data object. However, third-party packages like these may not be
appropriate for some kinds of game engines. And even if we decide to use a
third-party package, we must select between Boost and the various fl avors of
STL, or another third-party library. So let’s take a moment to investigate some
of the pros and cons of each approach.

STL

The benefi ts of the standard template library include:

STL off ers a rich set of features.•

Reasonably robust implementations are available on a wide variety of •
platforms.

STL comes “standard” with virtually all C++ compilers.•

5.3. Containers

http://www.boost.org

230 5. Engine Support Systems

However, the STL also has numerous drawbacks, including:

STL has a steep learning curve. The documentation is now quite good, •
but the header fi les are cryptic and diffi cult to understand on most plat-
forms.
STL is oft en slower than a data structure that has been craft ed specifi -•
cally for a particular problem.
STL also almost always eats up more memory than a custom-designed •
data structure.
STL does a lot of dynamic memory allocation, and it’s sometimes chal-•
lenging to control its appetite for memory in a way that is suitable for
high-performance, memory-limited console games.
STL’s implementation and behavior varies slightly from compiler to •
compiler, making its use in multiplatform engines more diffi cult.

As long as the programmer is aware of the pitfalls of STL and uses it ju-
diciously, it can have a place in game engine programming. It is best suited
to a game engine that will run on a personal computer platform, because the
advanced virtual memory systems on modern PCs make memory allocation
cheaper, and the probability of running out of physical RAM is oft en negli-
gible. On the other hand, STL is not generally well-suited for use on memory-
limited consoles that lack advanced CPUs and virtual memory. And code that
uses STL may not port easily to other platforms. Here are some rules of thumb
that I use:

First and foremost, be aware of the performance and memory character-•
istics of the particular STL class you are using.
Try to avoid heavier-weight STL classes in code that you believe will be •
a performance bott leneck.
Prefer STL in situations where memory is not at a premium. For ex-•
ample, embedding a std::list inside a game object is OK, but em-
bedding a std::list inside every vertex of a 3D mesh is probably not
a good idea. Adding every vertex of your 3D mesh to a std::list is
probably also not OK—the std::list class dynamically allocates a
small “link” object for every element inserted into it, and that can result
in a lot of tiny, fragmented memory allocations.
If your engine is to be multiplatform, I highly recommend • STLport
(htt p://www.stlport.org), an implementation of STL that was specifi cally
designed to be portable across a wide range of compilers and target
platforms, more effi cient, and more feature-rich than the original STL
implementations.

http://www.stlport.org

231

The Medal of Honor: Pacifi c Assault engine for the PC made heavy use of
STL, and while MOHPA did have its share of frame rate problems, the team
was able to work around the performance problems caused by STL (primarily
by carefully limiting and controlling its use). Ogre3D, the popular object-ori-
ented rendering library that we use for some of the examples in this book, also
makes heavy use of STL. Your mileage may vary. Using STL on a game engine
project is certainly feasible, but it must be used with utmost care.

Boost

The Boost project was started by members of the C++ Standards Committ ee
Library Working Group, but it is now an open-source project with many con-
tributors from across the globe. The aim of the project is to produce libraries
that extend and work together with STL, for both commercial and non-com-
mercial use. Many of the Boost libraries have already been included in the
C++ Standards Committ ee’s Library Technical Report (TR1), which is a step
toward becoming part of a future C++ standard. Here is a brief summary of
what Boost brings to the table:

Boost provides a lot of useful facilities not available in STL.•
In some cases, Boost provides alternatives to work around certain prob-•
lems with STL’s design or implementation.
Boost does a great job of handling some very complex problems, like •
smart pointers. (Bear in mind that smart pointers are complex beasts,
and they can be performance hogs. Handles are usually preferable; see
Section 14.5 for details.)
The Boost libraries’ documentation is usually excellent. Not only does •
the documentation explain what each library does and how to use it, but
in most cases it also provides an excellent in-depth discussion of the de-
sign decisions, constraints, and requirements that went into construct-
ing the library. As such, reading the Boost documentation is a great way
to learn about the principles of soft ware design.

If you are already using STL, then Boost can serve as an excellent exten-
sion and/or alterative to many of STL’s features. However, be aware of the
following caveats:

Most of the core Boost classes are templates, so all that one needs in •
order to use them is the appropriate set of header fi les. However, some
of the Boost libraries build into rather large .lib fi les and may not be
feasible for use in very small-scale game projects.
While the world-wide Boost community is an excellent support net-•
work, the Boost libraries come with no guarantees. If you encounter a

5.3. Containers

232 5. Engine Support Systems

bug, it will ultimately be your team’s responsibility to work around it
or fi x it.

Backward compatibility may not be supported.•

The Boost libraries are distributed under the Boost Soft ware License. •
Read the license information (htt p://www.boost.org/more/license_info.
html) carefully to be sure it is right for your engine.

Loki

 There is a rather esoteric branch of C++ programming known as template meta-
programming. The core idea is to use the compiler to do a lot of the work that
would otherwise have to be done at runtime by exploiting the template fea-
ture of C++ and in eff ect “tricking” the compiler into doing things it wasn’t
originally designed to do. This can lead to some startlingly powerful and use-
ful programming tools.

By far the most well-known and probably most powerful template meta-
programming library for C++ is Loki, a library designed and writt en by Andrei
Alexandrescu (whose home page is at htt p://www.erdani.org). The library can
be obtained from SourceForge at htt p://loki-lib.sourceforge.net.

Loki is extremely powerful; it is a fascinating body of code to study and
learn from. However, its two big weaknesses are of a practical nature: (a) its
code can be daunting to read and use, much less truly understand, and (b)
some of its components are dependent upon exploiting “side-eff ect” behav-
iors of the compiler that require careful customization in order to be made
to work on new compilers. So Loki can be somewhat tough to use, and it
is not as portable as some of its “less-extreme” counterparts. Loki is not for
the faint of heart. That said, some of Loki’s concepts such as policy-based pro-
gramming can be applied to any C++ project, even if you don’t use the Loki
library per se. I highly recommend that all soft ware engineers read Andrei’s
ground-breaking book, Modern C++ Design [2], from which the Loki library
was born.

5.3.4.2. Dynamic Arrays and Chunky Allocation

 Fixed-size C-style arrays are used quite a lot in game programming, because
they require no memory allocation, are contiguous and hence cache-friendly,
and support many common operations such as appending data and searching
very effi ciently.

When the size of an array cannot be determined a priori, programmers
tend to turn either to linked lists or dynamic arrays. If we wish to maintain the
performance and memory characteristics of fi xed-length arrays, then the dy-
namic array is oft en the data structure of choice.

http://www.boost.org/more/license_info
http://www.erdani.org

233

The easiest way to implement a dynamic array is to allocate an n-element
buff er initially and then grow the list only if an att empt is made to add more
than n elements to it. This gives us the favorable characteristics of a fi xed-
size array but with no upper bound. Growing is implemented by allocating
a new larger buff er, copying the data from the original buff er into the new
buff er, and then freeing the original buff er. The size of the buff er is increased
in some orderly manner, such as adding n to it on each grow, or doubling it
on each grow. Most of the implementations I’ve encountered never shrink the
array, only grow it (with the notable exception of clearing the array to zero
size, which might or might not free the buff er). Hence the size of the array be-
comes a sort of “high water mark .” The STL std::vector class works in this
manner.

Of course, if you can establish a high water mark for your data, then you’re
probably bett er off just allocating a single buff er of that size when the engine
starts up. Growing a dynamic array can be incredibly costly due to realloca-
tion and data copying costs. The impact of these things depends on the sizes
of the buff ers involved. Growing can also lead to fragmentation when dis-
carded buff ers are freed. So, as with all data structures that allocate memory,
caution must be exercised when working with dynamic arrays. Dynamic ar-
rays are probably best used during development, when you are as yet unsure
of the buff er sizes you’ll require. They can always be converted into fi xed size
arrays once suitable memory budgets have been established.)

5.3.4.3. Linked Lists

 If contiguous memory is not a primary concern, but the ability to insert and
remove elements at random is paramount, then a linked list is usually the data
structure of choice. Linked lists are quite easy to implement, but they’re also
quite easy to get wrong if you’re not careful. This section provides a few tips
and tricks for creating robust linked lists.

The Basics of Linked Lists

A linked list is a very simple data structure. Each element in the list has a
pointer to the next element, and, in a doubly-linked list , it also has a pointer to
the previous element. These two pointers are referred to as links. The list as a
whole is tracked using a special pair of pointers called the head and tail point-
ers. The head pointer points to the fi rst element, while the tail pointer points
to the last element.

Inserting a new element into a doubly-linked list involves adjusting the
next pointer of the previous element and the previous pointer of the next ele-
ment to both point at the new element and then sett ing the new element’s next

5.3. Containers

234 5. Engine Support Systems

and previous pointers appropriately as well. There are four cases to handle
when adding a node to a linked list:

Adding the fi rst element to a previously-empty list;•

Prepending an element before the current head element;•

Appending an element aft er the current tail element;•

Inserting an interior element.•

These cases are illustrated in Figure 5.8.
Removing an element involves the same kinds of operations in and

around the node being removed. Again there are four cases: removing the
head element, removing the tail element, removing an interior element, and
removing the last element (emptying the list).

The Link Data Structure

Linked list code isn’t particularly tough to write, but it can be error-prone.
As such, it’s usually a good idea to write a general-purpose linked list facility
that can be used to manage lists of any element type. To do this, we need to
separate the data structure that contains the links (i.e., the next and previ-
ous pointers) from the element data structure. The link data structure is typi-
cally a simple struct or class, oft en called something like Link, Node, or
LinkNode, and templated on the type of element to which it refers. It will usu-
ally look something like this.

Head Tail

Head

Tail

Head

Tail

Head

Tail

Head

Tail

Head

Tail

Head

Tail

Head

Tail
Add First

Prepend
(Push Front)

Insert

Append
(Push Back)

Figure 5.8. The four cases that must be handled when adding an element to a linked list: add
fi rst, prepend, append, and insert.

235

template< typename ELEMENT >
struct Link
{
 Link<ELEMENT>* m_pPrev;
 Link<ELEMENT>* m_pNext;

ELEMENT* m_pElem;
};

Extrusive Lists

An extrusive list is a linked list in which the Link data structures are entirely
separate from the element data structures. Each Link contains a pointer to the
element, as shown in the example. Whenever an element is to be inserted into
a linked list, a link is allocated for it, and the pointers to the element and the
next and previous links are set up appropriately. When an element is removed
from a linked list, its link can be freed.

The benefi t of the extrusive design is that an element can reside in mul-
tiple linked lists simultaneously—all we need is one link per list. The down
side is that the Link objects must be dynamically allocated. Oft en a pool al-
locator (see Section 5.2.1.2) is used to allocate links, because they are always
exactly the same size (viz., 12 bytes on a machine with 32-bit pointers). A pool
allocator is an excellent choice due to its speed and its freedom from fragmen-
tation problems.

Intrusive Lists

An intrusive list is a linked list in which the Link data structure is embedded
in the target element itself. The big benefi t of this approach is that we no lon-
ger need to dynamically allocate the links—we get a link “for free” whenever
we allocate an element. For example, we might have:

class SomeElement
{

Link<SomeElement> m_link;

 // other members...
};

We can also derive our element class from class Link. Using inheri-
tance like this is virtually identical to embedding a Link as the fi rst member
of the class, but it has the additional benefi t of allowing a pointer to a link
(Link<SomeElement>*) to be down-cast into a pointer to the element itself
(SomeElement*). This means we can eliminate the back-pointer to the ele-
ment that would otherwise have to be embedded within the Link. Here’s how
such a design might be implemented in C++.

5.3. Containers

236 5. Engine Support Systems

template< typename ELEMENT >
struct Link
{
 Link<ELEMENT>* m_pPrev;
 Link<ELEMENT>* m_pNext;

// No ELEMENT* pointer required, thanks to
 // inheritance.
};

class SomeElement : public Link<SomeElement>
{
 // other members...
};

The big pitfall of the intrusive linked list design is that it prevents an ele-
ment from residing in more than one linked list at a time (because each ele-
ment has one and only one link). We can allow an element to be a member of
N concurrent lists by providing it with N embedded link instances (in which
case we cannot use the inheritance method). However, the number N must
be fi xed a priori, so this approach is still not quite as fl exible as the extrusive
design.

The choice between intrusive and extrusive linked lists depends on the
application and the constraints under which you are operating. If dynamic
memory allocation must be avoided at all costs, then an intrusive list is prob-
ably best. If you can aff ord the overhead of pool allocation, then an extrusive
design may be preferable. Sometimes only one of the two approaches will
be feasible. For example, if we wish to store instances of a class defi ned by a
third-party library in a linked list and are unable or unwilling to modify that
library’s source code, then an extrusive list is the only option.

Head and Tail Pointers: Circular Lists

 To fully implement a linked list, we need to provide a head and a tail pointer.
The simplest approach is to embed these pointers in their own data structure,
perhaps called LinkedList, as follows.

template< typename ELEMENT >
class LinkedList
{
 Link<ELEMENT>* m_pTail;
 Link<ELEMENT>* m_pHead;

 // member functions for manipulating the list...
};

You may have noticed that there isn’t much diff erence between a
LinkedList and a Link—they both contain a pair of pointers to Link. As it

237

turns out, there are some distinct benefi ts to using an instance of class Link to
manage the head and tail of the list, like this:

template< typename ELEMENT >
class LinkedList
{
 Link<ELEMENT> m_root; // contains head and tail

 // member functions for manipulating the list...
};

The embedded m_root member is a Link, no diff erent from any other Link in
the list (except that its m_pElement member will always be NULL). This allows
us to make the linked list circular as shown in Figure 5.9. In other words, the
m_pNext pointer of the last “real” node in the list points to m_root, as does
the m_pPrev pointer of the fi rst “real” node in the list.

This design is preferable to the one involving two “loose” pointers for the
head and tail, because it simplifi es the logic for inserting and removing ele-
ments. To see why this is the case, consider the code that would be required
to remove an element from a linked list when “loose” head and tail pointers
are being used.

void LinkedList::remove(Link<ELEMENT>& link)
{
 if (link.m_pNext)
 link.m_pNext->m_pPrev = link.m_pPrev;
 else
 // Removing last element in the list.

m_pTail = link.m_pPrev;

 if (link.m_pPrev)
 link.m_pPrev->m_pNext = link.m_pNext;
 else
 // Removing first element in the list.

m_pHead = link.m_pNext;

5.3. Containers

Head

Tail
m_root

Figure 5.9. When the head and tail pointers are stored in a link, the linked list can be made
circular, which simplifi es the implementation and has some additional benefi ts.

238 5. Engine Support Systems

 link.m_pPrev = link.m_pNext = NULL;
}

The code is a bit simpler when we use the m_root design:

void LinkedList::remove(Link<ELEMENT>& link)
{
 // The link must currently be a member of the list.

 ASSERT(link.m_pNext != NULL);
 ASSERT(link.m_pPrev != NULL);

 link.m_pNext->m_pPrev = link.m_pPrev;
 link.m_pPrev->m_pNext = link.m_pNext;

 // Do this to indicate the link is no longer in any
 // list.
 link.m_pPrev = link.m_pNext = NULL;
}

The example code shown above highlights an additional benefi t of the
circularly linked list approach: A link’s m_pPrev and m_pNext pointers are
never null, unless the link is not a member of any list (i.e., the link is unused/
inactive). This gives us a simple test for list membership.

Contrast this with the “loose” head/tail pointer design. In that case, the
m_pPrev pointer of the fi rst element in the list is always null, as is the m_pN-
ext pointer of the last element. And if there is only one element in the list, that
link’s next and previous pointers will both be null. This makes it impossible to
know whether or not a given Link is a member of a list or not.

Singly-Linked Lists

A singly-linked list is one in which the elements have a next pointer, but no pre-
vious pointer. (The list as a whole might have both a head and a tail pointer, or
it might have only a head pointer.) Such a design is obviously a memory saver,
but the cost of this approach becomes evident when inserting or removing an
element from the list. We have no m_pPrev pointer, so we need to traverse the
list from the head in order to fi nd the previous element, so that its m_pNext
pointer can be updated appropriately. Therefore, removal is an O(1) operation
for a doubly-linked list, but it’s an O(n) operation for a singly-linked list.

This inherent insertion and removal cost is oft en prohibitive, so most
linked lists are doubly linked. However, if you know for certain that you will
only ever add and remove elements from the head of the list (as when imple-
menting a stack), or if you always add to the head and remove from the tail (as
with a queue—and your list has both a head and a tail pointer), then you can
get away with a singly-linked list and save yourself some memory.

239

5.3.4.4. Dictionaries and Hash Tables

A dictionary is a table of key-value pairs . A value in the dictionary can be
looked up quickly, given its key. The keys and values can be of any data type.
This kind of data structure is usually implemented either as a binary search
tree or as a hash table.

In a binary tree implementation, the key-value pairs are stored in the
nodes of the binary tree, and the tree is maintained in key-sorted order. Look-
ing up a value by key involves performing an O(log n) binary search.

In a hash table implementation, the values are stored in a fi xed-size table,
where each slot in the table represents one or more keys. To insert a key-value
pair into a hash table, the key is fi rst converted into integer form via a pro-
cess known as hashing (if it is not already an integer). Then an index into the
hash table is calculated by taking the hashed key modulo the size of the table.
Finally, the key-value pair is stored in the slot corresponding to that index.
Recall that the modulo operator (% in C/C++) fi nds the remainder of dividing
the integer key by the table size. So if the hash table has fi ve slots, then a key of
3 would be stored at index 3 (3 % 5 == 3), while a key of 6 would be stored
at index 1 (6 % 5 == 1). Finding a key-value pair is an O(1) operation in the
absence of collisions.

Collisions: Open and Closed Hash Tables

 Sometimes two or more keys end up occupying the same slot in the hash table.
This is known as a collision. There are two basic ways to resolve a collision, giv-
ing rise to two diff erent kinds of hash tables:

Open• . In an open hash table (see Figure 5.10), collisions are resolved
by simply storing more than one key-value pair at each index, usually
in the form of a linked list. This approach is easy to implement and
imposes no upper bound on the number of key-value pairs that can be
stored. However, it does require memory to be allocated dynamically
whenever a new key-value pair is added to the table.

Closed• . In a closed hash table (see Figure 5.11), collisions are resolved via
a process of probing until a vacant slot is found. (“Probing” means apply-
ing a well-defi ned algorithm to search for a free slot.) This approach is
a bit more diffi cult to implement, and it imposes an upper limit on the
number of key-value pairs that can reside in the table (because each slot
can hold only one key-value pair). But the main benefi t of this kind of
hash table is that it uses up a fi xed amount of memory and requires no dy-
namic memory allocation. Therefore it is oft en a good choice in a console
engine.

5.3. Containers

240 5. Engine Support Systems

Hashing

Hashing is the process of turning a key of some arbitrary data type into an
integer, which can be used modulo the table size as an index into the table.
Mathematically, given a key k, we want to generate an integer hash value h us-
ing the hash function H, and then fi nd the index i into the table as follows:

 h = H(k),

 i = h mod N,

where N is the number of slots in the table, and the symbol mod represents the
modulo operation, i.e., fi nding the remainder of the quotient h/N.

If the keys are unique integers, the hash function can be the identity func-
tion, H(k) = k. If the keys are unique 32-bit fl oating-point numbers, a hash func-
tion might simply re-interpret the bit patt ern of the 32-bit fl oat as if it were a
32-bit integer.

U32 hashFloat(float f)
{

 union
 {
 float asFloat;

Slot 0

Slot 1

Slot 2

Slot 3

Slot 4

(55, apple) (0, orange)

(26, grape)

(33, plum)

Figure 5.10. An open hash table.

(55, apple) (0, orange)

collision!

(33, plum)

(55, apple)

(26, grape)

(33, plum)

(0, orange)

(26, grape)

probe to
find new

slot

0

1

2

3

4

0

1

2

3

4

Figure 5.11. A closed hash table.

241

 U32 asU32;
 } u;

 u.asFloat = f;
 return u.asU32;
}

If the key is a string, we can employ a string hashing function, which combines
the ASCII or UTF codes of all the characters in the string into a single 32-bit
integer value.

The quality of the hashing function H(k) is crucial to the effi ciency of the
hash table. A “good” hashing function is one that distributes the set of all valid
keys evenly across the table, thereby minimizing the likelihood of collisions.
A hash function must also be reasonably quick to calculate and deterministic
in the sense that it must produce the exact same output every time it is called
with an indentical input.

Strings are probably the most prevalent type of key you’ll encounter, so
it’s particularly helpful to know a “good” string hashing function. Here are a
few reasonably good ones:

LOOKUP3 by Bob Jenkins (htt p://burtleburtle.net/bob/c/lookup3.c).•
Cyclic redundancy check functions, such as CRC-32 (htt p://en.wikipedia.•
org/wiki/Cyclic_redundancy_check).
Message-digest algorithm 5 (MD5), a cryptographic hash which yields •
excellent results but is quite expensive to calculate (htt p://en.wikipedia.
org/wiki/MD5).
A number of other excellent alternatives can be found in an article by •
Paul Hsieh available at htt p://www.azillionmonkeys.com/qed/hash.
html.

Implementing a Closed Hash Table

In a closed hash table, the key-value pairs are stored directly in the table, rath-
er than in a linked list at each table entry. This approach allows the program-
mer to defi ne a priori the exact amount of memory that will be used by the
hash table. A problem arises when we encounter a collision —two keys that end
up wanting to be stored in the same slot in the table. To address this, we use a
process known as probing.

The simplest approach is linear probing . Imagining that our hashing func-
tion has yielded a table index of i, but that slot is already occupied, we simply
try slots (i + 1), (i + 2), and so on until an empty slot is found (wrapping around
to the start of the table when i = N). Another variation on linear probing is to
alternate searching forwards and backwards, (i + 1), (i – 1), (i + 2), (i – 2), and

5.3. Containers

http://www.azillionmonkeys.com/qed/hash

242 5. Engine Support Systems

so on, making sure to modulo the resulting indices into the valid range of the
table.

Linear probing tends to cause key-value pairs to “clump up.” To avoid
these clusters, we can use an algorithm known as quadratic probing . We start at
the occupied table index i and use the sequence of probes ij = (i ± j 2) for j = 1, 2,
3, …. In other words, we try (i + 12), (i – 12), (i + 22), (i – 22), and so on, remem-
bering to always modulo the resulting index into the valid range of the table.

When using closed hashing, it is a good idea to make your table size a
prime number. Using a prime table size in conjunction with quadratic probing
tends to yield the best coverage of the available table slots with minimal clus-
tering. See htt p://www.cs.utk.edu/~eĳ khout/594-LaTeX/handouts/hashing-
slides.pdf for a good discussion of why prime hash table sizes are preferable.

5.4. Strings

Strings are ubiquitous in almost every soft ware project, and game engines are
no exception. On the surface, the string may seem like a simple, fundamental
data type. But when you start using strings in your projects, you will quickly
discover a wide range of design issues and constraints, all of which must be
carefully accounted for.

5.4.1. The Problem with Strings

The most fundamental question is how strings should be stored and managed
in your program. In C and C++, strings aren’t even an atomic type—they are
implemented as arrays of characters. The variable length of strings means we
either have to hard-code limitations on the sizes of our strings, or we need to
dynamically allocate our string buff ers. C++ programmers oft en prefer to use
a string class, rather than deal directly with character arrays. But then, which
string class should we use? STL provides a reasonably good string class, but if
you’ve decided not to use STL you might be stuck writing your own.

Another big string-related problem is that of localization —the process of
adapting your soft ware for release in other languages. This is also known as
internationalization, or I18N for short. Any string that you display to the user
in English must be translated into whatever languages you plan to support.
(Strings that are used internally to the program but are never displayed to the
user are exempt from localization, of course.) This not only involves making
sure that you can represent all the character glyphs of all the languages you
plan to support (via an appropriate set of fonts), but it also means ensuring
that your game can handle diff erent text orientations. For example, Chinese

http://www.cs.utk.edu/%7Ee%C4%B3

243

text is oriented vertically instead of horizontally, and some languages like He-
brew read right-to-left . Your game also needs to gracefully deal with the pos-
sibility that a translated string will be either much longer, or much shorter,
than its English counterpart.

Finally, it’s important to realize that strings are used internally within a
game engine for things like resource fi le names and object ids. For example,
when a game designer lays out a level, it’s highly convenient to permit him or
her to identify the objects in the level using meaningful names, like “Player-
Camera,” “enemy-tank-01,” or “explosionTrigger.”

How our engine deals with these internal strings oft en has pervasive ram-
ifi cations on the performance of the game. This is because strings are inherent-
ly expensive to work with at runtime. Comparing or copying ints or floats
can be accomplished via simple machine language instructions. On the other
hand, comparing strings requires an O(n) scan of the character arrays using a
function like strcmp() (where n is the length of the string). Copying a string
requires an O(n) memory copy, not to mention the possibility of having to
dynamically allocate the memory for the copy. During one project I worked
on, we profi led our game’s performance only to discover that strcmp() and
strcpy() were the top two most expensive functions! By eliminating unnec-
essary string operations and using some of the techniques outlined in this
section, we were able to all but eliminate these functions from our profi le, and
increase the game’s frame rate signifi cantly. (I’ve heard similar stories from
developers at a number of diff erent studios.)

5.4.2. String Classes

String classes can make working with strings much more convenient for the
programmer. However, a string class can have hidden costs that are diffi cult
to see until the game is profi led. For example, passing a string to a function
using a C-style character array is fast because the address of the fi rst character
is typically passed in a hardware register. On the other hand, passing a string
object might incur the overhead of one or more copy constructors, if the func-
tion is not declared or used properly. Copying strings might involve dynamic
memory allocation, causing what looks like an innocuous function call to end
up costing literally thousands of machine cycles.

For this reason, in game programming I generally like to avoid string
classes. However, if you feel a strong urge to use a string class, make sure you
pick or implement one that has acceptable runtime performance character-
istics—and be sure all programmers that use it are aware of its costs. Know
your string class: Does it treat all string buff ers as read-only? Does it utilize
the copy on write optimization? (See htt p://en.wikipedia.org/wiki/Copy-on-

5.4. Strings

244 5. Engine Support Systems

write.) As a rule of thumb, always pass string objects by reference, never by
value (as the latt er oft en incurs string-copying costs). Profi le your code early
and oft en to ensure that your string class isn’t becoming a major source of lost
frame rate!

One situation in which a specialized string class does seem justifi able
to me is when storing and managing fi le system paths . Here, a hypothetical
Path class could add signifi cant value over a raw C-style character array. For
example, it might provide functions for extracting the fi lename, fi le exten-
sion or directory from the path. It might hide operating system diff erences by
automatically converting Windows-style backslashes to UNIX-style forward
slashes or some other operating system’s path separator. Writing a Path class
that provides this kind of functionality in a cross-platform way could be high-
ly valuable within a game engine context. (See Section 6.1.1.4 for more details
on this topic.)

5.4.3. Unique Identifi ers

 The objects in any virtual game world need to be uniquely identifi ed in some
way. For example, in Pac Man we might encounter game objects named “pac_
man,” “blinky,” “pinky,” “inky,” and “clyde.” Unique object identifi ers allow
game designers to keep track of the myriad objects that make up their game
worlds and also permit those objects to be found and operated on at runtime
by the engine. In addition, the assets from which our game objects are con-
structed—meshes, materials, textures, audio clips, animations, and so on—all
need unique identifi ers as well.

Strings seem like a natural choice for such identifi ers. Assets are oft en
stored in individual fi les on disk, so they can usually be identifi ed uniquely by
their fi le paths, which of course are strings. And game objects are created by
game designers, so it is natural for them to assign their objects understandable
string names, rather than have to remember integer object indices, or 64- or
128-bit globally unique identifi ers (GUIDs). However, the speed with which
comparisons between unique identifi ers can be made is of paramount impor-
tance in a game, so strcmp() simply doesn’t cut it. We need a way to have
our cake and eat it too—a way to get all the descriptiveness and fl exibility of a
string, but with the speed of an integer.

5.4.3.1. Hashed String Ids

 One good solution is to hash our strings. As we’ve seen, a hash function maps
a string onto a semi-unique integer. String hash codes can be compared just
like any other integers, so comparisons are fast. If we store the actual strings
in a hash table, then the original string can always be recovered from the hash

245

code. This is useful for debugging purposes and to permit hashed strings to
be displayed on-screen or in log fi les. Game programmers sometimes use the
term string id to refer to such a hashed string. The Unreal engine uses the term
name instead (implemented by class FName).

As with any hashing system, collisions are a possibility (i.e., two diff erent
strings might end up with the same hash code). However, with a suitable hash
function, we can all but guarantee that collisions will not occur for all rea-
sonable input strings we might use in our game. Aft er all, a 32-bit hash code
represents more than four billion possible values. So if our hash function does
a good job of distributing strings evenly throughout this very large range, we
are unlikely to collide. At Naughty Dog, we used a variant of the CRC-32 al-
gorithm to hash our strings, and we didn’t encounter a single collision in over
two years of development on Uncharted: Drake’s Fortune.

5.4.3.2. Some Implementation Ideas

Conceptually, it’s easy enough to run a hash function on your strings in order
to generate string ids. Practically speaking, however, it’s important to con-
sider when the hash will be calculated. Most game engines that use string
ids do the hashing at runtime. At Naughty Dog, we permit runtime hash-
ing of strings, but we also preprocess our source code using a simple utility
that searches for macros of the form SID(any-string) and translates each one
directly into the appropriate hashed integer value. This permits string ids to
be used anywhere that an integer manifest constant can be used, including
the constant case labels of a switch statement. (The result of a function call
that generates a string id at runtime is not a constant, so it cannot be used as
a case label.)

The process of generating a string id from a string is sometimes called
interning the string, because in addition to hashing it, the string is typi-
cally also added to a global string table. This allows the original string to
be recovered from the hash code later. You may also want your tools to be
capable of hashing strings into string ids. That way, when the tool generates
data for consumption by your engine, the strings will already have been
hashed.

The main problem with interning a string is that it is a slow operation.
The hashing function must be run on the string, which can be an expensive
proposition, especially when a large number of strings are being interned.
In addition, memory must be allocated for the string, and it must be copied
into the lookup table. As a result (if you are not generating string ids at
compile-time), it is usually best to intern each string only once and save off
the result for later use. For example, it would be preferable to write code like

5.4. Strings

246 5. Engine Support Systems

this because the latt er implementation causes the strings to be unnecessarily
re-interned every time the function f() is called.

static StringId sid_foo = internString(“foo”);
static StringId sid_bar = internString(“bar”);

// ...

void f(StringId id)
{
 if (id == sid_foo)
 {
 // handle case of id == “foo”
 }

 else if (id == sid_bar)
 {
 // handle case of id == “bar”
 }

}

This approach is much less effi cient.

void f(StringId id)
{
 if (id == internString(“foo”))
 {
 // handle case of id == “foo”
 }

 else if (id == internString(“bar”))
 {
 // handle case of id == “bar”
 }

}

Here’s one possible implementation of internString().

stringid.h

typedef U32 StringId;

extern StringId internString(const char* str);

stringid.cpp

static HashTable<StringId, const char*> gStringIdTable;

247

StringId internString(const char* str)
{
 StringId sid = hashCrc32(str);

 HashTable<StringId, const char*>::iterator it
 = gStringIdTable.find(sid);

 if (it == gStringTable.end())
 {
 // This string has not yet been added to the
 // table. Add it, being sure to copy it in case
 // the original was dynamically allocated and
 // might later be freed.
 gStringTable[sid] = strdup(str);
 }

 return sid;
}

Another idea employed by the Unreal Engine is to wrap the string id and
a pointer to the corresponding C-style character array in a tiny class. In the
Unreal Engine, this class is called FName.

Using Debug Memory for Strings

When using string ids, the strings themselves are only kept around for human
consumption. When you ship your game, you almost certainly won’t need
the strings—the game itself should only ever use the ids. As such, it’s a good
idea to store your string table in a region of memory that won’t exist in the
retail game. For example, a PS3 development kit has 256 MB of retail memory,
plus an additional 256 MB of “debug” memory that is not available on a retail
unit. If we store our strings in debug memory, we needn’t worry about their
impact on the memory footprint of the fi nal shipping game. (We just need to
be careful never to write production code that depends on the strings being
available!)

5.4.4. Localization

 Localization of a game (or any soft ware project) is a big undertaking. It is a
task which is best handled by planning for it from day one and accounting for
it at every step of development. However, this is not done as oft en as we all
would like. Here are some tips that should help you plan your game engine
project for localization. For an in-depth treatment of soft ware localization,
see [29].

5.4. Strings

248 5. Engine Support Systems

5.4.4.1. Unicode

 The problem for most English-speaking soft ware developers is that they are
trained from birth (or thereabouts!) to think of strings as arrays of 8-bit ASCII
character codes (i.e., characters following the ANSI standard). ANSI strings
work great for a language with a simple alphabet, like English. But they just
don’t cut it for languages with complex alphabets containing a great many
more characters, sometimes totally diff erent glyphs than English’s 26 lett ers.
To address the limitations of the ANSI standard, the Unicode character set
system was devised.

Please set down this book right now and read the article entitled, “The
Absolute Minimum Every Soft ware Developer Absolutely, Positively Must
Know About Unicode and Character Sets (No Excuses!)” by Joel Spolsky. You
can fi nd it here: htt p://www.joelonsoft ware.com/articles/Unicode.html. (Once
you’ve done that, please pick up the book again!)

As Joel describes in his article, Unicode is not a single standard but actu-
ally a family of related standards. You will need to select the specifi c standard
that best suits your needs. The two most common choices I’ve seen used in
game engines are UTF-8 and UTF-16.

UTF-8

 In UTF-8, the character codes are 8 bits each, but certain characters occupy
more than one byte. Hence the number of bytes occupied by a UTF-8 character
string is not necessarily the length of the string in characters. This is known as
a multibyte character set (MBCS), because each character may take one or more
bytes of storage.

One of the big benefi ts of the UTF-8 encoding is that it is backwards-com-
patible with the ANSI encoding. This works because the fi rst character of a
multibyte character sequence always has its most signifi cant bit set (i.e., lies
between 128 and 255, inclusive). Since the standard ANSI character codes are
all less than 128, a plain old ANSI string is a valid and unambiguous UTF-8
string as well.

UTF-16

 The UTF-16 standard employs a simpler, albeit more expensive, approach.
Each character takes up exactly 16 bits (whether it needs all of those bits or
not). As a result, dividing the number of bytes occupied by the string by two
yields the number of characters. This is known as a wide character set (WCS),
because each character is 16 bits wide instead of the 8 bits used by “regular”
ANSI chars.

http://www.joelonsoft

249

Unicode under Windows

Under Microsoft Windows, the data type wchar_t is used to represent a single
“wide ” UTF-16 character (WCS), while the char type is used both for ANSI
strings and for multibyte UTF-16 strings (MBCS). What’s more, Windows per-
mits you to write code that is character set independent. To accomplish this, a
data type known as TCHAR is provided. The data type TCHAR is a typedef
to char when building your application in ANSI mode and is a typedef to
wchar_t when building your application in UTF-16 (WCS) mode. (For consis-
tency, the type WCHAR is also provided as a synonym for wchar_t.)

Throughout the Windows API, a prefi x or suffi x of “w,” “wcs,” or “W”
indicates wide (UTF-16) characters; a prefi x or suffi x of “t,” “tcs,” or “T”
indicates the current character type (which might be ANSI or might be UTF-
16, depending on how your application was built); and no prefi x or suf-
fi x indicates plain old ANSI. STL uses a similar convention—for example,
std::string is STL’s ANSI string class, while std::wstring is its wide
character equivalent.

Prett y much every standard C library function that deals with strings has
equivalent WCS and MBCS versions under Windows. Unfortunately, the API
calls don’t use the terms UTF-8 and UTF-16, and the names of the functions
aren’t always 100% consistent. This all leads to some confusion among pro-
grammers who aren’t in the know. (But you aren’t one of those programmers!)
Table 5.1 lists some examples.

Windows also provides functions for translating between ANSI character
strings, multibyte UTF-8 strings, and wide UTF-16 strings. For example, wcs-
tombs() converts a wide UTF-16 string into a multibyte UTF-8 string.

Complete documentation for these functions can be found on Microsoft ’s
MSDN web site. Here’s a link to the documentation for strcmp() and its ilk,
from which you can quite easily navigate to the other related string-manip-
ulation functions using the tree view on the left -hand side of the page, or via
the search bar: htt p://msdn2.microsoft .com/en-us/library/kk6xf663(VS.80).
aspx.

ANSI WCS MBCS
strcmp() wcscmp() _mbscmp()
strcpy() wcscpy() _mbscpy()
strlen() wcslen() _mbstrlen()

Table 5.1. Variants of some common standard C library string functions for use with ANSI,
wide and multibyte character sets.

5.4. Strings

250 5. Engine Support Systems

Unicode on Consoles

The Xbox 360 soft ware development kit (XDK) uses WCS strings prett y much
exclusively, for all strings—even for internal strings like fi le paths. This is cer-
tainly one valid approach to the localization problem, and it makes for very
consistent string handling throughout the XDK. However, the UTF-16 encod-
ing is a bit wasteful on memory, so diff erent game engines may employ diff er-
ent conventions. At Naughty Dog, we use 8-bit char strings throughout our
engine, and we handle foreign languages via a UTF-8 encoding. The choice of
encoding is not important, as long as you select one as early in the project as
possible and stick with it consistently.

5.4.4.2. Other Localization Concerns

Even once you have adapted your soft ware to use Unicode characters, there
are still a host of other localization problems to contend with. For one thing,
strings aren’t the only place where localization issues arise. Audio clips in-
cluding recorded voices must be translated. Textures may have English words
painted into them that require translation. Many symbols have diff erent mean-
ings in diff erent cultures. Even something as innocuous as a no-smoking sign
might be misinterpreted in another culture. In addition, some markets draw the
boundaries between the various game-rating levels diff erently. For example, in
Japan a Teen-rated game is not permitt ed to show blood of any kind, whereas
in North America small red blood spatt ers are considered acceptable.

For strings, there are other details to worry about as well. You will need
to manage a database of all human-readable strings in your game, so that
they can all be reliably translated. The soft ware must display the proper lan-
guage given the user’s installation sett ings. The formatt ing of the strings may
be totally diff erent in diff erent languages—for example, Chinese is writt en
vertically, and Hebrew reads right-to-left . The lengths of the strings will vary
greatly from language to language. You’ll also need to decide whether to ship
a single DVD or Blu-ray disc that contains all languages or ship diff erent discs
for particular territories.

The most crucial components in your localization system will be the cen-
tral database of human-readable strings and an in-game system for looking
up those strings by id. For example, let’s say you want a heads-up display
that lists the score of each player with “Player 1 Score:” and “Player 2 Score:”
labels and that also displays the text “Player 1 Wins” or “Player 2 Wins” at
the end of a round. These four strings would be stored in the localization
database under unique ids that are understandable to you, the developer of
the game. So our database might use the ids “p1score,” “p2score,” “p1wins,”
and “p2wins,” respectively. Once our game’s strings have been translated into

251

French, our database would look something like the simple example shown in
Table 5.2. Additional columns can be added for each new language your game
supports.

The exact format of this database is up to you. It might be as simple as
a Microsoft Excel worksheet that can be saved as a comma-separated values
(CSV) fi le and parsed by the game engine or as complex as a full-fl edged Or-
acle database. The specifi cs of the string database are largely unimportant to
the game engine, as long as it can read in the string ids and the correspond-
ing Unicode strings for whatever language(s) your game supports. (However,
the specifi cs of the database may be very important from a practical point of
view, depending upon the organizational structure of your game studio. A
small studio with in-house translators can probably get away with an Excel
spreadsheet located on a network drive. But a large studio with branch offi ces
in Britain, Europe, South America, and Japan would probably fi nd some kind
of distributed database a great deal more amenable.)

At runtime, you’ll need to provide a simple function that returns the Uni-
code string in the “current” language, given the unique id of that string. The
function might be declared like this:

wchar_t getLocalizedString(const char* id);

and it might be used like this:

void drawScoreHud(const Vector3& score1Pos,
 const Vector3& score2Pos)
{
 renderer.displayTextOrtho(

getLocalizedString("p1score"),
 score1Pos);
 renderer.displayTextOrtho(

getLocalizedString("p2score"),
 score2Pos);
 // ...
 }

Id English French
p1score “Player 1 Score” “Grade Joueur 1”
p2score “Player 2 Score” “Grade Joueur 2”
p1wins “Player 1 wins!” “Joueur un gagne!”
p2wins “Player 2 wins!” “Joueur deux gagne!”

Table 5.2. Example of a string database used for localization.

5.4. Strings

252 5. Engine Support Systems

Of course, you’ll need some way to set the “current” language globally. This
might be done via a confi guration sett ing which is fi xed during the installa-
tion of the game. Or you might allow users to change the current language on
the fl y via an in-game menu. Either way, the sett ing is not diffi cult to imple-
ment; it can be as simple as a global integer variable specifying the index of
the column in the string table from which to read (e.g., column one might be
English, column two French, column three Spanish, and so on).

Once you have this infrastructure in place, your programmers must re-
member to never display a raw string to the user. They must always use the id of
a string in the database and call the look-up function in order to retrieve the
string in question.

5.5. Engine Confi guration

 Game engines are complex beasts, and they invariably end up having a large
number of confi gurable options. Some of these options are exposed to the
player via one or more options menus in-game. For example, a game might
expose options related to graphics quality, the volume of music and sound ef-
fects, or controller confi guration. Other options are created for the benefi t of
the game development team only and are either hidden or stripped out of the
game completely before it ships. For example, the player character’s maximum
walk speed might be exposed as an option so that it can be fi ne-tuned during
development, but it might be changed to a hard-coded value prior to ship.

5.5.1. Loading and Saving Options

 A confi gurable option can be implemented trivially as a global variable or a
member variable of a singleton class. However, confi gurable options are not
particularly useful unless their values can be confi gured, stored on a hard
disk, memory card, or other storage medium and later retrieved by the game.
There are a number of simple ways to load and save confi guration options:

Text confi guration fi les.• By far the most common method of saving and
loading confi guration options is by placing them into one or more text
fi les. The format of these fi les varies widely from engine to engine, but it
is usually very simple. For example, Windows INI fi les (which are used
by the Ogre3D renderer) consist of fl at lists of key-value pairs grouped
into logical sections.

[SomeSection]
 Key1=Value1
 Key2=Value2

253

[AnotherSection]
 Key3=Value3
 Key4=Value4
 Key5=Value5

The XML format is another common choice for confi gurable game op-
tions fi les.
Compressed binary fi les.• Most modern consoles have hard disk drives in
them, but older consoles could not aff ord this luxury. As a result, all
game consoles since the Super Nintendo Entertainment System (SNES)
have come equipped with proprietary removable memory cards that
permit both reading and writing of data. Game options are sometimes
stored on these cards, along with saved games. Compressed binary fi les
are the format of choice on a memory card, because the storage space
available on these cards is oft en very limited.
The Windows registry• . The Microsoft Windows operating system pro-
vides a global options database known as the registry. It is stored as a
tree, where the interior nodes (known as registry keys) act like fi le fold-
ers, and the leaf nodes store the individual options as key-value pairs.
Any application, game or otherwise, can reserve an entire subtree (i.e., a
registry key) for its exclusive use, and then store any set of options with-
in it. The Windows registry acts like a carefully-organized collection of
INI fi les, and in fact it was introduced into Windows as a replacement
for the ever-growing network of INI fi les used by both the operating
system and Windows applications.
Command line options• . The command line can be scanned for option set-
tings. The engine might provide a mechanism for controlling any option
in the game via the command line, or it might expose only a small sub-
set of the game’s options here.
Environment variables• . On personal computers running Windows, Linux,
or MacOS, environment variables are sometimes used to store confi gu-
ration options as well.
Online user profi les.• With the advent of online gaming communities like
Xbox Live , each user can create a profi le and use it to save achievements,
purchased and unlockable game features, game options, and other in-
formation. The data is stored on a central server and can be accessed by
the player wherever an Internet connection is available.

5.5.2. Per-User Options

Most game engines diff erentiate between global options and per-user options .
This is necessary because most games allow each player to confi gure the game

5.5. Engine Confi guration

254 5. Engine Support Systems

to his or her liking. It is also a useful concept during development of the game,
because it allows each programmer, artist, and designer to customize his or
her work environment without aff ecting other team members.

Obviously care must be taken to store per-user options in such a way that
each player “sees” only his or her options and not the options of other play-
ers on the same computer or console. In a console game, the user is typically
allowed to save his or her progress, along with per-user options such as con-
troller preferences, in “slots” on a memory card or hard disk. These slots are
usually implemented as fi les on the media in question.

On a Windows machine, each user has a folder under C:\Documents and
Sett ings containing information such as the user’s desktop, his or her My Doc-
uments folder, his or her Internet browsing history and temporary fi les, and
so on. A hidden subfolder named Application Data is used to store per-user
information on a per-application basis; each application creates a folder un-
der Application Data and can use it to store whatever per-user information it
requires.

Windows games sometimes store per-user confi guration data in the reg-
istry. The registry is arranged as a tree, and one of the top-level children of
the root node, called HKEY_CURRENT_USER, stores sett ings for whichever user
happens to be logged on. Every user has his or her own subtree in the registry
(stored under the top-level subtree HKEY_USERS), and HKEY_CURRENT_USER
is really just an alias to the current user’s subtree. So games and other applica-
tions can manage per-user confi guration options by simply reading and writ-
ing them to keys under the HKEY_CURRENT_USER subtree.

5.5.3. Confi guration Management in Some Real Engines

In this section, we’ll take a brief look at how some real game engines manage
their confi guration options.

5.5.3.1. Example: Quake’s CVARs

 The Quake family of engines uses a confi guration management system known
as console variables, or CVARs for short. A CVAR is just a fl oating-point or
string global variable whose value can be inspected and modifi ed from within
Quake’s in-game console. The values of some CVARs can be saved to disk and
later reloaded by the engine.

At runtime, CVARs are stored in a global linked list. Each CVAR is a dy-
namically-allocated instance of struct cvar_t, which contains the variable’s
name, its value as a string or fl oat, a set of fl ag bits, and a pointer to the next
CVAR in the linked list of all CVARs. CVARs are accessed by calling Cvar_
Get(), which creates the variable if it doesn’t already exist and modifi ed by

255

calling Cvar_Set(). One of the bit fl ags, CVAR_ARCHIVE, controls whether or
not the CVAR will be saved into a confi guration fi le called confi g.cfg. If this fl ag
is set, the value of the CVAR will persist across multiple runs of the game.

5.5.3.2. Example: Ogre3D

 The Ogre3D rendering engine uses a collection of text fi les in Windows INI
format for its confi guration options. By default, the options are stored in three
fi les, each of which is located in the same folder as the executable program:

plugins.cfg• contains options specifying which optional engine plug-ins
are enabled and where to fi nd them on disk.

resources.cfg• contains a search path specifying where game assets (a.k.a.
media, a.k.a. resources) can be found.
ogre.cfg• contains a rich set of options specifying which renderer (DirectX
or OpenGL) to use and the preferred video mode, screen size, etc.

Out of the box, Ogre provides no mechanism for storing per-user confi gu-
ration options. However, the Ogre source code is freely available, so it would
be quite easy to change it to search for its confi guration fi les in the user’s C:\
Documents and Sett ings folder instead of in the folder containing the execut-
able. The Ogre::ConfigFile class makes it easy to write code that reads and
writes brand new confi guration fi les, as well.

5.5.3.3. Example: Uncharted: Drake’s Fortune

 Naughty Dog’s Uncharted engine makes use of a number of confi guration
mechanisms.

In-Game Menu Settings

The Uncharted engine supports a powerful in-game menu system, allowing
developers to control global confi guration options and invoke commands.
The data types of the confi gurable options must be relatively simple (primar-
ily Boolean, integer, and fl oating-point variables), but this limitation did not
prevent the developers of Uncharted from creating literally hundreds of useful
menu-driven options.

Each confi guration option is implemented as a global variable. When the
menu option that controls an option is created, the address of the global vari-
able is provided, and the menu item directly controls its value. As an exam-
ple, the following function creates a submenu item containing some options
for Uncharted’s rail vehicles (the vehicles used in the “Out of the Frying Pan”
jeep chase level). It defi nes menu items controlling three global variables: two
Booleans and one fl oating-point value. The items are collected onto a menu,

5.5. Engine Confi guration

256 5. Engine Support Systems

and a special item is returned that will bring up the menu when selected.
Presumably the code calling this function would add this item to the parent
menu that it is building.

DMENU::ItemSubmenu * CreateRailVehicleMenu()
{
 extern bool g_railVehicleDebugDraw2D;
 extern bool g_railVehicleDebugDrawCameraGoals;
 extern float g_railVehicleFlameProbability;

 DMENU::Menu * pMenu = new DMENU::Menu(
 "RailVehicle");

 pMenu->PushBackItem(
 new DMENU::ItemBool("Draw 2D Spring Graphs",

 DMENU::ToggleBool,
 &g_railVehicleDebugDraw2D));

 pMenu->PushBackItem(
 new DMENU::ItemBool("Draw Goals (Untracked)",

 DMENU::ToggleBool,
 &g_railVehicleDebugDrawCameraGoals));

 DMENU::ItemFloat * pItemFloat;
 pItemFloat = new DMENU::ItemFloat(
 "FlameProbability",
 DMENU:: EditFloat, 5, "%5.2f",
 & g_railVehicleFlameProbability);

 pItemFloat->SetRangeAndStep(0.0f, 1.0f, 0.1f, 0.01f);
 pMenu->PushBackItem(pItemFloat);

 DMENU::ItemSubmenu * pSubmenuItem;
 pSubmenuItem = new DMENU::ItemSubmenu(
 "RailVehicle...", pMenu);

 return pSubmenuItem;
}

The value of any option can be saved by simply marking it with the circle
butt on on the PS3 joypad when the corresponding menu item is selected. The
menu sett ings are saved in an INI-style text fi le, allowing the saved global vari-
ables to retain the values across multiple runs of the game. The ability to con-
trol which options are saved on a per-menu-item basis is highly useful, because
any option which is not saved will take on its programmer-specifi ed default
value. If a programmer changes a default, all users will “see” the new value,
unless of course a user has saved a custom value for that particular option.

257

Command Line Arguments

The Uncharted engine scans the command line for a predefi ned set of special
options. The name of the level to load can be specifi ed, along with a number
of other commonly-used arguments.

Scheme Data Defi nitions

 The vast majority of engine and game confi guration information in Uncharted
is specifi ed using a Lisp -like language called Scheme . Using a proprietary data
compiler, data structures defi ned in the Scheme language are transformed
into binary fi les that can be loaded by the engine. The data compiler also spits
out header fi les containing C struct declarations for every data type defi ned
in Scheme. These header fi les allow the engine to properly interpret the data
contained in the loaded binary fi les. The binary fi les can even be recompiled
and reloaded on the fl y, allowing developers to alter the data in Scheme and
see the eff ects of their changes immediately (as long as data members are not
added or removed, as that would require a recompile of the engine).

The following example illustrates the creation of a data structure specify-
ing the properties of an animation. It then exports three unique animations to
the game. You may have never read Scheme code before, but for this relatively
simple example it should be prett y self-explanatory. One oddity you’ll notice
is that hyphens are permitt ed within Scheme symbols, so simple-animation
is a single symbol (unlike in C/C++ where simple-animation would be the
subtraction of two variables, simple and animation).

simple-animation.scm

;; Define a new data type called simple-animation.

(deftype simple-animation ()
 (
 (name string)
 (speed float :default 1.0)
 (fade-in-seconds float :default 0.25)
 (fade-out-seconds float :default 0.25)
)
)

;; Now define three instances of this data structure...

(define-export anim-walk
 (new simple-animation
 :name “walk”
 :speed 1.0
)
)

5.5. Engine Confi guration

258 5. Engine Support Systems

(define-export anim-walk-fast
 (new simple-animation
 :name "walk"
 :speed 2.0
)
)

(define-export anim-jump
 (new simple-animation
 :name "jump"
 :fade-in-seconds 0.1
 :fade-out-seconds 0.1
)
)

This Scheme code would generate the following C/C++ header fi le:

simple-animation.h

// WARNING: This file was automatically generated from
// Scheme. Do not hand-edit.

struct SimpleAnimation
{
 const char* m_name;
 float m_speed;
 float m_fadeInSeconds;
 float m_fadeOutSeconds;
};

In-game, the data can be read by calling the LookupSymbol() function, which
is templated on the data type returned, as follows:

#include "simple-animation.h"

void someFunction()
{

SimpleAnimation* pWalkAnim
 = LookupSymbol<SimpleAnimation*>("anim-walk");

SimpleAnimation* pFastWalkAnim
 = LookupSymbol<SimpleAnimation*>(
 " anim-walk-fast");

SimpleAnimation* pJumpAnim
 = LookupSymbol<SimpleAnimation*>("anim-jump");

 // use the data here...
}

259

This system gives the programmers a great deal of fl exibility in defi n-
ing all sorts of confi guration data—from simple Boolean, fl oating-point, and
string options all the way to complex, nested, interconnected data structures.
It is used to specify detailed animation trees, physics parameters, player me-
chanics, and so on.

5.5. Engine Confi guration

261

6
Resources and
the File System

Games are by nature multimedia experiences. A game engine therefore
needs to be capable of loading and managing a wide variety of diff erent

kinds of media—texture bitmaps, 3D mesh data, animations, audio clips, col-
lision and physics data, game world layouts, and the list goes on. Moreover,
because memory is usually scarce, a game engine needs to ensure that only
one copy of each media fi le is loaded into memory at any given time. For ex-
ample, if fi ve meshes share the same texture, then we would like to have only
one copy of that texture in memory, not fi ve. Most game engines employ some
kind of resource manager (a.k.a. asset manager, a.k.a. media manager) to load and
manage the myriad resources that make up a modern 3D game.

Every resource manager makes heavy use of the fi le system. On a per-
sonal computer, the fi le system is exposed to the programmer via a library
of operating system calls. However, game engines oft en “wrap” the native
fi le system API in an engine-specifi c API, for two primary reasons. First, the
engine might be cross-platform, in which case the game engine’s fi le system
API can shield the rest of the soft ware from diff erences between diff erent
target hardware platforms. Second, the operating system’s fi le system API
might not provide all the tools needed by a game engine. For example, many
engines support fi le streaming (i.e., the ability to load data “on the fl y” while
the game is running), yet most operating systems don’t provide a streaming
fi le system API out of the box. Console game engines also need to provide ac-

262 6. Resources and the File System

cess to a variety of removable and non-removable media, from memory sticks
to optional hard drives to a DVD-ROM or Blu-ray fi xed disk to network fi le
systems (e.g., Xbox Live or the PlayStation Network , PSN). The diff erences
between various kinds of media can likewise be “hidden” behind a game
engine’s fi le system API.

In this chapter, we’ll fi rst explore the kinds of fi le system APIs found in
modern 3D game engines. Then we’ll see how a typical resource manager
works.

6.1. File System

A game engine’s fi le system API typically addresses the following areas of
functionality:

 manipulating fi le names and paths,

 opening, closing, reading and writing individual fi les,

 scanning the contents of a directory,

 handling asynchronous fi le I/O requests (for streaming).

We’ll take a brief look at each of these in the following sections.

6.1.1. File Names and Paths

A path is a string describing the location of a fi le or directory within a fi le sys-
tem hierarchy. Each operating system uses a slightly diff erent path format, but
paths have essentially the same structure on every operating system. A path
generally takes the following form:

volume/directory1/ directory2/…/directoryN/fi le-name

 or

volume/directory1/directory2/…/directory(N – 1)/directoryN

In other words, a path generally consists of an optional volume specifi er fol-
lowed by a sequence of path components separated by a reserved path separa-
tor character such as the forward or backward slash (/ or \). Each component
names a directory along the route from the root directory to the fi le or direc-
tory in question. If the path specifi es the location of a fi le, the last compo-
nent in the path is the fi le name; otherwise it names the target directory. The
root directory is usually indicated by a path consisting of the optional volume
specifi er followed by a single path separator character (e.g., / on UNIX, or C:\
on Windows).

263 6.1. File System

6.1.1.1. Differences Across Operating Systems

Each operating system introduces slight variations on this general path struc-
ture. Here are some of the key diff erences between Microsoft DOS , Microsoft
Windows , the UNIX family of operating systems, and Apple Macintosh OS:

 UNIX uses a forward slash (/) as its path component separator, while
DOS and older versions of Windows used a backslash (\) as the path
separator. Recent versions of Windows allow either forward or back-
ward slashes to be used to separate path components, although some
applications still fail to accept forward slashes.

 Mac OS 8 and 9 use the colon (:) as the path separator character. Mac
OS X is based on UNIX, so it supports UNIX’s forward slash notation.

 UNIX and its variants don’t support volumes as separate directory hi-
erarchies. The entire fi le system is contained within a single monolithic
hierarchy, and local disk drives, network drives, and other resources are
mounted so that they appear to be subtrees within the main hierarchy. As
a result, UNIX paths never have a volume specifi er.

 On Microsoft Windows, volumes can be specifi ed in two ways. A local
disk drive is specifi ed using a single lett er followed by a colon (e.g., the
ubiquitous C:). A remote network share can either be mounted so that
it looks like a local disk, or it can be referenced via a volume specifi er
consisting of two backslashes followed by the remote computer name
and the name of a shared directory or resource on that machine (e.g.,
\\some-computer\some-share). This double backslash notation is an
example of the Universal Naming Convention (UNC).

 Under DOS and early versions of Windows, a fi le name could be up to
eight characters in length, with a three-character extension which was
separated from the main fi le name by a dot. The extension described
the fi le’s type, for example .txt for a text fi le or .exe for an executable
fi le. In recent Windows implementations, fi le names can contain any
number of dots (as they can under UNIX), but the characters aft er the
fi nal dot are still interpreted as the fi le’s extension by many applications
including the Windows Explorer.

 Each operating system disallows certain characters in the names of fi les
and directories. For example, a colon cannot appear anywhere in a Win-
dows or DOS path except as part of a drive lett er volume specifi er. Some
operating systems permit a subset of these reserved characters to ap-
pear in a path as long as the path is quoted in its entirety or the off end-
ing character is escaped by preceding it with a backslash or some other

264 6. Resources and the File System

reserved escape character. For example, fi le and directory names may
contain spaces under Windows, but such a path must be surrounded by
double quotes in certain contexts.

 Both UNIX and Windows have the concept of a current working directory
or CWD (also known as the present working directory or PWD). The CWD
can be set from a command shell via the cd (change directory) command
on both operating systems, and it can be queried by typing cd with
no arguments under Windows or by executing the pwd command on
UNIX. Under UNIX there is only one CWD. Under Windows, each vol-
ume has its own private CWD.

 Operating systems that support multiple volumes, like Windows, also
have the concept of a current working volume. From a Windows com-
mand shell, the current volume can be set by entering its drive lett er and
a colon followed by the Enter key (e.g., C:<Enter>).

 Consoles oft en also employ a set of predefi ned path prefi xes to repre-
sent multiple volumes. For example, PLAYSTATION 3 uses the prefi x
/dev_bdvd/ to refer to the Bluray disk drive, while /dev_hddx/ refers
to one or more hard disks (where x is the index of the device). On a PS3
development kit, /app_home/ maps to a user-defi ned path on whatever
host machine is being used for development. During development, the
game usually reads its assets from /app_home/ rather than from the
Bluray or the hard disk.

6.1.1.2. Absolute and Relative Paths

All paths are specifi ed relative to some location within the fi le system. When a
path is specifi ed relative to the root directory, we call it an absolute path . When
it is relative to some other directory in the fi le system hierarchy, we call it a
relative pa th .

Under both UNIX and Windows, absolute paths start with a path sepa-
rator character (/ or \), while relative paths have no leading path separator.
On Windows, both absolute and relative paths may have an optional volume
specifi er—if the volume is omitt ed, then the path is assumed to refer to the
current working volume.

The following paths are all absolute:

Windows

 C:\Windows\System32

 D:\ (root directory on the D: volume)

 \ (root directory on the current working volume)

265

 \game\assets\animation\walk.anim (current working volume)

 \\joe-dell\Shared_Files\Images\foo.jpg (network path)

UNIX

 /usr/local/bin/grep

 /game/src/audio/effects.cpp

 / (root directory)

The following paths are all relative:

Windows

 System32 (relative to CWD \Windows on the current volume)

 X:animation\walk.anim (relative to CWD \game\assets on the X:
volume)

UNIX

 bin/grep (relative to CWD /usr/local)
 src/audio/effects.cpp (relative to CWD /game)

6.1.1.3. Search Paths

The term path should not be confused with the term search path. A path is a
string representing the location of a single fi le or directory within the fi le
system hierarchy. A search path is a string containing a list of paths, each sepa-
rated by a special character such as a colon or semicolon, which is searched
when looking for a fi le. For example, when you run any program from a com-
mand prompt, the operating system fi nds the executable fi le by searching
each directory on the search path contained in the shell’s PATH environment
variable.

Some game engines also use search paths to locate resource fi les. For ex-
ample, the Ogre3D rendering engine uses a resource search path contained in
a text fi le named resources.cfg. The fi le provides a simple list of directories
and Zip archives that should be searched in order when trying to fi nd an as-
set. That said, searching for assets at runtime is a time-consuming proposition.
Usually there’s no reason our assets’ paths cannot be known a priori. Presum-
ing this is the case, we can avoid having to search for assets at all—which is
clearly a superior approach.

6.1.1.4. Path APIs

Clearly paths are much more complex than simple strings. There are many
things a programmer may need to do when dealing with paths, such as isolat-
ing the directory, fi lename and extension, canonicalizing a path, converting

6.1. File System

266 6. Resources and the File System

back and forth between absolute and relative paths, and so on. It can be ex-
tremely helpful to have a feature-rich API to help with these tasks.

Microsoft Windows provides an API for this purpose. It is implement-
ed by the dynamic link library shlwapi.dll, and exposed via the header
fi le shlwapi.h. Complete documentation for this API is provided on the
Microsoft Developer’s Network (MSDN) at the following URL: htt p://msdn2.
microsoft .com/en-us/library/bb773559(VS.85).aspx.

Of course, the shlwapi API is only available on Win32 platforms. Sony
provides a similar API for use on the PLAYSTATION 3. But when writing a
cross-platform game engine, we cannot use platform-specifi c APIs directly. A
game engine may not need all of the functions provided by an API like sh-
lwapi anyway. For these reasons, game engines oft en implement a stripped-
down path-handling API that meets the engine’s particular needs and works
on every operating system targeted by the engine. Such an API can be imple-
mented as a thin wrapper around the native API on each platform or it can be
writt en from scratch.

6.1.2. Basic File I/O

The standard C library provides two APIs for opening, reading, and writing
the contents of fi les—one buff ered and the other unbuff ered. Every fi le I/O
API requires data blocks known as buff ers to serve as the source or destination
of the bytes passing between the program and the fi le on disk. We say a fi le
I/O API is buff ered when the API manages the necessary input and output data
buff ers for you. With an unbuff ered API, it is the responsibility of the pro-
grammer using the API to allocate and manage the data buff ers. The standard
C library’s buff ered fi le I/O routines are sometimes referred to as the stream
I/O API, because they provide an abstraction which makes disk fi les look like
streams of bytes.

The standard C library functions for buff ered and un-buff ered fi le I/O are
listed in Table 6.1.

The standard C library I/O functions are well-documented, so we will not
repeat detailed documentation for them here. For more information, please
refer to htt p://msdn2.microsoft .com/en-us/library/c565h7xx(VS.71).aspx for
Microsoft ’s implementation of the buff ered (stream I/O) API, and to htt p://
msdn2.microsoft .com/en-us/library/40bbyw78(VS.71).aspx for Microsoft ’s
implementation of the unbuff ered (low-level I/O) API.

On UNIX and its variants, the standard C library’s unbuff ered I/O routes
are native operating system calls. However, on Microsoft Windows these rou-
tines are merely wrappers around an even lower-level API. The Win32 func-
tion CreateFile() creates or opens a fi le for writing or reading, ReadFile()

267

and WriteFile() read and write data, respectively, and CloseFile() closes
an open fi le handle. The advantage to using low-level system calls as opposed
to standard C library functions is that they expose all of the details of the na-
tive fi le system. For example, you can query and control the security att ributes
of fi les when using the Windows native API—something you cannot do with
the standard C library.

Some game teams fi nd it useful to manage their own buff ers. For example,
the Red Alert 3 team at Electronic Arts observed that writing data into log fi les
was causing signifi cant performance degradation. They changed the logging
system so that it accumulated its output into a memory buff er, writing the
buff er out to disk only when it was fi lled. Then they moved the buff er dump
routine out into a separate thread to avoid stalling the main game loop.

6.1.2.1. To Wrap or Not To Wrap

 A game engine can be writt en to use the standard C library’s fi le I/O functions or
the operating system’s native API. However, many game engines wrap the fi le
I/O API in a library of custom I/O functions. There are at least three advantages
to wrapping the operating system’s I/O API. First, the engine programmers
can guarantee identical behavior across all target platforms, even when native
libraries are inconsistent or buggy on a particular platform. Second, the API
can be simplifi ed down to only those functions actually required by the engine,
which keeps maintenance eff orts to a minimum. Third, extended functionality
can be provided. For example, the engine’s custom wrapper API might be ca-
pable of dealing fi les on a hard disk, a DVD-ROM or Blu-ray disk on a console,

6.1. File System

Operation Buff ered API Unbuff ered API
Open a fi le fopen() open()

Close a fi le fclose() close()

Read from a fi le fread() read()

Write to a fi le fwrite() write()

Seek to an off set fseek() seek()

Return current off set ftell() tell()

Read a single line fgets() n/a
Write a single line fputs() n/a
Read formatt ed string fscanf() n/a
Write formatt ed string fprintf() n/a
Query fi le status fstat() stat()

Table 6.1. Buffered and unbuffered fi le operations in the standard C library.

268 6. Resources and the File System

fi les on a network (e.g., remote fi les managed by Xbox Live or PSN), and also
with fi les on memory sticks or other kinds of removable media.

6.1.2.2. Synchronous File I/O

 Both of the standard C library’s fi le I/O libraries are synchronous, meaning that
the program making the I/O request must wait until the data has been com-
pletely transferred to or from the media device before continuing. The fol-
lowing code snippet demonstrates how the entire contents of a fi le might be
read into an in-memory buff er using the synchronous I/O function fread().
Notice how the function syncReadFile() does not return until all the data
has been read into the buff er provided.

bool syncReadFile(const char* filePath,
 U8* buffer, size_t bufferSize, size_t& rBytesRead)
{

 FILE* handle = fopen(filePath, "rb");
 if (handle)
 {

// BLOCK here until all data has been read.
 size_t bytesRead = fread(buffer, 1, bufferSize,
 handle);

 int err = ferror(handle); // get error if any

 fclose(handle);

 if (0 == err)
 {
 rBytesRead = bytesRead;
 return true;
 }
 }
 return false;
}

void main(int argc, const char* argv[])
{
 U8 testBuffer[512];
 size_t bytesRead = 0;

 if (syncReadFile("C:\\testfile.bin",
 testBuffer, sizeof(testBuffer), bytesRead))

 {
 printf("success: read %u bytes\n", bytesRead);

// Contents of buffer can be used here...
 }
}

269

6.1.3. Asynchronous File I/O

 Streaming refers to the act of loading data in the background while the main
program continues to run. Many games provide the player with a seamless,
load-screen-free playing experience by streaming data for upcoming levels
from the DVD-ROM, Blu-ray disk, or hard drive while the game is being
played. Audio and texture data are probably the most commonly streamed
types of data, but any type of data can be streamed, including geometry, level
layouts, and animation clips.

In order to support streaming, we must utilize an asynchronous fi le I/O
library, i.e., one which permits the program to continue to run while its I/O re-
quests are being satisfi ed. Some operating systems provide an asynchronous
fi le I/O library out of the box. For example, the Windows Common Language
Runtime (CLR, the virtual machine upon which languages like Visual BASIC,
C#, managed C++ and J# are implemented) provides functions like System.
IO.BeginRead() and System.IO.BeginWrite(). An asynchronous API
known as fios is available for the PLAYSTATION 3. If an asynchronous fi le
I/O library is not available for your target platform, it is possible to write one
yourself. And even if you don’t have to write it from scratch, it’s probably a
good idea to wrap the system API for portability.

The following code snippet demonstrates how the entire contents of a fi le
might be read into an in-memory buff er using an asynchronous read opera-
tion. Notice that the asyncReadFile() function returns immediately—the
data is not present in the buff er until our callback function asyncReadCom-
plete() has been called by the I/O library.

AsyncRequestHandle g_hRequest; // handle to async I/O
 // request
U8 g_asyncBuffer[512]; // input buffer

static void asyncReadComplete(AsyncRequestHandle
 hRequest);

void main(int argc, const char* argv[])
{

 // NOTE: This call to asyncOpen() might itself be an
 // asynchronous call, but we’ll ignore that detail
 // here and just assume it’s a blocking function.
 AsyncFileHandle hFile = asyncOpen(
 "C:\\testfile.bin");

 if (hFile)
 {

6.1. File System

270 6. Resources and the File System

 // This function requests an I/O read, then
 // returns immediately (non-blocking).
 g_hRequest = asyncReadFile(
 hFile, // file handle
 g_asyncBuffer, // input buffer
 sizeof(g_asyncBuffer), // size of buffer

asyncReadComplete); // callback function
 }

 // Now go on our merry way...
 // (This loop simulates doing real work while we wait
 // for the I/O read to complete.)
 for (;;)
 {
 OutputDebugString("zzz...\n");
 Sleep(50);
 }
}

// This function will be called when the data has been read.
static void asyncReadComplete(
 AsyncRequestHandle hRequest)
{
 if (hRequest == g_hRequest
 && asyncWasSuccessful(hRequest))
 {
 // The data is now present in g_asyncBuffer[] and
 // can be used. Query for the number of bytes
 // actually read:
 size_t bytes = asyncGetBytesReadOrWritten(
 hRequest);

 char msg[256];
 sprintf(msg, "async success, read %u bytes\n",
 bytes);
 OutputDebugString(msg);
 }
}

Most asynchronous I/O libraries permit the main program to wait for an
I/O operation to complete some time aft er the request was made. This can be
useful in situations where only a limited amount of work can be done before
the results of a pending I/O request are needed. This is illustrated in the fol-
lowing code snippet.

U8 g_asyncBuffer[512]; // input buffer

void main(int argc, const char* argv[])
{

271

 AsyncRequestHandle hRequest = ASYNC_INVALID_HANDLE;

 AsyncFileHandle hFile = asyncOpen(
 "C:\\testfile.bin");

 if (hFile)
 {
 // This function requests an I/O read, then
 // returns immediately (non-blocking).
 hRequest = asyncReadFile(
 hFile, // file handle
 g_asyncBuffer, // input buffer
 sizeof(g_asyncBuffer), // size of buffer

NULL); // no callback
 }

 // Now do some limited amount of work...
 for (int i = 0; i < 10; ++i)
 {
 OutputDebugString("zzz...\n");
 Sleep(50);
 }

 // We can’t do anything further until we have that
 // data, so wait for it here.

asyncWait(hRequest);

 if (asyncWasSuccessful(hRequest))
 {
 // The data is now present in g_asyncBuffer[] and
 // can be used. Query for the number of bytes
 // actually read:

 size_t bytes = asyncGetBytesReadOrWritten(
 hRequest);

 char msg[256];
 sprintf(msg, "async success, read %u bytes\n",
 bytes);
 OutputDebugString(msg);
 }
}

Some asynchronous I/O libraries allow the programmer to ask for an esti-
mate of how long a particular asynchronous operation will take to complete.
Some APIs also allow you to set deadlines on a request (eff ectively prioritizes
the request relative to other pending requests), and to specify what happens
when a request misses its deadline (e.g., cancel the request, notify the pro-
gram and keep trying, etc.)

6.1. File System

272 6. Resources and the File System

6.1.3.1. Priorities

It’s important to remember that fi le I/O is a real-time system, subject to dead-
lines just like the rest of the game. Therefore, asynchronous I/O operations
oft en have varying priorities. For example, if we are streaming audio from
the hard disk or Bluray and playing it on the fl y, loading the next buff er-full
of audio data is clearly higher priority than, say, loading a texture or a chunk
of a game level. Asynchronous I/O systems must be capable of suspending
lower-priority requests, so that higher-priority I/O requests have a chance to
complete within their deadlines.

6.1.3.2. How Asynchronous File I/O Works

Asynchronous fi le I/O works by handling I/O requests in a separate thread .
The main thread calls functions that simply place requests on a queue and
then return immediately. Meanwhile, the I/O thread picks up requests from
the queue and handles them sequentially using blocking I/O routines like
read() or fread(). When a request is completed, a callback provided by
the main thread is called, thereby notifying it that the operation is done. If the
main thread chooses to wait for an I/O request to complete, this is handled via
a semaphore. (Each request has an associated semaphore, and the main thread
can put itself to sleep waiting for that semaphore to be signaled by the I/O
thread upon completion of the request.)

Virtually any synchronous operation you can imagine can be transformed
into an asynchronous operation by moving the code into a separate thread—
or by running it on a physically separate processor, such as on one of the six
synergistic processing units (SPUs) on the PLAYSTATION 3. See Section 7.6
for more details.

6.2. The Resource Manager

 Every game is constructed from a wide variety of resources (sometimes called
assets or media). Examples include meshes, materials, textures, shader pro-
grams, animations, audio clips, level layouts, collision primitives, physics pa-
rameters, and the list goes on. A game’s resources must be managed, both in
terms of the offl ine tools used to create them, and in terms of loading, unload-
ing, and manipulating them at runtime. Therefore every game engine has a
resource manager of some kind.

Every resource manager is comprised of two distinct but integrated com-
ponents. One component manages the chain of off -line tools used to create the
assets and transform them into their engine-ready form. The other component

273

manages the resources at runtime, ensuring that they are loaded into memory
in advance of being needed by the game and making sure they are unloaded
from memory when no longer needed.

In some engines, the resource manager is a cleanly-designed, unifi ed,
centralized subsystem that manages all types of resources used by the game.
In other engines, the resource manager doesn’t exist as a single subsystem
per se, but is rather spread across a disparate collection of subsystems, per-
haps writt en by diff erent individuals at various times over the engine’s long
and sometimes colorful history. But no matt er how it is implemented, a re-
source manager invariably takes on certain responsibilities and solves a well-
understood set of problems. In this section, we’ll explore the functionality
and some of the implementation details of a typical game engine resource
manager.

6.2.1. Off-Line Resource Management and the Tool Chain

6.2.1.1. Revision Control for Assets

 On a small game project, the game’s assets can be managed by keeping loose
fi les sitt ing around on a shared network drive with an ad hoc directory struc-
ture. This approach is not feasible for a modern commercial 3D game, com-
prised of a massive number and variety of assets. For such a project, the team
requires a more formalized way to track and manage its assets.

Some game teams use a source code revision control system to manage
their resources. Art source fi les (Maya scenes, Photoshop .PSD fi les, Illustrator
fi les, etc.) are checked in to Perforce or a similar package by the artists. This
approach works reasonably well, although some game teams build custom
asset management tools to help fl att en the learning curve for their artists. Such
tools may be simple wrappers around a commercial revision control system,
or they might be entirely custom.

Dealing with Data Size

One of the biggest problems in the revision control of art assets is the sheer
amount of data. Whereas C++ and script source code fi les are small, relative
to their impact on the project, art fi les tend to be much, much larger. Because
many source control systems work by copying fi les from the central reposito-
ry down to the user’s local machine, the sheer size of the asset fi les can render
these packages almost entirely useless.

I’ve seen a number of diff erent solutions to this problem employed at
various studios. Some studios turn to commercial revision control systems
like Alienbrain that have been specifi cally designed to handle very large data

6.2. The Resource Manager

274 6. Resources and the File System

sizes. Some teams simply “take their lumps” and allow their revision control
tool to copy assets locally. This can work, as long as your disks are big enough
and your network bandwidth suffi cient, but it can also be ineffi cient and slow
the team down. Some teams build elaborate systems on top of their revision
control tool to ensure that a particular end-user only gets local copies of the
fi les he or she actually needs. In this model, the user either has no access to
the rest of the repository or can access it on a shared network drive when
needed.

At Naughty Dog we use a proprietary tool that makes use of UNIX symbol-
ic links to virtually eliminate data copying, while permitt ing each user to have
a complete local view of the asset repository. As long as a fi le is not checked
out for editing, it is a symlink to a master fi le on a shared network drive. Sym-
bolic links occupy very litt le space on the local disk, because it is nothing more
than a directory entry. When the user checks out a fi le for editing, the symlink
is removed, and a local copy of the fi le replaces it. When the user is done edit-
ing and checks the fi le in, the local copy becomes the new master copy, its revi-
sion history is updated in a master database, and the local fi le turns back into
a symlink. This systems works very well, but it requires the team to build their
own revision control system from scratch; I am unaware of any commercial
tool that works like this. Also, symbolic links are a UNIX feature—such a tool
could probably be built with Windows junctions (the Windows equivalent of
a symbolic link), but I haven’t seen anyone try it as yet.

6.2.1.2. The Resource Database

 As we’ll explore in depth in the next section, most assets are not used in their
original format by the game engine. They need to pass through some kind of
asset conditioning pipeline, whose job it is to convert the assets into the binary
format needed by the engine. For every resource that passes through the asset
conditioning pipeline, there is some amount of metadata that describes how
that resource should be processed. When compressing a texture bitmap, we
need to know what type of compression best suits that particular image. When
exporting an animation, we need to know what range of frames in Maya
should be exported. When exporting character meshes out of a Maya scene
containing multiple characters, we need to know which mesh corresponds to
which character in the game.

To manage all of this metadata, we need some kind of database. If we are
making a very small game, this database might be housed in the brains of the
developers themselves. I can hear them now: “Remember: the player’s anima-
tions need to have the ‘fl ip X’ fl ag set, but the other characters must not have it
set… or… rats… is it the other way around?”

275

Clearly for any game of respectable size, we simply cannot rely on the
memories of our developers in this manner. For one thing, the sheer volume of
assets becomes overwhelming quite quickly. Processing individual resource
fi les by hand is also far too time-consuming to be practical on a full-fl edged
commercial game production. Therefore, every professional game team has
some kind of semi-automated resource pipeline, and the data that drives the
pipeline is stored in some kind of resource database.

The resource database takes on vastly diff erent forms in diff erent game
engines. In one engine, the metadata describing how a resource should be
built might be embedded into the source assets themselves (e.g., it might be
stored as so-called blind data within a Maya fi le). In another engine, each
source resource fi le might be accompanied by a small text fi le that describes
how it should be processed. Still other engines encode their resource build-
ing metadata in a set of XML fi les, perhaps wrapped in some kind of custom
graphical user interface. Some engines employ a true relational database, such
as Microsoft Access, MySQL, or conceivably even a heavy-weight database
like Oracle.

Whatever its form, a resource database must provide the following basic
functionality:

 The ability to deal with multiple types of resources, ideally (but certainly
not necessarily) in a somewhat consistent manner.

 The ability to create new resources.
 The ability to delete resources.
 The ability to inspect and modify existing resources.
 The ability to move a resource’s source fi le(s) from one location to an-

other on-disk. (This is very helpful because artists and game designers
oft en need to rearrange assets to refl ect changing project goals, re-think-
ing of game designs, feature additions and cuts, etc.)

 The ability of a resource to cross-reference other resources (e.g., the ma-
terial used by a mesh, or the collection of animations needed by level
17). These cross-references typically drive both the resource building
process and the loading process at runtime.

 The ability to maintain referential integrity of all cross-references within
the database and to do so in the face of all common operations such as
deleting or moving resources around.

 The ability to maintain a revision history, complete with a log of who
made each change and why.

 It is also very helpful if the resource database supports searching or
querying in various ways. For example, a developer might want to

6.2. The Resource Manager

276 6. Resources and the File System

know in which levels a particular animation is used or which textures
are referenced by a set of materials. Or they might simply be trying to
fi nd a resource whose name momentarily escapes them.

It should be prett y obvious from looking at the above list that creating a
reliable and robust resource database is no small task. When designed well
and implemented properly, the resource database can quite literally make
the diff erence between a team that ships a hit game and a team that spins its
wheels for 18 months before being forced by management to abandon the
project (or worse). I know this to be true, because I’ve personally experienced
both.

6.2.1.3. Some Successful Resource Database Designs

Every game team will have diff erent requirements and make diff erent deci-
sions when designing their resource database. However, for what it’s worth,
here are some designs that have worked well in my own experience:

Unreal Engine 3

 Unreal’s resource database is managed by their über-tool, UnrealEd . UnrealEd
is responsible for literally everything, from resource metadata management to
asset creation to level layout and more. UnrealEd has its drawbacks, but its
single biggest benefi t is that UnrealEd is a part of the game engine itself. This
permits assets to be created and then immediately viewed in their full glory,
exactly as they will appear in-game. The game can even be run from within
UnrealEd, in order to visualize the assets in their natural surroundings and
see if and how they work in-game.

Another big benefi t of UnrealEd is what I would call one-stop shopping.
UnrealEd’s Generic Browser (depicted in Figure 6.1) allows a developer to
access literally every resource that is consumed by the engine. Having a sin-
gle, unifi ed, and reasonably-consistent interface for creating and managing
all types of resources is a big win. This is especially true considering that the
resource data in most other game engines is fragmented across countless in-
consistent and oft en cryptic tools. Just being able to fi nd any resource easily in
UnrealEd is a big plus.

Unreal can be less error-prone than many other engines, because assets
must be explicitly imported into Unreal’s resource database. This allows re-
sources to be checked for validity very early in the production process. In
most game engines, any old data can be thrown into the resource database,
and you only know whether or not that data is valid when it is eventually
built—or sometimes not until it is actually loaded into the game at runtime.
But with Unreal, assets can be validated as soon as they are imported into

277

UnrealEd. This means that the person who created the asset gets immediate
feedback as to whether his or her asset is confi gured properly.

Of course, Unreal’s approach has some serious drawbacks. For one thing,
all resource data is stored in a small number of large package fi les . These fi les
are binary, so they are not easily merged by a revision control package like
CVS, Subversion, or Perforce. This presents some major problems when more
than one user wants to modify resources that reside in a single package. Even
if the users are trying to modify diff erent resources, only one user can lock the
package at a time, so the other has to wait. The severity of this problem can be
reduced by dividing resources into relatively small, granular packages, but it
cannot practically be eliminated.

Referential integrity is quite good in UnrealEd, but there are still some
problems. When a resource is renamed or moved around, all references to it
are maintained automatically using a dummy object that remaps the old re-

6.2. The Resource Manager

Figure 6.1. UnrealEd’s Generic Browser.

278 6. Resources and the File System

source to its new name/location. The problem with these dummy remapping
objects is that they hang around and accumulate and sometimes cause prob-
lems, especially if a resource is deleted. Overall, Unreal’s referential integrity
is quite good, but it is not perfect.

Despite its problems, UnrealEd is by far the most user-friendly, well-in-
tegrated, and streamlined asset creation toolkit, resource database, and asset-
conditioning pipeline that I have ever worked with.

Naughty Dog’s Uncharted: Drake’s Fortune Engine

 For Uncharted: Drake’s Fortune (UDF), Naughty Dog stored its resource
metadata in a MySQL database. A custom graphical user interface was writt en
to manage the contents of the database. This tool allowed artists, game design-
ers, and programmers alike to create new resources, delete existing resources,
and inspect and modify resources as well. This GUI was a crucial component
of the system, because it allowed users to avoid having to learn the intricacies
of interacting with a relational database via SQL.

The original MySQL database used on UDF did not provide a useful his-
tory of the changes made to the database, nor did it provide a good way to roll
back “bad” changes. It also did not support multiple users editing the same
resource, and it was diffi cult to administer. Naughty Dog has since moved
away from MySQL in favor of an XML fi le-based asset database, managed
under Perforce.

Builder, Naughty Dog’s resource database GUI, is depicted in Figure 6.2.
The window is broken into two main sections: a tree view showing all resourc-
es in the game on the left and a properties window on the right, allowing the
resource(s) that are selected in the tree view to be viewed and edited. The re-
source tree contains folders for organizational purposes, so that the artists and
game designers can organize their resources in any way they see fi t. Various
types of resources can be created and managed within any folder, including
actors and levels, and the various subresources that comprise them (primar-
ily meshes, skeletons, and animations). Animations can also be grouped into
pseudo-folders known as bundles. This allows large groups of animations to
be created and then managed as a unit, and prevents a lot of wasted time drag-
ging individual animations around in the tree view.

The asset conditioning pipeline on UDF consists of a set of resource ex-
porters, compilers, and linkers that are run from the command line. The engine
is capable of dealing with a wide variety of diff erent kinds of data objects, but
these are packaged into one of two types of resource fi les: actors and levels. An
actor can contain skeletons, meshes, materials, textures, and/or animations.
A level contains static background meshes, materials and textures, and also
level-layout information. To build an actor, one simply types ba name-of-actor

279

on the command line; to build a level, one types bl name-of-level. These com-
mand-line tools query the database to determine exactly how to build the actor
or level in question. This includes information on how to export the assets
from DCC tools like Maya, Photoshop etc., how to process the data, and how
to package it into binary .pak fi les that can be loaded by the game engine. This
is much simpler than in many engines, where resources have to be exported
manually by the artists—a time-consuming, tedious, and error-prone task.

The benefi ts of the resource pipeline design used by Naughty Dog in-
clude:

 Granular resources. Resources can be manipulated in terms of logical en-
tities in the game—meshes, materials, skeletons, and animations. These

6.2. The Resource Manager

Figure 6.2. The front-end GUI for Naughty Dog’s off-line resource database, Builder.

280 6. Resources and the File System

resource types are granular enough that the team almost never has
confl icts in which two users want to edit the same resource simultane-
ously.

 The necessary features (and no more). The Builder tool provides a powerful
set of features that meet the needs of the team, but Naughty Dog didn’t
waste any resources creating features they didn’t need.

 Obvious mapping to source fi les. A user can very quickly determine which
source assets (native DCC fi les, like Maya .ma fi les or photoshop .psd
fi les) make up a particular resource.

 Easy to change how DCC data is exported and processed. Just click on the
resource in question and twiddle its processing properties within the
resource database GUI.

 Easy to build assets. Just type ba or bl followed by the resource name on
the command line. The dependency system takes care of the rest.

Of course, the UDF tool chain has some drawbacks as well, including:

 Lack of visualization tools. The only way to preview an asset is to load
it into the game or the model/animation viewer (which is really just a
special mode of the game itself).

 The tools aren’t fully integrated. Naughty Dog uses one tool to lay out
levels, another to manage the majority of resources in the resource data-
base, and a third to set up materials and shaders (this is not part of the
resource database front-end). Building the assets is done on the com-
mand line. It might be a bit more convenient if all of these functions
were to be integrated into a single tool. However, Naughty Dog has no
plans to do this, because the benefi t would probably not outweigh the
costs involved.

Ogre’s Resource Manager System

 Ogre3D is a rendering engine, not a full-fl edged game engine. That said, Ogre
does boast a reasonably complete and very well-designed runtime resource
manager. A simple, consistent interface is used to load virtually any kind of
resource. And the system has been designed with extensibility in mind. Any
programmer can quite easily implement a resource manager for a brand new
kind of asset and integrate it easily into Ogre’s resource framework.

One of the drawbacks of Ogre’s resource manager is that it is a runtime-
only solution. Ogre lacks any kind of off -line resource database. Ogre does
provide some exporters which are capable of converting a Maya fi le into a
mesh that can be used by Ogre (complete with materials, shaders, a skeleton
and optional animations). However, the exporter must be run manually from

281

within Maya itself. Worse, all of the metadata describing how a particular
Maya fi le should be exported and processed must be entered by the user do-
ing the export.

In summary, Ogre’s runtime resource manager is powerful and well-de-
signed. But Ogre would benefi t a great deal from an equally powerful and
modern resource database and asset conditioning pipeline on the tools side.

Microsoft’s XNA

 XNA is a game development toolkit by Microsoft , targeted at the PC and Xbox
360 platforms. XNA’s resource management system is unique, in that it lever-
ages the project management and build systems of the Visual Studio IDE to
manage and build the assets in the game as well. XNA’s game development
tool, Game Studio Express, is just a plug-in to Visual Studio Express. You can
read more about Game Studio Express at htt p://msdn.microsoft .com/en-us/
library/bb203894.aspx.

6.2.1.4. The Asset Conditioning Pipeline

In Section 1.7, we learned that resource data is typically created using ad-
vanced digital content creation (DCC) tools like Maya, Z-Brush, Photoshop, or
Houdini. However, the data formats used by these tools are usually not suit-
able for direct consumption by a game engine. So the majority of resource data
is passed through an asset conditioning pipeline (ACP) on its way to the game
engine. The ACP is sometimes referred to as the resource conditioning pipeline
(RCP), or simply the tool chain.

Every resource pipeline starts with a collection of source assets in native
DCC formats (e.g., Maya .ma or .mb fi les, Photoshop .psd fi les, etc.) These
assets are typically passed through three processing stages on their way to the
game engine:

 1. Exporters . We need some way of gett ing the data out of the DCC’s na-
tive format and into a format that we can manipulate. This is usually
accomplished by writing a custom plug-in for the DCC in question. It
is the plug-in’s job to export the data into some kind of intermediate fi le
format that can be passed to later stages in the pipeline. Most DCC ap-
plications provide a reasonably convenient mechanism for doing this.
Maya actually provides three: a C++ SDK, a scripting language called
MEL , and most recently a Python interface as well.

 In cases where a DCC application provides no customization hooks, we
can always save the data in one of the DCC tool’s native formats. With
any luck, one of these will be an open format, a reasonably-intuitive text
format, or some other format that we can reverse engineer. Presuming

6.2. The Resource Manager

282 6. Resources and the File System

this is the case, we can pass the fi le directly to the next stage of the pipe-
line.
 2. Resource compilers . We oft en have to “massage” the raw data exported
from a DCC application in various ways in order to make it game-ready.
For example, we might need to rearrange a mesh’s triangles into strips, or
compress a texture bitmap, or calculate the arc lengths of the segments of
a Catmull-Rom spline. Not all types of resources need to be compiled—
some might be game-ready immediately upon being exported.
 3. Resource linkers . Multiple resource fi les sometimes need to be combined
into a single useful package prior to being loaded by the game engine.
This mimics the process of linking together the object fi les of a compiled
C++ program into an executable fi le, and so this process is sometimes
called resource linking. For example, when building a complex compos-
ite resource like a 3D model, we might need to combine the data from
multiple exported mesh fi les, multiple material fi les, a skeleton fi le, and
multiple animation fi les into a single resource. Not all types of resources
need to be linked—some assets are game-ready aft er the export or com-
pile steps.

Resource Dependencies and Build Rules

 Much like compiling the source fi les in a C or C++ project and then linking
them into an executable, the asset conditioning pipeline processes source as-
sets (in the form of Maya geometry and animation fi les, Photoshop PSD fi les,
raw audio clips, text fi les, etc.), converts them into game-ready form, and then
links them together into a cohesive whole for use by the engine. And just like
the source fi les in a computer program, game assets oft en have interdepen-
dencies. (For example, a mesh refers to one or more materials, which in turn
refer to various textures.) These interdependencies typically have an impact
on the order in which assets must be processed by the pipeline. (For example,
we might need to build a character’s skeleton before we can process any of
that character’s animations.) In addition, the dependencies between assets tell
us which assets need to be rebuilt when a particular source asset changes.

Build dependencies revolve not only around changes to the assets them-
selves, but also around changes to data formats. If the format of the fi les used
to store triangle meshes changes, for instance, all meshes in the entire game
may need to be reexported and/or rebuilt. Some game engines employ data
formats that are robust to version changes. For example, an asset may contain
a version number, and the game engine may include code that “knows” how
to load and make use of legacy assets. The downside of such a policy is that
asset fi les and engine code tend to become bulky. When data format changes

283

are relatively rare, it may be bett er to just bite the bullet and reprocess all the
fi les when format changes do occur.

Every asset conditioning pipeline requires a set of rules that describe the
interdependencies between the assets, and some kind of build tool that can
use this information to ensure that the proper assets are built, in the proper
order, when a source asset is modifi ed. Some game teams roll their own build
system. Others use an established tool, such as make. Whatever solution is
selected, teams should treat their build dependency system with utmost care.
If you don’t, changes to sources assets may not trigger the proper assets to
be rebuilt. The result can be inconsistent game assets, which may lead to vi-
sual anomalies or even engine crashes. In my personal experience, I’ve wit-
nessed countness hours wasted in tracking down problems that could have
been avoided had the asset interdependencies been properly specifi ed and the
build system implemented to use them reliably.

6.2.2. Runtime Resource Management

 Let us turn our att ention now to how the assets in our resource database are
loaded, managed, and unloaded within the engine at runtime.

6.2.2.1. Responsibilities of the Runtime Resource Manager

A game engine’s runtime resource manager takes on a wide range of responsi-
bilities, all related to its primary mandate of loading resources into memory:

 Ensures that only one copy of each unique resource exists in memory at
any given time.

 Manages the lifetime of each resource loads needed resources and un-
loads resources that are no longer needed.

 Handles loading of composite resources. A composite resource is a resource
comprised of other resources. For example, a 3D model is a composite
resource that consists of a mesh, one or more materials, one or more
textures, and optionally a skeleton and multiple skeletal animations.

 Maintains referential integrity . This includes internal referential integrity
(cross-references within a single resource) and external referential integ-
rity (cross-references between resources). For example, a model refers to
its mesh and skeleton; a mesh refers to its materials, which in turn refer
to texture resources; animations refer to a skeleton, which ultimately
ties them to one or more models. When loading a composite resource,
the resource manager must ensure that all necessary subresources are
loaded, and it must patch in all of the cross-references properly.

 Manages the memory usage of loaded resources and ensures that re-
sources are stored in the appropriate place(s) in memory.

6.2. The Resource Manager

284 6. Resources and the File System

 Permits custom processing to be performed on a resource aft er it has been
loaded, on a per-resource-type basis. This process is sometimes known
as logging in or load-initializing the resource.

 Usually (but not always) provides a single unifi ed interface through
which a wide variety of resource types can be managed. Ideally a re-
source manager is also easily extensible, so that it can handle new types
of resources as they are needed by the game development team.

 Handles streaming (i.e., asynchronous resource loading), if the engine
supports this feature.

6.2.2.2. Resource File and Directory Organization

 In some game engines (typically PC engines), each individual resource is
managed in a separate “loose” fi le on-disk. These fi les are typically con-
tained within a tree of directories whose internal organization is designed
primarily for the convenience of the people creating the assets; the engine
typically doesn’t care where resource fi les are located within the resource
tree. Here’s a typical resource directory tree for a hypothetical game called
Space Evaders:

SpaceEvaders Root directory for entire game.

 Resources Root of all resources.

 Characters Non-player character models and animations.
 Pirate Models and animations for pirates.
 Marine Models and animations for marines.
 ...

 Player Player character models and animations.

 Weapons Models and animations for weapons.
 Pistol Models and animations for the pistol.
 Rifle Models and animations for the rifl e.

 BFG Models and animations for the big... uh… gun.
 ...

 Levels Background geometry and level layouts.
 Level1 First level’s resources.
 Level2 Second level’s resources.
 ...

 Objects Miscellaneous 3D objects.
 Crate The ubiquitous breakable crate.
 Barrel The ubiquitous exploding barrel.

Other engines package multiple resources together in a single fi le, such as
a ZIP archive, or some other composite fi le (perhaps of a proprietary format).

285

The primary benefi t of this approach is improved load times. When loading
data from fi les, the three biggest costs are seek times (i.e., moving the read head
to the correct place on the physical media), the time required to open each
individual fi le, and the time to read the data from the fi le into memory. Of
these, the seek times and fi le-open times can be non-trivial on many operating
systems. When a single large fi le is used, all of these costs are minimized. A
single fi le can be organized sequentially on the disk, reducing seek times to
a minimum. And with only one fi le to open, the cost of opening individual
resource fi les is eliminated.

The Ogre3D rendering engine’s resource manager permits resources to
exist as loose fi les on disk, or as virtual fi les within a large ZIP archive. The
primary benefi ts of the ZIP format are the following:

 1. It is an open format. The zlib and zziplib libraries used to read and
write ZIP archives are freely available. The zlib SDK is totally free (see
htt p://www.zlib.net), while the zziplib SDK falls under the Lesser Gnu
Public License (LGPL) (see htt p://zziplib.sourceforge.net).

 2. The virtual fi les within a ZIP archive “remember” their relative paths. This
means that a ZIP archive “looks like” a raw fi le system for most in-
tents and purposes. The Ogre resource manager identifi es all resources
uniquely via strings that appear to be fi le system paths. However, these
paths sometimes identify virtual fi les within a ZIP archive instead of
loose fi les on disk, and a game programmer needn’t be aware of the dif-
ference in most situations.

 3. ZIP archives may be compressed. This reduces the amount of disk space
occupied by resources. But, more importantly, it again speeds up load
times, as less data need be loaded into memory from the fi xed disk. This
is especially helpful when reading data from a DVD-ROM or Blu-ray
disk, as the data transfer rates of these devices are much slower than a
hard disk drive. Hence the cost of decompressing the data aft er it has
been loaded into memory is oft en more than off set by the time saved in
loading less data from the device.

 4. ZIP archives are modular. Resources can be grouped together into a ZIP
fi le and managed as a unit. One particularly elegant application of this
idea is in product localization. All of the assets that need to be local-
ized (such as audio clips containing dialogue and textures that contain
words or region-specifi c symbols) can be placed in a single ZIP fi le, and
then diff erent versions of this ZIP fi le can be generated, one for each
language or region. To run the game for a particular region, the engine
simply loads the corresponding version of the ZIP archive.

6.2. The Resource Manager

http://www.zlib.net

286 6. Resources and the File System

Unreal Engine 3 takes a similar approach, with a few important diff er-
ences. In Unreal, all resources must be contained within large composite
fi les known as packages (a.k.a. “pak fi les”) . No loose disk fi les are permitt ed.
The format of a package fi le is proprietary. The Unreal Engine’s game editor,
UnrealEd, allows developers to create and manage packages and the resourc-
es they contain.

6.2.2.3. Resource File Formats

 Each type of resource fi le potentially has a diff erent format. For example, a
mesh fi le is always stored in a diff erent format than that of a texture bitmap.
Some kinds of assets are stored in standardized, open formats. For example,
textures are typically stored as Targa fi les (TGA), Portable Network Graph-
ics fi les (PNG), Tagged Image File Format fi les (TIFF), Joint Photographic Ex-
perts Group fi les (JPEG), or Windows Bitmap fi les (BMP)—or in a standard-
ized compressed format such as DirectX’s S3 Texture Compression family of
formats (S3TC, also known as DXTn or DXTC). Likewise, 3D mesh data is
oft en exported out of a modeling tool like Maya or Lightwave into a stan-
dardized format such as OBJ or COLLADA for consumption by the game
engine.

Sometimes a single fi le format can be used to house many diff erent types
of assets. For example, the Granny SDK by Rad Game Tools (htt p://www.rad-
gametools.com) implements a fl exible open fi le format that can be used to
store 3D mesh data, skeletal hierarchies, and skeletal animation data. (In fact
the Granny fi le format can be easily repurposed to store virtually any kind of
data imaginable.)

Many game engine programmers roll their own fi le formats for various
reasons. This might be necessary if no standardized format provides all of
the information needed by the engine. Also, many game engines endeavor to
do as much off -line processing as possible in order to minimize the amount
of time needed to load and process resource data at runtime. If the data
needs to conform to a particular layout in memory, for example, a raw binary
format might be chosen so that the data can be laid out by an off -line tool
(rather than att empting to format it at runtime aft er the resource has been
loaded).

6.2.2.4. Resource GUIDs

 Every resource in a game must have some kind of globally unique identifi er
(GUID). The most common choice of GUID is the resource’s fi le system path
(stored either as a string or a 32-bit hash). This kind of GUID is intuitive, be-
cause it clearly maps each resource to a physical fi le on-disk. And it’s guar-

http://www.rad-gametools.com
http://www.rad-gametools.com
http://www.rad-gametools.com

287

anteed to be unique across the entire game, because the operating system al-
ready guarantees that no two fi les will have the same path.

However, a fi le system path is by no means the only choice for a resource
GUID. Some engines use a less-intuitive type of GUID, such as a 128-bit hash
code, perhaps assigned by a tool that guarantees uniqueness. In other engines,
using a fi le system path as a resource identifi er is infeasible. For example,
Unreal Engine 3 stores many resources in a single large fi le known as a pack-
age, so the path to the package fi le does not uniquely identify any one re-
source. To overcome this problem, an Unreal package fi le is organized into
a folder hierarchy containing individual resources. Unreal gives each indi-
vidual resource within a package a unique name which looks much like a fi le
system path. So in Unreal, a resource GUID is formed by concatenating the
(unique) name of the package fi le with the in-package path of the resource
in question. For example, the Gears of War resource GUID Locust_Boomer.
PhysicalMaterials. LocustBoomerLeather identifi es a material called
LocustBoomerLeather within the PhysicalMaterials folder of the
Locust_Boomer package fi le.

6.2.2.5. The Resource Registry

In order to ensure that only one copy of each unique resource is loaded into
memory at any given time, most resource managers maintain some kind of
registry of loaded resources. The simplest implementation is a dictionary—i.e.,
a collection of key-value pairs . The keys contain the unique ids of the resources,
while the values are typically pointers to the resources in memory.

Whenever a resource is loaded into memory, an entry for it is added to the
resource registry dictionary, using its GUID as the key. Whenever a resource is
unloaded, its registry entry is removed. When a resource is requested by the
game, the resource manager looks up the resource by its GUID within the re-
source registry. If the resource can be found, a pointer to it is simply returned.
If the resource cannot be found, it can either be loaded automatically or a
failure code can be returned.

At fi rst blush, it might seem most intuitive to automatically load a re-
quested resource if it cannot be found in the resource registry. And in fact,
some game engines do this. However, there are some serious problems with
this approach. Loading a resource is a slow operation, because it involves lo-
cating and opening a fi le on disk, reading a potentially large amount of data
into memory (from a potentially slow device like a DVD-ROM drive), and
also possibly performing post-load initialization of the resource data once it
has been loaded. If the request comes during active gameplay, the time it takes
to load the resource might cause a very noticeable hitch in the game’s frame

6.2. The Resource Manager

288 6. Resources and the File System

rate, or even a multi-second freeze. For this reason, engines tend to take one of
two alternative approaches:

Resource loading might be disallowed completely during active game-1.
play. In this model, all of the resources for a game level are loaded en
masse just prior to gameplay, usually while the player watches a loading
screen or progress bar of some kind.
Resource loading might be done 2. asynchronously (i.e., the data might be
streamed). In this model, while the player is engaged in level A, the re-
sources for level B are being loaded in the background. This approach
is preferable because it provides the player with a load-screen-free play
experience. However, it is considerably more diffi cult to implement.

6.2.2.6. Resource Lifetime

The lifetime of a resource is defi ned as the time period between when it is fi rst
loaded into memory and when its memory is reclaimed for other purposes.
One of the resource manager’s jobs is to manage resource lifetimes—either
automatically, or by providing the necessary API functions to the game, so it
can manage resource lifetimes manually.

Each resource has its own lifetime requirements:

 Some resources must be loaded when the game fi rst starts up and must
stay resident in memory for the entire duration of the game. That is,
their lifetimes are eff ectively infi nite. These are sometimes called load-
and-stay-resident (LSR) resources. Typical examples include the player
character’s mesh, materials, textures and core animations, textures and
fonts used on the heads-up display (HUD), and the resources for all of
the standard-issue weapons used throughout the game. Any resource
that is visible or audible to the player throughout the entire game (and
cannot be loaded on the fl y when needed) should be treated as an LSR
resource.

 Other resources have a lifetime that matches that of a particular game
level. These resources must be in memory by the time the level is fi rst
seen by the player and can be dumped once the player has permanently
left the level.

 Some resources might have a lifetime that is shorter than the duration of
the level in which they are found. For example, the animations and au-
dio clips that make up an in-game cut-scene (a mini-movie that advances
the story or provides the player with important information) might be
loaded in advance of the player seeing the cut-scene and then dumped
once the cut-scene has played.

289

 Some resources like background music, ambient sound eff ects, or full-
screen movies are streamed “live” as they play. The lifetime of this kind
of resource is diffi cult to defi ne, because each byte only persists in mem-
ory for a tiny fraction of a second, but the entire piece of music sounds
like it lasts for a long period of time. Such assets are typically loaded in
chunks of a size that matches the underlying hardware’s requirements.
For example, a music track might be read in 4 kB chunks, because that
might be the buff er size used by the low-level sound system. Only two
chunks are ever present in memory at any given moment—the chunk
that is currently playing and the chunk immediately following it that is
being loaded into memory.

The question of when to load a resource is usually answered quite easily,
based on knowledge of when the asset is fi rst seen by the player. However, the
question of when to unload a resource and reclaim its memory is not so eas-
ily answered. The problem is that many resources are shared across multiple
levels. We don’t want to unload a resource when level A is done, only to im-
mediately reload it because level B needs the same resource.

One solution to this problem is to reference-count the resources. When-
ever a new game level needs to be loaded, the list of all resources used by that
level is traversed, and the reference count for each resource is incremented
by one (but they are not loaded yet). Next, we traverse the resources of any
unneeded levels and decrement their reference counts by one; any resource
whose reference count drops to zero is unloaded. Finally, we run through the
list of all resources whose reference count just went from zero to one and load
those assets into memory.

For example, imagine that level 1 uses resources A, B, and C, and that
level 2 uses resources B, C, D, and E. (B and C are shared between both levels.)
Table 6.2 shows the reference counts of these fi ve resources as the player plays
through levels 1 and 2. In this table, reference counts are shown in boldface
type to indicate that the corresponding resource actually exists in memory,
while a grey background indicates that the resource is not in memory. A refer-
ence count in parentheses indicates that the corresponding resource data is
being loaded or unloaded.

6.2.2.7. Memory Management for Resources

Resource management is closely related to memory management , because we
must inevitably decide where the resources should end up in memory once
they have been loaded. The destination of every resource is not always the
same. For one thing, certain types of resources must reside in video RAM.
Typical examples include textures, vertex buff ers, index buff ers, and shader

6.2. The Resource Manager

290 6. Resources and the File System

code. Most other resources can reside in main RAM, but diff erent kinds of
resources might need to reside within diff erent address ranges. For example, a
resource that is loaded and stays resident for the entire game (LSR resources)
might be loaded into one region of memory, while resources that are loaded
and unloaded frequently might go somewhere else.

The design of a game engine’s memory allocation subsystem is usually
closely tied to that of its resource manager. Sometimes we will design the re-
source manager to take best advantage of the types of memory allocators we
have available; or vice-versa, we may design our memory allocators to suit the
needs of the resource manager.

As we saw in Section 5.2.1.4, one of the primary problems facing any re-
source management system is the need to avoid fragmenting memory as re-
sources are loaded and unloaded. We’ll discuss a few of the more-common
solutions to this problem below.

Heap-Based Resource Allocation

 One approach is to simply ignore memory fragmentation issues and use a
general-purpose heap allocator to allocate your resources (like the one imple-
mented by malloc() in C, or the global new operator in C++). This works best
if your game is only intended to run on personal computers, on operating
systems that support advanced virtual memory allocation. On such a system,
physical memory will become fragmented, but the operating system’s abil-
ity to map non-contiguous pages of physical RAM into a contiguous virtual
memory space helps to mitigate some of the eff ects of fragmentation.

If your game is running on a console with limited physical RAM and only
a rudimentary virtual memory manager (or none whatsoever), then fragmen-
tation will become a problem. In this case, one alternative is to defragment
your memory periodically. We saw how to do this in Section 5.2.2.2.

Event A B C D E
Initial state 0 0 0 0 0
Level 1 counts incremented 1 1 1 0 0
Level 1 loads (1) (1) (1) 0 0
Level 1 plays 1 1 1 0 0
Level 2 counts incremented 1 2 2 1 1
Level 1 counts decremented 0 1 1 1 1
Level 1 unloads, level 2 loads (0) 1 1 (1) (1)
Level 2 plays 0 1 1 1 1

Table 6.2. Resource usage as two levels load and unload.

291

Stack-Based Resource Allocation

 A stack allocator does not suff er from fragmentation problems, because mem-
ory is allocated contiguously and freed in an order opposite to that in which it
was allocated. A stack allocator can be used to load resources if the following
two conditions are met:

 The game is linear and level-centric (i.e., the player watches a loading
screen, then plays a level, then watches another loading screen, then
plays another level).

 Each level fi ts into memory in its entirety.

Presuming that these requirements are satisfi ed, we can use a stack alloca-
tor to load resources as follows: When the game fi rst starts up, the load-and-
stay-resident (LSR) resources are allocated fi rst. The top of the stack is then
marked, so that we can free back to this position later. To load a level, we sim-
ply allocate its resources on the top of the stack. When the level is complete,
we can simply set the stack top back to the marker we took earlier, thereby
freeing all of the level’s resources in one fell swoop without disturbing the LSR
resources. This process can be repeated for any number of levels, without ever
fragmenting memory. Figure 6.3 illustrates how this is accomplished.

6.2. The Resource Manager

Figure 6.3. Loading resources using a stack allocator.

292 6. Resources and the File System

A double-ended stack allocator can be used to augment this approach.
Two stacks are defi ned within a single large memory block. One grows up
from the bott om of the memory area, while the other grows down from the
top. As long as the two stacks never overlap, the stacks can trade memory re-
sources back and forth naturally—something that wouldn’t be possible if each
stack resided in its own fi xed-size block.

On Hydro Thunder, Midway used a double-ended stack allocator. The low-
er stack was used for persistent data loads, while the upper was used for tem-
porary allocations that were freed every frame. Another way a double-ended
stack allocator can be used is to ping-pong level loads. Such an approach was
used at Bionic Games Inc. for one of their projects. The basic idea is to load a
compressed version of level B into the upper stack, while the currently-active
level A resides (in uncompressed form) in the lower stack. To switch from
level A to level B, we simply free level A’s resources (by clearing the lower
stack) and then decompress level B from the upper stack into the lower stack.
Decompression is generally much faster than loading data from disk, so this
approach eff ectively eliminates the load time that would otherwise be experi-
enced by the player beween levels.

Pool-Based Resource Allocation

 Another resource allocation technique that is common in game engines that
support streaming is to load resource data in equally-sized chunks. Because
the chunks are all the same size, they can be allocated using a pool allocator (see
Section 5.2.1.2). When resources are later unloaded, the chunks can be freed
without causing fragmentation.

Of course, a chunk-based allocation approach requires that all resource
data be laid out in a manner that permits division into equally-sized chunks.
We cannot simply load an arbitrary resource fi le in chunks, because the fi le
might contain a contiguous data structure like an array or a very large struct
that is larger than a single chunk. For example, if the chunks that contain an
array are not arranged sequentially in RAM, the continuity of the array will
be lost, and array indexing will cease to function properly. This means that all
resource data must be designed with “chunkiness” in mind. Large contigu-
ous data structures must be avoided in favor of data structures that are either
small enough to fi t within a single chunk or do not require contiguous RAM
to function properly (e.g., linked lists).

Each chunk in the pool is typically associated with a particular game lev-
el. (One simple way to do this is to give each level a linked list of its chunks.)
This allows the engine to manage the lifetimes of each chunk appropriately,
even when multiple levels with diff erent life spans are in memory concur-

293

rently. For example, when level A is loaded, it might allocate and make use of
N chunks. Later, level B might allocate an additional M chunks. When level
A is eventually unloaded, its N chunks are returned to the free pool. If level
B is still active, its M chunks need to remain in memory. By associating each
chunk with a specifi c level, the lifetimes of the chunks can be managed easily
and effi ciently. This is illustrated in Figure 6.4.

One big trade-off inherent in a “chunky” resource allocation scheme is
wasted space. Unless a resource fi le’s size is an exact multiple of the chunk
size, the last chunk in a fi le will not be fully utilized (see Figure 6.5). Choos-
ing a smaller chunk size can help to mitigate this problem, but the smaller the
chunks, the more onerous the restrictions on the layout of the resource data.
(As an extreme example, if a chunk size of one byte were selected, then no
data structure could be larger than a single byte—clearly an untenable situ-
ation.) A typical chunk size is on the order of a few kilobytes. For example
at Naughty Dog, we use a chunky resource allocator as part of our resource
streaming system, and our chunks are 512 kB in size. You may also want to
consider selecting a chunk size that is a multiple of the operating system’s I/O
buff er size to maximize effi ciency when loading individual chunks.

6.2. The Resource Manager

File A
Chunk 1

File A
Chunk 2

File A
Chunk 3

File B
Chunk 1

File B
Chunk 2

File C
Chunk 1

File C
Chunk 2

File C
Chunk 3

File C
Chunk 4

File D
Chunk 1

File D
Chunk 2

File D
Chunk 3

File E
Chunk 1

File E
Chunk 2

File E
Chunk 3

File E
Chunk 4

File E
Chunk 5

File E
Chunk 6

Level X
(files A, D)

Level Y
(files B, C, E)

Figure 6.4. Chunky allocation of resources for levels A and B.

File size:
1638 kB

Unused:
410 kB

Chunk 4Chunk 1 Chunk 2 Chunk 3

Chunk size:
512 kB each

Figure 6.5. The last chunk of a resource fi le is often not fully utilized.

294 6. Resources and the File System

Resource Chunk Allocators

 One way to limit the eff ects of wasted chunk memory is to set up a special
memory allocator that can utilize the unused portions of chunks. As far as I’m
aware, there is no standardized name for this kind of allocator, but we will call
it a resource chunk allocator for lack of a bett er name.

A resource chunk allocator is not particularly diffi cult to implement. We
need only maintain a linked list of all chunks that contain unused memory,
along with the locations and sizes of each free block. We can then allocate
from these free blocks in any way we see fi t. For example, we might manage
the linked list of free blocks using a general-purpose heap allocator. Or we
might map a small stack allocator onto each free block; whenever a request for
memory comes in, we could then scan the free blocks for one whose stack has
enough free RAM, and then use that stack to satisfy the request.

Unfortunately, there’s a rather grotesque-looking fl y in our ointment here.
If we allocate memory in the unused regions of our resource chunks, what hap-
pens when those chunks are freed? We cannot free part of a chunk—it’s an all
or nothing proposition. So any memory we allocate within an unused portion
of a resource chunk will magically disappear when that resource is unloaded.

A simple solution to this problem is to only use our free-chunk alloca-
tor for memory requests whose lifetimes match the lifetime of the level with
which a particular chunk is associated. In other words, we should only al-
locate memory out of level A’s chunks for data that is associated exclusively
with level A and only allocate from B’s chunks memory that is used exclu-
sively by level B. This requires our resource chunk allocator to manage each
level’s chunks separately. And it requires the users of the chunk allocator to
specify which level they are allocating for, so that the correct linked list of free
blocks can be used to satisfy the request.

Thankfully, most game engines need to allocate memory dynamically
when loading resources, over and above the memory required for the resource
fi les themselves. So a resource chunk allocator can be a fruitful way to reclaim
chunk memory that would otherwise have been wasted.

Sectioned Resource Files

 Another useful idea that is related to “chunky” resource fi les is the concept
of fi le sections. A typical resource fi le might contain between one and four sec-
tions, each of which is divided into one or more chunks for the purposes of
pool allocation as described above. One section might contain data that is des-
tined for main RAM, while another section might contain video RAM data.
Another section could contain temporary data that is needed during the load-
ing process but is discarded once the resource has been completely loaded. Yet

295

another section might contain debugging information. This debug data could
be loaded when running the game in debug mode, but not loaded at all in
the fi nal production build of the game. The Granny SDK’s fi le system (htt p://
www.radgametools.com) is an excellent example of how to implement fi le
sectioning in a simple and fl exible manner.

6.2.2.8. Composite Resources and Referential Integrity

 Usually a game’s resource database consists of multiple resource fi les, each fi le
containing one or more data objects. These data objects can refer to and depend
upon one another in arbitrary ways. For example, a mesh data structure might
contain a reference to its material, which in turn contains a list of references to
textures. Usually cross-references imply dependency (i.e., if resource A refers
to resource B, then both A and B must be in memory in order for the resources
to be functional in the game.) In general, a game’s resource database can be
represented by a directed graph of interdependent data objects.

Cross-references between data objects can be internal (a reference between
two objects within a single fi le) or external (a reference to an object in a dif-
ferent fi le). This distinction is important because internal and external cross-
references are oft en implemented diff erently. When visualizing a game’s re-
source database, we can draw dott ed lines surrounding individual resource
fi les to make the internal/external distinction clear—any edge of the graph
that crosses a dott ed line fi le boundary is an external reference, while edges
that do not cross fi le boundaries are internal. This is illustrated in Fiure 6.6.

6.2. The Resource Manager

Figure 6.6. Example of a resource database dependency graph.

http://www.radgametools.com

296 6. Resources and the File System

We sometimes use the term composite resource to describe a self-suffi cient
cluster of interdependent resources. For example, a model is a composite re-
source consisting of one or more triangle meshes, an optional skeleton, and an
optional collection of animations. Each mesh is mapped with a material, and
each material refers to one or more textures. To fully load a composite resource
like a 3D model into memory, all of its dependent resources must be loaded
as well.

6.2.2.9. Handling Cross-References between Resources

One of the more-challenging aspects of implementing a resource manager is
managing the cross-references between resource objects and guaranteeing
that referential integrity is maintained. To understand how a resource man-
ager accomplishes this, let’s look at how cross-references are represented in
memory, and how they are represented on-disk.

In C++, a cross-reference between two data objects is usually implemented
via a pointer or a reference. For example, a mesh might contain the data mem-
ber Material* m_pMaterial (a pointer) or Material& m_material (a ref-
erence) in order to refer to its material. However, pointers are just memory
addresses—they lose their meaning when taken out of the context of the run-
ning application. In fact, memory addresses can and do change even between
subsequent runs of the same application. Clearly when storing data to a disk
fi le, we cannot use pointers to describe inter-object dependencies.

GUIDs As Cross-References

One good approach is to store each cross-reference as a string or hash code
containing the unique id of the referenced object. This implies that every re-
source object that might be cross-referenced must have a globally unique identi-
fi er or GUID.

To make this kind of cross-reference work, the runtime resource manager
maintains a global resource look-up table. Whenever a resource object is load-
ed into memory, a pointer to that object is stored in the table with its GUID as
the look-up key. Aft er all resource objects have been loaded into memory and
their entries added to the table, we can make a pass over all of the objects and
convert all of their cross-references into pointers, by looking up the address
of each cross-referenced object in the global resource look-up table via that
object’s GUID.

Pointer Fix-Up Tables

Another approach that is oft en used when storing data objects into a binary
fi le is to convert the pointers into fi le off sets. Consider a group of C structs or
C++ objects that cross-reference each other via pointers. To store this group

297

of objects into a binary fi le, we need to visit each object once (and only once)
in an arbitrary order and write each object’s memory image into the fi le se-
quentially. This has the eff ect of serializing the objects into a contiguous image
within the fi le, even when their memory images are not contiguous in RAM.
This is shown in Figure 6.7.

Because the objects’ memory images are now contiguous within the fi le,
we can determine the off set of each object’s image relative to the beginning of
the fi le. During the process of writing the binary fi le image, we locate every
pointer within every data object, convert each pointer into an off set, and store
those off sets into the fi le in place of the pointers. We can simply overwrite the
pointers with their off sets, because the off sets never require more bits to store
than the original pointers. In eff ect, an off set is the binary fi le equivalent of a
pointer in memory. (Do be aware of the diff erences between your development
platform and your target platform. If you write out a memory image on a 64-
bit Windows machine, its pointers will all be 64 bits wide and the resulting fi le
won’t be compatible with a 32-bit console.)

Of course, we’ll need to convert the off sets back into pointers when the
fi le is loaded into memory some time later. Such conversions are known as
pointer fi x-ups . When the fi le’s binary image is loaded, the objects contained
in the image retain their contiguous layout. So it is trivial to convert an off set
into a pointer. We merely add the off set to the address of the fi le image as a
whole. This is demonstrated by the code snippet below, and illustrated in
Figure 6.8.

6.2. The Resource Manager

Addresses: Offsets:

RAM Binary File

Object 1

Object 2

Object 3

Object 4

0x0

0x240

0x4A0

0x7F0

Object 1

Object 4

Object 2

Object 3

0x2A080

0x2D750

0x2F110

0x32EE0

Figure 6.7. In-memory object images become contiguous when saved into a binary fi le.

298 6. Resources and the File System

U8* ConvertOffsetToPointer(U32 objectOffset,
 U8* pAddressOfFileImage)
{
 U8* pObject = pAddressOfFileImage + objectOffset;
 return pObject;
}

The problem we encounter when trying to convert pointers into off sets,
and vice-versa, is how to fi nd all of the pointers that require conversion. This
problem is usually solved at the time the binary fi le is writt en. The code that
writes out the images of the data objects has knowledge of the data types and
classes being writt en, so it has knowledge of the locations of all the pointers

Addresses:

Offsets:

RAM Binary File

Object 1

Object 2

Object 3

Object 4

0x0

0x240

0x4A0

0x7F0

Object 1

Object 4

Object 2

Object 3

0x2A080

0x2D750

0x2F110

0x32EE0

0x32EE0

0x2F110

0x2A080

0x4A0

0x240

0x0

Pointers converted
to offsets; locations
of pointers stored in

fix-up table.

Fix-Up Table

0x200
0x340
0x810

Pointers to various
objects are present.

3 pointers

Figure 6.9. A pointer fi x-up table.

Addresses:Offsets:

RAMBinary File

Object 1

Object 2

Object 3

Object 4

0x0

0x240

0x4A0

0x7F0

Object 1

Object 4

Object 2

Object 3

0x30100

0x30340

0x305A0

0x308 F0

Figure 6.8. Contiguous resource fi le image, after it has been loaded into RAM.

299

within each object. The locations of the pointers are stored into a simple table
known as a pointer fi x-up table. This table is writt en into the binary fi le along
with the binary images of all the objects. Later, when the fi le is loaded into
RAM again, the table can be consulted in order to fi nd and fi x up every point-
er. The table itself is just a list of off sets within the fi le—each off set represents
a single pointer that requires fi xing up. This is illustrated in Figure 6.9.

Storing C++ Objects as Binary Images: Constructors

 One important step that is easy to overlook when loading C++ objects from a
binary fi le is to ensure that the objects’ constructors are called. For example,
if we load a binary image containing three objects—an instance of class A, an
instance of class B, and an instance of class C—then we must make sure that
the correct constructor is called on each of these three objects.

There are two common solutions to this problem. First, you can simply
decide not to support C++ objects in your binary fi les at all. In other words,
restrict yourself to plain old data structures (PODS)—i.e., C structs and C++
structs and classes that contain no virtual functions and trivial do-nothing con-
structors (See htt p://en.wikipedia.org/wiki/Plain_Old_Data_Structures for a
more complete discussion of PODS.)

Second, you can save off a table containing the off sets of all non-PODS
objects in your binary image along with some indication of which class each
object is an instance of. Then, once the binary image has been loaded, you can
iterate through this table, visit each object, and call the appropriate construc-
tor using placement new syntax (i.e., calling the constructor on a preallocated
block of memory). For example, given the off set to an object within the binary
image, we might write:

void* pObject = ConvertOffsetToPointer(objectOffset);
::new(pObject) ClassName; // placement-new syntax

where ClassName is the class of which the object is an instance.

Handling External References

The two approaches described above work very well when applied to resourc-
es in which all of the cross-references are internal—i.e., they only reference
objects within a single resource fi le. In this simple case, you can load the bi-
nary image into memory and then apply the pointer fi x-ups to resolve all the
cross-references. But when cross-references reach out into other resource fi les,
a slightly augmented approach is required.

To successfully represent an external cross-reference, we must specify not
only the off set or GUID of the data object in question, but also the path to the
resource fi le in which the referenced object resides.

6.2. The Resource Manager

300 6. Resources and the File System

The key to loading a multi-fi le composite resource is to load all of the
interdependent fi les fi rst. This can be done by loading one resource fi le and
then scanning through its table of cross-references and loading any externally-
referenced fi les that have not already been loaded. As we load each data object
into RAM, we can add the object’s address to the master look-up table . Once
all of the interdependent fi les have been loaded and all of the objects are pres-
ent in RAM, we can make a fi nal pass to fi x up all of the pointers using the
master look-up table to convert GUIDs or fi le off sets into real addresses.

6.2.2.10. Post-Load Initialization

Ideally, each and every resource would be completely prepared by our off -line
tools, so that it is ready for use the moment it has been loaded into memory.
Practically speaking, this is not always possible. Many types of resources re-
quire at least some “massaging” aft er having been loaded, in order to prepare
them for use by the engine. In this book, I will use the term post-load initializa-
tion to refer to any processing of resource data aft er it has been loaded. Other
engines may use diff erent terminology. (For example, at Naughty Dog we call
this logging in a resource.) Most resource managers also support some kind of
tear-down step prior to a resource’s memory being freed. (At Naughty Dog,
we call this logging out a resource.)

Post-load initialization generally comes in one of two varieties:

 In some cases, post-load initialization is an unavoidable step. For ex-
ample, the vertices and indices that describe a 3D mesh are loaded into
main RAM, but they almost always need to be transferred into video
RAM. This can only be accomplished at runtime, by creating a Direct X
vertex buff er or index buff er, locking it, copying or reading the data into
the buff er, and then unlocking it.

 In other cases, the processing done during post-load initialization is
avoidable (i.e., could be moved into the tools), but is done for conve-
nience or expedience. For example, a programmer might want to add the
calculation of accurate arc lengths to our engine’s spline library. Rather
than spend the time to modify the tools to generate the arc length data,
the programmer might simply calculate it at runtime during post-load
initialization. Later, when the calculations are perfected, this code can
be moved into the tools, thereby avoiding the cost of doing the calcula-
tions at runtime.

Clearly, each type of resource has its own unique requirements for post-
load initialization and tear-down. So resource managers typically permit these
two steps to be confi gurable on a per-resource-type basis. In a non-object-ori-

301

ented language like C, we can envision a look-up table that maps each type of
resource to a pair of function pointers, one for post-load initialization and one
for tear-down. In an object-oriented language like C++, life is even easier—we
can make use of polymorphism to permit each class to handle post-load ini-
tialization and tear-down in a unique way.

In C++, post-load initialization could be implemented as a special con-
structor, and tear-down could be done in the class’ destructor. However, there
are some problems with using constructors and destructors for this purpose.
(For example, constructors cannot be virtual in C++, so it would be diffi cult
for a derived class to modify or augment the post-load initialization of its base
class.) Many developers prefer to defer post-load initialization and tear-down
to plain old virtual functions. For example, we might choose to use a pair of
virtual functions named something sensible like Init() and Destroy().

Post-load initialization is closely related to a resource’s memory allocation
strategy, because new data is oft en generated by the initialization routine. In
some cases, the data generated by the post-load initialization step augments the
data loaded from the fi le. (For example, if we are calculating the arc lengths
of the segments of a Catmull-Rom spline curve aft er it has been loaded, we
would probably want to allocate some additional memory in which to store
the results.) In other cases, the data generated during post-load initialization
replaces the loaded data. (For example, we might allow mesh data in an older
out-of-date format to be loaded and then automatically converted into the lat-
est format for backwards compatibility reasons.) In this case, the loaded data
may need to be discarded, either partially or in its entirety, aft er the post-load
step has generated the new data.

The Hydro Thunder engine had a simple but powerful way of handling
this. It would permit resources to be loaded in one of two ways: (a) directly
into its fi nal resting place in memory, or (b) into a temporary area of memory.
In the latt er case, the post-load initialization routine was responsible for copy-
ing the fi nalized data into its ultimate destination; the temporary copy of the
resource would be discarded aft er post-load initialization was complete. This
was very useful for loading resource fi les that contained both relevant and
irrelevant data. The relevant data would be copied into its fi nal destination
in memory, while the irrelevant data would be discarded. For example, mesh
data in an out-of-date format could be loaded into temporary memory and
then converted into the latest format by the post-load initialization routine,
without having to waste any memory keeping the old-format data kicking
around.

6.2. The Resource Manager

303

7
The Game Loop and

Real-Time Simulation

Games are real-time, dynamic, interactive computer simulations . As such,
time plays an incredibly important role in any electronic game. There are

many diff erent kinds of time to deal with in a game engine—real time , game
time , the local timeline of an animation, the actual CPU cycles spent within
a particular function, and the list goes on. Every engine system might defi ne
and manipulate time diff erently. We must have a solid understanding of all
the ways time can be used in a game. In this chapter, we’ll take a look at how
real-time, dynamic simulation soft ware works and explore the common ways
in which time plays a role in such a simulation.

7.1. The Rendering Loop

In a graphical user interface (GUI), of the sort found on a Windows PC or a
Macintosh, the majority of the screen’s contents are static. Only a small part
of any one window is actively changing appearance at any given moment.
Because of this, graphical user interfaces have traditionally been drawn on-
screen via a technique known as rectangle invalidation , in which only the small
portions of the screen whose contents have actually changed are re-drawn.
Older 2D video games used similar techniques to minimize the number of
pixels that needed to be drawn.

304 7. The Game Loop and Real-Time Simulation

Real-time 3D computer graphics are implemented in an entirely diff erent
way. As the camera moves about in a 3D scene, the entire contents of the screen
or window change continually, so the concept of invalid rectangles no longer
applies. Instead, an illusion of motion and interactivity is produced in much
the same way that a movie produces it—by presenting the viewer with a se-
ries of still images in rapid succession.

Obviously, producing a rapid succession of still images on-screen requires
a loop. In a real-time rendering application, this is sometimes known as the
render loop . At its simplest, a rendering loop is structured as follows:

while (!quit)
{

 // Update the camera transform based on interactive
 // inputs or by following a predefined path.

updateCamera();

 // Update positions, orientations and any other
 // relevant visual state of any dynamic elements
 // in the scene.

updateSceneElements();

 // Render a still frame into an off-screen frame
 // buffer known as the "back buffer".

renderScene();

 // Swap the back buffer with the front buffer, making
 // the most-recently-rendered image visible
 // on-screen. (Or, in windowed mode, copy (blit) the
 // back buffer’s contents to the front buffer.

swapBuffers();
}

7.2. The Game Loop

 A game is composed of many interacting subsystems, including device I/O,
rendering, animation, collision detection and resolution, optional rigid body
dynamics simulation, multiplayer networking, audio, and the list goes on.
Most game engine subsystems require periodic servicing while the game is
running. However, the rate at which these subsystems need to be serviced var-
ies from subsystem to subsystem. Animation typically needs to be updated
at a rate of 30 or 60 Hz, in synchronization with the rendering subsystem.
However, a dynamics simulation may actually require more frequent updates

305 7.2. The Game Loop

(e.g., 120 Hz). Higher-level systems, like AI , might only need to be serviced
once or twice per second, and they needn’t necessarily be synchronized with
the rendering loop at all.

There are a number of ways to implement the periodic updating of our
game engine subsystems. We’ll explore some of the possible architectures in a
moment. But for the time being, let’s stick with the simplest way to update our
engine’s subsystems—using a single loop to update everything. Such a loop
is oft en called the game loop, because it is the master loop that services every
subsystem in the engine.

7.2.1. A Simple Example: Pong

Pong is a well-known genre of table tennis video games that got its start in
1958, in the form of an analog computer game called Tennis for Two, created
by William A. Higinbotham at the Brookhaven National Laboratory and dis-
played on an oscilloscope. The genre is best known by its later incarnations on
digital computers—the Magnavox Oddysey game Table Tennis and the Atari
arcade game Pong.

In pong, a ball bounces back and forth between two movable vertical pad-
dles and two fi xed horizontal walls. The human players control the positions
of the paddles via control wheels. (Modern re-implementations allow control
via a joystick, the keyboard, or some other human interface device.) If the ball
passes by a paddle without striking it, the other team wins the point and the
ball is reset for a new round of play.

The following pseudocode demonstrates what the game loop of a pong
game might look like at its core :

void main() // Pong
{

initGame();

while (true) // game loop
 {

readHumanInterfaceDevices();

 if (quitButtonPressed())
 {
 break; // exit the game loop
 }

movePaddles();

moveBall();

306 7. The Game Loop and Real-Time Simulation

collideAndBounceBall();

 if (ballImpactedSide(LEFT_PLAYER))
 {

incremenentScore(RIGHT_PLAYER);
resetBall();

 }

 else if (ballImpactedSide(RIGHT_PLAYER))
 {

incrementScore(LEFT_PLAYER);
resetBall();

 }

renderPlayfield();
 }
}

Clearly this example is somewhat contrived. The original pong games were
certainly not implemented by redrawing the entire screen at a rate of 30
frames per second. Back then, CPUs were so slow that they could barely mus-
ter the power to draw two lines for the paddles and a box for the ball in real
time. Specialized 2D sprite hardware was oft en used to draw moving objects
on-screen. However, we’re only interested in the concepts here, not the imple-
mentation details of the original Pong.

As you can see, when the game fi rst runs, it calls initGame() to do
whatever set-up might be required by the graphics system, human I/O de-
vices, audio system, etc. Then the main game loop is entered. The statement
while (true) tells us that the loop will continue forever, unless interrupted
internally. The fi rst thing we do inside the loop is to read the human interface
device(s). We check to see whether either human player pressed the “quit”
butt on—if so, we exit the game via a break statement. Next, the positions of
the paddles are adjusted slightly upward or downward in movePaddles(),
based on the current defl ection of the control wheels, joysticks, or other I/O
devices. The function moveBall() adds the ball’s current velocity vector to its
position in order to fi nd its new position next frame. In collideAndBounce-
Ball(), this position is then checked for collisions against both the fi xed hori-
zontal walls and the paddles. If collisions are detected, the ball’s position is re-
calculated to account for any bounce. We also note whether the ball impacted
either the left or right edge of the screen. This means that it missed one of the
paddles, in which case we increment the other player’s score and reset the ball
for the next round. Finally, renderPlayfield() draws the entire contents of
the screen.

307 7.3. Game Loop Architectural Styles

7.3. Game Loop Architectural Styles

Game loops can be implemented in a number of diff erent ways—but at their
core, they usually boil down to one or more simple loops, with various embel-
lishments. We’ll explore a few of the more common architectures below.

7.3.1. Windows Message Pumps

On a Windows platform, games need to service messages from the Windows
operating system in addition to servicing the various subsystems in the game
engine itself. Windows games therefore contain a chunk of code known as a
message pump . The basic idea is to service Windows messages whenever they
arrive and to service the game engine only when no Windows messages are
pending. A message pump typically looks something like this:

while (true)
{
 // Service any and all pending Windows messages.

 MSG msg;

while (PeekMessage(&msg, NULL, 0, 0) > 0)
 {

TranslateMessage(&msg);

DispatchMessage(&msg);

 }

 // No more Windows messages to process – run one
 // iteration of our "real" game loop.

RunOneIterationOfGameLoop();

}

One of the side-eff ects of implementing the game loop like this is that Win-
dows messages take precedence over rendering and simulating the game. As
a result, the game will temporarily freeze whenever you resize or drag the
game’s window around on the desktop.

7.3.2. Callback-Driven Frameworks

Most game engine subsystems and third-party game middleware packages
are structured as libraries . A library is a suite of functions and/or classes that

308 7. The Game Loop and Real-Time Simulation

can be called in any way the application programmer sees fi t. Libraries pro-
vide maximum fl exibility to the programmer. But libraries are sometimes dif-
fi cult to use, because the programmer must understand how to properly use
the functions and classes they provide.

In contrast, some game engines and game middleware packages are
structured as frameworks . A framework is a partially-constructed applica-
tion—the programmer completes the application by providing custom im-
plementations of missing functionality within the framework (or overriding
its default behavior). But he or she has litt le or no control over the overall
fl ow of control within the application, because it is controlled by the frame-
work.

In a framework-based rendering engine or game engine, the main game
loop has been writt en for us, but it is largely empty. The game programmer can
write callback functions in order to “fi ll in” the missing details. The Ogre3D
rendering engine is an example of a library that has been wrapped in a frame-
work. At the lowest level, Ogre provides functions that can be called directly
by a game engine programmer. However, Ogre also provides a framework that
encapsulates knowledge of how to use the low-level Ogre library eff ectively. If
the programmer chooses to use the Ogre framework, he or she derives a class
from Ogre::FrameListener and overrides two virtual functions: frame-
Started() and frameEnded(). As you might guess, these functions are called
before and aft er the main 3D scene has been rendered by Ogre, respectively.
The Ogre framework’s implementation of its internal game loop looks some-
thing like the following pseudocode. (See Ogre::Root::renderOneFrame()
in OgreRoot.cpp for the actual source code.)

while (true)
{
 for (each frameListener)
 {
 frameListener. frameStarted();
 }

renderCurrentScene();

 for (each frameListener)
 {
 frameListener. frameEnded();
 }

finalizeSceneAndSwapBuffers();
}

309

A particular game’s frame listener implementation might look something like
this.

class GameFrameListener : public Ogre::FrameListener
{
public:
 virtual void frameStarted(const FrameEvent& event)
 {
 // Do things that must happen before the 3D scene
 // is rendered (i.e., service all game engine
 // subsystems).
 pollJoypad(event);
 updatePlayerControls(event);
 updateDynamicsSimulation(event);
 resolveCollisions(event);
 updateCamera(event);
 // etc.
 }

 virtual void frameEnded(const FrameEvent& event)
 {
 // Do things that must happen after the 3D scene
 // has been rendered.
 drawHud(event);

 // etc.
 }
};

7.3.3. Event-Based Updating

In games, an event is any interesting change in the state of the game or its
environment. Some examples include: the human player pressing a butt on
on the joypad, an explosion going off , an enemy character spott ing the player,
and the list goes on. Most game engines have an event system, which permits
various engine subsystems to register interest in particular kinds of events
and to respond to those events when they occur (see Section 14.7 for details).
A game’s event system is usually very similar to the event/messaging system
underlying virtually all graphical user interfaces (for example, Microsoft Win-
dows’ window messages, the event handling system in Java’s AWT, or the
services provided by C#’s delegate and event keywords).

Some game engines leverage their event system in order to implement
the periodic servicing of some or all of their subsystems. For this to work, the
event system must permit events to be posted into the future—that is, to be
queued for later delivery. A game engine can then implement periodic updat-

7.3. Game Loop Architectural Styles

310 7. The Game Loop and Real-Time Simulation

ing by simply posting an event. In the event handler, the code can perform
whatever periodic servicing is required. It can then post a new event 1/30 or
1/60 of a second into the future, thus continuing the periodic servicing for as
long as it is required.

7.4. Abstract Timelines

In game programming, it can be extremely useful to think in terms of abstract
timelines . A timeline is a continuous, one-dimensional axis whose origin (t = 0)
can lie at any arbitrary location relative to other timelines in the system. A
timeline can be implemented via a simple clock variable that stores absolute
time values in either integer or fl oating-point format.

7.4.1. Real Time

 We can think of times measured directly via the CPU’s high-resolution timer
register (see Section 7.5.3) as lying on what we’ll call the real timeline. The ori-
gin of this timeline is defi ned to coincide with the moment the CPU was last
powered on or reset. It measures times in units of CPU cycles (or some mul-
tiple thereof), although these time values can be easily converted into units of
seconds by multiplying them by the frequency of the high-resolution timer on
the current CPU.

7.4.2. Game Time

 We needn’t limit ourselves to working with the real timeline exclusively. We
can defi ne as many other timeline(s) as we need, in order to solve the prob-
lems at hand. For example, we can defi ne a game timeline that is technically
independent of real time. Under normal circumstances, game time coincides
with real time. If we wish to pause the game, we can simply stop updating
the game timeline temporarily. If we want our game to go into slow-motion,
we can update the game clock more slowly than the real-time clock. All sorts
of eff ects can be achieved by scaling and warping one timeline relative to an-
other.

Pausing or slowing down the game clock is also a highly useful debug-
ging tool. To track down a visual anomaly, a developer can pause game time
in order to freeze the action. Meanwhile, the rendering engine and debug fl y-
through camera can continue to run, as long as they are governed by a dif-
ferent clock (either the real-time clock, or a separate camera clock). This allows
the developer to fl y the camera around the game world to inspect it from
any angle desired. We can even support single-stepping the game clock, by

311 7.4. Abstract Timelines

advancing the game clock by one target frame interval (e.g., 1/30 of a second)
each time a “single-step” butt on is pressed on the joypad or keyboard while
the game is in a paused state.

When using the approach described above, it’s important to realize that
the game loop is still running when the game is paused—only the game clock
has stopped. Single-stepping the game by adding 1/30 of a second to a paused
game clock is not the same thing as sett ing a break point in your main loop,
and then hitt ing the F5 key repeatedly to run one iteration of the loop at a
time. Both kinds of single-stepping can be useful for tracking down diff erent
kinds of problems. We just need to keep the diff erences between these ap-
proaches in mind.

7.4.3. Local and Global Timelines

We can envision all sorts of other timelines. For example, an animation clip or
audio clip might have a local timeline, with its origin (t = 0) defi ned to coincide
with the start of the clip. The local timeline measures how time progressed
when the clip was originally authored or recorded. When the clip is played
back in-game, we needn’t play it at the original rate. We might want to speed
up an animation, or slow down an audio sample. We can even play an anima-
tion backwards by running its local clock in reverse.

Any one of these eff ects can be visualized as a mapping between the lo-
cal timeline and a global timeline, such as real time or game time. To play an
animation clip back at its originally-authored speed, we simply map the start
of the animation’s local timeline (t = 0) onto the desired start time start()τ = τ
along the global timeline. This is shown in Figure 7.1.

To play an animation clip back at half speed, we can imagine scaling the
local timeline to twice its original size prior to mapping it onto the global
timeline. To accomplish this, we simply keep track of a time scale factor or
playback rate R, in addition to the clip’s global start time start .τ This is illus-
trated in Figure 7.2. A clip can even be played in reverse, by using a negative
time scale (R < 0) as shown in Figure 7.3.

Clip A
t = 0 sec 5 sec

τstart = 102 sec
τ = 105 sec 110 sec

Figure 7.1. Playing an animation clip can be envisioned as mapping its local timeline onto the
global game timeline.

312 7. The Game Loop and Real-Time Simulation

7.5. Measuring and Dealing with Time

In this section, we’ll investigate some of the subtle and not-so-subtle distinc-
tions between diff erent kinds of timelines and clocks and see how they are
implemented in real game engines.

7.5.1. Frame Rate and Time Deltas

The frame rate of a real-time game describes how rapidly the sequence of still
3D frames is presented to the viewer. The unit of Hertz (Hz), defi ned as the
number of cycles per second, can be used to describe the rate of any periodic
process. In games and fi lm, frame rate is typically measured in frames per sec-
ond (FPS), which is the same thing as Hertz for all intents and purposes. Films
traditionally run at 24 FPS. Games in North America and Japan are typically
rendered at 30 or 60 FPS, because this is the natural refresh rate of the NTSC
color television standard used in these regions. In Europe and most of the rest

Clip A

τstart = 102 sec
τ = 105 sec

Clip A

R = 2
(scale t by 1/R = 0.5)

t = 0 sec t = 5 sec

t = 0 sec 5 sec

Figure 7.2. Animation play-back speed can be controlled by simply scaling the local time line
prior to mapping it onto the global time line.

t = 5 sec 0 sec

τstart = 102 sec
τ = 105 sec 110 sec

 A pilC

Clip A
t = 0 sec 5 sec

R = –1
(flip t)

Figure 7.3. Playing an animation in reverse is like mapping the clip to the global time line with
a time scale of R = –1.

313

of the world, games update at 50 FPS, because this is the natural refresh rate
of a PAL or SECAM color television signal.

The amount of time that elapses between frames is known as the frame
time, time delta , or delta time. This last term is commonplace because the dura-
tion between frames is oft en represented mathematically by the symbol Δt.
(Technically speaking, Δt should really be called the frame period, since it is
the inverse of the frame frequency: T = 1/f. But game programmers hardly ever
use the term “period” in this context.) If a game is being rendered at exactly
30 FPS, then its delta time is 1/30 of a second, or 33.3 ms (milliseconds). At
60 FPS, the delta time is half as big, 1/60 of a second or 16.6 ms. To really know
how much time has elapsed during one iteration of the game loop, we need to
measure it. We’ll see how this is done below.

We should note here that milliseconds are a common unit of time mea-
surement in games. For example, we might say that animation is taking 4 ms,
which implies that it occupies about 12% of the entire frame (4 / 33.3 ≈ 0.12).
Other common units include seconds and machine cycles. We’ll discuss time
units and clock variables in more depth below.

7.5.2. From Frame Rate to Speed

Let’s imagine that we want to make a spaceship fl y through our game world at
a constant speed of 40 meters per second (or in a 2D game, we might specify
this as 40 pixels per second!) One simple way to accomplish this is to multiply
the ship’s speed v (measured in meters per second) by the duration of one
frame Δt (measured in seconds), yielding a change in position Δx = v Δt (which
is measured in meters per frame). This position delta can then be added to the
ship’s current position x1 , in order to fi nd its position next frame: x2 = x1 + Δx
= x1 + v Δt.

This is actually a simple form of numerical integration known as the explicit
Euler method (see Section 12.4.4). It works well as long as the speeds of our
objects are roughly constant. To handle variable speeds, we need to resort to
somewhat more-complex integration methods. But all numerical integration
techniques make use of the elapsed frame time Δt in one way or another. So
it is safe to say that the perceived speeds of the objects in a game are dependent
upon the frame duration, Δt. Hence a central problem in game programming
is to determine a suitable value for Δt. In the sections that follow, we’ll discuss
various ways of doing this.

7.5.2.1. Old-School CPU-Dependent Games

In many early video games, no att empt was made to measure how much real
time had elapsed during the game loop. The programmers would essentially

7.5. Measuring and Dealing with Time

314 7. The Game Loop and Real-Time Simulation

ignore Δt altogether and instead specify the speeds of objects directly in terms
of meters (or pixels, or some other distance unit) per frame. In other words,
they were, perhaps unwitt ingly, specifying object speeds in terms of Δx = v Δt,
instead of in terms of v.

The net eff ect of this simplistic approach was that the perceived speeds of
the objects in these games were entirely dependent upon the frame rate that
the game was actually achieving on a particular piece of hardware. If this kind
of game were to be run on a computer with a faster CPU than the machine for
which it was originally writt en, the game would appear to be running in fast
forward. For this reason, I’ll call these games CPU-dependent games .

Some older PCs provided a “Turbo” butt on to support these kinds of
games. When the Turbo butt on was pressed, the PC would run at its fastest
speed, but CPU-dependent games would run in fast forward. When the Turbo
butt on was not pressed, the PC would mimic the processor speed of an older
generation of PCs, allowing CPU-dependent games writt en for those PCs to
run properly.

7.5.2.2. Updating Based on Elapsed Time

 To make our games CPU-independent, we must measure Δt in some way, rath-
er than simply ignoring it. Doing this is quite straightforward. We simply read
the value of the CPU’s high resolution timer twice—once at the beginning of
the frame and once at the end. Then we subtract, producing an accurate mea-
sure of Δt for the frame that has just passed. This delta is then made available
to all engine subsystems that need it, either by passing it to every function that
we call from within the game loop or by storing it in a global variable or en-
capsulating it within a singleton class of some kind. (We’ll describe the CPU’s
high resolution timer in more detail Section 7.5.3.)

The approach outlined above is used by many game engines. In fact, I am
tempted to go out on a limb and say that most game engines use it. However,
there is one big problem with this technique: We are using the measured value
of Δt taken during frame k as an estimate of the duration of the upcoming frame
(k + 1). This isn’t necessarily very accurate. (As they say in investing, “past per-
formance is not a guarantee of future results.”) Something might happen next
frame that causes it to take much more time (or much less) than the current
frame. We call such an event a frame-rate spike.

Using last frame’s delta as an estimate of the upcoming frame can have
some very real detrimental eff ects. For example, if we’re not careful it can put
the game into a “viscious cycle” of poor frame times. Let’s assume that our
physics simulation is most stable when updated once every 33.3 ms (i.e., at
30 Hz). If we get one bad frame, taking say 57 ms, then we might make the

315

mistake of stepping the physics system twice on the next frame, presumably to
“cover” the 57 ms that has passed. Those two steps take roughly twice as long
to complete as a regular step, causing the next frame to be at least as bad as
this one was, and possibly worse. This only serves to exacerbate and prolong
the problem.

7.5.2.3. Using a Running Average

It is true that game loops tend to have at least some frame-to-frame coher-
ency . If the camera is pointed down a hallway containing lots of expensive-to-
draw objects on one frame, there’s a good chance it will still be pointed down
that hallway on the next. Therefore, one reasonable approach is to average the
frame-time measurements over a small number of frames and use that as the
next frame’s estimate of Δt . This allows the game to adapt to varying frame
rate, while soft ening the eff ects of momentary performance spikes. The longer
the averaging interval, the less responsive the game will be to varying frame
rate, but spikes will have less of an impact as well.

7.5.2.4. Governing the Frame Rate

We can avoid the inaccuracy of using last frame’s Δt as an estimate of this
frame’s duration altogether, by fl ipping the problem on its head. Rather than
trying to guess at what next frame’s duration will be, we can instead att empt
to guarantee that every frame’s duration will be exactly 33.3 ms (or 16.6 ms if
we’re running at 60 FPS). To do this, we measure the duration of the current
frame as before. If the measured duration is less than the ideal frame time, we
simply put the main thread to sleep until the target frame time has elapsed.
If the measured duration is more than the ideal frame time, we must “take
our lumps” and wait for one more whole frame time to elapse. This is called
frame-rate governing .

Clearly this approach only works when your game’s frame rate is reason-
ably close to your target frame rate on average. If your game is ping-ponging
between 30 FPS and 15 FPS due to frequent “slow” frames, then the game’s
quality can degrade signifi cantly. As such, it’s still a good idea to design all
engine systems so that they are capable of dealing with arbitrary frame dura-
tions. During development, you can leave the engine in “variable frame rate”
mode, and everything will work as expected. Later on, when the game is get-
ting closer to achieving its target frame rate consistently, we can switch on
frame-rate governing and start to reap its benefi ts.

Keeping the frame rate consistent can be important for a number of rea-
sons. Some engine systems, such as the numerical integrators used in a phys-
ics simulation, operate best when updated at a constant rate. A consistent

7.5. Measuring and Dealing with Time

316 7. The Game Loop and Real-Time Simulation

frame rate also looks bett er, and as we’ll see in the next section, it can be used
to avoid the tearing that can occur when the video buff er is updated at a rate
that doesn’t match the refresh rate of the monitor.

In addition, when elapsed frame times are consistent, features like record
and play back become a lot more reliable. As its name implies, the record and
play back feature allows a player’s gameplay experience to be recorded and
later played back in exactly the same way. This can be a fun game feature, and
it’s also a valuable testing and debugging tool. For example, diffi cult-to-fi nd
bugs can be reproduced by simply playing back a recorded game that dem-
onstrates the bug.

To implement record and play back, we make note of every relevant event
that occurs during gameplay, saving each one in a list along with an accurate
time stamp. The list of events can then be replayed with exactly the same tim-
ing, using the same initial conditions, and an identical initial random seed.
In theory, doing this should produce a gameplay experience that is indis-
tinguishable from the original playthrough. However, if the frame rate isn’t
consistent, things may not happen in exactly the same order. This can cause
“drift ,” and prett y soon your AI characters are fl anking when they should
have fallen back.

7.5.2.5. The Vertical Blanking Interval

A visual anomaly known as tearing occurs when the back buff er is swapped
with the front buff er while the electron gun in the CRT monitor is only part
way through its scan. When tearing occurs, the top portion of the screen shows
the old image, while the bott om portion shows the new one. To avoid tearing,
many rendering engines wait for the vertical blanking interval of the monitor
(the time during which the electron gun is being reset to the top-left corner of
the screen) before swapping buff ers.

Waiting for the v-blank interval is another form of frame-rate governing . It
eff ectively clamps the frame rate of the main game loop to a multiple of the
screen’s refresh rate. For example, on an NTSC monitor that refreshes at a rate
of 60 Hz, the game’s real update rate is eff ectively quantized to a multiple
of 1/60 of a second. If more than 1/60 of a second elapses between frames,
we must wait until the next v-blank interval, which means waiting 2/60 of a
second (30 FPS). If we miss two v-blanks, then we must wait a total of 3/60 of
a second (20 FPS), and so on. Also, be careful not to make assumptions about
the frame rate of your game, even when it is synchronized to the v-blank in-
terval; remember that the PAL and SECAM standards are based around an
update rate of 50 Hz, not 60 Hz.

317

7.5.3. Measuring Real Time with a High-Resolution Timer

 We’ve talked a lot about measuring the amount of real “wall clock” time that
elapses during each frame. In this section, we’ll investigate how such timing
measurements are made in detail.

Most operating systems provide a function for querying the system time,
such as the standard C library function time(). However, such functions are
not suitable for measuring elapsed times in a real-time game, because they
do not provide suffi cient resolution. For example, time() returns an integer
representing the number of seconds since midnight, January 1, 1970, so its reso-
lution is one second—far too coarse, considering that a frame takes only tens
of milliseconds to execute.

All modern CPUs contain a high-resolution timer , which is usually imple-
mented as a hardware register that counts the number of CPU cycles (or some
multiple thereof) that have elapsed since the last time the processor was pow-
ered on or reset. This is the timer that we should use when measuring elapsed
time in a game, because its resolution is usually on the order of the duration
of a few CPU cycles. For example, on a 3 GHz Pentium processor, the high-
resolution timer increments once per CPU cycle, or 3 billion times per second.
Hence the resolution of the high-res timer is 1 / 3 billion = 3.33 × 10–10 seconds =
0.333 ns (one-third of a nanosecond). This is more than enough resolution for
all of our time-measurement needs in a game.

Diff erent microprocessors and diff erent operating systems provide dif-
ferent ways to query the high-resolution timer. On a Pentium, a special instruc-
tion called rdtsc (read time-stamp counter) can be used, although the Win32
API wraps this facility in a pair of functions: QueryPerformanceCounter()
reads the 64-bit counter register and QueryPerformanceFrequency()
returns the number of counter increments per second for the current CPU.
On a PowerPC architecture, such as the chips found in the Xbox 360 and
PLAYSTATION 3, the instruction mftb (move from time base register) can
be used to read the two 32-bit time base registers, while on other PowerPC
architectures, the instruction mfspr (move from special-purpose register) is
used instead.

A CPU’s high-resolution timer register is 64 bits wide on most processors,
to ensure that it won’t wrap too oft en. The largest possible value of a 64-bit un-
signed integer is 0xFFFFFFFFFFFFFFFF ≈ 1.8 × 1019 clock ticks. So, on a 3 GHz
Pentium processor that updates its high-res timer once per CPU cycle, the
register’s value will wrap back to zero once every 195 years or so—defi nitely
not a situation we need to lose too much sleep over. In contrast, a 32-bit integer
clock will wrap aft er only about 1.4 seconds at 3 GHz.

7.5. Measuring and Dealing with Time

318 7. The Game Loop and Real-Time Simulation

7.5.3.1. High-Resolution Clock Drift

 Be aware that even timing measurements taken via a high-resolution timer can
be inaccurate in certain circumstances. For example, on some multicore pro-
cessors , the high-resolution timers are independent on each core, and they can
(and do) drift apart. If you try to compare absolute timer readings taken on dif-
ferent cores to one another, you might end up with some strange results—even
negative time deltas. Be sure to keep an eye out for these kinds of problems.

7.5.4. Time Units and Clock Variables

Whenever we measure or specify time durations in a game, we have two
choices to make:

What 1. time units should be used? Do we want to store our times in
seconds, or milliseconds, or machine cycles… or in some other unit?
What 2. data type should be used to store time measurements? Should we
employ a 64-bit integer, or a 32-bit integer, or a 32-bit fl oating point
variable ?

The answers to these questions depend on the intended purpose of a given
measurement. This gives rise to two more questions: How much precision
do we need? And what range of magnitudes do we expect to be able to rep-
resent?

7.5.4.1. 64-Bit Integer Clocks

We’ve already seen that a 64-bit unsigned integer clock, measured in machine
cycles, supports both an extremely high precision (a single cycle is 0.333 ns in
duration on a 3 GHz CPU) and a broad range of magnitudes (a 64-bit clock
wraps once roughly every 195 years at 3 GHz). So this is the most fl exible time
representation, presuming you can aff ord 64 bits worth of storage.

7.5.4.2. 32-Bit Integer Clocks

When measuring relatively short durations with high precision, we can turn
to a 32-bit integer clock, measured in machine cycles. For eample, to profi le
the performance of a block of code, we might do something like this:

// Grab a time snapshot.
U64 tBegin = readHiResTimer();

// This is the block of code whose performance we wish
// to measure.
doSomething();
doSomethingElse();
nowReallyDoSomething();

319

// Measure the duration.
U64 tEnd = readHiResTimer();
U32 dtCycles = static_cast<U32>(tEnd – tBegin);

// Now use or cache the value of dtCycles...

Notice that we still store the raw time measurements in 64-bit integer
variables. Only the time delta dt is stored in a 32-bit variable. This circum-
vents potential problems with wrapping at the 32-bit boundary. For example,
if tBegin == 0x12345678FFFFFFB7 and tEnd == 0x1234567900000039,
then we would measure a negative time delta if we were to truncate the indi-
vidual time measurements to 32 bits each prior to subtracting them.

7.5.4.3. 32-Bit Floating-Point Clocks

 Another common approach is to store relatively small time deltas in fl oating-
point format, measured in units of seconds. To do this, we simply multiply a
duration measured in CPU cycles by the CPU’s clock frequency, which is in
cycles per second. For example:

// Start off assuming an ideal frame time (30 FPS).
F32 dtSeconds = 1.0f / 30.0f;

// Prime the pump by reading the current time.
U64 tBegin = readHiResTimer();

while (true) // main game loop
{

runOneIterationOfGameLoop(dtSeconds);

 // Read the current time again, and calculate the
 // delta.
 U64 tEnd = readHiResTimer();

dtSeconds = (F32)(tEnd – tBegin)
 * (F32)getHiResTimerFrequency();

 // Use tEnd as the new tBegin for next frame.
tBegin = tEnd;

}

Notice once again that we must be careful to subtract the two 64-bit time
measurements before converting them into fl oating point format. This ensures
that we don’t store too large a magnitude into a 32-bit fl oating point variable.

7.5.4.4. Limitations of Floating Point Clocks

Recall that in a 32-bit IEEE fl oat, the 23 bits of the mantissa are dynamically
distributed between the whole and fractional parts of the value, by way

7.5. Measuring and Dealing with Time

320 7. The Game Loop and Real-Time Simulation

of the exponent (see Section 3.2.1.4). Small magnitudes require only a few
bits, leaving plenty of bits of precision for the fraction. But once the magni-
tude of our clock grows too large, its whole part eats up more bits, leaving
fewer bits for the fraction. Eventually, even the least-signifi cant bits of the
whole part become implicit zeros. This means that we must be cautious
when storing long durations in a fl oating-point clock variable. If we keep
track of the amount of time that has elapsed since the game was started, a
fl oating-point clock will eventually become inaccurate to the point of being
unusable.

Floating-point clocks are usually only used to store relatively short time
deltas, measuring at most a few minutes, and more oft en just a single frame
or less. If an absolute-valued fl oating-point clock is used in a game, you will
need to reset the clock to zero periodically, to avoid accumulation of large
magnitudes.

7.5.4.5. Other Time Units

Some game engines allow timing values to be specifi ed in a game-defi ned
unit that is fi ne-grained enough to permit a 32-bit integer format to be used,
precise enough to be useful for a wide range of applications within the en-
gine, and yet large enough that the 32-bit clock won’t wrap too oft en. One
common choice is a 1/300 second time unit. This works well because (a) it is
fi ne-grained enough for many purposes, (b) it only wraps once every 165.7
days, and (c) it is an even multiple of both NTSC and PAL refresh rates. A
60 FPS frame would be 5 such units in duration, while a 50 FPS frame would
be 6 units in duration.

Obviously a 1/300 second time unit is not precise enough to handle subtle
eff ects, like time-scaling an animation. (If we tried to slow a 30 FPS anima-
tion down to less than 1/10 of its regular speed, we’d be out of precision!) So
for many purposes, it’s still best to use fl oating-point time units, or machine
cycles. But a 1/300 second time unit can be used eff ectively for things like
specifying how much time should elapse between the shots of an automatic
weapon, or how long an AI -controlled character should wait before starting
his patrol, or the amount of time the player can survive when standing in a
pool of acid.

7.5.5. Dealing with Break Points

 When your game hits a break point, its loop stops running and the debug-
ger takes over. However, the CPU continues to run, and the real-time clock
continues to accrue cycles. A large amount of wall clock time can pass while
you are inspecting your code at a break point. When you allow the program

321

to continue, this can lead to a measured frame time many seconds, or even
minutes or hours in duration!

Clearly if we allow such a huge delta-time to be passed to the subsystems
in our engine, bad things will happen. If we are lucky, the game might con-
tinue to function properly aft er lurching forward many seconds in a single
frame. Worse, the game might just crash.

A simple approach can be used to get around this problem. In the main
game loop, if we ever measure a frame time in excess of some predefi ned up-
per limit (e.g., 1/10 of a second), we can assume that we have just resumed ex-
ecution aft er a break point, and we set the delta time artifi cially to 1/30 or 1/60
of a second (or whatever the target frame rate is). In eff ect, the game becomes
frame-locked for one frame, in order to avoid a massive spike in the measured
frame duration.

// Start off assuming the ideal dt (30 FPS).
F32 dt = 1.0f / 30.0f;

// Prime the pump by reading the current time.
U64 tBegin = readHiResTimer();

while (true) // main game loop
{

 updateSubsystemA(dt);
 updateSubsystemB(dt);
 // ...
 renderScene();
 swapBuffers();

 // Read the current time again, and calculate an
 // estimate of next frame’s delta time.
 U64 tEnd = readHiResTimer();
 dt = (F32)(tEnd – tBegin) / (F32)
 getHiResTimerFrequency();

 // If dt is too large, we must have resumed from a
 // break point -- frame-lock to the target rate this
 // frame.
 if (dt > 1.0f/10.0f)
 {
 dt = 1.0f/30.0f;
 }

 // Use tEnd as the new tBegin for next frame.
 tBegin = tEnd;
}

7.5. Measuring and Dealing with Time

322 7. The Game Loop and Real-Time Simulation

7.5.6. A Simple Clock Class

Some game engines encapsulate their clock variables in a class. An engine
might have a few instances of this class—one to represent real “wall clock”
time, another to represent “game time” (which can be paused, slowed down
or sped up relative to real time), another to track time for full-motion videos,
and so on. A clock class is reasonably straightforward to implement. I’ll pres-
ent a simple implementation below, making note of a few common tips, tricks,
and pitfalls in the process.

A clock class typically contains a variable that tracks the absolute time
that has elapsed since the clock was created. As described above, it’s im-
portant to select a suitable data type and time unit for this variable. In the
following example, we’ll store absolute times in the same way the CPU
does—with a 64-bit unsigned integer, measured in machine cycles. There
are other possible implementations, of course, but this is probably the sim-
plest.

A clock class can support some nift y features, like time-scaling. This can
be implemented by simply multiplying the measured time delta by an arbi-
trary scale factor prior to adding it to the clock’s running total. We can also
pause time by simply skipping its update while the clock is paused. Single-
stepping a clock can be implemented by adding a fi xed time interval to a
paused clock in response to a butt on press on the joypad or keyboard. All of
this is demonstrated by the example Clock class shown below.

class Clock
{
 U64 m_timeCycles;
 F32 m_timeScale;
 bool m_isPaused;

static F32 s_cyclesPerSecond;

 static inline U64 secondsToCycles(F32 timeSeconds)
 {
 return (U64)(timeSeconds * s_cyclesPerSecond);
 }

 // WARNING: Dangerous -- only use to convert small
 // durations into seconds.
 static inline F32 cyclesToSeconds(U64 timeCycles)
 {
 return (F32)timeCycles / s_cyclesPerSecond;
 }

323

public:
 // Call this when the game first starts up.
 static void init()
 {
 s_cyclesPerSecond
 = (F32)readHiResTimerFrequency();
 }

 // Construct a clock.
 explicit Clock(F32 startTimeSeconds = 0.0f) :
 m_timeCycles(secondsToCycles(startTimeSeconds)),
 m_timeScale(1.0f), // default to unscaled
 m_isPaused(false) // default to running
 {
 }

 // Return the current time in cycles. NOTE that we do
 // not return absolute time measurements in floating
 // point seconds, because a 32-bit float doesn’t have
 // enough precision. See calcDeltaSeconds().
 U64 getTimeCycles() const
 {
 return m_timeCycles;
 }

 // Determine the difference between this clock’s
 // absolute time and that of another clock, in
 // seconds. We only return time deltas as floating
 // point seconds, due to the precision limitations of
 // a 32-bit float.
 F32 calcDeltaSeconds(const Clock& other)
 {
 U64 dt = m_timeCycles – other.m_timeCycles;
 return cyclesToSeconds(dt);
 }

 // This function should be called once per frame,
 // with the real measured frame time delta in seconds.
 void update(F32 dtRealSeconds)
 {
 if (!m_isPaused)
 {
 U64 dtScaledCycles
 = secondsToCycles(
 dtRealSeconds * m_timeScale);

 m_timeCycles += dtScaledCycles;
 }
 }

7.5. Measuring and Dealing with Time

324 7. The Game Loop and Real-Time Simulation

 void setPaused(bool isPaused)
 {
 m_isPaused = isPaused;
 }

 bool isPaused() const
 {
 return m_isPaused;
 }

 void setTimeScale(F32 scale)
 {
 m_timeScale = scale;
 }

 F32 getTimeScale() const
 {
 return m_timeScale;
 }

 void singleStep()
 {
 if (m_isPaused)
 {
 // Add one ideal frame interval; don’t forget
 // to scale it by our current time scale!
 U64 dtScaledCycles = secondsToCycles(
 (1.0f/30.0f) * m_timeScale);

 m_timeCycles += dtScaledCycles;
 }
 }
};

7.6. Multiprocessor Game Loops

Now that we’ve investigated basic single-threaded game loops and learned
some of the ways in which time is commonly measured and manipulated
in a game engine, let’s turn our att ention to some more complex kinds of
game loops. In this section, we’ll explore how game loops have evolved to
take advantage of modern multiprocessor hardware. In the following sec-
tion, we’ll see how networked multiplayer games typically structure their
game loops.

In 2004, microprocessor manufacturers industry-wide encountered a
problem with heat dissipation that prevented them from producing faster

325

CPUs. Moore’s Law , which predicts an approximate doubling in transistor
counts every 18 to 24 months, still holds true. But in 2004, its assumed cor-
relation with doubling processor speeds was shown to be no longer val-
id. As a result, microprocessor manufacturers shift ed their focus toward
multicore CPUs. (For more information on this trend, see Microsoft ’s “The
Manycore Shift Whitepaper,” available at htt p://www.microsoft post.com/
microsoft -download/the-manycore-shift -white-paper, and “Multicore Erod-
ing Moore’s Law” by Dean Dauger, available at htt p://www.macresearch.
org/multicore_eroding_moores_law.) The net eff ect on the soft ware industry
was a major shift toward parallel processing techniques. As a result, mod-
ern game engines running on multicore systems like the Xbox 360 and the
PLAYSTATION 3 can no longer rely on a single main game loop to service
their subsystems.

The shift from single core to multicore has been painful. Multithreaded
program design is a lot harder than single-threaded programming. Most
game companies took on the transformation gradually, by selecting a hand-
ful of engine subsystems for parallelization, and leaving the rest under the
control of the old, single-threaded main loop. By 2008, most game studios had
completed the transformation for the most part and have embraced parallel-
ism to varying degrees within their engines.

We don’t have room here for a full treatise on parallel programming
architectures and techniques. (Refer to [20] for an in-depth discussion of
this topic.) However, we will take a brief look at some of the most common
ways in which game engines leverage multicore hardware. There are many
diff erent soft ware architectures possible—but the goal of all of these archi-
tectures is to maximize hardware utilization (i.e., to att empt to minimize
the amount of time during which any particular hardware thread, core or
CPU is idle).

7.6.1. Multiprocessor Game Console Architectures

The Xbox 360 and the PLAYSTATION 3 are both multiprocessor consoles. In
order to have a meaningful discussion of parallel soft ware architectures, let’s
take a brief look at how these two consoles are structured internally.

7.6.1.1. Xbox 360

The Xbox 360 consists of three identical PowerPC processor cores. Each core
has a dedicated L1 instruction cache and L1 data cache, and the three cores
share a single L2 cache. The three cores and the GPU share a unifi ed 512 MB
pool of RAM, which can be used for executable code, application data, tex-
tures, video RAM—you name it. The Xbox 360 architecture is described in

7.6. Multiprocessor Game Loops

http://www.microsoft
http://www.macresearch

326 7. The Game Loop and Real-Time Simulation

Main RAM
(512 MB)

PowerPC
Core 0

PowerPC
Core 1

PowerPC
Core 2

L1
Data

L1
Instr

L1
Data

L1
Instr

L1
Data

L1
Instr

Shared L2 Cache

GPU

Figure 7.4. A simplifi ed view of the Xbox 360 hardware architecture.

a great deal more depth in the PowerPoint presentation entited “Xbox 360
System Architecture,” by Jeff Andrews and Nick Baker of the Xbox Semicon-
ductor Technology Group, available at htt p://www.hotchips.org/archives/
hc17/3_Tue/HC17.S8/HC17.S8T4.pdf. However, the preceding extremely brief
overview should suffi ce for our purposes. Figure 7.4 shows the Xbox 360’s
architecture in highly simplifi ed form.

7.6.1.2. PLAYSTATION 3

The PLAYSTATION 3 hardware makes use of the Cell Broadband Engine
(CBE) architecture (see Figure 7.5), developed jointly by Sony, Toshiba, and
IBM. The PS3 takes a radically diff erent approach to the one employed by the
Xbox 360. Instead of three identical processors, it contains a number of diff er-
ent types of processors, each designed for specifi c tasks. And instead of a uni-
fi ed memory architecture, the PS3 divides its RAM into a number of blocks,
each of which is designed for effi cient use by certain processing units in the
system. The architecture is described in detail at htt p://www.blachford.info/
computer/Cell/Cell1_v2.html, but the following overview and the diagram
shown in Figure 7.5 should suffi ce for our purposes.

The PS3’s main CPU is called the Power Processing Unit (PPU). It is a
PowerPC processor, much like the ones found in the Xbox 360. In addition
to this central processor, the PS3 has six coprocessors known as Synergistic
Processing Units (SPUs). These coprocessors are based around the PowerPC
instruction set, but they have been streamlined for maximum performance.

The GPU on the PS3 has a dedicated 256 MB of video RAM. The PPU has
access to 256 MB of system RAM. In addition, each SPU has a dedicated high-
speed 256 kB RAM area called its local store (LS). Local store memory performs
about as effi ciently as an L1 cache, making the SPUs blindingly fast.

http://www.hotchips.org/archives/
http://www.blachford.info/

327

The SPUs never read directly from main RAM. Instead, a direct memory
access (DMA) controller allows blocks of data to be copied back and forth
between system RAM and the SPUs’ local stores. These data transfers happen
in parallel, so both the PPU and SPUs can be doing useful calculations while
they wait for data to arrive.

7.6.2. SIMD

As we saw in Section 4.7, most modern CPUs (including the Xbox 360’s three
PowerPC processors, and the PS3’s PPU and SPUs) provide a class of instruc-
tions known as single instruction, multiple data (SIMD). Such instructions can
perform a particular operation on more than one piece of data simultaneously,
and as such they represent a fi ne-grained form of hardware parallelism. CPUs
provide a number of diff erent SIMD instruction variants, but by far the most
commonly-used in games are instructions that operate on four 32-bit fl oating-
point values in parallel, because they allow 3D vector and matrix math to be
performed four times more quickly than with their single instruction, single
data (SISD) counterparts.

Retrofi tt ing existing 3D math code to leverage SIMD instructions can be
tricky, although the task is much easier if a well-encapsulated 3D math li-
brary was used in the original code. For example, if a dot product is calcu-
lated in long hand everywhere (e.g., float d = a.x * b.x + a.y * b.y
+ a.z * b.z;), then a very large amount of code will need to be re-writt en.
However, if dot products are calculated by calling a function (e.g., float d =
Dot(a, b);), and if vectors are treated largely as black boxes throughout the
code base, then retrofi tt ing for SIMD can be accomplished by modifying the

7.6. Multiprocessor Game Loops

Video RAM
(256 MB) GPUSystem RAM

(256 MB)

...

PPU

L1
Data

L1
Instr

L2 Cache

SPU0

Local
Store

(256 kB)

SPU1

Local
Store

(256 kB)

SPU6

Local
Store

(256 kB)

DMA
ControllerDMA Bus

Figure 7.5. Simplifi ed view of the PS3’s cell broadband architecture.

328 7. The Game Loop and Real-Time Simulation

3D math library, without having to modify much if any of the calling code
(except perhaps to ensure alignment of vector data to 16-byte boundaries).

7.6.3. Fork and Join

Another way to utilize multicore or multiprocessor hardware is to adapt di-
vide-and-conquer algorithms for parallelism. This is oft en called the fork/join
approach. The basic idea is to divide a unit of work into smaller subunits, dis-
tribute these workloads onto multiple processing cores or hardware threads
(fork), and then merge the results once all workloads have been completed
(join). When applied to the game loop, the fork/join architecture results in a
main loop that looks very similar to its single-threaded counterpart, but with
some of the major phases of the update loop being parallelized. This architec-
ture is illustrated in Figure 7.6.

Let’s take a look at a concrete example. Blending animations using linear
interpolation (LERP) is an operation that can be done on each joint indepen-
dently of all other joints within a skeleton (see Section 11.5.2.2). We’ll assume
that we want to blend pairs of skeletal poses for fi ve characters, each of which
has 100 joints, meaning that we need to process 500 pairs of joint poses.

To parallelize this task, we can divide the work into N batches, each con-
taining roughly 500/N joint-pose pairs, where N is selected based on the avail-

Main
Thread

HID

Update Game
Objects

Ragdoll Physics

Post Animation
Game Object Update

Fork

Join

Fork

Join

etc.

Pose
Blending

Pose
Blending

Pose
Blending

Simulate/
Integrate

Simulate/
Integrate

Simulate/
Integrate

Figure 7.6. Fork and join used to parallelize selected CPU-intensive phases of the game loop.

329

able processing resources. (On the Xbox 360, N should probably be 3 or 6,
because the console has three cores with two hardware threads each. On a
PS3, N might range anywhere from 1 to 6, depending on how many SPUs are
available.) We then “fork” (i.e., create) N threads, requesting each one to work
on a diff erent group of pose pairs. The main thread can either continue doing
some useful but work that is independent of the animation blending task, or it
can go to sleep , waiting on a semaphore that will tell it when all of the worker
threads have completed their tasks. Finally, we “join” the individual resultant
joint poses into a cohesive whole—in this case, by calculating the fi nal global
pose of each of our fi ve skeletons. (The global pose calculation needs access
to the local poses of all the joints in each skeleton, so it doesn’t parallelize
well within a single skeleton. However, we could imagine forking again to
calculate the global pose, this time with each thread working on one or more
whole skeletons.)

You can fi nd sample code illustrating how to fork and join worker
threads using Win32 system calls at htt p://msdn.microsoft .com/en-us/library/
ms682516(VS.85).aspx.

7.6.4. One Thread per Subsystem

Yet another approach to multitasking is to assign particular engine subsys-
tems to run in separate threads . A master thread controls and synchronizes
the operations of these secondary subsystem threads and also continues to
handle the lion’s share of the game’s high-level logic (the main game loop).
On a hardware platform with multiple physical CPUs or hardware threads,
this design allows these threaded engine subsystems to execute in parallel.
This design is well suited to any engine subsystem that performs a relative-
ly isolated function repeatedly, such as a rendering engine, physics simula-
tion, animation pipeline, or audio engine. The architecture is depicted in
Figure 7.7.

Threaded architectures are usually supported by some kind of thread
library on the target hardware system. On a personal computer running
Windows, the Win32 thread API is usually used. On a UNIX-based system,
a library like pthreads might be the best choice. On the PLAYSTATION 3, a
library known as SPURS permits workloads to be run on the six synergistic
processing units (SPUs). SPURS provides two primary ways to run code on
the SPUs—the task model and the job model . The task model can be used to
segregate engine subsystems into coarse-grained independent units of execu-
tion that act very much like threads. We’ll discuss the SPURS job model in the
next section.

7.6. Multiprocessor Game Loops

330 7. The Game Loop and Real-Time Simulation

7.6.5. Jobs

One problem with the multithreaded approach is that each thread represents
a relatively coarse-grained chunk of work (e.g., all animation tasks are in one
thread, all collision and physics tasks in another). This can place restrictions
on how the various processors in the system can be utilized . If one of the
subsystem threads has not completed its work, the progress of other threads,
including that of the main game loop, may be blocked.

Another way to take advantage of parallel hardware architecture is to
divide up the work that is done by the game engine into multiple small, rela-
tively independent jobs . A job is best thought of as a pairing between a chunk
of data and a bit of code that operates on that data. When a job is ready to be
run, it is placed on a queue, to be picked up and worked on by the next avail-
able processing unit. This approach is supported on the PLAYSTATION 3 via
the SPURS job model. The main game loop runs on the PPU, and the six SPUs
are used as job processors. Each job’s code and data are sent to an SPU’s local
store via a DMA transfer. The SPU processes the job, and then it DMAs its
results back to main RAM.

Figure 7.7. One thread per major engine subsystem.

331

As shown in Figure 7.8, the fact that jobs are relatively fi ne-grained and
independent of one another helps to maximize processor utilization. It can
also reduce or eliminate some of the restrictions placed on the main thread
in the one-thread-per-subsystem design. This architecture also scales up or
down naturally to hardware with any number of processing units (something
the one-thread-per-subsystem architecture does not do particularly well).

7.6.6. Asynchronous Program Design

 When writing or retrofi tt ing a game engine to take advantage of multitasking
hardware, programmers must be careful to design their code in an asynchro-
nous manner. This means that the results of an operation will usually not be
available immediately aft er requesting it, as they would be in a synchronous
design. For example, a game might request that a ray be cast into the world, in
order to determine whether the player has line-of-sight to an enemy character.
In a synchronous design, the ray cast would be done immediately in response
to the request, and when the ray casting function returned, the results would
be available, as shown below.

Figure 7.8. In a job architecture, work is broken down into fi ne-grained chunks that can
be picked up by any available processor. This can help maximize processor utilization, while
providing the main game loop with improved fl exibility.

7.6. Multiprocessor Game Loops

332 7. The Game Loop and Real-Time Simulation

while (true) // main game loop
{
 // ...

 // Cast a ray to see if the player has line of sight
 // to the enemy.
 RayCastResult r = castRay(playerPos, enemyPos);

 // Now process the results...
 if (r.hitSomething() && isEnemy(r.getHitObject()))
 {
 // Player can see the enemy.
 // ...
 }

 // ...
}

In an asynchronous design, a ray cast request would be made by calling
a function that simply sets up and enqueues a ray cast job, and then returns
immediately. The main thread can continue doing other unrelated work while
the job is being processed by another CPU or core. Later, once the job has been
completed, the main thread can pick up the results of the ray cast query and
process them:

while (true) // main game loop
{
 // ...

 // Cast a ray to see if the player has line of sight
 // to the enemy.
 RayCastResult r;

requestRayCast(playerPos, enemyPos, &r);

 // Do other unrelated work while we wait for the
 // other CPU to perform the ray cast for us.

// ...

 // OK, we can’t do any more useful work. Wait for the
 // results of our ray cast job. If the job is
 // complete, this function will return immediately.
 // Otherwise, the main thread will idle until they
 // are ready...

waitForRayCastResults(&r);

 // Process results...
 if (r.hitSomething() && isEnemy(r.getHitObject()))
 {
 // Player can see the enemy.
 // ...
 }

333

 // ...
}

In many instances, asynchronous code can kick off a request on one frame,
and pick up the results on the next. In this case, you may see code that looks
like this:

RayCastResult r;
bool rayJobPending = false;

while (true) // main game loop
{

 // ...

 // Wait for the results of last frame’s ray cast job.
 if (rayJobPending)
 {

waitForRayCastResults(&r);

 // Process results...
 if (r.hitSomething() && isEnemy(r.getHitObject()))
 {
 // Player can see the enemy.
 // ...
 }
 }

 // Cast a new ray for next frame.
rayJobPending = true;
requestRayCast(playerPos, enemyPos, &r);

 // Do other work...

// ...
}

7.7. Networked Multiplayer Game Loops

The game loop of a networked multiplayer game is particularly interesting,
so we’ll have a brief look at how such loops are structured. We don’t have
room here to go into the all of the details of how multiplayer games work.
(Refer to [3] for an excellent in-depth discussion of the topic.) However, we’ll
provide a brief overview of the two most-common multiplayer architectures
here, and then look at how these architectures aff ect the structure of the game
loop.

7.7. Networked Multiplayer Game Loops

334 7. The Game Loop and Real-Time Simulation

7.7.1. Client-Server

In the client-server model, the vast majority of the game’s logic runs on a single
server machine. Hence the server’s code closely resembles that of a non-net-
worked single-player game. Multiple client machines can connect to the server
in order to take part in the online game. The client is basically a “dumb” ren-
dering engine that also reads human interface devices and controls the local
player character, but otherwise simply renders whatever the server tells it to
render. Great pains are taken in the client code to ensure that the inputs of the
local human player are immediately translated into the actions of the player’s
character on-screen. This avoids what would otherwise be an extremely an-
noying sense of delayed reaction on the part of the player character. But other
than this so-called player prediction code, the client is usually not much more
than a rendering and audio engine, combined with some networking code.

The server may be running on a dedicated machine, in which case we say
it is running in dedicated server mode. However, the client and server needn’t
be on separate machines, and in fact it is quite typical for one of the client ma-
chines to also be running the server. In fact, in many client-server multiplayer
games, the single-player game mode is really just a degenerate multiplayer
game, in which there is only one client, and both the client and server are run-
ning on the same machine. This is known as client-on-top-of-server mode.

The game loop of a client-server multiplayer game can be implemented
in a number of diff erent ways. Since the client and server are conceptually
separate entities, they could be implemented as entirely separate processes
(i.e., separate applications). They could also be implemented as two separate
threads of execution, within a single process. However, both of these ap-
proaches require quite a lot of overhead to permit the client and server to
communicate locally, when being run in client-on-top-of-server mode. As a
result, a lot of multiplayer games run both client and server in a single thread,
serviced by a single game loop.

It’s important to realize that the client and server code can be updated
at diff erent rates. For example, in Quake, the server runs at 20 FPS (50 ms per
frame), while the client typically runs at 60 FPS (16.6 ms per frame). This is
implemented by running the main game loop at the faster of the two rates
(60 FPS) and then servicing the server code once roughly every three frames.
In reality, the amount of time that has elapsed since the last server update is
tracked, and when it reaches or exceeds 50 ms, a server frame is run and the
timer is reset. Such a game loop might look something like this:

F32 dtReal = 1.0f/30.0f; // the real frame delta time
F32 dtServer = 0.0f; // the server’s delta time

335

U64 tBegin = readHiResTimer();

while (true) // main game loop
{
 // Run the server at 50 ms intervals.

dtServer += dtReal;

 if (dtServer >= 0.05f) // 50 ms
 {
 runServerFrame(0.05f);
 dtServer -= 0.05f; // reset for next update
 }

 // Run the client at maximum frame rate.
runClientFrame(dtReal);

 // Read the current time, and calculate an estimate
 // of next frame’s real delta time.
 U64 tEnd = readHiResTimer();

dtReal = (F32)(tEnd – tBegin)
 / (F32)getHiResTimerFrequency();

 // Use tEnd as the new tBegin for next frame.
 tBegin = tEnd;
}

7.7.2. Peer-to-Peer

In the peer-to-peer multiplayer architecture, every machine in the online game
acts somewhat like a server, and somewhat like a client. One and only one
machine has authority over each dynamic object in the game. So each machine
acts like a server for those objects over which it has authority. For all other ob-
jects in the game world, the machine acts like a client, rendering the objects in
whatever state is provided to it by that object’s remote authority.

The structure of a peer-to-peer multiplayer game loop is much simpler
than a client-server game loop, in that at the top-most level, it looks very much
like a single-player game loop. However, the internal details of the code can be
a bit more confusing. In a client-server model, it is usually quite clear which
code is running on the server and which code is client-side. But in a peer-to-
peer architecture, much of the code needs to be set up to handle two possible
cases: one in which the local machine has authority over the state of an object
in the game, and one in which the object is just a dumb proxy for a remote
authoritative representation. These two modes of operation are oft en imple-
mented by having two kinds of game objects—a full-fl edged “real” game ob-

7.7. Networked Multiplayer Game Loops

336 7. The Game Loop and Real-Time Simulation

ject, over which the local machine has authority and a “proxy ” version that
contains a minimal subset of the state of the remote object.

Peer-to-peer architectures are made even more complex because author-
ity over an object sometimes needs to migrate from machine to machine. For
example, if one computer drops out of the game, all of the objects over which
it had authority must be picked up by the other machines in the game. Like-
wise, when a new machine joins the game, it should ideally take over author-
ity of some game objects from other machines, in order to balance the load.
The details are beyond the scope of this book. The key point here is that multi-
player architectures can have profound eff ects on the structure of a game’s
main loop.

7.7.3. Case Study: Quake II

The following is an excerpt from the Quake II game loop . The source code for
Quake, Quake II, and Quake 3 Arena is available on Id Soft ware’s website, htt p://
www.idsoft ware.com. As you can see, all of the elements we’ve discussed are
present, including the Windows message pump (in the Win32 version of the
game), calculation of the real frame delta time , fi xed-time and time-scaled
modes of operation, and servicing of both server-side and client-side engine
systems.

int WINAPI WinMain (HINSTANCE hInstance,
 HINSTANCE hPrevInstance,
 LPSTR lpCmdLine, int nCmdShow)
{
 MSG msg;
 int time, oldtime, newtime;
 char *cddir;

 ParseCommandLine (lpCmdLine);

 Qcommon_Init (argc, argv);
 oldtime = Sys_Milliseconds ();

/* main window message loop */
 while (1)
 {
 // Windows message pump.
 while (PeekMessage (&msg, NULL, 0, 0,
 PM_NOREMOVE))
 {
 if (!GetMessage (&msg, NULL, 0, 0))
 Com_Quit ();
 sys_msg_time = msg.time;

http://www.idsoft

337

 TranslateMessage (&msg);
 DispatchMessage (&msg);

 }

 // Measure real delta time in milliseconds.
 do
 {
 newtime = Sys_Milliseconds ();
 time = newtime - oldtime;
 } while (time < 1);

 // Run a frame of the game.
Qcommon_Frame (time);

 oldtime = newtime;
 }

 // never gets here
 return TRUE;
}

void Qcommon_Frame (int msec)
{
 char *s;
 int time_before, time_between, time_after;

 // [some details omitted...]

 // Handle fixed-time mode and time scaling.
 if (fixedtime->value)
 msec = fixedtime->value;
 else if (timescale->value)
 {
 msec *= timescale->value;
 if (msec < 1)
 msec = 1;
 }

 // Service the in-game console.
 do
 {
 s = Sys_ConsoleInput ();
 if (s)
 Cbuf_AddText (va("%s\n",s));
 } while (s);
 Cbuf_Execute ();

7.7. Networked Multiplayer Game Loops

338 7. The Game Loop and Real-Time Simulation

 // Run a server frame.
SV_Frame (msec);

 // Run a client frame.
CL_Frame (msec);

 // [some details omitted...]
}

339

8
Human Interface

Devices (HID)

Games are interactive computer simulations, so the human player(s) need
some way of providing inputs to the game. All sorts of human interface

devices (HID) exist for gaming, including joysticks, joypads, keyboards and
mice, track balls, the Wii remote, and specialized input devices like steering
wheels, fi shing rods, dance pads, and even electric guitars. In this chapter,
we’ll investigate how game engines typically read, process, and utilize the
inputs from human interface devices. We’ll also have a look at how outputs
from these devices provide feedback to the human player.

8.1. Types of Human Interface Devices

A wide range of human interface devices are available for gaming purposes.
Consoles like the Xbox 360 and PS3 come equipped with joypad controllers, as
shown in Figure 8.1. Nintendo’s Wii console is well known for its unique and
innovative WiiMote controller, shown in Figure 8.2. PC games are generally
either controlled via a keyboard and the mouse, or via a joypad. (Microsoft
designed the Xbox 360 joypad so that it can be used both on the Xbox 360 and
on Windows/DirectX PC platforms.) As shown in Figure 8.3, arcade machines
have one or more built-in controllers, such as a joystick and various butt ons, or
a track ball, a steering wheel, etc. An arcade machine’s input device is usually

340 8. Human Interface Devices (HID)

Figure 8.1. Standard joypads for the Xbox 360 and PLAYSTATION 3 consoles.

Figure 8.2. The innovative WiiMote for the Nintendo Wii.

Figure 8.3. Various custom input devices for the arcade game Mortal Kombat II by Midway.

Figure 8.4. Many specialized input devices are available for use with consoles.

341 8.2. Interfacing with a HID

somewhat customized to the game in question, although input hardware is
oft en re-used among arcade machines produced by the same manufacturer.

On console platforms, specialized input devices and adapters are usually
available, in addition to the “standard” input device such as the joypad. For
example, guitar and drum devices are available for the Guitar Hero series of
games, steering wheels can be purchased for driving games, and games like
Dance Dance Revolution use a special dance pad device. Some of these devices
are shown in Figure 8.4.

The Nintendo WiiMote is one of the most fl exible input devices on the
market today. As such, it is oft en adapted to new purposes, rather than re-
placed with an entirely new device. For example, Mario Kart Wii comes with
a pastic steering wheel adapter into which the WiiMote can be inserted (see
Figure 8.5).

8.2. Interfacing with a HID

All human interface devices provide input to the game soft ware, and some
also allow the soft ware to provide feedback to the human player via various
kinds of outputs as well. Game soft ware reads and writes HID inputs and
outputs in various ways, depending on the specifi c design of the device in
question.

8.2.1. Polling

Some simple devices, like game pads and old-school joysticks, are read by
polling the hardware periodically (usually once per iteration of the main game
loop). This means explicitly querying the state of the device, either by read-
ing hardware registers directly, reading a memory-mapped I/O port, or via a
higher-level soft ware interface (which, in turn, reads the appropriate registers
or memory-mapped I/O ports). Likewise, outputs might be sent to the HID by

Figure 8.5. Steering wheel adapter for the Nintendo Wii.

342 8. Human Interface Devices (HID)

writing to special registers or memory-mapped I/O addresses, or via a higher-
level API that does our dirty work for us.

Microsoft ’s XInput API, for use with Xbox 360 game pads on both the
Xbox 360 and Windows PC platforms, is a good example of a simple polling
mechanism. Every frame, the game calls the function XInputGetState().
This function communicates with the hardware and/or drivers, reads the data
in the appropriate way, and packages it all up for convenient use by the soft -
ware. It returns a pointer to an XINPUT_STATE struct, which in turn contains
an embedded instance of a struct called XINPUT_GAMEPAD. This struct con-
tains the current states of all of the controls (butt ons, thumb sticks, and trig-
gers) on the device.

8.2.2. Interrupts

Some HIDs only send data to the game engine when the state of the controller
changes in some way. For example, a mouse spends a lot of its time just sitt ing
still on the mouse pad. There’s no reason to send a continuous stream of data
between the mouse and the computer when the mouse isn’t moving—we need
only transmit information when it moves, or a butt on is pressed or released.

This kind of device usually communicates with the host computer via
hardware interrupts . An interrupt is an electronic signal generated by the hard-
ware, which causes the CPU to temporarily suspend execution of the main
program and run a small chunk of code called an interrupt service routine (ISR).
Interrupts are used for all sorts of things, but in the case of a HID, the ISR code
will probably read the state of the device, store it off for later processing, and
then relinquish the CPU back to the main program. The game engine can pick
up the data the next time it is convenient to do so.

8.2.3. Wireless Devices

The inputs and outputs of a Bluetooth device, like the WiiMote, the
DualShock 3 and the Xbox 360 wireless controller, cannot be read and writ-
ten by simply accessing registers or memory-mapped I/O ports. Instead, the
soft ware must “talk” to the device via the Bluetooth protocol. The soft ware
can request the HID to send input data (such as the states of its butt ons) back
to the host, or it can send output data (such as rumble sett ings or a stream of
audio data) to the device. This communication is oft en handled by a thread
separate from the game engine’s main loop, or at least encapsulated behind a
relatively simple interface that can be called from the main loop. So from the
point of view of the game programmer, the state of a Bluetooth device can be
made to look prett y much indistinguishable from a traditional polled device.

343 8.3. Types of Inputs

8.3. Types of Inputs

Although human interface devices for games vary widely in terms of form
factor and layout, most of the inputs they provide fall into one of a small num-
ber of categories. We’ll investigate each category in depth below.

8.3.1. Digital Buttons

Almost every HID has at least a few digital butt ons . These are butt ons that can
only be in one of two states: pressed and not pressed. Game programmers oft en
refer to a pressed butt on as being down and a non-pressed butt on as being up.

Electrical engineers speak of a circuit containing a switch as being closed
(meaning electricity is fl owing through the circuit) or open (no electricity is
fl owing—the circuit has infi nite resistance). Whether closed corresponds to
pressed or not pressed depends on the hardware. If the switch is normally open,
then when it is not pressed (up), the circuit is open, and when it is pressed
(down), the circuit is closed. If the switch is normally closed, the reverse is true—
the act of pressing the butt on opens the circuit.

In soft ware, the state of a digital butt on (pressed or not pressed) is usually
represented by a single bit. It’s common for 0 to represent not pressed (up)
and 1 to represent pressed (down). But again, depending on the nature of the
circuitry, and the decisions made by the programmers who wrote the device
driver, the sense of these values might be reversed.

It is quite common for the states of all of the butt ons on a device to be
packed into a single unsigned integer value. For example, in Microsoft ’s
XInput API, the state of the Xbox 360 joypad is returned in a struct called
XINPUT_GAMEPAD, shown below.

typedef struct _XINPUT_GAMEPAD {
 WORD wButtons;
 BYTE bLeftTrigger;
 BYTE bRightTrigger;

 SHORT sThumbLX;

 SHORT sThumbLY;

 SHORT sThumbRX;
 SHORT sThumbRY;
} XINPUT_GAMEPAD;

This struct contains a 16-bit unsigned integer (WORD) variable named
wButtons that holds the state of all butt ons. The following masks defi ne

344 8. Human Interface Devices (HID)

which physical butt on corresponds to each bit in the word. (Note that bits 10
and 11 are unused.)

#define XINPUT_GAMEPAD_DPAD_UP 0x0001 // bit 0

#define XINPUT_GAMEPAD_DPAD_DOWN 0x0002 // bit 1

#define XINPUT_GAMEPAD_DPAD_LEFT 0x0004 // bit 2

#define XINPUT_GAMEPAD_DPAD_RIGHT 0x0008 // bit 3

#define XINPUT_GAMEPAD_START 0x0010 // bit 4

#define XINPUT_GAMEPAD_BACK 0x0020 // bit 5

#define XINPUT_GAMEPAD_LEFT_THUMB 0x0040 // bit 6

#define XINPUT_GAMEPAD_RIGHT_THUMB 0x0080 // bit 7

#define XINPUT_GAMEPAD_LEFT_SHOULDER 0x0100 // bit 8

#define XINPUT_GAMEPAD_RIGHT_SHOULDER 0x0200 // bit 9

#define XINPUT_GAMEPAD_A 0x1000 // bit 12

#define XINPUT_GAMEPAD_B 0x2000 // bit 13

#define XINPUT_GAMEPAD_X 0x4000 // bit 14

#define XINPUT_GAMEPAD_Y 0x8000 // bit 15

An individual butt on’s state can be read by masking the wButtons word
with the appropriate bit mask via C/C++’s bitwise AND operator (&) and then
checking if the result is non-zero. For example, to determine if the A butt on is
pressed (down), we would write:

bool IsButtonADown(const XINPUT_GAMEPAD& pad)
{
 // Mask off all bits but bit 12 (the A button).
 return ((pad.wButtons & XINPUT_GAMEPAD_A) != 0);
}

8.3.2. Analog Axes and Buttons

An analog input is one that can take on a range of values (rather than just 0
or 1). These kinds of inputs are oft en used to represent the degree to which
a trigger is pressed, or the two-dimensional position of a joystick (which is
represented using two analog inputs, one for the x-axis and one for the y-axis,

345

as shown in Figure 8.6). Because of this common usage, analog inputs are
sometimes called analog axes , or just axes.

On some devices, certain butt ons are analog as well, meaning that the
game can actually detect how hard the player is pressing on them. However,
the signals produced by analog butt ons are usually too noisy to be particu-
larly usable. I have yet to see a game that uses analog butt on inputs eff ectively
(although some may very well exist!)

Strictly speaking, analog inputs are not really analog by the time they
make it to the game engine. An analog input signal is usually digitized, mean-
ing it is quantized and represented using an integer in soft ware. For example,
an analog input might range from –32,768 to 32,767 if represented by a 16-bit
signed integer. Sometimes analog inputs are converted to fl oating-point—
the values might range from –1 to 1, for instance. But as we know from Sec-
tion 3.2.1.3, fl oating-point numbers are really just quantized digital values as
well.

Reviewing the defi nition of XINPUT_GAMEPAD (repeated below), we can
see that Microsoft chose to represent the defl ections of the left and right thumb
sticks on the Xbox 360 gamepad using 16-bit signed integers (sThumbLX
and sThumbLY for the left stick and sThumbRX and sThumbRY for the right).
Hence, these values range from –32,768 (left or down) to 32,767 (right or up).
However, to represent the positions of the left and right shoulder triggers,
Microsoft chose to use 8-bit unsigned integers (bLeftTrigger and bRight-
Trigger respectively). These input values range from 0 (not pressed) to 255
(fully pressed). Diff erent game machines use diff erent digital representions
for their analog axes.

typedef struct _XINPUT_GAMEPAD {
 WORD wButtons;

x

y (1, 1)

(–1, –1)

(0.1, 0.3)

Figure 8.6. Two analog inputs can be used to represent the x and y defl ection of a joystick.

8.3. Types of Inputs

346 8. Human Interface Devices (HID)

// 8-bit unsigned
 BYTE bLeftTrigger;
 BYTE bRightTrigger;

// 16-bit signed
 SHORT sThumbLX;
 SHORT sThumbLY;

 SHORT sThumbRX;
 SHORT sThumbRY;
} XINPUT_GAMEPAD;

8.3.3. Relative Axes

The position of an analog butt on, trigger, joystick, or thumb stick is absolute,
meaning that there is a clear understanding of where zero lies. However, the
inputs of some devices are relative . For these devices, there is no clear location
at which the input value should be zero. Instead, a zero input indicates that
the position of the device has not changed, while non-zero values represent
a delta from the last time the input value was read. Examples include mice,
mouse wheels, and track balls.

8.3.4. Accelerometers

The PLAYSTATION 3’s Sixaxis and DualShock 3 joypads, and the Nintendo
WiiMote , all contain acceleration sensors (accelerometers). These devices can
detect acceleration along the three principle axes (x, y, and z), as shown in Fig-
ure 8.7. These are relative analog inputs, much like a mouse’s two-dimensional
axes. When the controller is not accelerating these inputs are zero, but when
the controller is accelerating, they measure the acceleration up to ±3 g along
each axis, quantized into three signed 8-bit integers, one for each of x, y, and z.

x
y

z

Figure 8.7. Accelerometer axes for the WiiMote.

8.3.5. 3D Orientation with the WiiMote or Sixaxis

Some Wii and PS3 games make use of the three accelerometers in the WiiMote
or Sixaxis joypad to estimate the orientation of the controller in the player’s

347

hand. For example, in Super Mario Galaxy, Mario hops onto a large ball and
rolls it around with his feet. To control Mario in this mode, the WiiMote is held
with the IR sensor facing the ceiling. Tilting the WiiMote left , right, forward,
or back causes the ball to accelerate in the corresponding direction.

A trio of accelerometers can be used to detect the orientation of the
WiiMote or Sixaxis joypad, because of the fact that we are playing these games
on the surface of the Earth where there is a constant downward acceleration
due to gravity of 1g (≈ 9.8 m/s2). If the controller is held perfectly level, with
the IR sensor pointing toward your TV set, the vertical (z) acceleration should
be approximately –1 g.

If the controller is held upright, with the IR sensor pointing toward the
ceiling, we would expect to see a 0 g acceleration on the z sensor, and +1 g
on the y sensor (because it is now experiencing the full gravitational eff ect).
Holding the WiiMote at a 45-degree angle should produce roughly sin(45°) =
cos(45°) = 0.707 g on both the y and z inputs. Once we’ve calibrated the accel-
erometer inputs to fi nd the zero points along each axis, we can calculate pitch,
yaw, and roll easily, using inverse sine and cosine operations.

Two caveats here: First, if the person holding the WiiMote is not hold-
ing it still, the accelerometer inputs will include this acceleration in their val-
ues, invalidating our math. Second, the z-axis of the accelerometer has been
calibrated to account for gravity, but the other two axes have not. This means
that the z-axis has less precision available for detecting orientation. Many Wii
games request that the user hold the WiiMote in a non-standard orientation,
such as with the butt ons facing the player’s chest, or with the IR sensor point-
ing toward the ceiling. This maximizes the precision of the orientation read-
ing, by placing the x- or y-accelerometer axis in line with gravity, instead of the
gravity-calibrated z- axis. For more information on this topic, see htt p://druid.
caughq.org/presentations/turbo/Wiimote-Hacking.pdf and htt p://www.wiili.
org/index.php/Motion_analysis.

8.3.6. Cameras

The WiiMote has a unique feature not found on any other standard console
HID—an infrared (IR) sensor. This sensor is essentially a low-resolution cam-
era that records a two-dimension infrared image of whatever the WiiMote is
pointed at. The Wii comes with a “sensor bar” that sits on top of your televi-
sion set and contains two infrared light emitt ing diodes (LEDs). In the image
recorded by the IR camera, these LEDs appear as two bright dots on an oth-
erwise dark background. Image processing soft ware in the WiiMote analyzes
the image and isolates the location and size of the two dots. (Actually, it can
detect and transmit the locations and sizes of up to four dots.) This position

8.3. Types of Inputs

http://www.wiili

348 8. Human Interface Devices (HID)

and size information can be read by the console via a Bluetooth wireless con-
nection.

The position and orientation of the line segment formed by the two dots
can be used to determine the pitch, yaw, and roll of the WiiMote (as long as it
is being pointed toward the sensor bar). By looking at the separation between
the dots, soft ware can also determine how close or far away the WiiMote is
from the TV. Some soft ware also makes use of the sizes of the dots. This is il-
lustrated in Figure 8.8.

Another popular camera device is Sony’s EyeToy for the PlayStation line
of consoles, shown in Figure 8.9. This device is basically a high quality color
camera, which can be used for a wide range of applications. It can be used
for simple video conferencing, like any web cam. It could also conceivably be
used much like the WiiMote’s IR camera, for position, orientation, and depth
sensing. The gamut of possibilities for these kinds of advanced input devices
has only begun to be tapped by the gaming community.

8.4. Types of Outputs

Human interface devices are primarily used to transmit inputs from the play-
er to the game soft ware. However, some HIDs can also provide feedback to
the human player via various kinds of outputs.

8.4.1. Rumble

Game pads like the PlayStation’s DualShock line of controllers and the Xbox
and Xbox 360 controllers have a rumble feature. This allows the controller to
vibrate in the player’s hands, simulating the turbulence or impacts that the

Figure 8.8. The Wii sensor bar houses two infrared LEDs which produce two bright spots on
the image recorded by the WiiMote’s IR camera.

Figure 8.9. Sony’s Eye-
Toy for the PlaySta-
tion3.

349 8.4. Types of Outputs

character in the game world might be experiencing. Vibrations are usually
produced by one or more motors, each of which rotates a slightly unbalanced
weight at various speeds. The game can turn these motors on and off , and con-
trol their speeds to produce diff erent tactile eff ects in the player’s hands.

8.4.2. Force-Feedback

Force feedback is a technique in which an actuator on the HID is driven by
a motor in order to slightly resist the motion the human operator is trying to
impart to it. It is common in arcade driving games, where the steering wheel
resists the player’s att empt to turn it, simulating diffi cult driving conditions or
tight turns. As with rumble, the game soft ware can typically turn the motor(s)
on and off , and can also control the strength and direction of the forces ap-
plied to the actuator.

8.4.3. Audio

Audio is usually a stand-alone engine system. However, some HIDs provide
outputs that can be utilized by the audio system. For example, the WiiMote
contains a small, low-quality speaker. The Xbox 360 controller has a headset
jack and can be used just like any USB audio device for both output (speak-
ers) and input (microphone). One common use of USB headsets is for multi-
player games, in which human players can communicate with one another via
a voice over IP (VOIP) connection.

8.4.4. Other Inputs and Outputs

Human interface devices may of course support many other kinds of inputs
and outputs. On some older consoles like the Sega Dreamcast, the memory card
slots were located on the game pad. The Xbox 360 game pad, the Sixaxis and
DualShock 3, and the WiiMote all have four LEDs which can be illuminated by
game soft ware if desired. And of course specialized devices like musical instru-
ments, dance pads, etc. have their own particular kinds of inputs and outputs.

Innovation is actively taking place in the fi eld of human interfaces. Some
of the most interesting areas today are gestural interfaces and thought-con-
trolled devices. We can certainly expect more innovation from console and
HID manufacturers in years to come.

8.5. Game Engine HID Systems

Most game engines don’t use “raw” HID inputs directly. The data is usually
massaged in various ways to ensure that the inputs coming from the HID

350 8. Human Interface Devices (HID)

translate into smooth, pleasing, intuitive behaviors in-game. In addition, most
engines introduce at least one additional level of indirection between the HID
and the game in order to abstract HID inputs in various ways. For example, a
butt on-mapping table might be used to translate raw butt on inputs into logi-
cal game actions, so that human players can re-assign the butt ons’ functions
as they see fi t. In this section, we’ll outline the typical requirements of a game
engine HID system and then explore each one in some depth.

8.5.1. Typical Requirements

 A game engine’s HID system usually provides some or all of the following
features:

 dead zones,

 analog signal fi ltering,

 event detection (e.g., butt on up, butt on down),

 detection of butt on sequences and multibutt on combinations (known as
chords),

 gesture detection,

 management of multiple HIDs for multiple players,

 multiplatform HID support,

 controller input re-mapping,

 context-sensitive inputs,

 the ability to temporarily disable certain inputs.

8.5.2. Dead Zone

 A joystick, thumb stick, shoulder trigger, or any other analog axis produces
input values that range between a predefi ned minimum and maximum value,
which we’ll call Imin and Imax. When the control is not being touched, we would
expect it to produce a steady and clear “undisturbed” value, which we’ll call
I0. The undisturbed value is usually numerically equal to zero, and it either
lies half-way between Imin and Imax for a centered, two-way control like a joy-
stick axis, or it coincides with Imin for a one-way control like a trigger.

Unfortunately, because HIDs are analog devices by nature, the voltage pro-
duced by the device is noisy, and the actual inputs we observe may fl uctuate
slightly around I0. The most common solution to this problem is to introduce a
small dead zone around I0. The dead zone might be defi ned as [I0 – δ , I0 + δ] for
a joy stick, or [I0  , I0 + δ] for a trigger. Any input values that are within the dead
zone are simply clamped to I0. The dead zone must be wide enough to account

351

for the noisiest inputs generated by an undisturbed control, but small enough
not to interfere with the player’s sense of the HID’s responsiveness.

8.5.3. Analog Signal Filtering

 Signal noise is a problem even when the controls are not within their dead
zones. This noise can sometimes cause the in-game behaviors controlled by
the HID to appear jerky or unnatural. For this reason, many games fi lter the
raw inputs coming from the HID. A noise signal is usually of a high-frequency,
relative to the signal produced by the human player. Therefore, one solution
is to pass the raw input data through a simple low-pass fi lter , prior to it being
used by the game.

A discrete fi rst-order low-pass fi lter can be implemented by combining
the current unfi ltered input value with last frame’s fi ltered input. If we denote
the sequence of unfi ltered inputs by the time-varying function u(t) and the
fi ltered inputs by f(t), where t denotes time, then we can write

 (8.1)

where the parameter a is determined by the frame duration Δt and a fi ltering
constant RC (which is just the product of the resistance and the capacitance in
a traditional analog RC low-pass fi lter circuit):

 (8.2)

This can be implemented trivially in C or C++ as follows, where it is assumed
the calling code will keep track of last frame’s fi ltered input for use on the
subsequent frame. For more information, see htt p://en.wikipedia.org/wiki/
Low-pass_fi lter.

F32 lowPassFilter(F32 unfilteredInput,
 F32 lastFramesFilteredInput,
 F32 rc, F32 dt)
{

 F32 a = dt / (rc + dt);

 return (1 – a) * lastFramesFilteredInput
 + a * unfilteredInput;
}

Another way to fi lter HID input data is to calculate a simple moving av-
erage . For example, if we wish to average the input data over a 3/30 second
(3 frame) interval, we simply store the raw input values in a 3-element circular

8.5. Game Engine HID Systems

() (1) () (),f = − −Δ +t f t t ta au

.
t

a
RC t

Δ
=

+Δ

352 8. Human Interface Devices (HID)

buff er. The fi ltered input value is then the sum of the values in this array at
any moment, divided by 3. There are a few minor details to account for when
implementing such a fi lter. For example, we need to properly handle the fi rst
two frames of input, during which the 3-element array has not yet been fi lled
with valid data. However, the implementation is not particularly complicated.
The code below shows one way to properly implement an N-element moving
average.

template< typename TYPE, int SIZE >
class MovingAverage
{
 TYPE m_samples[SIZE];
 TYPE m_sum;
 U32 m_curSample;
 U32 m_sampleCount;

public:
 MovingAverage() :
 m_sum(static_cast<TYPE>(0)),
 m_curSample(0),
 m_sampleCount(0)
 {
 }

 void addSample(TYPE data)
 {
 if (m_sampleCount == SIZE)
 {
 m_sum -= m_samples[m_curSample];
 }
 else
 {
 ++m_sampleCount;
 }

 m_samples[m_curSample] = data;
 m_sum += data;
 ++m_curSample;
 if (m_curSample >= SIZE)
 {

 m_curSample = 0;
 }
 }

 F32 getCurrentAverage() const
 {

353

 if (m_sampleCount != 0)
 {
 return static_cast<F32>(m_sum)
 / static_cast<F32>(m_sampleCount);
 }
 return 0.0f;
 }
};

8.5.4. Detecting Input Events

 The low-level HID interface typically provides the game with the current
states of the device’s various inputs. However, games are oft en interested
in detecting events, such as changes in state, rather than just inspecting the
current state each frame. The most common HID events are probably butt on
down (pressed) and butt on up (released), but of course we can detect other
kinds of events as well.

8.5.4.1. Button Up and Button Down

Let’s assume for the moment that our butt ons’ input bits are 0 when not pressed
and 1 when pressed. The easiest way to detect a change in butt on state is to
keep track of the butt ons’ state bits as observed last frame and compare them
to the state bits observed this frame. If they diff er, we know an event occurred.
The current state of each butt on tells us whether the event is a butt on-up or a
butt on-down.

We can use simple bit-wise operators to detect butt on-down and but-
ton-up events. Given a 32-bit word buttonStates, containing the current
state bits of up to 32 butt ons, we want to generate two new 32-bit words:
one for butt on-down events which we’ll call buttonDowns and one for
butt on-up events which we’ll call buttonUps. In both cases, the bit corre-
sponding to each butt on will be 0 if the event has not occurred this frame
and 1 if it has. To implement this, we also need last frame’s butt on states,
prevButtonStates.

The exclusive OR (XOR) operator produces a 0 if its two inputs are iden-
tical and a 1 if they diff er. So if we apply the XOR operator to the previous
and current butt on state words, we’ll get 1’s only for butt ons whose states
have changed between last frame and this frame. To determine whether the
event is a butt on-up or a butt on-down, we need to look at the current state
of each butt on. Any butt on whose state has changed that is currently down
generates a butt on-down event, and vice-versa for butt on-up events. The fol-
lowing code applies these ideas in order to generate our two butt on event
words:

8.5. Game Engine HID Systems

354 8. Human Interface Devices (HID)

class ButtonState
{

 U32 m_buttonStates; // current frame’s button
 // states
 U32 m_prevButtonStates; // previous frame’s states

 U32 m_buttonDowns; // 1 = button pressed this
 // frame
 U32 m_buttonUps; // 1 = button released this
 // frame

 void DetectButtonUpDownEvents()
 {
 // Assuming that m_buttonStates and
 // m_prevButtonStates are valid, generate
 // m_buttonDowns and m_buttonUps.

 // First determine which bits have changed via
 // XOR.
 U32 buttonChanges = m_buttonStates
 ^ m_prevButtonStates;

 // Now use AND to mask off only the bits that are
 // DOWN.
 m_buttonDowns = buttonChanges & m_buttonStates;

 // Use AND-NOT to mask off only the bits that are
 // UP.
 m_buttonUps = buttonChanges & (~m_buttonStates);
 }

 // ...
};

8.5.4.2. Chords

A chord is a group of butt ons that, when pressed at the same time, produce a
unique behavior in the game. Here are a few examples:

 Super Mario Galaxy’s start-up screen requires you to press the A and B
butt ons on the WiiMote together in order to start a new game.

 Pressing the 1 and 2 butt ons on the WiiMote at the same time put it into
Bluetooth discovery mode (no matt er what game you’re playing).

 The “grapple” move in many fi ghting games is triggered by a two-but-
ton combination.

355

 For development purposes, holding down both the left and right trig-
gers on the DualShock 3 in Uncharted: Drake’s Fortune allows the player
character to fl y anywhere in the game world, with collisions turned off .
(Sorry, this doesn’t work in the shipping game!) Many games have a
cheat like this to make development easier. (It may or may not be trig-
gered by a chord, of course.) It is called no-clip mode in the Quake engine,
because the character’s collision volume is not clipped to the valid play-
able area of the world. Other engines use diff erent terminology.

Detecting chords is quite simple in principle: We merely watch the states
of two or more butt ons and only perform the requested operation when all of
them are down.

There are some subtleties to account for, however. For one thing, if the
chord includes a butt on or butt ons that have other purposes in the game, we
must take care not to perform both the actions of the individual butt ons and
the action of chord when it is pressed. This is usually done by including a
check that the other butt ons in the chord are not down when detecting the
individual butt on-presses.

Another fl y in the ointment is that humans aren’t perfect, and they oft en
press one or more of the butt ons in the chord slightly earlier than the rest. So our
chord-detection code must be robust to the possibility that we’ll observe one or
more individual butt ons on frame i and the rest of the chord on frame i + 1 (or
even multiple frames later). There are a number of ways to handle this:

 You can design your butt on inputs such that a chord always does
the actions of the individual butt ons plus some additional action. For
example, if pressing L1 fi res the primary weapon and L2 lobs a grenade,
perhaps the L1   +   L2 chord could fi re the primary weapon, lob a grenade,
and send out an energy wave that doubles the damage done by these
weapons. That way, whether or not the individual butt ons are detected
before the chord or not, the behavior will be identical from the point of
view of the player.

 You can introduce a delay between when an individual butt on-down
event is seen and when it “counts” as a valid game event. During the
delay period (say 2 or 3 frames), if a chord is detected, then it takes
precedence over the individual butt on-down events. This gives the
human player some leeway in performing the chord.

 You can detect the chord when the butt ons are pressed, but wait to
trigger the eff ect until the butt ons are released again.

 You can begin the single-butt on move immediately and allow it to be
preempted by the chord move.

8.5. Game Engine HID Systems

356 8. Human Interface Devices (HID)

8.5.4.3. Sequences and Gesture Detection

 The idea of introducing a delay between when a butt on actually goes down
and when it really “counts” as down is a special case of gesture detection. A
gesture is a sequence of actions performed via a HID by the human player
over a period of time. For example, in a fi ghting game or brawler, we might
want to detect a sequence of butt on presses, such as A-B-A. We can extend this
idea to non-butt on inputs as well. For example, A-B-A-Left -Right-Left , where
the latt er three actions are side-to-side motions of one of the thumb sticks on
the game pad. Usually a sequence or gesture is only considered to be valid if
it is performed within some maximum time-frame. So a rapid A-B-A within a
quarter of a second might “count,” but a slow A-B-A performed over a second
or two might not.

Gesture detection is generally implemented by keeping a brief history of
the HID actions performed by the player. When the fi rst component of the
gesture is detected, it is stored in the history buff er, along with a time stamp
indicating when it occurred. As each subsequent component is detected, the
time between it and the previous component is checked. If it is within the
allowable time window, it too is added to the history buff er. If the entire se-
quence is completed within the allott ed time (i.e., the history buff er is fi lled),
an event is generated telling the rest of the game engine that the gesture
has occurred. However, if any non-valid intervening inputs are detected, or
if any component of the gesture occurs outside of its valid time window,
the entire history buff er is reset, and the player must start the gesture over
again.

Let’s look at three concrete examples, so we can really understand how
this works.

Rapid Button Tapping

Many games require the user to tap a butt on rapidly in order to perform an ac-
tion. The frequency of the butt on presses may or may not translate into some
quantity in the game, such as the speed with which the player character runs
or performs some other action. The frequency is usually also used to defi ne
the validity of the gesture—if the frequency drops below some minimum val-
ue, the gesture is no longer considered valid.

We can detect the frequency of a butt on press by simply keeping track of
the last time we saw a butt on-down event for the butt on in question. We’ll call
this Tlast  . The frequency f is then just the inverse of the time interval between
presses (ΔT = Tcur – Tlast  and f = 1/ΔT). Every time we detect a new butt on-down
event, we calculate a new frequency f. To implement a minimum valid fre-
quency, we simply check f against the minimum frequency fmin (or we can just

357

check ΔT against the maximum period ΔTmax = 1/fmin directly). If this threshold
is satisifi ed, we update the value of Tlast   , and the gesture is considered to be
on-going. If the threshold is not satisfi ed, we simply don’t update Tlast  . The
gesture will be considered invalid until a new pair of rapid-enough butt on-
down events occurs. This is illustrated by the following pseudocode:

class ButtonTapDetector
{
 U32 m_buttonMask; // which button to observe (bit
 // mask)
 F32 m_dtMax; // max allowed time between
 // presses
 F32 m_tLast; // last button-down event, in
 // seconds

public:
 // Construct an object that detects rapid tapping of
 // the given button (identified by an index).

ButtonTapDetector(U32 buttonId, F32 dtMax) :
 m_buttonMask(1U << buttonId),
 m_dtMax(dtMax),
 m_tLast(CurrentTime() – dtMax) // start out
 // invalid
 {
 }

 // Call this at any time to query whether or not the
 // gesture is currently being performed.
 void IsGestureValid() const
 {
 F32 t = CurrentTime();
 F32 dt = t – m_tLast;
 return (dt < m_dtMax);
 }

 // Call this once per frame.
 void Update()
 {

 if (ButtonsJustWentDown(m_buttonMask))
 {
 m_tLast = CurrentTime();
 }
 }
};

In the above code excerpt, we assume that each butt on is identifi ed by a
unique id. The id is really just an index, ranging from 0 to N – 1 (where N is
the number of butt ons on the HID in question). We convert the butt on id to a

8.5. Game Engine HID Systems

358 8. Human Interface Devices (HID)

bit mask by shift ing an unsigned 1 bit to the left by an amount equaling the
butt on’s index (1U << buttonId). The function ButtonsJustWentDown()
returns a non-zero value if any one of the butt ons specifi ed by the given bit
mask just went down this frame. Here, we’re only checking for a single but-
ton-down event, but we can and will use this same function later to check for
multiple simultaneous butt on-down events.

Multibutton Sequence

Let’s say we want to detect the sequence A-B-A, performed within at most one
second. We can detect this butt on sequence as follows: We maintain a variable
that tracks which butt on in the sequence we’re currently looking for. If we de-
fi ne the sequence with an array of butt on ids (e.g., aButtons[3] = {A, B,
A}), then our variable is just an index i into this array. It starts out initialized
to the fi rst butt on in the sequence, i = 0. We also maintain a start time for the
entire sequence, Tstart  , much as we did in the rapid butt on-pressing example.

The logic goes like this: Whenever we see a butt on-down event that match-
es the butt on we’re currently looking for, we check its time stamp against the
start time of the entire sequence, Tstart  . If it occurred within the valid time
window, we advance the current butt on to the next butt on in the sequence;
for the fi rst butt on in the sequence only (i = 0), we also update Tstart  . If we see
a butt on-down event that doesn’t match the next butt on in the sequence, or
if the time delta has grown too large, we reset the butt on index i back to the
beginning of the sequence and set Tstart to some invalid value (such as 0). This
is illustrated by the code below.

class ButtonSequenceDetector
{
 U32* m_aButtonIds; // sequence of buttons to watch for
 U32 m_buttonCount; // number of buttons in sequence
 F32 m_dtMax; // max time for entire sequence
 U32 m_iButton; // next button to watch for in seq.
 F32 m_tStart; // start time of sequence, in
 // seconds

public:
 // Construct an object that detects the given button
 // sequence. When the sequence is successfully
 // detected, the given event is broadcast, so the
 // rest of the game can respond in an appropriate way.

ButtonSequenceDetector(U32* aButtonIds,
 U32 buttonCount,
 F32 dtMax,
 EventId eventIdToSend) :
 m_aButtonIds(aButtonIds),
 m_buttonCount(buttonCount),

359

 m_dtMax(dtMax),
 m_eventId(eventIdToSend), // event to send when
 // complete
 m_iButton(0), // start of sequence
 m_tStart(0) // initial value
 // irrelevant
 {
 }

 // Call this once per frame.
 void Update()
 {
 ASSERT(m_iButton < m_buttonCount);

 // Determine which button we’re expecting next, as
 // a bit mask (shift a 1 up to the correct bit
 // index).
 U32 buttonMask = (1U << m_aButtonId[m_iButton]);

 // If any button OTHER than the expected button
 // just went down, invalidate the sequence. (Use
 // the bitwise NOT operator to check for all other
 // buttons.)
 if (ButtonsJustWentDown(~buttonMask))
 {

 m_iButton = 0; // reset
 }

 // Otherwise, if the expected button just went
 // down, check dt and update our state appropriately.
 else if (ButtonsJustWentDown(buttonMask))
 {
 if (m_iButton == 0)
 {
 // This is the first button in the
 // sequence.
 m_tStart = CurrentTime();
 ++m_iButton; // advance to next button
 }

 else
 {
 F32 dt = CurrentTime() – m_tStart;

 if (dt < m_dtMax)
 {
 // Sequence is still valid.

8.5. Game Engine HID Systems

360 8. Human Interface Devices (HID)

 ++m_iButton; // advance to next button

 // Is the sequence complete?
 if (m_iButton == m_buttonCount)
 {

BroadcastEvent(m_eventId);
 m_iButton = 0; // reset
 }
 }

 else
 {
 // Sorry, not fast enough.
 m_iButton = 0; // reset
 }

 }
 }

 }
};

Thumb Stick Rotation

As an example of a more-complex gesture, let’s see how we might detect when
the player is rotating the left thumb stick in a clockwise circle. We can detect
this quite easily by dividing the two-dimensional range of possible stick po-
sitions into quadrants, as shown in Figure 8.10. In a clockwise rotation, the
stick passes through the upper-left quadrant, then the upper-right, then the
lower-right, and fi nally the lower-left . We can treat each of these cases like a
butt on press and detect a full rotation with a slightly modifi ed version of the
sequence detection code shown above. We’ll leave this one as an exercise for
the reader. Try it!

x

y

UL UR

LL LR

Figure 8.10. Detecting circular rotations of the stick by dividing the 2D range of stick inputs
into quadrants.

361

8.5.5. Managing Multiple HIDs for Multiple Players

 Most game machines allow two or more HIDs to be att ached for multiplayer
games. The engine must keep track of which devices are currently att ached
and route each one’s inputs to the appropriate player in the game. This implies
that we need some way of mapping controllers to players. This might be as
simple as a one-to-one mapping between controller index and player index,
or it might be something more sophisticated, such as assigning controllers to
players at the time the user hits the Start butt on.

Even in a single-player game with only one HID, the engine needs to be
robust to various exceptional conditions, such as the controller being acciden-
tally unplugged or running out of batt eries. When a controller’s connection
is lost, most games pause gameplay, display a message, and wait for the con-
troller to be reconnected. Some multiplayer games suspend or temporarily
remove the avatar corresponding to a removed controller, but allow the other
players to continue playing the game; the removed/suspended avatar might
reactivate when the controller is reconnected.

On systems with batt ery-operated HIDs, the game or the operating sys-
tem is responsible for detecting low-batt ery conditions. In response, the play-
er is usually warned in some way, for example via an unobtrusive on-screen
message and/or a sound eff ect.

8.5.6. Cross-Platform HID Systems

 Many game engines are cross-platform. One way to handle HID inputs and
outputs in such an engine would be to sprinkle conditional compilation di-
rectives all over the code, wherever interactions with the HID take place, as
shown below. This is clearly not an ideal solution, but it does work.

#if TARGET_XBOX360
 if (ButtonsJustWentDown(XB360_BUTTONMASK_A))
#elif TARGET_PS3
 if (ButtonsJustWentDown(PS3_BUTTONMASK_TRIANGLE))
#elif TARGET_WII
 if (ButtonsJustWentDown(WII_BUTTONMASK_A))
#endif
{
 // do something...
}

A bett er solution is to provide some kind of hardware abstraction layer, there-
by insulating the game code from hardware-specifi c details.

If we’re lucky, we can abstract most of the diff erences beween the HIDs
on the diff erent platforms by a judicious choice of abstract butt on and axis

8.5. Game Engine HID Systems

362 8. Human Interface Devices (HID)

ids. For example, if our game is to ship on Xbox 360 and PS3, the layout
of the controls (butt ons, axes and triggers) on these two joypads are almost
identical. The controls have diff erent ids on each platform, but we can come
up with generic control ids that cover both types of joypad quite easily. For
example:

enum AbstractControlIndex
{
 // Start and back buttons
 AINDEX_START, // Xbox 360 Start, PS3 Start
 AINDEX_BACK_PAUSE, // Xbox 360 Back, PS3 Pause

 // Left D-pad
 AINDEX_LPAD_DOWN,
 AINDEX_LPAD_UP,
 AINDEX_LPAD_LEFT,
 AINDEX_LPAD_RIGHT,

 // Right "pad" of four buttons
 AINDEX_RPAD_DOWN, // Xbox 360 A, PS3 X
 AINDEX_RPAD_UP, // Xbox 360 Y, PS3 Triangle
 AINDEX_RPAD_LEFT, // Xbox 360 X, PS3 Square
 AINDEX_RPAD_RIGHT, // Xbox 360 B, PS3 Circle

 // Left and right thumb stick buttons
 AINDEX_LSTICK_BUTTON, // Xbox 360 LThumb, PS3 L3,
 // Xbox white
 AINDEX_RSTICK_BUTTON, // Xbox 360 RThumb, PS3 R3,
 // Xbox black

 // Left and right shoulder buttons
 AINDEX_LSHOULDER, // Xbox 360 L shoulder, PS3 L1
 AINDEX_RSHOULDER, // Xbox 360 R shoulder, PS3 R1

 // Left thumb stick axes
 AINDEX_LSTICK_X,
 AINDEX_LSTICK_Y,

 // Right thumb stick axes
 AINDEX_RSTICK_X,
 AINDEX_RSTICK_Y,

 // Left and right trigger axes
 AINDEX_LTRIGGER, // Xbox 360 –Z, PS3 L2
 AINDEX_RTRIGGER, // Xbox 360 +Z, PS3 R2
};

363

Our abstraction layer can translate between the raw control ids on the cur-
rent target hardware into our abstract control indices . For example, whenever
we read the state of the butt ons into a 32-bit word, we can perform a bit-swiz-
zling operation that rearranges the bits into the proper order to correspond to
our abstract indices. Analog inputs can likewise be shuffl ed around into the
proper order.

In performing the mapping between physical and abstract controls, we’ll
sometimes need to get a bit clever. For example, on the Xbox, the left and right
triggers act as a single axis, producing negative values when the left trigger is
pressed, zero when neither is trigger is pressed, and positive values when the
right trigger is pressed. To match the behavior of the PlayStation’s DualShock
controller, we might want to separate this axis into two distinct axes on the
Xbox, scaling the values appropriately so the range of valid values is the same
on all platforms.

This is certainly not the only way to handle HID I/O in a multiplatform
engine. We might want to take a more functional approach, for example, by
naming our abstract controls according to their function in the game, rather
than their physical locations on the joypad. We might introduce higher-level
functions that detect abstract gestures, with custom detection code on each
platform, or we might just bite the bullet and write platform-specifi c versions
of all of the game code that requires HID I/O. The possibilities are numerous,
but virtually all cross-platform game engines insulate the game from hard-
ware details in some manner.

8.5.7. Input Re-Mapping

 Many games allow the player some degree of choice with regard to the func-
tionality of the various controls on the physical HID. A common option is
the sense of the vertical axis of the right thumb stick for camera control in a
console game. Some folks like to push forward on the stick to angle the camera
up, while others like an inverted control scheme, where pulling back on the
stick angles the camera up (much like an airplane control stick). Other games
allow the player to select between two or more predefi ned butt on mappings.
Some PC games allow the user full control over the functions of individual
keys on the keyboard, the mouse butt ons, and the mouse wheel, plus a choice
between various control schemes for the two mouse axes.

To implement this, we turn to a favorite saying of an old professor of
mine, Professor Jay Black of the University of Waterloo, “Every problem in
computer science can be solved with a level of indirection.” We assign each
function in the game a unique id and then provide a simple table which maps
each physical or abstract control index to a logical function in the game. When-

8.5. Game Engine HID Systems

364 8. Human Interface Devices (HID)

ever the game wishes to determine whether a particular logical game function
should be activated, it looks up the corresponding abstract or physical control
id in the table and then reads the state of that control. To change the mapping,
we can either swap out the entire table wholesale, or we can allow the user to
edit individual entries in the table.

We’re glossing over a few details here. For one thing, diff erent controls
produce diff erent kinds of inputs. Analog axes may produce values ranging
from –32,768 to 32,767, or from 0 to 255, or some other range. The states of
all the digital butt ons on a HID are usually packed into a single machine
word. Therefore, we must be careful to only permit control mappings that
make sense. We cannot use a butt on as the control for a logical game func-
tion that requires an axis, for example. One way around this problem is to
normalize all of the inputs. For example, we could re-scale the inputs from
all analog axes and butt ons into the range [0, 1]. This isn’t quite as helpful as
you might at fi rst think, because some axes are inherently bidirectional (like
a joy stick) while others are unidirectional (like a trigger). But if we group
our controls into a few classes, we can normalize the inputs within those
classes, and permit remapping only within compatible classes. A reason-
able set of classes for a standard console joypad and their normalized input
values might be:

 Digital butt ons. States are packed into a 32-bit word, one bit per butt on.
 Unidirectional absolute axes (e.g., triggers, analog butt ons). Produce fl oat-

ing-point input values in the range [0, 1].
 Bidirectional absolute axes (e.g., joy sticks). Produce fl oating-point input

values in the range [–1, 1].
 Relative axes (e.g., mouse axes, wheels, track balls). Produce fl oating-point

input values in the range [–1, 1] , where ±1 represents the maximum
relative off set possible within a single game frame (i.e., during a period
of 1/30 or 1/60 of a second).

8.5.8. Context-Sensitive Controls

 In many games, a single physical control can have diff erent functions, depend-
ing on context. A simple example is the ubiquitous “use” butt on. If pressed
while standing in front of a door, the “use” butt on might cause the character to
open the door. If it is pressed while standing near an object, it might cause the
player character to pick up the object, and so on. Another common example is
a modal control scheme. When the player is walking around, the controls are
used to navigate and control the camera. When the player is riding a vehicle,
the controls are used to steer the vehicle, and the camera controls might be
diff erent as well.

365

Context-sensitive controls are reasonably straightforward to imple-
ment via a state machine. Depending on what state we’re in, a particu-
lar HID control may have a diff erent purpose. The tricky part is deciding
what state to be in. For example, when the context-sensitive “use” butt on
is pressed, the player might be standing at a point equidistant between a
weapon and a health pack, facing the center point between them. Which
object do we use in this case? Some games implement a priority system to
break ties like this. Perhaps the weapon has a higher weight than the health
pack, so it would “win” in this example. Implementing context-sensitive
controls isn’t rocket science, but it invariably requires lots of trial-and-error
to get it feeling and behaving just right. Plan on lots of iteration and focus
testing!

Another related concept is that of control ownership. Certain controls on
the HID might be “owned” by diff erent parts of the game. For example, some
inputs are for player control, some for camera control, and still others are for
use by the game’s wrapper and menu system (pausing the game, etc.) Some
game engines introduce the concept of a logical device, which is composed of
only a subset of the inputs on the physical device. One logical device might
be used for player control, while another is used by the camera system, and
another by the menu system.

8.5.9. Disabling Inputs

 In most games, it is sometimes necessary to disallow the player from control-
ling his or her character. For example, when the player character is involved in
an in-game cinematic, we might want to disable all player controls temporar-
ily; or when the player is walking through a narrow doorway, we might want
to temporarily disable free camera rotation.

One rather heavy-handed approach is to use a bit mask to disable indi-
vidual controls on the input device itself. Whenever the control is read, the
disable mask is checked, and if the corresponding bit is set, a neutral or zero
value is returned instead of the actual value read from the device. We must be
particularly cautious when disabling controls, however. If we forget to reset
the disable mask, the game can get itself into a state where the player looses
all control forever, and must restart the game. It’s important to check our logic
carefully, and it’s also a good idea to put in some fail-safe mechanisms to en-
sure that the disable mask is cleared at certain key times, such as whenever the
player dies and re-spawns.

Disabling a HID input masks it for all possible clients, which can
be overly limiting. A better approach is probably to put the logic for
disabling specific player actions or camera behaviors directly into the

8.5. Game Engine HID Systems

366 8. Human Interface Devices (HID)

player or camera code itself. That way, if the camera decides to ignore
the deflection of the right thumb stick, for example, other game engine
systems still have the freedom to read the state of that stick for other
purposes.

8.6. Human Interface Devices in Practice

Correct and smooth handling of human interface devices is an important part
of any good game. Conceptually speaking, HIDs may seem quite straightfor-
ward. However, there can be quite a few “gotchas” to deal with, including
variations between diff erent physical input devices, proper implementation
of low-pass fi ltering, bug-free handling of control scheme mappings, achiev-
ing just the right “feel” in your joypad rumble, limitations imposed by console
manufacturers via their technical requirements checklists (TRCs), and the list
goes on. A game team should expect to devote a non-trivial amount of time
and engineering bandwidth to a careful and complete implementation of the
human interface device system. This is extremely important because the HID
system forms the underpinnings of your game’s most precious resource—its
player mechanics.

367

9
 Tools for Debugging

and Development

Developing game soft ware is a complex, intricate, math-intensive, and er-
ror-prone business. So it should be no surprise that virtually every pro-

fessional game team builds a suite of tools for themselves, in order to make
the game development process easier and less error-prone. In this chapter,
we’ll take a look at the development and debugging tools most oft en found in
professional-grade game engines.

9.1. Logging and Tracing

 Remember when you wrote your fi rst program in BASIC or Pascal? (OK, may-
be you don’t. If you’re signifi cantly younger than me—and there’s a prett y
good chance of that—you probably wrote your fi rst program in Java, or maybe
Python or Lua.) In any case, you probably remember how you debugged your
programs back then. You know, back when you thought a debugger was one of
those glowing blue insect zapper things? You probably used print statements
to dump out the internal state of your program. C/C++ programmers call this
printf debugging (aft er the standard C library function, printf()).

It turns out that printf debugging is still a perfectly valid thing to do—even
if you know that a debugger isn’t a device for frying hapless insects at night.
Especially in real-time programming, it can be diffi cult to trace certain kinds

368 9. Tools for Debugging and Development

of bugs using breakpoints and watch windows. Some bugs are timing-depen-
dent; they only happen when the program is running at full speed. Other bugs
are caused by a complex sequence of events too long and intricate to trace
manually one-by-one. In these situations, the most powerful debugging tool
is oft en a sequence of print statements.

Every game platform has some kind of console or teletype (TTY) output
device. Here are some examples:

 In a console application writt en in C/C++, running under Linux or
Win32, you can produce output in the console by printing to stdout or
stderr via printf(), fprintf(), or STL’s iostream interface.

 Unfortunately, printf() and iostream don’t work if your game is built
as a windowed application under Win32, because there’s no console
in which to display the output. However, if you’re running under the
Visual Studio debugger, it provides a debug console to which you can
print via the Win32 function OutputDebugString().

 On the PLAYSTATION 3, an application known as the Target Manager
runs on your PC and allows you to launch programs on the console.
The Target Manager includes a set of TTY output windows to which
messages can be printed by the game engine.

So printing out information for debugging purposes is almost always as easy
as adding calls to printf() throughout your code. However, most game en-
gines go a bit farther than this. In the following sections, we’ll investigate the
kinds of printing facilities most game engines provide.

9.1.1. Formatted Output with OutputDebugString()

The Win32 function OutputDebugString() is great for printing debug-
ging information to Visual Studio’s Debug Output window. However, unlike
printf(), OutputDebugString() does not support formatt ed output—it can
only print raw strings in the form of char arrays. For this reason, most Windows
game engines wrap OutputDebugString() in a custom function, like this:

#include <stdio.h> // for va_list et al

#ifndef WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN 1
#endif
#include <windows.h> // for OutputDebugString()

int VDebugPrintF(const char* format, va_list argList)
{
 const U32 MAX_CHARS = 1023;
 static char s_buffer[MAX_CHARS + 1];

369 9.1. Logging and Tracing

 int charsWritten
 = vsnprintf(s_buffer, MAX_CHARS, format, argList);
 s_buffer[MAX_CHARS] = ‘\0’; // be sure to
 // NIL-terminate

 // Now that we have a formatted string, call the
 // Win32 API.

OutputDebugString(s_buffer);

 return charsWritten;
}

int DebugPrintF(const char* format, ...)
{
 va_list argList;

va_start(argList, format);

 int charsWritten = VDebugPrintF(format, argList);

va_end(argList);

 return charsWritten;
}

Notice that two functions are implemented: DebugPrintF()takes a
variable-length argument list (specifi ed via the ellipsis, …), while VDebug
PrintF()takes a va_list argument. This is done so that programmers can
build additional printing functions in terms of VDebugPrintF(). (It’s impos-
sible to pass ellipses from one function to another, but it is possible to pass
va_lists around.)

9.1.2. Verbosity

 Once you’ve gone to the trouble of adding a bunch of print statements to your
code in strategically chosen locations, it’s nice to be able to leave them there,
in case they’re needed again later. To permit this, most engines provide some
kind of mechanism for controlling the level of verbosity via the command-line,
or dynamically at runtime. When the verbosity level is at its minimum value
(usually zero), only critical error messages are printed. When the verbosity is
higher, more of the print statements embedded in the code start to contribute
to the output.

The simplest way to implement this is to store the current verbosity level
in a global integer variable, perhaps called g_verbosity. We then provide a
VerboseDebugPrintF() function whose fi rst argument is the verbosity level
at or above which the message will be printed. This function could be imple-
mented as follows:

370 9. Tools for Debugging and Development

int g_verbosity = 0;

void VerboseDebugPrintF(int verbosity,
 const char* format, ...)
{
 // Only print when the global verbosity level is
 // high enough.
 if (g_verbosity >= verbosity)
 {
 va_list argList;
 va_start(argList, format);

 VDebugPrintF(format, argList);

 va_end(argList);
 }
}

9.1.3. Channels

 It’s also extremely useful to be able to categorize your debug output into chan-
nels. One channel might contain messages from the animation system, while
another might be used to print messages from the physics system, for exam-
ple.

On some platforms, like the PLAYSTATION 3, debug output can be di-
rected to one of 14 distinct TTY windows. In addition, messages are mirrored
to a special TTY window that contains the output from all of the other 14
windows. This makes it very easy for a developer to focus in on only the mes-
sages he or she wants to see. When working on an animation problem, one
can simply fl ip to the animation TTY and ignore all the other output. When
working on a general problem of unknown origin, the “all” TTY can be con-
sulted for clues.

Other platforms like Windows provide only a single debug output con-
sole. However, even on these systems it can be helpful to divide your output
into channels. The output from each channel might be assigned a diff erent
color. You might also implement fi lters, which can be turned on and off at
runtime, and restrict output to only a specifi ed channel or set of channels.
In this model, if a developer is debugging an animation-related problem, for
example, he or she can simply fi lter out all of the channels except the anima-
tion channel.

A channel-based debug output system can be implemented quite easily
by adding an additional channel argument to our debug printing function.
Channels might be numbered, or bett er, assigned symbolic values via a C/C++
enum declaration. Or channels might be named using a string or hashed string

371

id. The printing function can simply consult the list of active channels and
only print the message if the specifi ed channel is among them.

If you don’t have more than 32 or 64 channels, it can be helpful to identify
the channels via a 32- or 64-bit mask. This makes implementing a channel
fi lter as easy as specifying a single integer. When a bit in the mask is 1, the cor-
responding channel is active; when the bit is 0, the channel is muted.

9.1.4. Mirroring Output to a File

 It’s a good idea to mirror all debug output to one or more log fi les (e.g., one
fi le per channel). This permits problems to be diagnosed aft er the fact. Ideally
the log fi le(s) should contain all of the debug output, independent of the cur-
rent verbosity level and active channels mask. This allows unexpected prob-
lems to be caught and tracked down by simply inspecting the most-recent
log fi les.

You may want to consider fl ushing your log fi le(s) aft er every call to your
debug output function to ensure that if the game crashes the log fi le(s) won’t
be missing the last buff er-full of output. The last data printed is usually the
most crucial to determine the cause of a crash, so we want to be sure that the
log fi le always contains the most up-to-date output. Of course, fl ushing the
output buff er can be expensive. So you should only fl ush buff ers aft er every
debug output call if either (a) you are not doing a lot of logging, or (b) you
discover that it is truly necessary on your particular platform. If fl ushing is
deemed to be necessary, you can always provide an engine confi guration op-
tion to turn it on and off .

9.1.5. Crash Reports

 Some game engines produce special text output and/or log fi les when the
game crashes. In most operating systems, a top-level exception handler can
be installed that will catch most crashes. In this function, you could print out
all sorts of useful information. You could even consider emailing the crash
report to the entire programming team. This can be incredibly enlightening
for the programmers: When they see just how oft en the art and design teams
are crashing, they may discover a renewed sense of urgency in their debug-
ging tasks!

Here are just a few examples of the kinds of information you can include
in a crash report:

 Current level(s) being played at the time of the crash.
 World-space location of the player character when the crash occurred.
 Animation/action state of the player when the game crashed.

9.1. Logging and Tracing

372 9. Tools for Debugging and Development

 Gameplay script(s) that were running at the time of the crash. (This can
be especially helpful if the script is the cause of the crash!)

 Stack trace. Most operating systems provide a mechanism for walking
the call stack (although they are nonstandard and highly platform
specifi c). With such a facility, you can print out the symbolic names of
all non-inline functions on the stack at the time the crash occurred.

 State of all memory allocators in the engine (amount of memory free,
degree of fragmentation, etc.). This kind of data can be helpful when
bugs are caused by low-memory conditions, for example.

 Any other information you think might be relevant when tracking down
the cause of a crash.

9.2. Debug Drawing Facilities

Modern interactive games are driven almost entirely by math. We use math
to position and orient objects in the game world, move them around, test for
collisions, cast rays to determine lines of sight, and of course use matrix mul-
tiplication to transform objects from object space to world space and even-
tually into screen space for rendering. Almost all modern games are three-
dimensional, but even in a two-dimensional game it can be very diffi cult to
mentally visualize the results of all these mathematical calculations. For this
reason, most good game engines provide an API for drawing colored lines,
simple shapes, and 3D text. We call this a debug drawing facility, because the
lines, shapes, and text that are drawn with it are intended for visualization
during development and debugging and are removed prior to shipping the
game.

A debug drawing API can save you huge amounts of time. For example,
if you are trying to fi gure out why your projectiles are not hitt ing the enemy
characters, which is easier? Deciphering a bunch of numbers in the debugger?
Or drawing a line showing the trajectory of the projectile in three dimensions
within your game? With a debug drawing API, logical and mathematical er-
rors become immediately obvious. One might say that a picture is worth 1,000
minutes of debugging.

Here are some examples of debug drawing in action within Naughty
Dog’s Uncharted: Drake’s Fortune engine. The following screen shots were all
taken within our play-test level, one of many special levels we use for testing
out new features and debugging problems in the game.

 Figure 9.1 shows how a single line can help developers understand
whether a target is within the line of sight of an enemy character. You’ll

373

Figure 9.1. Visualizing the line of sight from an NPC to the player.

9.2. Debug Drawing Facilities

also notice some debug text rendered just above the head of the enemy,
in this case showing weapon ranges, a damage multiplier, the distance
to the target, and the character’s percentage chance of striking the tar-
get. Being able to print out arbitrary information in three-dimensional
space is an incredibly useful feature.

 Figure 9.2 shows how a wireframe sphere can be used to visualize the
dynamically expanding blast radius of an explosion.

 Figure 9.3 shows how spheres can be used to visualize the radii used
by Drake when searching for ledges to hang from in the game. A red
line shows the ledge he is currently hanging from. Notice that in this
diagram, white text is displayed in the upper left -hand corner of the
screen. In the Uncharted: Drake’s Fortune engine, we have the ability to
display text in two-dimensional screen space, as well as in full 3D. This
can be useful when you want the text to be displayed independently of
the current camera angle.

 Figure 9.4 shows an AI character that has been placed in a special de-
bugging mode. In this mode, the character’s brain is eff ectively turned

374 9. Tools for Debugging and Development

Figure 9.2. Visualizing the expanding blast sphere of an explosion.

Figure 9.3. Spheres and vectors used in Drake’s ledge hang and shimmy system.

375

off , and the developer is given full control over the character’s move-
ments and actions via a simple heads-up menu. The developer can paint
target points in the game world by simply aiming the camera and can
then instruct the character to walk, run, or sprint to the specifi ed points.
The user can also tell the character to enter or leave nearby cover, fi re its
weapon, and so on.

9.2.1. Debug Drawing API

A debug drawing API generally needs to satisfy the following requirements:

 The API should be simple and easy to use.

 It should support a useful set of primitives , including (but not limited
to):

lines, □
spheres, □
points (usually represented as small crosses or spheres, because a □
single pixel is very diffi cult to see),

Figure 9.4. Manually controlling an NPC’s actions for debugging purposes.

9.2. Debug Drawing Facilities

376 9. Tools for Debugging and Development

coordinate axes (typically the □ x-axis is drawn in red, y in green and
z in blue),
bounding boxes, and □
formatt ed text. □

 It should provide a good deal of fl exibility in controlling how primitives
are drawn, including:

color, □
line width, □
sphere radii, □
the size of points, lengths of coordinate axes, and dimensions of oth- □
er “canned” primitives.

 It should be possible to draw primitives in world space (full 3D, using
the game camera’s perspective projection matrix) or in screen space (ei-
ther using an orthographic projection, or possibly a perspective projec-
tion). World-space primitives are useful for annotating objects in the
3D scene. Screen-space primitives are helpful for displaying debugging
information in the form of a heads-up display that is independent of
camera position or orientation.

 It should be possible to draw primitives with or without depth testing
enabled.

When depth testing is enabled, the primitives will be occluded by □
real objects in your scene. This makes their depth easy to visualize,
but it also means that the primitives may sometimes be diffi cult to
see or totally hidden by the geometry of your scene.
With depth testing disabled, the primitives will “hover” over the real □
objects in the scene. This makes it harder to gauge their real depth,
but it also ensures that no primitive is ever hidden from view.

 It should be possible to make calls to the drawing API from anywhere
in your code. Most rendering engines require that geometry be submit-
ted for rendering during a specifi c phase of the game loop, usually at
the end of each frame. So this requirement implies that the system must
queue up all incoming debug drawing requests, so that they may be
submitt ed at the proper time later on.

 Ideally, every debug primitive should have a lifetime associated with it.
The lifetime controls how long the primitive will remain on-screen aft er
having been requested. If the code that is drawing the primitive is called
every frame, the lifetime can be one frame—the primitive will remain
on-screen because it will be refreshed every frame. However, if the code

377

that draws the primitive is called rarely or intermitt ently (e.g., a func-
tion that calculates the initial velocity of a projectile), then you do not
want the primitive to fl icker on-screen for just one frame and then dis-
appear. In such situations the programmer should be able to give his or
her debug primitives a longer lifetime, on the order of a few seconds.

 It’s also important that the debug drawing system be capable of han-
dling a large number of debug primitives effi ciently. When you’re draw-
ing debug information for 1,000 game objects, the number of primitives
can really add up, and you don’t want your game to be unusable when
debug drawing is turned on.

The debug drawing API in Naughty Dog’s Uncharted: Drake’s Fortune en-
gine looks something like this:

class DebugDrawManager
{
public:

 // Adds a line segment to the debug drawing queue.
 void AddLine(const Point& fromPosition,
 const Point& toPosition,
 Color color,
 float lineWidth = 1.0f,
 float duration = 0.0f,
 bool depthEnabled = true);

 // Adds an axis-aligned cross (3 lines converging at
 // a point) to the debug drawing queue.
 void AddCross(const Point& position,
 Color color,
 float size,
 float duration = 0.0f,
 bool depthEnabled = true);

 // Adds a wireframe sphere to the debug drawing queue.
 void AddSphere(const Point& centerPosition,
 float radius,
 Color color,
 float duration = 0.0f,
 bool depthEnabled = true);

 // Adds a circle to the debug drawing queue.
 void AddCircle(const Point& centerPosition,
 const Vector& planeNormal,
 float radius,
 Color color,
 float duration = 0.0f,
 bool depthEnabled = true);

9.2. Debug Drawing Facilities

378 9. Tools for Debugging and Development

 // Adds a set of coordinate axes depicting the
 // position and orientation of the given
 // transformation to the debug drawing queue.
 void AddAxes(const Transform& xfm,
 Color color,
 float size,
 float duration = 0.0f,
 bool depthEnabled = true);

 // Adds a wireframe triangle to the debug drawing
 // queue.
 void AddTriangle(const Point& vertex0,
 const Point& vertex1,
 const Point& vertex2,
 Color color,
 float lineWidth = 1.0f,
 float duration = 0.0f,
 bool depthEnabled = true);

 // Adds an axis-aligned bounding box to the debug
 // queue.
 void AddAABB(const Point& minCoords,
 const Point& maxCoords,
 Color color,
 float lineWidth = 1.0f,
 float duration = 0.0f,
 bool depthEnabled = true);

 // Adds an oriented bounding box to the debug queue.
 void AddOBB(const Mat44& centerTransform,
 const Vector& scaleXYZ,
 Color color,
 float lineWidth = 1.0f,

 float duration = 0.0f,
 bool depthEnabled = true);

 // Adds a text string to the debug drawing queue.
 void AddString(const Point& pos,
 const char* text,
 Color color,
 float duration = 0.0f,
 bool depthEnabled = true);
};

// This global debug drawing manager is configured for
// drawing in full 3D with a perspective projection.
extern DebugDrawManager g_debugDrawMgr;

379 9.3. In-Game Menus

// This global debug drawing manager draws its
// primitives in 2D screen space. The (x,y) coordinates
// of a point specify a 2D location on-screen, and the
// z coordinate contains a special code that indicates
// whether the (x,y) coordidates are measured in absolute
// pixels or in normalized coordinates that range from
// 0.0 to 1.0. (The latter mode allows drawing to be
// independent of the actual resolution of the screen.)
extern DebugDrawManager g_debugDrawMgr2D;

Here’s an example of this API being used within game code:

void Vehicle::Update()
{

 // Do some calculations...

 // Debug-draw my velocity vector.
 Point start = GetWorldSpacePosition();
 Point end = start + GetVelocity();

g_debugDrawMgr.AddLine(start, end, kColorRed);

 // Do some other calculations...

 // Debug-draw my name and number of passengers.
 {
 char b uffer[128];
 sprintf(buffer, "Vehicle %s: %d passengers",
 GetName(), GetN umPassengers());

g_debugDrawMgr.AddString(GetWorldSpacePosition(),
 buffer, kColorWhite, 0.0f, false);
 }

}

You’ll notice that the names of the drawing functions use the verb “add”
rather than “draw.” This is because the debug primitives are typically not
drawn immediately when the drawing function is called. Instead, they are
added to a list of visual elements that will be drawn at a later time. Most high-
speed 3D rendering engines require that all visual elements be maintained in
a scene data structure so that they can be drawn effi ciently, usually at the end
of the game loop. We’ll learn a lot more about how rendering engines work
in Chapter 10.

9.3. In-Game Menus

 Every game engine has a large number of confi guration options and features.
In fact, each major subsystem, including rendering, animation, collision,

380 9. Tools for Debugging and Development

physics, audio, networking, player mechanics, AI, and so on, exposes its own
specialized confi guration options. It is highly useful to programmers, artists,
and game designers alike to be able to confi gure these options while the game
is running, without having to change the source code, recompile and relink
the game executable, and then rerun the game. This can greatly reduce the
amount of time the game development team spends on debugging problems
and sett ing up new levels or game mechanics.

Figure 9.5. Main development menu in Uncharted.

Figure 9.6. Rendering submenu.

381 9.4. In-Game Console

One simple and convenient way to permit this kind of thing is to provide
a system of in-game menus. Items on an in-game menu can do any number of
things, including (but certainly not limited to):

 toggling global Boolean sett ings,
 adjusting global integer and fl oating-point values,
 calling arbitrary functions, which can perform literally any task within

the engine,

Figure 9.7. Mesh options subsubmenu.

Figure 9.8. Background meshes turned off.

382 9. Tools for Debugging and Development

 bringing up submenus, allowing the menu system to be organized hier-
archically for easy navigation.

An in-game menu should be easy and convenient to bring up, perhaps via
a simple butt on-press on the joypad. (Of course, you’ll want to choose a but-
ton combination that doesn’t occur during normal gameplay.) Bringing up the
menus usually pauses the game. This allows the developer to play the game
until the moment just before a problem occurs, then pause the game by bring-
ing up the menus, adjust engine sett ings in order to visualize the problem
more clearly, and then un-pause the game to inspect the problem in depth.

Let’s take a brief look at how the menu system works in the Uncharted:
Drake’s Fortune engine, by Naughty Dog. Figure 9.5 shows the top-level menu.
It contains submenus for each major subsystem in the engine. In Figure 9.6,
we’ve drilled down one level into the Rendering… submenu. Since the render-
ing engine is a highly complex system, its menu contains many submenus con-
trolling various aspects of rendering. To control the way in which 3D meshes
are rendered, we drill down further into the Mesh Options… submenu, shown
in Figure 9.7. On this menu, we can turn off rendering of all static background
meshes, leaving only the dynamic foreground meshes visible. This is shown
in Figure 9.8.

9.4. In-Game Console

 Some engines provide an in-game console, either in lieu of or in addition to an
in-game menu system. An in-game console provides a command-line inter-
face to the game engine’s features, much as a DOS command prompt provides
users with access to various features of the Windows operating system, or a
csh, tcsh, ksh or bash shell prompt provides users with access to the features
of UNIX-like operating systems. Much like a menu system, the game engine
console can provide commands allowing a developer to view and manipulate
global engine sett ings, as well as running arbitrary commands.

A console is somewhat less convenient than a menu system, especially for
those who aren’t very fast typists. However, a console can be much more pow-
erful than a menu. Some in-game consoles provide only a rudimentary set
of hard-coded commands, making them about as fl exible as a menu system.
But others provide a rich interface to virtually every feature of the engine. A
screen shot of the in-game console in Quake 4 is shown in Figure 9.9.

Some game engines provide a powerful scripting language that can be
used by programmers and game designers to extend the functionality of the
engine, or even build entirely new games. If the in-game console “speaks”

383

this same scripting language, then anything you can do in script can also be
done interactively via the console. We’ll explore scripting languages in depth
in Section 14.8.

9.5. Debug Cameras and Pausing the Game

An in-game menu or console system is best accompanied by two other crucial
features: (a) the ability to detach the camera from the player character and fl y
it around the game world in order to scrutinize any aspect of the scene, and
(b) the ability to pause , un-pause and single-step the game (see Section 7.5.6).
When the game is paused, it is important to still be able to control the camera.
To support this, we can simply keep the rendering engine and camera controls
running, even when the game’s logical clock is paused.

Slow motion mode is another incredibly useful feature for scrutinizing
animations, particle eff ects, physics and collision behaviors, AI behaviors,
and the list goes on. This feature is easy to implement. Presuming we’ve tak-
en care to update all gameplay elements using a clock that is distinct from
the real-time clock, we can put the game into slo-mo by simply updating the
gameplay clock at a rate that is slower than usual. This approach can also
be used to implement a fast-motion mode, which can be useful for moving

9.6. Cheats

Figure 9.9. The in-game console in Quake 4, overlaid on top of the main game menu.

384 9. Tools for Debugging and Development

rapidly through time-consuming portions of gameplay in order to get to an
area of interest.

9.6. Cheats

When developing or debugging a game, it’s important to allow the user to
break the rules of the game in the name of expediency. Such features are aptly
named cheats . For example, many engines allow you to “pick up” the player
character and fl y him or her around in the game world, with collisions dis-
abled so he or she can pass through all obstacles. This can be incredibly help-
ful for testing out gameplay. Rather than taking the time to actually play the
game in an att empt to get the player character into some desirable location,
you can simply pick him up, fl y him over to where you want him to be, and
then drop him back into his regular gameplay mode.

Other useful cheats include, but are certainly not limited to:

 Invincible player. As a developer, you oft en don’t want to be bothered
having to defend yourself from enemy characters, or worrying about
falling from too high a height, as you test out a feature or track down a
bug.

 Give player weapon. It’s oft en useful to be able to give the player any
weapon in the game for testing purposes.

 Infi nite ammo. When you’re trying to kill bad guys to test out the weap-
on system or AI hit reactions, you don’t want to be scrounging for
clips!

 Select player mesh. If the player character has more than one “costume,”
it can be useful to be able to select any of them for testing purposes.

Obviously this list could go on for pages. The sky’s the limit—you can add
whatever cheats you need in order to develop or debug the game. You might
even want to expose some of your favorite cheats to the players of the fi nal
shipping game. Players can usually activate cheats by entering unpublished
cheat codes on the joypad or keyboard, and/or by accomplishing certain objec-
tives in the game.

9.7. Screen Shots and Movie Capture

Another extremely useful facility is the ability to capture screen shots and
write them to disk in a suitable image format such as Windows Bitmap fi les

385

(.bmp) or Targa (.tga). The details of how to capture a screen shot vary from
platform to platform, but they typically involve making a call to the graphics
API that allows the contents of the frame buff er to be transferred from video
RAM to main RAM, where it can be scanned and converted into the image
fi le format of your choice. The image fi les are typically writt en to a predefi ned
folder on disk and named using a date and time stamp to guarantee unique
fi le names.

You may want to provide your users with various options controlling
how screen shots are to be captured. Some common examples include:

 Whether or not to include debug lines and text in the screen shot.

 Whether or not to include heads-up display (HUD) elements in the
screen shot.

 The resolution at which to capture. Some engines allow high resolution
screen shots to be captured, perhaps by modifying the projection matrix
so that separate screen shots can be taken of the four quadrants of the
screen at normal resolution and then combined into the fi nal high-res
image.

 Simple camera animations. For example, you could allow the user to
mark the starting and ending positions and orientations of the camera.
A sequence of screen shots could then be taken while gradually interpo-
lating the camera from the start location to the ending location.

Some engines also provide a full-fl edged movie capture mode. Such a sys-
tem captures a sequence of screen shots at the target frame rate of the game,
which are typically processed offl ine to generate a movie fi le in a suitable
format such as AVI or MP4.

Capturing a screen shot is usually a relatively slow operation, due in
part to the time required to transfer the frame buff er data from video RAM
to main RAM (an operation for which the graphics hardware is usually not
optimized), and in larger part to the time required to write image fi les to disk.
If you want to capture movies in real time (or at least close to real time), you’ll
almost certainly need to store the captured images to a buff er in main RAM,
only writing them out to disk when the buff er has been fi lled (during which
the game will typically be frozen).

9.8. In-Game Profi ling

 Games are real-time systems, so achieving and maintaining a high frame rate
(usually 30 FPS or 60 FPS) is important. Therefore, part of any game program-

9.8. In-Game Profi ling

386 9. Tools for Debugging and Development

mer’s job is ensuring that his or her code runs effi ciently and within budget.
As we saw when we discussed the 80-20 and 90-10 rules in Chapter 2, a large
percentage of your code probably doesn’t need to be optimized. The only way
to know which bits require optimization is to measure your game’s performance.
We discussed various third-party profi ling tools in Chapter 2. However, these
tools have various limitations and may not be available at all on a console. For

Figure 9.11. The Uncharted 2 engine also provides a profi le hierarchy display that allows the
user to drill down into particular function calls in inspect their costs.

Figure 9.10. The profi le category display in the Uncharted 2: Among Theives engine shows
coarse timing fi gures for various top-level engine systems.

387

this reason, and/or for convenience, many game engines provide an in-game
profi ling tool of some sort.

Typically an in-game profi ler permits the programmer to annotate blocks
of code which should be timed and give them human-readable names. The
profi ler measures the execution time of each annotated block via the CPU’s
hi-res timer, and stores the results in memory. A heads-up display is provided
which shows up-to-date execution times for each code block (examples are
shown in Figure 9.10, Figure 9.11, and Figure 9.12). The display oft en provides
the data in various forms, including raw numbers of cycles, execution times
in micro-seconds, and percentages relative to the execution time of the entire
frame.

9.8.1. Hierarchical Profi ling

 Computer programs writt en in an imperative language are inherently hierar-
chical—a function calls other functions, which in turn call still more functions.
For example, let’s imagine that function a() calls functions b() and c(), and
function b() in turn calls functions d(), e() and f(). The pseudocode for this
is shown below.

void a()
{
 b();
 c();
}

9.8. In-Game Profi ling

Figure 9.12. The timeline mode in Uncharted 2 shows exactly when various operations are
performed across a single frame on the PS3’s SPUs, GPU and PPU.

388 9. Tools for Debugging and Development

void b()
{
 d();
 e();
 f();
}

void c() { ... }

void d() { ... }

void e() { ... }

void f() { ... }

Assuming function a() is called directly from main(), this function call hier-
archy is shown in Figure 9.13.

When debugging a program, the call stack shows only a snapshot of this
tree. Specifi cally, it shows us the path from whichever function in the hierarchy
is currently executing all the way to the root function in the tree. In C/C++, the
root function is usually main() or WinMain(), although technically this func-
tion is called by a start-up function that is part of the standard C runtime library
(CRT), so that function is the true root of the hierarchy. If we set a breakpoint in
function e(), for example, the call stack would look something like this:

e() The currently-executing function.
b()
a()
main()
_crt_startup() Root of the call hierarchy.

This call stack is depicted in Figure 9.14 as a pathway from function e() to the
root of the function call tree.

f()

a()

b()

c()

d()

e()

Figure 9.13. A hy-
pothetical func-
tion call hierar-
chy.

f()

a()

b()

c()

d()

e()

main()

_crt_startup()

Figure 9.14. Call stack resulting from setting a break point in function e().

389

9.8.1.1. Measuring Execution Times Hierarchically

If we measure the execution time of a single function, the time we measure
includes the execution time of any the child functions called and all of their
grandchildren, great grandchildren, and so on as well. To properly interpret
any profi ling data we might collect, we must be sure to take the function call
hierarchy into account.

Many commercial profi lers can automatically instrument every single
function in your program. This permits them to measure both the inclusive
and exclusive execution times of every function that is called during a profi l-
ing session. As the name implies, inclusive times measure the execution time
of the function including all of its children, while exclusive times measure
only the time spent in the function itself. (The exclusive time of a function
can be calculated by subtracting the inclusive times of all its immediate chil-
dren from the inclusive time of the function in question.) In addition, some
profi lers record how many times each function is called. This is an impor-
tant piece of information to have when optimizing a program, because it al-
lows you to diff erentiate between functions that eat up a lot of time internally
and functions that eat up time because they are called a very large number of
times.

In contrast, in-game profi ling tools are not so sophisticated and usually
rely on manual instrumentation of the code. If our game engine’s main loop
is structured simply enough, we may be able to obtain valid data at a coarse
level without thinking much about the function call hierarchy. For example, a
typical game loop might look roughly like this:

while (!quitGame)
{
 PollJoypad();
 UpdateGameObjects();
 UpdateAllAnimations();
 PostProcessJoints();
 DetectCollisions();
 RunPhysics();
 GenerateFinalAnimationPoses();
 UpdateCameras();
 RenderScene();
 UpdateAudio();
}

We could profi le this game at a very coarse level by measuring the execution
times of each major phase of the game loop:

while (!quitGame)
{

9.8. In-Game Profi ling

390 9. Tools for Debugging and Development

 {
 PROFILE("Poll Joypad");
 PollJoypad();
 }
 {
 PROFILE("Game Object Update");
 UpdateGameObjects();
 }
 {
 PROFILE("Animation");
 UpdateAllAnimations();
 }
 {
 PROFILE("Joint Post-Processing");
 PostProcessJoints();
 }
 {
 PROFILE("Collision");
 DetectCollisions();
 }
 {
 PROFILE("Physics");
 RunPhysics();
 }
 {
 PROFILE("Animation Finaling");
 GenerateFinalAnimationPoses();
 }
 {
 PROFILE("Cameras");
 UpdateCameras();
 }
 {
 PROFILE("Rendering");
 RenderScene();
 }
 {
 PROFILE("Audio");
 UpdateAudio();
 }
}

The PROFILE() macro shown above would probably be implemented as a
class whose constructor starts the timer and whose destructor stops the timer
and records the execution time under the given name. Thus it only times the
code within its containing block, by nature of the way C++ automatically con-
structs and destroys objects as they go in and out of scope.

391

struct AutoProfile
{
 AutoProfile(const char* name)
 {
 m_name = name;
 m_startTime = QueryPerformanceCounter();
 }

 ~AutoProfile()
 {
 __int64 endTime = QueryPerformanceCounter();
 __int64 elapsedTime = endTime – m_startTime;
 g_profileManager.storeSample(m_name, elapsedTime);
 }

 const char* m_name;
 __int64 m_startTime;
};

#define PROFILE(name) AutoProfile p(name)

The problem with this simplistic approach is that it breaks down when
used within deeper levels of function call nesting. For example, if we embed
additional PROFILE() annotations within the RenderScene() function, we
need to understand the function call hierarchy in order to properly interpret
those measurements.

One solution to this problem is to allow the programmer who is an-
notating the code to indicate the hierarchical interrelationships between
profi ling samples. For example, any PROFILE(...) samples taken with-
in the RenderScene() function could be declared to be children of the
PROFILE("Rendering") sample. These relationships are usually set up sepa-
rately from the annotations themselves, by predeclaring all of the sample bins.
For example, we might set up the in-game profi ler during engine initialization
as follows:

// This code declares various profile sample "bins",
// listing the name of the bin and the name of its
// parent bin, if any.
ProfilerDeclareSampleBin("Rendering", NULL);
 ProfilerDeclareSampleBin("Visibility", "Rendering");
 ProfilerDeclareSampleBin("ShaderSetUp", "Rendering");
 ProfilerDeclareSampleBin("Materials", "Shaders");
 ProfilerDeclareSampleBin("SubmitGeo", "Rendering");
ProfilerDeclareSampleBin("Audio", NULL);
 ...

9.8. In-Game Profi ling

392 9. Tools for Debugging and Development

This approach still has its problems. Specifi cally, it works well when every
function in the call hierarchy has only one parent, but it breaks down when
we try to profi le a function that is called by more than one parent function.
The reason for this should be prett y obvious. We’re statically declaring our
sample bins as if every function can only appear once in the function call hi-
erarchy, but actually the same function can reappear many times in the tree,
each time with a diff erent parent. The result can be misleading data, because a
function’s time will be included in one of the parent bins, but really should be
distributed across all of its parents’ bins. Most game engines don’t make an at-
tempt to remedy this problem, since they are primarily interested in profi ling
coarse-grained functions that are only called from one specifi c location in the
function call hierarchy. But this limitation is something to be aware of when
profi ling your code with a simple in-engine profi le of the sort found in most
game engines.

We would also like to account for how many times a given function is
called. In the example above, we know that each of the functions we profi led
are called exactly once per frame. But other functions, deeper in the func-
tion call hierarchy, may be called more than once per frame. If we measure
function x() to take 2 ms to execute, it’s important to know whether it takes
2 ms to execute on its own, or whether it executes in 2 μs but was called 1000
times during the frame. Keeping track of the number of times a function is
called per frame is quite simple—the profi ling system can simply increment
a counter each time a sample is received and reset the counters at the start of
each frame.

9.8.2. Exporting to Excel

Some game engines permit the data captured by the in-game profi ler to be
dumped to a text fi le for subsequent analysis. I fi nd that a comma-separat-
ed values (CSV) format is best, because such fi les can be loaded easily into
a Microsoft Excel spreadsheet, where the data can be manipulated and ana-
lyzed in myriad ways. I wrote such an exporter for the Medal of Honor: Pacifi c
Assault engine. The columns corresponded to the various annotated blocks,
and each row represented the profi ling sample taken during one frame of
the game’s execution. The fi rst column contained frame numbers and the sec-
ond actual game time measured in seconds. This allowed the team to graph
how the performance statistics varied over time and to determine how long
each frame actually took to execute. By adding some simple formulae to the
exported spreadsheet, we could calculate frame rates, execution time percent-
ages, and so on.

393

9.9. In-Game Memory Stats and Leak Detection

In addition to runtime performance (i.e., frame rate), most game engines are
also constrained by the amount of memory available on the target hardware.
PC games are least aff ected by such constraints, because modern PCs have
sophisticated virtual memory managers. But even PC games are constrained
by the memory limitations of their so-called “min spec” machine—the least-
powerful machine on which the game is guaranteed to run, as promised by
the publisher and stated on the game’s packaging.

 For this reason, most game engines implement custom memory-tracking
tools. These tools allow the developers to see how much memory is being
used by each engine subsystem and whether or not any memory is leaking
(i.e., memory is allocated but never freed). It’s important to have this informa-
tion, so that you can make informed decisions when trying to cut back the
memory usage of your game so that it will fi t onto the console or type of PC
you are targeting.

Keeping track of how much memory a game actually uses can be a sur-
prisingly tricky job. You’d think you could simply wrap malloc()/free() or
new/delete in a pair of functions or macros that keep track of the amount of
memory that is allocated and freed. However, it’s never that simple for a few
reasons:

 1. You oft en can’t control the allocation behavior of other people’s code. Unless
you write the operating system, drivers, and the game engine entire-
ly from scratch, there’s a good chance you’re going to end up linking
your game with at least some third-party libraries. Most good libraries
provide memory allocation hooks, so that you can replace their allocators
with your own. But some do not. It’s oft en diffi cult to keep track of the
memory allocated by each and every third-party library you use in your
game engine—but it usually can be done if you’re thorough and selec-
tive in your choice of third-party libraries.

 2. Memory comes in diff erent fl avors. For example, a PC has two kinds of
RAM: main RAM and video RAM (the memory residing on your graph-
ics card, which is used primarily for geometry and texture data). Even
if you manage to track all of the memory allocations and deallocations
occurring within main RAM, it can be well neigh impossible to track
video RAM usage. This is because graphics APIs like DirectX actually
hide the details of how video RAM is being allocated and used from the
developer. On a console, life is a bit easier, only because you oft en end
up having to write a video RAM manager yourself. This is more diffi cult

9.9. In-Game Memory Stats and Leak Detection

394 9. Tools for Debugging and Development

than using DirectX, but at least you have complete knowledge of what’s
going on.

 3. Allocators come in diff erent fl avors. Many games make use of specialized
allocators for various purposes. For example, the Uncharted: Drake’s
Fortune engine has a global heap for general-purpose allocations, a spe-
cial heap for managing the memory created by game objects as they
spawn into the game world and are destroyed, a level-loading heap for
data that is streamed into memory during gameplay, a stack allocator
for single-frame allocations (the stack is cleared automatically every
frame), an allocator for video RAM, and a debug memory heap used only
for allocations that will not be needed in the fi nal shipping game. Each
of these allocators grabs a large hunk of memory when the game starts
up and then manages that memory block itself. If we were to track all
the calls to new and delete, we’d see one new for each of these six al-
locators and that’s all. To get any useful information, we really need
to track all of the allocations within each of these allocators’ memory
blocks.

Most professional game teams expend a signifi cant amount of eff ort on
creating in-engine memory-tracking tools that provide accurate and detailed
information. The resulting tools usually provide their output in a variety of
forms. For example, the engine might produce a detailed dump of all memory
allocations made by the game during a specifi c period of time. The data might
include high water marks for each memory allocator or each game system,
indicating the maximum amount of physical RAM required by each. Some
engines also provide heads-up displays of memory usage while the game is

Figure 9.15. Tabular memory statistics from the Uncharted 2: Among Thieves engine.

395

running. This data might be tabular, as shown in Figure 9.15, or graphical as
shown in Figure 9.16.

In addition, when low-memory or out-of-memory conditions arise, a good
engine will provide this information in as helpful a way as possible. When PC
games are developed, the game team usually works on high-powered PCs
with more RAM than the min-spec machine being targeted. Likewise, console
games are developed on special development kits which have more memory
than a retail console. So in both cases, the game can continue to run even when
it technically has run out of memory (i.e., would no longer fi t on a retail con-
sole or min-spec PC). When this kind of out-of-memory condition arises, the
game engine can display a message saying something like, “Out of memory—
this level will not run on a retail system.”

There are lots of other ways in which a game engine’s memory tracking
system can aid developers in pinpointing problems as early and as conve-
niently as possible. Here are just a few examples:

 If a model fails to load, a bright red text string could be displayed in 3D
hovering in the game world where that object would have been.

 If a texture fails to load, the object could be drawn with an ugly pink
texture that is very obviously not part of the fi nal game.

 If an animation fails to load, the character could assume a special (pos-
sibly humorous) pose that indicates a missing animation, and the name
of the missing asset could hover over the character’s head.

The key to providing good memory analysis tools is (a) to provide accurate
information, (b) to present the data in a way that is convenient and that makes
problems obvious, and (c) to provide contextual information to aid the team
in tracking down the root cause of problems when they occur.

Figure 9.16. A graphical memory usage display, also from Uncharted 2.

9.9. In-Game Memory Stats and Leak Detection

Part III
Graphics and Motion

399

10
The Rendering Engine

When most people think about computer and video games, the fi rst thing
that comes to mind is the stunning three-dimensional graphics. Real-

time 3D rendering is an exceptionally broad and profound topic, so there’s
simply no way to cover all of the details in a single chapter. Thankfully there
are a great many excellent books and other resources available on this topic.
In fact, real-time 3D graphics is perhaps one of the best covered of all the tech-
nologies that make up a game engine. The goal of this chapter, then, is to pro-
vide you with a broad understanding of real-time rendering technology and
to serve as a jumping-off point for further learning. Aft er you’ve read through
these pages, you should fi nd that reading other books on 3D graphics seems
like a journey through familiar territory. You might even be able to impress
your friends at parties (… or alienate them…)

We’ll begin by laying a solid foundation in the concepts, theory, and math-
ematics that underlie any real-time 3D rendering engine. Next, we’ll have
a look at the soft ware and hardware pipelines used to turn this theoretical
framework into reality. We’ll discuss some of the most common optimization
techniques and see how they drive the structure of the tools pipeline and the
runtime rendering API in most engines. We’ll end with a survey of some of the
advanced rendering techniques and lighting models in use by game engines
today. Throughout this chapter, I’ll point you to some of my favorite books

400 10. The Rendering Engine

and other resources that should help you to gain an even deeper understand-
ing of the topics we’ll cover here.

10.1. Foundations of Depth-Buffered
Triangle Rasterization

When you boil it down to its essence, rendering a three-dimensional scene
involves the following basic steps:

 A virtual scene is described, usually in terms of 3D surfaces represented
in some mathematical form.

 A virtual camera is positioned and oriented to produce the desired view
of the scene. Typically the camera is modeled as an idealized focal point,
with an imaging surface hovering some small distance in front of it,
composed of virtual light sensors corresponding to the picture elements
(pixels) of the target display device .

 Various light sources are defi ned. These sources provide all the light rays
that will interact with and refl ect off the objects in the environment and
eventually fi nd their way onto the image-sensing surface of the virtual
camera.

 The visual properties of the surfaces in the scene are described. This de-
fi nes how light should interact with each surface.

 For each pixel within the imaging rectangle, the rendering engine calcu-
lates the color and intensity of the light ray(s) converging on the virtual
camera’s focal point through that pixel. This is known as solving the ren-
dering equation (also called the shading equation).

This high-level rendering process is depicted in Figure 10.1.
Many diff erent technologies can be used to perform the basic render-

ing steps described above. The primary goal is usually photorealism , although
some games aim for a more stylized look (e.g., cartoon, charcoal sketch, wa-
tercolor, and so on). As such, rendering engineers and artists usually att empt
to describe the properties of their scenes as realistically as possible and to
use light transport models that match physical reality as closely as possible.
Within this context, the gamut of rendering technologies ranges from tech-
niques designed for real-time performance at the expense of visual fi delity,
to those designed for photorealism but which are not intended to operate in
real time.

Real-time rendering engines perform the steps listed above repeatedly,
displaying rendered images at a rate of 30, 50, or 60 frames per second to

401 10.1. Foundations of Depth-Buffered Triangle Rasterization

provide the illusion of motion. This means a real-time rendering engine has at
most 33.3 ms to generate each image (to achieve a frame rate of 30 FPS). Usu-
ally much less time is available, because bandwidth is also consumed by other
engine systems like animation, AI, collision detection, physics simulation, au-
dio, player mechanics, and other gameplay logic. Considering that fi lm ren-
dering engines oft en take anywhere from many minutes to many hours to
render a single frame, the quality of real-time computer graphics these days
is truly astounding.

10.1.1. Describing a Scene

A real-world scene is composed of objects. Some objects are solid, like a brick,
and some are amorphous, like a cloud of smoke, but every object occupies a
volume of 3D space. An object might be opaque (in which case light cannot
pass through its volume), transparent (in which case light passes through it
without being scatt ered, so that we can see a reasonably clear image of what-
ever is behind the object), or translucent (meaning that light can pass through
the object but is scatt ered in all directions in the process, yielding only a blur
of colors that hint at the objects behind it).

Opaque objects can be rendered by considering only their surfaces . We
don’t need to know what’s inside an opaque object in order to render it, be-
cause light cannot penetrate its surface. When rendering a transparent or
translucent object, we really should model how light is refl ected, refracted,
scatt ered, and absorbed as it passes through the object’s volume. This requires
knowledge of the interior structure and properties of the object. However,
most game engines don’t go to all that trouble. They just render the surfaces

Virtual
Screen

(Near Plane)

xC

zC

yC

Rendered
ImageCamera

Frustum

Camera

Figure 10.1. The high-level rendering approach used by virtually all 3D computer graphics
technologies.

402 10. The Rendering Engine

of transparent and translucent objects in almost the same way opaque objects
are rendered. A simple numeric opacity measure known as alpha is used to
describe how opaque or transparent a surface is. This approach can lead to
various visual anomalies (for example, surface features on the far side of the
object may be rendered incorrectly), but the approximation can be made to
look reasonably realistic in many cases. Even amorphous objects like clouds
of smoke are oft en represented using particle eff ects, which are typically com-
posed of large numbers of semi-transparent rectangular cards. Therefore, it’s
safe to say that most game rendering engines are primarily concerned with
rendering surfaces.

10.1.1.1. Representations Used by High-End Rendering Packages

Theoretically, a surface is a two-dimensional sheet comprised of an infi nite
number of points in three-dimensional space. However, such a description is
clearly not practical. In order for a computer to process and render arbitrary
surfaces, we need a compact way to represent them numerically.

Some surfaces can be described exactly in analytical form, using a para-
metric surface equation . For example, a sphere centered at the origin can be rep-
resented by the equation x2 + y2 + z2 = r2. However, parametric equations aren’t
particularly useful for modeling arbitrary shapes.

In the fi lm industry, surfaces are oft en represented by a collection of rect-
angular patches each formed from a two-dimensional spline defi ned by a small
number of control points. Various kinds of splines are used, including Bézi-
er surfaces (e.g., bicubic patches , which are third-order Béziers —see htt p://
en.wikipedia.org/wiki/Bezier_surface for more information), nonuniform
rational B-splines (NURBS—see htt p://en.wikipedia.org/wiki/Nurbs), Bézi-
er triangles, and N-patches (also known as normal patches—see htt p://www.
gamasutra.com/features/20020715/mollerhaines_01.htm for more details).
Modeling with patches is a bit like covering a statue with litt le rectangles of
cloth or paper maché.

High-end fi lm rendering engines like Pixar’s RenderMan use subdivision
surfaces to defi ne geometric shapes. Each surface is represented by a mesh of
control polygons (much like a spline), but the polygons can be subdivided
into smaller and smaller polygons using the Catmull-Clark algorithm. This
subdivision typically proceeds until the individual polygons are smaller than
a single pixel in size. The biggest benefi t of this approach is that no matt er
how close the camera gets to the surface, it can always be subdivided further
so that its silhouett e edges won’t look faceted. To learn more about subdivi-
sion surfaces, check out the following great article on Gamasutra: htt p://www.
gamasutra.com/features/20000411/sharp_pfv.htm.

http://www.gamasutra.com/features/20020715/mollerhaines_01.htm
http://www.gamasutra.com/features/20020715/mollerhaines_01.htm
http://www.gamasutra.com/features/20000411/sharp_pfv.htm
http://www.gamasutra.com/features/20000411/sharp_pfv.htm

403

10.1.1.2. Triangle Meshes

 Game developers have traditionally modeled their surfaces using triangle
meshes. Triangles serve as a piece-wise linear approximation to a surface,
much as a chain of connected line segments acts as a piece-wise approxima-
tion to a function or curve (see Figure 10.2).

Triangles are the polygon of choice for real-time rendering because they
have the following desirable properties:

 The triangle is the simplest type of polygon. Any fewer than three vertices,
and we wouldn’t have a surface at all.

 A triangle is always planar. Any polygon with four or more vertices need
not have this property, because while the fi rst three vertices defi ne a
plane, the fourth vertex might lie above or below that plane.

 Triangles remain triangles under most kinds of transformations, including
affi ne transforms and perspective projections. At worst, a triangle viewed
edge-on will degenerate into a line segment. At every other orientation,
it remains triangular.

 Virtually all commercial graphics-acceleration hardware is designed around
triangle rasterization. Starting with the earliest 3D graphics accelerators
for the PC, rendering hardware has been designed almost exclusively
around triangle rasterization. This decision can be traced all the way
back to the fi rst soft ware rasterizers used in the earliest 3D games like
Castle Wolfenstein 3D and Doom . Like it or not, triangle-based technolo-
gies are entrenched in our industry and probably will be for years to
come.

Tessellation

The term tessellation describes a process of dividing a surface up into a collec-
tion of discrete polygons (which are usually either quadrilaterals, also known
as quads, or triangles). Triangulation is tessellation of a surface into triangles.

One problem with the kind of triangle mesh used in games is that its level
of tessellation is fi xed by the artist when he or she creates it. Fixed tessellation

Figure 10.2. A mesh of
triangles is a linear ap-
proximation to a sur-
face, just as a series of
connected line seg-
ments can serve as a
linear approximation to
a function or curve.

x

f(x)

Figure 10.3. Fixed tessellation can cause an object’s silhouette edges to look blocky, especially
when the object is close to the camera.

10.1. Foundations of Depth-Buffered Triangle Rasterization

404 10. The Rendering Engine

can cause an object’s silhouett e edges to look blocky, as shown in Figure 10.3;
this is especially noticeable when the object is close to the camera.

Ideally, we’d like a solution that can arbitrarily increase tessellation as an
object gets closer to the virtual camera. In other words, we’d like to have a uni-
form triangle-to-pixel density, no matt er how close or far away the object is.
Subdivision surfaces can achieve this ideal—surfaces can be tessellated based
on distance from the camera, so that every triangle is less than one pixel in
size.

Game developers oft en att empt to approximate this ideal of uniform tri-
angle-to-pixel density by creating a chain of alternate versions of each triangle
mesh, each known as a level of detail (LOD). The fi rst LOD, oft en called LOD 0,
represents the highest level of tessellation; it is used when the object is very
close to the camera. Subsequent LODs are tessellated at lower and lower reso-
lutions (see Figure 10.4). As the object moves farther away from the camera,
the engine switches from LOD 0 to LOD 1 to LOD 2, and so on. This allows the
rendering engine to spend the majority of its time transforming and lighting
the vertices of the objects that are closest to the camera (and therefore occupy
the largest number of pixels on-screen).

Some game engines apply dynamic tessellation techniques to expansive
meshes like water or terrain. In this technique, the mesh is usually represented
by a height fi eld defi ned on some kind of regular grid patt ern. The region of
the mesh that is closest to the camera is tessellated to the full resolution of
the grid. Regions that are farther away from the camera are tessellated using
fewer and fewer grid points.

Progressive meshes are another technique for dynamic tessellation and
LODing. With this technique, a single high-resolution mesh is created for dis-
play when the object is very close to the camera. (This is essentially the LOD 0

Figure 10.4. A chain of LOD meshes, each with a fi xed level of tessellation, can be used to
approximate uniform triangle-to-pixel density. The leftmost torus is constructed from 5000
triangles, the center torus from 450 triangles, and the rightmost torus from 200 triangles.

405

mesh.) This mesh is automatically detessellated as the object gets farther away
by collapsing certain edges. In eff ect, this process automatically generates a
semi-continuous chain of LODs. See htt p://research.microsoft .com/en-us/um/
people/hoppe/pm.pdf for a detailed discussion of progressive mesh technol-
ogy.

10.1.1.3. Constructing a Triangle Mesh

 Now that we understand what triangle meshes are and why they’re used, let’s
take a brief look at how they’re constructed.

Winding Order

A triangle is defi ned by the position vectors of its three vertices, which we can
denote p1 , p2 , and p3. The edges of a triangle can be found by simply subtract-
ing the position vectors of adjacent vertices. For example,

 e12 = p2 – p1 ,
e13 = p3 – p1 ,

 e23 = p3 – p2.

The normalized cross product of any two edges defi nes a unit face normal N:

 12 13

12 13
.

×
=

×

e e
N

e e

These derivations are illustrated in Figure 10.5. To know the direction of the
face normal (i.e., the sense of the edge cross product), we need to defi ne which
side of the triangle should be considered the front (i.e., the outside surface of
an object) and which should be the back (i.e., its inside surface). This can be
defi ned easily by specifying a winding order —clockwise (CW) or counterclock-
wise (CCW).

Most low-level graphics APIs give us a way to cull back-facing triangles
based on winding order. For example, if we set the cull mode parameter in Di-

Figure 10.5. Deriving the edges and plane of a triangle from its vertices.

p1
p2

p3

e12

N

e13 e23

10.1. Foundations of Depth-Buffered Triangle Rasterization

406 10. The Rendering Engine

rect3D (D3DRS_CULL) to D3DCULLMODE_CW, then any triangle whose vertices
wind in a clockwise fashion in screen space will be treated as a back-facing
triangle and will not be drawn.

Back face culling is important because we generally don’t want to waste
time drawing triangles that aren’t going to be visible anyway. Also, rendering
the back faces of transparent objects can actually cause visual anomalies. The
choice of winding order is an arbitrary one, but of course it must be consistent
across all assets in the entire game. Inconsistent winding order is a common
error among junior 3D modelers.

Triangle Lists

The easiest way to defi ne a mesh is simply to list the vertices in groups of
three, each triple corresponding to a single triangle. This data structure is
known as a triangle list ; it is illustrated in Figure 10.6.

Figure 10.6. A triangle list.

V0

V1

V2

V3

V4

V5

V6

V7

... V5 V7 V6V0 V5 V1V1 V2 V3V0 V1 V3

Indexed Triangle Lists

You probably noticed that many of the vertices in the triangle list shown in
Figure 10.6 were duplicated, oft en multiple times. As we’ll see in Section
10.1.2.1, we oft en store quite a lot of metadata with each vertex, so repeating
this data in a triangle list wastes memory. It also wastes GPU bandwidth, be-
cause a duplicated vertex will be transformed and lit multiple times.

For these reasons, most rendering engines make use of a more effi cient
data structure known as an indexed triangle list . The basic idea is to list the
vertices once with no duplication and then to use light-weight vertex indi-
ces (usually occupying only 16 bits each) to defi ne the triples of vertices that
constitute the triangles. The vertices are stored in an array known as a vertex

407

buff er (DirectX) or vertex array (OpenGL). The indices are stored in a separate
buff er known as an index buff er or index array. This technique is shown in Fig-
ure 10.7.

Strips and Fans

Specialized mesh data structures known as triangle strips and triangle fans are
sometimes used for game rendering. Both of these data structures eliminate
the need for an index buff er, while still reducing vertex duplication to some
degree. They accomplish this by predefi ning the order in which vertices must
appear and how they are combined to form triangles.

V0

V1

V2

V3

V4

V5

V6

V7

Indices 0 1 3 1 2 3 0 5 1 ... 5 7 6

Vertices V0 V1 V2 V3 V4 V5 V6 V7

Figure 10.7. An indexed triangle list.

Interpreted
as triangles:

0 1 2 1 3 2 2 3 4 3 5 4

V0 V1 V2 V3 V4 V5Vertices

V0

V1

V2

V3

V4

V5

Figure 10.8. A triangle strip.

10.1. Foundations of Depth-Buffered Triangle Rasterization

408 10. The Rendering Engine

In a strip, the fi rst three vertices defi ne the fi rst triangle. Each subsequent
vertex forms an entirely new triangle, along with its previous two neigh-
bors. To keep the winding order of a triangle strip consistent, the previous
two neighbor vertices swap places aft er each new triangle. A triangle strip is
shown in Figure 10.8.

In a fan, the fi rst three vertices defi ne the fi rst triangle and each subse-
quent vertex defi nes a new triangle with the previous vertex and the fi rst ver-
tex in the fan. This is illustrated in Figure 10.9.

Vertex Cache Optimization

 When a GPU processes an indexed triangle list, each triangle can refer to any
vertex within the vertex buff er. The vertices must be processed in the order
they appear within the triangles, because the integrity of each triangle must be
maintained for the rasterization stage. As vertices are processed by the vertex
shader , they are cached for reuse. If a subsequent primitive refers to a vertex
that already resides in the cache, its processed att ributes are used instead of
reprocessing the vertex.

Strips and fans are used in part because they can potentially save memory
(no index buff er required) and in part because they tend to improve the cache
coherency of the memory accesses made by the GPU to video RAM. Even
bett er, we can use an indexed strip or indexed fan to virtually eliminate vertex
duplication (which can oft en save more memory than eliminating the index
buff er), while still reaping the cache coherency benefi ts of the strip or fan ver-
tex ordering.

Indexed triangle lists can also be cache-optimized without restricting
ourselves to strip or fan vertex ordering. A vertex cache optimizer is an offl ine
geometry processing tool that att empts to list the triangles in an order that

Figure 10.9. A triangle fan.

Interpreted
as triangles:

0 1 2 0 2 3 0 3 4

V0 V1 V2 V3 V4Vertices

V0

V4

V3 V2

V1

409

optimizes vertex reuse within the cache. It generally takes into account factors
such as the size of the vertex cache(s) present on a particular type of GPU and
the algorithms used by the GPU to decide when to cache vertices and when
to discard them. For example, the vertex cache optimizer included in Sony’s
Edge geometry processing library can achieve rendering throughput that is up
to 4% bett er than what is possible with triangle stripping.

10.1.1.4. Model Space

The position vectors of a triangle mesh’s vertices are usually specifi ed relative
to a convenient local coordinate system called model space , local space, or object
space. The origin of model space is usually either in the center of the object or
at some other convenient location, like on the fl oor between the feet of a char-
acter or on the ground at the horizontal centroid of the wheels of a vehicle.

As we learned in Section 4.3.9.1, the sense of the model space axes is ar-
bitrary, but the axes typically align with the natural “front,” “left ” or “right,”
and “up” directions on the model. For a litt le mathematical rigor, we can de-
fi ne three unit vectors F, L (or R), and U and map them as desired onto the
unit basis vectors i, j, and k (and hence to the x-, y-, and z-axes, respectively)
in model space. For example, a common mapping is L = i, U = j, and F = k.
The mapping is completely arbitrary, but it’s important to be consistent for all
models across the entire engine. Figure 10.10 shows one possible mapping of
the model space axes for an aircraft model.

L = i

F = k

U = j

Figure 10.10. One possible mapping of the model space axes.

10.1.1.5. World Space and Mesh Instancing

Many individual meshes are composed into a complete scene by position-
ing and orienting them within a common coordinate system known as world
space . Any one mesh might appear many times in a scene—examples include
a street lined with identical lamp posts, a faceless mob of soldiers, or a swarm
of spiders att acking the player. We call each such object a mesh instance .

10.1. Foundations of Depth-Buffered Triangle Rasterization

410 10. The Rendering Engine

A mesh instance contains a reference to its shared mesh data and also
includes a transformation matrix that converts the mesh’s vertices from model
space to world space, within the context of that particular instance. This ma-
trix is called the model-to-world matrix, or sometimes just the world matrix. Us-
ing the notation from Section 4.3.10.2, this matrix can be writt en as follows:

()
,1

M W
M W

M

→
→

⎡ ⎤
=⎢ ⎥

⎣ ⎦

RS 0
M t

where the upper 3 × 3 matrix ()M W→RS rotates and scales model-space ver-
tices into world space, and Mt is the translation of the model space axes ex-
pressed in world space. If we have the unit model space basis vectors ,Mi ,Mj
and ,Mk expressed in world space coordinates, this matrix can also be writt en
as follows:

0
0

.0
1

M

M
M W

M

M

→

⎡ ⎤
⎢ ⎥
⎢ ⎥=⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

i
j

M k
t

Given a vertex expressed in model-space coordinates, the rendering en-
gine calculates its world-space equivalent as follows:

 .W M M W→=v v M

We can think of the matrix MM→W as a description of the position and orienta-
tion of the model space axes themselves, expressed in world space coordi-
nates. Or we can think of it as a matrix that transforms vertices from model
space to world space.

When rendering a mesh, the model-to-world matrix is also applied to the
surface normals of the mesh (see Section 10.1.2.1). Recall from Section 4.3.11,
that in order to transform normal vectors properly, we must multiply them
by the inverse transpose of the model-to-world matrix. If our matrix does not
contain any scale or shear, we can transform our normal vectors correctly by
simply sett ing their w components to zero prior to multiplication by the mod-
el-to-world matrix, as described in Section 4.3.6.1.

Some meshes like buildings, terrain, and other background elements are
entirely static and unique. The vertices of these meshes are oft en expressed in
world space, so their model-to-world matrices are identity and can be ignored.

10.1.2. Describing the Visual Properties of a Surface

 In order to properly render and light a surface, we need a description of its
visual properties. Surface properties include geometric information, such as the

411

direction of the surface normal at various points on the surface. They also
encompass a description of how light should interact with the surface. This
includes diff use color, shininess/refl ectivity, roughness or texture, degree of
opacity or transparency, index of refraction, and other optical properties. Sur-
face properties might also include a specifi cation of how the surface should
change over time (e.g., how an animated character’s skin should track the
joints of its skeleton or how the surface of a body of water should move).

The key to rendering photorealistic images is properly accounting for
light’s behavior as it interacts with the objects in the scene. Hence rendering
engineers need to have a good understanding of how light works, how it is
transported through an environment, and how the virtual camera “senses” it
and translates it into the colors stored in the pixels on-screen.

10.1.2.1. Introduction to Light and Color

Light is electromagnetic radiation; it acts like both a wave and a particle in
diff erent situations. The color of light is determined by its intensity I and its
wavelength λ (or its frequency f, where f = 1/λ). The visible gamut ranges from
a wavelength of 740 nm (or a frequency of 430 THz) to a wavelength of 380 nm
(750 THz). A beam of light may contain a single pure wavelength (i.e., the
colors of the rainbow, also known as the spectral colors), or it may contain a
mixture of various wavelengths. We can draw a graph showing how much of
each frequency a given beam of light contains, called a spectral plot . White light
contains a litt le bit of all wavelengths, so its spectral plot would look roughly
like a box extending across the entire visible band. Pure green light contains
only one wavelength, so its spectral plot would look like a single infi nitesi-
mally narrow spike at about 570 THz.

Light-Object Interactions

Light can have many complex interactions with matt er . Its behavior is gov-
erned in part by the medium through which it is traveling and in part by the
shape and properties of the interfaces between diff erent types of media (air-
solid, air-water, water-glass, etc.). Technically speaking, a surface is really just
an interface between two diff erent types of media.

Despite all of its complexity, light can really only do four things:

 It can be absorbed ;

 It can be refl ected ;

 It can be transmitt ed through an object, usually being refracted (bent) in
the process;

 It can be diff racted when passing through very narrow openings.

10.1. Foundations of Depth-Buffered Triangle Rasterization

412 10. The Rendering Engine

Most photorealistic rendering engines account for the fi rst three of these be-
haviors; diff raction is not usually taken into account because its eff ects are
rarely noticeable in most scenes.

Only certain wavelengths may be absorbed by a surface, while others are
refl ected. This is what gives rise to our perception of the color of an object.
For example, when white light falls on a red object, all wavelengths except
red are absorbed, hence the object appears red. The same perceptual eff ect is
achieved when red light is cast onto a white object—our eyes don’t know the
diff erence.

Refl ections can be diff use , meaning that an incoming ray is scatt ered equal-
ly in all directions. Refl ections can also be specular , meaning that an incident
light ray will refl ect directly or be spread only into a narrow cone. Refl ections
can also be anisotropic , meaning that the way in which light refl ects from a sur-
face changes depending on the angle at which the surface is viewed.

When light is transmitt ed through a volume, it can be scatt ered (as is the
case for translucent objects), partially absorbed (as with colored glass), or re-
fracted (as happens when light travels through a prism). The refraction an-
gles can be diff erent for diff erent wavelengths, leading to spectral spreading.
This is why we see rainbows when light passes through raindrops and glass
prisms. Light can also enter a semi-solid surface, bounce around, and then exit
the surface at a diff erent point from the one at which it entered the surface. We
call this subsurface scatt ering , and it is one of the eff ects that gives skin, wax,
and marble their characteristic warm appearance.

Color Spaces and Color Models

A color model is a three-dimensional coordinate system that measures colors.
A color space is a specifi c standard for how numerical colors in a particular
color model should be mapped onto the colors perceived by human beings in
the real world. Color models are typically three-dimensional because of the
three types of color sensors (cones) in our eyes, which are sensitive to diff erent
wavelengths of light.

The most commonly used color model in computer graphics is the RGB
model. In this model, color space is represented by a unit cube, with the rela-
tive intensities of red, green, and blue light measured along its axes. The red,
green, and blue components are called color channels . In the canonical RGB
color model, each channel ranges from zero to one. So the color (0, 0, 0) repre-
sents black, while (1, 1, 1) represents white.

When colors are stored in a bitmapped image , various color formats can
be employed. A color format is defi ned in part by the number of bits per pixel
it occupies and, more specifi cally, the number of bits used to represent each
color channel. The RGB888 format uses eight bits per channel, for a total of

413

24 bits per pixel. In this format, each channel ranges from 0 to 255 rather than
from zero to one. RGB565 uses fi ve bits for red and blue and six for green, for
a total of 16 bits per pixel. A palett ed format might use eight bits per pixel to
store indices into a 256-element color palett e, each entry of which might be
stored in RGB888 or some other suitable format.

A number of other color models are also used in 3D rendering. We’ll see
how the log-LUV color model is used for high dynamic range (HDR) lighting
in Section 10.3.1.5.

Opacity and the Alpha Channel

A fourth channel called alpha is oft en tacked on to RGB color vectors. As men-
tioned in Section 10.1.1, alpha measures the opacity of an object. When stored
in an image pixel, alpha represents the opacity of the pixel.

RGB color formats can be extended to include an alpha channel, in which
case they are referred to as RGBA or ARGB color formats. For example,
RGBA8888 is a 32 bit-per-pixel format with eight bits each for red, green, blue,
and alpha. RGBA5551 is a 16 bit-per-pixel format with one-bit alpha; in this
format, colors can either be fully opaque or fully transparent.

10.1.2.2. Vertex Attributes

The simplest way to describe the visual properties of a surface is to specify
them at discrete points on the surface. The vertices of a mesh are a conve-
nient place to store surface properties, in which case they are called vertex
att ributes .

A typical triangle mesh includes some or all of the following att ributes at
each vertex. As rendering engineers, we are of course free to defi ne any ad-
ditional att ributes that may be required in order to achieve a desired visual
eff ect on-screen.

 Position vector (pi = [pix piy piz]). This is the 3D position of the ith vertex in
the mesh. It is usually specifi ed in a coordinate space local to the object,
known as model space.

 Vertex normal (ni = [nix niy niz]). This vector defi nes the unit surface nor-
mal at the position of vertex i. It is used in per-vertex dynamic lighting
calculations.

 Vertex tangent (ti = [tix tiy tiz]) and bitangent (bi = [bix biy biz]). These two
unit vectors lie perpendicular to one another and to the vertex normal
ni. Together, the three vectors ni , ti , and bi defi ne a set of coordinate axes
known as tangent space . This space is used for various per-pixel lighting
calculations, such as normal mapping and environment mapping. (The

10.1. Foundations of Depth-Buffered Triangle Rasterization

414 10. The Rendering Engine

bitangent bi is sometimes confusingly called the binormal , even though
it is not normal to the surface.)

 Diff use color (di = [dRi dGi dBi dAi]). This four-element vector describes
the diff use color of the surface, expressed in the RGB color space. It
typically also includes a specifi cation of the opacity or alpha (A) of the
surface at the position of the vertex. This color may be calculated off -line
(static lighting) or at runtime (dynamic lighting).

 Specular color (si = [sRi sGi sBi sAi]). This quantity describes the color of the
specular highlight that should appear when light refl ects directly from a
shiny surface onto the virtual camera’s imaging plane.

 Texture coordinates (uĳ = [uĳ vĳ]). Texture coordinates allow a two- (or
sometimes three-) dimensional bitmap to be “shrink wrapped” onto the
surface of a mesh—a process known as texture mapping. A texture co-
ordinate (u, v) describes the location of a particular vertex within the
two-dimensional normalized coordinate space of the texture. A triangle
can be mapped with more than one texture; hence it can have more than
one set of texture coordinates. We’ve denoted the distinct sets of texture
coordinates via the subscript j above.

 Skinning weights (kĳ , wĳ). In skeletal animation, the vertices of a mesh are
att ached to individual joints in an articulated skeleton. In this case, each
vertex must specify to which joint it is att ached via an index, k. A vertex
can be infl uenced by multiple joints, in which case the fi nal vertex posi-
tion becomes a weighted average of these infl uences. Thus, the weight of
each joint’s infl uence is denoted by a weighting factor w. In general, a
vertex i can have multiple joint infl uences j, each denoted by the pair of
numbers [kĳ wĳ].

10.1.2.3. Vertex Formats

 Vertex att ributes are typically stored within a data structure such as a C
struct or a C++ class. The layout of such a data structure is known as a ver-
tex format. Diff erent meshes require diff erent combinations of att ributes and
hence need diff erent vertex formats. The following are some examples of com-
mon vertex formats:

// Simplest possible vertex – position only (useful for
// shadow volume extrusion, silhouette edge detection
// for cartoon rendering, z prepass, etc.)

struct Vertex1P
{
 Vector3 m_p; // position
};

415

// A typical vertex format with position, vertex normal
// and one set of texture coordinates.

struct Vertex1P1N1UV
{
 Vector3 m_p; // position
 Vector3 m_n; // vertex normal
 F32 m_uv[2]; // (u, v) texture coordinate
};

// A skinned vertex with position, diffuse and specular
// colors and four weighted joint influences.

struct Vertex1P1D1S2UV4J
{
 Vector3 m_p; // position
 Color4 m_d; // diffuse color and translucency
 Color4 m_S; // specular color
 F32 m_uv0[2]; // first set of tex coords
 F32 m_uv1[2]; // second set of tex coords
 U8 m_k[4]; // four joint indices, and...
 F32 m_w[3]; // three joint weights, for
 // skinning
 // (fourth calc’d from other
 // three)
};

Clearly the number of possible permutations of vertex att ributes—and
hence the number of distinct vertex formats—can grow to be extremely large.
(In fact the number of formats is theoretically unbounded, if one were to per-
mit any number of texture coordinates and/or joint weights.) Management
of all these vertex formats is a common source of headaches for any graphics
programmer.

Some steps can be taken to reduce the number of vertex formats that an
engine has to support. In practical graphics applications, many of the theo-
retically possible vertex formats are simply not useful, or they cannot be
handled by the graphics hardware or the game’s shaders. Some game teams
also limit themselves to a subset of the useful/feasible vertex formats in or-
der to keep things more manageable. For example, they might only allow
zero, two, or four joint weights per vertex, or they might decide to support
no more than two sets of texture coordinates per vertex. Modern GPUs are
capable of extracting a subset of att ributes from a vertex data structure, so
game teams can also choose to use a single “überformat” for all meshes and
let the hardware select the relevant att ributes based on the requirements of the
shader.

10.1. Foundations of Depth-Buffered Triangle Rasterization

416 10. The Rendering Engine

10.1.2.4. Attribute Interpolation

 The att ributes at a triangle’s vertices are just a coarse, discretized approxima-
tion to the visual properties of the surface as a whole. When rendering a tri-
angle, what really matt ers are the visual properties at the interior points of the
triangle as “seen” through each pixel on-screen. In other words, we need to
know the values of the att ributes on a per-pixel basis, not a per-vertex basis.

One simple way to determine the per-pixel values of a mesh’s surface at-
tributes is to linearly interpolate the per-vertex att ribute data. When applied to
vertex colors, att ribute interpolation is known as Gouraud shading . An example
of Gouraud shading applied to a triangle is shown in Figure 10.11, and its ef-
fects on a simple triangle mesh are illustrated in Figure 10.12. Interpolation is
routinely applied to other kinds of vertex att ribute information as well, such
as vertex normals, texture coordinates, and depth.

Figure 10.11. A Gouraud-shaded triangle with different shades of gray at the vertices.

Figure 10.12. Gouraud shading can make faceted objects appear to be smooth.

Vertex Normals and Smoothing

As we’ll see in Section 10.1.3, lighting is the process of calculating the color of
an object at various points on its surface, based on the visual properties of the
surface and the properties of the light impinging upon it. The simplest way to
light a mesh is to calculate the color of the surface on a per-vertex basis. In other
words, we use the properties of the surface and the incoming light to calculate
the diff use color of each vertex (di). These vertex colors are then interpolated
across the triangles of the mesh via Gouraud shading.

417

In order to determine how a ray of light will refl ect from a point on a sur-
face, most lighting models make use of a vector that is normal to the surface at
the point of the light ray’s impact. Since we’re performing lighting calculations
on a per-vertex basis, we can use the vertex normal ni for this purpose. There-
fore, the directions of a mesh’s vertex normals can have a signifi cant impact on
the fi nal appearance of a mesh.

As an example, consider a tall, thin, four-sided box. If we want the box
to appear to be sharp-edged, we can specify the vertex normals to be perpen-
dicular to the faces of the box. As we light each triangle, we will encounter the
same normal vector at all three vertices, so the resulting lighting will appear
fl at, and it will abruptly change at the corners of the box just as the vertex
normals do.

We can also make the same box mesh look a bit like a smooth cylinder by
specifying vertex normals that point radially outward from the box’s center
line. In this case, the vertices of each triangle will have diff erent vertex nor-
mals, causing us to calculate diff erent colors at each vertex. Gouraud shading
will smoothly interpolate these vertex colors, resulting in lighting that appears
to vary smoothly across the surface. This eff ect is illustrated in Figure 10.13.

Figure 10.13. The directions of a mesh’s vertex normals can have a profound effect on the
colors calculated during per-vertex lighting calculations.

10.1.2.5. Textures

 When triangles are relatively large, specifying surface properties on a per-ver-
tex basis can be too coarse-grained. Linear att ribute interpolation isn’t always
what we want, and it can lead to undesirable visual anomalies.

As an example, consider the problem of rendering the bright specular
highlight that can occur when light shines on a glossy object. If the mesh is

10.1. Foundations of Depth-Buffered Triangle Rasterization

418 10. The Rendering Engine

highly tessellated, per-vertex lighting combined with Gouraud shading can
yield reasonably good results. However, when the triangles are too large, the
errors that arise from linearly interpolating the specular highlight can become
jarringly obvious, as shown in Figure 10.14.

To overcome the limitations of per-vertex surface att ributes, rendering en-
gineers use bitmapped images known as texture maps. A texture oft en contains
color information and is usually projected onto the triangles of a mesh. In this
case, it acts a bit like those silly fake tatt oos we used to apply to our arms when
we were kids. But a texture can contain other kinds of visual surface proper-
ties as well as colors. And a texture needn’t be projected onto a mesh—for
example, a texture might be used as a stand-alone data table. The individual
picture elements of a texture are called texels to diff erentiate them from the
pixels on the screen.

The dimensions of a texture bitmap are constrained to be powers of two
on some graphics hardware. Typical texture dimensions include 256 × 256,
512 × 512, 1024 × 1024, and 2048 × 2048, although textures can be any size on
most hardware, provided the texture fi ts into video memory. Some graph-
ics hardware imposes additional restrictions, such as requiring textures to be
square, or lift s some restrictions, such as not constraining texture dimensions
to be powers of two.

Types of Textures

The most common type of texture is known as a diff use map , or albedo map . It
describes the diff use surface color at each texel on a surface and acts like a de-
cal or paint job on the surface.

Other types of textures are used in computer graphics as well, including
normal maps (which store unit normal vectors at each texel, encoded as RGB
values), gloss maps (which encode how shiny a surface should be at each texel),

Figure 10.14. Linear interpolation of vertex attributes does not always yield an adequate
description of the visual properties of a surface, especially when tessellation is low.

419

environment maps (which contain a picture of the surrounding environment
for rendering refl ections), and many others. See Section 10.3.1 for a discussion
of how various types of textures can be used for image-based lighting and
other eff ects.

We can actually use texture maps to store any information that we happen
to need in our lighting calculations. For example, a one-dimensional texture
could be used to store sampled values of a complex math function, a color-to-
color mapping table, or any other kind of look-up table (LUT) .

Texture Coordinates

 Let’s consider how to project a two-dimensional texture onto a mesh. To do
this, we defi ne a two-dimensional coordinate system known as texture space .
A texture coordinate is usually represented by a normalized pair of numbers
denoted (u, v). These coordinates always range from (0, 0) at the bott om left
corner of the texture to (1, 1) at the top right. Using normalized coordinates
like this allows the same coordinate system to be used regardless of the di-
mensions of the texture.

To map a triangle onto a 2D texture, we simply specify a pair of texture
coordinates (ui, vi) at each vertex i. This eff ectively maps the triangle onto the
image plane in texture space. An example of texture mapping is depicted in
Figure 10.15.

Figure 10.15. An example of texture mapping. The triangles are shown both in three-dimen-
sional space and in texture space.

Texture Addressing Modes

 Texture coordinates are permitt ed to extend beyond the [0, 1] range. The
graphics hardware can handle out-of-range texture coordinates in any one of

10.1. Foundations of Depth-Buffered Triangle Rasterization

420 10. The Rendering Engine

the following ways. These are known as texture addressing modes; which mode
is used is under the control of the user.

 Wrap. In this mode, the texture is repeated over and over in every direc-
tion. All texture coordinates of the form (ju, kv) are equivalent to the
coordinate (u, v), where j and k are arbitrary integers.

 Mirror. This mode acts like wrap mode, except that the texture is mir-
rored about the v-axis for odd integer multiples of u, and about the u-
axis for odd integer multiples of v.

 Clamp. In this mode, the colors of the texels around the outer edge of the
texture are simply extended when texture coordinates fall outside the
normal range.

 Border color. In this mode, an arbitrary user-specifi ed color is used for the
region outside the [0, 1] texture coordinate range.

These texture addressing modes are depicted in Figure 10.16.

Figure 10.16. Texture addressing modes.

Texture Formats

 Texture bitmaps can be stored on disk in virtually any image format provided
your game engine includes the code necessary to read it into memory. Com-
mon formats include Targa (.tga), Portable Network Graphics (.png), Win-
dows Bitmap (.bmp), and Tagged Image File Format (.tif). In memory, textures
are usually represented as two-dimensional (strided) arrays of pixels using

421

various color formats, including RGB888, RGBA8888, RGB565, RGBA5551,
and so on.

Most modern graphics cards and graphics APIs support compressed tex-
tures . DirectX supports a family of compressed formats known as DXT or S3
Texture Compression (S3TC). We won’t cover the details here, but the basic
idea is to break the texture into 2 × 2 blocks of pixels and use a small color pal-
ett e to store the colors for each block. You can read more about S3 compressed
texture formats at htt p://en.wikipedia.org/wiki/S3_Texture_Compression.

Compressed textures have the obvious benefi t of using less memory than
their uncompressed counterparts. An additional unexpected plus is that they
are faster to render with as well. S3 compressed textures achieve this speed-up
because of more cache-friendly memory access patt erns—4 × 4 blocks of ad-
jacent pixels are stored in a single 64- or 128-bit machine word—and because
more of the texture can fi t into the cache at once. Compressed textures do
suff er from compression artifacts. While the anomalies are usually not notice-
able, there are situations in which uncompressed textures must be used.

Texel Density and Mipmapping

Imagine rendering a full-screen quad (a rectangle composed of two triangles)
that has been mapped with a texture whose resolution exactly matches that of
the screen. In this case, each texel maps exactly to a single pixel on-screen, and
we say that the texel density (ratio of texels to pixels) is one. When this same
quad is viewed at a distance, its on-screen area becomes smaller. The resolu-
tion of the texture hasn’t changed, so the quad’s texel density is now greater
than one (meaning that more than one texel is contributing to each pixel).

Clearly texel density is not a fi xed quantity—it changes as a texture-
mapped object moves relative to the camera. Texel density aff ects the memory
consumption and the visual quality of a three-dimensional scene. When the
texel density is much less than one, the texels become signifi cantly larger than
a pixel on-screen, and you can start to see the edges of the texels. This destroys
the illusion. When texel density is much greater than one, many texels contrib-
ute to a single pixel on-screen. This can cause a moiré banding patt ern , as shown
in Figure 10.17. Worse, a pixel’s color can appear to swim and fl icker as diff er-
ent texels within the boundaries of the pixel dominate its color depending on
subtle changes in camera angle or position. Rendering a distant object with a
very high texel density can also be a waste of memory if the player can never
get close to it. Aft er all, why keep such a high-res texture in memory if no one
will ever see all that detail?

Ideally we’d like to maintain a texel density that is close to one at all times,
for both nearby and distant objects. This is impossible to achieve exactly, but
it can be approximated via a technique called mipmapping . For each texture,

10.1. Foundations of Depth-Buffered Triangle Rasterization

422 10. The Rendering Engine

we create a sequence of lower-resolution bitmaps, each of which is one-half
the width and one-half the height of its predecessor. We call each of these
images a mipmap, or mip level. For example, a 64 × 64 texture would have the
following mip levels: 64 × 64, 32 × 32, 16 × 16, 8 × 8, 4 × 4, 2 × 2, and 1 × 1, as
shown in Figure 10.18. Once we have mipmapped our textures, the graphics
hardware selects the appropriate mip level based on a triangle’s distance away
from the camera, in an att empt to maintain a texel density that is close to one.
For example, if a texture takes up an area of 40 × 40 on-screen, the 64 × 64 mip
level might be selected; if that same texture takes up only a 10 × 10 area, the
16 × 16 mip level might be used. As we’ll see below, trilinear fi ltering allows
the hardware to sample two adjacent mip levels and blend the results. In this
case, a 10 × 10 area might be mapped by blending the 16 × 16 and 8 × 8 mip
levels together.

Figure 10.17. A texel density greater than one can lead to a moiré pattern.

Figure 10.18. Mip levels for a 64×64 texture.

World Space Texel Density

The term “texel density ” can also be used to describe the ratio of texels to world
space area on a textured surface. For example, a two meter cube mapped with
a 256 × 256 texture would have a texel density of 2562/22 = 16,384. I will call this
world space texel density to diff erentiate it from the screen space texel density
we’ve been discussing thus far.

423

World-space texel density need not be close to one, and in fact the specifi c
value will usually be much greater than one and depends entirely upon your
choice of world units. Nonetheless, it is important for objects to be texture
mapped with a reasonably consistent world space texel density. For example,
we would expect all six sides of a cube to occupy the same texture area. If this
were not the case, the texture on one side of the cube would have a lower-res-
olution appearance than another side, which can be noticeable to the player.
Many game studios provide their art teams with guidelines and in-engine
texel density visualization tools in an eff ort to ensure that all objects in the
game have a reasonably consistent world space texel density.

Texture Filtering

 When rendering a pixel of a textured triangle, the graphics hardware samples
the texture map by considering where the pixel center falls in texture space.
There is usually not a clean one-to-one mapping between texels and pixels,
and pixel centers can fall at any place in texture space, including directly on
the boundary between two or more texels. Therefore, the graphics hardware
usually has to sample more than one texel and blend the resulting colors to
arrive at the actual sampled texel color. We call this texture fi ltering.

Most graphics cards support the following kinds of texture fi ltering:

 Nearest neighbor . In this crude approach, the texel whose center is closest to
the pixel center is selected. When mipmapping is enabled, the mip level is
selected whose resolution is nearest to but greater than the ideal theoreti-
cal resolution needed to achieve a screen-space texel density of one.

 Bilinear . In this approach, the four texels surrounding the pixel center
are sampled, and the resulting color is a weighted average of their col-
ors (where the weights are based on the distances of the texel centers
from the pixel center). When mipmapping is enabled, the nearest mip
level is selected.

 Trilinear . In this approach, bilinear fi ltering is used on each of the two
nearest mip levels (one higher-res than the ideal and the other lower-
res), and these results are then linearly interpolated. This eliminates
abrupt visual boundaries between mip levels on-screen.

 Anisotropic . Both bilinear and trilinear fi ltering sample 2 × 2 square
blocks of texels. This is the right thing to do when the textured sur-
face is being viewed head-on, but it’s incorrect when the surface is at an
oblique angle relative to the virtual screen plane. Anisotropic fi ltering
samples texels within a trapezoidal region corresponding to the view
angle, thereby increasing the quality of textured surfaces when viewed
at an angle.

10.1. Foundations of Depth-Buffered Triangle Rasterization

424 10. The Rendering Engine

10.1.2.6. Materials

A material is a complete description of the visual properties of a mesh. This
includes a specifi cation of the textures that are mapped to its surface and also
various higher-level properties, such as which shader programs to use when
rendering the mesh, the input parameters to those shaders, and other parame-
ters that control the functionality of the graphics acceleration hardware itself.

While technically part of the surface properties description, vertex att ri-
butes are not considered to be part of the material. However, they come along
for the ride with the mesh, so a mesh-material pair contains all the informa-
tion we need to render the object. Mesh-material pairs are sometimes called
render packets, and the term “geometric primitive” is sometimes extended to
encompass mesh-material pairs as well.

A 3D model typically uses more than one material. For example, a mod-
el of a human would have separate materials for the hair, skin, eyes, teeth,
and various kinds of clothing. For this reason, a mesh is usually divided into
submeshes , each mapped to a single material. The Ogre3D rendering engine
implements this design via its Ogre::SubMesh class.

10.1.3. Lighting Basics

Lighting is at the heart of all CG rendering. Without good lighting, an other-
wise beautifully modeled scene will look fl at and artifi cial. Likewise, even the

Figure 10.19. A variation on the classic “Cornell box” scene illustrating how realistic lighting
can make even the simplest scene appear photorealistic.

425

simplest of scenes can be made to look extremely realistic when it is lit accu-
rately. The classic “Cornell box” scene, shown in Figure 10.19, is an excellent
example of this.

The following sequence of screen shots from Naughty Dog’s Uncharted:
Drake’s Fortune is another good illustration of the importance of lighting. In
Figure 10.20, the scene is rendered without textures. Figure 10.21 shows the
same scene with diff use textures applied. The fully lit scene is shown in Fig-
ure 10.22. Notice the marked jump in realism when lighting is applied to the
scene.

Figure 10.20. A scene from Uncharted: Drake’s Fortune rendered without textures.

Figure 10.21. The same UDF scene with only diffuse textures applied.

10.1. Foundations of Depth-Buffered Triangle Rasterization

426 10. The Rendering Engine

The term shading is oft en used as a loose generalization of lighting plus
other visual eff ects. As such, “shading” encompasses procedural deformation
of vertices to simulate the motion of a water surface, generation of hair curves
or fur shells, tessellation of high-order surfaces, and prett y much any other
calculation that’s required to render a scene.

In the following sections, we’ll lay the foundations of lighting that we’ll
need in order to understand graphics hardware and the rendering pipeline.
We’ll return to the topic of lighting in Section 10.3, where we’ll survey some
advanced lighting and shading techniques.

10.1.3.1. Local and Global Illumination Models

Rendering engines use various mathematical models of light-surface and light-
volume interactions called light transport models . The simplest models only ac-
count for direct lighting in which light is emitt ed, bounces off a single object in
the scene, and then proceeds directly to the imaging plane of the virtual cam-
era. Such simple models are called local illumination models , because only the
local eff ects of light on a single object are considered; objects do not aff ect one
another’s appearance in a local lighting model. Not surprisingly, local models
were the fi rst to be used in games, and they are still in use today—local light-
ing can produce surprisingly realistic results in some circumstances.

True photorealism can only be achieved by accounting for indirect light-
ing , where light bounces multiple times off many surfaces before reaching the
virtual camera. Lighting models that account for indirect lighting are called
global illumination models . Some global illumination models are targeted at
simulating one specifi c visual phenomenon, such as producing realistic shad-

Figure 10.22. The UDF scene with full lighting.

427

ows, modeling refl ective surfaces, accounting for interrefl ection between ob-
jects (where the color of one object aff ects the colors of surrounding objects),
and modeling caustic eff ects (the intense refl ections from water or a shiny
metal surface). Other global illumination models att empt to provide a holis-
tic account of a wide range of optical phenomena. Ray tracing and radiosity
methods are examples of such technologies.

Global illumination is described completely by a mathematical formula-
tion known as the rendering equation or shading equation. It was introduced in
1986 by J. T. Kajiya as part of a seminal SIGGRAPH paper. In a sense, every
rendering technique can be thought of as a full or partial solution to the ren-
dering equation, although they diff er in their fundamental approach to solv-
ing it and in the assumptions, simplifi cations, and approximations they make.
See htt p://en.wikipedia.org/wiki/Rendering_equation, [8], [1], and virtually
any other text on advanced rendering and lighting for more details on the
rendering equation.

10.1.3.2. The Phong Lighting Model

The most common local lighting model employed by game rendering engines
is the Phong refl ection model . It models the light refl ected from a surface as a
sum of three distinct terms:

 The ambient term models the overall lighting level of the scene. It is a
gross approximation of the amount of indirect bounced light present
in the scene. Indirect bounces are what cause regions in shadow not to
appear totally black.

 The diff use term accounts for light that is refl ected uniformly in all direc-
tions from each direct light source. This is a good approximation to the
way in which real light bounces off a matt e surface, such as a block of
wood or a piece of cloth.

 The specular term models the bright highlights we sometimes see when
viewing a glossy surface. Specular highlights occur when the view-
ing angle is closely aligned with a path of direct refl ection from a light
source.

Figure 10.23 shows how the ambient, diff use, and specular terms add together
to produce the fi nal intensity and color of a surface.

To calculate Phong refl ection at a specifi c point on a surface, we require
a number of input parameters. The Phong model is normally applied to all
three color channels (R, G and B) independently, so all of the color parameters
in the following discussion are three-element vectors. The inputs to the Phong
model are:

10.1. Foundations of Depth-Buffered Triangle Rasterization

428 10. The Rendering Engine

 the viewing direction vector V = [Vx Vy Vz], which extends from the
refl ection point to the virtual camera’s focal point (i.e., the negation of
the camera’s world-space “front” vector);

 the ambient light intensity for the three color channels,
A = [AR AG AB];

 the surface normal N = [Nx Ny Nz] at the point the light ray impinges
on the surface;

 the surface refl ectance properties, which are
the ambient refl ectivity □ kA,
the diff use refl ectivity □ kD,
the specular refl ectivity □ kS,
and a specular “glossiness” exponent □ α;

 and, for each light source i,
the light’s color and intensity □ Ci = [CRi CGi CBi],
the direction vector □ Li from the refl ection point to the light source.

In the Phong model, the intensity I of light refl ected from a point can be ex-
pressed with the following vector equation:

() () ,A D i S i i

i

k k k α⎡ ⎤= + ⋅ + ⋅⎣ ⎦∑I A N L R V C

where the sum is taken over all lights i aff ecting the point in question. This can
be broken into three scalar equations, one for each color channel:

 () () ,

() () ,

() () .

R A R D i S i Ri
i

G A G D i S i Gi

B A B D i S i Bi

I k A k k C

I k A k k C

I k A k k C

α

α

α

⎡ ⎤= + ⋅ + ⋅⎣ ⎦

⎡ ⎤= + ⋅ + ⋅⎣ ⎦

⎡ ⎤= + ⋅ + ⋅⎣ ⎦

∑

∑

∑

N L R V

N L R V

N L R V

i

i

Figure 10.23. Ambient, diffuse and specular terms are summed to calculate Phong
refl ection.

429

In these equations, the vector Ri = [Rxi Ryi Rzi] is the refl ection of the light ray’s
direction vector Li about the surface normal N.

The vector Ri can be easily calculated via a bit of vector math. Any vec-
tor can be expressed as a sum of its tangential and normal components. For
example, we can break up the light direction vector L as follows:

 .T N= +L L L

We know that the dot product (N · L) represents the projection of L normal
to the surface (a scalar quantity). So the normal component LN is just the unit
normal vector N scaled by this dot product:

 () .N = ⋅L N L N

The refl ected vector R has the same normal component as L but the opposite
tangential component (–LT). So we can fi nd R as follows:

This equation can be used to fi nd all of the Ri values corresponding to the light
directions Li.

Blinn-Phong

The Blinn-Phong lighting model is a variation on Phong shading that calcu-
lates specular refl ection in a slightly diff erent way. We defi ne the vector H to
be the vector that lies halfway between the view vector V and the light direc-
tion vector L. The Blinn-Phong specular component is then (N · H)a, as op-
posed to Phong’s (R · V)α. The exponent a is slightly diff erent than the Phong
exponent α, but its value is chosen in order to closely match the equivalent
Phong specular term.

The Blinn-Phong model off ers increased runtime effi ciency at the cost of
some accuracy, although it actually matches empirical results more closely
than Phong for some kinds of surfaces. The Blinn-Phong model was used
almost exclusively in early computer games and was hard-wired into the
fi xed-function pipelines of early GPUs. See htt p://en.wikipedia.org/wiki/
Blinn%E2%80%93Phong_shading_model for more details.

BRDF Plots

The three terms in the Phong lighting model are special cases of a general local
refl ection model known as a bidirectional refl ection distribution function (BRDF).

10.1. Foundations of Depth-Buffered Triangle Rasterization

()

2 ;

2() .

N T

N N

N

= −

= − −

= −

= ⋅ −

R L L

L L L

L L

R N L N L

430 10. The Rendering Engine

A BRDF calculates the ratio of the outgoing (refl ected) radiance along a given
viewing direction V to the incoming irradiance along the incident ray L.

A BRDF can be visualized as a hemispherical plot, where the radial dis-
tance from the origin represents the intensity of the light that would be seen if
the refl ection point were viewed from that direction. The diff use Phong refl ec-
tion term is kD(N · L). This term only accounts for the incoming illumination
ray L, not the viewing angle V. Hence the value of this term is the same for all
viewing angles. If we were to plot this term as a function of the viewing angle
in three dimensions, it would look like a hemisphere centered on the point at
which we are calculating the Phong refl ection. This is shown in two dimen-
sions in Figure 10.24.

The specular term of the Phong model is kS(R · V)α. This term is dependent
on both the illumination direction L and the viewing direction V. It produces
a specular “hot spot” when the viewing angle aligns closely with the refl ection
R of the illumination direction L about the surface normal. However, its con-
tribution falls off very quickly as the viewing angle diverges from the refl ected
illumination direction. This is shown in two dimensions in Figure 10.25.

10.1.3.3. Modeling Light Sources

 In addition to modeling the light’s interactions with surfaces, we need to de-
scribe the sources of light in the scene. As with all things in real-time rendering,
we approximate real-world light sources using various simplifi ed models.

Figure 10.24. The diffuse term of the Phong refl ection model is dependent upon N • L, but is
independent of the viewing angle V.

Figure 10.25. The specular term of the Phong refl ection model is at its maximum when the
viewing angle V coincides with the refl ected light direction R and drops off quickly as V di-
verges from R.

431

Static Lighting

 The fastest lighting calculation is the one you don’t do at all. Lighting is there-
fore performed off -line whenever possible. We can precalculate Phong refl ec-
tion at the vertices of a mesh and store the results as diff use vertex color at-
tributes. We can also precalculate lighting on a per pixel basis and store the
results in a kind of texture map known as a light map . At runtime, the light
map texture is projected onto the objects in the scene in order to determine the
light’s eff ects on them.

You might wonder why we don’t just bake lighting information directly
into the diff use textures in the scene. There are a few reasons for this. For one
thing, diff use texture maps are oft en tiled and/or repeated throughout a scene,
so baking lighting into them wouldn’t be practical. Instead, a single light map
is usually generated per light source and applied to any objects that fall within
that light’s area of infl uence. This approach permits dynamic objects to move
past a light source and be properly illuminated by it. It also means that our
light maps can be of a diff erent (oft en lower) resolution than our diff use tex-
ture maps. Finally, a “pure” light map usually compresses bett er than one that
includes diff use color information.

Ambient Lights

An ambient light corresponds to the ambient term in the Phong lighting model.
This term is independent of the viewing angle and has no specifi c direction.
An ambient light is therefore represented by a single color, corresponding to
the A color term in the Phong equation (which is scaled by the surface’s ambi-
ent refl ectivity kA at runtime). The intensity and color of ambient light may
vary from region to region within the game world.

Directional Lights

A directional light models a light source that is eff ectively an infi nite distance
away from the surface being illuminated—like the sun. The rays emanating
from a directional light are parallel, and the light itself does not have any
particular location in the game world. A directional light is therefore modeled
as a light color C and a direction vector L. A directional light is depicted in
Figure 10.26.

Point (Omni-Directional) Lights

A point light (omni-directional light) has a distinct position in the game world
and radiates uniformly in all directions. The intensity of the light is usually
considered to fall off with the square of the distance from the light source,
and beyond a predefi ned maximum radius its eff ects are simply clamped to
zero. A point light is modeled as a light position P, a source color/intensity C,

Figure 10.26. Model
of a directional light
source.

Figure 10.27. Mod-
el of a point light
source.

10.1. Foundations of Depth-Buffered Triangle Rasterization

432 10. The Rendering Engine

and a maximum radius rmax. The rendering engine only applies the eff ects of a
point light to those surfaces that fall within is sphere of infl uence (a signifi cant
optimization). Figure 10.27 illustrates a point light.

Spot Lights

A spot light acts like a point light whose rays are restricted to a cone-shaped
region, like a fl ashlight. Usually two cones are specifi ed with an inner and an
outer angle. Within the inner cone, the light is considered to be at full inten-
sity. The light intensity falls off as the angle increases from the inner to the
outer angle, and beyond the outer cone it is considered to be zero. Within
both cones, the light intensity also falls off with radial distance. A spot light is
modeled as a position P, a source color C, a central direction vector L, a maxi-
mum radius rmax , and inner and outer cone angles θmin and θmax. Figure 10.28
illustrates a spot light source.

Area Lights

 All of the light sources we’ve discussed thus far radiate from an idealized
point, either at infi nity or locally. A real light source almost always has a non-
zero area—this is what gives rise to the umbra and penumbra in the shadows
it casts.

Rather than trying to model area lights explicitly, CG engineers oft en use
various “tricks” to account for their behavior. For example to simulate a pen-
umbra, we might cast multiple shadows and blend the results, or we might
blur the edges of a sharp shadow in some manner.

Emissive Objects

 Some surfaces in a scene are themselves light sources. Examples include fl ash-
lights, glowing crystal balls, fl ames from a rocket engine, and so on. Glowing
surfaces can be modeled using an emissive texture map —a texture whose colors
are always at full intensity, independent of the surrounding lighting environ-
ment. Such a texture could be used to defi ne a neon sign, a car’s headlights,
and so on.

Some kinds of emissive objects are rendered by combining multiple tech-
niques. For example, a fl ashlight might be rendered using an emissive texture
for when you’re looking head-on into the beam, a colocated spot light that
casts light into the scene, a yellow translucent mesh to simulate the light cone,
some camera-facing transparent cards to simulate lens fl are (or a bloom eff ect
if high dynamic range lighting is supported by the engine), and a projected
texture to produce the caustic eff ect that a fl ashlight has on the surfaces it il-
luminates. The fl ashlight in Luigi’s Mansion is a great example of this kind of
eff ect combination, as shown in Figure 10.29.

Figure 10.28. Model
of a spot light source.

433

10.1.4. The Virtual Camera

In computer graphics, the virtual camera is much simpler than a real camera
or the human eye. We treat the camera as an ideal focal point with a rectangu-
lar virtual sensing surface called the imaging rectangle fl oating some small dis-
tance in front of it. The imaging rectangle consists of a grid of square or rect-
angular virtual light sensors, each corresponding to a single pixel on-screen.
Rendering can be thought of as the process of determining what color and
intensity of light would be recorded by each of these virtual sensors.

10.1.4.1. View Space

The focal point of the virtual camera is the origin of a 3D coordinate system
known as view space or camera space. The camera usually “looks” down the
positive or negative z-axis in view space, with y up and x to the left or right.
Typical left - and right-handed view space axes are illustrated in Figure 10.30.

Figure 10.29. The fl ashlight in Luigi’s Mansion is composed of numerous visual effects, in-
cluding a cone of translucent geometry for the beam, a dynamic spot light to cast light into
the scene, an emissive texture on the lens, and camera-facing cards for the lens fl are.

Left-HandedRight-Handed

Virtual
Screen

Virtual
Screen

Frustum Frustum

xC

zC

yC

xC

zC

yC

Figure 10.30. Left- and right-handed camera space axes.

10.1. Foundations of Depth-Buffered Triangle Rasterization

434 10. The Rendering Engine

The camera’s position and orientation can be specifi ed using a view-to-
world matrix , just as a mesh instance is located in the scene with its model-to-
world matrix. If we know the position vector and three unit basis vectors of
camera space, expressed in world-space coordinates, the view-to-world ma-
trix can be writt en as follows, in a manner analogous to that used to construct
a model-to-view matrix:

0
0

.0
1

V

V
V W

V

V

→

⎡ ⎤
⎢ ⎥
⎢ ⎥=⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

i
j

M k
t

When rendering a triangle mesh, its vertices are transformed fi rst from
model space to world space, and then from world space to view space. To
perform this latt er transformation, we need the world-to-view matrix , which
is the inverse of the view-to-world matrix. This matrix is sometimes called the
view matrix:

 1
view() .W V V W

−
→ →= =M M M

Be careful here. The fact that the camera’s matrix is inverted relative to the
matrices of the objects in the scene is a common point of confusion and bugs
among new game developers.

The world-to-view matrix is oft en concatenated to the model-to-world
matrix prior to rendering a particular mesh instance. This combined matrix is
called the model-view matrix in OpenGL. We precalculate this matrix so that the
rendering engine only needs to do a single matrix multiply when transform-
ing vertices from model space into view space:

 model view.M V M W W V→ → → -= =M M M M

10.1.4.2. Projections

In order to render a 3D scene onto a 2D image plane, we use a special kind
of transformation known as a projection . The perspective projection is the most
common projection in computer graphics, because it mimics the kinds of im-
ages produced by a typical camera. With this projection, objects appear small-
er the farther away they are from the camera—an eff ect known as perspective
foreshortening .

The length-preserving orthographic projection is also used by some games,
primarily for rendering plan views (e.g., front, side, and top) of 3D models or
game levels for editing purposes, and for overlaying 2D graphics onto the
screen for heads-up displays (HUDs) and the like. Figure 10.31 illustrates how
a cube would look when rendered with these two types of projections.

435

10.1.4.3. The View Volume and the Frustum

The region of space that the camera can “see” is known as the view volume . A
view volume is defi ned by six planes. The near plane corresponds to the virtual
image-sensing surface. The four side planes correspond to the edges of the
virtual screen. The far plane is used as a rendering optimization to ensure that
extremely distant objects are not drawn. It also provides an upper limit for the
depths that will be stored in the depth buff er (see Section 10.1.4.8).

When rendering the scene with a perspective projection, the shape of the
view volume is a truncated pyramid known as a frustum . When using an or-
thographic projection, the view volume is a rectangular prism. Perspective
and orthographic view volumes are illustrated in Figure 10.32 and Figure
10.33, respectively.

The six planes of the view volume can be represented compactly using six
four-element vectors (nxi , nyi , nzi , di), where n = (nx , ny , nz) is the plane normal
and d is its perpendicular distance from the origin. If we prefer the point-
normal plane representation, we can also describe the planes with six pairs of
vectors (Qi, ni), where Q is the arbitrary point on the plane and n is the plane
normal. (In both cases, i is the index of the plane.)

Figure 10.31. A cube rendered using a perspective projection (on the left) and an ortho-
graphic projection (on the right).

Far
PlaneyV

Near
Plane

xV

zV
(r, b, n)

(r, b, f)

(r, t, f)
(l, t, f)

(l, b, n)

(l, t, n)

(l, b, f)

(r, t, n)

Figure 10.32. A perspective view volume (frustum).

10.1. Foundations of Depth-Buffered Triangle Rasterization

436 10. The Rendering Engine

10.1.4.4. Projection and Homogeneous Clip Space

Both perspective and orthographic projections transform points in view space
into a coordinate space called homogeneous clip space . This three-dimensional
space is really just a warped version of view space. The purpose of clip space
is to convert the camera-space view volume into a canonical view volume that
is independent both of the kind of projection used to convert the 3D scene into
2D screen space, and of the resolution and aspect ratio of the screen onto which
the scene is going to be rendered.

In clip space, the canonical view volume is a rectangular prism extending
from –1 to +1 along the x- and y-axes. Along the z-axis, the view volume ex-
tends either from –1 to +1 (OpenGL) or from 0 to 1 (DirectX). We call this coor-

Figure 10.33. An orthographic view volume.

Far
PlaneyV

Near
Plane

xV

zV

(r, b, n)

(r, b, f)

(r, t, f)

(l, t, f)

(l, b, n)

(l, t, n)

(l, b, f)

(r, t, n)

Far
Plane

yH

Near
Plane

xH

zH

(1, –1, –1)

(1, –1, 1)

(1, 1, 1)

(–1, 1, 1)

(–1, –1, –1)

(–1, 1, –1)

Figure 10.34. The canonical view volume in homogeneous clip space.

437

dinate system “clip space” because the view volume planes are axis-aligned,
making it convenient to clip triangles to the view volume in this space (even
when a perspective projection is being used). The canonical clip-space view
volume for OpenGL is depicted in Figure 10.34. Notice that the z-axis of clip
space goes into the screen, with y up and x to the right. In other words, homo-
geneous clip space is usually left -handed.

Perspective Projection

An excellent explanation of perspective projection is given in Section 4.5.1 of
[28], so we won’t repeat it here. Instead, we’ll simply present the perspective
projection matrix V H→M below. (The subscript V→H indicates that this ma-
trix transforms vertices from view space into homogeneous clip space.) If we
take view space to be right-handed, then the near plane intersects the z-axis
at z = –n, and the far plane intersects it at z = –f. The virtual screen’s left , right,
bott om, and top edges lie at x = l, x = r, y = b, and y = t on the near plane, respec-
tively. (Typically the virtual screen is centered on the camera-space z-axis, in
which case l = –r and b = –t, but this isn’t always the case.) Using these defi ni-
tions, the perspective projection matrix for OpenGL is as follows:

2
0 0 0

2
0 0 0

.
1

2
0 0 0

V H

n
r l

n
t b

f nr l t b
r l t b f n

nf
f n

→

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠−⎢ ⎥

⎢ ⎥⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠−⎢ ⎥

=⎢ ⎥⎛ ⎞⎛ ⎞ ⎛ ⎞ ++ +
⎜ ⎟⎢ ⎥− −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠− − −⎝ ⎠⎢ ⎥
⎢ ⎥⎛ ⎞⎢ ⎥⎜ ⎟−⎢ ⎥−⎝ ⎠⎣ ⎦

M

DirectX defi nes the z-axis extents of the clip-space view volume to lie in
the range [0, 1] rather thanin the range [–1, 1] as OpenGL does. We can easily
adjust the perspective projection matrix to account for DirectX’s conventions
as follows:

 () DirectX

2
0 0 0

2
0 0 0

.
1

0 0 0

V H

n
r l

n
t b

fr l t b
r l t b f n

nf
f n

→

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠−⎢ ⎥

⎢ ⎥⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠−⎢ ⎥

=⎢ ⎥⎛ ⎞⎛ ⎞ ⎛ ⎞+ +
⎜ ⎟⎢ ⎥− −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠− − −⎝ ⎠⎢ ⎥
⎢ ⎥⎛ ⎞⎢ ⎥⎜ ⎟−⎢ ⎥−⎝ ⎠⎣ ⎦

M

10.1. Foundations of Depth-Buffered Triangle Rasterization

438 10. The Rendering Engine

Division by Z

 Perspective projection results in each vertex’s x- and y-coordinates being di-
vided by its z-coordinate. This is what produces perspective foreshortening .
To understand why this happens, consider multiplying a view-space point

Vp expressed in four-element homogeneous coordinates by the OpenGL per-
spective projection matrix:

2
0 0 0

2
0 0 0

[1] .
1

2
0 0 0

H V V H

Vx Vy Vz

n
r l

n
t b

p p p f nr l t b
r l t b f n

nf
f n

→=

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠−⎢ ⎥

⎢ ⎥⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠−⎢ ⎥

= ⎢ ⎥⎛ ⎞⎛ ⎞ ⎛ ⎞ ++ +
⎜ ⎟⎢ ⎥− −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠− − −⎝ ⎠⎢ ⎥
⎢ ⎥⎛ ⎞⎢ ⎥⎜ ⎟−⎢ ⎥−⎝ ⎠⎣ ⎦

p p M

The result of this multiplication takes the form

 .H Vza b c p⎡ ⎤= −⎣ ⎦p (10.1)

When we convert any homogeneous vector into three dimensional coor-
dinates, the x-, y-, and z-components are divided by the w-component:

 .
yx z

x y z w
w w w

⎡ ⎤⎡ ⎤≡⎣ ⎦ ⎢ ⎥⎣ ⎦

So, aft er dividing Equation (10.1) by the homogeneous w-component, which is
really just the negative view-space z-coordinate Vzp− , we have:

 [].

H
Vz Vz Vz

Hx Hy Hz

a b c
p p p

p p p

⎡ ⎤
=⎢ ⎥

− − −⎣ ⎦

=

p

Thus the homogeneous clip space coordinates have been divided by the view-
space z-coordinate, which is what causes perspective foreshortening.

Perspective-Correct Vertex Attribute Interpolation

In Section 10.1.2.4, we learned that vertex att ributes are interpolated in order to
determine appropriate values for them within the interior of a triangle. Att ri-
bute interpolation is performed in screen space. We iterate over each pixel of the
screen and att empt to determine the value of each att ribute at the correspond-
ing location on the surface of the triangle. When rendering a scene with a perspec-

439

tive projection, we must do this very carefully so as to account for perspective
foreshortening. This is known as perspective-correct att ribute interpolation .

A derivation of perspective-correct interpolation is beyond our scope, but
suffi ce it to say that we must divide our interpolated att ribute values by the
corresponding z-coordinates (depths) at each vertex. For any pair of vertex at-
tributes A1 and A2, we can write the interpolated att ribute at a percentage t of
the distance between them as follows:

1 2 1 2

1 2 1 2
(1) LERP , , .

z z z z z

A A A A A
t

p p p p p
⎛ ⎞
⎜ ⎟= − + =
⎝ ⎠

tt

Refer to [28] for an excellent derivation of the math behind perspective-correct
att ribute interpolation.

Orthographic Projection

An orthographic projection is performed by the following matrix :

() ortho

2
0 0 0

2
0 0 0

.2
0 0 0

1

V H

r l

t b

f n

f nr l t b
r l t b f n

→

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠−⎢ ⎥

⎢ ⎥⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠−⎢ ⎥

=⎢ ⎥⎛ ⎞
⎜ ⎟⎢ ⎥−

−⎝ ⎠⎢ ⎥
⎢ ⎥⎛ ⎞⎛ ⎞ ⎛ ⎞ ++ +⎢ ⎥⎜ ⎟− − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠− − −⎝ ⎠⎣ ⎦

M

This is just an everyday scale-and-translate matrix. (The upper-left 3 × 3
contains a diagonal nonuniform scaling matrix, and the lower row contains
the translation.) Since the view volume is a rectangular prism in both view
space and clip space, we need only scale and translate our vertices to convert
from one space to the other.

10.1.4.5. Screen Space and Aspect Ratios

Screen space is a two-dimensional coordinate system whose axes are mea-
sured in terms of screen pixels. The x-axis typically points to the right, with
the origin at the top-left corner of the screen and y pointing down. (The reason
for the inverted y-axis is that CRT monitors scan the screen from top to bot-
tom.) The ratio of screen width to screen height is known as the aspect ratio.
The most common aspect ratios are 4:3 (the aspect ratio of a traditional tele-
vision screen) and 16:9 (the aspect ratio of a movie screen or HDTV). These
aspect ratios are illustrated in Figure 10.35.

10.1. Foundations of Depth-Buffered Triangle Rasterization

440 10. The Rendering Engine

We can render triangles expressed in homogeneous clip space by simply
drawing their (x, y) coordinates and ignoring z. But before we do, we scale
and shift the clip-space coordinates so that they lie in screen space rather than
within the normalized unit square. This scale-and-shift operation is known as
screen mapping .

10.1.4.6. The Frame Buffer

The fi nal rendered image is stored in a bitmapped color buff er known as the
frame buff er . Pixel colors are usually stored in RGBA8888 format, although other
frame buff er formats are supported by most graphics cards as well. Some com-
mon formats include RGB565, RGB5551, and one or more palett ed modes.

The display hardware (CRT, fl at-screen monitor, HDTV, etc.) reads the
contents of the frame buff er at a periodic rate of 60 Hz for NTSC televisions
used in North America and Japan, or 50 Hz for PAL /SECAM televisions used
in Europe and many other places in the world. Rendering engines typically
maintain at least two frame buff ers. While one is being scanned by the dis-
play hardware, the other one can be updated by the rendering engine. This is
known as double buff ering . By swapping or “fl ipping” the two buff ers during
the vertical blanking interval (the period during which the CRT’s electron gun is
being reset to the top-left corner of the screen), double buff ering ensures that
the display hardware always scans the complete frame buff er. This avoids a
jarring eff ect known as tearing , in which the upper portion of the screen dis-
plays the newly rendered image while the bott om shows the remnants of the
previous frame’s image.

Some engines make use of three frame buff ers—a technique aptly known
as triple buff ering . This is done so that the rendering engine can start work on
the next frame, even when the previous frame is still being scanned by the
display hardware. For example, the hardware might still be scanning buff er A
when the engine fi nishes drawing buff er B. With triple buff ering, it can pro-

xS

4:3yS

xS

16:9yS

Figure 10.35. The two most prevalent screen space aspect ratios are 4:3 and 16:9.

441

ceed to render a new frame into buff er C, rather than idling while it waits for
the display hardware to fi nish scanning buff er A.

Render Targets

Any buff er into which the rendering engine draws graphics is known as a ren-
der target . As we’ll see later in this chapter, rendering engines make use of all
sorts of other off -screen render targets, in addition to the frame buff ers. These
include the depth buff er , the stencil buff er , and various other buff ers used for
storing intermediate rendering results.

10.1.4.7. Triangle Rasterization and Fragments

To produce an image of a triangle on-screen, we need to fi ll in the pixels it
overlaps. This process is known as rasterization . During rasterization, the tri-
angle’s surface is broken into pieces called fragments , each one representing a
small region of the triangle’s surface that corresponds to a single pixel on the
screen. (In the case of multisample antialiasing, a fragment corresponds to a
portion of a pixel—see below.)

A fragment is like a pixel in training. Before it is writt en into the frame
buff er, it must pass a number of tests (described in more depth below). If it
fails any of these tests, it will be discarded. Fragments that pass the tests are
shaded (i.e., their colors are determined), and the fragment color is either writ-
ten into the frame buff er or blended with the pixel color that’s already there.
Figure 10.36 illustrates how a fragment becomes a pixel.

Fragment

Pixel

Figure 10.36. A fragment is a small region of a triangle corresponding to a pixel on the
screen. It passes through the rendering pipeline and is either discarded or its color is written
into the frame buffer.

10.1. Foundations of Depth-Buffered Triangle Rasterization

Antialiasing

 When a triangle is rasterized, its edges can look jagged—the familiar “stair
step” eff ect we have all come to know and love (or hate). Technically speak-

442 10. The Rendering Engine

ing, aliasing arises because we are using a discrete set of pixels to sample an
image that is really a smooth, continuous two-dimensional signal. (In the fre-
quency domain, sampling causes a signal to be shift ed and copied multiple
times along the frequency axis. Aliasing literally means that these copies of
the signal overlap and get confused with one another.)

Antialiasing is a technique that reduces the visual artifacts caused by alias-
ing. In eff ect, antialiasing causes the edges of the triangle to be blended with
the surrounding colors in the frame buff er.

There are a number of ways to antialias a 3D rendered image. In full-screen
antialiasing (FSAA), the image is rendered into a frame buff er that is twice
as wide and twice as tall as the actual screen. The resulting image is down-
sampled to the desired resolution aft erwards. FSAA can be expensive because
rendering a double-sized frame means fi lling four times the number of pixels.
FSAA frame buff ers also consume four times the memory of a regular frame
buff er.

Modern graphics hardware can antialias a rendered image without ac-
tually rendering a double-size image, via a technique called multisample an-
tialiasing (MSAA). The basic idea is to break a triangle down into more than
one fragment per pixel. These supersampled fragments are combined into a
single pixel at the end of the pipeline. MSAA does not require a double-width
frame buff er, and it can handle higher levels of supersampling as well. (4× and
8× supersampling are commonly supported by modern GPUs.)

10.1.4.8. Occlusion and the Depth Buffer

When rendering two triangles that overlap each other in screen space, we
need some way of ensuring that the triangle that is closer to the camera will
appear on top. We could accomplish this by always rendering our triangles in

Figure 10.37. The painter’s algorithm renders triangles in a back-to-front order to produce
proper triangle occlusion. However, the algorithm breaks down when triangles intersect one
another.

443

back-to-front order (the so-called painter’s algorithm). However, as shown in
Figure 10.37, this doesn’t work if the triangles are intersecting one another.

To implement triangle occlusion properly, independent of the order in
which the triangles are rendered, rendering engines use a technique known
as depth buff ering or z-buff ering. The depth buff er is a full-screen buff er that
typically contains 16- or 24-bit fl oating-point depth information for each pix-
el in the frame buff er. Every fragment has a z-coordinate that measures its
depth “into” the screen. (The depth of a fragment is found by interpolating
the depths of the triangle’s vertices.) When a fragment’s color is writt en into
the frame buff er, it depth is stored into the corresponding pixel of the depth
buff er. When another fragment (from another triangle) is drawn into the same
pixel, the engine compares the new fragment’s depth to the depth already
present in the depth buff er. If the fragment is closer to the camera (i.e., if it
has a smaller depth), it overwrites the pixel in the frame buff er. Otherwise the
fragment is discarded.

Z-Fighting and the W-Buffer

When rendering parallel surfaces that are very close to one another, it’s im-
portant that the rendering engine can distinguish between the depths of the
two planes. If our depth buff er had infi nite precision, this would never be
a problem. Unfortunately, a real depth buff er only has limited precision, so
the depth values of two planes can collapse into a single discrete value when
the planes are close enough together. When this happens, the more-distant
plane’s pixels start to “poke through” the nearer plane, resulting in a noisy
eff ect known as z-fi ghting .

To reduce z-fi ghting to a minimum across the entire scene, we would like
to have equal precision whether we’re rendering surfaces that are close to the
camera or far away. However, with z-buff ering this is not the case. The preci-
sion of clip-space z-depths (Hzp) are not evenly distributed across the entire
range from the near plane to the far plane, because of the division by the view-
space z-coordinate. Because of the shape of the 1/z curve, most of the depth
buff er’s precision is concentrated near the camera.

The plot of the function 1/Hz Vzp p= shown in Figure 10.38 demonstrates
this eff ect. Near the camera, the distance between two planes in view space

VzpΔ gets transformed into a reasonably large delta in clip space, .HzpΔ But
far from the camera, this same separation gets transformed into a tiny delta in
clip space. The result is z fi ghting, and it becomes rapidly more prevalent as
objects get farther away from the camera.

To circumvent this problem, we would like to store view-space z-coor-
dinates (Vzp) in the depth buff er instead of clip-space z-coordinates (Hzp).
View-space z-coordinates vary linearly with the distance from the camera, so

10.1. Foundations of Depth-Buffered Triangle Rasterization

444 10. The Rendering Engine

using them as our depth measure achieves uniform precision across the en-
tire depth range. This technique is called w-buff ering , because the view-space
z-coordinate conveniently appears in the w-component of our homogeneous
clip-space coordinates. (Recall from Equation (10.1) that Hw Vzp p=− .)

The terminology can be a very confusing here. The z- and w-buff ers store
coordinates that are expressed in clip space. But in terms of view-space coordi-
nates, the z-buff er stores 1/z (i.e., 1/ Vzp) while the w-buff er stores z (i.e., Vzp)!

We should note here that the w-buff ering approach is a bit more expen-
sive than its z-based counterpart. This is because with w-buff ering, we cannot
linearly interpolate depths directly. Depths must be inverted prior to interpo-
lation and then re-inverted prior to being stored in the w-buff er.

10.2. The Rendering Pipeline

Now that we’ve completed our whirlwind tour of the major theoretical and
practical underpinnings of triangle rasterization, let’s turn our att ention to
how it is typically implemented. In real-time game rendering engines, the
high-level rendering steps described in Section 10.1 are implemented using
a soft ware/hardware architecture known as a pipeline . A pipeline is just an or-
dered chain of computational stages, each with a specifi c purpose, operating
on a stream of input data items and producing a stream of output data.

Each stage of a pipeline can typically operate independently of the other
stages. Hence, one of the biggest advantages of a pipelined architecture is that
it lends itself extremely well to parallelization . While the fi rst stage is chewing
on one data element, the second stage can be processing the results previously
produced by the fi rst stage, and so on down the chain.

Parallelization can also be achieved within an individual stage of the
pipeline. For example, if the computing hardware for a particular stage is du-

Figure 10.38. A plot of the function 1/pVz, showing how most of the precision lies close to
the camera.

ΔpHz

ΔpVzΔpVz

ΔpHz

pHz = 1/pVz pHz = 1/pVz

445

plicated N times on the die, N data elements can be processed in parallel by
that stage. A parallelized pipeline is shown in Figure 10.39. Ideally the stages
operate in parallel (most of the time), and certain stages are capable of operat-
ing on multiple data items simultaneously as well.

The throughput of a pipeline measures how many data items are processed
per second overall. The pipeline’s latency measures the amount of time it takes
for a single data element to make it through the entire pipeline. The latency
of an individual stage measures how long that stage takes to process a single
item. The slowest stage of a pipeline dictates the throughput of the entire pipe-
line. It also has an impact on the average latency of the pipeline as a whole.
Therefore, when designing a rendering pipeline, we att empt to minimize and
balance latency across the entire pipeline and eliminate bott lenecks. In a well-
designed pipeline, all the stages operate simultaneously, and no stage is ever
idle for very long waiting for another stage to become free.

10.2.1. Overview of the Rendering Pipeline

Some graphics texts divide the rendering pipeline into three coarse-grained
stages. In this book, we’ll extend this pipeline back even further, to encompass
the offl ine tools used to create the scenes that are ultimately rendered by the
game engine. The high level stages in our pipeline are:

 Tools stage (offl ine). Geometry and surface properties (materials) are de-
fi ned.

 Asset conditioning stage (offl ine). The geometry and material data are pro-
cessed by the asset conditioning pipeline (ACP) into an engine-ready
format.

Stage 3

Stage 1

Stage 2

Time

Figure 10.39. A parallelized pipeline. The stages all operate in parallel and some stages are
capable of operating on multiple data items simultaneously as well.

10.2. The Rendering Pipeline

446 10. The Rendering Engine

 Application stage (CPU). Potentially visible mesh instances are identifi ed
and submitt ed to the graphics hardware along with their materials for
rendering.

 Geometry processing stage (GPU). Vertices are transformed and lit and
projected into homogeneous clip space. Triangles are processed by the
optional geometry shader and then clipped to the frustum.

 Rasterization stage (GPU). Triangles are converted into fragments that are
shaded, passed through various tests (z test, alpha test, stencil test, etc.)
and fi nally blended into the frame buff er.

10.2.1.1. How the Rendering Pipeline Transforms Data

 It’s interesting to note how the format of geometry data changes as it passes
through the rendering pipeline. The tools and asset conditioning stages deal
with meshes and materials. The application stage deals in terms of mesh in-
stances and submeshes, each of which is associated with a single material.
During the geometry stage, each submesh is broken down into individual ver-
tices, which are processed largely in parallel. At the conclusion of this stage,
the triangles are reconstructed from the fully transformed and shaded verti-
ces. In the rasterization stage, each triangle is broken into fragments, and these
fragments are either discarded, or they are eventually writt en into the frame
buff er as colors. This process is illustrated in Figure 10.40.

Tools ACP

Application Geometry
Processing

VerticeVerticesMesh
Instance

Submeshes

TexturesMaterials

Textures

Mesh

Materials

Materials Textures

Rasterization

VerticeFragments

VerticePixels

VerticeTriangles

Figure 10.40. The format of geometric data changes radically as it passes through the vari-
ous stages of the rendering pipeline.

447

10.2.1.2. Implementation of the Pipeline

The fi rst two stages of the rendering pipeline are implemented offl ine, usually
executed by a PC or Linux machine. The application stage is run either by the
main CPU of the game console or PC, or by parallel processing units like the
PS3’s SPUs. The geometry and rasterization stages are usually implemented
on the graphics processing unit (GPU). In the following sections, we’ll explore
some of the details of how each of these stages is implemented.

10.2.2. The Tools Stage

In the tools stage, meshes are authored by 3D modelers in a digital content
creation (DCC) application like Maya , 3ds Max , Lightwave , Soft image/XSI ,
SketchUp , etc. The models may be defi ned using any convenient surface de-
scription—NURBS, quads, triangles, etc. However, they are invariably tessel-
lated into triangles prior to rendering by the runtime portion of the pipeline.

The vertices of a mesh may also be skinned . This involves associating
each vertex with one or more joints in an articulated skeletal structure, along
with weights describing each joint’s relative infl uence over the vertex. Skin-
ning information and the skeleton are used by the animation system to drive
the movements of a model—see Chapter 11 for more details.

Materials are also defi ned by the artists during the tools stage. This in-
volves selecting a shader for each material, selecting textures as required by
the shader, and specifying the confi guration parameters and options of each
shader. Textures are mapped onto the surfaces, and other vertex att ributes are
also defi ned, oft en by “painting” them with some kind of intuitive tool within
the DCC application.

Materials are usually authored using a commercial or custom in-house
material editor . The material editor is sometimes integrated directly into the
DCC application as a plug-in, or it may be a stand-alone program. Some mate-
rial editors are live-linked to the game, so that material authors can see what
the materials will look like in the real game. Other editors provide an offl ine
3D visualization view. Some editors even allow shader programs to be writt en
and debugged by the artist or a shader engineer. NVIDIA’s Fx Composer is an
example of such a tool; it is depicted in Figure 10.41.

Both FxComposer and Unreal Engine 3 provide powerful graphical shad-
ing languages . Such tools allow rapid prototyping of visual eff ects by con-
necting various kinds of nodes together with a mouse. These tools generally
provide a WYSIWYG display of the resulting material. The shaders created
by a graphical language usually need to be hand-optimized by a rendering
engineer, because a graphical language invariably trades some runtime per-

10.2. The Rendering Pipeline

448 10. The Rendering Engine

Figure 10.42. The Unreal Engine 3 graphical shader language.

Figure 10.41. Nvidia’s Fx Composer allows shader programs to be written, previsualized, and
debugged easily.

formance for its incredible fl exibility, generality, and ease of use. The Unreal
graphical shader editor is shown in Figure 10.42.

Materials may be stored and managed with the individual meshes. How-
ever, this can lead to duplication of data—and eff ort. In many games, a rela-
tively small number of materials can be used to defi ne a wide range of objects
in the game. For example, we might defi ne some standard, reusable materials

449

like wood, rock, metal, plastic, cloth, skin, and so on. There’s no reason to du-
plicate these materials inside every mesh. Instead, many game teams build up
a library of materials from which to choose, and the individual meshes refer
to the materials in a loosely-coupled manner.

10.2.3. The Asset Conditioning Stage

The asset conditioning stage is itself a pipeline, sometimes called the asset
conditioning pipeline or ACP. As we saw in Section 6.2.1.4, its job is to export,
process, and link together multiple types of assets into a cohesive whole. For
example, a 3D model is comprised of geometry (vertex and index buff ers),
materials, textures, and an optional skeleton. The ACP ensures that all of the
individual assets referenced by a 3D model are available and ready to be load-
ed by the engine.

Geometric and material data is extracted from the DCC application and
is usually stored in a platform-independent intermediate format. The data is
then further processed into one or more platform-specifi c formats, depend-
ing on how many target platforms the engine supports. Ideally the platform-
specifi c assets produced by this stage are ready to load into memory and use
with litt le or no postprocessing at runtime. For example, mesh data targeted
for the Xbox 360 might be output as index and vertex buff ers that are ready
to be uploaded to video RAM; on the PS3, geometry might be produced in
compressed data streams that are ready to be DMA’d to the SPUs for decom-
pression. The ACP oft en takes the needs of the material/shader into account
when building assets. For example, a particular shader might require tangent
and bitangent vectors as well as a vertex normal; the ACP could generate these
vectors automatically.

High-level scene graph data structures may also be computed during the
asset conditioning stage. For example, static level geometry may be processed
in order to build a BSP tree. (As we’ll investigate in Section 10.2.7.4, scene
graph data structures help the rendering engine to very quickly determine
which objects should be rendered, given a particular camera position and ori-
entation.)

Expensive lighting calculations are oft en done offl ine as part of the as-
set conditioning stage. This is called static lighting ; it may include calcula-
tion of light colors at the vertices of a mesh (this is called “baked” vertex
lighting), construction of texture maps that encode per-pixel lighting in-
formation known as light maps , calculation of precomputed radiance transfer
(PRT) coeffi cients (usually represented by spherical harmonic functions),
and so on.

10.2. The Rendering Pipeline

450 10. The Rendering Engine

10.2.4. A Brief History of the GPU

In the early days of game development, all rendering was done on the CPU.
Games like Castle Wolfenstein 3D and Doom pushed the limits of what early
PCs could do, rendering interactive 3D scenes without any help from special-
ized graphics hardware (other than a standard VGA card).

As the popularity of these and other PC games took off , graphics hard-
ware was developed to offl oad work from the CPU. The earliest graphics ac-
celerators, like 3Dfx’s Voodoo line of cards, handled only the most expensive
stage in the pipeline—the rasterization stage. Subsequent graphics accelera-
tors provided support for the geometry processing stage as well.

At fi rst, graphics hardware provided only a hard-wired but confi gurable
implementation known as the fi xed-function pipeline . This technology was
known as hardware transformation and lighting , or hardware T&L for short. Later,
certain substages of the pipeline were made programmable. Engineers could
now write programs called shaders to control exactly how the pipeline pro-
cessed vertices (vertex shaders) and fragments (fragment shaders, more common-
ly known as pixel shaders). With the introduction of DirectX 10, a third type of
shader known as a geometry shader was added. It permits rendering engineers
to modify, cull, or create entire primitives (triangles, lines, and points).

Graphics hardware has evolved around a specialized type of micropro-
cessor known as the graphics processing unit or GPU. A GPU is designed to
maximize throughput of the pipeline, which it achieves through massive par-
allelization . For example, a modern GPU like the GeForce 8800 can process
128 vertices or fragments simultaneously.

Even in its fully programmable form, a GPU is not a general-purpose
microprocessor—nor should it be. A GPU achieves its high processing speeds
(on the order of terafl ops on today’s GPUs) by carefully controlling the fl ow of
data through the pipeline . Certain pipeline stages are either entirely fi xed in
their function, or they are confi gurable but not programmable. Memory can
only be accessed in controlled ways, and specialized data caches are used to
minimize unnecessary duplication of computations.

In the following sections, we’ll briefl y explore the architecture of a mod-
ern GPU and see how the runtime portion of the rendering pipeline is typi-
cally implemented. We’ll speak primarily about current GPU architectures,
which are used on personal computers with the latest graphics cards and on
console platforms like the Xbox 360 and the PS3. However, not all platforms
support all of the features we’ll be discussing here. For example, the Wii does
not support programmable shaders, and most PC games need to support fall-
back rendering solutions to support older graphics cards with only limited
programmable shader support.

451

10.2.5. The GPU Pipeline

 Virtually all GPUs break the pipeline into the substages described below and
depicted in Figure 10.43. Each stage is shaded to indicate whether its function-
ality is programmable, fi xed but confi gurable, or fi xed and non-confi gurable.

10.2.5.1. Vertex Shader

 This stage is fully programmable. It is responsible for transformation and
shading/lighting of individual vertices. The input to this stage is a single ver-
tex (although in practice many vertices are processed in parallel). Its position
and normal are typically expressed in model space or world space. The vertex
shader handles transformation from model space to view space via the model-
view transform. Perspective projection is also applied, as well as per-vertex
lighting and texturing calculations, and skinning for animated characters. The
vertex shader can also perform procedural animation by modifying the posi-
tion of the vertex. Examples of this include foliage that sways in the breeze or
an undulating water surface. The output of this stage is a fully transformed
and lit vertex, whose position and normal are expressed in homogeneous clip
space (see Section 10.1.4.4).

On modern GPUs, the vertex shader has full access to texture data—a ca-
pability that used to be available only to the pixel shader. This is particularly
useful when textures are used as stand-alone data structures like height maps
or look-up tables .

10.2.5.2. Geometry Shader

 This optional stage is also fully programmable. The geometry shader oper-
ates on entire primitives (triangles, lines, and points) in homogeneous clip
space. It is capable of culling or modifying input primitives, and it can also
generate new primitives. Typical uses include shadow volume extrusion (see

Configurable
Fixed-Function

Programmable

Primitive
Assembly

Geometry
Shader Clipping Screen

Mapping
Triangle
Setup

Triangle
Traversal

Early
Z Test

Pixel
Shader

Merge
/ ROP

Stream
Output

Vertex
Shader

Frame
Buffer

Figure 10.43. The geometry processing and rasterization stages of the rendering pipeline, as
implemented by a typical GPU. The white stages are programmable, the light grey stages are
confi gurable, and the dark grey boxes are fi xed-function.

10.2. The Rendering Pipeline

452 10. The Rendering Engine

Section 10.3.3.1), rendering the six faces of a cube map (see Section 10.3.1.4),
fur fi n extrusion around silhouett e edges of meshes, creation of particle
quads from point data (see Section 10.4.1), dynamic tessellation, fractal sub-
division of line segments for lightning eff ects, cloth simulations, and the list
goes on.

10.2.5.3. Stream Output

Modern GPUs permit the data that has been processed up to this point in the
pipeline to be writt en back to memory. From there, it can then be looped back
to the top of the pipeline for further processing. This feature is called stream
output .

Stream output permits a number of intriguing visual eff ects to be achieved
without the aid of the CPU. An excellent example is hair rendering. Hair is
oft en represented as a collection of cubic spline curves. It used to be that hair
physics simulation would be done on the CPU. The CPU would also tessellate
the splines into line segments. Finally the GPU would render the segments.

With stream output, the GPU can do the physics simulation on the control
points of the hair splines within the vertex shader. The geometry shader tes-
sellates the splines, and the stream output feature is used to write the tessel-
lated vertex data to memory. The line segments are then piped back into the
top of the pipeline so they can be rendered.

10.2.5.4. Clipping

The clipping stage chops off those portions of the triangles that straddle the
frustum . Clipping is done by identifying vertices that lie outside the frustum
and then fi nding the intersection of the triangle’s edges with the planes of
the frustum. These intersection points become new vertices that defi ne one or
more clipped triangles.

This stage is fi xed in function, but it is somewhat confi gurable. For ex-
ample, user-defi ned clipping planes can be added in addition to the frustum
planes. This stage can also be confi gured to cull triangles that lie entirely out-
side the frustum.

10.2.5.5. Screen Mapping

Screen mapping simply scales and shift s the vertices from homogeneous clip
space into screen space. This stage is entirely fi xed and non-confi gurable.

10.2.5.6. Triangle Setup

During triangle setup , the rasterization hardware is initialized for effi cient
conversion of the triangle into fragments. This stage is not confi gurable.

453

10.2.5.7. Triangle Traversal

 Each triangle is broken into fragments (i.e., rasterized) by the triangle travers-
al stage. Usually one fragment is generated for each pixel, although with mul-
tisample antialiasing (MSAA), multiple fragments are created per pixel (see
Section 10.1.4.7). The triangle traversal stage also interpolates vertex att ributes
in order to generate per-fragment att ributes for processing by the pixel shader.
Perspective-correct interpolation is used where appropriate. This stage’s func-
tionality is fi xed and not confi gurable.

10.2.5.8. Early Z Test

 Many graphics cards are capable of checking the depth of the fragment at this
point in the pipeline, discarding it if it is being occluded by the pixel already
in the frame buff er. This allows the (potentially very expensive) pixel shader
stage to be skipped entirely for occluded fragments.

Surprisingly, not all graphics hardware supports depth testing at this
stage of the pipeline. In older GPU designs, the z test was done along with al-
pha testing, aft er the pixel shader had run. For this reason, this stage is called
the early z test or early depth test stage.

10.2.5.9. Pixel Shader

 This stage is fully programmable. Its job is to shade (i.e., light and otherwise
process) each fragment. The pixel shader can also discard fragments, for ex-
ample because they are deemed to be entirely transparent. The pixel shader
can address one or more texture maps, run per-pixel lighting calculations, and
do whatever else is necessary to determine the fragment’s color.

The input to this stage is a collection of per-fragment att ributes (which
have been interpolated from the vertex att ributes by the triangle traversal
stage). The output is a single color vector describing the desired color of the
fragment.

10.2.5.10. Merging / Raster Operations Stage

The fi nal stage of the pipeline is known as the merging stage or blending stage,
also known as the raster operations stage or ROP in NVIDIA parlance. This
stage is not programmable, but it is highly confi gurable. It is responsible for
running various fragment tests including the depth test (see Section 10.1.4.8),
alpha test (in which the values of the fragment’s and pixel’s alpha channels can
be used to reject certain fragments), and stencil test (see Section 10.3.3.1).

If the fragment passes all of the tests, its color is blended (merged) with
the color that is already present in the frame buff er. The way in which blend-
ing occurs is controlled by the alpha blending function —a function whose basic

10.2. The Rendering Pipeline

454 10. The Rendering Engine

structure is hard-wired, but whose operators and parameters can be confi g-
ured in order to produce a wide variety of blending operations.

Alpha blending is most commonly used to render semi-transparent ge-
ometry. In this case, the following blending function is used:

 (1) .D S S S DA A′ = + −C C C

The subscripts S and D stand for “source” (the incoming fragment) and “des-
tination” (the pixel in the frame buff er), respectively. Therefore, the color that
is writt en into the frame buff er (D′C) is a weighted average of the existing frame
buff er contents (DC) and the color of the fragment being drawn (SC). The
blend weight (SA) is just the source alpha of the incoming fragment.

For alpha blending to look right, the semi-transparent and translucent
surfaces in the scene must be sorted and rendered in back-to-front order, af-
ter the opaque geometry has been rendered to the frame buff er. This is be-
cause aft er alpha blending has been performed, the depth of the new fragment
overwrites the depth of the pixel with which it was blended. In other words,
the depth buff er ignores transparency (unless depth writes have been turned
off , of course). If we are rendering a stack of translucent objects on top of an
opaque backdrop, the resulting pixel color should ideally be a blend between
the opaque surface’s color and the colors of all of the translucent surfaces in
the stack. If we try to render the stack in any order other than back-to-front,
depth test failures will cause some of the translucent fragments to be discard-
ed, resulting in an incomplete blend (and a rather odd-looking image).

Other alpha blending functions can be defi ned as well, for purposes other
than transparency blending. The general blending equation takes the form

() (),D S S D D′ = ⊗ + ⊗C w C w C where the weighting factors wS and wD can be
selected by the programmer from a predefi ned set of values including zero,
one, source or destination color, source or destination alpha, and one minus
the source or destination color or alpha. The operator ⊗ is either a regular
scalar-vector multiplication or a component-wise vector-vector multiplication
(a Hadamard product —see Section 4.2.4.1) depending on the data types of wS

and wD.

10.2.6. Programmable Shaders

 Now that we have an end-to-end picture of the GPU pipeline in mind, let’s
take a deeper look at the most interesting part of the pipeline—the program-
mable shaders. Shader architectures have evolved signifi cantly since their
introduction with DirectX 8. Early shader models supported only low-level as-
sembly language programming, and the instruction set and register set of the
pixel shader diff ered signifi cantly from those of the vertex shader. DirectX

455

9 brought with it support for high-level C-like shader languages such as Cg
(C for graphics), HLSL (High-Level Shading Language —Microsoft ’s imple-
mentation of the Cg language), and GLSL (OpenGL shading language). With
DirectX 10, the geometry shader was introduced, and with it came a unifi ed
shader architecture called shader model 4.0 in DirectX parlance. In the unifi ed
shader model, all three types of shaders support roughly the same instruction
set and have roughly the same set of capabilities, including the ability to read
texture memory.

A shader takes a single element of input data and transforms it into zero
or more elements of output data.

 In the case of the vertex shader, the input is a vertex whose position and
normal are expressed in model space or world space. The output of the
vertex shader is a fully transformed and lit vertex, expressed in homo-
geneous clip space.

 The input to the geometry shader is a single n-vertex primitive—a point
(n = 1), line segment (n = 2), or triangle (n = 3)—with up to n additional
vertices that act as control points. The output is zero or more primitives,
possibly of a diff erent type than the input. For example, the geometry
shader could convert points into two-triangle quads, or it could trans-
form triangles into triangles but optionally discard some triangles, and
so on.

 The pixel shader’s input is a fragment whose att ributes have been in-
terpolated from the three vertices of the triangle from which it came.
The output of the pixel shader is the color that will be writt en into the
frame buff er (presuming the fragment passes the depth test and other
optional tests). The pixel shader is also capable of discarding fragments
explicitly, in which case it produces no output.

10.2.6.1. Accessing Memory

 Because the GPU implements a data processing pipeline, access to RAM is
very carefully controlled. A shader program cannot read from or write to
memory directly. Instead, its memory accesses are limited to two methods:
registers and texture maps.

Shader Registers

 A shader can access RAM indirectly via registers. All GPU registers are in 128-
bit SIMD format. Each register is capable of holding four 32-bit fl oating-point
or integer values (represented by the float4 data type in the Cg language).
Such a register can contain a four-element vector in homogeneous coordinates
or a color in RGBA format, with each component in 32-bit fl oating-point for-

10.2. The Rendering Pipeline

456 10. The Rendering Engine

mat. Matrices can be represented by groups of three or four registers (rep-
resented by built-in matrix types like float4x4 in Cg). A GPU register can
also be used to hold a single 32-bit scalar, in which case the value is usually
replicated across all four 32-bit fi elds. Some GPUs can operate on 16-bit fi elds,
known as halfs. (Cg provides various built-in types like half4 and half4x4
for this purpose.)

Registers come in four fl avors, as follows:

 Input registers. These registers are the shader’s primary source of input
data. In a vertex shader, the input registers contain att ribute data ob-
tained directly from the vertices. In a pixel shader, the input registers
contain interpolated vertex att ribute data corresponding to a single
fragment. The values of all input registers are set automatically by the
GPU prior to invoking the shader.

 Constant registers. The values of constant registers are set by the applica-
tion and can change from primitive to primitive. Their values are con-
stant only from the point of view of the shader program. They provide
a secondary form of input to the shader. Typical contents include the
model-view matrix, the projection matrix, light parameters, and any
other parameters required by the shader that are not available as vertex
att ributes.

 Temporary registers. These registers are for use by the shader program inter-
nally and are typically used to store intermediate results of calculations.

 Output registers. The contents of these registers are fi lled in by the shader
and serve as its only form of output. In a vertex shader, the output regis-
ters contain vertex att ributes such as the transformed position and nor-
mal vectors in homogeneous clip space, optional vertex colors, texture
coordinates, and so on. In a pixel shader, the output register contains
the fi nal color of the fragment being shaded.

The application provides the values of the constant registers when it sub-
mits primitives for rendering. The GPU automatically copies vertex or frag-
ment att ribute data from video RAM into the appropriate input registers prior
to calling the shader program, and it also writes the contents of the output
registers back into RAM at the conclusion of the program’s execution so that
the data can be passed to the next stage of the pipeline.

GPUs typically cache output data so that it can be reused without be-
ing recalculated. For example, the post-transform vertex cache stores the most-
recently processed vertices emitt ed by the vertex shader. If a triangle is en-
countered that refers to a previously-processed vertex, it will be read from the
post-transform vertex cache if possible—the vertex shader need only be called

457

again if the vertex in question has since been ejected from the cache to make
room for newly processed vertices.

Textures

A shader also has direct read-only access to texture maps. Texture data is ad-
dressed via texture coordinates, rather than via absolute memory addresses.
The GPU’s texture samplers automatically fi lter the texture data, blending val-
ues between adjacent texels or adjacent mipmap levels as appropriate. Texture
fi ltering can be disabled in order to gain direct access to the values of particu-
lar texels. This can be useful when a texture map is used as a data table, for
example.

Shaders can only write to texture maps in an indirect manner—by render-
ing the scene to an off -screen frame buff er that is interpreted as a texture map
by subsequent rendering passes. This feature is known as render to texture .

10.2.6.2. Introduction to High-Level Shader Language Syntax

High-level shader languages like Cg and GLSL are modeled aft er the C pro-
gramming language. The programmer can declare functions, defi ne a simple
struct, and perform arithmetic. However, as we said above, a shader pro-
gram only has access to registers and textures. As such, the struct and vari-
able we declare in Cg or GLSL is mapped directly onto registers by the shader
compiler. We defi ne these mappings in the following ways:

 Semantics . Variables and struct members can be suffi xed with a co-
lon followed by a keyword known as a semantic. The semantic tells the
shader compiler to bind the variable or data member to a particular
vertex or fragment att ribute. For example, in a vertex shader we might
declare an input struct whose members map to the position and color
att ributes of a vertex as follows:

 struct VtxOut
 {

 float4 pos : POSITION; // map to the position
 // attribute
 float4 color : COLOR; // map to the color attribute
 };

 Input versus output. The compiler determines whether a particular vari-
able or struct should map to input or output registers from the context
in which it is used. If a variable is passed as an argument to the shader
program’s main function, it is assumed to be an input; if it is the return
value of the main function, it is taken to be an output.

10.2. The Rendering Pipeline

458 10. The Rendering Engine

 VtxOut vshaderMain(VtxIn in) // in maps to input
 // registers
 {
 VtxOut out;
 // ...
 return out; // out maps to output registers
 }

 Uniform declaration . To gain access to the data supplied by the applica-
tion via the constant registers, we can declare a variable with the key-
word uniform. For example, the model-view matrix could be passed to
a vertex shader as follows:

 VtxOut vshaderMain(VtxIn in,
 uniform float4x4 modelViewMatrix)
 {
 VtxOut out;
 // ...
 return out;
 }

Arithmetic operations can be performed by invoking C-style operators,
or by calling intrinsic functions as appropriate. For example, to multiply the
input vertex position by the model-view matrix, we could write:

 VtxOut vshaderMain(VtxIn in,
 uniform float4x4 modelViewMatrix)
 {
 VtxOut out;

out.pos = mul(modelViewMatrix, in.pos);
 out.color = float4(0, 1, 0, 1); // RGBA green
 return out;
 }

Data is obtained from textures by calling special intrinsic functions that
read the value of the texels at a specifi ed texture coordinate. A number of vari-
ants are available for reading one-, two- and three-dimensional textures in
various formats, with and without fi ltering. Special texture addressing modes
are also available for accessing cube maps and shadow maps. References to
the texture maps themselves are declared using a special data type known as
a texture sampler declaration. For example, the data type sampler2D repre-
sents a reference to a typical two-dimensional texture. The following simple
Cg pixel shader applies a diff use texture to a triangle:

struct FragmentOut
{
 float4 color : COLOR;
};

459

FragmentOut pshaderMain(float2 uv : TEXCOORD0,
 uniform sampler2D texture)
{
 FragmentOut out;

 out.color = tex2D(texture, uv); // look up texel at
 // (u,v)
 return out;
}

10.2.6.3. Effect Files

 By itself, a shader program isn’t particularly useful. Additional information is
required by the GPU pipeline in order to call the shader program with mean-
ingful inputs. For example, we need to specify how the application-specifi ed
parameters, like the model-view matrix, light parameters, and so on, map to
the uniform variables declared in the shader program. In addition, some vi-
sual eff ects require two or more rendering passes, but a shader program only
describes the operations to be applied during a single rendering pass. If we
are writing a game for the PC platform, we will need to defi ne “fallback” ver-
sions of some of our more-advanced rendering eff ects, so that they will work
even on older graphics cards. To tie our shader program(s) together into a
complete visual eff ect, we turn to a fi le format known as an eff ect fi le.

Diff erent rendering engines implement eff ects in slightly diff erent ways.
In Cg, the eff ect fi le format is known as CgFX . Ogre3D uses a fi le format very
similar to CgFX known as a material fi le. GLSL eff ects can be described using
the COLLADA format, which is based on XML. Despite the diff erences, eff ects
generally take on the following hierarchical format:

 At global scope, structs, shader programs (implemented as various
“main” functions), and global variables (which map to application-
specifi ed constant parameters) are defi ned.

 One or more techniques are defi ned. A technique represents one way to
render a particular visual eff ect. An eff ect typically provides a primary
technique for its highest-quality implementation and possibly a number
of fall back techniques for use on lower-powered graphics hardware.

 Within each technique, one or more passes are defi ned. A pass describes
how a single full-frame image should be rendered. It typically includes
a reference to a vertex, geometry and/or pixel shader program’s “main”
function, various parameter bindings, and optional render state sett ings.

10.2.6.4. Further Reading

In this section, we’ve only had a small taste of what high-level shader pro-
gramming is like—a complete tutorial is beyond our scope here. For a much

10.2. The Rendering Pipeline

460 10. The Rendering Engine

more-detailed introduction to Cg shader programming, refer to the Cg tu-
torial available on NVIDIA’s website at htt p://developer.nvidia.com/object/
cg_tutorial_home.html.

10.2.7. The Application Stage

Now that we understand how the GPU works, we can discuss the pipeline
stage that is responsible for driving it—the application stage . This stage has
three roles:

 1. Visibility determination. Only objects that are visible (or at least poten-
tially visible) should be submitt ed to the GPU, lest we waste valuable
resources processing triangles that will never be seen.

 2. Submitt ing geometry to the GPU for rendering. Submesh-material pairs are
sent to the GPU via a rendering call like DrawIndexedPrimitive()
(DirectX) or glDrawArrays() (OpenGL), or via direct construction of
the GPU command list. The geometry may be sorted for optimal render-
ing performance. Geometry might be submitt ed more than once if the
scene needs to be rendered in multiple passes.

 3. Controlling shader parameters and render state. The uniform parameters
passed to the shader via constant registers are confi gured by the ap-
plication stage on a per-primitive basis. In addition, the application
stage must set all of the confi gurable parameters of the non-program-
mable pipeline stages to ensure that each primitive is rendered ap-
propriately.

In the following sections, we’ll briefl y explore how the application stage per-
forms these tasks.

10.2.7.1. Visibility Determination

The cheapest triangles are the ones you never draw. So it’s incredibly impor-
tant to cull objects from the scene that do not contribute to the fi nal rendered
image prior to submitt ing them to the GPU. The process of constructing the
list of visible mesh instances is known as visibility determination .

Frustum Culling

In frustum culling , all objects that lie entirely outside the frustum are exclud-
ed from our render list. Given a candidate mesh instance, we can determine
whether or not it lies inside the frustum by performing some simple tests be-
tween the object’s bounding volume and the six frustum planes. The bounding
volume is usually a sphere, because spheres are particularly easy to cull. For

461

each frustum plane, we move the plane inward a distance equal to the radius
of the sphere, then we determine on which side of each modifi ed plane the
center point of the sphere lies. If the sphere is found to be on the front side of
all six modifi ed planes, the sphere is inside the frustum.

A scene graph data structure, described in Section 10.2.7.4, can help opti-
mize frustum culling by allowing us to ignore objects whose bounding spheres
are nowhere close to being inside the frustum.

Occlusion and Potentially Visible Sets

Even when objects lie entirely within the frustum, they may occlude one an-
other. Removing objects from the visible list that are entirely occluded by
other objects is called occlusion culling . In crowded environments viewed from
ground level, there can be a great deal of inter-object occlusion, making oc-
clusion culling extremely important. In less crowded scenes, or when scenes
are viewed from above, much less occlusion may be present and the cost of
occlusion culling may outweigh its benefi ts.

Gross occlusion culling of a large-scale environment can be done by pre-
calculating a potentially visible set (PVS). For any given camera vantage point,
a PVS lists those scene objects that might be visible. A PVS errs on the side of
including objects that aren’t actually visible, rather than excluding objects that
actually would have contributed to the rendered scene.

One way to implement a PVS system is to chop the level up into regions
of some kind. Each region can be provided with a list of the other regions
that can be seen when the camera is inside it. These PVSs might be manu-
ally specifi ed by the artists or game designers. More commonly, an automated
offl ine tool generates the PVS based on user-specifi ed regions. Such a tool
usually operates by rendering the scene from various randomly distributed
vantage points within a region. Every region’s geometry is color coded, so the
list of visible regions can be found by scanning the resulting frame buff er and
tabulating the region colors that are found. Because automated PVS tools are
imperfect, they typically provide the user with a mechanism for tweaking the
results, either by manually placing vantage points for testing, or by manually
specifying a list of regions that should be explicitly included or excluded from
a particular region’s PVS.

Portals

Another way to determine what portions of a scene are visible is to use portals .
In portal rendering, the game world is divided up into semiclosed regions
that are connected to one another via holes, such as windows and doorways.
These holes are called portals. They are usually represented by polygons that
describe their boundaries.

10.2. The Rendering Pipeline

462 10. The Rendering Engine

To render a scene with portals, we start by rendering the region that con-
tains the camera. Then, for each portal in the region, we extend a frustum-like
volume consisting of planes extending from the camera’s focal point through
each edge of the portal’s bounding polygon. The contents of the neighboring
region can be culled to this portal volume in exactly the same way geometry is
culled against the camera frustum. This ensures that only the visible geometry
in the adjacent regions will be rendered. Figure 10.44 provides an illustration
of this technique.

Occlusion Volumes (Antiportals)

If we fl ip the portal concept on its head, pyramidal volumes can also be used
to describe regions of the scene that cannot be seen because they are being
occluded by an object. These volumes are known as occlusion volumes or anti-
portals . To construct an occlusion volume, we fi nd the silhouett e edges of each

Figure 10.44. Portals are used to defi ne frustum-like volumes which are used to cull the con-
tents of neighboring regions. In this example, objects A, B, and D will be culled because they
lie outside one of the portals; the other objects will be visible.

A

H

E

D

F

GB

C

Figure 10.45. As a result of the antiportals corresponding to objects A, B, and C, objects D, E,
F, and G are culled. Therefore only A, B, C, and H are visible.

463

occluding object and extend planes outward from the camera’s focal point
through each of these edges. We test more-distant objects against these oc-
clusion volumes and cull them if they lie entirely within the occlusion region.
This is illustrated in Figure 10.45.

Portals are best used when rendering enclosed indoor environments with
a relatively small number of windows and doorways between “rooms.” In
this kind of scene, the portals occupy a relatively small percentage of the total
volume of the camera frustum, resulting in a large number of objects outside
the portals which can be culled. Antiportals are best applied to large outdoor
environments, in which nearby objects oft en occlude large swaths of the cam-
era frustum. In this case, the antiportals occupy a relatively large percent-
age of the total camera frustum volume, resulting in large numbers of culled
objects.

10.2.7.2. Primitive Submission

 Once a list of visible geometric primitives has been generated, the individual
primitives must be submitt ed to the GPU pipeline for rendering. This can be
accomplished by making calls to DrawIndexedPrimitive() in DirectX or
glDrawArrays() in OpenGL.

Render State

 As we learned in Section 10.2.5, the functionality of many of the GPU pipeline’s
stages is fi xed but confi gurable. And even programmable stages are driven in
part by confi gurable parameters. Some examples of these confi gurable param-
eters are listed below (although this is by no means a complete list!)

 world-view matrix;
 light direction vectors;
 texture bindings (i.e., which textures to use for a given material/

shader);
 texture addressing and fi ltering modes;
 time base for scrolling textures and other animated eff ects;
 z test (enabled or disabled);
 alpha blending options.

The set of all confi gurable parameters within the GPU pipeline is known
as the hardware state or render state. It is the application stage’s responsibility to
ensure that the hardware state is confi gured properly and completely for each
submitt ed primitive. Ideally these state sett ings are described completely by
the material associated with each submesh. So the application stage’s job boils

10.2. The Rendering Pipeline

464 10. The Rendering Engine

down to iterating through the list of visible mesh instances, iterating over each
submesh-material pair, sett ing the render state based on the material’s specifi -
cations, and then calling the low level primitive submission functions (Draw-
IndexedPrimitive(), glDrawArrays() or similar).

State Leaks

If we forget to set some aspect of the render state between submitt ed primi-
tives, the sett ings used on the previous primitive will “leak” over onto the new
primitive. A render state leak might manifest itself as an object with the wrong
texture or an incorrect lighting eff ect, for example. Clearly it’s important that
the application stage never allow state leaks to occur.

The GPU Command List

The application stage actually communicates with the GPU via a command
list . These commands interleave render state sett ings with references to the
geometry that should be drawn. For example, to render objects A and B with
material 1, followed by objects C, D, and E using material 2, the command list
might look like this:

 Set render state for material 1 (multiple commands, one per render state
sett ing).

 Submit primitive A.
 Submit primitive B.
 Set render state for material 2 (multiple commands).
 Submit primitive C.
 Submit primitive D.
 Submit primitive E.

Under the hood, API functions like DrawIndexedPrimitive() actu-
ally just construct and submit GPU command lists. The cost of these API calls
can themselves be too high for some applications. To maximize performance,
some game engines build GPU command lists manually or by calling a low-
level rendering API like the PS3’s libgcm library.

10.2.7.3. Geometry Sorting

Render state sett ings are global—they apply to the entire GPU as a whole.
So in order to change render state sett ings, the entire GPU pipeline must be
fl ushed before the new sett ings can be applied. This can cause massive perfor-
mance degradation if not managed carefully.

Clearly we’d like to change render sett ings as infrequently as possible.
The best way to accomplish this is to sort our geometry by material. That way,

465

we can install material A’s sett ings, render all geometry associated with mate-
rial A, and then move on to material B.

Unfortunately, sorting geometry by material can have a detrimental eff ect
on rendering performance because it increases overdraw —a situation in which
the same pixel is fi lled multiple times by multiple overlapping triangles. Cer-
tainly some overdraw is necessary and desirable, as it is the only way to prop-
erly alpha-blend transparent and translucent surfaces into a scene. However,
overdraw of opaque pixels is always a waste of GPU bandwidth.

The early z test is designed to discard occluded fragments before the ex-
pensive pixel shader has a chance to execute. But to take maximum advantage
of early z, we need to draw the triangles in front-to-back order. That way, the
closest triangles will fi ll the z-buff er right off the bat, and all of the fragments
coming from more-distant triangles behind them can be quickly discarded,
with litt le or no overdraw.

Z Prepass to the Rescue

How can we reconcile the need to sort geometry by material with the confl ict-
ing need to render opaque geometry in a front-to-back order? The answer lies
in a GPU feature known as z prepass .

The idea behind z prepass is to render the scene twice: the fi rst time to
generate the contents of the z-buff er as effi ciently as possible and the second
time to populate the frame buff er with full color information (but this time
with no overdraw, thanks to the contents of the z-buff er). The GPU provides a
special double-speed rendering mode in which the pixel shaders are disabled,
and only the z-buff er is updated. Opaque geometry can be rendered in front-
to-back order during this phase, to minimize the time required to generate
the z-buff er contents. Then the geometry can be resorted into material order
and rendered in full color with minimal stage changes for maximum pipeline
throughput.

Once the opaque geometry has been rendered, transparent surfaces can
be drawn in back-to-front order. Unfortunately, there is no general solution
to the material sorting problem for transparent geometry. We must render it
in back-to-front order to achieve the proper alpha-blended result. Therefore
we must accept the cost of frequent state changes when drawing transparent
geometry (unless our particular game’s usage of transparent geometry is such
that a specifi c optimization can be implemented).

10.2.7.4. Scene Graphs

Modern game worlds can be very large. The majority of the geometry in most
scenes does not lie within the camera frustum, so frustum culling all of these

10.2. The Rendering Pipeline

466 10. The Rendering Engine

objects explicitly is usually incredibly wasteful. Instead, we would like to de-
vise a data structure that manages all of the geometry in the scene and allows
us to quickly discard large swaths of the world that are nowhere near the cam-
era frustum prior to performing detailed frustum culling. Ideally, this data
structure should also help us to sort the geometry in the scene, either in front-
to-back order for the z prepass or in material order for full-color rendering.

Such a data structure is oft en called a scene graph , in reference to the graph-
like data structures oft en used by fi lm rendering engines and DCC tools like
Maya. However, a game’s scene graph needn’t be a graph, and in fact the data
structure of choice is usually some kind of tree. The basic idea behind most
of these data structures is to partition three-dimensional space in a way that
makes it easy to discard regions that do not intersect the frustum, without
having to frustum cull all of the individual objects within them. Examples
include quadtrees and octress, BSP trees, kd-trees, and spatial hashing tech-
niques.

Quadtrees and Octrees

A quadtree divides space into quadrants recursively. Each level of recursion
is represented by a node in the quadtree with four children, one for each
quadrant. The quadrants are typically separated by vertically oriented, ax-
is-aligned planes, so that the quadrants are square or rectangular. However,
some quadtrees subdivide space using arbitrarily-shaped regions.

Quadtrees can be used to store and organize virtually any kind of spa-
tially-distributed data. In the context of rendering engines, quadtrees are of-
ten used to store renderable primitives such as mesh instances, subregions of
terrain geometry, or individual triangles of a large static mesh, for the pur-
poses of effi cient frustum culling. The renderable primitives are stored at the

Figure 10.46. A top-down view of a space divided recursively into quadrants for storage in a
quadtree, based on the criterion of one point per region.

467

leaves of the tree, and we usually aim to achieve a roughly uniform number of
primitives within each leaf region. This can be achieved by deciding whether
to continue or terminate the subdivision based on the number of primitives
within a region.

To determine which primitives are visible within the camera frustum,
we walk the tree from the root to the leaves, checking each region for inter-
section with the frustum. If a given quadrant does not intersect the frustum,
then we know that none of its child regions will do so either, and we can stop
traversing that branch of the tree. This allows us to search for potentially
visible primitives much more quickly than would be possible with a linear
search (usually in O(log n) time). An example of a quadtree subdivision of
space is shown in Figure 10.46.

An octree is the three-dimensional equivalent of a quadtree, dividing space
into eight subregions at each level of the recursive subdivision. The regions of
an octree are oft en cubes or rectangular prisms but can be arbitrarily-shaped
three-dimensional regions in general.

Bounding Sphere Trees

In the same way that a quadtree or octree subdivides space into (usually)
rectangular regions, a bounding sphere tree divides space into spherical regions
hierarchically. The leaves of the tree contain the bounding spheres of the ren-
derable primitives in the scene. We collect these primitives into small logical
groups and calculate the net bounding sphere of each group. The groups are
themselves collected into larger groups, and this process continues until we
have a single group with a bounding sphere that encompasses the entire vir-
tual world. To generate a list of potentially visible primitives, we walk the tree
from the root to the leaves, testing each bounding sphere against the frustum,
and only recursing down branches that intersect it.

BSP Trees

A binary space partitioning (BSP) tree divides space in half recursively until
the objects within each half-space meet some predefi ned criteria (much as a
quadtree divides space into quadrants). BSP trees have numerous uses, in-
cluding collision detection and constructive solid geometry, as well as its most
well-known application as a method for increasing the performance of frus-
tum culling and geometry sorting for 3D graphics. A kd-tree is a generaliza-
tion of the BSP tree concept to k dimensions.

In the context of rendering, a BSP tree divides space with a single plane at
each level of the recursion. The dividing planes can be axis-aligned, but more
commonly each subdivision corresponds to the plane of a single triangle in
the scene. All of the other triangles are then categorized as being either on

10.2. The Rendering Pipeline

468 10. The Rendering Engine

the front side or the back side of the plane. Any triangles that intersect the
dividing plane are themselves divided into three new triangles, so that every
triangle lies either entirely in front of or entirely behind the plane, or is copla-
nar with it. The result is a binary tree with a dividing plane and one or more
triangles at each interior node and triangles at the leaves.

A BSP tree can be used for frustum culling in much the same way a
quadtree, octree, or bounding sphere tree can. However, when generated with
individual triangles as described above, a BSP tree can also be used to sort tri-
angles into a strictly back-to-front or front-to-back order. This was particularly
important for early 3D games like Doom, which did not have the benefi t of a
z-buff er and so were forced to use the painter’s algorithm (i.e., to render the
scene from back to front) to ensure proper inter-triangle occlusion.

Given a camera view point in 3D space, a back-to-front sorting algorithm
walks the tree from the root. At each node, we check whether the view point
is in front of or behind that node’s dividing plane. If the camera is in front of
a node’s plane, we visit the node’s back children fi rst, then draw any triangles
that are coplanar with its dividing plane, and fi nally we visit its front chil-
dren. Likewise, when the camera’s view point is found to be behind a node’s
dividing plane, we visit the node’s front children fi rst, then draw the triangles
coplanar with the node’s plane, and fi nally we visit its back children. This
traversal scheme ensures that the triangles farthest from the camera will be
visited before those that are closer to it, and hence it yields a back-to-front

Figure 10.47. An example of back-to-front traversal of the triangles in a BSP tree. The tri-
angles are shown edge-on in two dimensions for simplicity, but in a real BSP tree the triangles
and dividing planes would be arbitrarily oriented in space.

A

B

C D2

D1

Camera Visit A
Cam is in front
 V isit B
 Leaf node

Draw B
Draw A

 V isit C
 Cam is in front
 V isit D 1
 Leaf node

Draw D1
Draw C

 V isit D 2
 Leaf node

Draw D2

A

D2 D1

C B

469

ordering. Because this algorithm traverses all of the triangles in the scene, the
order of the traversal is independent of the direction the camera is looking. A
secondary frustum culling step would be required in order to traverse only
visible triangles. A simple BSP tree is shown in Figure 10.47, along with the
tree traversal that would be done for the camera position shown.

Full coverage of BSP tree generation and usage algorithms is beyond our
scope here. See htt p://www.ccs.neu.edu/home/donghui/teaching/slides/ge-
ometry/BSP2D.ppt and htt p://www.gamedev.net/reference/articles/article657.
asp for more details on BSP trees.

10.2.7.5. Choosing a Scene Graph

 Clearly there are many diff erent kinds of scene graphs. Which data structure
to select for your game will depend upon the nature of the scenes you expect
to be rendering. To make the choice wisely, you must have a clear understand-
ing of what is required—and more importantly what is not required—when
rendering scenes for your particular game.

For example, if you’re implementing a fi ghting game, in which two char-
acters batt le it out in a ring surrounded by a mostly static environment, you
may not need much of a scene graph at all. If your game takes place primarily
in enclosed indoor environments, a BSP tree or portal system may serve you
well. If the action takes place outdoors on relatively fl at terrain, and the scene
is viewed primarily from above (as might be the case in a real-time strategy
game or god game), a simple quad tree might be all that’s required to achieve
high rendering speeds. On the other hand, if an outdoor scene is viewed pri-
marily from the point of view of someone on the ground, we may need addi-
tional culling mechanisms. Densely populated scenes can benefi t from an oc-
clusion volume (antiportal) system, because there will be plenty of occluders.
On the other hand, if your outdoor scene is very sparse, adding an antiportal
system probably won’t pay dividends (and might even hurt your frame rate).

Ultimately, your choice of scene graph should be based on hard data ob-
tained by actually measuring the performance of your rendering engine. You
may be surprised to learn where all your cycles are actually going! But once
you know, you can select scene graph data structures and/or other optimiza-
tions to target the specifi c problems at hand.

10.3. Advanced Lighting and Global Illumination

In order to render photorealistic scenes, we need physically accurate global
illumination algorithms. A complete coverage of these techniques is beyond
our scope. In the following sections, we will briefl y outline the most prevalent

10.3. Advanced Lighting and Global Illumination

http://www.ccs.neu.edu/home/donghui/teaching/slides/ge-ometry/BSP2D.ppt
http://www.ccs.neu.edu/home/donghui/teaching/slides/ge-ometry/BSP2D.ppt
http://www.ccs.neu.edu/home/donghui/teaching/slides/ge-ometry/BSP2D.ppt
http://www.gamedev.net/reference/articles/article657

470 10. The Rendering Engine

techniques in use within the game industry today. Our goal here is to provide
you with an awareness of these techniques and a jumping off point for further
investigation. For an excellent in-depth coverage of this topic, see [8].

10.3.1. Image-Based Lighting

A number of advanced lighting and shading techniques make heavy use of
image data, usually in the form of two-dimensional texture maps. These are
called image-based lighting algorithms.

10.3.1.1. Normal Mapping

A normal map specifi es a surface normal direction vector at each texel. This al-
lows a 3D modeler to provide the rendering engine with a highly detailed de-
scription of a surface’s shape, without having to tessellate the model to a high
degree (as would be required if this same information were to be provided
via vertex normals). Using a normal map, a single fl at triangle can be made to
look as though it were constructed from millions of tiny triangles. An example
of normal mapping is shown in Figure 10.48.

The normal vectors are typically encoded in the RGB color channels of the
texture, with a suitable bias to overcome the fact that RGB channels are strictly
positive while normal vector components can be negative. Sometimes only
two coordinates are stored in the texture; the third can be easily calculated at
runtime, given the assumption that the surface normals are unit vectors.

Figure 10.48. An example of a normal-mapped surface.

10.3.1.2. Height Maps: Parallax and Relief Mapping

As its name implies, a height map encodes the height of the ideal surface above
or below the surface of the triangle. Height maps are typically encoded as
grayscale images, since we only need a single height value per texel.

471

Height maps are oft en used for parallax mapping and relief mapping —two
techniques that can make a planar surface appear to have rather extreme
height variation that properly self-occludes and self-shadows. Figure 10.49
shows an example of parallax occlusion mapping implemented in DirectX 9.

A height map can also be used as a cheap way to generate surface normals.
This technique was used in the early days of bump mapping . Nowadays, most
game engines store surface normal information explicitly in a normal map,
rather than calculating the normals from a height map.

10.3.1.3. Specular/Gloss Maps

When light refl ects directly off a shiny surface, we call this specular refl ection.
The intensity of a specular refl ection depends on the relative angles of the
viewer, the light source, and the surface normal. As we saw in Section 10.1.3.2,
the specular intensity takes the form () ,Sk α⋅R V where R is the refl ection of
the light’s direction vector about the surface normal, V is the direction to the
viewer, kS is the overall specular refl ectivity of the surface, and α is called the
specular power.

Many surfaces aren’t uniformly glossy. For example, when a person’s face
is sweaty and dirty, wet regions appear shiny, while dry or dirty areas appear
dull. We can encode high-detail specularity information in a special texture
map known as a specular map .

If we store the value of kS in the texels of a specular map, we can control
how much specular refl ection should be applied at each texel. This kind of
specular map is sometimes called a gloss map . It is also called a specular mask,
because zero-valued texels can be used to “mask off ” regions of the surface
where we do not want specular refl ection applied. If we store the value of α
in our specular map, we can control the amount of “focus” our specular high-

Figure 10.49. DirectX 9 parallax occlusion mapping. The surface is actually a fl at disc; a height
map texture is used to defi ne the surface details.

10.3. Advanced Lighting and Global Illumination

472 10. The Rendering Engine

lights will have at each texel. This kind of texture is called a specular power map .
An example of a gloss map is shown in Figure 10.50.

10.3.1.4. Environment Mapping

An environment map looks like a panoramic photograph of the environment
taken from the point of view of an object in the scene, covering a full 360
degrees horizontally and either 180 degrees or 360 degrees vertically. An envi-
ronment map acts like a description of the general lighting environment sur-
rounding an object. It is generally used to inexpensively render refl ections.

The two most common formats are spherical environment maps and cubic
environment maps . A spherical map looks like a photograph taken through a
fi sheye lens, and it is treated as though it were mapped onto the inside of a
sphere whose radius is infi nite, centered about the object being rendered. The
problem with sphere maps is that they are addressed using spherical coordi-
nates. Around the equator, there is plenty of resolution both horizontally and
vertically. However, as the vertical (azimuthal) angle approaches vertical, the
resolution of the texture along the horizontal (zenith) axis decreases to a single
texel. Cube maps were devised to avoid this problem.

A cube map looks like a composite photograph pieced together from pho-
tos taken in the six primary directions (up, down, left , right, front, and back).
During rendering, a cube map is treated as though it were mapped onto the
six inner surfaces of a box at infi nity, centered on the object being rendered.

To read the environment map texel corresponding to a point P on the
surface of an object, we take the ray from the camera to the point P and refl ect

Figure 10.50. This screen shot from EA’s Fight Night Round 3 shows how a gloss map can
be used to control the degree of specular refl ection that should be applied to each texel of
a surface.

473

it about the surface normal at P. The refl ected ray is followed until it intersects
the sphere or cube of the environment map. The value of the texel at this inter-
section point is used when shading the point P.

10.3.1.5. Three-Dimensional Textures

Modern graphics harware also includes support for three-dimensional tex-
tures. A 3D texture can be thought of as a stack of 2D textures. The GPU knows
how to address and fi lter a 3D texture, given a three-dimensional texture co-
ordinate (u, v, w).

Three-dimensional textures can be useful for describing the appearance
or volumetric properties of an object. For example, we could render a marble
sphere and allow it to be cut by an arbitrary plane. The texture would look
continuous and correct across the cut no matt er where it was made, because
the texture is well-defi ned and continuous throughout the entire volume of
the sphere.

10.3.2. High Dynamic Range Lighting

A display device like a television set or CRT monitor can only produce a lim-
ited range of intensities. This is why the color channels in the frame buff er are
limited to a zero to one range. But in the real world, light intensities can grow
arbitrarily large. High dynamic range (HDR) lighting att empts to capture this
wide range of light intensities.

HDR lighting performs lighting calculations without clamping the result-
ing intensities arbitrarily. The resulting image is stored in a format that per-
mits intensities to grow beyond one. The net eff ect is an image in which ex-
treme dark and light regions can be represented without loss of detail within
either type of region.

Prior to display on-screen, a process called tone mapping is used to shift
and scale the image’s intensity range into the range supported by the display
device. Doing this permits the rendering engine to reproduce many real-world
visual eff ects, like the temporary blindness that occurs when you walk from
a dark room into a brightly lit area, or the way light seems to bleed out from
behind a brightly back-lit object (an eff ect known as bloom).

One way to represent an HDR image is to store the R, G, and B chan-
nels using 32-bit fl oating point numbers, instead of 8-bit integers. Another
alternative is to employ an entirely diff erent color model altogether. The log-
LUV color model is a popular choice for HDR lighting. In this model, color
is represented as an intensity channel (L) and two chromaticity channels
(U and V). Because the human eye is more sensitive to changes in intensity

10.3. Advanced Lighting and Global Illumination

474 10. The Rendering Engine

than it is to changes in chromaticity, the L channel is stored in 16 bits while
U and V are given only eight bits each. In addition, L is represented using a
logarithmic scale (base two) in order to capture a very wide range of light
intensities.

10.3.3. Global Illumination

As we noted in Section 10.1.3.1, global illumination refers to a class of light-
ing algorithms that account for light’s interactions with multiple objects in the
scene, on its way from the light source to the virtual camera . Global illumina-
tion accounts for eff ects like the shadows that arise when one surface occludes
another, refl ections, caustics, and the way the color of one object can “bleed”
onto the objects around it. In the following sections, we’ll take a brief look
at some of the most common global illumination techniques. Some of these
methods aim to reproduce a single isolated eff ect, like shadows or refl ections.
Others like radiosity and ray tracing methods aim to provide a holistic model
of global light transport.

10.3.3.1. Shadow Rendering

Shadows are created when a surface blocks light’s path. The shadows caused
by an ideal point light source would be sharp, but in the real world shadows
have blurry edges; this is called the penumbra . A penumbra arises because
real-world light sources cover some area and so produce light rays that graze
the edges of an object at diff erent angles.

The two most prevalent shadow rendering techniques are shadow vol-
umes and shadow maps. We’ll briefl y describe each in the sections below. In
both techniques, objects in the scene are generally divided into three catego-
ries: objects that cast shadows, objects that are to receive shadows, and ob-
jects that are entirely excluded from consideration when rendering shadows.
Likewise, the lights are tagged to indicate whether or not they should gener-
ate shadows. This important optimization limits the number of light-object
combinations that need to be processed in order to produce the shadows in
a scene.

Shadow Volumes

 In the shadow volume technique, each shadow caster is viewed from the
vantage point of a shadow-generating light source, and the shadow caster’s
silhouett e edges are identifi ed. These edges are extruded in the direction of
the light rays emanating from the light source. The result is a new piece of
geometry that describes the volume of space in which the light is occluded by
the shadow caster in question. This is shown in Figure 10.51.

475

A shadow volume is used to generate a shadow by making use of a special
full-screen buff er known as the stencil buff er . This buff er stores a single inte-
ger value corresponding to each pixel of the screen. Rendering can be masked
by the values in the stencil buff er—for example, we could confi gure the GPU
to only render fragments whose corresponding stencil values are non-zero. In
addition, the GPU can be confi gured so that rendered geometry updates the
values in the stencil buff er in various useful ways.

To render shadows, the scene is fi rst drawn to generate an unshadowed
image in the frame buff er, along with an accurate z-buff er . The stencil buff er
is cleared so that it contains zeros at every pixel. Each shadow volume is then
rendered from the point of view of the camera in such a way that front-facing
triangles increase the values in the stencil buff er by one, while back-facing
triangles decrease them by one. In areas of the screen where the shadow vol-
ume does not appear at all, of course the stencil buff er’s pixels will be left
containing zero. The stencil buff er will also contain zeros where both the front
and back faces of the shadow volume are visible, because the front face will
increase the stencil value but the back face will decrease it again. In areas
where the back face of the shadow volume has been occluded by “real” scene
geometry, the stencil value will be one. This tells us which pixels of the screen
are in shadow. So we can render shadows in a third pass, by simply darkening
those regions of the screen that contain a non-zero stencil buff er value.

Shadow Maps

The shadow mapping technique is eff ectively a per-fragment depth test per-
formed from the point of view of the light instead of from the point of view
of the camera. The scene is rendered in two steps: First, a shadow map texture

Figure 10.51. A shadow volume generated by extruding the silhouette edges of a shadow
casting object as seen from the point of view of the light source.

10.3. Advanced Lighting and Global Illumination

476 10. The Rendering Engine

is generated by rendering the scene from the point of view of the light source
and saving off the contents of the depth buff er. Second, the scene is rendered
as usual, and the shadow map is used to determine whether or not each frag-
ment is in shadow. At each fragment in the scene, the shadow map tells us
whether or not the light is being occluded by some geometry that is closer to
the light source, in just the same way that the z-buff er tells us whether a frag-
ment is being occluded by a triangle that is closer to the camera.

A shadow map contains only depth information—each texel records how
far away it is from the light source. Shadow maps are therefore typically ren-
dered using the hardware’s double-speed z-only mode (since all we care about
is the depth information). For a point light source, a perspective projection is
used when rendering the shadow map; for a directional light source, an ortho-
graphic projection is used instead.

To render a scene using a shadow map, we draw the scene as usual from
the point of view of the camera. For each vertex of every triangle, we calculate
its position in light space —i.e., in the same “view space” that was used when
generating the shadow map in the fi rst place. These light space coordinates
can be interpolated across the triangle, just like any other vertex att ribute. This
gives us the position of each fragment in light space. To determine whether a
given fragment is in shadow or not, we convert the fragment’s light-space (x,
y)-coordinates into texture coordinates (u, v) within the shadow map. We then
compare the fragment’s light-space z-coordinate with the depth stored at the
corresponding texel in the shadow depth map. If the fragment’s light-space z
is farther away from the light than the texel in the shadow map, then it must be
occluded by some other piece of geometry that is closer to the light source—
hence it is in shadow. Likewise, if the fragment’s light-space z is closer to the
light source than the texel in the shadow map, then it is not occluded and is
not in shadow. Based on this information, the fragment’s color can be adjusted
accordingly. The shadow mapping process is illustrated in Figure 10.52.

Figure 10.52. The far left image is a shadow map—the contents of the z-buffer as rendered
from the point of view of a particular light source. The pixels of the center image are black
where the light-space depth test failed (fragment in shadow) and white where it succeeded
(fragment not in shadow). The far right image shows the fi nal scene rendered with shadows.

477

10.3.3.2. Ambient Occlusion

Ambient occlusion is a technique for modeling contact shadows —the soft shad-
ows that arise when a scene is illuminated by only ambient light. In eff ect, am-
bient occlusion describes how “accessible” each point on a surface is to light
in general. For example, the interior of a section of pipe is less accessible to
ambient light than its exterior. If the pipe were placed outside on an overcast
day, its interior would generally appear darker than its exterior.

Figure 10.53 shows the level of ambient occlusion across an object’s sur-
face. Ambient occlusion is measured at a point on a surface by constructing
a hemisphere with a very large radius centered on that point and determing
what percentage of that hemisphere’s area is visible from the point in ques-
tion. It can be precomputed offl ine for static objects, because ambient occlu-
sion is independent of view direction and the direction of incident light. It is
typically stored in a texture map that records the level of ambient occlusion at
each texel across the surface.

10.3.3.3. Refl ections

Refl ections occur when light bounces off a highly specular (shiny) surface pro-
ducing an image of another portion of the scene in the surface. Refl ections
can be implemented in a number of ways. Environment maps are used to

Figure 10.53. A dragon
rendered with ambient
occlusion.

Figure 10.54. Mirror refl ections in Luigi’s Mansion implemented by rendering the scene to a
texture that is subsequently applied to the mirror’s surface.

10.3. Advanced Lighting and Global Illumination

478 10. The Rendering Engine

produce general refl ections of the surrounding environment on the surfaces
of shiny objects. Direct refl ections in fl at surfaces like mirrors can be produced
by refl ecting the camera’s position about the plane of the refl ective surface and
then rendering the scene from that refl ected point of view into a texture . The
texture is then applied to the refl ective surface in a second pass.

10.3.3.4. Caustics

Caustics are the bright specular highlights arising from intense refl ections or
refractions from very shiny surfaces like water or polished metal. When the
refl ective surface moves, as is the case for water, the caustic eff ects glimmer
and “swim” across the surfaces on which they fall. Caustic eff ects can be pro-
duced by projecting a (possibly animated) texture containing semi-random
bright highlights onto the aff ected surfaces. An example of this technique is
shown in Figure 10.55.

Figure 10.55. Water caustics produced by projecting an animated texture onto the affected
surfaces.

10.3.3.5. Subsurface Scattering

When light enters a surface at one point, is scatt ered beneath the surface,
and then reemerges at a diff erent point on the surface, we call this subsurface
scatt ering . This phenomenon is responsible for the “warm glow” of human
skin, wax, and marble statues. Subsurface scatt ering is described by a more-
advanced variant of the BRDF (see Section 10.1.3.2) known as the BSSRDF
(bidirectional surface scatt ering refl ectance distribution function).

Subsurface scatt ering can be simulated in a number of ways. Depth-map–
based subsurface scatt ering renders a shadow map (see Section 10.3.3.1), but
instead of using it to determine which pixels are in shadow, it is used to mea-
sure how far a beam of light would have to travel in order to pass all the way

479

through the occluding object. The shadowed side of the object is then given
an artifi cial diff use lighting term whose intensity is inversely proportional to
the distance the light had to travel in order to emerge on the opposite side of
the object. This causes objects to appear to be glowing slightly on the side op-
posite to the light source but only where the object is relatively thin. For more
information on subsurface scatt ering techniques, see htt p://htt p.developer.
nvidia.com/GPUGems/gpugems_ch16.html.

10.3.3.6. Precomputed Radiance Transfer (PRT)

Precomputed radiance transfer (PRT) is a relatively new technique that att empts
to simulate the eff ects of radiosity-based rendering methods in real time. It
does so by precomputing and storing a complete description of how an inci-
dent light ray would interact with a surface (refl ect, refract, scatt er, etc.) when
approaching from every possible direction. At runtime, the response to a par-
ticular incident light ray can be looked up and quickly converted into very
accurate lighting results.

In general the light’s response at a point on the surface is a complex func-
tion defi ned on a hemisphere centered about the point. A compact repre-
sentation of this function is required to make the PRT technique practical. A
common approach is to approximate the function as a linear combination of
spherical harmonic basis functions. This is essentially the three-dimensional
equivalent of encoding a simple scalar function f(x) as a linear combination of
shift ed and scaled sine waves.

The details of PRT are far beyond our scope. For more information, see
htt p://web4.cs.ucl.ac.uk/staff /j.kautz/publications/prtSIG02.pdf. PRT lighting

Figure 10.56. On the left, a dragon rendered without subsurface scattering (i.e., using a BRDF
lighting model). On the right, the same dragon rendered with subsurface scattering (i.e., using
a BSSRDF model). Images rendered by Rui Wang at the University of Virginia.

10.3. Advanced Lighting and Global Illumination

480 10. The Rendering Engine

techniques are demonstrated in a DirectX sample program available in the
DirectX SDK—see htt p://msdn.microsoft .com/en-us/library/bb147287.aspx
for more details.

10.3.4. Deferred Rendering

In traditional triangle-rasterization–based rendering, all lighting and shad-
ing calculations are performed on the triangle fragments in view space. The
problem with this technique is that it is inherently ineffi cient. For one thing,
we potentially do work that we don’t need to do. We shade the vertices of tri-
angles, only to discover during the rasterization stage that the entire triangle
is being depth-culled by the z test. Early z tests help eliminate unnecessary
pixel shader evaluations, but even this isn’t perfect. What’s more, in order to
handle a complex scene with lots of lights, we end up with a proliferation of
diff erent versions of our vertex and pixel shaders—versions that handle dif-

Figure 10.57. Screenshots from Killzone 2, showing some of the typical components of the
G-buffer used in deferred rendering. The upper image shows the fi nal rendered image. Below
it, clockwise from the upper left, are the albedo (diffuse) color, depth, view-space normal,
screen space 2D motion vector (for motion blurring), specular power, and specular intensity.

481

ferent numbers of lights, diff erent types of lights, diff erent numbers of skin-
ning weights, etc.

Deferred rendering is an alternative way to shade a scene that addresses
many of these problems. In deferred rendering, the majority of the lighting
calculations are done in screen space, not view space. We effi ciently render
the scene without worrying about lighting. During this phase, we store all
the information we’re going to need to light the pixels in a “deep” frame buf-
fer known as the G-buff er . Once the scene has been fully rendered, we use
the information in the G-buff er to perform our lighting and shading calcula-
tions. This is usually much more effi cient than view-space lighting, avoids the
proliferation of shader variants, and permits some very pleasing eff ects to be
rendered relatively easily.

The G-buff er may be physically implemented as a collection of buff ers,
but conceptually it is a single frame buff er containing a rich set of informa-
tion about the lighting and surface properties of the objects in the scene at
every pixel on the screen. A typical G-buff er might contain the following per-
pixel att ributes: depth, surface normal in clip space, diff use color, specular
power, even precomputed radiance transfer (PRT) coeffi cients. The following
sequence of screen shots from Guerrilla Games’ Killzone 2 shows some of the
typical components of the G-buff er.

An in-depth discussion of deferred rendering is beyond our scope, but
the folks at Guerrilla Games have prepared an excellent presentation on the
topic, which is available at htt p://www.guerrilla-games.com/publications/
dr_kz2_rsx_dev07.pdf.

10.4. Visual Effects and Overlays

The rendering pipeline we’ve discussed to this point is responsible primarily
for rendering three-dimensional solid objects. A number of specialized render-
ing systems are typically layered on top of this pipeline, responsible for ren-
dering visual elements like particle eff ects, decals (small geometry overlays
that represent bullet holes, cracks, scratches, and other surface details), hair
and fur, rain or falling snow, water , and other specialized visual eff ects. Full-
screen post eff ects may be applied, including vignett e (slight blur around the
edges of the screen), motion blur, depth of fi eld blurring, artifi cial/enhanced
colorization, and the list goes on. Finally, the game’s menu system and heads-
up display (HUD) are typically realized by rendering text and other two- or
three-dimensional graphics in screen space overlaid on top of the three-
dimensional scene.

10.4. Visual Effects and Overlays

http://www.guerrilla-games.com/publications/

482 10. The Rendering Engine

An in-depth coverage of these engine systems is beyond our scope. In the
following sections, we’ll provide a brief overview of these rendering systems,
and point you in the direction of additional information.

10.4.1. Particle Effects

A particle rendering system is concerned with rendering amorphous objects
like clouds of smoke, sparks, fl ame, and so on. These are called particle eff ects.
The key features that diff erentiate a particle eff ect from other kinds of render-
able geometry are as follows:

 It is composed of a very large number of relatively simple pieces of geom-
etry—most oft en simple cards called quads, composed of two triangles
each.

 The geometry is oft en camera-facing (i.e., billboarded), meaning that the
engine must take steps to ensure that the face normals of each quad
always point directly at the camera’s focal point.

 Its materials are almost always semi-transparent or translucent. As such,
particle eff ects have some stringent rendering order constraints that do
not apply to the majority of opaque objects in a scene.

 Particles animate in a rich variety of ways. Their positions, orientations,
sizes (scales), texture coordinates, and many of their shader parameters
vary from frame to frame. These changes are defi ned either by hand-
authored animation curves or via procedural methods.

 Particles are typically spawned and killed continually. A particle emitt er
is a logical entity in the world that creates particles at some user-speci-
fi ed rate; particles are killed when they hit a predefi ned death plane, or

Figure 10.58. Some particle effects.

483

when they have lived for a user-defi ned length of time, or as decided by
some other user-specifi ed criteria.

Particle eff ects could be rendered using regular triangle mesh geometry
with appropriate shaders. However, because of the unique characteristics
listed above, a specialized particle eff ect animation and rendering system is
always used to implement them in a real production game engine. A few ex-
ample particle eff ects are shown in Figure 10.58.

Particle system design and implementation is a rich topic that could oc-
cupy many chapters all on its own. For more information on particle systems,
see [1] Section 10.7, [14] Section 20.5, [9] Section 13.7 and [10] Section 4.1.2.

10.4.2. Decals

A decal is a relatively small piece of geometry that is overlaid on top of the reg-
ular geometry in the scene, allowing the visual appearance of the surface to be
modifi ed dynamically. Examples include bullet holes, foot prints, scratches,
cracks, etc.

The approach most oft en used by modern engines is to model a decal as
a rectangular area that is to be projected along a ray into the scene. This gives
rise to a rectangular prism in 3D space. Whatever surface the prism intersects
fi rst becomes the surface of the decal. The triangles of the intersected geom-
etry are extracted and clipped against the four bounding planes of the decal’s
projected prism. The resulting triangles are texture-mapped with a desired
decal texture by generating appropriate texture coordinates for each vertex.
These texture-mapped triangles are then rendered over the top of the regular
scene, oft en using parallax mapping to give them the illusion of depth and
with a slight z-bias (usually implemented by shift ing the near plane slightly)
so they don’t experience z-fi ghting with the geometry on which they are over-

Figure 10.59. Parallax-mapped decals from Uncharted: Drake’s Fortune.

10.4. Visual Effects and Overlays

484 10. The Rendering Engine

laid. The result is the appearance of a bullet hole, scratch or other kind of sur-
face modifi cation. Some bullet-hole decals are depicted in Figure 10.59.

For more information on creating and rendering decals, see [7] Section
4.8, and [28] Section 9.2.

10.4.3. Environmental Effects

Any game that takes place in a somewhat natural or realistic environment
requires some kind of environmental rendering eff ects. These eff ects are usu-
ally implemented via specialized rendering systems. We’ll take a brief look at
a few of the more common of these systems in the following sections.

10.4.3.1. Skies

The sky in a game world needs to contain vivid detail, yet technically speak-
ing it lies an extremely long distance away from the camera. Therefore we
cannot model it as it really is and must turn instead to various specialized
rendering techniques.

One simple approach is to fi ll the frame buff er with the sky texture prior
to rendering any 3D geometry. The sky texture should be rendered at an ap-
proximate 1:1 texel-to-pixel ratio, so that the texture is roughly or exactly the
resolution of the screen. The sky texture can be rotated and scrolled to corre-
spond to the motions of the camera in-game. During rendering of the sky, we
make sure to set the depth of all pixels in the frame buff er to the maximum
possible depth value. This ensures that the 3D scene elements will always sort
on top of the sky. The arcade hit Hydro Thunder rendered its skies in exactly
this manner.

For games in which the player can look in any direction, we can use a sky
dome or sky box . The dome or box is rendered with its center always at the cam-
era’s current location, so that it appears to lie at infi nity, no matt er where the
camera moves in the game world. As with the sky texture approach, the sky
box or dome is rendered before any other 3D geometry, and all of the pixels
in the frame buff er are set to the maximum z-value when the sky is rendered.
This means that the dome or box can actually be tiny, relative to other objects
in the scene. Its size is irrelevant, as long as it fi lls the entire frame buff er when
it is drawn. For more information on sky rendering, see [1] Section 10.3 and
[38] page 253.

Clouds are oft en implemented with a specialized rendering and anima-
tion system as well. In early games like Doom and Quake, the clouds were just
planes with scrolling semi-transparent cloud textures on them. More-recent
cloud techniques include camera-facing cards (billboards), particle-eff ect
based clouds, and volumetric cloud eff ects.

485

10.4.3.2. Terrain

The goal of a terrain system is to model the surface of the earth and provide
a canvas of sorts upon which other static and dynamic elements can be laid
out. Terrain is sometimes modeled explicitly in a package like Maya. But if the
player can see far into the distance, we usually want some kind of dynamic
tessellation or other level of detail (LOD) system. We may also need to limit
the amount of data required to represent very large outdoor areas.

Height fi eld terrain is one popular choice for modeling large terrain areas.
The data size can be kept relatively small because a height fi eld is typically
stored in a grayscale texture map. In most height-fi eld– based terrain systems,
the horizontal (y = 0) plane is tessellated in a regular grid patt ern, and the
heights of the terrain vertices are determined by sampling the height fi eld
texture. The number of triangles per unit area can be varied based on distance
from the camera, thereby allowing large-scale features to be seen in the dis-
tance, while still permitt ing a good deal of detail to be represented for nearby
terrain. An example of a terrain defi ned via a height fi eld bitmap is shown in
Figure 10.60.

Terrain systems usually provide specialized tools for “painting” the height
fi eld itself, carving out terrain features like roads, rivers, and so on. Texture
mapping in a terrain system is oft en a blend between four or more textures.
This allows artists to “paint” in grass, dirt, gravel, and other terrain features
by simply exposing one of the texture layers. The layers can be cross-blended
from one to another to provide smooth textural transitions. Some terrain tools
also permit sections of the terrain to be cut out to permit buildings, trenches,
and other specialized terrain features to be inserted in the form of regular
mesh geometry. Terrain authoring tools are sometimes integrated directly into
the game world editor , while in other engines they may be stand-alone tools.

Figure 10.60. A grayscale height fi eld bitmap (left) can be used to control the vertical posi-
tions of the vertices in a terrain grid mesh (right). In this example, a water plane intersects the
terrain mesh to create islands.

10.4. Visual Effects and Overlays

486 10. The Rendering Engine

Of course, height fi eld terrain is just one of many options for modeling the
surface of the Earth in a game. For more information on terrain rendering, see
[6] Sections 4.16 through 4.19 and [7] Section 4.2.

10.4.3.3. Water

Water renderers are commonplace in games nowadays. There are lots of dif-
ferent possible kinds of water, including oceans, pools, rivers, waterfalls, foun-
tains, jets, puddles, and damp solid surfaces. Each type of water generally
requires some specialized rendering technology. Some also require dynamic
motion simulations . Large bodies of water may require dynamic tessellation
or other LOD methodologies similar to those employed in a terrain system.

Water systems sometimes interact with a game’s rigid body dynamics
system (fl otation, force from water jets, etc.) and with gameplay (slippery sur-
faces, swimming mechanics, diving mechanics, riding vertical jets of water,
and so on). Water eff ects are oft en created by combining disparate render-
ing technologies and subsystems. For example, a waterfall might make use
of specialized water shaders, scrolling textures, particle eff ects for mist at the
base, a decal-like overlay for foam, and the list goes on. Today’s games off er
some prett y amazing water eff ects, and active research into technologies like
real-time fl uid dynamics promises to make water simulations even richer and
more realistic in the years ahead. For more information on water rendering
and simulation techniques, see [1] Sections 9.3, 9.5, and 9.6, [13], and [6] Sec-
tions 2.6 and 5.11.

10.4.4. Overlays

Most games have heads-up displays, in-game graphical user interfaces, and
menu systems. These overlays are typically comprised of two- and three-di-
mensional graphics rendered directly in view space or screen space .

Overlays are generally rendered aft er the primary scene, with z testing
disabled to ensure that they appear on top of the three-dimensional scene.
Two-dimensional overlays are typically implemented by rendering quads (tri-
angle pairs) in screen space using an orthographic projection. Three-dimen-
sional overlays may be rendered using an orthographic projection or via the
regular perspective projection with the geometry positioned in view space so
that it follows the camera around.

10.4.4.1. Normalized Screen Coordinates

The coordinates of two-dimensional overlays can be measured in terms of
screen pixels. However, if your game is going to be expected to support mul-
tiple screen resolutions (which is very common in PC games), it’s a far bett er

487

idea to use normalized screen coordinates . Normalized coordinates range from
zero to one along one of the two axes (but not both—see below), and they can
easily be scaled into pixel-based measurements corresponding to an arbitrary
screen resolution. This allows us to lay out our overlay elements without wor-
rying about screen resolution at all (and only having to worry a litt le bit about
aspect ratio).

It’s easiest to defi ne normalized coordinates so that they range from 0.0
to 1.0 along the y-axis. At a 4:3 aspect ratio, this means that the x-axis would
range from 0.0 to 1.333 (= 4 / 3), while at 16:9 the x-axis’ range would be from
0.0 to 1.777 (= 16 / 9). It’s important not to defi ne our coordinates so that they
range from zero to one along both axes. Doing this would cause square visual
elements to have unequal x and y dimensions—or put another way, a visual
element with seemingly square dimensions would not look like a square on-
screen! Moreover, our “square” elements would stretch diff erently at diff erent
aspect ratios—defi nitely not an acceptable state of aff airs.

10.4.4.2. Relative Screen Coordinates

To really make normalized coordinates work well, it should be possible to
specify coordinates in absolute or relative terms. For example, positive co-
ordinates might be interpreted as being relative to the top-left corner of the
screen, while negative coordinates are relative to the bott om-right corner. That
way, if I want a HUD element to be a certain distance from the right or bott om
edges of the screen, I won’t have to change its normalized coordinates when
the aspect ratio changes. We might want to allow an even richer set of possible
alignment choices, such as aligning to the center of the screen or aligning to
another visual element.

That said, you’ll probably have some overlay elements that simply cannot
be laid out using normalized coordinates in such a way that they look right at
both the 4:3 and 16:9 aspect ratios. You may want to consider having two distinct
layouts, one for each aspect ratio, so you can fi ne-tune them independently.

10.4.4.3. Text and Fonts

A game engine’s text /font system is typically implemented as a special kind of
two-dimensional (or sometimes three-dimensional) overlay. At its core, a text
rendering system needs to be capable of displaying a sequence of character
glyphs corresponding to a text string, arranged in various orientations on the
screen. A font is oft en implemented via a texture map containing the vari-
ous required glyphs. A font description fi le provides information such as the
bounding boxes of each glyph within the texture, and font layout information
such as kerning, baseline off sets, and so on.

10.4. Visual Effects and Overlays

488 10. The Rendering Engine

A good text/font system must account for the diff erences in character sets
and reading directions inherent in various languages. Some text systems also
provide various fun features like the ability to animate characters across the
screen in various ways, the ability to animate individual characters, and so
on. Some game engines even go so far as to implement a subset of the Adobe
Flash standard in order to support a rich set of two-dimensional eff ects in
their overlays and text. However, it’s important to remember when imple-
menting a game font system that only those features that are actually required
by the game should be implemented. There’s no point in furnishing your en-
gine with an advanced text animation if your game never needs to display
animated text!

10.4.5. Gamma Correction

CRT monitors tend to have a nonlinear response to luminance values. That is,
if a linearly-increasing ramp of R, G, or B values were to be sent to a CRT, the
image that would result on-screen would be perceptually nonlinear to the hu-
man eye. Visually, the dark regions of the image would look darker than they
should. This is illustrated in Figure 10.61.

The gamma response curve of a typical CRT display can be modeled quite
simply by the formula

out in ,V V γ=

where γCRT > 1. To correct for this eff ect, the colors sent to the CRT display
are usually passed through an inverse transformation (i.e., using a gamma
value γcorr < 1). The value of γCRT for a typical CRT monitor is 2.2, so the correc-

Figure 10.61. The effect of a CRT’s gamma response on image quality and how the effect can
be corrected for. Image courtesy of www.wikipedia.org.

http://www.wikipedia.org

489

tion value is usually γcorr = 1/2.2 = 0.455. These gamma encoding and decoding
curves are shown in Figure 10.62.

Gamma encoding can be performed by the 3D rendering engine to ensure
that the values in the fi nal image are properly gamma-corrected. One problem
that is encountered, however, is that the bitmap images used to represent tex-
ture maps are oft en gamma-corrected themselves. A high-quality rendering
engine takes this fact into account, by gamma-decoding the textures prior to
rendering and then re-encoding the gamma of the fi nal rendered scene so that
its colors can be reproduced properly on-screen.

10.4.6. Full-Screen Post Effects

Full-screen post eff ects are eff ects applied to a rendered three-dimensional
scene that provide additional realism or a stylized look. These eff ects are of-
ten implemented by passing the entire contents of the screen through a pixel
shader that applies the desired eff ect(s). This can be accomplished by render-
ing a full-screen quad that has been mapped with a texture containing the
unfi ltered scene. A few examples of full-screen post eff ects are given below:

 Motion blur . This is typically implemented by rendering a buff er of
screen-space velocity vectors and using this vector fi eld to selectively
blur the rendered image. Blurring is accomplished by passing a con-
volution kernel over the image (see “Image Smoothing and Sharpening
by Discrete Convolution” by Dale A. Schumacher, published in [4], for
details).

Figure 10.62. Gamma encoding and decoding curves. Image courtesy of www.wikipedia.org.

10.4. Visual Effects and Overlays

http://www.wikipedia.org

490 10. The Rendering Engine

 Depth of fi eld blur . This blur eff ect can be produced by using the contents
of the depth buff er to adjust the degree of blur applied at each pixel.

 Vignett e . In this fi lmic eff ect, the brightness or saturation of the image
is reduced at the corners of the screen for dramatic eff ect. It is some-
times implemented by literally rendering a texture overlay on top of the
screen. A variation on this eff ect is used to produce the classic circular
eff ect used to indicate that the player is looking through a pair of bin-
oculars or a weapon scope.

 Colorization . The colors of screen pixels can be altered in arbitrary ways
as a post-processing eff ect. For example, all colors except red could be
desaturated to grey to produce a striking eff ect similar to the famous
scene of the litt le girl in the red coat from Schindler’s List.

10.5. Further Reading

We’ve covered a lot of material in a very short space in this chapter, but we’ve
only just scratched the surface. No doubt you’ll want to explore many of these
topics in much greater detail. For an excellent overview of the entire process of
creating three-dimensional computer graphics and animation for games and
fi lm, I highly recommend [23]. The technology that underlies modern real-
time rendering is covered in excellent depth in [1], while [14] is well known as
the defi nitive reference guide to all things related to computer graphics. Other
great books on 3D rendering include [42], [9], and [10]. The mathematics of
3D rendering is covered very well in [28]. No graphics programmer’s library
would be complete without one or more books from the Graphics Gems series
([18], [4], [24], [19], and [36]) and/or the GPU Gems series ([13], [38], and [35]).
Of course, this short reference list is only the beginning—you will undoubt-
edly encounter a great many more excellent books on rendering and shaders
over the course of your career as a game programmer.

491

11
Animation Systems

The majority of modern 3D games revolve around characters —oft en human
or humanoid, sometimes animal or alien. Characters are unique because

they need to move in a fl uid, organic way. This poses a host of new technical
challenges, over and above what is required to simulate and animate rigid
objects like vehicles, projectiles, soccer balls, and Tetris pieces. The task of im-
buing characters with natural-looking motion is handled by an engine compo-
nent known as the character animation system.

As we’ll see, an animation system gives game designers a powerful suite
of tools that can be applied to non-characters as well as characters. Any game
object that is not 100% rigid can take advantage of the animation system. So
whenever you see a vehicle with moving parts, a piece of articulated machin-
ery, trees waving gently in the breeze, or even an exploding building in a
game, chances are good that the object makes at least partial use of the game
engine’s animation system.

11.1. Types of Character Animation

Character animation technology has come a long way since Donkey Kong. At
fi rst, games employed very simple techniques to provide the illusion of life-
like movement. As game hardware improved, more-advanced techniques be-

492 11. Animation Systems

came feasible in real time. Today, game designers have a host of powerful
animation methods at their disposal. In this section, we’ll take a brief look
at the evolution of character animation and outline the three most-common
techniques used in modern game engines.

11.1.1. Cel Animation

The precursor to all game animation techniques is known as traditional anima-
tion, or hand-drawn animation . This is the technique used in the earliest animat-
ed cartoons. The illusion of motion is produced by displaying a sequence of
still pictures known as frames in rapid succession. Real-time 3D rendering can
be thought of as an electronic form of traditional animation, in that a sequence
of still full-screen images is presented to the viewer over and over to produce
the illusion of motion.

Cel animation is a specifi c type of traditional animation. A cel is a transpar-
ent sheet of plastic on which images can be painted or drawn. An animated
sequence of cels can be placed on top of a fi xed background painting or draw-
ing to produce the illusion of motion without having to redraw the static back-
ground over and over.

The electronic equivalent to cel animation is a technology known as sprite
animation. A sprite is a small bitmap that can be overlaid on top of a full-screen
background image without disrupting it, oft en drawn with the aid of special-
ized graphics hardware. Hence, a sprite is to 2D game animation what a cel
was to traditional animation. This technique was a staple during the 2D game
era. Figure 11.1 shows the famous sequence of sprite bitmaps that were used
to produce the illusion of a running humanoid character in almost every Mat-
tel Intellivision game ever made. The sequence of frames was designed so that
it animates smoothly even when it is repeated indefi nitely—this is known as
a looping animation . This particular animation would be called a run cycle in
modern parlance, because it makes the character appear to be running. Char-
acters typically have a number of looping animation cycles, including various
idle cycles, a walk cycle, and a run cycle.

Figure 11.1. The sequence of sprite bitmaps used in most Intellivision games.

11.1.2. Rigid Hierarchical Animation

With the advent of 3D graphics, sprite techniques began to lose their appeal.
Doom made use of a sprite-like animation system: Its monsters were nothing

493 11.1. Types of Character Animation

more than camera-facing quads, each of which displayed a sequence of texture
bitmaps (known as an animated texture) to produce the illusion of motion. And
this technique is still used today for low-resolution and/or distant objects—for
example crowds in a stadium, or hordes of soldiers fi ghting a distant batt le
in the background. But for high-quality foreground characters, 3D graphics
brought with it the need for improved character animation methods.

The earliest approach to 3D character animation is a technique known as
rigid hierarchical animation. In this approach, a character is modeled as a col-
lection of rigid pieces. A typical break-down for a humanoid character might
be pelvis, torso, upper arms, lower arms, upper legs, lower legs, hands, feet,
and head. The rigid pieces are constrained to one another in a hierarchical
fashion, analogous to the manner in which a mammal’s bones are connected
at the joints. This allows the character to move naturally. For example, when
the upper arm is moved, the lower arm and hand will automatically follow it.
A typical hierarchy has the pelvis at the root, with the torso and upper legs as
its immediate children, and so on as shown below:

Pelvis
 Torso
 UpperRightArm
 LowerRightArm
 RightHand
 UpperLeftArm
 UpperLeftArm
 LeftHand
 Head
 UpperRightLeg
 LowerRightLeg
 RightFoot
 UpperLeftLeg
 UpperLeftLeg
 LeftFoot

The big problem with the rigid hierarchy technique is that the behavior of
the character’s body is oft en not very pleasing due to “cracking” at the joints.
This is illustrated in Figure 11.2. Rigid hierarchical animation works well for

Figure 11.2. Cracking at the joints is a big problem in rigid hierarchical animation.

494 11. Animation Systems

robots and machinery that really is constructed of rigid parts, but it breaks
down under scrutiny when applied to “fl eshy” characters.

11.1.3. Per-Vertex Animation and Morph Targets

Rigid hierarchical animation tends to look unnatural because it is rigid. What
we really want is a way to move individual vertices so that triangles can stretch
to produce more-natural looking motion.

One way to achieve this is to apply a brute-force technique known as
per-vertex animation. In this approach, the vertices of the mesh are animated
by an artist, and motion data is exported which tells the game engine how to
move each vertex at runtime. This technique can produce any mesh deforma-
tion imaginable (limited only by the tessellation of the surface). However, it
is a data-intensive technique, since time-varying motion information must be
stored for each vertex of the mesh. For this reason, it has litt le application to
real-time games.

A variation on this technique known as morph target animation is used in
some real-time games. In this approach, the vertices of a mesh are moved by
an animator to create a relatively small set of fi xed, extreme poses. Animations
are produced by blending between two or more of these fi xed poses at runtime.
The position of each vertex is calculated using a simple linear interpolation
(LERP) between the vertex’s positions in each of the extreme poses.

The morph target technique is oft en used for facial animation, because
the human face is an extremely complex piece of anatomy, driven by roughly
50 muscles. Morph target animation gives an animator full control over every
vertex of a facial mesh, allowing him or her to produce both subtle and ex-
treme movements that approximate the musculature of the face well. Figure
11.3 shows a set of facial morph targets.

Figure 11.3. A set of facial morph targets for NVIDIA’s Dawn character.

495

11.1.4. Skinned Animation

As the capabilities of game hardware improved further, an animation tech-
nology known as skinned animation was developed. This technique has many
of the benefi ts of per-vertex and morph target animation—permitt ing the tri-
angles of an animated mesh to deform. But it also enjoys the much more-
effi cient performance and memory usage characteristics of rigid hierarchical
animation. It is capable of producing reasonably realistic approximations to
the movement of skin and clothing.

Skinned animation was fi rst used by games like Super Mario 64, and it
is still the most prevalent technique in use today, both by the game industry
and the feature fi lm industry. A host of famous modern game and movie char-
acters, including the dinosaurs from Jurrassic Park, Solid Snake (Metal Gear
Solid 4), Gollum (Lord of the Rings), Nathan Drake (Uncharted: Drake’s Fortune),
Buzz Lightyear (Toy Story), and Marcus Fenix (Gears of War) were all animated,
in whole or in part, using skinned animation techniques. The remainder of
this chapter will be devoted primarily to the study of skinned/skeletal anima-
tion.

In skinned animation, a skeleton is constructed from rigid “bones ,” just as
in rigid hierarchical animation. However, instead of rendering the rigid pieces
on-screen, they remain hidden. A smooth continuous triangle mesh called a
skin is bound to the joints of the skeleton; its vertices track the movements of
the joints. Each vertex of the skin mesh can be weighted to multiple joints, so
the skin can stretch in a natural way as the joints move.

Figure 11.4. Eric Browning’s Crank the Weasel character, with internal skeletal structure.

11.1. Types of Character Animation

496 11. Animation Systems

In Figure 11.4, we see Crank the Weasel, a game character designed by
Eric Browning for Midway Home Entertainment in 2001. Crank’s outer skin
is composed of a mesh of triangles, just like any other 3D model. However,
inside him we can see the rigid bones and joints that make his skin move.

11.1.5. Animation Methods as Data Compression Techniques
The most fl exible animation system conceivable would give the animator con-
trol over literally every infi nitesimal point on an object’s surface. Of course,
animating like this would result in an animation that contains a potentially
infi nite amount of data! Animating the vertices of a triangle mesh is a simpli-
fi cation of this ideal—in eff ect, we are compressing the amount of information
needed to describe an animation by restricting ourselves to moving only the
vertices. (Animating a set of control points is the analog of vertex animation
for models constructed out of higher-order patches.) Morph targets can be
thought of as an additional level of compression, achieved by imposing addi-
tional constraints on the system—vertices are constrained to move only along
linear paths between a fi xed number of predefi ned vertex positions. Skeletal
animation is just another way to compress vertex animation data by imposing
constraints. In this case, the motions of a relatively large number of vertices
are constrained to follow the motions of a relatively small number of skeletal
joints.

When considering the trade-off s between various animation techniques,
it can be helpful to think of them as compression methods, analogous in many
respects to video compression techniques. We should generally aim to select
the animation method that provides the best compression without producing
unacceptable visual artifacts. Skeletal animation provides the best compres-
sion when the motion of a single joint is magnifi ed into the motions of many
vertices. A character’s limbs act like rigid bodies for the most part, so they can
be moved very effi ciently with a skeleton. However, the motion of a face tends
to be much more complex, with the motions of individual vertices being more
independent. To convincingly animate a face using the skeletal approach, the
required number of joints approaches the number of vertices in the mesh, thus
diminishing its eff ectiveness as a compression technique. This is one reason
why morph target techniques are oft en favored over the skeletal approach for
facial animation. (Another common reason is that morph targets tend to be a
more natural way for animators to work.)

11.2. Skeletons

A skeleton is comprised of a hierarchy of rigid pieces known as joints . In the
game industry, we oft en use the terms “joint” and “bone” interchangeably,

497

but the term bone is actually a misnomer. Technically speaking, the joints are
the objects that are directly manipulated by the animator, while the bones
are simply the empty spaces between the joints. As an example, consider the
pelvis joint in the Crank the Weasel character model. It is a single joint, but be-
cause it connects to four other joints (the tail, the spine, and the left and right
hip joints), this one joint appears to have four bones sticking out of it. This is
shown in more detail in Figure 11.5. Game engines don’t care a whip about
bones—only the joints matt er. So whenever you hear the term “bone” being
used in the industry, remember that 99% of the time we are actually speaking
about joints.

11.2.1. The Skeleal Hierarchy

As we’ve mentioned, the joints in a skeleton form a hierarchy or tree structure.
One joint is selected as the root, and all other joints are its children, grandchil-
dren, and so on. A typical joint hierarchy for skinned animation looks almost
identical to a typical rigid hierarchy. For example, a humanoid character’s
joint hierarchy might look something like this:

Pelvis
 LowerSpine
 MiddleSpine
 UpperSpine
 RightShoulder
 RightElbow
 RightHand
 RightThumb

Figure 11.5. The pelvis joint of this character connects to four other joints (tail, spine, and two
legs), and so it produces four bones.

11.2. Skeletons

498 11. Animation Systems

 RightIndexFinger
 RightMiddleFinger
 RightRingFinger
 RightPinkyFinger
 LeftShoulder
 LeftElbow
 LeftHand
 LeftThumb
 LeftIndexFinger
 LeftMiddleFinger
 LeftRingFinger
 LeftPinkyFinger
 Neck
 Head
 LeftEye
 RightEye

various face joints
 RightThigh
 RightKnee
 RightAnkle
 LeftThigh
 LeftKnee
 LeftAnkle

We usually assign each joint an index from 0 to N – 1. Because each joint
has one and only one parent, the hierarchical structure of a skeleton can be
fully described by storing the index of its parent with each joint. The root
joint has no parent, so its parent index usually contains an invalid index such
as –1.

11.2.2. Representing a Skeleton in Memory

A skeleton is usually represented by a small top-level data structure that
contains an array of data structures for the individual joints. The joints are
usually listed in an order that ensures a child joint will always appear aft er
its parent in the array. This implies that joint zero is always the root of the
skeleton.

Joint indices are usually used to refer to joints within animation data struc-
tures. For example, a child joint typically refers to its parent joint by specifying
its index. Likewise, in a skinned triangle mesh, a vertex refers to the joint or
joints to which it is bound by index. This is much more effi cient than referring
to joints by name, both in terms of the amount of storage required (a joint in-
dex can usually be 8 bits wide) and in terms of the amount of time it takes to
look up a referenced joint (we can use the joint index to jump immediately to
a desired joint in the array).

499

Each joint data structure typically contains the following information:

The • name of the joint, either as a string or a hashed 32-bit string id.

The • index of the joint’s parent within the skeleton.

The • inverse bind pose transform of the joint. The bind pose of a joint is the
position, orientation, and scale of that joint at the time it was bound to
the vertices of the skin mesh. We usually store the inverse of this trans-
formation for reasons we’ll explore in more depth below.

A typical skeleton data structure might look something like this:

struct Joint
{
 Matrix4x3 m_invBindPose; // inverse bind pose

 // transform

 const char* m_name; // human-readable joint
 // name

 U8 m_iParent; // parent index or 0xFF
 // if root

};

struct Skeleton
{
 U32 m_jointCount; // number of joints

Joint* m_aJoint; // array of joints
};

11.3. Poses

 No matt er what technique is used to produce an animation, be it cel-based,
rigid hierarchical, or skinned/skeletal, every animation takes place over time.
A character is imbued with the illusion of motion by arranging the character’s
body into a sequence of discrete, still poses and then displaying those poses
in rapid succession, usually at a rate of 30 or 60 poses per second. (Actually, as
we’ll see in Section 11.4.1.1, we oft en interpolate between adjacent poses rather
than displaying a single pose verbatim.) In skeletal animation, the pose of the
skeleton directly controls the vertices of the mesh, and posing is the anima-
tor’s primary tool for breathing life into her characters. So clearly, before we
can animate a skeleton, we must fi rst understand how to pose it.

A skeleton is posed by rotating, translating, and possibly scaling its joints
in arbitrary ways. The pose of a joint is defi ned as the joint’s position, orien-
tation, and scale, relative to some frame of reference. A joint pose is usually

11.3. Poses

500 11. Animation Systems

represented by a 4 × 4 or 4 × 3 matrix, or by an SQT data structure (scale,
quaternion rotation and vector translation). The pose of a skeleton is just the
set of all of its joints’ poses and is normally represented as a simple array of
matrices or SQTs.

11.3.1. Bind Pose

Two diff erent poses of the same skeleton are shown in Figure 11.6. The pose
on the left is a special pose known as the bind pose , also sometimes called the
reference pose or the rest pose. This is the pose of the 3D mesh prior to being
bound to the skeleton (hence the name). In other words, it is the pose that the
mesh would assume if it were rendered as a regular, unskinned triangle mesh,
without any skeleton at all. The bind pose is also called the T-pose because the
character is usually standing with his feet slightly apart and his arms out-
stretched in the shape of the lett er T. This particular stance is chosen because
it keeps the limbs away from the body and each other, making the process of
binding the vertices to the joints easier.

Figure 11.6. Two different poses of the same skeleton. The pose on the left is the special pose
known as bind pose.

11.3.2. Local Poses

A joint’s pose is most oft en specifi ed relative to its parent joint. A parent-rela-
tive pose allows a joint to move naturally. For example, if we rotate the shoul-
der joint, but leave the parent-relative poses of the elbow, wrist and fi ngers

501

unchanged, the entire arm will rotate about the shoulder in a rigid manner, as
we’d expect. We sometimes use the term local pose to describe a parent-relative
pose. Local poses are almost always stored in SQT format, for reasons we’ll
explore when we discuss animation blending.

Graphically, many 3D authoring packages like Maya represent joints as
small spheres. However, a joint has a rotation and a scale, not just a trans-
lation, so this visualization can be a bit misleading. In fact, a joint actually
defi nes a coordinate space, no diff erent in principle from the other spaces
we’ve encountered (like model space, world space, or view space). So it is best
to picture a joint as a set of Cartesian coordinate axes. Maya gives the user
the option of displaying a joint’s local coordinate axes —this is shown in Fig-
ure 11.7.

Mathematically, a joint pose is nothing more than an affi ne transformation.
The pose of joint j can be writt en as the 4 × 4 affi ne transformation matrix Pj ,
which is comprised of a translation vector Tj , a 3 × 3 diagonal scale matrix Sj
and a 3 × 3 rotation matrix Rj. The pose of an entire skeleton Pskel can be writt en
as the set of all poses Pj , where j ranges from 0 to N – 1 :

 { }

1skel
0

,1

 .

j j
j

j

N
j

j

−

=

⎡ ⎤
=⎢ ⎥

⎣ ⎦

=

S R 0
P T

P P

Figure 11.7. Every joint in a skeletal hierarchy defi nes a set of local coordinate space axes,
known as joint space.

11.3. Poses

502 11. Animation Systems

11.3.2.1. Joint Scale

 Some game engines assume that joints will never be scaled, in which case Sj

is simply omitt ed and assumed to be the identity matrix. Other engines make
the assumption that scale will be uniform if present, meaning it is the same in
all three dimensions. In this case, scale can be represented using a single scalar
value sj. Some engines even permit nonuniform scale, in which case scale can
be compactly represented by the three-element vector sj = [sjx sjy sjz]. The ele-
ments of the vector sj correspond to the three diagonal elements of the 3 × 3
scaling matrix Sj , so it is not really a vector per se. Game engines almost never
permit shear, so Sj is almost never represented by a full 3 × 3 scale/shear ma-
trix, although it certainly could be.

There are a number of benefi ts to omitt ing or constraining scale in a pose
or animation. Clearly using a lower-dimensional scale representation can save
memory. (Uniform scale requires a single fl oating-point scalar per joint per
animation frame, while nonuniform scale requires three fl oats, and a full 3 × 3
scale-shear matrix requires nine.) Restricting our engine to uniform scale has
the added benefi t of ensuring that the bounding sphere of a joint will never
be transformed into an ellipsoid, as it could be when scaled in a nonuniform
manner. This greatly simplifi es the mathematics of frustum and collision tests
in engines that perform such tests on a per-joint basis.

11.3.2.2. Representing a Joint Pose in Memory

 As we mentioned above, joint poses are usually stored in SQT format. In C++
such a data structure might look like this, where Q is fi rst to ensure proper
alignment and optimal structure packing. (Can you see why?)

struct JointPose
{
 Quaternion m_rot; // Q
 Vector3 m_trans; // T
 F32 m_scale; // S (uniform scale only)
};

If nonuniform scale is permitt ed, we might defi ne a joint pose like this
instead:

struct JointPose
{
 Quaternion m_rot; // Q
 Vector3 m_trans; // T
 Vector3 m_scale; // S
 U8 padding[8];
};

503

The local pose of an entire skeleton can be represented as follows, where
it is understood that the array m_aLocalPose is dynamically allocated to con-
tain just enough occurrences of JointPose to match the number of joints in
the skeleton.

struct SkeletonPose
{

Skeleton* m_pSkeleton; // skeleton + num joints
JointPose* m_aLocalPose; // local joint poses

};

11.3.2.3. The Joint Pose as a Change of Basis

 It’s important to remember that a local joint pose is specifi ed relative to the
joint’s immediate parent. Any affi ne transformation can be thought of as trans-
forming points and vectors from one coordinate space to another. So when
the joint pose transform Pj is applied to a point or vector that is expressed in
the coordinate system of the joint j, the result is that same point or vector ex-
pressed in the space of the parent joint.

As we’ve done in earlier chapters, we’ll adopt the convention of using
subscripts to denote the direction of a transformation. Since a joint pose takes
points and vectors from the child joint’s space (C) to that of its parent joint (P),
we can write it C P() j→P . Alternatively, we can introduce the function p(j) which
returns the parent index of joint j, and write the local pose of joint j as p()j j→P .

On occasion we will need to transform points and vectors in the opposite
direction—from parent space into the space of the child joint. This transformation
is just the inverse of the local joint pose. Mathematically, () 1

p() p()j j j j
−

→ →=P P .

11.3.3. Global Poses

Sometimes it is convenient to express a joint’s pose in model space or world
space. This is called a global pose . Some engines express global poses in matrix
form, while others use the SQT format.

Mathematically, the model-space pose of a joint (j→M) can be found by
walking the skeletal hierarchy from the joint in question all the way to the
root, multiplying the local poses (j→p(j)) as we go. Consider the hierarchy
shown in Figure 11.8. The parent space of the root joint is defi ned to be model
space, so p(0) M≡ . The model-space pose of joint J2 can therefore be writt en
as follows:

 2 M 2 1 1 0 0 M.→ → → →=P P P P

Likewise, the model-space pose of joint J5 is just

 5 M 5 4 4 3 3 0 0 M.→ → → → →=P P P P P

11.3. Poses

504 11. Animation Systems

In general, the global pose (joint-to-model transform) of any joint j can be
writt en as follows:

0

M p() ,j i i
i

→ →

=

=∏P P
j

 (11.1)

where it is implied that i becomes p(i) (the parent of joint i) aft er each iteration
in the product, and p(0) M≡ .

11.3.3.1. Representing a Global Pose in Memory

 We can extend our SkeletonPose data structure to include the global pose
as follows, where again we dynamically allocate the m_aGlobalPose array
based on the number of joints in the skeleton:

struct SkeletonPose
{

Skeleton* m_pSkeleton; // skeleton + num joints
JointPose* m_aLocalPose; // local joint poses
Matrix44* m_aGlobalPose; // global joint poses

};

11.4. Clips

In a fi lm , every aspect of each scene is carefully planned out before any anima-
tions are created. This includes the movements of every character and prop in
the scene, and even the movements of the camera. This means that an entire
scene can be animated as one long, contiguous sequence of frames. And char-
acters need not be animated at all whenever they are off -camera.

0

1 2

3 4 5

xM

yM

Figure 11.8. A global pose can be calculated by walking the hierarchy from the joint in
question towards the root and model space origin, concatenating the child-to-parent (local)
transforms of each joint as we go.

505 11.4. Clips

Game animation is diff erent. A game is an interactive experience, so one
cannot predict beforehand how the characters are going to move and behave.
The player has full control over his or her character and usually has partial
control over the camera as well. Even the decisions of the computer-driven
non-player characters are strongly infl uenced by the unpredictable actions of
the human player. As such, game animations are almost never created as long,
contiguous sequences of frames. Instead, a game character’s movement must
be broken down into a large number of fi ne-grained motions. We call these
individual motions animation clips , or sometimes just animations.

Each clip causes the character to perform a single well-defi ned action.
Some clips are designed to be looped —for example, a walk cycle or run cycle .
Others are designed to be played once—for example, throwing an object, or
tripping and falling to the ground. Some clips aff ect the entire body of the
character—the character jumping into the air for instance. Other clips aff ect
only a part of the body—perhaps the character waving his right arm. The
movements of any one game character are typically broken down into literally
thousands of clips.

The only exception to this rule is when game characters are involved in
a noninteractive portion of the game, known as an in-game cinematic (IGC),
noninteractive sequence (NIS), or full-motion video (FMV). Noninteractive se-
quences are typically used to communicate story elements that do not lend
themselves well to interactive gameplay, and they are created in much the
same way computer-generated fi lms are made (although they oft en make use
of in-game assets like character meshes, skeletons, and textures). The terms
IGC and NIS typically refer to noninteractive sequences that are rendered in
real time by the game engine itself. The term FMV applies to sequences that
have been prerendered to an MP4, WMV, or other type of movie fi le and are
played back at runtime by the engine’s full-screen movie player.

A variation on this style of animation is a semi-interactive sequence
known as a quick time event (QTE). In a QTE, the player must hit a butt on at
the right moment during an otherwise noninteractive sequence in order to see
the success animation and proceed; otherwise a failure animation is played,
and the player must try again, possibly losing a life or suff ering some other
consequence as a result.

11.4.1. The Local Time Line

We can think of every animation clip as having a local time line , usually de-
noted by the independent variable t. At the start of a clip t = 0 and at the end
t = T, where T is the duration of the clip. Each unique value of the variable t is
called a time index . An example of this is shown in Figure 11.9.

506 11. Animation Systems

11.4.1.1. Pose Interpolation and Continuous Time

It’s important to realize that the rate at which frames are displayed to the
viewer is not necessarily the same as the rate at which poses are created by the
animator. In both fi lm and game animation, the animator almost never poses
the character every 1/30 or 1/60 of a second. Instead, the animator generates
important poses known as key poses or key frames at specifi c times within the
clip, and the computer calculates the poses in between via linear or curve-
based interpolation. This is illustrated in Figure 11.10.

Because of the animation engine’s ability to interpolate poses (which we’ll
explore in depth later in this chapter), we can actually sample the pose of the
character at any time during the clip—not just on integer frame indices. In
other words, an animation clip’s time line is continuous. In computer anima-
tion, the time variable t is a real (fl oating-point) number, not an integer.

Film animation doesn’t take full advantage of the continuous nature of
the animation time-line, because its frame rate is locked at exactly 24, 30, or
60 frames per second. In fi lm, the viewer sees the characters’ poses at frames

Animation A: Local Time

t = 0 t = (0.4)T t = T
t = (0.8)T

Figure 11.9. The local time line of an animation showing poses at selected time indices.

interpolated
poses key pose 2

key pose 1

Figure 11.10. An animator creates a relatively small number of key poses, and the engine fi lls
in the rest of the poses via interpolation.

507

1, 2, 3, and so on—there’s never any need to fi nd a character’s pose on frame
3.7, for example. So in fi lm animation, the animator doesn’t pay much (if any)
att ention to how the character looks in between the integral frame indices.

In contrast, a real-time game’s frame rate always varies a litt le, depending
on how much load is currently being placed on the CPU and GPU. Also, game
animations are sometimes time-scaled in order to make the character appear to
move faster or slower than originally animated. So in a real-time game, an ani-
mation clip is almost never sampled on integer frame numbers. In theory, with
a time scale of 1.0, a clip should be sampled at frames 1, 2, 3, and so on. But
in practice, the player might actually see frames 1.1, 1.9, 3.2, and so on. And if
the time scale is 0.5, then the player might actually see frames 1.1, 1.4, 1.9, 2.6,
3.2, and so on. A negative time scale can even be used to play an animation in
reverse. So in game animation, time is both continuous and scalable.

11.4.1.2. Time Units

 Because an animation’s time line is continuous, time is best measured in units
of seconds. Time can also be measured in units of frames , presuming we defi ne
the duration of a frame beforehand. Typical frame durations are 1/30 or 1/60
of a second for game animation. However, it’s important not to make the mis-
take of defi ning your time variable t as an integer that counts whole frames.
No matt er which time units are selected, t should be a real (fl oating-point)
quantity, a fi xed-point number, or an integer that measures subframe time
intervals. The goal is to have suffi cient resolution in your time measurements
for doing things like “tweening” between frames or scaling an animation’s
play-back speed.

11.4.1.3. Frame versus Sample

Unfortunately, the term frame has more than one common meaning in the
game industry. This can lead to a great deal of confusion. Sometimes a frame
is taken to be a period of time that is 1/30 or 1/60 of a second in duration. But in
other contexts, the term frame is applied to a single point in time (e.g., we might
speak of the pose of the character “at frame 42”).

I personally prefer to use the term sample to refer to a single point in time,
and I reserve the word frame to describe a time period that is 1/30 or 1/60 of a
second in duration. So for example, a one-second animation created at a rate
of 30 frames per second would consist of 31 samples and would be 30 frames in
duration, as shown in Figure 11.11. The term “sample” comes from the fi eld
of signal processing. A continuous-time signal (i.e., a function f(t)) can be con-
verted into a set of discrete data points by sampling that signal at uniformly-
spaced time intervals. See htt p://en.wikipedia.org/wiki/Sampling_%28signal_
processing%29 for more information on sampling.

11.4. Clips

508 11. Animation Systems

11.4.1.4. Frames, Samples and Looping Clips

When a clip is designed to be played over and over repeatedly, we say it is a
looped animation . If we imagine two copies of a 1-second (30-frame/31-sample)
clip laid back-to-front, then sample 31 of the fi rst clip will coincide exactly in
time with sample 1 of the second clip, as shown in Figure 11.12. For a clip to
loop properly, then, we can see that the pose of the character at the end of the
clip must exactly match the pose at the beginning. This, in turn, implies that
the last sample of a looping clip (in our example, sample 31) is redundant.
Many game engines therefore omit the last sample of a looping clip.

This leads us to the following rules governing the number of samples and
frames in any animation clip:

If a clip is • non-looping, an N-frame animation will have N + 1 unique
samples.

If a clip is • looping, then the last sample is redundant, so an N-frame ani-
mation will have N unique samples.

26 27 28 29 301 2 3 4 5 ...

31Samples:

Frames:

3029282726654321

Figure 11.11. A one-second animation sampled at 30 frames per second is 30 frames in duration
and consists of 31 samples.

3029282726
65432

3029282726 54321

31
1

... ...

...

......

...

Figure 11.12. The last sample of a looping clip coincides in time with its fi rst sample and is,
therefore, redundant.

11.4.1.5. Normalized Time (Phase)

It is sometimes convenient to employ a normalized time unit u, such that u = 0
at the start of the animation, and u = 1 at the end, no matt er what its duration
T may be. We sometimes refer to normalized time as the phase of the animation
clip, because u acts like the phase of a sine wave when the animation is looped.
This is illustrated in Figure 11.13.

509

Normalized time is useful when synchronizing two or more animation
clips that are not necessarily of the same absolute duration. For example, we
might want to smoothly cross-fade from a 2-second (60-frame) run cycle into
a 3-second (90-frame) walk cycle. To make the cross-fade look good, we want
to ensure that the two animations remain synchronized at all times, so that the
feet line up properly in both clips. We can accomplish this by simply sett ing
the normalized start time of the walk clip, uwalk to match the normalized time
index of the run clip, urun. We then advance both clips at the same normalized
rate, so that they remain in sync. This is quite a bit easier and less error-prone
than doing the synchronization using the absolute time indices twalk and trun.

11.4.2. The Global Time Line

Just as every animation clip has a local time line (whose clock starts at 0 at
the beginning of the clip), every character in a game has a global time line
(whose clock starts when the character is fi rst spawned into the game world,
or perhaps at the start of the level or the entire game). In this book, we’ll use
the time variable τ to measure global time, so as not to confuse it with the local
time variable t.

We can think of playing an animation as simply mapping that clip’s local
time line onto the character’s global time line. For example, Figure 11.14 illus-
trates playing animation clip A starting at a global time of τstart = 102 seconds.

A: Normalized Local Time

u = 0 u = 0.4 u = 1
u = 0.8

Figure 11.13. An animation clip, showing normalized time units.

Clip A
t = 0 sec 5 sec

τstart = 102 sec
τ = 105 sec 110 sec

Figure 11.14. Playing animation clip A starting at a global time of 102 seconds.

11.4. Clips

510 11. Animation Systems

As we saw above, playing a looping animation is like laying down an
infi nite number of back-to-front copies of the clip onto the global time line.
We can also imagine looping an animation a fi nite number of times, which
corresponds to laying down a fi nite number of copies of the clip. This is il-
lustrated in Figure 11.15.

Time-scaling a clip makes it appear to play back more quickly or more
slowly than originally animated. To accomplish this, we simply scale the im-
age of the clip when it is laid down onto the global time line. Time-scaling is
most naturally expressed as a playback rate , which we’ll denote R. For example,
if an animation is to play back at twice the speed (R = 2), then we would scale
the clip’s local time line to one-half (1/R = 0.5) of its normal length when map-
ping it onto the global time line. This is shown in Figure 11.16.

Playing a clip in reverse corresponds to using a time scale of –1, as shown
in Figure 11.17.

Clip A

110 sec
τstart = 102 sec

Clip A ...

τ = 105 sec

Figure 11.15. Playing a looping animation corresponds to laying down multiple back-to-back
copies of the clip.

Clip A

τstart = 102 sec
τ = 105 sec

Clip A

R = 2
(scale t by 1/R = 0.5)

t = 0 sec t = 5 sec

t = 0 sec 5 sec
Figure 11.16. Playing an animation at twice the speed corresponds to scaling its local time line
by a factor of ½.

t = 5 sec 0 sec

τstart = 102 sec
τ = 105 sec 110 sec

 A pilC

Clip A
t = 0 sec 5 sec

R = –1
(flip t)

Figure 11.17. Playing a clip in reverse corresponds to a time scale of –1.

511

In order to map an animation clip onto a global time line, we need the fol-
lowing pieces of information about the clip:

its global start time• τstart ,

its playback rate • R,

its duration • T,

and the number of times it should loop, which we’ll denote • N.

Given this information, we can map from any global time τ to the correspond-
ing local time t, and vice-versa, using the following two relations:

 start(),t R= τ−τ (11.2)

 start
1

.t
R

τ = τ +

If the animation doesn’t loop (N = 1), then we should clamp t into the valid
range [0, T] before using it to sample a pose from the clip:

 []start 0
clamp () .

T
t R= τ−τ

If the animation loops forever (N = ∞), then we bring t into the valid range
by taking the remainder of the result aft er dividing by the duration T. This is
accomplished via the modulo operator (mod, or % in C/C++), as shown below:

()start() mod .t R T= τ−τ

If the clip loops a fi nite number of times (1 < N < ∞), we must fi rst clamp t
into the range [0, NT] and then modulo that result by T in order to bring t into
a valid range for sampling the clip:

Most game engines work directly with local animation time lines and don’t
use the global time line directly. However, working directly in terms of global
times can have some incredibly useful benefi ts. For one thing, it makes syn-
chronizing animations trivial.

11.4.3. Comparison of Local and Global Clocks

The animation system must keep track of the time indices of every animation
that is currently playing. To do so, we have two choices:

Local clocks• . In this approach, each clip has its own local clock, usually
represented by a fl oating-point time index stored in units of seconds or
frames, or in normalized time units (in which case it is oft en called the
phase of the animation). At the moment the clip begins to play, the local

11.4. Clips

[]start 0
(clamp ()) mod .

NT
t R T= τ−τ

512 11. Animation Systems

time index t is usually taken to be zero. To advance the animations for-
ward in time, we advance the local clocks of each clip individually. If a
clip has a non-unit playback rate R, the amount by which its local clock
advances must be scaled by R.
Global clock• . In this approach, the character has a global clock, usually mea-
sured in seconds, and each clip simply records the global time at which it
started playing, τstart. The clips’ local clocks are calculated from this infor-
mation using Equation (11.2), rather than being stored explicitly.

The local clock approach has the benefi t of being simple, and it is the most
obvious choice when designing an animation system. However, the global
clock approach has some distinct advantages, especially when it comes to syn-
chronizing animations, either within the context of a single character or across
multiple characters in a scene.

11.4.3.1. Synchronizing Animations with a Local Clock

With a local clock approach, we said that the origin of a clip’s local time line
(t = 0) is usually defi ned to coincide with the moment at which the clip starts
playing. Thus, to synchronize two or more clips, they must be played at ex-
actly the same moment in game time. This seems simple enough, but it can
become quite tricky when the commands used to play the animations are
coming from disparate engine subsystems.

For example, let’s say we want to synchronize the player character’s punch
animation with a non-player character’s corresponding hit reaction anima-
tion. The problem is that the player’s punch is initiated by the player subsys-
tem in response to detecting that a butt on was hit on the joy pad. Meanwhile,
the NPC ’s hit reaction animation is played by the artifi cial intelligence (AI)
subsystem. If the AI code runs before the player code in the game loop, there
will be a one-frame delay between the start of the player’s punch and the start
of the NPC’s reaction. And if the player code runs before the AI code, then the
opposite problem occurs when an NPC tries to punch the player. If a message-
passing (event) system is used to communicate between the two subsystems,
additional delays might be incurred (see Section 14.7 for more details). This
problem is illustrated in Figure 11.18.

void GameLoop()
{
 while (!quit)
 {
 // preliminary updates...

 UpdateAllNpcs(); // react to punch event
 // from last frame

513

 // more updates...

 UpdatePlayer(); // punch button hit – start punch
 // anim, and send event to NPC to
 // react

 // still more updates...
 }
}

11.4.3.2. Synchronizing Animations with a Global Clock

A global clock approach helps to alleviate many of these synchronization
problems, because the origin of the time line (τ = 0) is common across all clips
by defi nition. If two or more animations’ global start times are numerically
equal, the clips will start in perfect synchronization. If their play back rates
are also equal, then they will remain in sync with no drift . It no longer matt ers
when the code that plays each animation executes. Even if the AI code that
plays the hit reaction ends up running a frame later than the player’s punch
code, it is still trivial to keep the two clips in sync by simply noting the global
start time of the punch and sett ing the global start time of the reaction anima-
tion to match it. This is shown in Figure 11.19.

Of course, we do need to ensure that the two character’s global clocks
match, but this is trivial to do. We can either adjust the global start times to
take account of any diff erences in the characters’ clocks, or we can simply have
all characters in the game share a single master clock.

Figure 11.18. The order of execution of disparate gameplay systems can introduce animation synchro-
nization problems when local clocks are used.

11.4. Clips

514 11. Animation Systems

11.4.4. A Simple Animation Data Format

Typically, animation data is extracted from a Maya scene fi le by sampling the
pose of the skeleton discretely at a rate of 30 or 60 samples per second. A sam-
ple comprises a full pose for each joint in the skeleton. The poses are usually
stored in SQT format: For each joint j, the scale component is either a single
fl oating-point scalar Sj  , or a three-element vector Sj = [Sjx Sjy Sjz]. The rotation-
al component is of course a four-element quaternion Qj = [Qjx Qjy Qjz Qjw].
And the translational component is a three-element vector Tj = [Tjx Tjy Tjz].
We sometimes say that an animation consists of up to 10 channels per joint,
in reference to the 10 components of Sj , Qj , and Tj. This is illustrated in Fig-
ure 11.20.

Figure 11.19. A global clock approach can alleviate animation synchronization problems.

0 1 2 3 4 5 6 7 8 9
Samples

Jo
in

t
0 T0

Q0

S0

Jo
in

t
1 T1

Q1

S1

...

y
x

z

y
x

z
w

y
x

z

......
Figure 11.20. An uncompressed animation clip contains 10 channels of fl oating-point data
per sample, per joint.

515

In C++, an animation clip can be represented in many diff erent ways. Here
is one possibility:

struct JointPose { ... }; // SQT, defined as above

struct AnimationSample
{

JointPose* m_aJointPose; // array of joint
 // poses
};

struct AnimationClip
{
 Skeleton* m_pSkeleton;
 F32 m_framesPerSecond;
 U32 m_frameCount;

AnimationSample* m_aSamples; // array of samples

 bool m_isLooping;
};

An animation clip is authored for a specifi c skeleton and generally won’t
work on any other skeleton. As such, our example AnimationClip data struc-
ture contains a reference to its skeleton, m_pSkeleton. (In a real engine, this
might be a unique skeleton id rather than a Skeleton* pointer. In this case,
the engine would presumably provide a way to quickly and conveniently look
up a skeleton by its unique id.)

The number of JointPoses in the m_aJointPose array within each sam-
ple is presumed to match the number of joints in the skeleton. The number
of samples in the m_aSamples array is dictated by the frame count and by
whether or not the clip is intended to loop. For a non-looping animation, the
number of samples is (m_frameCount + 1). However, if the animation loops,
then the last sample is identical to the fi rst sample and is usually omitt ed. In
this case, the sample count is equal to m_frameCount.

It’s important to realize that in a real game engine, animation data isn’t
actually stored in this simplistic format. As we’ll see in Section 11.8, the data
is usually compressed in various ways to save memory.

11.4.4.1. Animation Retargeting

 We said above that an animation is typically only compatible with a single
skeleton. An exception to this rule can be made for skeletons that are closely
related. For example, if a group of skeletons are identical except for a number
of optional leaf joints that do not aff ect the fundamental hierarchy, then an an-

11.4. Clips

516 11. Animation Systems

imation authored for one of these skeletons should work on any of them. The
only requirement is that the engine be capable of ignoring animation channels
for joints that cannot be found in the skeleton being animated.

Other more-advanced techniques exist for retargeting animations au-
thored for one skeleton so that they work on a diff erent skeleton. This is an
active area of research, and a full discussion of the topic is beyond the scope
of this book. For more information, see for example htt p://portal.acm.org/cita-
tion.cfm?id=1450621 and htt p://chrishecker.com/Real-time_Motion_Retarget-
ing_to_Highly_Varied_User-Created_Morphologies.

11.4.5. Continuous Channel Functions

 The samples of an animation clip are really just defi nitions of continuous func-
tions over time. You can think of these as 10 scalar-valued functions of time
per joint, or as two vector-valued functions and one quaternion-valued func-
tion per joint. Theoretically, these channel functions are smooth and continu-
ous across the entire clip’s local time line, as shown in Figure 11.21 (with the
exception of explicitly authored discontinuities like camera cuts). In practice,
however, many game engines interpolate linearly between the samples, in
which case the functions actually used are piece-wise linear approximations to
the underlying continuous functions. This is depicted in Figure 11.22.

Figure 11.21. The animation samples in a clip defi ne continuous functions over time.

t

Qy3

Samples
0 1 2 3 4 5 6 7 8 9 10

Figure 11.22. Many game engines use a piece-wise linear approximation when interpolating
channel functions.

517

11.4.6. Metachannels

 Many games permit additional “metachannels” of data to be defi ned for an
animation. These channels can encode game-specifi c information that doesn’t
have to do directly with posing the skeleton but which needs to be synchro-
nized with the animation.

It is quite common to defi ne a special channel that contains event triggers
at various time indices, as shown in Figure 11.23. Whenever the animation’s
local time index passes one of these triggers, an event is sent to the game en-
gine, which can respond as it sees fi t. (We’ll discuss events in detail in Chap-
ter 14.) One common use of event triggers is to denote at which points during
the animation certain sound or particle eff ects should be played. For example,
when the left or right foot touches the ground, a footstep sound and a “cloud
of dust” particle eff ect could be initiated.

Another common practice is to permit special joints, known in Maya as
locators , to be animated along with the joints of the skeleton itself. Because a
joint or locator is just an affi ne transform, these special joints can be used to
encode the position and orientation of virtually any object in the game.

A typical application of animated locators is to specify how the game’s
camera should be positioned and oriented during an animation. In Maya, a
locator is constrained to a camera, and the camera is then animated along with
the joints of the character(s) in the scene. The camera’s locator is exported and
used in-game to move the game’s camera around during the animation. The

0 1 2 3 4 5 6 7 8 9
Samples

Jo
in

t
0 T0

Q0

S0

Jo
in

t
1 T1

Q1

S1

O
th

e
r Footstep

Left
Footstep

Right
Reload
Weapon

Events

......

...

...

Figure 11.23. A special event trigger channel can be added to an animation clip in order to
synchronize sound effects, particle effects, and other game events with an animation.

11.4. Clips

518 11. Animation Systems

fi eld of view (focal length) of the camera, and possibly other camera att ributes,
can also be animated by placing the relevant data into one or more additional
fl oating-point channels .

Other examples of non-joint animation channels include:

texture coordinate scrolling,•

texture animation• (a special case of texture coordinate scrolling in which
frames are arranged linearly within a texture, and the texture is scrolled
by one complete frame at each iteration),

animated material parameters (color, specularity, transparency, etc.),•
animated lighting parameters (radius, cone angle, intensity, color, etc.),•
any other parameters that need to change over time and are in some •
way synchronized with an animation.

11.5. Skinning and Matrix Palette Generation

We’ve seen how to pose a skeleton by rotating, translating, and possibly scal-
ing its joints. And we know that any skeletal pose can be represented math-
ematically as a set of local (p()j j→P) or global (Mj→P) joint pose transformations,
one for each joint j. Next, we will explore the process of att aching the vertices
of a 3D mesh to a posed skeleton. This process is known as skinning .

11.5.1. Per-Vertex Skinning Information

A skinned mesh is att ached to a skeleton by means of its vertices. Each vertex
can be bound to one or more joints. If bound to a single joint, the vertex tracks
that joint’s movement exactly. If bound to two or more joints, the vertex’s posi-
tion becomes a weighted average of the positions it would have assumed had it
been bound to each joint independently.

To skin a mesh to a skeleton, a 3D artist must supply the following ad-
ditional information at each vertex:

the • index or indices of the joint(s) to which it is bound,

for each joint, a • weighting factor describing how much infl uence that joint
should have on the fi nal vertex position.

The weighting factors are assumed to add to one, as is customary when calcu-
lating any weighted average.

Usually a game engine imposes an upper limit on the number of joints
to which a single vertex can be bound. A four-joint limit is typical for a num-
ber of reasons. First, four 8-bit joint indices can be packed into a 32-bit word,

519

which is convenient. Also, while it’s prett y easy to see a diff erence in quality
between a two-, three-, and even a four-joint-per-vertex model, most people
cannot see a quality diff erence as the number of joints per vertex is increased
beyond four.

Because the joint weights must sum to one, the last weight can be omitt ed
and oft en is. (It can be calculated at runtime as 3 0 1 21 ()w w w w= − + + .) As
such, a typical skinned vertex data structure might look as follows:

struct SkinnedVertex
{
 float m_position[3]; // (Px, Py, Pz)

 float m_normal[3]; // (Nx, Ny, Nz)

 float m_u, m_v; // texture coordinates
 // (u, v)

 U8 m_jointIndex[4]; // joint indices
 float m_jointWeight[3]; // joint weights, last one
 // omitted
};

11.5.2. The Mathematics of Skinning

The vertices of a skinned mesh track the movements of the joint(s) to which
they are bound. To make this happen mathematically, we would like to fi nd a
matrix that can transform the vertices of the mesh from their original positions
(in bind pose) into new positions that correspond to the current pose of the
skeleton. We shall call such a matrix a skinning matrix.

Like all mesh vertices, the position of a skinned vertex is specifi ed in mod-
el space. This is true whether its skeleton is in bind pose, or in any other pose.
So the matrix we seek will transform vertices from model space (bind pose)
to model space (current pose). Unlike the other transforms we’ve seen thus
far, such as the model-to-world transform or the world-to-view transform,
a skinning matrix is not a change of basis transform. It morphs vertices into
new positions, but the vertices are in model space both before and aft er the
transformation.

11.5.2.1. Simple Example: One-Jointed Skeleton

Let us derive the basic equation for a skinning matrix. To keep things simple at
fi rst, we’ll work with a skeleton consisting of a single joint. We therefore have
two coordinate spaces to work with: model space, which we’ll denote with
the subscript M, and the joint space of our one and only joint, which will be
indicated by the subscript J. The joint’s coordinate axes start out in bind pose,

11.5. Skinning and Matrix Palette Generation

520 11. Animation Systems

which we’ll denote with the superscript B. At any given moment during an
animation, the joint’s axes move to a new position and orientation in model
space—we’ll indicate this current pose with the superscript C.

Now consider a single vertex that is skinned to our joint. In bind pose,
its model-space position is B

Mv . The skinning process calculates the vertex’s
new model-space position in the current pose, C

Mv . This is illustrated in Fig-
ure 11.24.

The “trick” to fi nding the skinning matrix for a given joint is to realize
that the position of a vertex bound to a joint is constant when expressed in that
joint’s coordinate space. So we take the bind-pose position of the vertex in model
space, convert it into joint space, move the joint into its current pose, and fi -
nally convert the vertex back into model space. The net eff ect of this round trip
from model space to joint space and back again is to “morph” the vertex from
bind pose into the current pose.

Referring to the illustration in Figure 11.25, let’s assume that the coordi-
nates of the vertex B

Mv are (4, 6) in model space (when the skeleton is in bind
pose). We convert this vertex into its equivalent joint space coordinates jv ,
which are roughly (1, 3) as shown in the diagram. Because the vertex is bound
to the joint, its joint space coordinates will always be (1, 3) no matt er how the
joint may move. Once we have the joint in the desired current pose, we con-
vert the vertex’s coordinates back into model space, which we’ll denote with
the symbol C

Mv . In our diagram, these coordinates are roughly (18, 2). So the
skinning transformation has morphed our vertex from (4, 6) to (18, 2) in model
space, due entirely to the motion of the joint from its bind pose to the current
pose shown in the diagram.

Looking at the problem mathematically, we can denote the bind pose of the
joint j in model space by the matrix Mj→B . This matrix transforms a point or

xM

yM
xB

yB

xC

yC

Model Space Axes

Bind pose
vertex position,
in model space

Bind Pose
Joint Space

Axes
Current

Pose Joint
Space Axes

Current pose
vertex position,
in model space

vM
B

v M
C

Figure 11.24. Bind pose and current pose of a simple, one-joint skeleton and a single vertex
bound to that joint.

521

vector whose coordinates are expressed in joint j’s space into an equivalent set
of model space coordinates . Now, consider a vertex B

Mv whose coordinates
are expressed in model space with the skeleton in bind pose. To convert these
vertex coordinates into the space of joint j, we simply multiply it by the inverse
bind pose matrix, 1

M M()j j
−

→ →=B B :

B B 1
M M M M() .j j j

−
→ →= =v v B v B (11.3)

Likewise, we can denote the joint’s current pose (i.e., any pose that is not
bind pose) by the matrix Mj→C . To convert jv from joint space back into mod-
el space, we simply multiply it by the current pose matrix as follows:

C
M M.j j→=v v C

If we expand jv using Equation (11.3), we obtain an equation that takes our
vertex directly from its position in bind pose to its position in the current
pose:

C
M M

B 1
M M M

B
M

()

.

j j

j j

j

→

−
→ →

=

=

=

v v C

v B C

v K

 (11.4)

The combined matrix 1
M M()j j j

−
→ →=K B C is known as a skinning matrix .

11.5.2.2. Extension to Multijointed Skeletons

In the example above, we considered only a single joint. However, the math we
derived above actually applies to any joint in any skeleton imaginable, because
we formulated everything in terms of global poses (i.e., joint space to model
space transforms). To extend the above formulation to a skeleton containing
multiple joints, we therefore need to make only two minor adjustments:

xM

yM
xB

yB

xC

yC

1. Transform into
 joint space

v M
B

v M
C

v j
v j

3. Transform back
 into model space

2. Move joint into
 current pose

Figure 11.25. By transforming a vertex’s position into joint space, it can be made to “track”
the joint’s movements.

11.5. Skinning and Matrix Palette Generation

522 11. Animation Systems

We must make sure that our 1. Mj→B and Mj→C matrices are calculated
properly for the joint in question, using Equation (11.1). Mj→B and

Mj→C are just the bind pose and current pose equivalents, respectively,
of the matrix Mj→P given in that equation.

We must calculate an array of skinning matrices 2. jK , one for each joint j.
This array is known as a matrix palett e . The matrix palett e is passed to the
rendering engine when rendering a skinned mesh. For each vertex, the
renderer looks up the appropriate joint’s skinning matrix in the palett e
and uses it to transform the vertex from bind pose into current pose.

We should note here that the current pose matrix Mj→C changes every
frame as the character assumes diff erent poses over time. However, the in-
verse bind-pose matrix is constant throughout the entire game, because the
bind pose of the skeleton is fi xed when the model is created. Therefore, the
matrix 1

M()j
−

→B is generally cached with the skeleton, and needn’t be calcu-
lated at runtime. Animation engines generally calculate local poses for each
joint (p()j j→C), then use Equation (11.1) to convert these into global poses
(Mj→C), and fi nally multiply each global pose by the corresponding cached
inverse bind pose matrix (1

M()j
−

→B) in order to generate a skinning matrix
(jK) for each joint.

11.5.2.3. Incorporating the Model-to-World Transform

Every vertex must eventually be transformed from model space into world
space. Some engines therefore premultiply the palett e of skinning matrices by
the object’s model-to-world transform. This can be a useful optimization, as
it saves the rendering engine one matrix multiply per vertex when rendering
skinned geometry. (With hundreds of thousands of vertices to process, this
savings can really add up!)

To incorporate the model-to-world transform into our skinning matrices,
we simply concatenate it to the regular skinning matrix equation, as follows:

1
W M M M W() () .j j j

−
→ → →=K B C M

Some engines bake the model-to-world transform into the skinning ma-
trices like this, while others don’t. The choice is entirely up to the engineer-
ing team and is driven by all sorts of factors. For example, one situation in
which we would defi nitely not want to do this is when a single animation
is being applied to multiple characters simultaneously—a technique known
as animation instancing that is commonly used for animating large crowds of
characters. In this case we need to keep the model-to-world transforms sepa-
rate so that we can share a single matrix palett e across all characters in the
crowd.

523

11.5.2.4. Skinning a Vertex to Multiple Joints

 When a vertex is skinned to more than one joint, we calculate its fi nal position
by assuming it is skinned to each joint individually, calculating a model space
position for each joint and then taking a weighted average of the resulting posi-
tions. The weights are provided by the character rigging artist, and they must
always sum to one. (If they do not sum to one, they should be re-normalized
by the tools pipeline.)

The general formula for a weighted average of N quantities 0a through
1Na − , with weights 0w through 1Nw − and with

This works equally well for vector quantities ai. So, for a vertex skinned to N
joints with indices 0j through 1Nj − and weights 0w through 1Nw − , we can
extend Equation (11.4) as follows:

1
C B
M M

0

,i

N

ĳ
i

w
−

=

= ∑v v K

where ijK is the skinning matrix for the joint ij .

11.6. Animation Blending

The term animation blending refers to any technique that allows more than one ani-
mation clip to contribute the fi nal pose of the character. To be more precise, blend-
ing combines two or more input poses to produce an output pose for the skeleton.

Blending usually combines two or more poses at a single point in time,
and generates an output at that same moment in time. In this context, blend-
ing is used to combine two or more animations into a host of new animations,
without having to create them manually. For example, by blending an injured
walk animation with an uninjured walk, we can generate various intermedi-
ate levels of apparent injury for our character while he is walking. As another
example, we can blend between an animation in which the character is aim-
ing to the left and one in which he’s aiming to the right, in order to make the
character aim along any desired angle between the two extremes. Blending
can be used to interpolate between extreme facial expressions, body stances,
locomotion modes, and so on.

Blending can also be used to fi nd an intermediate pose between two
known poses at diff erent points in time. This is used when we want to fi nd the
pose of a character at a point in time that does not correspond exactly to one of

11.6. Animation Blending

1

0

1
N

i
i

w
−

=

=∑ ,

is

1

0

ˆ .
N

i i
i

a w a
−

=

= ∑

524 11. Animation Systems

the sampled frames available in the animation data. We can also use temporal
animation blending to smoothly transition from one animation to another, by
gradually blending from the source animation to the destination over a short
period of time.

11.6.1. LERP Blending

Given two skeletal poses { } 1

0
 ()

Nskel
A A j j

−

=
=P P and { } 1

0
 ()

Nskel
B B j j

−

=
=P P , we wish

to fi nd an intermediate pose skel
LERPP between these two extremes. This can be

done by performing a linear interpolation (LERP) between the local poses of
each individual joint in each of the two source poses. This can be writt en as
follows:

LERP() LERP () , () ,

(1)() () .

j A j B j

A j B j

⎡ ⎤= β⎣ ⎦

= − β + β

P P P

P P
 (11.5)

The interpolated pose of the whole skeleton is simply the set of interpolated
poses for all of the joints:

 { } 1skel
LERP LERP 0

 () .
N

j j

−

=
=P P (11.6)

In these equations, β is called the blend percentage or blend factor. When
β = 0, the fi nal pose of the skeleton will exactly match skel

AP ; when β = 1, the
fi nal pose will match skel

BP . When β is between zero and one, the fi nal pose
is an intermediate between the two extremes. This eff ect is illustrated in Fig-
ure 11.10.

We’ve glossed over one small detail here: We are linearly interpolating
joint poses , which means interpolating 4×4 transformation matrices. But, as we
saw in Chapter 4, interpolating matrices directly is not practical. This is one of
the reasons why local poses are usually expressed in SQT format—doing so
allows us to apply the LERP operation defi ned in Section 4.2.5 to each compo-
nent of the SQT individually. The linear interpolation of the translation com-
ponent T of an SQT is just a straightforward vector LERP:

LERP() LERP[() , () ,]

(1)() () .

j A j B j

A j B j

= β

= − β + β

T T T

T T
 (11.7)

The linear interpolation of the rotation component is a quaternion LERP or
SLERP (spherical linear interpolation):

LERP(q) LERP[(q) , (q) ,]

(1)(q) (q)

j A j B j

A j B j

= β

= − β + β
 (11.8a)

or

525

LERP(q) SLERP[(q) , (q) ,]

sin((1)) sin()
(q) (q) .

sin() sin()

j A j B j

A j B j

= β

− β θ βθ
= +

θ θ

 (11.8b)

Finally, the linear interpolation of the scale component is either a scalar or vec-
tor LERP, depending on the type of scale (uniform or nonuniform) supported
by the engine:

LERP() LERP[() , () ,]

(1)() ()

j A j B j

A j B j

= β

= − β + β

s s s

s s
 (11.9a)

or

LERP() LERP[() , () ,]

(1)() () .

j A j B j

A j B j

s s s

s s

= β

= − β + β
 (11.9b)

When linearly interpolating between two skeletal poses, the most natural-
looking intermediate pose is generally one in which each joint pose is inter-
polated independently of the others, in the space of that joint’s immediate
parent. In other words, pose blending is generally performed on local poses. If
we were to blend global poses directly in model space, the results would tend
to look biomechanically implausible.

Because pose blending is done on local poses, the linear interpolation of
any one joint’s pose is totally independent of the interpolations of the other
joints in the skeleton. This means that linear pose interpolation can be per-
formed entirely in parallel on multiprocessor architectures.

11.6.2. Applications of LERP Blending

Now that we understand the basics of LERP blending, let’s have a look at
some typical gaming applications.

11.6.2.1. Temporal Interpolation

 As we mentioned in Section 11.4.1.1, game animations are almost never sam-
pled exactly on integer frame indices. Because of variable frame rate, the play-
er might actually see frames 0.9, 1.85, and 3.02, rather than frames 1, 2, and
3 as one might expect. In addition, some animation compression techniques
involve storing only disparate key frames, spaced at uneven intervals across
the clip’s local time line. In either case, we need a mechanism for fi nding in-
termediate poses between the sampled poses that are actually present in the
animation clip.

LERP blending is used to fi nd these intermediate poses. As an example,
let’s imagine that our animation clip contains evenly-spaced pose samples at

11.6. Animation Blending

526 11. Animation Systems

times 0, Δt, 2Δt, 3Δt, and so on. To fi nd a pose at time t = (2.18)Δt, we simply
fi nd the linear interpolation between the poses at times 2Δt and 3Δt, using a
blend percentage of β = 0.18.

In general, we can fi nd the pose at time t given pose samples at any two
times t1 and t2 that bracket t, as follows:

1 2

1 2

() LERP[(), (), ()]

(1 ()) () () (),

j j j

j j

t = β

= − β + β

P P P

P P

t t t

t t t t
 (11.10)

where the blend factor β(t) is the ratio

 1

2 1
() .

t
t

t
−

β =
−

t
t

 (11.11)

11.6.2.2. Motion Continuity: Cross-Fading

 Game characters are animated by piecing together a large number of fi ne-
grained animation clips. If your animators are any good, the character will ap-
pear to move in a natural and physically plausible way within each individual
clip. However, it is notoriously diffi cult to achieve the same level of quality
when transitioning from one clip to the next. The vast majority of the “pops”
we see in game animations occur when the character transitions from one clip
to the next.

Ideally, we would like the movements of each part of a character’s body to
be perfectly smooth, even during transitions. In other words, the three-dimen-
sional paths traced out by each joint in the skeleton as it moves should contain
no sudden “jumps.” We call this C0 continuity ; it is illustrated in Figure 11.26.

Not only should the paths themselves be continuous, but their fi rst deriv-
atives (velocity curves) should be continuous as well. This is called C1 continu-
ity (or continuity of velocity and momentum). The perceived quality and real-
ism of an animated character’s movement improves as we move to higher and
higher order continuity. For example, we might want to achieve C2 continuity,
in which the second derivatives of the motion paths (acceleration curves) are
also continuous.

t

Tx7

t

Tx7
discontinuity

C0 continuous not C0 continuous

Figure 11.26. The channel function on the left has C0 continuity, while the path on the right
does not.

527

Strict mathematical continuity up to C1 or higher is oft en infeasible to
achieve. However, LERP-based animation blending can be applied to achieve
a reasonably pleasing form of C0 motion continuity. It usually also does a
prett y good job of approximating C1 continuity. When applied to transitions
between clips in this manner, LERP blending is sometimes called cross-fading .
LERP blending can introduce unwanted artifacts, such as the dreaded “sliding
feet” problem, so it must be applied judiciously.

To cross-fade between two animations, we overlap the time lines of the
two clips by some reasonable amount, and then blend the two clips together.
The blend percentage β starts at zero at time tstart  , meaning that we see only
clip A when the cross-fade begins. We gradually increase β until it reaches a
value of one at time tend . At this point only clip B will be visible, and we can
retire clip A altogether. The time interval over which the cross-fade occurs
(Δtblend = tend – tstart) is sometimes called the blend time .

Types of Cross-Fades

There are two common ways to perform a cross-blended transition:

Smooth transition• . Clips A and B both play simultaneously as β increases
from zero to one. For this to work well, the two clips must be looping
animations, and their time lines must be synchronized so that the posi-
tions of the legs and arms in one clip match up roughly with their posi-
tions in the other clip. (If this is not done, the cross-fade will oft en look
totally unnatural.) This technique is illustrated in Figure 11.27.

Frozen transition• . The local clock of clip A is stopped at the moment clip
B starts playing. Thus the pose of the skeleton from clip A is frozen
while clip B gradually takes over the movement. This kind of transi-
tional blend works well when the two clips are unrelated and cannot be

Clip A

t

Clip Bβ
1

0
tstart tend

Figure 11.27. A smooth transition, in which the local clocks of both clips keep running during
the transition.

11.6. Animation Blending

528 11. Animation Systems

time-synchronized, as they must be when performing a smooth transi-
tion. This approach is depicted in Figure 11.28.

We can also control how the blend factor β varies during the transition.
In Figure 11.27 and Figure 11.28, the blend factor varied linearly with time.
To achieve an even smoother transition, we could vary β according to a cubic
function of time, such as a one-dimensional Bézier. When such a curve is ap-
plied to a currently-running clip that is being blended out, it is known as an
ease-out curve; when it is applied to a new clip that is being blended in, it is
known as an ease-in curve. This is shown in Figure 11.29.

The equation for a Bézier ease-in/ease-out curve is given below. It returns
the value of β at any time t within the blend interval. βstart is the blend factor
at the start of the blend interval, tstart , and βend is the fi nal blend factor at time
tend. The parameter u is the normalized time between tstart and tend , and for con-
venience we’ll also defi ne v = 1 – u (the inverse normalized time). Note that
the Bézier tangents Tstart and Tend are taken to be equal to the corresponding

Clip A

t

Clip Bβ
1

0

A’s local timeline
freezes here

tstart tend

Figure 11.28. A frozen transition, in which clip A’s local clock is stopped during the transi-
tion.

Clip A

t

Clip Bβ
1

0
t start tend

Figure 11.29. A smooth transition, with a cubic ease-in/ease-out curve applied to the blend
factor.

529

blend factors βstart and βend , because this yields a well-behaved curve for our
purposes:

start

end start

3 2 2 3
start start end end

3 2 2 3
start end

let

and 1 :

() () (3) (3) ()

(3) (3) .

u
t

v u

t v v u T vu T u

v v u vu u

⎛ ⎞−
=⎜ ⎟

⎝ ⎠−

= −

β = β + + + β

= + β + + β

tt

Core Poses

This is an appropriate time to mention that motion continuity can actually
be achieved without blending if the animator ensures that the last pose in any
given clip matches the fi rst pose of the clip that follows it. In practice, anima-
tors oft en decide upon a set of core poses —for example, we might have a core
pose for standing upright, one for crouching, one for lying prone, and so on.
By making sure that the character starts in one of these core poses at the begin-
ning of every clip and returns to a core pose at the end, C0 continuity can be
achieved by simply ensuring that the core poses match when animations are
spliced together. C1 or higher-order motion continuity can also be achieved
by ensuring that the character’s movement at the end of one clip smoothly
transitions into the motion at the start of the next clip. This is easily achieved
by authoring a single smooth animation and then breaking it into two or more
clips.

11.6.2.3. Directional Locomotion

LERP-based animation blending is oft en applied to character locomotion.
When a real human being walks or runs, he can change the direction in which
he is moving in two basic ways: First, he can turn his entire body to change
direction, in which case he always faces in the direction he’s moving. I’ll call

TargetedPivotal

Path of
Movement

Figure 11.30. In pivotal movement, the character faces the direction she is moving and pivots
about her vertical axis to turn. In targeted movement, the movement direction need not
match the facing direction.

11.6. Animation Blending

530 11. Animation Systems

this pivotal movement, because the person pivots about his vertical axis when
he turns. Second, he can keep facing in one direction, while walking forward,
backward, or sideways (known as strafi ng in the gaming world) in order to
move in a direction that is independent of his facing direction. I’ll call this
targeted movement, because it is oft en used in order to keep one’s eye—or one’s
weapon—trained on a target while moving. These two movement styles are
illustrated in Figure 11.30.

Targeted Movement

To implement targeted movement, the animator authors three separate looping
animation clips—one moving forward, one strafi ng to the left , and one straf-
ing to the right. I’ll call these directional locomotion clips. The three directional
clips are arranged around the circumference of a semicircle, with forward at
0 degrees, left at 90 degrees and right at –90 degrees. With the character’s fac-
ing direction fi xed at 0 degrees, we fi nd the desired movement direction on
the semicircle, select the two adjacent movement animations, and blend them
together via LERP-based blending. The blend percentage β is determined by
how close the angle of movement is to the angles of two adjacent clips. This is
illustrated in Figure 11.31.

Note that we did not include backward movement in our blend, for a full
circular blend. This is because blending between a sideways strafe and a back-
ward run cannot be made to look natural in general. The problem is that when
strafi ng to the left , the character usually crosses its right foot in front of its left
so that the blend into the pure forward run animation looks correct. Likewise,
the right strafe is usually authored with the left foot crossing in front of the
right. When we try to blend such strafe animations directly into a backward
run, one leg will start to pass through the other, which looks extremely awk-

Figure 11.31. Targeted movement can be implemented by blending together looping locomo-
tion clips that move in each of the four principal directions.

531

ward and unnatural. There are a number of ways to solve this problem. One
feasible approach is to defi ne two hemispherical blends, one for forward mo-
tion and one for backward motion, each with strafe animations that have been
craft ed to work properly when blended with the corresponding straight run.
When passing from one hemisphere to the other, we can play some kind of
explicit transition animation so that the character has a chance to adjust its gait
and leg crossing appropriately.

Pivotal Movement

To implement pivotal movement, we can simply play the forward locomotion
loop while rotating the entire character about its vertical axis to make it turn.
Pivotal movement looks more natural if the character’s body doesn’t remain
bolt upright when it is turning—real humans tend to lean into their turns a
litt le bit. We could try slightly tilting the vertical axis of the character as a
whole, but that would cause problems with the inner foot sinking into the
ground while the outer foot comes off the ground. A more natural-looking
result can be achieved by animating three variations on the basic forward
walk or run—one going perfectly straight, one making an extreme left turn,
and one making an extreme right turn. We can then LERP-blend between
the straight clip and the extreme left turn clip to implement any desired lean
angle.

11.6.3. Complex LERP Blends

 In a real game engine, characters make use of a wide range of complex blends
for various purposes. It can be convenient to “prepackage” certain commonly
used types of complex blends for ease of use. In the following sections, we’ll
investigate a few popular types of prepackaged complex blends.

11.6.3.1. Generalized One-Dimensional LERP Blending

LERP blending can be easily extended to more than two animation clips, us-
ing a technique I call one-dimensional LERP blending. We defi ne a new blend
parameter b that lies in any linear range desired (e.g., –1 to +1, or from 0 to 1,
or even from 27 to 136). Any number of clips can be positioned at arbitrary
points along this range, as shown in Figure 11.32. For any given value of b, we
select the two clips immediately adjacent to it and blend them together using
Equation (11.5). If the two adjacent clips lie at points b1 and b2 , then the blend
percentage β can be determined using a technique analogous to that used in
Equation (11.10), as follows:

 (11.12)
1

2 1
.

b b
b b

−
β=

−

11.6. Animation Blending

532 11. Animation Systems

Targeted movement is just a special case of one-dimensional LERP blend-
ing. We simply straighten out the circle on which the directional animation
clips were placed and use the movement direction angle θ as the param-
eter b (with a range of –90 to 90 degrees). Any number of animation clips
can be placed onto this blend range at arbitrary angles. This is shown in Fig-
ure 11.33.

11.6.3.2. Simple Two-Dimensional LERP Blending

Sometimes we would like to smoothly vary two aspects of a character’s motion
simultaneously. For example, we might want the character to be capable of
aiming his weapon vertically and horizontally. Or we might want to allow our
character to vary her pace length and the separation of her feet as she moves.
We can extend one-dimensional LERP blending to two dimensions in order to
achieve these kinds of eff ects.

Clip A

b0 b1 b2 b3 b4

Clip B Clip C Clip D Clip E

b

12

1

bb
bb

−
−

=β

Figure 11.32. A generalized linear blend between N animation clips.

Figure 11.33. The directional clips used in targeted movement can be thought of as a special
case of one-dimensional LERP blending.

533

If we know that our 2D blend involves only four animation clips, and if
those clips are positioned at the four corners of a square region, then we can
fi nd a blended pose by performing two 1D blends. Our generalized blend fac-
tor b becomes a two-dimensional blend vector b = [bx by]. If b lies within the
square region bounded by our four clips, we can fi nd the resulting pose by
following these steps:

Using the horizontal blend factor • bx , fi nd two intermediate poses, one
between the top two animation clips and one between the bott om two
clips. These two poses can be found by performing two simple one-di-
mensional LERP blends.

Then, using the vertical blend factor • by , fi nd the fi nal pose by LERP-
blending the two intermediate poses together.

This technique is illustrated in Figure 11.34.

11.6.3.3. Triangular Two-Dimensional LERP Blending

The simple 2D blending technique we investigated above only works when
the animation clips we wish to blend lie at the corners of a square region. How
can we blend between an arbitrary number of clips positioned at arbitrary
locations in our 2D blend space?

 Let’s imagine that we have three animation clips that we wish to blend to-
gether. Each clip, designated by the index i, corresponds to a particular blend
coordinate bi = [bxi byi] in our two-dimensional blend space, and these three
blend coordinates form a triangle in our two-dimensional blend space. Each
clip i defi nes a set of joint poses { } 1

0
 ()

N
ĳ j

−

=
P , where j is the joint index and N

is the number of joints in the skeleton. We wish to fi nd the interpolated pose

Clip A

bx

by

Clip B

Clip DClip C

Blend
AB

Blend
CD

Final
Blend b

Figure 11.34. A simple formulation for 2D animation blending between four clips at the
corners of a square region.

11.6. Animation Blending

534 11. Animation Systems

of the skeleton corresponding to an arbitrary point b within the triangle, as
illustrated in Figure 11.35.

But how can we calculate a LERP blend between three animation clips?
Thankfully, the answer is simple: the LERP function can actually operate on
any number of inputs, because it is really just a weighted average . As with any
weighted average, the weights must add to one. In the case of a two-input
LERP blend, we used the weights β and (1 – β), which of course add to one.
For a three-input LERP, we simply use three weights, α, β, and γ = (1 – α – β).
Then we calculate the LERP as follows:

LERP 0 1 2() () () (1)() .j j j j= α + β + −α− βP P P P (11.13)

Given the two-dimensional blend vector b, we fi nd the blend weights α,
β, and γ by fi nding the barycentric coordinates of the point b relative to the
triangle formed by the three clips in two-dimensional blend space (htt p://
en.wikipedia.org/wiki/Barycentric_coordinates_%28mathematics%29).  In
general, the barycentric coordinates of a point b within a triangle with vertices
b1 , b2 , and b3 are three scalar values (α, β, γ) that satisfy the relations

 0 1 2 = α + β + γb b b b (11.14)

and

 1.α+ β+ γ =

These are exactly the weights we seek for our three-clip weighted average.
Barycentric coordinates are illustrated in Figure 11.36.

Note that plugging the barycentric coordinate (1, 0, 0) into Equation
(11.14) yields b0 , while (0, 1, 0) gives us b1 and (0, 0, 1) produces b2. Likewise,
plugging these blend weights into Equation (11.13) gives us poses 0() jP , 1() jP ,

Clip A

b0

by

Clip B

Clip C

b

b1

b2

bx

Final
Blend

Figure 11.35. Two-dimensional animation blending between three animation clips.

535

and 2() jP , respectively. Furthermore, the barycentric coordinate (⅓, ⅓, ⅓) lies
at the centroid of the triangle and gives us an equal blend between the three
poses. This is exactly what we’d expect.

11.6.3.4. Generalized Two-Dimensional LERP Blending

The barycentric coordinate technique can be extended to an arbitrary number
of animation clips positioned at arbitrary locations within the two-dimension-
al blend space. We won’t describe it in its entirety here, but the basic idea is
to use a technique known as Delaunay triangulation (htt p://en.wikipedia.org/
wiki/Delaunay_triangulation) to fi nd a set of triangles given the positions of
the various animation clips bi  . Once the triangles have been determined, we
can fi nd the triangle that encloses the desired point b and then perform a
three-clip LERP blend as described above. This is shown in Figure 11.37.

b0

by

b

b1

b2

α

β

γ

bx

Figure 11.36. Various barycentric coordinates within a triangle.

Clip A
b0

Clip B

b1

Clip C

Clip D
Clip E

Clip F

Clip G

Clip H Clip I

Clip J

b2

b3

b4 b5

b6

b7

b8

b9

by

bx

Figure 11.37. Delaunay triangulation between an arbitrary number of animation clips
positioned at arbitrary locations in two-dimensional blend space.

11.6. Animation Blending

536 11. Animation Systems

11.6.4. Partial-Skeleton Blending

A human being can control diff erent parts of his or her body independently.
For example, I can wave my right arm while walking and pointing at some-
thing with my left arm. One way to implement this kind of movement in a
game is via a technique known as partial-skeleton blending .

Recall from Equations (11.5) and (11.6) that when doing regular LERP
blending, the same blend percentage β was used for every joint in the skeleton.
Partial-skeleton blending extends this idea by permitt ing the blend percent-
age to vary on a per-joint basis. In other words, for each joint j, we defi ne a
separate blend percentage βj. The set of all blend percentages for the entire
skeleton { } 1

0

N
j j

−

=
β is sometimes called a blend mask because it can be used to

“mask out” certain joints by sett ing their blend percentages to zero.
As an example, let’s say we want our character to wave at someone using

his right arm and hand. Moreover, we want him to be able to wave whether
he’s walking, running, or standing still. To implement this using partial blend-
ing, the animator defi nes three full-body animations: Walk, Run, and Stand.
The animator also creates a single waving animation, Wave. A blend mask is
created in which the blend percentages are zero everywhere except for the
right shoulder, elbow, wrist, and fi nger joints, where they are equal to one:

1, right arm,
0, otherwise.j

j⎧ ∈
⎨β =
⎩

When Walk, Run, or Stand is LERP-blended with Wave using this blend mask,
the result is a character who appears to be walking, running, or standing while
waving his right arm.

Partial blending is useful, but it has a tendency to make a character’s
movement look unnatural. This occurs for two basic reasons:

An abrupt change in the per-joint blend factors can cause the movements •
of one part of the body to appear disconnected from the rest of the body.
In our example, the blend factors change abruptly at the right shoulder
joint. Hence the animation of the upper spine, neck, and head are being
driven by one animation, while the right shoulder and arm joints are
being entirely driven by a diff erent animation. This can look odd. The
problem can be mitigated somewhat by gradually changing the blend
factors rather than doing it abruptly. (In our example, we might select a
blend percentage of 0.9 at the right shoulder, 0.5 on the upper spine, and
0.2 on the neck and mid-spine.)

The movements of a real human body are never totally independent. •
For example, one would expect a person’s wave to look more “bouncy”

537

and out of control when he or she is running than when he or she is
standing still. Yet with partial blending, the right arm’s animation will
be identical no matt er what the rest of the body is doing. This problem is
diffi cult to overcome using partial blending. Instead, many game devel-
opers have recently turned to a more natural-looking technique known
as additive blending.

11.6.5. Additive Blending

Additive blending approaches the problem of combining animations in a to-
tally new way. It introduces a new kind of animation called a diff erence clip,
which, as its name implies, represents the diff erence between two regular ani-
mation clips. A diff erence clip can be added onto a regular animation clip in
order to produce interesting variations in the pose and movement of the char-
acter. In essence, a diff erence clip encodes the changes that need to be made to
one pose in order to transform it into another pose. Diff erence clips are oft en
called additive animation clips in the game industry. We’ll stick with the term
diff erence clip in this book because it more accurately describes what is going
on.

Consider two input clips called the source clip (S) and the reference clip (R).
Conceptually, the diff erence clip is D = S – R. If a diff erence clip D is added to
its original reference clip, we get back the source clip (S = D + R). We can also
generate animations that are partway between R and S by adding a percent-
age of D to R, in much the same way that LERP blending fi nds intermediate
animations between two extremes. However, the real beauty of the additive
blending technique is that once a diff erence clip has been created, it can be
added to other unrelated clips, not just to the original reference clip. We’ll call
these animations target clips and denote them with the symbol T.

As an example, if the reference clip has the character running normally
and the source clip has him running in a tired manner, then the diff erence clip
will contain only the changes necessary to make the character look tired while
running. If this diff erence clip is now applied to a clip of the character walk-
ing, the resulting animation can make the character look tired while walking.
A whole host of interesting and very natural-looking animations can be cre-
ated by adding a single diff erence clip onto various “regular” animation clips,
or a collection of diff erence clips can be created, each of which produces a
diff erent eff ect when added to a single target animation.

11.6.5.1. Mathematical Formulation

A diff erence animation D is defi ned as the diff erence between some source
animation S and some reference animation R. So conceptually, the diff erence

11.6. Animation Blending

538 11. Animation Systems

pose (at a single point in time) is D = S – R. Of course, we’re dealing with joint
poses, not scalar quantities, so we cannot simply subtract the poses. In gen-
eral, a joint pose is a 4 × 4 affi ne transformation matrix C P→P that transforms
points and vectors from the child joint’s local space to the space of its parent
joint. The matrix equivalent of subtraction is multiplication by the inverse ma-
trix. So given the source pose Sj and the reference pose Rj for any joint j in the
skeleton, we can defi ne the diff erence pose Dj at that joint as follows (for this
discussion, we’ll drop the C→P or j→p(j) subscript, as it is understood that we
are dealing with child-to-parent pose matrices):

 1.j j j
−=D S R

 “Adding” a diff erence pose Dj onto a target pose Tj yields a new additive
pose Aj. This is achieved by simply concatenating the diff erence transform
and the target transform as follows:

 1() .j j j j j j
−= =A D T S R T (11.15)

We can verify that this is correct by looking at what happens when the diff er-
ence pose is “added” back onto the original reference pose:

 1

.

j j j

j j j

j

−

=

=

=

A D R

S R R

S
In other words, adding the diff erence animation D back onto the original ref-
erence animation R yields the source animation S, as we’d expect.

Temporal Interpolation of Difference Clips

As we learned in Section 11.4.1.1, game animations are almost never sampled
on integer frame indices. To fi nd a pose at an arbitrary time t, we must oft en
temporally interpolate between adjacent pose samples at times t1 and t2. Thank-
fully, diff erence clips can be temporally interpolated just like their non-addi-
tive counterparts. We can simply apply Equations (11.10) and (11.11) directly
to our diff erence clips as if they were ordinary animations.

Note that a diff erence animation can only be found when the input clips
S and R are of the same duration. Otherwise there would be a period of time
during which either S or R is undefi ned, meaning D would be undefi ned as
well.

Additive Blend Percentage

In games, we oft en wish to blend in only a percentage of a diff erence anima-
tion to achieve varying degrees of the eff ect it produces. For example, if a
diff erence clip causes the character to turn his head 80 degrees to the right,

539

blending in 50% of the diff erence clip should make him turn his head only
40 degrees to the right.

To accomplish this, we turn once again to our old friend LERP. We wish
to interpolate between the unaltered target animation and the new animation
that would result from a full application of the diff erence animation. To do
this, we extend Equation (11.15) as follows:

LERP(, ,)

(1)() ().

j j j j

j j j

= β

= − β + β

A T D T

T D T
 (11.16)

As we saw in Chapter 4, we cannot LERP matrices directly. So Equation
(11.16) must be broken down into three separate interpolations for S, Q, and T,
just as we did in Equations (11.7), (11.8), and (11.9).

11.6.5.2. Additive Blending Versus Partial Blending

Additive blending is similar in some ways to partial blending. For example,
we can take the diff erence between a standing clip and a clip of standing while
waving the right arm. The result will be almost the same as using a partial
blend to make the right arm wave. However, additive blends suff er less from
the “disconnected” look of animations combined via partial blending. This
is because, with an additive blend, we are not replacing the animation for
a subset of joints or interpolating between two potentially unrelated poses.
Rather, we are adding movement to the original animation—possibly across
the entire skeleton. In eff ect, a diff erence animation “knows” how to change a
character’s pose in order to get him to do something specifi c, like being tired,
aiming his head in a certain direction, or waving his arm. These changes can
be applied to a wide variety of animations, and the result oft en looks very
natural.

11.6.5.3. Limitations of Additive Blending

 Of course, additive animation is not a silver bullet. Because it adds movement
to an existing animation, it can have a tendency to over-rotate the joints in the
skeleton, especially when multiple diff erence clips are applied simultaneous-
ly. As a simple example, imagine a target animation in which the character’s
left arm is bent at a 90 degree angle. If we add a diff erence animation that also
rotates the elbow by 90 degrees, then the net eff ect would be to rotate the arm
by 90 + 90 = 180 degrees. This would cause the lower arm to interpenetrate the
upper arm—not a comfortable position for most individuals!

Clearly we must be careful when selecting the reference clip and also
when choosing the target clips to which to apply it. Here are some simple
rules of thumb:

11.6. Animation Blending

540 11. Animation Systems

Keep hip rotations to a minimum in the reference clip.•

The shoulder and elbow joints should usually be in neutral poses in the •
reference clip to minimize over-rotation of the arms when the diff erence
clip is added to other targets.

Animators should create a new diff erence animation for each core pose •
(e.g., standing upright, crouched down, lying prone, etc.). This allows
the animator to account for the way in which a real human would move
when in each of these stances.

These rules of thumb can be a helpful starting point, but the only way to
really learn how to create and apply diff erence clips is by trial and error or by
apprenticing with animators or engineers who have experience creating and
applying diff erence animations. If your team hasn’t used additive blending in
the past, expect to spend a signifi cant amount of time learning the art of ad-
ditive blending.

11.6.6. Applications of Additive Blending

11.6.6.1. Stance Variation

One particularly striking application of additive blending is stance variation .
For each desired stance, the animator creates a one-frame diff erence anima-
tion. When one of these single-frame clips is additively blended with a base
animation, it causes the entire stance of the character to change drastically
while he continues to perform the fundamental action he’s supposed to per-
form. This idea is illustrated in Figure 11.38.

Target +
Difference A

Target +
Difference B

Target Clip
(and Reference)

Figure 11.38. Two single-frame difference animations A and B can cause a target animation
clip to assume two totally different stances. (Character from Naughty Dog’s Uncharted:
Drake’s Fortune.)

541

Target Clip
(and Reference)

Target +
Difference A

Target +
Difference B

Target +
Difference C

Figure 11.39. Additive blends can be used to add variation to a repetitive idle animation.
Images courtesy of Naughty Dog Inc.

11.6.6.2. Locomotion Noise

 Real humans don’t run exactly the same way with every footfall—there is
variation in their movement over time. This is especially true if the person
is distracted (for example, by att acking enemies). Additive blending can be
used to layer randomness, or reactions to distractions, on top of an otherwise
entirely repetitive locomotion cycle. This is illustrated in Figure 11.39.

11.6.6.3. Aim and Look-At

Another common use for additive blending is to permit the character to look
around or to aim his weapon. To accomplish this, the character is fi rst ani-
mated doing some action, such as running, with his head or weapon facing
straight ahead. Then the animator changes the direction of the head or the
aim of the weapon to the extreme right and saves off a one-frame or multi-
frame diff erence animation. This process is repeated for the extreme left , up,
and down directions. These four diff erence animations can then be additively
blended onto the original straight ahead animation clip, causing the character
to aim right, left , up, down, or anywhere in between.

The angle of the aim is governed by the additive blend factor of each clip.
For example, blending in 100 percent of the right additive causes the character

11.6. Animation Blending

542 11. Animation Systems

to aim as far right as possible. Blending 50 percent of the left additive causes
him to aim at an angle that is one-half of his left most aim. We can also combine
this with an up or down additive to aim diagonally. This is demonstrated in
Figure 11.40.

11.6.6.4. Overloading the Time Axis

It’s interesting to note that the time axis of an animation clip needn’t be used
to represent time. For example, a three-frame animation clip could be used to
provide three aim poses to the engine—a left aim pose on frame 1, a forward
aim pose on frame 2, and a right aim pose on frame 3. To make the character
aim to the right, we can simply fi x the local clock of the aim animation on
frame 3. To perform a 50% blend between aiming forward and aiming right,
we can dial in frame 2.5. This is a great example of leveraging existing features
of the engine for new purposes.

11.7. Post-Processing

Once a skeleton as been posed by one or more animation clips and the results
have been blended together using linear interpolation or additive blending, it
is oft en necessary to modify the pose prior to rendering the character. This is
called animation post-processing . In this section, we’ll look at a few of the most
common kinds of animation post-processing.

Target +
Difference Right

Target +
Difference Left

Target Clip
(and Reference)

0% Right
0% Left

100% Right 100% Left

Figure 11.40. Additive blending can be used to aim a weapon. Screenshots courtesy of
Naughty Dog Inc.

543

11.7.1. Procedural Animations

A procedural animation is any animation generated at runtime rather than be-
ing driven by data exported from an animation tool such as Maya. Sometimes,
hand-animated clips are used to pose the skeleton initially, and then the pose
is modifi ed in some way via procedural animation as a post-processing step.
A procedural animation can also be used as an input to the system in place of
a hand-animated clip.

For example, imagine that a regular animation clip is used to make a ve-
hicle appear to be bouncing up and down on the terrain as it moves. The
direction in which the vehicle travels is under player control. We would like
to adjust the rotation of the front wheels and steering wheel so that they move
convincingly when the vehicle is turning. This can be done by post-processing
the pose generated by the animation. Let’s assume that the original animation
has the front tires pointing straight ahead and the steering wheel in a neutral
position. We can use the current angle of turn to create a quaternion about the
vertical axis that will defl ect the front tires by the desired amount. This quater-
nion can be multiplied with the front tire joints’ Q channel to produce the fi nal
pose of the tires. Likewise, we can generate a quaternion about the axis of the
steering column and multiply it in to the steering wheel joint’s Q channel to
defl ect it. These adjustments are made to the local pose, prior to global pose
calculation and matrix palett e generation.

As another example, let’s say that we wish to make the trees and bushes in
our game world sway naturally in the wind and get brushed aside when char-
acters move through them. We can do this by modeling the trees and bushes as
skinned meshes with simple skeletons. Procedural animation can be used, in
place of or in addition to hand-animated clips, to cause the joints to move in a
natural-looking way. We might apply one or more sinusoids to the rotation of
various joints to make them sway in the breeze, and when a character moves
through a region containing a bush or grass, we can defl ect its root joint quater-
nion radially outward to make it appear to be pushed over by the character.

11.7.2. Inverse Kinematics

Let’s say we have an animation clip in which a character leans over to pick up
an object from the ground. In Maya, the clip looks great, but in our production
game level, the ground is not perfectly fl at, so sometimes the character’s hand
misses the object or appears to pass through it. In this case, we would like to
adjust the fi nal pose of the skeleton so that the hand lines up exactly with the
target object. A technique known as inverse kinematics (IK) can be used to make
this happen.

11.7. Post-Processing

544 11. Animation Systems

A regular animation clip is an example of forward kinematics (FK). In for-
ward kinematics, the input is a set of local joint poses, and the output is a
global pose and a skinning matrix for each joint. Inverse kinematics goes in
the other direction: The input is the desired global pose of a single joint, which
is known as the end eff ector . We solve for the local poses of other joints in the
skeleton that will bring the end eff ector to the desired location.

Mathematically, IK boils down to an error minimization problem. As with
most minimization problems, there might be one solution, many, or none at
all. This makes intuitive sense: If I try to reach a doorknob that is on the other
side of the room, I won’t be able to reach it without walking over to it. IK
works best when the skeleton starts out in a pose that is reasonably close to the
desired target. This helps the algorithm to focus in on the “closest” solution
and to do so in a reasonable amount of processing time. Figure 11.41 shows
IK in action.

Imagine a two-joint skeleton, each of which can rotate only about a single
axis. The rotation of these two joints can be described by a two-dimensional
angle vector θ = [θ1 θ2]. The set of all possible angles for our two joints forms
a two-dimensional space called confi guration space . Obviously, for more-com-
plex skeletons with more degrees of freedom per joint, confi guration space be-
comes multidimensional, but the concepts described here work equally well
no matt er how many dimensions we have.

Now imagine plott ing a three-dimensional graph, where for each combi-
nation of joint rotations (i.e., for each point in our two-dimensional confi gura-
tion space), we plot the distance from the end eff ector to the desired target.
An example of this kind of plot is shown in Figure 11.42. The “valleys” in
this three-dimensional surface represent regions in which the end eff ector is
as close as possible to the target. When the height of the surface is zero, the
end eff ector has reached its target. Inverse kinematics, then, att empts to fi nd
minima (low points) on this surface.

Target

Pose
After IK

Original
Pose

End
Effector

Figure 11.41. Inverse kinematics attempts to bring an end effector joint into a target global
pose by minimizing the error between them.

545

We won’t get into the details of solving the IK minimization problem here.
You can read more about IK at htt p://en.wikipedia.org/wiki/Inverse_kinemat-
ics and in Jason Weber’s article, “Constrained Inverse Kinematics,” in [40].

11.7.3. Rag Dolls

A character’s body goes limp when he dies or becomes unconscious. In such
situations, we want the body to react in a physically realistic way with its
surroundings. To do this, we can use a rag doll . A rag doll is a collection of
physically simulated rigid bodies , each one representing a semi-rigid part of
the character’s body, such as his lower arm or his upper leg. The rigid bodies
are constrained to one another at the joints of the character in such a way as to
produce natural-looking “lifeless” body movement. The positions and orien-
tations of the rigid bodies are determined by the physics system and are then
used to drive the positions and orientations of certain key joints in the charac-
ter’s skeleton. The transfer of data from the physics system to the skeleton is
typically done as a post-processing step.

To really understand rag doll physics, we must fi rst have an understand-
ing of how the collision and physics systems work. Rag dolls are covered in
more detail in Sections 12.4.8.7 and 12.5.3.8.

11.8. Compression Techniques

Animation data can take up a lot of memory. A single joint pose might be
composed of ten fl oating-point channels (three for translation, four for rota-
tion, and up to three more for scale). Assuming each channel contains a four-

θ 1

θ 2

dtarget

Minimum

Figure 11.42. A three-dimensional plot of the distance from the end effector to the target for
each point in two-dimensional confi guration space. IK fi nds the local minimum.

11.8. Compression Techniques

546 11. Animation Systems

byte fl oating-point value, a one-second clip sampled at 30 samples per second
would occupy 4 bytes × 10 channels × 30 samples/second = 1200 bytes per joint
per second, or a data rate of about 1.17 kB per joint per second. For a 100-joint
skeleton (which is small by today’s standards), an uncompressed animation
clip would occupy 117 kB per joint per second. If our game contained 1000
seconds of animation (which is on the low side for a modern game), the entire
data set would occupy a whopping 114.4 MB. That’s probably more than most
games can spare, considering that a PLAYSTATION 3 has only 256 MB of main
RAM and 256 MB of video RAM. Therefore, game engineers invest a signifi -
cant amount of eff ort into compressing animation data in order to permit the
maximum richness and variety of movement at the minimum memory cost.

11.8.1. Channel Omission

One simple way to reduce the size of an animation clip is to omit channels
that are irrelevant. Many characters do not require nonuniform scaling, so the
three scale channels can be reduced to a single uniform scale channel. In some
games, the scale channel can actually be omitt ed altogether for all joints (ex-
cept possibly the joints in the face). The bones of a humanoid character gener-
ally cannot stretch, so translation can oft en be omitt ed for all joints except the
root, the facial joints, and sometimes the collar bones. Finally, because quater-
nions are always normalized, we can store only three components per quat
(e.g., x, y, and z) and reconstruct the fourth component (e.g., w) at runtime.

As a further optimization, channels whose pose does not change over the
course of the entire animation can be stored as a single sample at time t = 0 plus
a single bit indicating that the channel is constant for all other values of t.

Channel omission can signifi cantly reduce the size of an animation clip.
A 100-joint character with no scale and no translation requires only 303 chan-
nels—three channels for the quaternions at each joint, plus three channels for
the root joint’s translation. Compare this to the 1,000 channels that would be
required if all ten channels were included for all 100 joints.

11.8.2. Quantization

Another way to reduce the size of an animation is to reduce the size of each
channel. A fl oating-point value is normally stored in 32-bit IEEE format. This
format provides 23 bits of precision in the mantissa and an 8-bit exponent.
However, it’s oft en not necessary to retain that kind of precision and range in
an animation clip. When storing a quaternion, the channel values are guaran-
teed to lie in the range [–1, 1]. At a magnitude of 1, the exponent of a 32-bit
IEEE fl oat is zero, and 23 bits of precision give us accuracy down to the sev-
enth decimal place. Experience shows that a quaternion can be encoded well

547

with only 16 bits of precision, so we’re really wasting 16 bits per channel if we
store our quats using 32-bit fl oats.

Converting a 32-bit IEEE fl oat into an n-bit integer representation is called
quantization . There are actually two components to this operation: Encoding
is the process of converting the original fl oating-point value to a quantized
integer representation. Decoding is the process of recovering an approxima-
tion to the original fl oating-point value from the quantized integer. (We can
only recover an approximation to the original data—quantization is a lossy com-
pression method because it eff ectively reduces the number of bits of precision
used to represent the value.)

To encode a fl oating-point value as an integer, we fi rst divide the valid
range of possible input values into N equally sized intervals. We then deter-
mine within which interval a particular fl oating-point value lies and represent
that value by the integer index of its interval. To decode this quantized value,
we simply convert the integer index into fl oating-point format and shift and
scale it back into the original range. N is usually chosen to correspond to the
range of possible integer values that can be represented by an n-bit integer.
For example, if we’re encoding a 32-bit fl oating-point value as a 16-bit integer,
the number of intervals would be N = 216 = 65,536.

Jonathan Blow wrote an excellent article on the topic of fl oating-point sca-
lar quantization in the Inner Product column of Game Developer Magazine,
available at htt p://number-none.com/product/Scalar%20Quantization/index.
html. (Jonathan’s source code is also available at htt p://www.gdmag.com/
src/jun02.zip.) The article presents two ways to map a fl oating-point value
to an interval during the encoding process: We can either truncate the fl oat
to the next lowest interval boundary (T encoding), or we can round the fl oat
to the center of the enclosing interval (R encoding). Likewise, it describes two
approaches to reconstructing the fl oating-point value from its integer repre-
sentation: We can either return the value of the left hand side of the interval to
which our original value was mapped (L reconstruction), or we can return the
value of the center of the interval (C reconstruction). This gives us four possible
encode/decode methods: TL, TC, RL, and RC. Of these, TL and RC are to be
avoided because they tend to remove or add energy to the data set, which can
oft en have disastrous eff ects. TC has the benefi t of being the most effi cient
method in terms of bandwidth, but it suff ers from a severe problem—there
is no way to represent the value zero exactly. (If you encode 0.0f, it becomes
a small positive value when decoded.) RL is therefore usually the best choice
and is the method we’ll demonstrate here.

The article only talks about quantizing positive fl oating-point values, and
in the examples, the input range is assumed to be [0, 1] for simplicity. Howev-

11.8. Compression Techniques

http://www.gdmag.com/

548 11. Animation Systems

er, we can always shift and scale any fl oating-point range into the range [0, 1].
For example, the range of quaternion channels is [–1, 1], but we can convert
this to the range [0, 1] by adding one and then dividing by two.

The following pair of routines encode and decode an input fl oating-point
value lying in the range [0, 1] into an n-bit integer, according to Jonathan
Blow’s RL method. The quantized value is always returned as a 32-bit un-
signed integer (U32), but only the least-signifi cant n bits are actually used, as
specifi ed by the nBits argument. For example, if you pass nBits==16, you
can safely cast the result to a U16.

U32 CompressUnitFloatRL(F32 unitFloat, U32 nBits)
{
 // Determine the number of intervals based on the
 // number of output bits we’ve been asked to produce.
 U32 nIntervals = 1u << nBits;

 // Scale the input value from the range [0, 1] into
 // the range [0, nIntervals – 1]. We subtract one
 // interval because we want the largest output value
 // to fit into nBits bits.

 F32 scaled = unitFloat * (F32)(nIntervals – 1u);

 // Finally, round to the nearest interval center. We
 // do this by adding 0.5f, and then truncating to the
 // next-lowest interval index (by casting to U32).
 U32 rounded = (U32)(scaled * 0.5f);

 // Guard against invalid input values.
if (rounded > nIntervals – 1u)

 rounded = nIntervals – 1u;
 return rounded;
}

F32 DecompressUnitFloatRL(U32 quantized, U32 nBits)
{
 // Determine the number of intervals based on the
 // number of bits we used when we encoded the value.
 U32 nIntervals = 1u << nBits;

 // Decode by simply converting the U32 to an F32, and
 // scaling by the interval size.
 F32 intervalSize = 1.0f / (F32)(nIntervals – 1u);

 F32 approxUnitFloat = (F32)quantized * intervalSize;
 return approxUnitFloat;
}

549

To handle arbitrary input values in the range [min, max], we can use these
routines:

U32 CompressFloatRL(F32 value, F32 min, F32 max,
 U32 nBits)
{
 F32 unitFloat = (value - min) / (max – min);
 U32 quantized = CompressUnitFloatRL(unitFloat,
 nBits);
 return quantized;
}

F32 DecompressFloatRL(U32 quantized, F32 min, F32 max,
 U32 nBits)
{
 F32 unitFloat = DecompressUnitFloatRL(quantized,
 nBits);
 F32 value = min + (unitFloat * (max – min));
 return value;
}

Let’s return to our original problem of animation channel compression.
To compress and decompress a quaternion’s four components into 16 bits per
channel, we simply call CompressFloatRL() and DecompressFloatRL()
with min = –1, max = 1, and n = 16:

inline U16 CompressRotationChannel(F32 qx)
{
 return (U16)CompressFloatRL(qx, -1.0f, 1.0f, 16u);
}

inline F32 DecompressRotationChannel(U16 qx)
{
 return DecompressFloatRL((U32)qx, -1.0f, 1.0f, 16u);
}

Compression of translation channels is a bit trickier than rotations, be-
cause unlike quaternion channels, the range of a translation channel could
theoretically be unbounded. Thankfully, the joints of a character don’t move
very far in practice, so we can decide upon a reasonable range of motion and
fl ag an error if we ever see an animation that contains translations outside the
valid range. In-game cinematics are an exception to this rule—when an IGC
is animated in world space, the translations of the characters’ root joints can
grow very large. To address this, we can select the range of valid translations
on a per-animation or per-joint basis, depending on the maximum transla-
tions actually achieved within each clip. Because the data range might diff er

11.8. Compression Techniques

550 11. Animation Systems

from animation to animation, or from joint to joint, we must store the range
with the compressed clip data. This will add data to each animation, so it may
or may not be worth the trade-off .

// We’ll use a 2 meter range -- your mileage may vary.
F32 MAX_TRANSLATION = 2.0f;

inline U16 CompressTranslationChannel(F32 vx)
{
 // Clamp to valid range...
 if (value < -MAX_TRANSLATION)
 value = -MAX_TRANSLATION;
 if (value > MAX_TRANSLATION)
 value = MAX_TRANSLATION;

 return (U16)CompressFloatRL(vx,
 -MAX_TRANSLATION, MAX_TRANSLATION, 16);
}

inline F32 DecompressTranslationChannel(U16 vx)
{
 return DecompressFloatRL((U32)vx,
 -MAX_TRANSLATION, MAX_TRANSLATION, 16);
}

11.8.3. Sampling Frequency and Key Omission

Animation data tends to be large for three reasons: fi rst, because the pose of
each joint can contain upwards of ten channels of fl oating-point data; second,
because a skeleton contains a large number of joints (100 or more for a human-
oid character); third, because the pose of the character is typically sampled
at a high rate (e.g., 30 frames per second). We’ve seen some ways to address
the fi rst problem. We can’t really reduce the number of joints for our high-
resolution characters, so we’re stuck with the second problem. To att ack the
third problem, we can do two things:

Reduce the sample rate overall.• Some animations look fi ne when exported
at 15 samples per second, and doing so cuts the animation data size in
half.
Omit some of the samples.• If a channel’s data varies in an approximately
linear fashion during some interval of time within the clip, we can omit
all of the samples in this interval except the endpoints. Then, at runtime,
we can use linear interpolation to recover the dropped samples.

The latt er technique is a bit involved, and it requires us to store informa-
tion about the time of each sample. This additional data can erode the savings

551

we achieved by omitt ing samples in the fi rst place. However, some game en-
gines have used this technique successfully.

11.8.4. Curve-Based Compression

 One of the most powerful, easiest-to-use, and best thought-out animation
APIs I’ve ever worked with is Granny , by Rad Game Tools. Granny stores
animations not as a regularly spaced sequence of pose samples but as a collec-
tion of nth-order nonuniform, nonrational B-splines, describing the paths of a
joint’s S, Q, and T channels over time. Using B-splines allows channels with a
lot of curvature to be encoded using only a few data points.

Granny exports an animation by sampling the joint poses at regular in-
tervals, much like traditional animation data. For each channel, Granny then
fi ts a set of B-splines to the sampled data set to within a user-specifi ed toler-
ance. The end result is an animation clip that is usually signifi cantly smaller
than its uniformly sampled, linearly interpolated counterpart. This process is
illustrated in Figure 11.43.

B-spline
segment 1

t

Qx1

Samples
0 1 2 3 4 5 6 7 8 9 10

B-spline
segment 2

Figure 11.43. One form of animation compression fi ts B-splines to the animation channel
data.

11.8.5. Selective Loading and Streaming

 The cheapest animation clip is the one that isn’t in memory at all. Most games
don’t need every animation clip to be in memory simultaneously. Some clips
apply only to certain classes of character, so they needn’t be loaded during lev-
els in which that class of character is never encountered. Other clips apply to
one-off moments in the game. These can be loaded or streamed into memory
just before being needed and dumped from memory once they have played.

Most games load a core set of animation clips into memory when the game
fi rst boots and keep them there for the duration of the game. These include
the player character’s core move set and animations that apply to objects that
reappear over and over throughout the game, such as weapons or power-ups.

11.8. Compression Techniques

552 11. Animation Systems

All other animations are usually loaded on an as-needed basis. Some game
engines load animation clips individually, but many package them together
into logical groups that can be loaded and unloaded as a unit.

11.9. Animation System Architecture

Now that we understand the theory that underlies a game’s animation system,
let’s turn our att ention to how such a system is structured from a soft ware ar-
chitecture standpoint. We’ll also investigate what kinds of interfaces exist be-
tween the animation system and the other systems in a typical game engine.

Most animation systems are comprised of up to three distinct layers:

Animation pipeline.• For each animating character and object in the game,
the animation pipeline takes one or more animation clips and corre-
sponding blend factors as input, blends them together, and generates a
single local skeletal pose as output. It also calculates a global pose for
the skeleton, and a palett e of skinning matrices for use by the rendering
engine. Post-processing hooks are usually provided, which permit the
local pose to be modifi ed prior to fi nal global pose and matrix palett e
generation. This is where inverse kinematics (IK), rag doll physics, and
other forms of procedural animation are applied to the skeleton.
Action state machine (ASM).• The actions of a game character (standing,
walking, running, jumping, etc.) are usually best modeled via a fi nite
state machine , commonly known as the action state machine (ASM). The
ASM subsystem sits atop the animation pipeline and provides a state-
driven animation interface for use by virtually all higher-level game
code. It ensures that characters can transition smoothly from state to
state. In addition, most animation engines permit diff erent parts of the
character’s body to be doing diff erent, independent actions simultane-
ously, such as aiming and fi ring a weapon while running. This can be ac-
complished by allowing multiple independent state machines to control
a single character via state layers.
Animation controllers.• In many game engines, the behaviors of a player
or non-player character are ultimately controlled by a high-level sys-
tem of animation controllers. Each controller is custom-tailored to man-
age the character’s behavior when in a particular mode. There might
be one controller handling the character’s actions when he is fi ghting
and moving around out in the open (“run-and-gun” mode), one for
when he is in cover, one for driving a vehicle, one for climbing a lad-
der, and so on. These high-level animation controllers allow most if not

553

all of the animation-related code to be encapsulated, allowing top-level
player control or AI logic to remain unclutt ered by animation micro-
management.

Some game engines draw the lines between these layers diff erently than
we do here. Other engines meld two or more of the layers into a single system.
However, all animation engines need to perform these tasks in one form or an-
other. In the following sections, we’ll explore animation architecture in terms
of these three layers, noting in our examples when a particular game engine
takes a more or less unifi ed approach.

11.10. The Animation Pipeline

 The operations performed by the low-level animation engine form a pipeline
that transforms its inputs (animation clips and blend specifi cations) into the
desired outputs (local and global poses, plus a matrix palett e for rendering).
The stages of this pipeline are:

 1. Clip decompression and pose extraction . In this stage, each individual clip’s
data is decompressed, and a static pose is extracted for the time index in
question. The output of this phase is a local skeletal pose for each input
clip. This pose might contain information for every joint in the skeleton
(a full-body pose), for only a subset of joints (a partial pose), or it might be
a diff erence pose for use in additive blending.

 2. Pose blending . In this stage, the input poses are combined via full-body
LERP blending, partial-skeleton LERP blending, and/or additive blend-
ing. The output of this stage is a single local pose for all joints in the
skeleton. This stage is of course only executed when blending more than
one animation clip together—otherwise the output pose from stage 1
can be used directly.

 3. Global pose generation. In this stage, the skeletal hierarchy is walked, and
local joint poses are concatenated in order to generate a global pose for
the skeleton.

 4. Post-processing . In this optional stage, the local and/or global poses of
the skeleton can be modifi ed prior to fi nalization of the pose. Post-pro-
cessing is used for inverse kinematics , rag doll physics, and other forms
of procedural animation adjustment.
 5. Recalculation of global poses. Many types of post-processing require glob-
al pose information as input but generate local poses as output. Aft er
such a post-processing step has run, we must recalculate the global pose

11.10. The Animation Pipeline

554 11. Animation Systems

from the modifi ed local pose. Obviously, a post-processing operation
that does not require global pose information can be done between stag-
es 2 and 3, thus avoiding the need for global pose recalculation.

 6. Matrix palett e generation. Once the fi nal global pose has been generated,
each joint’s global pose matrix is multiplied by the corresponding in-
verse bind pose matrix. The output of this stage is a palett e of skinning
matrices suitable for input to the rendering engine.

A typical animation pipeline is depicted in Figure 11.44.

11.10.1. Data Structures

Every animation pipeline is architected diff erently, but most operate in terms
of data structures that are similar to the ones described in this section.

11.10.1.1. Shared Resource Data

As with all game engine systems, a strong distinction must be made between
shared resource data and per-instance state information. Each individual character
or object in the game has its own per-instance data structures, but characters
or objects of the same type typically share a single set of resource data. This
shared data typically includes the following:

Skeleton• . The skeleton describes the joint hierarchy and its bind pose.

Skinned meshes• . One or more meshes can be skinned to a single skeleton.
Each vertex within a skinned mesh contains the indices of one or more

Outputs

Inputs

Decompression
and

Pose Extraction

Blend
Specification

Pose
Blending

Skinning
Matrix
Calc.

Global
Pose Calc.

Local
Pose

Rendering
Engine

Matrix
Palette

Post-
Processing

Skeleton

Clip(s)

Local
Clock(s)

Global
Pose

Game Play
Systems

Figure 11.44. A typical animation pipeline.

555

joints within the skeleton, plus weights governing how much infl uence
each joint should have on that vertex’s position.

Animation clips• . Many hundreds or even thousands of animation clips
are created for a character’s skeleton. These may be full-body clips, par-
tial-skeleton clips, or diff erence clips for use in additive blending.

A UML diagram of these data structures is shown in Figure 11.45. Pay
particular att ention to the cardinality and direction of the relationships between
these classes. The cardinality is shown just beside the tip or tail of the relation-
ship arrow between classes—a one represents a single instance of the class,
while an asterisk indicates many instances. For any one type of character, there
will be one skeleton, one or more meshes, and one or more animation clips.
The skeleton is the central unifying element—the skins are att ached to the
skeleton but don’t have any relationship with the animation clips. Likewise,
the clips are targeted at a particular skeleton, but they have no “knowledge”
of the skin meshes. Figure 11.46 illustrates these relationships.

Game designers oft en try to reduce the number of unique skeletons in
the game to one, or just a few, because each new skeleton generally requires
a whole new set of animation clips. To provide the illusion of many diff erent

1

*

1 *

1

*

Skeleton

-uniqueId : int
-jointCount : int
-joints : SkeletonJoint

SkeletonJoint

-name : string
-parentIndex : int
-invBindPose : Matrix44

1

*

1 *

1

*

Mesh

-indices : int
-vertices : Vertex
-skeletonId : int

AnimationClip

-nameId : int
-duration : float
-poseSamples : AnimationPose

Vertex

-position : Vector3
-normal : Vector3
-uv : Vector2
-jointIndices : int
-jointWeights : float

SQT

-scale : Vector3
-rotation : Quaternion
-translation : Vector3

AnimationPose

-jointPoses : SQT

Figure 11.45. UML diagram of shared animation resources.

11.10. The Animation Pipeline

556 11. Animation Systems

types of characters, it is usually bett er to create multiple meshes skinned to the
same skeleton when possible, so that all of the characters can share a single
set of animations.

11.10.1.2. Per-Instance Data

 In most games, multiple instances of each character type can appear on-screen
at the same time. Every instance of a particular character type needs its own
private data structures, allowing it to keep track of its currently playing ani-
mation clip(s), a specifi cation of how the clips are to be blended together (if
there’s more than one), and its current skeletal pose.

There is no one universally accepted way to represent per-instance ani-
mation data. However, virtually every animation engine keeps track of the
following pieces of information.

Clip state• . For each playing clip, the following information is main-
tained:

Local clock □ . A clip’s local clock describes the point along its lo-
cal time line at which its current pose should be extracted. This
may be replaced by a global start time in some engines. (A com-
parison between local and global clocks was provided in Sec-
tion 11.4.3.)

Playback rate □ . A clip can be played at an arbitrary rate, denoted R in
Section 11.4.2.

Blend specifi cation• . The blend specifi cation is a description of which ani-
mation clips are currently playing and how these clips are to be blended
together. The degree to which each clip contributes to the fi nal pose is

Skeleton

Clip N

...

Skin A

Skin B

Skin C

Clip 1

Clip 2

Clip 3

other skeletons...

... ...

Figure 11.46. Many animation clips and one or more meshes target a single skeleton.

557

controlled by one or more blend weights. There are two primary meth-
ods of describing the set of clips that should be blended together: a fl at
weighted average approach and a tree of blend nodes. When the tree ap-
proach is used, the structure of the blend tree is usually treated as a
shared resource, while the blend weights are stored as part of the per-
instance state information.

Partial-skeleton joint weights.• If a partial-skeleton blend is to be per-
formed, the degrees to which each joint should contribute to the fi nal
pose are specifi ed via a set of joint weights . In some animation engines,
the joint weights are binary: either a joint contributes or it does not. In
other engines, the weights can lie anywhere from zero (no contribution)
to one (full contribution).

Local pose• . This is typically an array of SQT data structures, one per joint,
holding the fi nal pose of the skeleton in parent-relative format. This ar-
ray might also be reused to store an intermediate pose that serves both
as the input to and the output of the post-processing stage of the pipe-
line.

Global pose• . This is an array of SQTs, or 4 × 4 or 4 × 3 matrices, one per
joint, that holds the fi nal pose of the skeleton in model-space or world-
space format. The global pose may serve as an input to the post-pro-
cessing stage.

Matrix palett e• . This is an array of 4 × 4 or 4 × 3 matrices, one per joint,
containing skinning matrices for input to the rendering engine.

11.10.2. The Flat Weighted Average Blend Representation

All but the most rudimentary game engines support animation blending in
some form. This means that at any given time, multiple animation clips may
be contributing to the fi nal pose of a character’s skeleton. One simple way to
describe how the currently active clips should be blended together is via a
weighted a verage .

In this approach, every animation clip is associated with a blend weight
indicating how much it should contribute to the fi nal pose of the charac-
ter. A fl at list of all active animation clips (i.e., clips whose blend weights
are non-zero) is maintained. To calculate the fi nal pose of the skeleton, we
extract a pose at the appropriate time index for each of the N active clips.
Then, for each joint of the skeleton, we calculate a simple N-point weighted
average of the translation vectors, rotation quaternions, and scale factors
extracted from the N active animations. This yields the fi nal pose of the
skeleton.

11.10. The Animation Pipeline

558 11. Animation Systems

The equation for the weighted average of a set of N vectors { vi } is as fol-
lows:

1

0
avg 1

0

.

N

i i
i
N

i
i

w

w

−

=
−

=

=

∑

∑

v
v

If the weights are normalized, meaning they sum to one, then this equation can
be simplifi ed to the following:

1 1

avg
0 0

 when 1 .
N N

i i i
i i

w w
− −

= =

⎛ ⎞
⎜ ⎟= =⎜ ⎟
⎝ ⎠

∑ ∑v v

In the case of N = 2, if we let w1 = β and w0 = (1 – β), the weighted average
reduces to the familiar equation for the linear interpolation (LERP) between
two vectors:

LERP LERP[, ,]

(1) .

A B

A B

= β

= − β + β

v v v

v v

We can apply this same weighted average formulation equally well to quater-
nions by simply treating them as four-element vectors.

11.10.2.1. Example: Ogre3D

The Ogre3D animation system works in exactly this way. An Ogre::Entity
represents an instance of a 3D mesh (e.g., one particular character walk-
ing around in the game world). The Entity aggregates an object called
an Ogre::AnimationStateSet, which in turn maintains a list of
Ogre::AnimationState objects, one for each active animation. The
Ogre::AnimationState class is shown in the code snippet below. (A few
irrelevant details have been omitt ed for clarity.)

/** Represents the state of an animation clip and the
 weight of its influence on the overall pose of the
 character.
*/
class AnimationState
{

protected:
 String mAnimationName; // reference to
 // clip
 Real mTimePos; // local clock
 Real mWeight; // blend weight

 bool mEnabled; // is this anim
 // running?

559

 bool mLoop; // should the
 // anim loop?

public:
 /// Gets the name of the animation.
 const String& getAnimationName() const;

 /// Gets the time position (local clock) for this
 /// anim.

 Real getTimePosition(void) const;

 /// Sets the time position (local clock) for this
 /// anim.

 void setTimePosition(Real timePos);

 /// Gets the weight (influence) of this animation
 Real getWeight(void) const;

 /// Sets the weight (influence) of this animation
 void setWeight(Real weight);

 /// Modifies the time position, adjusting for
 /// animation duration. This method loops if looping

 /// is enabled.
 void addTime(Real offset);

 /// Returns true if the animation has reached the
 /// end of local time line, and is not looping.

 bool hasEnded(void) const;

 /// Returns true if this animation is currently
 /// enabled.

 bool getEnabled(void) const;

 /// Sets whether or not this animation is enabled.
 void setEnabled(bool enabled);

 /// Sets whether or not this animation should loop.
 void setLoop(bool loop) { mLoop = loop; }

 /// Gets whether or not this animation loops.
 bool getLoop(void) const { return mLoop; }

};

Each AnimationState keeps track of one animation clip’s local clock and
its blend weight. When calculating the fi nal pose of the skeleton for a particu-
lar Ogre::Entity, Ogre’s animation system simply loops through each active

11.10. The Animation Pipeline

560 11. Animation Systems

AnimationState in its AnimationStateSet. A skeletal pose is extracted
from the animation clip corresponding to each state at the time index specifi ed
by that state’s local clock. For each joint in the skeleton, an N-point weighted
average is then calculated for the translation vectors, rotation quaternions,
and scales, yielding the fi nal skeletal pose.

Ogre and the Playback Rate

It is interesting to note that Ogre has no concept of a playback rate (R). If
it did, we would have expected to see a data member like this in the
Ogre::AnimationState class:

Real mPlaybackRate;

Of course, we can still make animations play more slowly or more quickly in
Ogre by simply scaling the amount of time we pass to the addTime() func-
tion, but unfortunately, Ogre does not support animation time scaling out of
the box.

11.10.2.2. Example: Granny

The Granny animation system, by Rad Game Tools (htt p://www.radgame-
tools.com/granny.html), provides a fl at, weighted average animation blend-
ing system similar to Ogre’s. Granny permits any number of animations to be
played on a single character simultaneously. The state of each active animation
is maintained in a data structure known as a granny_control. Granny cal-
culates a weighted average to determine the fi nal pose, automatically normal-
izing the weights of all active clips. In this sense, its architecture is virtually
identical to that of Ogre’s animation system. But where Granny really shines
is in its handling of time. Granny uses the global clock approach discussed in
Section 11.4.3. It allows each clip to be looped an arbitrary number of times or
infi nitely. Clips can also be time-scaled; a negative time scale allows an anima-
tion to be played in reverse.

11.10.3. Blend Trees

 For reasons we’ll explore below, some animation engines represent their blend
specifi cations not as a fl at weighted average but as a tree of blend operations.
An animation blend tree is an example of what is known in compiler theory
as an expression tree or a syntax tree . The interior nodes of such a tree are opera-
tors, and the leaf nodes serve as the inputs to those operators. (More correctly,
the interior nodes represent the non-terminals of the grammar , while the leaf
nodes represent the terminals.) In the following sections, we’ll briefl y revisit
the various kinds of animation blends we learned about in Sections 11.6.3 and
11.6.5 and see how each can be represented by an expression tree.

http://www.radgame-tools.com/granny.html
http://www.radgame-tools.com/granny.html
http://www.radgame-tools.com/granny.html

561

LERP
Clip A

Clip B
Output Pose

β

Figure 11.47. A binary LERP blend, represented by a binary expression tree.

11.10.3.1. Binary LERP Blend

As we saw in Section 11.6.1, a binary linear interpolation (LERP) blend takes
two input poses and blends them together into a single output pose. A blend
weight β controls the percentage of the second input pose that should appear
at the output, while (1 – β) specifi es the percentage of the fi rst input pose. This
can be represented by the binary expression tree shown in Figure 11.47.

11.10.3.2. Generalized One-Dimensional LERP Blend

In Section 11.6.3.1, we learned that it can be convenient to defi ne a generalized
one-dimensional LERP blend by placing an arbitrary number of clips along a
linear scale. A blend factor b specifi es the desired blend along this scale. Such
a blend can be pictured as an n-input operator, as shown in Figure 11.48.

Given a specifi c value for b, such a linear blend can always be transformed
into a binary LERP blend. We simply use the two clips immediately adjacent
to b as the inputs to the binary blend and calculate the blend weight β as speci-
fi ed in Equation (11.12). This is illustrated in Figure 11.48.

For this specific value of
b, this tree converts to...

β = 0

β = 1

β

b

bA

bB

bC

bD

LERP Output Pose

b

Clip A

Clip B

Clip C

Clip D

LERP
Clip B

Clip C
Output Pose

β

Figure 11.48. A multi-input expression tree can be used to represent a generalized 1D blend.
Such a tree can always be transformed into a binary expression tree for any specifi c value of
the blend factor b.

11.10. The Animation Pipeline

562 11. Animation Systems

bx

LERP
Bottom Left

Bottom Right

LERP
Top Left

Top Right

Output PoseLERP

by

Figure 11.49. A simple 2D LERP blend, implemented as cascaded binary blends.

11.10.3.3. Simple Two-Dimensional LERP Blend

In Section 11.6.3.2, we saw how a two-dimensional LERP blend can be realized
by simply cascading the results of two binary LERP blends. Given a desired
two-dimensional blend point b = [bx by], Figure 11.49 shows how this kind of
blend can be represented in tree form.

11.10.3.4. Triangular LERP Blend

Section 11.6.3.3 introduced us to triangular LERP blending, using the barycen-
tric coordinates α, β, and γ = (1 – α – β) as the blend weights. To represent this
kind of blend in tree form, we need a ternary (three-input) expression tree
node, as shown in Figure 11.50.

Triangular
LERP

Output Pose

Clip A

Clip B

Clip C (γ = 1 − α – β)

α β

Figure 11.50. A triangular 2D LERP blend, represented as a ternary expression tree.

11.10.3.5. Generalized Triangular LERP Blend

In Section 11.6.3.4, we saw that a generalized two-dimensional LERP blend
can be specifi ed by placing clips at arbitrary locations on a plane. A desired
output pose is specifi ed by a point b = [bx by] on the plane. This kind of
blend can be represented as a tree node with an arbitrary number of inputs,
as shown in Figure 11.51.

A generalized triangular LERP blend can always be transformed into a
ternary tree by using Delaunay triangulation to identify the triangle that sur-
rounds the point b. The point is then converted into barycentric coordinates
α, β, and γ = (1 – α – β), and these coordinates are used as the blend weights

563

of a ternary blend node with the three clips at the vertices of the triangle as its
inputs. This is demonstrated in Figure 11.51.

11.10.3.6. Additive Blend

Section 11.6.5 described additive blending. This is a binary operation, so it can
be represented by a binary tree node, as shown in Figure 11.52. A single blend
weight β controls the amount of the additive animation that should appear
at the output—when β = 0, the additive clip does not aff ect the output at all,
while when β = 1, the additive clip has its maximum eff ect on the output.

Additive blend nodes must be handled carefully, because the inputs are
not interchangeable (as they are with most types of blend operators). One of
the two inputs is a regular skeletal pose, while the other is a special kind of
pose known as a diff erence pose (also known as an additive pose). A diff erence
pose may only be applied to a regular pose, and the result of an additive blend
is another regular pose. This implies that the additive input of a blend node
must always be a leaf node, while the regular input may be a leaf or an interior
node. If we want to apply more than one additive animation to our character,

For this specific value of
b, this tree converts to...

bE

Triangular
LERP

Output Pose

Clip C

Clip D

Clip E (γ = 1 − α – β)

α β

Delaunay
LERP

Output Pose

b
Clip A

Clip B

Clip C

Clip D

Clip E

bA bB

bC

bD

b

β

b
α

γ

Figure 11.51. A generalized 2D blend can be represented by a multi-input expression tree node,
but it can always be converted into a ternary tree via Delaunay triangulation.

Clip A
Output Pose

β

Diff Clip B
+

Figure 11.52. An additive blend represented as a binary tree.

11.10. The Animation Pipeline

564 11. Animation Systems

we must use a cascaded binary tree with the additive clips always applied to
the additive inputs, as shown in Figure 11.53.

11.10.4. Cross-Fading Architectures

As we saw in Section 11.6.2.2, cross-fading between animations is generally
accomplished by LERP blending from the previous animation to the next one.
Cross-fades can be implemented in one of two ways, depending on whether
your animation engine uses the fl at weighted average architecture or the ex-
pression tree architecture. In this section, we’ll take a look at both implemen-
tations.

11.10.4.1. Cross-Fades with a Flat Weighted Average

 In an animation engine that employs the fl at weighted average architecture,
cross-fades are implemented by adjusting the weights of the clips themselves.
Recall that any clip whose weight wi = 0 will not contribute to the current pose
of the character, while those whose weights are non-zero are averaged togeth-
er to generate the fi nal pose. If we wish to transition smoothly from clip A to
clip B, we simply ramp up clip B’s weight, wB , while simultaneously ramping
down clip A’s weight, wA. This is illustrated in Figure 11.54.

Cross-fading in a weighted average architecture becomes a bit trickier
when we wish to transition from one complex blend to another. As an ex-
ample, let’s say we wish to transition the character from walking to jumping.

Clip A

β1

Diff Clip B
+

β2

Diff Clip C

+

Output Pose

β3

Diff Clip D
+

Figure 11.53. In order to additively blend more than one difference pose onto a regular “base”
pose, a cascaded binary expression tree must be used.

t

w
1

0
tstart tend

wA wB

Figure 11.54. A simple cross-fade from clip A to clip B, as implemented in a weighted average
animation architecture.

565

Let’s assume that the walk movement is produced by a three-way average
between clips A, B, and C, and that the jump movement is produced by a two-
way average between clips D and E.

We want the character to look like he’s smoothly transitioning from walk-
ing to jumping, without aff ecting how the walk or jump animations look indi-
vidually. So during the transition, we want to ramp down the ABC clips and
ramp up the DE clips while keeping the relative weights of the ABC and DE clip
groups constant. If the cross-fade’s blend factor is denoted by λ, we can meet
this requirement by simply sett ing the weights of both clip groups to their de-
sired values and then multiplying the weights of the source group by (1 – λ)
and the weights of the destination group by λ.

Let’s look at a concrete example to convince ourselves that this will work
properly. Imagine that before the transition from ABC to DE, the non-zero
weights are as follows: wA = 0.2, wB = 0.3, and wC = 0.5. Aft er the transition, we
want the non-zero weights to be wD = 0.33, and wE = 0.66. So, we set the weights
as follows:

(1)(0.2), (0.33),
(1)(0.3), (0.66).
(1)(0.5),

A D

B E

C

w w
w w
w

= − λ = λ

= − λ = λ

= − λ

 (11.17)

From Equations (11.17), you should be able to convince yourself of the fol-
lowing:

When 1. λ = 0, the output pose is the correct blend of clips A, B, and C,
with zero contribution from clips D and E.
When 2. λ = 1, the output pose is the correct blend of clips D and E, with
no contribution from A, B ,or C.
When 0 < 3. λ < 1, the relative weights of both the ABC group and the DE
group remain correct, although they no longer add to one. (In fact, group
ABC’s weights add to (1 – λ), and group DE’s weights add to λ.)

For this approach to work, the implementation must keep track of
the logical groupings between clips (even though, at the lowest level, all
of the clips’ states are maintained in one big, fl at array—for example, the
Ogre::AnimationStateSet in Ogre). In our example above, the system
must “know” that A, B, and C form a group, that D and E form another group,
and that we wish to transition from group ABC to group DE. This requires ad-
ditional meta-data to be maintained, on top of the fl at array of clip states.

11.10.4.2. Cross-Fades with Expression Trees

Implementing a cross-fade in an expression-tree -based animation engine is a
bit more intuitive than it is in a weighted average architecture. Whether we’re

11.10. The Animation Pipeline

566 11. Animation Systems

transitioning from one clip to another or from one complex blend to another,
the approach is always the same: We simply introduce a new, binary LERP
node at the root of the blend tree for the duration of the cross-fade.

We’ll denote the blend factor of the cross-fade node with the symbol λ as
before. Its top input is the source tree (which can be a single clip or a complex
blend), and its bott om input is the destination tree (again a clip or a complex
blend). During the transition, λ is ramped from zero to one. Once λ = 1, the
transition is complete, and the cross-fade LERP node and its top input tree can
be retired. This leaves its bott om input tree as the root of the overall blend tree,
thus completing the transition. This process is illustrated in Figure 11.55.

11.10.5. Animation Pipeline Optimization

Optimization is a crucial aspect of any animation pipeline. Some pipelines
expose all of their nitt y-gritt y optimization details, eff ectively placing the re-
sponsibility for proper optimization on the calling code. Others att empt to
encapsulate most of the optimization details behind a convenient API, but
even in these cases, the API still must be structured in a particular way so as to
permit the desired optimizations to be implemented behind the scenes.

Animation pipeline optimizations are usually highly specifi c to the archi-
tecture of the hardware on which the game will run. For example, on mod-
ern hardware architectures, memory access patt erns can greatly aff ect the
performance of the code. Cache misses and load-hit-store operations must be
avoided to ensure maximum speed. But on other hardware, fl oating-point op-
erations might be the bott leneck, in which case the code might be structured
to take maximum advantage of SIMD vector math. Each hardware platform

Tree
A Output Pose

LERP Output Pose

λ
Tree

A

Tree
B

Tree
B Output Pose

Before
Cross-Fade

During
Cross-Fade

After
Cross-Fade

Figure 11.55. A cross-fade between two arbitrary blend trees A and B.

567

presents a unique set of optimization challenges to the programmer. As a re-
sult, some animation pipeline APIs are highly specifi c to a particular platform.
Other pipelines att empt to present an API that can be optimized in diff erent
ways on diff erent processors. Let’s take a look at a few examples.

11.10.5.1. Optimization on the PlayStation 2

The PlayStation 2 has a region of ultra-fast memory known as the scratch pad.
It also has a fast direct memory access (DMA) controller, which is capable of
copying data to and from the scratch pad effi ciently. Some animation pipelines
take advantage of this hardware architecture by arranging for all animation
blending to take place within the scratch pad. When two skeletal poses are to
be blended, they are DMA’d from main RAM to the scratch pad. The blend is
performed, and the result is writt en into another buff er within the scratch pad .
Finally, the resulting pose is DMA’d back into main RAM.

The PS2’s DMA controller can move memory around in parallel with the
main CPU. So, to maximize throughput, PS2 programmers are always look-
ing for ways to keep the CPU and the DMA controller busy simultaneously.
Oft en the best way to accomplish this is to use a batch-style API, where the
game queues up requests for animation blends in a big list and then kicks
everything off in one go. This permits the animation pipeline to maximize
the utilization of both the DMA controller and the CPU, because it can feed
a large number of pose requests through the pipeline with no “dead space”
between them and even overlap the DMA of one request with the processing
of an unrelated request.

11.10.5.2. Optimization on the PLAYSTATION 3

As we saw in Section 7.6.1.2, the PLAYSTATION 3 has six specialized proces-
sors known as synergistic processing units (SPU). The SPUs execute most code
much more quickly than the main CPU (known as the power processing unit or
PPU). Each SPU also has a 256 kB region of ultra-fast local store memory for its
exclusive use. Like the PS2, the PS3 has a powerful DMA controller capable
of moving memory back and forth between main RAM and the SPUs’ memo-
ries in parallel with computing tasks. If one could write an ideal animation
pipeline for the PS3, as much processing as possible would be executed on
the SPUs, and neither the PPU nor any SPU would ever be idle waiting for a
DMA to complete.

This architecture leads to animation pipeline APIs that look similar in
some respects to their PlayStation 2 counterparts, in the sense that animation
requests are again batched so that they can be interleaved effi ciently. In ad-
dition, a PLAYSTATION 3 animation API will usually expose the concept of
animation jobs, because a job is a fundamental unit of execution on the SPUs.

11.10. The Animation Pipeline

568 11. Animation Systems

11.10.5.3. Optimization on the Xbox and Xbox 360

Rather than having specialized memory regions and a DMA controller to
move data from region to region, the Xbox and the Xbox 360 both employ a
unifi ed memory architecture . All processors, including the main CPU (or in
the case of the 360, the three PowerPC cores), the GPU, and all other hardware
systems, tap into a single big block of main RAM.

In theory, the Xbox architecture requires a totally diff erent set of optimi-
zations than would be required on the PlayStation architectures, and so we
might expect to see very diff erent animation APIs between these two plat-
forms. However, the Xbox serves as an example of how optimizations for one
platform can sometimes be benefi cial to other platforms as well. As it turns out,
both the Xbox and PlayStation platforms incur massive performance degra-
dation in the presence of cache misses and load-hit-store memory access pat-
terns. So, it is benefi cial on both systems to keep animation data as localized as
possible in physical RAM. An animation pipeline that processes animations in
large batches and operates on data within relatively small regions of memory
(such as the PS2’s scratch pad or PS3’s SPU memories) will also perform well
on a unifi ed memory architecture like that of the Xbox. Achieving this kind of
synergy between platforms is not always possible, and every hardware plat-
form requires its own specifi c optimizations. However, when such an oppor-
tunity does arise, it is wise to take advantage of it.

A good rule of thumb is to optimize your engine for the platform with the
most stringent performance restrictions. When your optimized code is ported
to other platforms with fewer restrictions, there’s a good chance that the opti-
mizations you made will remain benefi cial, or at worst will have few adverse
aff ects on performance. Going in the other direction—porting from the least
stringent platform to the more stringent ones—almost always results in less-
than-optimal performance on the most stringent platform.

11.11. Action State Machines

The low-level pipeline is the equivalent of OpenGL or DirectX for animation—
it is very powerful but can be rather inconvenient for direct use by game code.
Therefore, it is usually convenient to introduce a layer between the low-level
pipeline and the game characters and other clients of the animation system.
This layer is usually implemented as a state machine, known as the action state
machine or the animation state machine (ASM) .

The ASM sits on top of the animation pipeline, permitt ing the actions of
the characters in a game to be controlled in a straightforward, state-driven

569

manner. The ASM is also responsible for ensuring that transitions from state
to state are smooth and natural-looking. Some animation engines permit mul-
tiple independent state machines to control diff erent aspects of a character’s
movement, such as full-body locomotion, upper-body gestures, and facial
animations. This can be accomplished by introducing the concept of state lay-
ering. In this section, we’ll explore how a typical animation state machine is
architected.

11.11.1. Animation States

Each state in an ASM corresponds to an arbitrarily complex blend of simul-
taneous animation clips. In a blend tree architecture, each state corresponds
to a particular predefi ned blend tree. In a fl at weighted average architecture,
a state represents a group of clips with a specifi c set of relative weights. It is
somewhat more convenient and expressive to think in terms of blend trees,
so we will do so for the remainder of this discussion. However, everything
we describe here can also be implemented using the fl at weighted average
approach, as long as additive blending or quaternion SLERP operations are
not involved.

The blend tree corresponding to a particular animation state can be as
simple or as complex as required by the game’s design (provided it remains
within the memory and performance limitations of the engine). For example,
an “idle” state might be comprised of a single full-body animation. A “run-
ning” state might correspond to a semicircular blend, with strafi ng left , run-
ning forward, and strafi ng right at the –90 degrees, 0 degrees, and +90 degrees
points, respectively. The blend tree for a “running while shooting” state might
include a semicircular directional blend, plus additive or partial-skeleton
blend nodes for aiming the character’s weapon up, down, left , and right, and
additional blends to permit the character to look around with its eyes, head,
and shoulders. More additive animations might be included to control the
character’s overall stance, gait, and foot spacing while locomoting and to pro-
vide a degree of “humanness” through random movement variations.

11.11.1.1. State and Blend Tree Specifi cations

 Animators, game designers, and programmers usually cooperate to create the
animation and control systems for the central characters in a game. These de-
velopers need a way to specify the states that make up a character’s ASM, to
lay out the tree structure of each blend tree, and to select the clips that will
serve as their inputs. Although the states and blend trees could be hard-coded,
most modern game engines provide a data-driven means of defi ning animation
states. The goal of a data-driven approach is permit a user to create new ani-

11.11. Action State Machines

570 11. Animation Systems

mation states, remove unwanted states, fi ne-tune existing states, and then see
the eff ects of his or her changes reasonably quickly. In other words, the central
goal of a data-driven animation engine is to enable rapid iteration .

The means by which the users enter animation state data varies widely.
Some game engines employ a simple, bare-bones approach, allowing anima-
tion states to be specifi ed in a text fi le with a simple syntax. Other engines pro-
vide a slick, graphical editor that permits animation states to be constructed
by dragging atomic components such as clips and blend nodes onto a canvas
and linking them together in arbitrary ways. Such editors usually provide a
live preview of the character so that the user can see immediately how the
character will look in the fi nal game. In my opinion, the specifi c method cho-
sen has litt le bearing on the quality of the fi nal game—what matt ers most is
that the user can make changes and see the results of those changes reason-
ably quickly and easily.

11.11.1.2. Custom Blend Tree Node Types

To build an arbitrarily complex blend tree, we really only require four atomic
types of blend nodes: clips, binary LERP blends, binary additive blends, and
ternary (triangular) LERP blends. Virtually any blend tree imaginable can be
created as compositions of these atomic nodes.

A blend tree built exclusively from atomic nodes can quickly become large
and unwieldy. As a result, many game engines permit custom compound
node types to be predefi ned for convenience. The N-dimensional linear blend
node discussed in Sections 11.6.3.4 and 11.10.3.2 is an example of a compound
node. One can imagine myriad complex blend node types, each one address-
ing a particular problem specifi c to the particular game being made. A soccer
game might defi ne a node that allows the character to dribble the ball. A war
game could defi ne a special node that handles aiming and fi ring a weapon.
A brawler could defi ne custom nodes for each fi ght move the characters can
perform. Once we have the ability to defi ne custom node types, the sky’s the
limit.

11.11.1.3. Example: Naughty Dog’s Uncharted Engine

 The animation engine used in Naughty Dog’s Uncharted: Drake’s Fortune
and Uncharted 2: Among Thieves employs a simple, text-based approach to
specifying animation states. For reasons related to Naughty Dog’s rich his-
tory with the Lisp language , state specifi cations in the Uncharted engine
are writt en in a customized version of the Scheme programming language
(which itself is a Lisp variant). Two basic state types can be used: simple and
complex.

571

Simple States

A simple state contains a single animation clip. For example:

(define-state simple
 :name "pirate-b-bump-back"
 :clip "pirate-b-bump-back"

 :flags (anim-state-flag no-adjust-to-ground)
)

Don’t let the Lisp-style syntax throw you. All this block of code does is to de-
fi ne a state named “pirate-b-bump-back” whose animation clip also happens
to be named “pirate-b-bump-back.” The :f lags parameter allows users to
specify various Boolean options on the state.

Complex States

A complex state contains an arbitrary tree of LERP or additive blends. For ex-
ample, the following state defi nes a tree that contains a single binary LERP
blend node, with two clips (“walk-l-to-r” and “run-l-to-r”) as its inputs:

(define-state complex

 :name "move-l-to-r"

:tree
 (anim-node-lerp
 (anim-node-clip "walk-l-to-r")
 (anim-node-clip "run-l-to-r")
)
)

The :tree argument allows the user to specify an arbitrary blend tree, com-
posed of LERP or additive blend nodes and nodes that play individual anima-
tion clips.

From this, we can see how the (define-state simple ...) example
shown above might really work under the hood—it probably defi nes a com-
plex blend tree containing a single “clip” node, like this:

(define-state complex
 :name "pirate-b-unimog-bump-back"

:tree (anim-node-clip "pirate-b-unimog-bump-back”)
 :flags (anim-state-flag no-adjust-to-ground)
)

The following complex state shows how blend nodes can be cascaded into
arbitrarily deep blend trees:

(define-state complex

 :name "move-b-to-f"

11.11. Action State Machines

572 11. Animation Systems

 :tree
 (anim-node-lerp
 (anim-node-additive
 (anim-node-additive
 (anim-node-clip "move-f")
 (anim-node-clip "move-f-look-lr")
)

 (anim-node-clip "move-f-look-ud")
)

 (anim-node-additive
 (anim-node-additive
 (anim-node-clip "move-b")
 (anim-node-clip "move-b-look-lr")
)

 (anim-node-clip "move-b-look-ud")
)
)

)

This corresponds to the tree shown in Figure 11.56.

Custom Tree Syntax

Thanks to the powerful macro language in Scheme, custom blend trees can
also be defi ned by the user in terms of the basic clip, LERP, and additive blend
nodes. This allows us to defi ne multiple states, each of which has a nearly
identical tree structure but with diff erent input clips or any number of other
variations. For example, the complex blend tree used in the state “move-b-to-
f” shown above could be partially defi ned via a macro as follows:

(define-syntax look-tree
 (syntax-rules ()

LERP

move-f

move-f-look-lr
+

move-f-look-ud

move-b

move-b-look-lr
+

move-b-look-ud

+

+

Figure 11.56. Blend tree corresponding to the example state “move-b-to-f.”

573

 ((look-tree base-clip look-lr-clip look-ud-clip)

 ;; This means "whenever the compiler sees
 ;; code of the form (look-tree b lr ud),
 ;; replace it with the following code..."

 (anim-node-additive
 (anim-node-additive
 (anim-node-clip base-clip)
 (anim-node-clip look-lr-clip)
)
 (anim-node-clip look-ud-clip)
)
)
)
)

The original “move-b-to-f” state could then be redefi ned in terms of this
macro as follows:

(define-state complex

 :name "move-b-to-f"

 :tree
 (anim-node-lerp
 (look-tree "move-f"
 "move-f-look-lr"
 "move-f-look-ud")
 (look-tree "move-b"
 "move-b-look-lr"
 "move-b-look-ud")
)

)

The (look-tree ...) macro can be used to defi ne any number of states that
require this same basic tree structure but want diff erent animation clips as
inputs. They can also combine their “look trees” in any number of ways.

Rapid Iteration

Rapid iteration is achieved in Uncharted with the help of two important tools.
An in-game animation viewer allows a character to be spawned into the game
and its animations controlled via an in-game menu. And a simple command-
line tool allows animation scripts to be recompiled and reloaded into the run-
ning game on the fl y. To tweak a character’s animations, the user can make
changes to the text fi le containing the animation state specifi cations, quick-
ly reload the animation states, and immediately see the eff ects of his or her
changes on an animating character in the game.

11.11. Action State Machines

574 11. Animation Systems

Figure 11.57. The Unreal Engine 3 graphical animation editor.

11.11.1.4. Example: Unreal Engine 3

Unreal Engine 3 (UE3) provides its users with a graphical interface to the ani-
mation system. As shown in Figure 11.57, an animation blend tree in Unreal
is comprised of a special root node called an AnimTree. This node takes three
kinds of inputs: animations, morphs, and special nodes known as skel controls.
The animation input can be connected to the root of an arbitrarily complex
blend tree (which happens to be drawn with poses fl owing from right to left —
opposite of the convention we use in this book). The “morph” input allows
morph-target-based animations to drive the character; this is most oft en used
for facial animation. The “skel control” inputs allow various kinds of proce-
dural post-processing, such as inverse kinematics (IK), to be performed on the
pose generated by the animation and/or morph trees.

The UE3 Animation Tree

The Unreal animation tree is essentially a blend tree. Individual animation
clips (called sequences in Unreal) are represented by nodes of type Anim
Sequence. A sequence node has a single output, which may either be con-
nected directly to the “animation” input of the AnimTree node or to other
complex node types. Unreal provides a wide selection of blend node types
out of the box, including binary blends, four-way two-dimensional blends

575

(known as blend by aim), and so on. It also provides various special nodes that
are capable of doing things like scaling the playback rate (R) of a clip, mirror-
ing the animation (which turns a right-handed motion into a left -handed one,
for example), and more.

The UE3 animation tree is also highly customizable. A programmer can
create new types of nodes that perform arbitrarily complex operations. So the
Unreal developer is not limited to simple binary and ternary LERP blends. At
the time this chapter was writt en, Unreal Engine 3 did not support additive
animation blending out of the box, although it’s certainly possible for a game
team to extend the Unreal engine to support it.

It is interesting to note that Unreal’s approach to character animation is
not explicitly state-based. Rather than defi ning multiple states, each with its
own local blend tree, the Unreal developer typically builds a single monolithic
tree. The character can be put into diff erent “states” by simply turning on or
off certain parts of the tree. Some game teams implement a system for replac-
ing portions of the UE3 animation tree dynamically, so that a game’s mono-
lithic tree can be broken into more manageable subtrees.

The UE3 Post-Processing Tree (Skel Controls)

As we have seen, animation post-processing involves procedurally modifying
the pose of the skeleton that has been generated by the blend tree. In UE3,
skel control nodes are used for this purpose. To use a skel control, the user
fi rst creates an input on the AnimTree node corresponding to the joint in the
skeleton that he or she wishes to control procedurally. Then a suitable skel
control node is created, and its output is hooked up to the new input on the
AnimTree node.

Unreal provides a number of skel controls out of the box, to perform
foot IK (which ensures that the feet conform to ground contours), procedural
“look-at” (which allows the character to look at arbitrary points in space),
other forms of IK, and so on. As with animation nodes, it is quite easy for a
programmer to create custom skel control nodes in order to meet the particu-
lar needs of the game being developed.

11.11.2. Transitions

To create a high-quality animating character, we must carefully manage the
transitions between states in the action state machine to ensure that the splices
between animations do not have a jarring and unpolished appearance. Most
modern animation engines provide a data-driven mechanism for specifying
exactly how transitions should be handled. In this section, we’ll explore how
this mechanism works.

11.11. Action State Machines

576 11. Animation Systems

11.11.2.1. Kinds of Transitions

There are many diff erent ways to manage the transition between states. If we
know that the fi nal pose of the source state exactly matches the fi rst pose of
the destination state, we can simply “pop” from one state to another. Other-
wise, we can cross-fade from one state to the next. Cross-fading is not always
a suitable choice when transitioning from state to state. For example, there
is no way that a cross-fade can produce a realistic transition from lying on
the ground to standing upright. For this kind of state transition, we need one
or more custom animations. This kind of transition is oft en implemented by
introducing special transitional states into the state machine. These states are
intended for use only when going from one state to another—they are never
used as a steady-state node. But because they are full-fl edged states, they can
be comprised of arbitrarily complex blend trees. This provides maximum fl ex-
ibility when authoring custom-animated transitions.

11.11.2.2. Transition Parameters

When describing a particular transition between two states, we generally need
to specify various parameters, controlling exactly how the transition will oc-
cur. These include but are not limited to the following.

Source and destination states.• To which state(s) does this transition ap-
ply?
Transition type.• Is the transition immediate, cross-faded, or performed
via a transitional state?
Duration.• For cross-faded transitions, we need to specify how long the
cross-fade should take.
Ease-in/ease-out curve• type. In a cross-faded transition, we may wish to
specify the type of ease-in/ease-out curve to use to vary the blend factor
during the fade.
Transition window• . Certain transitions can only be taken when the source
animation is within a specifi ed window of its local time line. For ex-
ample, a transition from a punch animation to an impact reaction might
only make sense when the arm is in the second half of its swing. If an
att empt to perform the transition is made during the fi rst half of the
swing, the transition would be disallowed (or a diff erent transition
might be selected instead).

11.11.2.3. The Transition Matrix

Specifying transitions between states can be challenging, because the number
of possible transitions is usually very large. In a state machine with n states,

577

the worst-case number of possible transitions is n2. We can imagine a two-
dimensional square matrix with every possible state listed along both the ver-
tical and horizontal axes. Such a table can be used to specify all of the possible
transitions from any state along the vertical axis to any other state along the
horizontal axis.

In a real game, this transition matrix is usually quite sparse, because not
all state-to-state transitions are possible. For example, transitions are usually
disallowed from a death state to any other state. Likewise, there is probably
no way to go from a driving state to a swimming state (without going through
at least one intermediate state that causes the character to jump out of his
vehicle!). The number of unique transitions in the table may be signifi cantly
less even than the number of valid transitions between states. This is because
we can oft en re-use a single transition specifi cation between many diff erent
pairs of states.

11.11.2.4. Implementing a Transition Matrix

There are all sorts of ways to implement a transition matrix. We could use a
spreadsheet application to tabulate all the transitions in matrix form, or we
might permit transitions to be authored in the same text fi le used to author our
action states. If a graphical user interface is provided for state editing, transi-
tions could be added to this GUI as well. In the following sections, we’ll take a
brief look at a few transition matrix implementations from real game engines.

Example: Wild-Carded Transitions in Medal of Honor: Pacifi c Assault

On Medal of Honor: Pacifi c Assault (MOHPA), we used the sparseness of the
transition matrix to our advantage by supporting wild-carded transition spec-
ifi cations. For each transition specifi cation, the names of both the source and
destination states could contain asterisks (*) as a wild-card character. This al-
lowed us to specify a single default transition from any state to any other
state (via the syntax from=”*” to=”*”) and then refi ne this global default
easily for entire categories of states. The refi nement could be taken all the way
down to custom transitions between specifi c state pairs when necessary. The
MOHPA transition matrix looked something like this:

<transitions>
 // global default
 <trans from="*" to="*" type=frozen duration=0.2>

 ...

 // default for any walk to any run
 <trans from="walk*" to="run*" type=smooth
 duration=0.15>

11.11. Action State Machines

578 11. Animation Systems

 ...

 // special handling from any prone to any getting-up
 // action (only valid from 2 sec to 7.5 sec on the
 // local timeline)
 <trans from="*prone" to="*get-up" type=smooth
 duration=0.1
 window-start=2.0 window-end=7.5>

 ...

 // special case between crouched walking and jumping
 <trans from="walk-crouch" to="jump" type=frozen
 duration=0.3>
 ...
</transitions>

Example: First-Class Transitions in Uncharted

In some animation engines, high-level game code requests transitions from
the current state to a new state by naming the destination state explicitly. The
problem with this approach is that the calling code must have intimate knowl-
edge of the names of the states and of which transitions are valid when in a
particular state.

In Naughty Dog’s Uncharted engine, this problem is overcome by turn-
ing state transitions from secondary implementation details into fi rst-class
entities. Each state provides a list of valid transitions to other states, and each
transition is given a unique name. The names of the transitions are standard-
ized in order to make the eff ect of each transition predictable. For example,
if a transition is called “walk,” then it always goes from the current state to a
walking state of some kind, no matt er what the current state is. Whenever the
high-level animation control code wants to transition from state A to state B,
it asks for a transition by name (rather than requesting the destination state
explicitly). If such a transition can be found and is valid, it is taken; otherwise,
the request fails.

The following example state defi nes four transitions named “reload,”
“step-left ,” “step-right,” and “fi re.” The (transition-group ...) line
invokes a previously defi ned group of transitions; it is useful when the
same set of transitions is to be used in multiple states. The (transition-
end ...) command specifi es a transition that is taken upon reaching the
end of the state’s local time line if no other transition has been taken before
then.

(define-state complex
 :name "s_turret-idle"

579

 :tree (aim-tree (anim-node-clip
 "turret-aim-all--base")
 "turret-aim-all--left-right"
 "turret-aim-all--up-down")

:transitions (
 (transition "reload" "s_turret-reload"
 (range - -) :fade-time 0.2)

 (transition "step-left" "s_turret-step-left"
 (range - -) :fade-time 0.2)

 (transition "step-right" "s_turret-step-right"
 (range - -) :fade-time 0.2)

 (transition "fire" "s_turret-fire"
 (range - -) :fade-time 0.1)

 (transition-group "combat-gunout-idle^move")

 (transition-end "s_turret-idle")
)
)

The beauty of this approach may be diffi cult to see at fi rst. Its primary
purpose is to allow transitions and states to be modifi ed in a data-driven man-
ner, without requiring changes to the C++ source code in many cases. This
degree of fl exibility is accomplished by shielding the animation control code
from knowledge of the structure of the state graph. For example, let’s say that
we have ten diff erent walking states (normal, scared, crouched, injured, and
so on). All of them can transition into a jumping state, but diff erent kinds
of walks might require diff erent jump animations (e.g., normal jump, scared
jump, jump from crouch, injured jump, etc.). For each of the ten walking states,
we defi ne a transition simply called “jump.” At fi rst, we can point all of these
transitions to a single generic “jump” state, just to get things up and running.
Later, we can fi ne-tune some of these transitions so that they point to custom
jump states. We can even introduce transitional states between some of the
“walk” states and their corresponding “jump” states. All sorts of changes can
be made to the structure of the state graph and the parameters of the transi-
tions without aff ecting the C++ source code—as long as the names of the transi-
tions don’t change.

11.11.3. State Layers

Most living creatures can do more than one thing at once with their bodies.
For example, a human can walk around with her lower body while looking at

11.11. Action State Machines

580 11. Animation Systems

something with her shoulders, head, and eyes and making a gesture with her
hands and arms. The movements of diff erent parts of the body aren’t gener-
ally in perfect sync—certain parts of the body tend to “lead” the movements
of other parts (e.g., the head leads a turn, followed by the shoulders, the hips,
and fi nally the legs). In traditional animation, this well-known technique is
known as anticipation [44].

This kind of movement seems to be at odds with a state-machine-based
approach to animation. Aft er all, we can only be in one state at a time. So how
can we get diff erent parts of the body to operate independently? One solution
to this problem is to introduce the concept of state layers . Each layer can be
in only one state at a time, but the layers are temporally independent of one
another. The fi nal pose of the skeleton is calculated by evaluating the blend
trees on each of the n layers, thus generating n skeletal poses, and then blend-
ing these poses together in a predefi ned manner. This is illustrated in Fig-
ure 11.58.

The Uncharted engine uses a layered state architecture. The layers form
a stack, with the bott om-most layer (called the base layer) always producing
a full-body skeletal pose and each upper layer blending in a new full-body,
partial-skeleton, or additive pose on top of the base pose. Two kinds of layers
are supported: LERP and additive. A LERP layer blends its output pose with
the pose generated by the layer(s) below it. An additive layer assumes that its
output pose is always a diff erence pose and uses additive blending to combine
it with the pose generated by the layer(s) below it. In eff ect, a layered state ma-

Base Layer

State A State B State C

Variation Layer (Additive)

D E G

Gesture Layer (Additive)

H I

Gesture Layer (LERP)

J K

F

Time (τ)

Figure 11.58. A layered animation state machine, showing how each layer’s state transitions
are temporally independent.

581

chine converts multiple, temporally independent blend trees (one per layer)
into a single unifi ed blend tree. This is shown in Figure 11.59.

11.11.4. Control Parameters

From a soft ware engineering perspective, it can be challenging to orchestrate
all of the blend weights, playback rates, and other control parameters of a
complex animating character. Diff erent blend weights have diff erent eff ects
on the way the character animates. For example, one weight might control
the character’s movement direction, while others control its movement speed,
horizontal and vertical weapon aim, head/eye look direction, and so on. We
need some way of exposing all of these blend weights to the code that is re-
sponsible for controlling them.

Net blend tree
at time τ

Time

H

F

B

τ

K

LERP

+

Tree
B

Tree
F

Tree
H

+

Tree
K

Figure 11.59. A layered state machine converts the blend trees from multiple states into a
single, unifi ed tree.

11.11. Action State Machines

582 11. Animation Systems

In a fl at weighted average architecture, we have a fl at list of all the ani-
mation clips that could possibly be played on the character. Each clip state
has a blend weight, a playback rate, and possibly other control parameters.
The code that controls the character must look up individual clip states by
name and adjust each one’s blend weight appropriately. This makes for a sim-
ple interface, but it shift s most of the responsibility for controlling the blend
weights to the character control system. For example, to adjust the direction
in which a character is running, the character control code must know that the
“run” action is comprised of a group of animation clips, named something
like “StrafeLeft ,” “RunForward,” “StrafeRight,” and “RunBackward.” It must
look up these clip states by name and manually control all four blend weights
in order to achieve a particular angled run animation. Needless to say, control-
ling animation parameters in such a fi ne-grained way can be tedious and can
lead to diffi cult-to-understand source code.

In a blend tree , a diff erent set of problems arise. Thanks to the tree struc-
ture, the clips are grouped naturally into functional units. Custom tree nodes
can encapsulate complex character motions. These are both helpful advantag-
es over the fl at weighted average approach. However, the control parameters
are buried within the tree. Code that wishes to control the horizontal look-at
direction of the head and eyes needs a priori knowledge of the structure of
the blend tree so that it can fi nd the appropriate nodes in the tree in order to
control their parameters.

Diff erent animation engines solve these problems in diff erent ways. Here
are some examples:

Node search.• Some engines provide a way for higher-level code to fi nd
blend nodes in the tree. For example, relevant nodes in the tree can be
given special names, such as “HorizAim” for the node that controls hor-
izontal weapon aiming. The control code can simply search the tree for
a node of a particular name; if one is found, then we know what eff ect
adjusting its blend weight will have.

Named variables.• Some engines allow names to be assigned to the indi-
vidual control parameters. The controlling code can look up a control
parameter by name in order to adjust its value.

Control structure.• In other engines, a simple data structure, such as an
array of fl oating-point values or a C struct, contains all of the control
parameters for the entire character. The nodes in the blend tree(s) are
connected to particular control parameters, either by being hard-coded
to use certain struct members or by looking up the parameters by
name or index.

583

Of course, there are many other alternatives as well. Every animation en-
gine tackles this problem in a slightly diff erent way, but the net eff ect is always
roughly the same.

11.11.5. Constraints

 We’ve seen how action state machines can be used to specify complex blend
trees and how a transition matrix can be used to control how transitions be-
tween states should work. Another important aspect of character animation
control is to constrain the movement of the characters and/or objects in the
scene in various ways. For example, we might want to constrain a weapon
so that it always appears to be in the hand of the character who is carrying it.
We might wish to constrain two characters so that they line up properly when
shaking hands. A character’s feet are oft en constrained so that they line up
with the fl oor, and its hands might be constrained to line up with the rungs
on a ladder or the steering wheel of a vehicle. In this section, we’ll take a brief
look at how these constraints are handled in a typical animation system.

11.11.5.1. Attachments

 Virtually all modern game engines permit objects to be att ached to one another.
At its simplest, object-to-object att achment involves constraining the position
and/or orientation of a particular joint JA within the skeleton of object A so that
it coincides with a joint JB in the skeleton of object B. An att achment is usually
a parent-child relationship. When the parent’s skeleton moves, the child object
is adjusted to satisfy the constraint. However, when the child moves, the par-
ent’s skeleton is usually not aff ected. This is illustrated in Figure 11.60.

Sometimes it can be convenient to introduce an off set between the parent
joint and the child joint. For example, when placing a gun into a character’s

… child
skeleton
follows

parent
skeleton
moves…

child
skeleton
moves…

… parent
skeleton

unaffected

Figure 11.60. An attachment, showing how movement of the parent automatically produces
movement of the child but not vice-versa.

11.11. Action State Machines

584 11. Animation Systems

hand, we could constrain the “Grip” joint of the gun so that it coincides with
the “RightWrist” joint of the character. However, this might not produce the
correct alignment of the gun with the hand. One solution to this problem is
to introduce a special joint into one of the two skeletons. For example, we
could add a “RightGun” joint to the character’s skeleton, make it a child of the
“RightWrist” joint, and position it so that when the “Grip” joint of the gun is
constrained to it, the gun looks like it is being held naturally by the character.
The problem with this approach, however, is that it increases the number of
joints in the skeleton. Each joint has a processing cost associated with anima-
tion blending and matrix palett e calculation and a memory cost for storing its
animation keys. So adding new joints is oft en not a viable option.

We know that an additional joint added for att achment purposes will not
contribute to the pose of the character—it merely introduces an additional
transform between the parent and child joint in an att achment. What we re-
ally want, then, is a way to mark certain joints so that they can be ignored by
the animation blending pipeline but can still be used for att achment purposes.
Such special joints are sometimes called att ach points. They are illustrated in
Figure 11.61.

Att ach points might be modeled in Maya just like regular joints or loca-
tors , although many game engines defi ne att ach points in a more convenient
manner. For example, they might be specifi ed as part of the action state ma-
chine text fi le or via a custom GUI within the animation authoring tool. This
allows the animators to focus only on the joints that aff ect the look of the
character, while the power to control att achments is put conveniently into the
hands of the people who need it—the game designers and the engineers.

11.11.5.2. Interobject Registration

 The interactions between game characters and their environments is growing
ever more complex and nuanced with each new title. Hence, it is important

Attachment
is equivalent

to a joint

Figure 11.61. An attach point acts like an extra joint between the parent and the child.

585

to have a system that allows characters and objects to be aligned with one an-
other when animating. Such a system can be used for in-game cinematics and
interactive gameplay elements alike.

Imagine that an animator, working in Maya or some other animation tool,
sets up a scene involving two characters and a door object. The two charac-
ters shake hands, and then one of them opens the door and they both walk
through it. The animator can ensure that all three actors in the scene line up
perfectly. However, when the animations are exported, they become three
separate clips, to be played on three separate objects in the game world. The
two characters might have been under AI or player control prior to the start of
this animated sequence. How, then, can we ensure that the three objects line
up correctly with one another when the three clips are played back in-game?

Reference Locators

One good solution is to introduce a common reference point into all three
animation clips. In Maya, the animator can drop a locator (which is just a 3D
transform, much like a skeletal joint) into the scene, placing it anywhere that
seems convenient. Its location and orientation are actually irrelevant, as we’ll
see. The locator is tagged in some way to tell the animation export tools that it
is to be treated specially.

When the three animation clips are exported, the tools store the position
and orientation of the reference locator, expressed in coordinates that are rela-
tive to the local object space of each actor , into all three clip’s data fi les. Later,
when the three clips are played back in-game, the animation engine can look
up the relative position and orientation of the reference locator in all three
clips. It can then transform the origins of the three objects in such a way as
to make all three reference locators coincide in world space. The reference
locator acts much like an att ach point (Section 11.11.5.1) and, in fact, could be
implemented as one. The net eff ect—all three actors now line up with one an-
other, exactly as they had been aligned in the original Maya scene.

yMaya

xMaya

Reference
Locator

Actor A
Actor B

Actor C

Figure 11.62. Original Maya scene containing three actors and a reference locator.

11.11. Action State Machines

586 11. Animation Systems

Figure 11.62 illustrates how the door and the two characters from the
above example might be set up in a Maya scene. As shown in Figure 11.63, the
reference locator appears in each exported animation clip (expressed in that
actor’s local space). In-game, these local-space reference locators are aligned
to a fi xed world-space locator in order to re-align the actors, as shown in Fig-
ure 11.64.

Finding the World-Space Reference Location

We’ve glossed over one important detail here—who decides what the world-
space position and orientation of the reference locator should be? Each anima-
tion clip provides the reference locator’s transform in the coordinate space of
its actor. But we need some way to defi ne where that reference locator should
be in world space.

In our example with the door and the two characters shaking hands, one
of the actors is fi xed in the world (the door). So one viable solution is to ask the
door for the location of the reference locator and then align the two characters
to it. The commands to do accomplish this might look similar to the following
pseudocode.

void playShakingHandsDoorSequence(
 Actor& door,
 Actor& characterA,
 Actor& characterB)
{

Actor B’s
Clip

Actor C’s
Clip

Actor A’s
Clip

yA

xA

yB

xB xC

yC

Figure 11.63. The reference locator is encoded in each actor’s animation fi le.

yworld

x world

Fixed reference
in world space

Figure 11.64. At runtime, the local-space reference transforms are aligned to a world-space
reference locator, causing the actors to line up properly.

587

 // Find the world-space transform of the reference
 // locator as specified in the door’s animation.
 Transform refLoc = getReferenceLocatorWs(door,
 "shake-hands-door");

 // Play the door’s animation in-place. (It’s alread
 // in the correct place in the world.)

playAnimation("shake-hands-door", door);

 // Play the two characters’ animations relative to
 // the world-space reference locator obtained from
 // the door.

playAnimationRelativeToReference
("shake-hands-character-a", characterA, refLoc);

playAnimationRelativeToReference
("shake-hands-character-b", characterB, refLoc);

}

Another option is to defi ne the world-space transform of the reference
locator independently of the three actors in the scene. We could place the ref-
erence locator into the world using our world-building tool, for example (see
Section 13.3). In this case, the pseudocode above should be changed to look
something like this:

void playShakingHandsDoorSequence(
 Actor& door,
 Actor& characterA,
 Actor& characterB,
 Actor& refLocatorActor)
{

 // Find the world-space transform of the reference
 // locator by simply querying the transform of an
 // independent actor (presumably placed into the
 // world manually).
 Transform refLoc = getActorTransformWs

(refLocatorActor);

 // Play all animations relative to the world-space
 // reference locator obtained above.

playAnimationRelativeToReference("shake-hands-door",
 door, refLoc);

playAnimationRelativeToReference
("shake-hands-character-a", characterA, refLoc);

playAnimationRelativeToReference
("shake-hands-character-b", characterB, refLoc);

}

11.11. Action State Machines

588 11. Animation Systems

11.11.5.3. Grabbing and Hand IK

 Even aft er using an att achment to connect two objects, we sometimes fi nd that
the alignment does not look exactly right in-game. For example, a character
might be holding a rifl e in her right hand, with her left hand supporting the
stock. As the character aims the weapon in various directions, we may no-
tice that the left hand no longer aligns properly with the stock at certain aim
angles. This kind of joint misalignment is caused by LERP blending. Even if
the joints in question are aligned perfectly in clip A and in clip B, LERP blend-
ing does not guarantee that those joints will be in alignment when A and B are
blended together.

One solution to this problem is to use inverse kinematics (IK) to correct
the position of the left hand. The basic approach is to determine the desired
target position for the joint in question. IK is then applied to a short chain of
joints (usually two, three, or four joints), starting with the joint in question
and progressing up the hierarchy to its parent, grandparent, and so on. The
joint whose position we are trying to correct is known as the end eff ector. The
IK solver adjusts the orientations of the end eff ector’s parent joint(s) in order
to get the end eff ector as close as possible to the target.

The API for an IK system usually takes the form of a request to enable or
disable IK on a particular chain of joints, plus a specifi cation of the desired
target point. The actual IK calculation is usually done internally by the low-
level animation pipeline. This allows it to do the calculation at the proper
time—namely, aft er intermediate local and global skeletal poses have been
calculated but before the fi nal matrix palett e calculation.

Some animation engines allow IK chains to be defi ned a priori. For ex-
ample, we might defi ne one IK chain for the left arm, one for the right arm,
and two for the two legs. Let’s assume for the purposes of this example that
a particular IK chain is identifi ed by the name of its end-eff ector joint. (Other
engines might use an index or handle or some other unique identifi er, but the
concept remains the same.) The function to enable an IK calculation might
look something like this:

void enableIkChain(
 Actor& actor,
 const char* endEffectorJointName,
 const Vector3& targetLocationWs);

and the function to disable an IK chain might look like this:

void disableIkChain(
 Actor& actor,
 const char* endEffectorJointName);

589

IK is usually enabled and disabled relatively infrequently, but the world-
space target location must be kept up-to-date every frame (if the target is
moving). Therefore, the low-level animation pipeline always provides some
mechanism for updating an active IK target point. For example, the pipeline
might allow us to call enableIkChain() multiple times. The fi rst time it is
called, the IK chain is enabled, and its target point is set. All subsequent calls
simply update the target point.

IK is well-suited to making minor corrections to joint alignment when
the joint is already reasonably close to its target. It does not work nearly as
well when the error between a joint’s desired location and its actual location
is large. Note also that most IK algorithms solve only for the position of a joint.
You may need to write additional code to ensure that the orientation of the end
eff ector aligns properly with its target as well. IK is not a cure-all, and it may
have signifi cant performance costs. So always use it judiciously.

11.11.5.4. Motion Extraction and Foot IK

In games, we usually want the locomotion animations of our characters to
look realistic and “grounded.” One of the biggest factors contributing to the
realism of a locomotion animation is whether or not the feet slide around on
the ground. Foot sliding can be overcome in a number of ways, the most com-
mon of which are motion extraction and foot IK.

Motion Extraction

 Let’s imagine how we’d animate a character walking forward in a straight
line. In Maya (or his or her animation package of choice), the animator makes

Figure 11.65. In the animation authoring package, the character moves forward in space, and
its feet appear grounded.

11.11. Action State Machines

590 11. Animation Systems

the character take one complete step forward, fi rst with the left foot and then
with the right foot. The resulting animation clip is known as a locomotion cycle ,
because it is intended to be looped indefi nitely, for as long as the character
is walking forward in-game. The animator takes care to ensure that the feet
of the character appear grounded and don’t slide as it moves. The character
moves from its initial location on frame 0 to a new location at the end of the
cycle. This is shown in Figure 11.65.

Notice that the local-space origin of the character remains fi xed during
the entire walk cycle. In eff ect, the character is “leaving his origin behind him”
as he takes his step forward. Now imagine playing this animation as a loop.
We would see the character take one complete step forward, and then pop
back to where he was on the fi rst frame of the animation. Clearly this won’t
work in-game.

To make this work, we need to remove the forward motion of the charac-
ter, so that his local-space origin remains roughly under the center of mass of
the character at all times. We could do this by zeroing out the forward transla-
tion of the root joint of the character’s skeleton. The resulting animation clip
would make the character look like he’s “moonwalking,” as shown in Fig-
ure 11.66.

In order to get the feet to appear to “stick” to the ground the way they
did in the original Maya scene, we need the character to move forward
by just the right amount each frame. We could look at the distance the
character moved, divide by the amount of time it took for him to get there,
and hence find his average movement speed. But a character’s forward

Figure 11.66. Walk cycle after zeroing out the root joint’s forward motion.

591

speed is not constant when walking. This is especially evident when a
character is limping (quick forward motion on the injured leg, followed
by slower motion on the “good” leg), but it is true for all natural-looking
walk cycles.

Therefore, before we zero out the forward motion of the root joint, we fi rst
save the animation data in a special “extracted motion” channel. This data can
be used in-game to move the local-space origin of the character forward by the
exact amount that the root joint had moved in Maya each frame. The net result
is that the character will walk forward exactly as he was authored, but now
his local-space origin comes along for the ride, allowing the animation to loop
properly. This is shown in Figure 11.67.

If the character moves forward by 4 feet in the animation and the anima-
tion takes one second to complete, then we know that the character is moving
at an average speed of 4 feet/second. To make the character walk at a diff erent
speed, we can simply scale the playback rate of the walk cycle animation. For
example, to make the character walk at 2 feet/second, we can simply play the
animation at half speed (R = 0.5).

Foot IK

 Motion extraction does a good job of making a character’s feet appear ground-
ed when it is moving in a straight line (or, more correctly, when it moves in a
path that exactly matches the path animated by the animator). However, a real
game character must be turned and moved in ways that don’t coincide with
the original hand-animated path of motion (e.g., when moving over uneven
terrain). This results in additional foot sliding.

Figure 11.67. Walk cycle in-game, with extracted root motion data applied to the local-space
origin of the character.

11.11. Action State Machines

592 11. Animation Systems

One solution to this problem is to use IK to correct for any sliding in the
feet. The basic idea is to analyze the animations to determine during which
periods of time each foot is fully in contact with the ground. At the moment a
foot contacts the ground, we note its world-space location. For all subsequent
frames while that foot remains on the ground, we use IK to adjust the pose
of the leg so that the foot remains fi xed to the proper location. This technique
sounds easy enough, but gett ing it to look and feel right can be very challeng-
ing. It requires a lot of iteration and fi ne-tuning. And some natural human
motions—like leading into a turn by increasing your stride—cannot be pro-
duced by IK alone.

In addition, there is a big trade-off between the look of the animations
and the feel of the character, particularly for a human-controlled character.
It’s generally more important for the player character control system to feel
responsive and fun than it is for the character’s animations to look perfect. The
upshot is this: Do not take the task of adding foot IK or motion extraction to
your game lightly. Budget time for a lot of trail and error, and be prepared to
make trade-off s to ensure that your player character not only looks good but
feels good as well.

11.11.5.5. Other Kinds of Constraints

There are plenty of other possible kinds of constraint systems that can be add-
ed to a game animation engine. Some examples include:

Look-at• . This is the ability for characters to look at points of interest in
the environment. A character might look at a point with only his or her
eyes, with eyes and head, or with eyes, head, and a twist of the entire
upper body. Look-at constraints are sometimes implemented using IK
or procedural joint off sets, although a more natural look can oft en be
achieved via additive blending.

Cover registration• . This is the ability for a character to align perfectly with
an object that is serving as cover. This is oft en implemented via the ref-
erence locator technique described above.

Cover entry and departure• . If a character can take cover, animation blend-
ing and custom entry and departure animations must usually be used
to get the character into and out of cover.

Traversal aids• . The ability for a character to navigate over, under, around,
or through obstacles in the environment can add a lot of life to a game.
This is oft en done by providing custom animations and using a refer-
ence locator to ensure proper registration with the obstacle being over-
come.

593

11.12. Animation Controllers

The animation pipeline provides high-speed animation posing and blending
facilities, but its interface is usually too cumbersome to be used directly by
gameplay code. The action state machine provides a more convenient inter-
face by allowing complex blend trees to be described, oft en in a data-driven
manner, and then encapsulated within easy-to-understand logical states. Tran-
sitions between states can also be defi ned, again oft en in a data-driven way,
so that gameplay code can be writt en in a fi re-and-forget manner, without
having to micromanage every transition. The ASM system may also provide
a layering mechanism, allowing the motion of a character to be described by
multiple state machines running in parallel. But even given the relatively con-
venient interface provided by the action state machine, some game teams fi nd
it convenient to introduce a third layer of soft ware, aimed at providing higher-
level control over how characters animate. As such, it is oft en implemented as
a collection of classes known as animation controllers .

Controllers tend to manage behaviors over relatively long periods of
time—on the order of a few seconds or more. Each animation controller is typ-
ically responsible for one type of gross character behavior, like how to behave
when in cover, how to behave when locomoting from one place to another in
the game world, or how to drive a vehicle. A controller typically orchestrates
all aspects of the character’s animation-related behavior. It adjusts blend fac-
tors to control movement directions, aiming, and so on, manages state transi-
tions, fades in and out layers, and does whatever else is needed to make the
character behave as desired.

One benefi t of a controller-based design is that all of the code relating to a
particular behavioral category is localized in one place. This design also per-
mits higher-level gameplay systems, like player mechanics or AI , to be writt en
in a much simpler way, because all of the details of micromanaging the anima-
tions can be extracted and hidden within the controllers.

The animation controller layer takes many diff erent forms and is highly
dependent upon the needs of the game and the soft ware design philosophies
of the engineering team. Some teams don’t use animation controllers at all.
On other teams, the animation controllers may be tightly integrated into the
AI and/or player mechanics systems. Still other teams implement a suite of
relatively general-purpose controllers that can be shared between the player
character and the NPCs . For bett er or for worse, there is no one standard way
to implement animation controllers in the game industry (at least not yet).

11.12. Animation Controllers

595

12
Collision and Rigid

Body Dynamics

In the real world, solid objects are inherently, well… solid. They generally
avoid doing impossible things, like passing through one another, all by

themselves. But in a virtual game world, objects don’t do anything unless we
tell them to, and game programmers must make an explicit eff ort to ensure
that objects do not pass through one another. This is the role of one of the cen-
tral components of any game engine—the collision detection system.

A game engine’s collision system is oft en closely integrated with a physics
engine . Of course, the fi eld of physics is vast, and what most of today’s game
engines call “physics” is more accurately described as a rigid body dynamics
simulation. A rigid body is an idealized, infi nitely hard, non-deformable solid
object. The term dynamics refers to the process of determining how these rigid
bodies move and interact over time under the infl uence of forces. A rigid body
dynamics simulation allows motion to be imparted to objects in the game
in a highly interactive and naturally chaotic manner—an eff ect that is much
more diffi cult to achieve when using canned animation clips to move things
about.

A dynamics simulation makes heavy use of the collision detection system
in order to properly simulate various physical behaviors of the objects in the
simulation, including bouncing off one another, sliding under friction, rolling,
and coming to rest. Of course, a collision detection system can be used stand-
alone, without a dynamics simulation—many games do not have a “physics”

596 12. Collision and Rigid Body Dynamics

system at all. But all games that involve objects moving about in two- or three-
dimensional space have some form of collision detection.

In this chapter, we’ll investigate the architecture of both a typical collision
detection system and a typical physics (rigid body dynamics) system. As we
investigate the components of these two closely interrelated systems, we’ll
take a look at the mathematics and the theory that underlie them.

12.1. Do You Want Physics in Your Game?

Nowadays, most game engines have some kind of physical simulation capa-
bilities. Some physical eff ects, like rag doll deaths, are simply expected by
gamers. Other eff ects, like ropes, cloth, hair, or complex physically driven ma-
chinery can add that je ne sais quoi that sets a game apart from its competitors.
In recent years, some game studios have started experimenting with advanced
physical simulations, including approximate real-time fl uid mechanics eff ects
and simulations of deformable bodies . But adding physics to a game is not
without costs, and before we commit ourselves to implementing an exhaus-
tive list of physics-driven features in our game, we should (at the very least)
understand the trade-off s involved.

12.1.1. Things You Can Do with a Physics System

 Here are just a few of the things you can do or have with a game physics
system.

 Detect collisions between dynamic objects and static world geometry.
 Simulate free rigid bodies under the infl uence of gravity and other forces.
 Spring-mass systems.
 Destructible buildings and structures.
 Ray and shape casts (to determine line of sight, bullet impacts, etc.).
 Trigger volumes (determine when objects enter, leave, or are inside pre-

defi ned regions in the game world).
 Allow characters to pick up rigid objects.
 Complex machines (cranes, moving platform puzzles, and so on).
 Traps (such as an avalanche of boulders).
 Drivable vehicles with realistic suspensions.
 Rag doll character deaths.
 Powered rag doll: a realistic blend between traditional animation and

rag doll physics.

597 12.1. Do You Want Physics in Your Game?

 Dangling props (canteens, necklaces, swords), semi-realistic hair, cloth-
ing movements.

 Cloth simulations.
 Water surface simulations and buoyancy.
 Audio propagation.

And the list goes on.
We should note here that in addition to running a physics simulation at

runtime in our game, we can also run a simulation as part of an offl ine pre-
processing step in order to generate an animation clip. A number of physics
plug-ins are available for animation tools like Maya. This is also the approach
taken by the Endorphin package by NaturalMotion Inc. (htt p://www.natu-
ralmotion.com/ endorphin.htm). In this chapter, we’ll restrict our discussion
to runtime rigid body dynamics simulations, but off -line tools are a power-
ful option, of which we should always remain aware as we plan our game
projects.

12.1.2. Is Physics Fun?

 The presence of a rigid body dynamics system in a game does not necessarily
make the game fun. More oft en than not, the inherently chaotic behavior of a
physics sim can actually detract from the gameplay experience rather than en-
hancing it. The fun derived from physics depends on many factors, including
the quality of the simulation itself, the care with which it has been integrated
with other engine systems, the selection of physics-driven gameplay elements
versus elements that are controlled in a more direct manner, how the physical
elements interact with the goals of the player and the abilities of the player
character, and the genre of game being made.

Let’s take a look at a few broad game genres and how a rigid body dy-
namics system might fi t into each one.

12.1.2.1. Simulations (Sims)

The primary goal of a sim is to accurately reproduce a real-life experience. Ex-
amples include the Flight Simulator, Gran Turismo, and NASCAR Racing series
of games. Clearly, the realism provided by a rigid body dynamics system fi ts
extremely well into these kinds of games.

12.1.2.2. Physics Puzzle Games

The whole idea of a physics puzzle is to let the user play around with dynami-
cally simulated toys. So obviously this kind of game relies almost entirely on
physics for its core mechanic. Examples of this genre include Bridge Builder,

http://www.natu-ralmotion.com/
http://www.natu-ralmotion.com/
http://www.natu-ralmotion.com/

598 12. Collision and Rigid Body Dynamics

The Incredible Machine, the online game Fantastic Contraption, and Crayon Phys-
ics for the iPhone.

12.1.2.3. Sandbox Games

In a sandbox game , there may be no objectives at all, or there may be a large
number of optional objectives. The player’s primary objective is usually to
“mess around” and explore what the objects in the game world can be made
to do. Examples of sandbox games include Grand Theft Auto, Spore, and Lit-
tleBigPlanet.

Sandbox games can put a realistic dynamics simulation to good use, es-
pecially if much of the fun is derived from playing with realistic (or semi-
realistic) interactions between objects in the game world. So in these contexts,
physics can be fun in and of itself. However, many games trade realism for
an increased fun factor (e.g., larger-than-life explosions, gravity that is stron-
ger or weaker than normal, etc.). So the dynamics simulation may need to be
tweaked in various ways to achieve the right “feel.”

12.1.2.4. Goal-Based and Story-Driven Games

A goal-based game has rules and specifi c objectives that the player must ac-
complish in order to progress; in a story-driven game , telling a story is of par-
amount importance. Integrating a physics system into these kinds of games
can be tricky. We generally give away control in exchange for a realistic simula-
tion, and this loss of control can inhibit the player’s ability to accomplish goals
or the game’s ability to tell the story.

For example, in a character-based platformer game, we want the player
character to move in ways that are fun and easy to control but not necessar-
ily physically realistic. In a war game, we might want a bridge to explode
in a realistic way, but we also may want to ensure that the debris doesn’t
end up blocking the player’s only path forward. In these kinds of games,
physics is oft en not necessarily fun, and in fact it can oft en get in the way
of fun when the player’s goals are at odds with the physically simulated
behaviors of the objects in the game world. Therefore, developers must be
careful to apply physics judiciously and take steps to control the behavior
of the simulation in various ways to ensure it doesn’t get in the way of
gameplay.

12.1.3. Impact of Physics on a Game

 Adding a physics simulation to a game can have all sorts of impacts on the
project and the gameplay. Here are a few examples across various game de-
velopment disciplines.

599

12.1.3.1. Design Impacts

 Predictability. The inherent chaos and variability that sets a physically
simulated behavior apart from an animated one is also a source of un-
predictability. If something absolutely must happen a certain way every
time, it’s usually bett er to animate it than to try to coerce your dynamics
simulation into producing the motion reliably.

 Tuning and control. The laws of physics (when modeled accurately) are
fi xed. In a game, we can tweak the value of gravity or the coeffi cient of
restitution of a rigid body, which gives back some degree of control.
However, the results of tweaking physics parameters are oft en indirect
and diffi cult to visualize. It’s much harder to tweak a force in order to
get a character to move in the desired direction than it is to tweak an
animation of a character walking.

 Emergent behaviors . Sometimes physics introduces unexpected features
into a game—for example, the rocket-launcher jump trick in Team For-
tress Classic, the high-fl ying exploding Warthog in Halo, and the fl ying
“surfb oards” in PsyOps.

In general, the game design should usually drive the physics require-
ments of a game engine—not the other way around.

12.1.3.2. Engineering Impacts

 Tools pipeline. A good collision/physics pipeline takes time to build and
maintain.

 User interface. How does the player control the physics objects in the
world? Does he or she shoot them? Walk into them? Pick them up? Us-
ing a virtual arm, as in Trespasser? Using a “gravity gun,” as in Half-
Life 2?

 Collision detection. Collision models intended for use within a dynamics
simulation may need to be more detailed and more carefully construct-
ed than their non-physics-driven counterparts.

 AI . Pathing may not be predictable in the presence of physically simu-
lated objects. The engine may need to handle dynamic cover points that
can move or blow up. Can the AI use the physics to its advantage?

 Animation and character motion. Animation-driven objects can clip slight-
ly through one another with few or no ill eff ects, but when driven by a
dynamics simulation, objects may bounce off one another in unexpected
ways or jitt er badly. Collision fi ltering may need to be applied to permit
objects to interpenetrate slightly. Mechanisms may need to be put in
place to ensure that objects sett le and go to sleep properly.

12.1. Do You Want Physics in Your Game?

600 12. Collision and Rigid Body Dynamics

 Rag doll physics. Rag dolls require a lot of fi ne-tuning and oft en suff er
from instability in the simulation. An animation may drive parts of a
character’s body into penetration with other collision volumes—when
the character turns into a rag doll, these interpenetrations can cause
enormous instability. Steps must be taken to avoid this.

 Graphics. Physics-driven motion can have an eff ect on renderable ob-
jects’ bounding volumes (where they would otherwise be static or more
predictable). The presence of destructible buildings and objects can in-
validate some kinds of precomputed lighting and shadow methods.

 Networking and multiplayer . Physics eff ects that do not aff ect gameplay
may be simulated exclusively (and independently) on each client ma-
chine. However, physics that has an eff ect on gameplay (such as the
trajectory that a grenade follows) must be simulated on the server and
accurately replicated on all clients.

 Record and playback . The ability to record gameplay and play it back at
a later time is very useful as a debugging/testing aid, and it can also
serve as a fun game feature. This feature is much more diffi cult to imple-
ment in the presence of simulated dynamics because chaotic behavior
(in which the simulation takes a very diff erent path as a result of small
changes in initial conditions) and diff erences in the timing of the phys-
ics updates can cause playbacks to fail to match the recorded original.

12.1.3.3. Art Impacts

 Additional tool and workfl ow complexity. The need to rig up objects with
mass, friction, constraints, and other att ributes for consumption by the
dynamics simulation makes the art department’s job more diffi cult as
well.

 More-complex content. We may need multiple visually identical versions of
an object with diff erent collision and dynamics confi gurations for diff er-
ent purposes—for example, a pristine version and a destructible version.

 Loss of control . The unpredictability of physics-driven objects can make
it diffi cult to control the artistic composition of a scene.

12.1.3.4. Other Impacts

 Interdisciplinary impacts. The introduction of a dynamics simulation into
your game requires close cooperation between engineering, art, and de-
sign.

 Production impacts. Physics can add to a project’s development costs,
technical and organizational complexity, and risk.

601 12.2. Collision/Physics Middleware

Having explored the impacts, most teams today do choose to integrate
a rigid body dynamics system into their games. With some careful planning
and wise choices along the way, adding physics to your game can be reward-
ing and fruitful. And as we’ll see below, third-party middleware is making
physics more accessible than ever.

12.2. Collision/Physics Middleware

 Writing a collision system and rigid body dynamics simulation is challeng-
ing and time-consuming work. The collision/physics system of a game engine
can account for a signifi cant percentage of the source code in a typical game
engine. That’s a lot of code to write and maintain!

Thankfully, a number of robust, high-quality collision/physics engines are
now available, either as commercial products or in open-source form. Some of
these are listed below. For a discussion of the pros and cons of various phys-
ics SDKs, check out the on-line game development forums (e.g., htt p://www.
gamedev.net/community/forums/topic.asp?topic_id=463024).

12.2.1. I-Collide, SWIFT, V-Collide, and RAPID

I-Collide is an open-source collision detection library developed by the Uni-
versity of North Carolina at Chapel Hill (UNC). It can detect intersections
between convex volumes. I-Collide has been replaced by a faster, more fea-
ture-rich library called SWIFT . UNC has also developed collision detection
libraries that can handle complex non-convex shapes, called V-Collide and
RAPID . None of these libraries can be used right out of the box in a game, but
they might provide a good basis upon which to build a fully functional game
collision detection engine. You can read more about I-Collide, SWIFT, and
the other UNC geometry libraries at htt p://www.cs.unc.edu/~geom/I_COL-
LIDE/.

12.2.2. ODE

ODE stands for “Open Dynamics Engine ” (htt p://www.ode.org). As its name
implies, ODE is an open-source collision and rigid body dynamics SDK. Its
feature set is similar to a commercial product like Havok. Its benefi ts include
being free (a big plus for small game studios and school projects!) and the
availability of full source code (which makes debugging much easier and
opens up the possibility of modifying the physics engine to meet the specifi c
needs of a particular game).

http://www.gamedev.net/community/forums/topic.asp?topic_id=463024
http://www.gamedev.net/community/forums/topic.asp?topic_id=463024
http://www.cs.unc.edu/~geom/I_COL-LIDE/.12.2.2
http://www.cs.unc.edu/~geom/I_COL-LIDE/.12.2.2
http://www.cs.unc.edu/~geom/I_COL-LIDE/.12.2.2
http://www.ode.org

602 12. Collision and Rigid Body Dynamics

12.2.3. Bullet

Bullet is an open-source collision detection and physics library used by both
the game and fi lm industries. Its collision engine is integrated with its dy-
namics simulation, but hooks are provided so that the collision system can
be used standalone or integrated with other physics engines. It supports con-
tinuous collision detection (CCD)—also known as time of impact (TOI) collision
detection—which as we’ll see below can be extremely helpful when a simu-
lation includes small, fast-moving objects. The Bullet SDK is available for
download at htt p://code.google.com/p/bullet/, and the Bullet wiki is locat-
ed at htt p://www.bulletphysics.com/mediawiki-1.5.8/index.php?title=Main_
Page.

12.2.4. TrueAxis

TrueAxis is another collision/physics SDK. It is free for non-commercial use.
You can learn more about TrueAxis at htt p://trueaxis.com.

12.2.5. PhysX

PhysX started out as a library called Novodex , produced and distributed by
Ageia as part of their strategy to market their dedicated physics coprocessor.
It was bought by NVIDIA and is being retooled so that it can run using NVID-
IA’s GPUs as a coprocessor. (It can also run entirely on a CPU, without GPU
support.) It is available at htt p://www.nvidia.com/object/nvidia_physx.html.
Part of Ageia ’s and NVIDIA’s marketing strategy has been to provide the CPU
version of the SDK entirely for free, in order to drive the physics coprocessor
market forward. Developers can also pay a fee to obtain full source code and
the ability to customize the library as needed. PhysX is available for PC, Xbox
360, PLAYSTATION 3, and Wii.

12.2.6. Havok

Havok is the gold standard in commercial physics SDKs, providing one of
the richest feature sets available and boasting excellent performance charac-
teristics on all supported platforms. (It’s also the most expensive solution.)
Havok is comprised of a core collision/physics engine, plus a number of
optional add-on products including a vehicle physics system, a system for
modeling destructible environments, and a fully featured animation SDK
with direct integration into Havok’s rag doll physics system. It runs on PC,
Xbox 360, PLAYSTATION 3, and Wii and has been specifi cally optimized
for each of these platforms. You can learn more about Havok at htt p://www.
havok.com.

http://www.bulletphysics.com/mediawiki-1.5.8/index.php?title=Main_
http://www.nvidia.com/object/nvidia_physx.html
http://www.havok.com
http://www.havok.com

603 12.3. The Collision Detection System

12.2.7. Physics Abstraction Layer (PAL)

The Physics Abstraction Layer (PAL) is an open-source library that allows
developers to work with more than one physics SDK on a single project. It
provides hooks for PhysX (Novodex), Newton, ODE, OpenTissue , Tokamak ,
TrueAxis, and a few other SDKs. You can read more about PAL at htt p://www.
adrianboeing.com/pal/index.html.

12.2.8. Digital Molecular Matter (DMM)

Pixelux Entertainment S.A., located in Geneva, Switzerland, has produced a
unique physics engine that uses fi nite element methods to simulate the dy-
namics of deformable and breakable objects, called Digital Molecular Mat-
ter (DMM). The engine has both an offl ine and a runtime component. It was
released in 2008 and can be seen in action in LucasArts’ Star Wars: The Force
Unleashed . A discussion of deformable body mechanics is beyond our scope
here, but you can read more about DMM at htt p://www.pixeluxentertain-
ment.com.

12.3. The Collision Detection System

The primary purpose of a game engine’s collision detection system is to deter-
mine whether any of the objects in the game world have come into contact . To
answer this question, each logical object is represented by one or more geo-
metric shapes . These shapes are usually quite simple, such as spheres, boxes,
and capsules. However, more-complex shapes can also be used. The collision
system determines whether or not any of the shapes are intersecting (i.e., over-
lapping) at any given moment in time. So a collision detection system is es-
sentially a glorifi ed geometric intersection tester.

Of course, the collision system does more than answer yes/no questions
about shape intersection. It also provides relevant information about the na-
ture of each contact. Contact information can be used to prevent unrealistic
visual anomalies on-screen, such as objects interpenetrating one another. This
is generally accomplished by moving all interpenetrating objects apart prior
to rendering the next frame. Collisions can provide support for an object—one
or more contacts that together allow the object to come to rest, in equilibrium
with gravity and/or any other forces acting on it. Collisions can also be used
for other purposes, such as to cause a missile to explode when it strikes its
target or to give the player character a health boost when he passes through
a fl oating health pack. A rigid body dynamics simulation is oft en the most
demanding client of the collision system, using it to mimic physically realistic

http://www.adrianboeing.com/pal/index.html
http://www.adrianboeing.com/pal/index.html
http://www.pixeluxentertain-ment.com
http://www.pixeluxentertain-ment.com
http://www.pixeluxentertain-ment.com

604 12. Collision and Rigid Body Dynamics

behaviors like bouncing, rolling, sliding, and coming to rest. But, of course,
even games that have no physics system can still make heavy use of a collision
detection engine.

In this chapter, we’ll go on a brief high-level tour of how collision detec-
tion engines work. For an in-depth treatment of this topic, a number of excel-
lent books on real-time collision detection are available, including [12], [41],
and [9].

12.3.1. Collidable Entities

If we want a particular logical object in our game to be capable of colliding
with other objects, we need to provide it with a collision representation , describ-
ing the object’s shape and its position and orientation in the game world. This
is a distinct data structure, separate from the object’s gameplay representation
(the code and data that defi ne its role and behavior in the game) and separate
from its visual representation (which might be an instance of a triangle mesh, a
subdivision surface, a particle eff ect, or some other visual representation).

From the point of view of detecting intersections, we generally favor
shapes that are geometrically and mathematically simple. For example, a rock
might be modeled as a sphere for collision purposes; the hood of a car might
be represented by a rectangular box ; a human body might be approximated
by a collection of interconnected capsules (pill-shaped volumes). Ideally, we
should resort to a more-complex shape only when a simpler representation
proves inadequate to achieve the desired behavior in the game. Figure 12.1
shows a few examples of using simple shapes to approximate object volumes
for collision detection purposes.

Havok uses the term collidable to describe a distinct, rigid object that can
take part in collision detection. It represents each collidable with an instance
of the C++ class hkpCollidable. PhysX calls its rigid objects actors and rep-
resents them as instances of the class NxActor. In both of these libraries, a
collidable entity contains two basic pieces of information—a shape and a trans-

Figure 12.1 Simple geometric shapes are often used to approximate the collision volumes of
the objects in a game.

605

form. The shape describes the collidable’s geometric form, and the transform
describes the shape’s position and orientation in the game world. Collidables
need transforms for three reasons:

Technically speaking, a shape only describes the form of an object (i.e., 1.
whether it is a sphere, a box, a capsule, or some other kind of volume).
It may also describe the object’s size (e.g., the radius of a sphere or the
dimensions of a box). But a shape is usually defi ned with its center
at the origin and in some sort of canonical orientation relative to the
coordinate axes. To be useful, a shape must therefore be transformed in
order to position and orient it appropriately in world space.
Many of the objects in a game are dynamic. Moving an arbitrarily 2.
complex shape through space could be expensive if we had to move
the features of the shape (vertices, planes, etc.) individually. But with a
transform, any shape can be moved in space inexpensively, no matt er
how simple or complex the shape’s features may be.
The information describing some of the more-complex kinds of shapes 3.
can take up a non-trivial amount of memory. So it can be benefi cial to
permit more than one collidable to share a single shape description. For
example, in a racing game, the shape information for many of the cars
might be identical. In that case, all of the car collidables in the game can
share a single car shape.

Any particular object in the game may have no collidable at all (if it doesn’t
require collision detection services), a single collidable (if the object is a simple
rigid body), or multiple collidables (each representing one rigid component of
an articulated robot arm, for example).

12.3.2. The Collision/Physics World

A collision system typically keeps track of all of its collidable entities via a
singleton data structure known as the collision world . The collision world is a
complete representation of the game world designed explicitly for use by the
collision detection system. Havok’s collision world is an instance of the class
hkpWorld. Likewise, the PhysX world is an instance of NxScene. ODE uses
an instance of class dSpace to represent the collision world; it is actually the
root of a hierarchy of geometric volumes representing all the collidable shapes
in the game.

Maintaining all collision information in a private data structure has a
number of advantages over att empting to store collision information with the
game objects themselves. For one thing, the collision world need only contain
collidables for those game objects that can potentially collide with one another.

12.3. The Collision Detection System

606 12. Collision and Rigid Body Dynamics

This eliminates the need for the collision system to iterate over any irrelevant
data structures. This design also permits collision data to be organized in the
most effi cient manner possible. The collision system can take advantage of
cache coherency to maximize performance, for example. The collision world
is also an eff ective encapsulation mechanism, which is generally a plus from
the perspectives of understandability, maintainability, testability, and the po-
tential for soft ware reuse.

12.3.2.1. The Physics World

If a game has a rigid body dynamics system, it is usually tightly integrated
with the collision system. It typically shares its “world” data structure with
the collision system, and each rigid body in the simulation is usually associat-
ed with a single collidable in the collision system. This design is commonplace
among physics engines because of the frequent and detailed collision queries
required by the physics system. It’s typical for the physics system to actually
drive the operation of the collision system, instructing it to run collision tests
at least once, and sometimes multiple times, per simulation time step. For this
reason, the collision world is oft en called the collision/physics world or some-
times just the physics world.

Each dynamic rigid body in the physics simulation is usually associated
with a single collidable object in the collision system (although not all collid-
ables need be dynamic rigid bodies). For example, in Havok, a rigid body is
represented by an instance of the class hkpRigidBody, and each rigid body
has a pointer to exactly one hkpCollidable. In PhysX, the concepts of collid-
able and rigid body are comingled—the NxActor class serves both purposes
(although the physical properties of the rigid body are stored separately, in an
instance of NxBodyDesc). In both SDKs, it is possible to tell a rigid body that
its location and orientation are to be fi xed in space, meaning that it will be
omitt ed from the dynamics simulation and will serve as a collidable only.

Despite this tight integration, most physics SDKs do make at least some
att empt to separate the collision library from the rigid body dynamics simu-
lation. This permits the collision system to be used as a standalone library
(which is important for games that don’t need physics but do need to detect
collisions). It also means that a game studio could theoretically replace a phys-
ics SDK’s collision system entirely, without having to rewrite the dynamics
simulation. (Practically speaking, this may be a bit harder than it sounds!)

12.3.3. Shape Concepts

A rich body of mathematical theory underlies the everyday concept of shape
(see htt p://en.wikipedia.org/wiki/Shape). For our purposes, we can think of

607 12.3. The Collision Detection System

a shape simply as a region of space described by a boundary, with a defi nite
inside and outside. In two dimensions, a shape has area, and its boundary is
defi ned either by a curved line or by three or more straight edges (in which
case it’s a polygon). In three dimensions, a shape has volume, and its boundary
is either a curved surface or is composed of polygons (in which case is it called
a polyhedron).

It’s important to note that some kinds of game objects, like terrain, rivers,
or thin walls, might be best represented by surfaces . In three-space, a surface
is a two-dimensional geometric entity with a front and a back but no inside
or outside. Examples include planes, triangles, subdivision surfaces, and sur-
faces constructed from a group of connected triangles or other polygons. Most
collision SDKs provide support for surface primitives and extend the term
shape to encompass both closed volumes and open surfaces.

It’s commonplace for collision libraries to allow surfaces to be given vol-
ume via an optional extrusion parameter. Such a parameter specifi es how
“thick” a surface should be. Doing this helps reduce the occurrence of missed
collisions between small, fast-moving objects and infi nitesimally thin surfaces
(the so-called “bullet through paper” problem—see Section 12.3.5.7).

12.3.3.1. Intersection

We all have an intuitive notion of what an intersection is. Technically speak-
ing, the term comes from set theory (htt p://en.wikipedia.org/wiki/Intersec-
tion_(set_theory)). The intersection of two sets is comprised of the subset of
members that are common to both sets. In geometrical terms, the intersection
between two shapes is just the (infi nitely large!) set of all points that lie inside
both shapes.

12.3.3.2. Contact

In games, we’re not usually interested in fi nding the intersection in the strict-
est sense, as a set of points. Instead, we want to know simply whether or not
two objects are intersecting. In the event of a collision, the collision system will
usually provide additional information about the nature of the contact . This
information allows us to separate the objects in a physically plausible and ef-
fi cient way, for example.

Collision systems usually package contact information into a convenient
data structure that can be instanced for each contact detected. For example,
Havok returns contacts as instances of the class hkContactPoint. Contact
information oft en includes a separating vector —a vector along which we can
slide the objects in order to effi ciently move them out of collision. It also typi-
cally contains information about which two collidables were in contact, in-

608 12. Collision and Rigid Body Dynamics

cluding which individual shapes were intersecting and possibly even which
individual features of those shapes were in contact. The system may also re-
turn additional information, such as the velocity of the bodies projected onto
the separating normal.

12.3.3.3. Convexity

One of the most important concepts in the fi eld of collision detection is the
distinction between convex and non-convex (i.e., concave) shapes. Technically, a
convex shape is defi ned as one for which no ray originating inside the shape
will pass through its surface more than once. A simple way to determine if a
shape is convex is to imagine shrink-wrapping it with plastic fi lm—if it’s con-
vex, no air pockets will be left under the fi lm. So in two dimensions, circles,
rectangles and triangles are all convex, but Pac Man is not. The concept ex-
tends equally well to three dimensions.

The property of convexity is important because, as we’ll see, it’s generally
simpler and less computationally intensive to detect intersections between
convex shapes than concave ones. See htt p://en.wikipedia.org/wiki/Convex
for more information about convex shapes.

12.3.4. Collision Primitives

Collision detection systems can usually work with a relatively limited set of
shape types. Some collision systems refer to these shapes as collision primitives
because they are the fundamental building blocks out of which more-complex
shapes can be constructed. In this section, we’ll take a brief look at some of the
most common types of collision primitives.

12.3.4.1. Spheres

The simplest three-dimensional volume is a sphere . And as you might expect,
spheres are the most effi cient kind of collision primitive. A sphere is repre-
sented by a center point and a radius. This information can be conveniently
packed into a four-element fl oating-point vector—a format that works par-
ticularly well with SIMD math libraries.

12.3.4.2. Capsules

A capsule is a pill-shaped volume, composed of a cylinder and two hemispher-
ical end caps. It can be thought of as a swept sphere —the shape that is traced
out as a sphere moves from point A to point B. (There are, however, some
important diff erences between a static capsule and a sphere that sweeps out a
capsule-shaped volume over time, so the two are not identical.) Capsules are
oft en represented by two points and a radius (Figure 12.2). Capsules are more

609 12.3. The Collision Detection System

effi cient to intersect than cylinders or boxes, so they are oft en used to model
objects that are roughly cylindrical, such as the limbs of a human body.

12.3.4.3. Axis-Aligned Bounding Boxes

An axis-aligned bounding box (AABB) is a rectangular volume (technically
known as a cuboid) whose faces are parallel to the axes of the coordinate sys-
tem. Of course, a box that is axis-aligned in one coordinate system will not
necessarily be axis-aligned in another. So we can only speak about an AABB in
the context of the particular coordinate frame(s) with which it aligns.

An AABB can be conveniently defi ned by two points: one containing the
minimum coordinates of the box along each of the three principal axes and the
other containing its maximum coordinates. This is depicted in Figure 12.3.

The primary benefi t of axis-aligned boxes is that they can be tested for
interpenetration with other axis-aligned boxes in a highly effi cient manner.
The big limitation of using AABBs is that they must remain axis-aligned at
all times if their computational advantages are to be maintained. This means
that if an AABB is used to approximate the shape of an object in the game,
the AABB will have to be recalculated whenever that object rotates. Even if
an object is roughly box-shaped, its AABB may degenerate into a very poor
approximation to its shape when the object rotates off -axis. This is shown in
Figure 12.4.

r r

P2P1

Figure 12.2. A capsule can be represented by two points and a radius.

y

xxmin xmax

ymin

ymax

Figure 12.3. An axis-aligned box.

610 12. Collision and Rigid Body Dynamics

12.3.4.4. Oriented Bounding Boxes

If we permit an axis-aligned box to rotate relative to its coordinate system,
we have what is known as an oriented bounding box (OBB). It is oft en repre-
sented by three half-dimensions (half-width, half-depth, and half-height) and
a transformation, which positions the center of the box and defi nes its orien-
tation relative to the coordinate axes. Oriented boxes are a commonly used
collision primitive because they do a bett er job at fi tt ing arbitrarily oriented
objects, yet their representation is still quite simple.

12.3.4.5. Discrete Oriented Polytopes (DOP)

A discrete oriented polytope (DOP) is a more-general case of the AABB and
OBB. It is a convex polytope that approximates the shape of an object. A DOP
can be constructed by taking a number of planes at infi nity and sliding them
along their normal vectors until they come into contact with the object whose
shape is to be approximated. An AABB is a 6-DOP in which the plane normals
are taken parallel to the coordinate axes. An OBB is also a 6-DOP in which
the plane normals are parallel to the object’s natural principal axes. A k-DOP
is constructed from an arbitrary number of planes k. A common method of
constructing a DOP is to start with an OBB for the object in question and then
bevel the edges and/or corners at 45 degrees with additional planes in an at-
tempt to yield a tighter fi t. An example of a k-DOP is shown in Figure 12.5.

y

x

y

x

Figure 12.4. An AABB is only a good approximation to a box-shaped object when the object’s
principal axes are roughly aligned with the coorindate system’s axes.

Figure 12.5. An OBB that has been beveled on all eight corners is known as a 14-DOP.

611

12.3.4.6. Arbitrary Convex Volumes

Most collision engines permit arbitrary convex volumes to be constructed by
a 3D artist in a package like Maya. The artist builds the shape out of polygons
(triangles or quads). An off -line tool analyzes the triangles to ensure that they
actually do form a convex polyhedron. If the shape passes the convexity test,
its triangles are converted into a collection of planes (essentially a k-DOP), rep-
resented by k plane equations, or k points and k normal vectors. (If it is found
to be non-convex, it can still be represented by a polygon soup—described in
the next section.) This approach is depicted in Figure 12.6.

Convex volumes are more expensive to intersection-test than the simpler
geometric primitives we’ve discussed thus far. However, as we’ll see in Sec-
tion 12.3.5.5, certain highly effi cient intersection-fi nding algorithms such as
GJK are applicable to these shapes because they are convex.

12.3.4.7. Poly Soup

Some collision systems also support totally arbitrary, non-convex shapes.
These are usually constructed out of triangles or other simple polygons. For

Figure 12.6. An arbitrary convex volume can be represented by a collection of intersecting
planes.

Figure 12.7. A poly soup is often used to model complex static surfaces such as terrain or
buildings.

12.3. The Collision Detection System

612 12. Collision and Rigid Body Dynamics

this reason, this type of shape is oft en called a polygon soup , or poly soup for
short. Poly soups are oft en used to model complex static geometry, such as
terrain and buildings (Figure 12.7).

As you might imagine, detecting collisions with a poly soup is the most
expensive kind of collision test. In eff ect, the collision engine must test every
individual triangle, and it must also properly handle spurious intersections
with triangle edges that are shared between adjacent triangles. As a result,
most games try to limit the use of poly soup shapes to objects that will not take
part in the dynamics simulation.

Does a Poly Soup Have an Inside?

Unlike convex and simple shapes, a poly soup does not necessarily represent
a volume—it can represent an open surface as well. Poly soup shapes oft en
don’t include enough information to allow the collision system to diff erenti-
ate between a closed volume and an open surface. This can make it diffi cult to
know in which direction to push an object that is interpenetrating a poly soup
in order to bring the two objects out of collision.

Thankfully, this is by no means an intractable problem. Each triangle in a
poly soup has a front and a back, as defi ned by the winding order of its verti-
ces. Therefore, it is possible to carefully construct a poly soup shape so that all
of the polygons’ vertex winding orders are consistent (i.e. adjacent triangles
always “face” in the same direction). This gives the entire poly soup a notion
of “front” and “back.” If we also store information about whether a given poly
soup shape is open or closed (presuming that this fact can be ascertained by
off -line tools), then for closed shapes, we can interpret “front” and “back” to
mean “outside” and “inside” (or vice-versa, depending on the conventions
used when constructing the poly soup).

We can also “fake” an inside and outside for certain kinds of open poly
soup shapes (i.e., surfaces). For example, if the terrain in our game is repre-
sented by an open poly soup, then we can decide arbitrarily that the front
of the surface always points away from the Earth. This implies that “front”
should always correspond to “outside.” Practically speaking, to make this
work, we would probably need to customize the collision engine in some way
in order to make it aware of our particular choice of conventions.

12.3.4.8. Compound Shapes

 Some objects that cannot be adequately approximated by a single shape can
be approximated well by a collection of shapes. For example, a chair might be
modeled out of two boxes—one for the back of the chair and one enclosing the
seat and all four legs. This is shown in Figure 12.8.

613

A compound shape can oft en be a more-effi cient alternative to a poly
soup for modeling non-convex objects; two or more convex volumes can oft en
out-perform a single poly soup shape. What’s more, some collision systems
can take advantage of the convex bounding volume of the compound shape as
a whole when testing for collisions. In Havok, this is called midphase collision
detection. As the example in Figure 12.9 shows, the collision system fi rst tests
the convex bounding volumes of the two compound shapes. If they do not
intersect, the system needn’t test the subshapes for collisions at all.

12.3.5. Collision Testing and Analytical Geometry

 A collision system makes use of analytical geometry —mathematical descrip-
tions of three-dimensional volumes and surfaces—in order to detect inter-
sections between shapes computationally. See htt p://en.wikipedia.org/wiki/
Analytic_geometry for more details on this profound and broad area of re-
search. In this section, we’ll briefl y introduce the concepts behind analytical
geometry, show a few common examples, and then discuss the generalized
GJK intersection testing algorithm for arbitrary convex polyhedra.

Figure 12.8. A chair can be modeled using a pair of interconnected box shapes.

B2
B3

B1

B4

A1

A2

Sphere A
Sphere B

A1
A2

B1
B2
B3
B4

Bounding Volume
Hierarchies:

Sphere A

Sphere B

Figure 12.9. A collision system need only test the subshapes of a pair of compound shapes
when their convex bounding volumes (in this case, Sphere A and Sphere B) are found to be
intersecting.

12.3. The Collision Detection System

614 12. Collision and Rigid Body Dynamics

12.3.5.1. Point versus Sphere

 We can determine whether a point p lies within a sphere by simply forming
the separation vector s between the point and the sphere’s center c and then
checking its length. If it is greater than the radius of the sphere r, then the
point lies outside the sphere; otherwise, it lies inside:

;
if , then is inside.r

= −

≤

s c p
s p

12.3.5.2. Sphere versus Sphere

 Determining if two spheres intersect is almost as simple as testing a point
against a sphere. Again, we form a vector s connecting the center points of the
two spheres. We take its length, and compare it with the sum of the radii of the
two spheres. If the length of the separating vector is less than or equal to the
sum of the radii, the spheres intersect; otherwise, they do not:

1 2

1 2

;
if (), then spheres intersect.r r

= −

≤ +

s c c
s (12.1)

To avoid the square root operation inherent in calculating the length of vec-
tor s, we can simply square the entire equation. So Equation (12.1) becomes

1 2

2

2 2
1 2

;

;

if () , then spheres intersect.r r

= −

= ⋅

≤ +

s c c

s s s

s

12.3.5.3. The Separating Axis Theorem

Most collision detection systems make heavy use of a theorem known as
the separating axis theorem (htt p://en.wikipedia.org/wiki/Separating_axis_
theorem). It states that if an axis can be found along which the projection of
two convex shapes do not overlap, then we can be certain that the two shapes
do not intersect at all. If such an axis does not exist and the shapes are convex,
then we know for certain that they do intersect. (If the shapes are concave, then
they may not be interpenetrating despite the lack of a separating axis. This is
one reason why we tend to favor convex shapes in collision detection.)

This theorem is easiest to visualize in two dimensions. Intuitively, it says
that if a line can be found, such that object A is entirely on one side of the line
and object B is entirely on the other side, then objects A and B do not overlap.
Such a line is called a separating line, and it is always perpendicular to the sepa-
rating axis. So once we’ve found a separating line, it’s a lot easier to convince
ourselves that the theory is in fact correct by looking at the projections of our
shapes onto the axis that is perpendicular to the separating line.

615

The projection of a two-dimensional convex shape onto an axis acts like
the shadow that the object would leave on a thin wire. It is always a line seg-
ment, lying on the axis, that represents the maximum extents of the object in
the direction of the axis. We can also think of a projection as a minimum and
maximum coordinate along the axis, which we can write as the fully closed
interval [minc , maxc]. As you can see in Figure 12.10, when a separating line ex-
ists between two shapes, their projections do not overlap along the separating
axis. However, the projections may overlap along other, non-separating axes.

In three dimensions, the separating line becomes a separating plane, but
the separating axis is still an axis (i.e., an infi nite line). Again, the projection of
a three-dimensional convex shape onto an axis is a line segment, which we can
represent by the fully-closed interval [minc , maxc].

Some types of shapes have properties that make the potential separating
axes obvious. To detect intersections between two such shapes A and B, we can
project the shapes onto each potential separating axis in turn and then check
whether or not the two projection intervals, [min

Ac , max
Ac] and [min

Bc , max
Bc], are dis-

joint (i.e., do not overlap). In math terms, the intervals are disjoint if max
Ac < min

Bc
or if max

Bc < min
Ac . If the projection intervals along one of the potential separating

axes are disjoint, then we’ve found a separating axis, and we know the two
shapes do not intersect.

One example of this principle in action is the sphere-versus-sphere test.
If two spheres do not intersect, then the axis parallel to the line segment join-
ing the spheres’ center points will always be a valid separating axis (although
other separating axes may exist, depending on how far apart the two spheres
are). To visualize this, consider the limit when the two spheres are just about
to touch but have not yet come into contact. In that case, the only separating

A

B

Non-Separating Axis

Separating Axis

Separating
Line/Plane

Projection of A
Projection of B

A

B

Figure 12.10. The projections of two shapes onto a separating axis are always two disjoint
line segments. The projections of these same shapes onto a non-separating axis are not
necessarily disjoint. If no separating axis exists, the shapes intersect.

12.3. The Collision Detection System

616 12. Collision and Rigid Body Dynamics

axis is the one parallel to the center-to-center line segment. As the spheres
move apart, we can rotate the separating axis more and more in either direc-
tion. This is shown in Figure 12.11.

12.3.5.4. AABB versus AABB

 To determine whether two AABBs are intersecting, we can again apply the
separating axis theorem. The fact that the faces of both AABBs are guaranteed
to lie parallel to a common set of coordinate axes tells us that if a separating
axis exists, it will be one of these three coordinate axes.

So, to test for intersections between two AABBs, which we’ll call A and B,
we merely inspect the minimum and maximum coordinates of the two boxes
along each axis independently. Along the x-axis, we have the two intervals
[min
Ax , max

Ax] and [min
Bx , max

Bx], and we have corresponding intervals for the y- and
z-axes. If the intervals overlap along all three axes, then the two AABBs are in-
tersecting—in all other cases, they are not. Examples of intersecting and non-
intersecting AABBs are shown in Figure 12.12 (simplifi ed to two dimensions
for the purposes of illustration). For an in-depth discussion of AABB collision,
see htt p://www.gamasutra.com/features/20000203/lander_01.htm.

Separating

Line/Plane

Separating Axis Many

Separating Axes

Many

Separating

Lines/Planes

Figure 12.11. When two spheres are an infi nitesimal distance apart, the only separating axis
lies parallel to the line segment formed by the two spheres’ center points.

y

x

y

x

Figure 12.12. A two-dimensional example of intersecting and non-intersecting AABBs. Notice
that even though the second pair of AABBs are intersecting along the x-axis, they are not
intersecting along the y-axis.

http://www.gamasutra.com/features/20000203/lander_01.htm

617

12.3.5.5. Detecting Convex Collisions: The GJK Algorithm

A very effi cient algorithm exists for detecting intersections between arbitrary
convex polytopes (i.e. convex polygons in two dimensions or convex polyhe-
dra in three dimensions). It is known as the GJK algorithm, named aft er its
inventors, E. G. Gilbert, D. W. Johnson, and S. S. Keerthi of the University
of Michigan. Many papers have been writt en on the algorithm and its vari-
ants, including the original paper (htt p://ieeexplore.ieee.org/xpl/freeabs_all.
jsp?&arnumber=2083), an excellent SIGGRAPH PowerPoint presentation by
Christer Ericson (htt p://realtimecollisiondetection.net/pubs/SIGGRAPH04_
Ericson_the_GJK_algorithm.ppt), and another great PowerPoint presentation
by Gino van den Bergen (www.laas.fr/~nic/MOVIE/Workshop/Slides/Gino.
vander.Bergen.ppt). However, the easiest-to-understand (and most entertain-
ing) description of the algorithm is probably Casey Muratori’s instructional
video entitled, “Implementing GJK,” available online at htt p://mollyrocket.
com/353. Because these descriptions are so good, I’ll just give you a feel for the
essence of the algorithm here and then direct you to the Molly Rocket website
and the other references cited above for additional details.

The GJK algorithm relies on a geometric operation known as the Minkows-
ki diff erence . This fancy-sounding operation is really quite simple: We take
every point that lies within shape B and subtract it pairwise from every point
inside shape A. The resulting set of points { (Ai – Bj) } is the Minkowski dif-
ference.

The useful thing about the Minkowski diff erence is that, when applied
to two convex shapes, it will contain the origin if and only if those two shapes
intersect. Proof of this statement is a bit beyond our scope, but we can intuit
why it is true by remembering that when we say two shapes A and B intersect,
we really mean that there are points within A that are also within B. During the
process of subtracting every point in B from every point in A, we would ex-
pect to eventually hit one of those shared points that lies within both shapes.
A point minus itself is all zeros, so the Minkowski diff erence will contain the
origin if (and only if) sphere A and sphere B have points in common. This is
illustrated in Figure 12.13.

The Minkowski diff erence of two convex shapes is itself a convex shape.
All we care about is the convex hull of the Minkowski diff erence, not all of the
interior points. The basic procedure of GJK is to try to fi nd a tetrahedron (i.e.,
a four-sided shape made out of triangles) that lies on the convex hull of the
Minkwoski diff erence and that encloses the origin. If one can be found, then
the shapes intersect; if one cannot be found, then they don’t.

A tetrahedron is just one case of a geometrical object known as a simplex .
But don’t let that name scare you—a simplex is just a collection of points. A

12.3. The Collision Detection System

http://www.laas.fr/~nic/MOVIE/Workshop/Slides/Gino.vander.Bergen.ppt
http://www.laas.fr/~nic/MOVIE/Workshop/Slides/Gino.vander.Bergen.ppt

618 12. Collision and Rigid Body Dynamics

single-point simplex is a point, a two-point simplex is a line segment, a three-
point simplex is a triangle, and a four-point simplex is a tetrahedron (see Fig-
ure 12.14).

GJK is an iterative algorithm that starts with a one-point simplex lying
anywhere within the Minkowski diff erence hull. It then att empts to build
higher-order simplexes that might potentially contain the origin. During each
iteration of the loop, we take a look at the simplex we currently have and
determine in which direction the origin lies relative to it. We then fi nd a sup-
porting vertex of the Minkowski diff erence in that direction—i.e., the vertex
of the convex hull that is closest to the origin in the direction we’re currently
going. We add that new point to the simplex, creating a higher-order simplex
(i.e., a point becomes a line segment, a line segment becomes a triangle, and
a triangle becomes a tetrahedron). If the addition of this new point causes the
simplex to surround the origin, then we’re done—we know the two shapes
intersect. On the other hand, if we are unable to fi nd a supporting vertex that
is closer to the origin than the current simplex, then we know that we can
never get there, which implies that the two shapes do not intersect. This idea
is illustrated in Figure 12.15.

Contains the Origin

y

x
A – B

Does not Contain
the Origin

y

A – B

A

B

A

B

x

Figure 12.13. The Minkowski difference of two intersecting convex shapes contains the origin,
but the Minkowski difference of two non-intersecting shapes does not.

Line SegmentPoint Triangle Tetrahedron

Figure 12.14. Simplexes containing one, two, three, and four points.

619

To truly understand the GJK algorithm, you’ll need to check out the pa-
pers and video I refernce above. But hopefully this description will whet your
appetite for deeper investigation. Or, at the very least, you can impress your
friends by dropping the name “GJK” at parties.

12.3.5.6. Other Shape-Shape Combinations

We won’t cover any of the other shape-shape intersection combinations here,
as they are covered well in other texts such as [12], [41], and [9]. The key point
to recognize here, however, is that the number of shape-shape combinations is
very large. In fact, for N shape types, the number of pairwise tests required
is O(N2). Much of the complexity of a collision engine arises because of the
sheer number of intersection cases it must handle. This is one reason why
the authors of collision engines usually try to limit the number of primitive
types—doing so drastically reduces the number of cases the collision detector
must handle. (This is also why GJK is popular—it handles collision detection
between all convex shape types in one fell swoop. The only thing that diff ers
from shape type to shape type is the support function used in the algorithm.)

There’s also the practical matt er of how to implement the code that se-
lects the appropriate collision-testing function given two arbitrary shapes that
are to be tested. Many collision engines use a double dispatch method (htt p://
en.wikipedia.org/wiki/Double_dispatch). In single dispatch (i.e., virtual func-
tions), the type of a single object is used to determine which concrete imple-
mentation of a particular abstract function should be called at runtime. Dou-
ble dispatch extends the virtual function concept to two object types. It can
be implemented via a two-dimensional function look-up table keyed by the
types of the two objects being tested. It can also be implemented by arrang-
ing for a virtual function based on the type of object A to call a second virtual
function based on the type of object B.

Let’s take a look at a real-world example. Havok uses objects known as
collision agents (classes derived from hkCollisionAgent) to handle specif-

New Point

y

x

New Point

y

x

Search
Direction

Search
Direction

Figure 12.15. In the GJK algorithm, if adding a point to the current simplex creates a shape that
contains the origin, we know the shapes intersect; if there is no supporting vertex that will
bring the simplex any closer to the origin, then the shapes do not intersect.

12.3. The Collision Detection System

620 12. Collision and Rigid Body Dynamics

ic intersection test cases. Concrete agent classes include hkpSphereSphere
Agent, hkpSphereCapsuleAgent, hkpGskConvexConvexAgent, and so on.
The agent types are referenced by what amounts to a two-dimensional dis-
patch table, managed by the class hkpCollisionDispatcher. As you’d ex-
pect, the dispatcher’s job is to effi ciently look up the appropriate agent given
a pair of collidables that are to be collision-tested and then call it, passing the
two collidables as arguments.

12.3.5.7. Detecting Collisions Between Moving Bodies

 Thus far, we’ve considered only static intersection tests between stationary ob-
jects. When objects move, this introduces some additional complexity. Motion
in games is usually simulated in discrete time steps. So one simple approach is
to treat the positions and orientations of each rigid body as stationary at each
time step and use static intersection tests on each “snapshot” of the collision
world. This technique works as long as objects aren’t moving too fast relative
to their sizes. In fact, it works so well that many collision/physics engines,
including Havok, use this approach by default.

However, this technique breaks down for small, fast-moving objects.
Imagine an object that is moving so fast that it covers a distance larger than
its own size (measured in the direction of travel) between time steps. If we
were to overlay two consecutive snapshots of the collision world, we’d notice
that there is now a gap between the fast-moving object’s images in the two
snapshots. If another object happens to lie within this gap, we’ll miss the colli-
sion with it entirely. This problem, illustrated in Figure 12.16, is known as the
“bullet through paper” problem, also known as “tunneling.” The following
sections describe a number of common ways to overcome this problem.

Figure 12.16. A small, fast-moving object can leave gaps in its motion path between consecutive
snapshots of the collision world, meaning that collisions might be missed entirely.

Swept Shapes

One way to avoid tunneling is to make use of swept shapes . A swept shape is
a new shape formed by the motion of a shape from one point to another over
time. For example, a swept sphere is a capsule, and a swept triangle is a trian-
gular prism (see Figure 12.17).

621

Rather than testing static snapshots of the collision world for intersec-
tions, we can test the swept shapes formed by moving the shapes from their
positions and orientations in the previous snapshot to their positions and ori-
entations in the current snapshot. This approach amounts to linearly interpo-
lating the motion of the collidables between snapshots, because we generally
sweep the shapes along line segments from snapshot to snapshot.

Of course, linear interpolation may not be a good approximation of the
motion of a fast-moving collidable. If the collidable is following a curved path,
then theoretically we should sweep its shape along that curved path. Unfortu-
nately, a convex shape that has been swept along a curve is not itself convex,
so this can make our collision tests much more complex and computationally
intensive.

In addition, if the convex shape we are sweeping is rotating, the resulting
swept shape is not necessarily convex, even when it is swept along a line seg-
ment. As Figure 12.18 shows, we can always form a convex shape by linearly
extrapolating the extreme features of the shapes from the previous and cur-
rent snapshots—but the resulting convex shape is not necessarily an accurate
representation of what the shape really would have done over the time step.
Put another way, a linear interpolation is not appropriate in general for ro-
tating shapes. So unless our shapes are not permitt ed to rotate, intersection

Figure 12.17. A swept sphere is a capsule; a swept triangle is a triangular prism.

Figure 12.18. A rotating object swept along a line segment does not necessarily generate a
convex shape (left). A linear interpolation of the motion does form a convex shape (right), but
it can be a fairly inaccurate approximation of what actually happened during the time step.

12.3. The Collision Detection System

622 12. Collision and Rigid Body Dynamics

testing of swept shapes becomes much more complex and computationally
intensive than its static snapshot-based counterpart.

Swept shapes can be a useful technique for ensuring that collisions are
not missed between static snapshots of the collision world state. However, the
results are generally inaccurate when linearly interpolating curved paths or
rotating collidables, so more-detailed techniques may be required depending
on the needs of the game.

Continuous Collision Detection (CCD)

Another way to deal with the tunneling problem is to employ a technique
known as continuous collision detection (CCD). The goal of CCD is to fi nd the
earliest time of impact (TOI) between two moving objects over a given time in-
terval.

CCD algorithms are generally iterative in nature. For each collidable, we
maintain both its position and orientation at the previous time step and its
position and orientation at the current time. This information can be used
to linearly interpolate the position and rotation independently, yielding an
approximation of the collidable’s transform at any time between the previ-
ous and current time steps. The algorithm then searches for the earliest TOI
along the motion path. A number of search algorithms are commonly used,
including Brian Mirtich’s conservative advancement method, performing a ray
cast on the Minkowski sum, or considering the minimum TOI of individual
feature pairs. Erwin Coumans of Sony Computer Entertainment describes
some of these algorithms in htt p://www.continuousphysics.com/BulletCon-
tinuousCollisionDetection.pdf along with his own novel variation on the con-
servative advancement approach.

12.3.6. Performance Optimizations

Collision detection is a CPU-intensive task for two reasons:

The calculations required to determine whether two shapes intersect are 1.
themselves non-trivial.

Most game worlds contain a large number of objects, and the number of in-2.
tersection tests required grows rapidly as the number of objects increases.

To detect intersections between n objects, the brute-force technique would
be to test every possible pair of objects, yielding an O(n2) algorithm. However,
much more effi cient algorithms are used in practice. Collision engines typically
employ some form of spatial hashing (htt p://research.microsoft .com/~hoppe/
perfecthash.pdf), spatial subdivision, or hierarchical bounding volumes in or-
der to reduce the number of intersection tests that must be performed.

http://www.continuousphysics.com/BulletCon-tinuousCollisionDetection.pdf
http://www.continuousphysics.com/BulletCon-tinuousCollisionDetection.pdf
http://www.continuousphysics.com/BulletCon-tinuousCollisionDetection.pdf

623

12.3.6.1. Temporal Coherency

One common optimization technique is to take advantage of temporal coher-
ency , also known as frame-to-frame coherency. When collidables are moving at
reasonable speeds, their positions and orientations are usually quite similar
from time step to time step. We can oft en avoid recalculating certain kinds
of information every frame by caching the results across multiple time steps.
For example, in Havok, collision agents (hkpCollisionAgent) are usually
persistent between frames, allowing them to reuse calculations from previous
time steps as long as the motion of the collidables in question hasn’t invali-
dated those calculations.

12.3.6.2. Spatial Partitioning

The basic idea of spatial partitioning is to greatly reduce the number of collid-
ables that need to be checked for intersection by dividing space into a number
of smaller regions. If we can determine (in an inexpensive manner) that a pair
of collidables do not occupy the same region, then we needn’t perform more-
detailed intersection tests on them.

Various hierarchical partitioning schemes, such as octrees , binary space
partitioning (BSP) trees , kd-trees , or sphere trees , can be used to subdivide
space for the purposes of collision detection optimization. These trees subdi-
vide space in diff erent ways, but they all do so in a hierarchical fashion, start-
ing with a gross subdivision at the root of the tree and further subdividing
each region until suffi ciently fi ne-grained regions have been obtained. The
tree can then be walked in order to fi nd and test groups of potentially collid-
ing objects for actual intersections. Because the tree partitions space, we know
that when we traverse down one branch of the tree, the objects in that branch
cannot be colliding with objects in other sibling branches.

12.3.6.3. Broad Phase, Midphase, and Narrow Phase

Havok uses a three-tiered approach to prune the set of collidables that need to
be tested for collisions during each time step.

 First, gross AABB tests are used to determine which collidables are po-
tentially intersecting. This is known as broad phase collision detection.

 Second, the coarse bounding volumes of compound shapes are tested.
This is known as midphase collision detection. For example, in a com-
pound shape composed of three spheres, the bounding volume might
be a fourth, larger sphere that encloses the other spheres. A compound
shape may contain other compound shapes, so in general a compound
collidable has a bounding volume hierarchy. The midphase traverses
this hierarchy in search of subshapes that are potentially intersecting.

12.3. The Collision Detection System

624 12. Collision and Rigid Body Dynamics

 Finally, the collidables’ individual primitives are tested for intersection.
This is known as narrow phase collision detection.

The Sweep and Prune Algorithm

In all of the major collision/physics engines (e.g., Havok, ODE, PhysX), broad
phase collision detection employs an algorithm known as sweep and prune
(htt p://en.wikipedia.org/wiki/Sweep_and_prune). The basic idea is to sort
the minimum and maximum dimensions of the collidables’ AABBs along the
three principal axes, and then check for overlapping AABBs by traversing
the sorted lists. Sweep and prune algorithms can make use of frame-to-frame
coherency (see Section 12.3.6.1) to reduce an O(n log n) sort operation to an
expected O(n) running time. Frame coherency can also aid in the updating of
AABBs when objects rotate.

12.3.7. Collision Queries

Another responsibility of the collision detection system is to answer hypo-
thetical questions about the collision volumes in the game world. Examples
include the following:

 If a bullet travels from the player’s weapon in a given direction, what is
the fi rst target it will hit, if any?

 Can a vehicle move from point A to point B without striking anything
along the way?

 Find all enemy objects within a given radius of a character.

In general, such operations are known as collision queries .
The most common kind of query is a collision cast, sometimes just called a

cast. (The terms trace and probe are other common synonyms for “cast.”) A cast
determines what, if anything, a hypothetical object would hit if it were to be
placed into the collision world and moved along a ray or line segment. Casts
are diff erent from regular collision detection operations because the entity be-
ing cast is not really in the collision world—it cannot aff ect the other objects
in the world in any way. This is why we say that a collision cast answers hypo-
thetical questions about the collidables in the world.

12.3.7.1. Ray Casting

The simplest type of collision cast is a ray cast , although this name is actually a
bit of a misnomer. What we’re really casting is a directed line segment —in other
words, our casts always have a start point (p0) and an end point (p1). (Most
collision systems do not support infi nite rays, due to the parametric formula-
tion used—see below.) The cast line segment is tested against the collidable

625

objects in the collision world. If it intersects any of them, the contact point or
points are returned.

Ray casting systems typically describe the line segment via its start point
p0 and a delta vector d that, when added to p0 , yields the end point p1. Any
point on this line segment can be found via the following parametric equation ,
where the parameter t is permitt ed to vary between zero and one:

 0() , [0, 1].t = + ∈p p dt t

Clearly, p0 = p(0) and p1 = p(1). In addition, any contact point along the seg-
ment can be uniquely described by specifying the value of the parameter t cor-
responding to the contact. Most ray casting APIs return their contact points as
“t values,” or they permit a contact point to be converted into its correspond-
ing t by making an additional function call.

Most collision detection systems are capable of returning the earliest con-
tact —i.e., the contact point that lies closest to p0 and corresponds to the small-
est value of t. Some systems are also capable of returning a complete list of all
collidables that were intersected by the ray or line segment. The information
returned for each contact typically includes the t value, some kind of unique
identifi er for the collidable entity that was hit, and possibly other information
such as the surface normal at the point of contact or other relevant properties
of the shape or surface that was struck. One possible contact point data struc-
ture is shown below.

struct RayCastContact
{
 F32 m_t; // the t value for this
 // contact

 U32 m_collidableId; // which collidable did we
 // hit?

 Vector m_normal; // surface normal at
 // contact pt.
 // other information...
};

Applications of Ray Casts

Ray casts are used heavily in games. For example, we might want to ask the
collision system whether character A has a direct line of sight to character B.
To determine this, we simply cast a directed line segment from the eyes of
character A to the chest of character B. If the ray hits character B, we know that
A can “see” B. But if the ray strikes some other object before reaching character
B, we know that the line of sight is being blocked by that object. Ray casts

12.3. The Collision Detection System

626 12. Collision and Rigid Body Dynamics

are used by weapon systems (e.g., to determine bullet hits), player mechanics
(e.g., to determine whether or not there is solid ground beneath the character’s
feet), AI systems (e.g., line of sight checks, targeting , movement queries, etc.),
vehicle systems (e.g., to locate and snap the vehicle’s tires to the terrain), and
so on.

12.3.7.2. Shape Casting

Another common query involves asking the collision system how far an imag-
inary convex shape would be able to travel along a directed line segment be-
fore it hits something solid. This is known as a sphere cast when the volume
being cast is a sphere, or a shape cast in general. (Havok calls them linear casts.)
As with ray casts, a shape cast is usually described by specifying the start
point p0 , the distance to travel d, and of course the type, dimensions, and ori-
entation of the shape we wish to cast.

There are two cases to consider when casting a convex shape.

The cast shape is already interpenetrating or contacting at least one other 1.
collidable, preventing it from moving away from its starting location.

The cast shape is not intersecting with anything else at its starting loca-2.
tion, so it is free to move a non-zero distance along its path.

In the fi rst scenario, the collision system typically reports the contact (s)
between the cast shape and all of the collidables with which it is initially in-
terpenetrating. These contacts might be inside the cast shape or on its surface,
as shown in Figure 12.19.

In the second case, the shape can move a non-zero distance along the line
segment before striking something. Presuming that it hits something, it will
usually be a single collidable. However, it is possible for a cast shape to strike
more than one collidable simultaneously if its trajectory is just right. And of
course, if the impacted collidable is a non-convex poly soup, the cast shape

Contacts

d

Figure 12.19. A cast
sphere that starts in
penetration will be un-
able to move, and the
possibly many contact
points will lie inside the
cast shape in general.

Contact
Contacts

d

d

Figure 12.20. If the starting location of a cast shape is not interpenetrating anything, then
the shape will move a non-zero distance along its line segment, and its contacts (if any) will
always be on its surface.

627

may end up touching more than one part of the poly soup simultaneously. We
can safely say that no matt er what kind of convex shape is cast, it is possible
(albeit unlikely) for the cast to generate multiple contact points. The contacts
will always be on the surface of the cast shape in this case, never inside it (be-
cause we know that the cast shape was not interpenetrating anything when it
started its journey). This case is illustrated in Figure 12.20.

As with ray casts, some shape casting APIs report only the earliest contact (s)
experienced by the cast shape, while others allow the shape to continue along
its hypothetical path, returning all the contacts it experiences on its journey.
This is illustrated in Figure 12.21.

The contact information returned by a shape cast is necessarily a bit more
complex than it is for a ray cast. We cannot simply return one or more t val-
ues, because a t value only describes the location of the center point of the
shape along its path. It tells us nothing of where, on the surface or interior of
the shape, it came into contact with the impacted collidable. As a result, most
shape casting APIs return both a t value and the actual contact point, along
with other relevant information (such as which collidable was struck, the sur-
face normal at the contact point, etc.).

Unlike ray casting APIs, a shape casting system must always be capable of
reporting multiple contacts . This is because even if we only report the contact
with the earliest t value, the shape may have touched multiple distinct collid-
ables in the game world, or it may be touching a single non-convex collidable
at more than one point. As a result, collision systems usually return an array
or list of contact point data structures, each of which might look something
like this:

struct ShapeCastContact
{
 F32 m_t; // the t value for this
 // contact

 U32 m_collidableId; // which collidable did we
 // hit?

Contact 1

d

Contact 2Contact 3

Figure 12.21. A shape casting API might return all contacts instead of only the earliest con-
tact.

12.3. The Collision Detection System

628 12. Collision and Rigid Body Dynamics

 Point m_contactPoint; // location of actual
 // contact

 Vector m_normal; // surface normal at
 // contact pt.
 // other information...
};

Given a list of contact points, we oft en want to distinguish between the
groups of contact points for each distinct t value. For example, the earliest
contact is actually described by the group of contact points that all share the
minimum t in the list. It’s important to realize that collision systems may or
may not return their contact points sorted by t. If it does not, it’s almost always
a good idea to sort the results by t manually. This ensures that if one looks at
the fi rst contact point in the list, it will be guaranteed to be among the earliest
contact points along the shape’s path.

Applications of Shape Casts

Shape casts are extremely useful in games. Sphere casts can be used to de-
termine whether the virtual camera is in collision with objects in the game
world. Sphere or capsule casts are also commonly used to implement charac-
ter movement . For example, in order to slide the character forward on uneven
terrain, we can cast a sphere or capsule that lies between the character’s feet
in the direction of motion. We can adjust it up or down via a second cast, to
ensure that it remains in contact with the ground. If the sphere hits a very
short vertical obstruction, such as a street curb, it can “pop up” over the curb.
If the vertical obstruction is too tall, like a wall, the cast sphere can be slid
horizontally along the wall. The fi nal resting place of the cast sphere becomes
the character’s new location next frame.

12.3.7.3. Phantoms

Sometimes, games need to determine which collidable objects lie within
some specifi c volume in the game world. For example, we might want the
list of all enemies that are within a certain radius of the player character.
Havok supports a special kind of collidable object known as a phantom for
this purpose.

A phantom acts much like a shape cast whose distance vector d is zero.
At any moment, we can ask the phantom for a list of its contacts with other
collidables in the world. It returns this data in essentially the same format that
would be returned by a zero-distance shape cast.

However, unlike a shape cast, a phantom is persistent in the collision
world. This means that it can take full advantage of the temporal coherency
optimizations used by the collision engine when detecting collisions between

629

“real” collidables. In fact, the only diff erence between a phantom and a regu-
lar collidable is that it is “invisible” to all other collidables in the collision
world (and it does not take part in the dynamics simulation). This allows it to
answer hypothetical questions about what objects it would collide with were
it a “real” collidable, but it is guaranteed not to have any eff ect of the other
collidables—including other phantoms—in the collision world.

12.3.7.4. Other Types of Queries

Some collision engines support other kinds of queries in addition to casts. For
example, Havok supports closest point queries, which are used to fi nd the set
of points on other collidables that are closest to a given collidable in the colli-
sion world.

12.3.8. Collision Filtering

It is quite common for game developers to want to enable or disable collisions
between certain kinds of objects. For example, most objects are permitt ed to
pass through the surface of a body of water —we might employ a buoyancy
simulation to make them fl oat, or they might just sink to the bott om, but in
either case we do not want the water’s surface to appear solid. Most collision
engines allow contacts between collidables to be accepted or rejected based on
game-specifi c critiera. This is known as collision fi ltering .

12.3.8.1. Collision Masking and Layers

One common fi ltering approach is to categorize the objects in the world and
then use a look-up table to determine whether certain categories are permitt ed
to collide with one another or not. For example, in Havok, a collidable can be
a member of one (and only one) collision layer. The default collision fi lter in
Havok, represented by an instance of the class hkpGroupFilter, maintains
a 32-bit mask for each layer, each bit of which tells the system whether or not
that particular layer can collide with one of the other layers.

12.3.8.2. Collision Callbacks

Another fi ltering technique is to arrange for the collision library to invoke a
callback function whenever a collision is detected. The callback can inspect the
specifi cs of the collision and make the decision to either allow or reject the
collision based on suitable criteria. Havok also supports this kind of fi ltering.
When contact points are fi rst added to the world, the contactPointAdded()
callback is invoked. If the contact point is later determined to be valid (it may
not be if an earlier TOI contact was found), the contactPointConfi rmed()
callback is invoked. The application may reject contact points in these call-
backs if desired.

12.3. The Collision Detection System

630 12. Collision and Rigid Body Dynamics

12.3.8.3. Game-Specifi c Collision Materials

Game developers oft en need to categorize the collidable objects in the game
world, in part to control how they collide (as with collision fi ltering) and in
part to control other secondary eff ects, such as the sound that is made or the
particle eff ect that is generated when one type of object hits another. For ex-
ample, we might want to diff erentiate between wood, stone, metal, mud, wa-
ter, and human fl esh.

To accomplish this, many games implement a collision shape categoriza-
tion mechanism similar in many respects to the material system used in the
rendering engine. In fact, some game teams use the term collision material to
describe this categorization. The basic idea is to associate with each collid-
able surface a set of properties that defi nes how that particular surface should
behave from a physical and collision standpoint. Collision properties can in-
clude sound and particle eff ects, physical properties like coeffi cient of restitu-
tion or friction coeffi cients, collision fi ltering information, and whatever other
information the game might require.

For simple convex primitives, the collision properties are usually associ-
ated with the shape as a whole. For poly soup shapes, the properties might be
specifi ed on a per-triangle basis. Because of this latt er usage, we usually try
to keep the binding between the collision primitive and its collision material
as compact as possible. A typical approach is to bind collision primitives to
collision materials via an 8-, 16-, or 32-bit integer. This integer indexes into
a global array of data structures containing the detailed collision properties
themselves.

12.4. Rigid Body Dynamics

Many game engines include a physics system for the purposes of simulating the
motion of the objects in the virtual game world in a somewhat physically real-
istic way. Technically speaking, game physics engines are typically concerned
with a particular fi eld of physics known as mechanics . This is the study of how
forces aff ect the behavior of objects. In a game engine, we are particularly
concerned with the dynamics of objects—how they move over time. Until very
recently, game physics systems have been focused almost exclusively on a
specifi c subdiscipline of mechanics known as classical rigid body dynamics . This
name implies that in a game’s physics simulation, two important simplifying
assumptions are made:

 Classical (Newtonian) mechanics . The objects in the simulation are as-
sumed to obey Newton’s laws of motion . The objects are large enough

631

that there are no quantum eff ects, and their speeds are low enough that
there are no relativistic eff ects.

 Rigid bodies . All objects in the simulation are perfectly solid and cannot
be deformed. In other words, their shape is constant. This idea meshes
well with the assumptions made by the collision detection system. Fur-
thermore, the assumption of rigidity greatly simplifi es the mathematics
required to simulate the dynamics of solid objects.

Game physics engines are also capable of ensuring that the motions of
the rigid bodies in the game world conform to various constraints . The most
common constraint is that of non-penetration—in other words, objects aren’t
allowed to pass through one another. Hence the physics system att empts to
provide realistic collision responses whenever bodies are found to be interpen-
etrating. This is one of the primary reasons for the tight interconnection be-
tween the physics engine and the collision detection system.

Most physics systems also allow game developers to set up other kinds of
constraints in order to defi ne realistic interactions between physically simulat-
ed rigid bodies. These may include hinges, prismatic joints (sliders), ball joints,
wheels, “rag dolls” to emulate unconscious or dead characters, and so on.

The physics system usually shares the collision world data structure, and
in fact it usually drives the execution of the collision detection algorithm as
part of its time step update routine. There is typically a one-to-one mapping
between the rigid bodies in the dynamics simulation and the collidables man-
aged by the collision engine. For example, in Havok, an hkpRigidBody object
maintains a reference to one and only one hkpCollidable (although it is
possible to create a collidable that has no rigid body). In PhysX, the two con-
cepts are a bit more tightly integrated—an NxActor serves both as a collidable
object and as a rigid body for the purposes of the dynamics simulation. These
rigid bodies and their corresponding collidables are usually maintained in a
singleton data structure known as the collision/physics world, or sometimes just
the physics world .

The rigid bodies in the physics engine are typically distinct from the logi-
cal objects that make up the virtual world from a gameplay perspective. The
positions and orientations of game objects can be driven by the physics simu-
lation. To accomplish this, we query the physics engine every frame for the
transform of each rigid body, and apply it in some way to the transform of
the corresponding game object. It’s also possible for a game object’s motion,
as determined by some other engine system (such as the animation system or
the character control system) to drive the position and rotation of a rigid body
in the physics world. As mentioned in Section 12.3.1, a single logical game
object may be represented by one rigid body in the physics world, or by many.

12.4. Rigid Body Dynamics

632 12. Collision and Rigid Body Dynamics

A simple object like a rock, weapon or barrel, might correspond to one rigid
body. But an articulated character or a complex machine might be composed
of many interconnected rigid pieces.

The remainder of this chapter will be devoted to investigating how game
physics engines work. We’ll briefl y introduce the theory that underlies rigid
body dynamics simulations. Then we’ll investigate some of the most common
features of a game physics system and have a look at how a physics engine
might be integrated into a game.

12.4.1. Some Foundations

A great many excellent books, articles, and slide presentations have been
writt en on the topic of classical rigid body dynamics . A solid foundation in
analytical mechanics theory can be obtained from [15]. Even more relevant
to our discussion are texts like [34], [11], and [25], which have been writt en
specifi cally about the kind of physics simulations done by games. Other texts,
like [1], [9], and [28], include chapters on rigid body dynamics for games.
Chris Hecker wrote a series of helpful articles on the topic of game physics for
Game Developer Magazine; Chris has posted these and a variety of other useful
resources at htt p://chrishecker.com/Rigid_Body_Dynamics. An informative
slide presentation on dynamics simulation for games was produced by Rus-
sell Smith, the primary author of ODE; it is available at htt p://www.ode.org/
slides/parc/dynamics.pdf.

In this section, I’ll summarize the fundamental theoretical concepts that
underlie the majority of game physics engines. This will be a whirlwind tour
only, and by necessity I’ll have to omit some details. Once you’ve read this
chapter, I strongly encourage you to read at least a few of the additional re-
sources cited above.

12.4.1.1. Units

Most rigid body dynamics simulations operate in the MKS system of units . In
this system, distance is measured in meters (abbreviated “m”), mass is mea-
sured in kilograms (abbreviated “kg”), and time is measured in seconds (ab-
breviated “s”). Hence the name MKS.

You could confi gure your physics system to use other units if you wanted
to, but if you do this, you need to make sure everything in the simulation
is consistent. For example, constants like the acceleration due to gravity g,
which is measured in m/s2 in the MKS system, would have to be re-expressed
in whatever unit system you select. Most game teams just stick with MKS to
keep life simple.

http://www.ode.org/

633

12.4.1.2. Separability of Linear and Angular Dynamics

An unconstrained rigid body is one that can translate freely along all three
Cartesian axes and that can rotate freely about these three axes as well. We say
that such a body has six degrees of freedom (DOF).

It is perhaps somewhat surprising that the motion of an unconstrained
rigid body can be separated into two independent components:

 Linear dynamics . This is a description of the motion of the body when
we ignore all rotational eff ects. (We can use linear dynamics alone to
describe the motion of an idealized point mass—i.e., a mass that is infi ni-
tesimally small and cannot rotate.)

 Angular dynamics . This is a description of the rotational motion of the body.

As you can well imagine, this ability to separate the linear and angular com-
ponents of a rigid body’s motion is extremely helpful when analyzing or sim-
ulating its behavior. It means that we can calculate a body’s linear motion
without regard to rotation—as if it were an idealized point mass—and then
layer its angular motion on top in order to arrive at a complete description of
the body’s motion.

12.4.1.3. Center of Mass

For the purposes of linear dynamics, an unconstrained rigid body acts as
though all of its mass were concentrated at a single point known as the center
of mass (abbreviated CM, or sometimes COM). The center of mass is essen-
tially the balancing point of the body for all possible orientations. In other
words, the mass of a rigid body is distributed evenly around its center of mass
in all directions.

For a body with uniform density, the center of mass lies at the centroid of
the body. That is, if we were to divide the body up into N very small pieces,
add up the positions of all these pieces as a vector sum, and then divide by the
number of pieces, we’d end up with a prett y good approximation to the loca-
tion of the center of mass. If the body’s density is not uniform, the position of
each litt le piece would need to be weighted by that piece’s mass, meaning that
in general the center of mass is really a weighted average of the pieces’ positions.
So we have

,
i i i i

i i
CM

i
i

m m

mm
∀ ∀

∀

= =

∑ ∑

∑

r r
r

where the symbol r represents a radius vector or position vector —i.e., a vector
extending from the world space origin to the point in question. (These sums

12.4. Rigid Body Dynamics

634 12. Collision and Rigid Body Dynamics

become integrals in the limit as the sizes and masses of the litt le pieces ap-
proach zero.)

The center of mass always lies inside a convex body, although it may actu-
ally lie outside the body if it is concave. (For example, where would the center
of mass of the lett er “C” lie?)

12.4.2. Linear Dynamics

For the purposes of linear dynamics , the position of a rigid body can be fully
described by a position vector rCM that extends from the world space origin
to the center of mass of the body, as shown in Figure 12.22. Since we’re using
the MKS system, position is measured in meters (m). For the remainder of
this discussion, we’ll drop the CM subscripts, as it is understood that we are
describing the motion of the body’s center of mass.

y

x

rCM

Figure 12.22. For the purposes of linear dynamics, the position of a rigid body can be fully
described by the position of its center of mass.

12.4.2.1. Linear Velocity and Acceleration

The linear velocity of a rigid body defi nes the speed and direction in which the
body’s CM is moving. It is a vector quantity, typically measured in meters per
second (m/s). Velocity is the fi rst time derivative of position, so we can write

 v
r

r()
()

(),t
d t

dt
t= = �

where the dot over the vector r denotes taking the derivative with respect to
time. Diff erentiating a vector is the same as diff erentiating each component
independently, so

 v t
dr t

dt
r tx

x
x()

()
(),= = �

and so on for the y- and z-components.
Linear acceleration is the fi rst derivative of linear velocity with respect to

time, or the second derivative of the position of a body’s CM versus time. Accel-
eration is a vector quantity, usually denoted by the symbol a. So we can write

635

a
v

v

r
r

()
()

()

()
().

t
d t

dt
t

d t
dt

t

= =

= =

�

��
2

2

12.4.2.2. Force and Momentum

A force is defi ned as anything that causes an object with mass to accelerate or
decelerate. A force has both a magnitude and a direction in space, so all forces
are represented by vectors. A force is oft en denoted by the symbol F. When N
forces are applied to a rigid body, their net eff ect on the body’s linear motion
is found by simply adding up the force vectors:

 net
1

.
N

i
i=

=∑F F

 Newton’s famous Second Law states that force is proportional to accelera-
tion and mass:

 F a r() () ().t m t m t= = �� (12.2)

As Newton’s law implies, force is measured in units of kilogram-meters per
second squared (kg-m/s2). This unit is also called the Newton.

When we multiply a body’s linear velocity by its mass, the result is a
quantity known as linear momentum . It is customary to denote linear momen-
tum with the symbol p:

 () ().t m t=p v

When mass is constant, Equation (12.2) holds true. But if mass is not con-
stant, as would be the case for a rocket whose fuel is being gradually used up
and converted into energy, Equation (12.2) is not exactly correct. The proper
formulation is actually as follows:

 () (())

() ,
d t d m t

t
dt dt

= =
p v

F

which of course reduces to the more familiar F = ma when the mass is constant
and can be brought outside the derivative. Linear momentum is not of much
concern to us. However, the concept of momentum will become relevant when
we discuss angular dynamics.

12.4.3. Solving the Equations of Motion

 The central problem in rigid body dynamics is to solve for the motion of
the body, given a set of known forces acting on it. For linear dynamics, this

12.4. Rigid Body Dynamics

636 12. Collision and Rigid Body Dynamics

means fi nding v(t) and r(t) given knowledge of the net force Fnet(t) and pos-
sibly other information, such as the position and velocity at some previous
time. As we’ll see below, this amounts to solving a pair of ordinary diff er-
ential equations—one to fi nd v(t) given a(t) and the other to fi nd r(t) given
v(t).

12.4.3.1. Force as a Function

A force can be constant, or it can be a function of time as shown above. A force
can also be a function of the position of the body, its velocity, or any number
of other quantities. So in general, the expression for force should really be
writt en as follows:

F r v at t m t, (), (), (). ... ()=t (12.3)

This can be rewritt en in terms of the position vector and its fi rst and second
derivatives as follows:

 F r r rt t m t , (), () , (). ... � ��()= t

For example, the force exerted by a spring is proportional to how far it has
been stretched away from its natural resting position. In one dimension, with
the spring’s resting position at x = 0, we can write

 (), () (),F t x t k x t=−

where k is the spring constant , a measure of the spring’s stiff ness.
As another example, the damping force exerted by a mechanical viscous

damper (a so-called dashpot) is proportional to the velocity of the damper’s
piston. So in one dimension, we can write

(), () (),F t v t b v t=−

where b is a viscous damping coeffi cient.

12.4.3.2. Ordinary Differential Equations

In general, an ordinary diff erential equation (ODE) is an equation involving a
function of one independent variable and various derivatives of that function.
If our independent variable is time and our function is x(t), then an ODE is a
relation of the form

d x
dt

f x t
dx t

dt
d x t

dt
d x t

dt

n

n

n

n=
⎛

⎝

−

−, (),
()

,
()

, ,
()

 ...
2

2

1

1⎜⎜
⎞

⎠
⎟.t

Put another way, the nth derivative of x(t) is expressed as a function f whose
arguments can be time (t), position (x(t)), and any number of derivatives of
x(t) as long as those derivatives are of lower order than n.

637

As we saw in Equation (12.3), force is a function of time, position, and velocity
in general:

�� �r F r r() , (), () .t
m

t t= ()
1 t (12.18)

This clearly qualifi es as an ODE. We wish to solve this ODE in order to fi nd
v(t) and r(t).

12.4.3.3. Analytical Solutions

In some rare situations, the diff erential equations of motion can be solved ana-
lytically , meaning that a simple, closed-form function can be found that de-
scribes the body’s position for all possible values of time t. A common example
is the vertical motion of a projectile under the infl uence of a constant accelera-
tion due to gravity, a(t) = [0, g, 0], where g = –9.8 m/s2. In this case, the ODE
of motion boils down to

 ��y t g() .=

Integrating once yields

 �y t gt v() ,= + 0

where v0 is the vertical velocity at time t = 0. Integrating a second time yields
the familiar solution

 y t gt v t y() ,= + +1
2

2
0 0

where y0 is the initial vertical position of the object.
However, analytical solutions are almost never possible in game physics.

This is due in part to the fact that closed-form solutions to some diff erential
equations are simply not known. Moreover, a game is an interactive simula-
tion, so we cannot predict how the forces in a game will behave over time. This
makes it impossible to fi nd simple, closed-form expressions for the positions
and velocities of the objects in the game as functions of time.

12.4.4. Numerical Integration

For the reasons cited above, game physics engines turn to a technique known
as numerical integration . With this technique, we solve our diff erential equa-
tions in a time-stepped manner—using the solution from a previous time step
to arrive at the solution for the next time step. The duration of the time step is
usually taken to be (roughly) constant and is denoted by the symbol Δt . Given
that we know the body’s position and velocity at the current time t1 and that
the force is known as a function of time, position, and/or velocity, we wish to
fi nd the position and velocity at the next time step t2 = t1 + Δt. In other words,
given r(t1), v(t1), and F(t, r, v), the problem is to fi nd r(t2) and v(t2).

12.4. Rigid Body Dynamics

638 12. Collision and Rigid Body Dynamics

12.4.4.1. Explicit Euler

One of the simplest numerical solutions to an ODE is known as the explicit
Euler method. This is the intuitive approach oft en taken by new game program-
mers. Let’s assume for the moment that we already know the current velocity
and that we wish to solve the following ODE to fi nd the body’s position on
the next frame:

 v r() ().t = � t (12.4)

Using the explicit Euler method, we simply convert the velocity from meters
per second into meters per frame by multiplying by the time delta, and then
we add “one frame’s worth” of velocity onto the current position in order to
fi nd the new position on the next frame. This yields the following approxi-
mate solution to the ODE given by Equation (12.4):

 r r v() () () .t t2 1 1= + Δt t (12.5)

We can take an analogous approach to fi nd the body’s velocity next frame
given the net force acting this frame. Hence, the approximate explicit Euler
solution to the ODE

is as follows:

 (12.6)

Interpretations of Explicit Euler

What we’re really doing in Equation (12.5) is assuming that the velocity of the
body is constant during the time step. Therefore, we can use the current velocity
to predict the body’s position on the next frame. The change in position Δr be-
tween times t1 and t2 is hence Δr = v(t1) Δt. Graphically, if we imagine a plot of the
position of the body versus time, we are taking the slope of the function at time

Δr

Δt

t

r(t1)

rapprox(t2)

r(t2)

r(t)

t1 t2

slope

= v(t1)Δr
Δt

Figure 12.23. In the explicit Euler method, the slope of r(t) at time t1 is used to linearly
extrapolate from r(t1) to an estimate of the true value of r(t2).

a
F

v()
()

()t
t

m
t= =

net �

v v
F

() ()
()

.t
t

m
t2 1

1
= +

net
Δt

639

t1 (which is just v(t1)) and extrapolating it linearly to the next time step t2. As
we can see in Figure 12.23, linear extrapolation does not necessarily provide us
with a particularly good estimate of the true position at the next time step r(t2),
but it does work reasonably well as long as the velocity is roughly constant.

Figure 12.23 suggests another way to interpret the explicit Euler method—
as an approximation of a derivative . By defi nition, any derivative is the quo-
tient of two infi nitesimally small diff erences (in our case, dr/dt). The explicit
Euler method approximates this using the quotient of two fi nite diff erences . In
other words, dr becomes Δr and dt becomes Δt. This yields

d
dt t

t
t
t

t
t

r r

v
r r r r

≈

=
−

−
=

−

Δ

Δ

Δ

;

()
() () () ()

.1
2 1

2 1

2 1t t
t

which again simplifi es to Equation (12.5). This approximation is really only
valid when the velocity is constant over the time step. It is also valid in the
limit as Δt tends toward zero (at which point it becomes exactly right). Obvi-
ously, this same analysis can be applied to Equation (12.6) as well.

12.4.4.2. Properties of Numerical Methods

We’ve implied that the explicit Euler method is not particularly accurate. Let’s
pin this idea down more concretely. A numerical solution to an ordinary dif-
ferential equation actually has three important and interrelated properties:

 Convergence . As the time step Δt tends toward zero, does the approxi-
mate solution get closer and closer to the real solution?

 Order . Given a particular numerical approximation to the solution of an
ODE, how “bad” is the error? Errors in numerical ODE solutions are
typically proportional to some power of the time step duration Δt, so
they are oft en writt en using big “O” notation (e.g., O(Δt2)). We say that
a particular numerical method is of “order n” when its error term is
O(Δt(n + 1)).

 Stability . Does the numerical solution tend to “sett le down” over time?
If a numerical method adds energy into the system, object velocities will
eventually “explode,” and the system will become unstable. On the other
hand, if a numerical method tends to remove energy from the system, it
will have an overall damping eff ect, and the system will be stable.

The concept of order warrants a litt le more explanation. We usually mea-
sure the error of a numerical method by comparing its approximate equa-
tion with the infi nite Taylor series expansion of the exact solution to the ODE.
We then cancel terms by subtracting the two equations. The remaining Taylor

12.4. Rigid Body Dynamics

640 12. Collision and Rigid Body Dynamics

terms represent the error inherent in the method. For example, the explicit
Euler equation is

r r r() () () .t t2 1 1= + � Δt t

The infi nite Taylor series expansion of the exact solution is

 r r r r r() () () () ()t t t t2 1 1
1
2 1

2 1
6 1

3= + + + +� �� ��� Δ Δ Δt tt t

Therefore, the error is represented by all of the terms aft er the v Δt term, which
is of order O(Δt2) (because this term dwarfs the other higher-order terms):

E r r= + +

=

1
2 1

2 1
6 1

3

2

�� ���() () ...

().

t t

O t

 Δ Δ

Δ

t t

To make the error of a method explicit, we’ll oft en write its equation with the
error term added in big “O” notation at the end. For example, the explicit Eu-
ler method’s equation is most accurately writt en as follows:

We say that the explicit Euler method is an “order one” method because it
is accurate up to and including the Taylor series term involving Δt to the fi rst
power. In general, if a method’s error term is O(Δt(n + 1)), then it is said to be an
“order n” method.

12.4.4.3. Alternatives to Explicit Euler

The explicit Euler method sees quite a lot of use for simple integration tasks in
games, producing the best results when the velocity is nearly constant. How-
ever, it is not used in general-purpose dynamics simulations because of its high
error and poor stability. There are all sorts of other numerical methods for solv-
ing ODEs, including backward Euler (another fi rst-order method), midpoint
Euler (a second-order method), and the family of Runge-Kutt a methods. (The
fourth-order Runge-Kutt a, oft en abbreviated “RK4,” is particularly popular.)
We won’t describe these in any detail here, as you can fi nd voluminous infor-
mation about them online and in the literature. The Wikipedia page htt p://
en.wikipedia.org/wiki/Numerical_ordinary_diff erential_equations serves as
an excellent jumping-off point for learning these methods.

12.4.4.4. Verlet Integration

The numerical ODE method most oft en used in interactive games these
days is probably the Verlet method, so I’ll take a moment to describe it in
some detail. There are actually two variants of this method: regular Verlet
and the so-called velocity Verlet . I’ll present both methods here, but I’ll leave
the theory and deep explanations to the myriad papers and Web pages avail-

r r r() () () ().t t O t2 1 1
2= + +� Δ Δt t

641

able on the topic. (For a start, check out htt p://en.wikipedia.org/wiki/Verlet_
integration.)

The regular Verlet method is att ractive because it achieves a high order
(low error), is relatively simple and inexpensive to evaluate, and produces a
solution for position directly in terms of acceleration in one step (as opposed
to the two steps normally required to go from acceleration to velocity and then
from velocity to position). The formula is derived by adding two Taylor series
expansions, one going forward in time and one going backward in time:

 r r r r r() () () () () (t t t t t O t1 1 1
1
2 1

2 1
6 1

3+ = + + + +Δ Δ Δ Δ Δ� �� ���

44);t t t t

 r r r r r() () () () () (t t t t t O t1 1 1
1
2 1

2 1
6 1

3− = − + − +Δ Δ Δ Δ Δ� �� ���

44).t t t t

Adding these expressions causes the negative terms to cancel with the corre-
sponding positive ones. The result gives us the position at the next time step
in terms of the acceleration and the two (known) positions at the current and
previous time steps. This is the regular Verlet method:

 r r r a() () () () ().t t t t O t1 1 1 1
2 42+ = − − + +Δ Δ Δ Δ t t t

In terms of net force, the Verlet method becomes

 r r r
F

() () ()
()

().t t t
t

m
t O t1 1 1

1 2 42+ = − − + +Δ Δ Δ Δ
nett t

The velocity is conspicuously absent from this expression. However, it can
be found using the following somewhat inaccurate approximation (among
other alternatives):

 v
r r

()
() ()

().t
t t

t
O t1

1 1
+ =

+ −
+Δ

Δ

Δ
Δt

t

12.4.4.5. Velocity Verlet

The more commonly used velocity Verlet method is a four-step process in which
the time step is divided into two parts to facilitate the solution. Given that
a

F r v
()

(, (), ())
t

t t
m1

1 1 1
=

 t is known, we do the following:

 1. Calculate r r v a() () () () .t t t t1 1 1
1
2 1

2+ = + +Δ Δ Δ t t t

 2. Calculate v v a() () () .t t t1
1
2 1

1
2 1+ = +Δ Δ t t

 3. Determine a a
F r v

() ()
(, (), ())

.t t
t t

m1 2
2 2 2

+ = =Δ
 t t

 4. Calculate
1 1

1 1 12 2() () () .t +Δ = + Δ + +Δ Δv v a tt t t t t

Notice in the third step that the force function depends on the position
and velocity on the next time step, r(t2) and v(t2). We already calculated r(t2) in
step 1, so we have all the information we need as long as the force is not ve-

12.4. Rigid Body Dynamics

642 12. Collision and Rigid Body Dynamics

locity-dependent. If it is velocity-dependent, then we must approximate next
frame’s velocity, perhaps using the explicit Euler method.

12.4.5. Angular Dynamics in Two Dimensions

Up until now, we’ve focused on analyzing the linear motion of a body’s center
of mass (which acts as if it were a point mass). As I said earlier, an uncon-
strained rigid body will rotate about its center of mass. This means that we can
layer the angular motion of a body on top of the linear motion of its center of
mass in order to arrive at a complete description of the body’s overall motion.
The study of a body’s rotational motion in response to applied forces is called
angular dynamics .

In two dimensions, angular dynamics works almost identically to linear
dynamics. For each linear quantity, there’s an angular analog, and the math-
ematics works out quite neatly. So let’s investigate two-dimensional angular
dynamics fi rst. As we’ll see, when we extend the discussion into three dimen-
sions, things get a bit messier, but we’ll burn that bridge when we get to it!

12.4.5.1. Orientation and Angular Speed

In two dimensions, every rigid body can be treated as a thin sheet of mate-
rial. (Some physics texts refer to such a body as a plane lamina .) All linear mo-
tion occurs in the xy-plane, and all rotations occur about the z-axis. (Visualize
wooden puzzle pieces sliding about on an air hockey table.)

The orientation of a rigid body in 2D is fully described by an angle θ,
measured in radians relative to some agreed-upon zero rotation. For example,
we might specify that θ = 0 when a race car is facing directly down the posi-
tive x-axis in world space. This angle is of course a time-varying function, so
we denote it θ(t).

12.4.5.2. Angular Speed and Acceleration

Angular velocity measures the rate at which a body’s rotation angle chang-
es over time. In two dimensions, angular velocity is a scalar, more correctly
called angular speed , since the term “velocity” really only applies to vectors.
It is denoted by the scalar function ω(t) and measured in radians per second
(rad/s). Angular speed is the derivative of the orientation angle θ(t) with re-
spect to time:

 Angular: ω
θ

θ()
()

();t
d t

dt
t= = � Linear: v r

r()
()

().t
d t

dt
t= = �

And as we’d expect, angular acceleration , denoted α(t) and measured in
radians per second squared (rad/s2), is the rate of change of angular speed:

643

 Angular:
α

ω

ω θ

()
()

() ();

t
d t

dt

t

=

= =� �� t

 Linear:
a

v

v r

()
()

() ().

t
d t

dt

t

=

= =� �� t

12.4.5.3. Moment of Inertia

The rotational equivalent of mass is a quantity known as the moment of inertia .
Just as mass describes how easy or diffi cult it is to change the linear velocity
of a point mass, the moment of inertia measures how easy or diffi cult it is to
change the angular speed of a rigid body about a particular axis. If a body’s
mass is concentrated near an axis of rotation, it will be relatively easier to ro-
tate about that axis, and it will hence have a smaller moment of inertia than a
body whose mass is spread out away from that axis.

Since we’re focusing on two-dimensional angular dynamics right now,
the axis of rotation is always z, and a body’s moment of inertia is a simple
scalar value. Moment of inertia is usually denoted by the symbol I. We won’t
get into the details of how to calculate the moment of inertia here. For a full
derivation, see [15].

12.4.5.4. Torque

Until now, we’ve assumed that all forces are applied to the center of mass of a
rigid body. However, in general, forces can be applied at arbitrary points on a
body. If the line of action of a force passes through the body’s center of mass,
then the force will produce linear motion only, as we’ve already seen. Other-
wise, the force will introduce a rotational force known as a torque in addition
to the linear motion it normally causes. This is illustrated in Figure 12.24.

We can calculate torque using a cross product . First, we express the loca-
tion at which the force is applied as a vector r extending from the body’s center
of mass to the point of application of the force. (In other words, the vector r
is in body space , where the origin of body space is defi ned to be the center of

F1

F2

Figure 12.24. On the left, a force applied to a body’s CM produces purely linear motion. On
the right, a force applied off-center will give rise to a torque, producing rotational motion as
well as linear motion.

12.4. Rigid Body Dynamics

644 12. Collision and Rigid Body Dynamics

mass .) This is illustrated in Figure 12.25. The torque N caused by a force F ap-
plied at a location r is

 (12.7)

Equation (12.7) implies that torque increases as the force is applied farther
from the center of mass. This explains why a lever can help us to move a heavy
object. It also explains why a force applied directly through the center of mass
produces no torque and no rotation—the magnitude of the vector r is zero in
this case.

When two or more forces are applied to a rigid body, the torque vectors
produced by each one can be summed, just as we can sum forces. So in general
we are interested in the net torque, Nnet.

In two dimensions, the vectors r and F must both lie in the xy-plane, so
N will always be directed along the positive or negative z-axis. As such, we’ll
denote a two-dimensional torque via the scalar Nz , which is just the z-compo-
nent of the vector N.

Torque is related to angular acceleration and moment of inertia in much
the same way that force is related to linear acceleration and mass:

 Angular:
N I t

I t I t

z =

= =

α

θ

()

() ();�� ω�
 Linear:

F a

v r

=

= =

m t

m t m t

()

() ().� ��
 (12.8)

12.4.5.5. Solving the Angular Equations of Motion in Two Dimensions

For the two-dimensional case, we can solve the angular equations of motion
using exactly the same numerical integration techniques we applied to the lin-
ear dynamics problem. The pair of ODEs that we wish to solve is as follows:

 Angular:
N t I t

t

net

() ();

() ();

=

=

�

�

ω

ω θ t
 Linear:

F v

v r

net () ();

() (),

t m t

t

=

=

�

� t

and their approximate explicit Euler solutions are

F r

r sin θ

Figure 12.25. Torque is calculated by taking the cross product between a force’s point of
application in body space (i.e., relative to the center of mass) and the force vector. The
vectors are shown here in two dimensions for ease of illustration; if it could be drawn, the
torque vector would be directed into the page.

.= ×N r F

645

 Angular:
ω ω

θ θ ω

() ()
()

;

() () () ;

t
N t

I
t

t t

2 1
1

2 1 1

= +

= +

net

Δ

Δt

t

t
 Linear:

v v
F

r r v

() ()
()

;

() () () .

t
t

m
t

t t

2 1
1

2 1 1

= +

= +

net

Δ

Δ

t

t t

Of course, we could apply any of the other more-accurate numerical
methods as well, such as the velocity Verlet method (I’ve omitt ed the lin-
ear case here for compactness, but compare this to the steps given in Section
12.4.4.5):

 1. Calculate θ θ ω α() () () () .t t t t1 1 1
1
2 1

2+ = + +Δ Δ Δt t t

 2. Calculate ω ω α() () () .t t t1
1
2 1

1
2 1+ = +Δ Δt t

 3. Determine α α θ ω() () (, (), ()).t t I N t t1 2
1

2 2 2+ = = −Δ net t t

 4. Calculate ω ω α() () () .t t t t1 1
1
2

1
2 1+ = + + +Δ Δ Δ Δt t t

12.4.6. Angular Dynamics in Three Dimensions

 Angular dynamics in three dimensions is a somewhat more complex topic
than its two-dimensional counterpart, although the basic concepts are of
course very similar. In the following section, I’ll give a very brief overview of
how angular dynamics works in 3D, focusing primarily on the things that are
typically confusing to someone who is new to the topic. For further informa-
tion, check out Glenn Fiedler’s series of articles on the topic, available at htt p://
gaff erongames.wordpress.com/game-physics. Another helpful resource is the
paper entitled “An Introduction to Physically Based Modeling” by David Ba-
raff of the Robotics Institute at Carnegie Mellon University, available at htt p://
www-2.cs.cmu.edu/~baraff /sigcourse/notesd1.pdf.

12.4.6.1. The Inertia Tensor

A rigid body may have a very diff erent distribution of mass about the three
coordinate axes. As such, we should expect a body to have diff erent moments
of inertia about diff erent axes. For example, a long thin rod should be relative-
ly easy to make rotate about its long axis because all the mass is concentrated
very close to the axis of rotation. Likewise, the rod should be relatively more
diffi cult to make rotate about its short axis because its mass is spread out far-
ther from the axis. This is indeed the case, and it is why a fi gure skater spins
faster when she tucks her limbs in close to her body.

In three dimensions, the rotational mass of a rigid body is represented
by a 3 × 3 matrix known as its inertia tensor . It is usually represented by the
symbol I (as before, we won’t describe how to calculate the inertia tensor here;
see [15] for details):

12.4. Rigid Body Dynamics

646 12. Collision and Rigid Body Dynamics

 .
xx xy xz

yx yy yz

zx zy zz

I I I
I I I
I I I

⎡ ⎤
⎢ ⎥

=⎢ ⎥
⎢ ⎥⎣ ⎦

I

The elements lying along the diagonal of this matrix are the moments of
inertia of the body about its three principal axes, Ixx , Iyy , and Izz. The off -diago-
nal elements are called products of inertia . They are zero when the body is sym-
metrical about all three principal axes (as would be the case for a rectangular
box). When they are non-zero, they tend to produce physically realistic yet
somewhat unintuitive motions that the average game player would probably
think were “wrong” anyway. Therefore, the inertia tensor is oft en simplifi ed
down to the three-element vector [Ixx Iyy Izz] in game physics engines.

12.4.6.2. Orientation in Three Dimensions

In two dimensions, we know that the orientation of a rigid body can be de-
scribed by a single angle θ, which measures rotation about the z-axis (assum-
ing the motion is taking place in the xy-plane). In three dimensions, a body’s
orientation could be represented using three Euler angles [θx θy θz], each
representing the body’s rotation about one of the three Cartesian axes. How-
ever, as we saw in Chapter 4, Euler angles suff er from gimbal lock problems
and can be diffi cult to work with mathematically. Therefore, the orientation of
a body is more oft en represented using either a 3 × 3 matrix R or a unit quater-
nion q. We’ll use the quaternion form exclusively in this chapter.

Recall that a quaternion is a four-element vector whose x-, y-, and z-com-
ponents can be interpreted as a unit vector u lying along the axis of rotation,
scaled by the sine of the half angle and whose w component is the cosine of
the half angle:

() () 2 2

q [] []

sin cos .

x y z w wq q q q q

θ θ

= =

⎡ ⎤=⎣ ⎦

q

u

A body’s orientation is of course a function of time, so we should write it q(t).
Again, we need to select an arbitrary direction to be our zero rotation. For

example, we might say that by default, the front of every object will lie along
the positive z-axis in world space, with y up and x to the left . Any non-identity
quaternion will serve to rotate the object away from this canonical world space
orientation. The choice of the canonical orientation is arbitrary, but of course
it’s important to be consistent across all assets in the game.

12.4.6.3. Angular Velocity and Momentum in Three Dimensions

In three dimensions, angular velocity is a vector quantity, denoted by ω(t).
The angular velocity vector can be visualized as a unit-length vector u that

647

defi nes the axis of rotation, scaled by the two-dimensional angular velocity
ω θu u= � of the body about the u-axis. Hence,

 ω ω θ() () () () ().t t tu u= = u u�t t

In linear dynamics, we saw that if there are no forces acting on a body,
then the linear acceleration is zero, and linear velocity is constant. In two-
dimensional angular dynamics, this again holds true: If there are no torques
acting on a body in two dimensions, then the angular acceleration α is zero,
and the angular speed ω about the z-axis is constant.

Unfortunately, this is not the case in three dimensions. It turns out that
even when a rigid body is rotating in the absence of all forces, its angular
velocity vector ω(t) may not be constant because the axis of rotation can con-
tinually change direction. You can see this eff ect in action when you try to
spin a rectangular object, like a block of wood, in mid-air in front of you. If
you throw the block so that it is rotating about its shortest axis, it will spin in a
stable way. The orientation of the axis stays roughly constant. The same thing
happens if you try to spin the block about its longest axis. But if you try to spin
the block around its medium-sized axis, the rotation will be utt erly unstable.
The axis of rotation itself changes direction wildly as the object spins. This is
shown in Figure 12.26.

The fact that the angular velocity vector can change in the absence of
torques is another way of saying that angular velocity is not conserved. How-
ever, a related quantity called the angular momentum does remain constant
in the absence of forces and hence is conserved. Angular momentum is the
rotational equivalent of linear momentum:

 Angular: L I() ();t = tω Linear: () ().t m t=p v

Like the linear case, angular momentum L(t) is a three-element vector.
However, unlike the linear case, rotational mass (the inertia tensor) is not a
scalar but rather a 3 × 3 matrix. As such, the expression Iω is computed via a
matrix multiplication:

Figure 12.26. A rectangular object that is spun about its shortest or longest axis has a
constant angular velocity vector. However, when spun about its medium-sized axis, the
direction of the angular velocity vector changes wildly.

12.4. Rigid Body Dynamics

648 12. Collision and Rigid Body Dynamics

() ()
() () .
() ()

x xx xy xz x

y yx yy yz y

z zx zy zz z

L t I I I t
L t I I I t
L t I I I t

⎡ ⎤ ⎡ ⎤⎡ ⎤ω
⎢ ⎥ ⎢ ⎥⎢ ⎥

= ω⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ω⎣ ⎦ ⎣ ⎦⎣ ⎦

Because the angular velocity ω is not conserved, we do not treat it as
a primary quantity in our dynamics simulations the way we do the linear
velocity v. Instead, we treat angular momentum L as the primary quantity.
The angular velocity is a secondary quantity, determined only aft er we have
determined the value of L at each time step of the simulation.

12.4.6.4. Torque in Three Dimensions

In three dimensions, we still calculate torque as the cross product between
the radial position vector of the point of force application and the force vector
itself (N = r × F). Equation (12.8) still holds, but we always write it in terms of
the angular momentum because angular velocity is not a conserved quantity:

N I I I

L

= = = ()

=

 ()
()

()

()
.

t
d t

dt
d
dt

t

d t
dt

ωα ω

12.4.6.5. Solving the Equations of Angular Motion in Three Dimensions

When solving the equations of angular motion in three dimensions, we might
be tempted to take exactly the same approach we used for linear motion and
two-dimensional angular motion. We might guess that the diff erential equa-
tions of motion should be writt en

 A3D(?):
N Inet

() ();

() ();

t

t

=

=

�

�

ω t

ω tθ
 L:

F v

v r

net () ();

() (),

t m t

t

=

=

�

� t

and using the explicit Euler method, we might guess that the approximate
solutions to these ODEs would look something like this:

 A3D(?):
I N() () () ;

() () () ;

t t

t t

2 1
1

1

2 1 1

= +

= +

−

net

Δ

Δθ

ω

ω

ω t

tθ t
 L:

v v
F

r r v

() ()
()

;

() () () .

t
t

m
t

t t

2 1
1

2 1 1

= +

= +

net

Δ

Δ

t

t t

However, this is not actually correct. The diff erential equations of angular mo-
tion diff er from their linear and two-dimensional angular counterparts in two
important ways:

Instead of solving for the angular velocity 1. ω, we solve for the angular
momentum L directly. We then calculate the angular velocity vector as a
secondary quantity using I and L. We do this because angular momen-
tum is conserved , while angular velocity is not.

649

When solving for the orientation given the angular velocity, we have 2.
a problem: The angular velocity is a three-element vector, while the
orientation is a four-element quaternion. How can we write an ODE
relating a quaternion to a vector? The answer is that we cannot, at
least not directly. But what we can do is convert the angular velocity
vector into quaternion form and then apply a slightly odd-looking
equation that relates the orientation quaternion to the angular veloc-
ity quaternion.

It turns out that when we express a rigid body’s orientation as a quater-
nion, the derivative of this quaternion is related to the body’s angular velocity
vector in the following way. First, we construct an angular velocity quaternion.
This quaternion contains the three components of the angular velocity vector
in x, y, and z, with its w-component set to zero:

 =⎡⎣ ⎤⎦ω ω ωx y z 0ω

Now the diff erential equation relating the orientation quaternion to the angu-
lar velocity quaternion is (for reasons we won’t get into here) as follows:

d t
dt

t t
q()

q() () q().= =� 1
2 ω t

It’s important to remember here that ω(t) is the angular velocity quaternion as
described above and that the product ω(t)q(t) is a quaternion product (see Sec-
tion 4.4.2.1 for details).

So, we actually need to write the ODEs of motion as follows (note that I’ve
recast the linear ODEs in terms of linear momentum as well, to underscore the
similarities between the two cases):

 A3D:

N L

I L

net

() ();

() ();

() [()] ;

()q()

t

t

t

t

=

=

=

=

−

�

1

1
2

0

��q();t

t

t

t

tω

ω

ω

ω
 L:

F p

v
p

v r

net() ();

()
()

;

() ().

t

t
t
m

t

=

=

=

�

�

t

t

Using the explicit Euler method, the fi nal approximate solution to the angular
ODEs in three dimensions is actually as follows:

L L N

L r F

() () ()

() () ;

t t

t ti

2 1 1

1 1

= +

= + ×()∑
net Δ

Δ

t t

t i
 (vectors)

 () [()] ;t2 1
2 0= −I L tω (quaternion)

q() q() () q() .t t t2 1
1
2 1 1= + Δt tω (quaternions)

12.4. Rigid Body Dynamics

650 12. Collision and Rigid Body Dynamics

The orientation quaternion q(t) should be renormalized periodically to reverse
the eff ects of the inevitable accumulation of fl oating-point error.

As always, the explicit Euler method is being used here just as an ex-
ample. In a real engine, we would employ velocity Verlet, RK4, or some other
more-stable and more-accurate numerical method.

12.4.7. Collision Response

Everything we’ve discussed so far assumes that our rigid bodies are neither
colliding with anything, nor is their motion constrained in any other way.
When bodies collide with one another, the dynamics simulation must take
steps to ensure that they respond realistically to the collision and that they
are never left in a state of interpenetration aft er the simulation step has been
completed. This is known as collision response .

12.4.7.1. Energy

Before we discuss collision response, we must understand the concept of en-
ergy . When a force moves a body over a distance, we say that the force does
work . Work represents a change in energy—that is, a force either adds energy
to a system of rigid bodies (e.g., an explosion) or it removes energy from the
system (e.g., friction). Energy comes in two forms. The potential energy V of a
body is the energy it has simply because of where it is relative to a force fi eld
such as a gravitational or a magnetic fi eld. (For example, the higher up a body
is above the surface of the Earth, the more gravitational potential energy it
has.) The kinetic energy of a body T represents the energy arising from the
fact that it is moving relative to other bodies in a system. The total energy
E = V + T of an isolated system of bodies is a conserved quantity, meaning that
it remains constant unless energy is being drained from the system or added
from outside the system.

The kinetic energy arising from linear motion can be writt en

 T mvlinear = 1
2

2 ,

or in terms of the linear momentum and velocity vectors:

 Tlinear = ⋅1
2 p v.

Analogously, the kinetic energy arising from a body’s rotational motion is as
follows:

 Energy and its conservation can be extremely useful concepts when solving
all sorts of physics problems. We’ll see the role that energy plays in the deter-
mination of collision responses in the following section.

Tangular = ⋅1
2L .ω

651

12.4.7.2. Impulsive Collision Response

 When two bodies collide in the real world, a complex set of events takes place.
The bodies compress slightly and then rebound, changing their velocities and
losing energy to sound and heat in the process. Most real-time rigid body
dynamics simulations approximate all of these details with a simple model
based on an analysis of the momenta and kinetic energies of the colliding ob-
jects, called Newton’s law of restitution for instantaneous collisions with no friction.
It makes the following simplifying assumptions about the collision:

 The collision force acts over an infi nitesimally short period of time, turn-
ing it into what we call an idealized impulse . This causes the velocities of
the bodies to change instantaneously as a result of the collision.

 There is no friction at the point of contact between the objects’ surfaces.
This is another way of saying that the impulse acting to separate the
bodies during the collision is normal to both surfaces—there is no tan-
gential component to the collision impulse. (This is just an idealization
of course; we’ll get to friction in Section 12.4.7.5.)

 The nature of the complex submolecular interactions between the bodies
during the collision can be approximated by a single quantity known
as the coeffi cient of restitution , customarily denoted by the symbol ε. This
coeffi cient describes how much energy is lost during the collision. When
ε = 1, the collision is perfectly elastic , and no energy is lost. (Picture two
billiard balls colliding in mid air.) When ε = 0, the collision is perfectly in-
elastic , also known as perfectly plastic , and the kinetic energy of both bod-
ies is lost. The bodies will stick together aft er the collision, continuing to
move in the direction that their mutual center of mass had been moving
before the collision. (Picture pieces of putt y being slammed together.)

All collision analysis is based around the idea that linear momentum is
conserved. So for two bodies 1 and 2, we can write

1 2 1 2

1 1 2 2 1 1 2 2

, or
,m m m m

′ ′+ = +

′ ′+ = +

p p p p
v v v v

where the primed symbols represent the momenta and velocities aft er the col-
lision. The kinetic energy of the system is conserved as well, but we must ac-
count for the energy lost due to heat and sound by introducing an additional
energy loss term Tlost :

2 2 2 21 1 1 1
1 1 2 2 1 1 2 2 lost2 2 2 2 .m v m v m v m v T′ ′+ = + +

If the collision is perfectly elastic, the energy loss Tlost is zero. If it is perfectly
plastic, the energy loss is equal to the original kinetic energy of the system, the

12.4. Rigid Body Dynamics

652 12. Collision and Rigid Body Dynamics

primed kinetic energy sum becomes zero, and the bodies stick together aft er
the collision.

To resolve a collision using Newton’s law of restitution, we apply an ide-
alized impulse to the two bodies. An impulse is like a force that acts over an in-
fi nitesimally short period of time and thereby causes an instantaneous change
in the velocity of the body to which it is applied. We could denote an impulse
with the symbol ∆p, since it is a change in momentum (∆p = m∆v). However,
most physics texts use the symbol p̂ (pronounced “p-hat”) instead, so we’ll
do the same.

Because we assume that there is no friction involved in the collision, the
impulse vector must be normal to both surfaces at the point of contact. In oth-
er words, ˆ p̂=p n , where n is the unit vector normal to both surfaces. This is
illustrated in Figure 12.27. If we assume that the surface normal points toward
body 1, then body 1 experiences an impulse of p̂ , and body 2 experiences an
equal but opposite impulse. Hence, the momenta of the two bodies aft er the
collision can be writt en in terms of their momenta prior to the collision and
the impulse p̂ as follows:

1 1 2 2ˆ ˆ; ;′ ′= + = −p p p p p p

1 1 1 1 2 2 2 2ˆ ˆ; ;m m m m′ ′= + = −v v p v v p

 (12.9)

The coeffi cient of restitution provides the key relationship between the rela-
tive velocities of the bodies before and aft er the collision. Given that the cen-
ters of mass of the bodies have velocities 1v and 2v before the collision and

1′v and 2′v aft erward, the coeffi cient of restitution ε is defi ned as follows:

 2 1 2 1() ().′ ′− = ε −v v v v (12.10)

Solving Equations (12.9) and (12.10) under the temporary assumption
that the bodies cannot rotate yields

n

Body 1Body 2
p̂

Figure 12.27. In a frictionless collision, the impulse acts along a line normal to both surfaces
at the point of contact. This line is defi ned by the unit normal vector n.

1 1 2 2
1 2

ˆ ˆ
; .

p p
m m

′ ′= + = −v v n v v n

653

()

2 1

1 2

(1)ˆ ˆ .1 1p

m m

ε+ ⋅ − ⋅
= =

+

v n v n
p n n

Notice that if the coeffi cient of restitution is one (perfectly elastic collision) and
if the mass of body 2 is eff ectively infi nite (as it would be for, say, a concrete
driveway), then (1/m2) = 0, v2 = 0, and this expression reduces to a refl ection of
the other body’s velocity vector about the contact normal, as we’d expect:

()

()

()

1 1

1 1 1 1 1
1

1 1

1 1

ˆ 2 ;

ˆ 2

2 .

m

m m
m m

=− ⋅

+ − ⋅
′ = =

= − ⋅

p v n n

p p v v n n
v

v v n n
The solution gets a bit hairier when we take the rotations of the bodies

into account. In this case, we need to look at the velocities of the points of
contact on the two bodies rather than the velocities of their centers of mass,
and we need to calculate the impulse in such a way as to impart a realis-
tic rotational eff ect as a result of the collision. We won’t get into the details
here, but Chris Hecker’s article, available at htt p://chrishecker.com/images/e/
e7/Gdmphys3.pdf, does an excellent job of describing both the linear and the
rotational aspects of collision response. The theory behind collision response
is explained more fully in [15].

12.4.7.3. Penalty Forces

Another approach to collision response is to introduce imaginary forces called
penalty forces into the simulation. A penalty force acts like a stiff damped spring
att ached to the contact points between two bodies that have just interpenetrat-
ed. Such a force induces the desired collision response over a short but fi nite
period of time. Using this approach, the spring constant k eff ectively controls
the duration of the interpenetration, and the damping coeffi cient b acts a bit
like the restitution coeffi cient. When b = 0, there is no damping—no energy is
lost, and the collision is perfectly elastic. As b increases, the collision becomes
more plastic.

Let’s take a brief look at some of the pros and cons of the penalty force ap-
proach to resolving collisions. On the positive side, penalty forces are easy to
implement and understand. They also work well when three or more bodies
are interpenetrating each other. This problem is very diffi cult to solve when
resolving collisions one pair at a time. A good example is the Sony PS3 demo
in which a huge number of rubber duckies are poured into a bathtub—the
simulation was nice and stable despite the very large number of collisions.
The penalty force method is a great way to achieve this.

12.4. Rigid Body Dynamics

654 12. Collision and Rigid Body Dynamics

Unfortunately, because penalty forces respond to penetration (i.e., rela-
tive position) rather than to relative velocity , the forces may not align with
the direction we would intuitively expect, especially during a high-speed col-
lision. A classic example is a car driving head-on into a truck. The car is low
while the truck is tall. Using only the penalty force method, it is easy to arrive
at a situation in which the penalty force is vertical, rather than horizontal as
we would expect given the velocities of the two vehicles. This can cause the
truck to pop its nose up into the air while the car drives under it.

In general, the penalty force technique works well for low-speed impacts,
but it does not work well at all when objects are moving quickly. It is pos-
sible to combine the penalty force method with other collision resolution ap-
proaches in order to strike a balance between stability in the presence of large
numbers of interpenetrations and responsiveness and more-intuitive behav-
ior at high velocities.

12.4.7.4. Using Constraints to Resolve Collisions

 As we’ll investigate in Section 12.4.8, most physics systems permit vari-
ous kinds of constraints to be imposed on the motion of the bodies in the
simulation. If collisions are treated as constraints that disallow object in-
terpenetration, then they can be resolved by simply running the simula-
tion’s general-purpose constraint solver. If the constraint solver is fast and
produces high-quality visual results, this can be an eff ective way to resolve
collisions.

12.4.7.5. Friction

Friction is a force that arises between two bodies that are in continuous con-
tact, resisting their movement relative to one another. There are a number of
types of friction. Static friction is the resistance one feels when trying to start
a stationary object sliding along a surface. Dynamic friction is a resisting force
that arises when objects are actually moving relative to one another. Sliding
friction is a type of dynamic friction that resists movement when an object
slides along a surface. Rolling friction is a type of static or dynamic friction
that acts at the point of contact between a wheel or other round object and the
surface it is rolling on. When the surface is very rough, the rolling friction is
exactly strong enough to cause the wheel to roll without sliding, and it acts
as a form of static friction. If the surface is somewhat smooth, the wheel may
slip, and a dynamic form of rolling friction comes into play. Collision friction is
the friction that acts instantaneously at the point of contact when two bodies
collide while moving. (This is the friction force that we ignored when discuss-
ing Newton’s law of restitution in Section 12.4.7.1.) Various kinds of constraints

655

can have friction as well. For example, a rusted hinge or axle might resist be-
ing turned by introducing a friction torque.

Let’s look at an example to understand the essence of how friction works.
Linear sliding friction is proportional to the component of an object’s weight
that is acting normal to the surface on which it is sliding. The weight of an
object is just the force due to gravity , G = mg, which is always directed down-
ward. The component of this force normal to an inclined surface that makes an
angle θ with the horizontal is just GN = mg cos θ. The friction force f is then

 cos ,f mg= μ θ

where the constant of proportionality μ is called the coeffi cient of friction . This
force acts tangentially to the surface, in a direction opposite to the att empted
or actual motion of the object. This is illustrated in Figure 12.28.

Figure 12.28 also shows the component of the gravitational force acting
tangent to the surface, GT = mg sin θ. This force tends to make the object accel-
erate down the plane, but in the presence of sliding friction, it is counteracted
by f. Hence, the net force tangent to the surface is

 net (in cos).TF G f mg s= − = θ− μ θ

If the angle of inclination is such that the expression in parentheses is zero,
the object will slide at a constant speed (if already moving) or be at rest. If the
expression is greater than zero, the object will accelerate down the surface. If it
is less than zero, the object will decelerate and eventually come to rest.

12.4.7.6. Welding

An additional problem arises when an object is sliding across a polygon soup.
Recall that a polygon soup is just what its name implies—a soup of essentially
unrelated polygons (usually triangles). As an object slides from one triangle
of this soup to the next, the collision detection system will generate additional

G = mg

|GN| =
mg cos θ

|G T| =
mg sin θ

|f| =
 μmg cos θ

Figure 12.28. The force of friction f is proportional to the normal component of the object’s
weight. The proportionality constant μ is called the coeffi cient of friction.

12.4. Rigid Body Dynamics

656 12. Collision and Rigid Body Dynamics

spurious contacts because it will think that the object is about to hit the edge
of the next triangle. This is illustrated in Figure 12.29.

There are a number of solutions to this problem. One is to analyze the
set of contacts and discard ones that appear to be spurious, based on various
heuristics and possibly some knowledge of the object’s contacts on a previous
frame (e.g., if we know the object was sliding along a surface and a contact
normal arises that is due to the object being near the edge of its current tri-
angle, then discard that contact normal). Versions of Havok prior to 4.5 em-
ployed this approach.

Starting with Havok 4.5, a new technique was implemented that essen-
tially annotates the mesh with triangle adjacency information. The collision
detection system therefore “knows” which edges are interior edges and can
discard spurious collisions reliably and quickly. Havok describes this solution
as welding , because in eff ect the edges of the triangles in the poly soup are
welded to one another.

12.4.7.7. Coming to Rest, Islands, and Sleeping

When energy is removed from a simulated system via friction, damping, or
other means, moving objects will eventually come to rest. This seems like a
natural consequence of the simulation—something that would just “fall out”
of the diff erential equations of motion. Unfortunately, in a real computerized
simulation, coming to rest is never quite that simple. Various factors such as
fl oating-point error, inaccuracies in the calculation of restitution forces, and
numerical instability can cause objects to jitt er forever rather than coming to
rest as they should. For this reason, most physics engines use various heuris-
tic methods to detect when objects are oscillating instead of coming to rest
as they should. Additional energy can be removed from the system to en-
sure that such objects eventually sett le down, or they can simply be stopped
abruptly once their average velocity drops below a threshold.

Figure 12.29. When an object slides between two adjacent triangles, spurious contacts with
the new triangle’s edge can be generated.

Spurious Contacts

with Triangle Edge

657

When an object really does stop moving (fi nds itself in a state of equilib-
rium), there is no reason to continue integrating its equations of motion every
frame. To optimize performance, most physics engines allow dynamic objects
in the simulation to be put to sleep . This excludes them from the simulation
temporarily, although sleeping objects are still active from a collision stand-
point. If any force or impulse begins acting on a sleeping object, or if the object
loses one of the contacts that was holding it in equilibrium, it will be awoken
so that its dynamic simulation can be resumed.

Sleep Criteria

Various criteria can be used to determine whether or not a body qualifi es for
sleep. It’s not always easy to make this determination in a robust manner for
all situations. For example, a long pendulum might have very low angular
momentum and yet still be moving visibly on-screen.

The most commonly used criteria for equilibrium detection include:

 The body is supported . This means it has three or more contact points
(or one or more planar contacts) that allow it to att ain equilibrium with
gravity and any other forces that might be aff ecting it.

 The body’s linear and angular momentum are below a predefi ned thresh-
old.

 A running average of the linear and angular momentum are below a pre-
defi ned threshold.

 The total kinetic energy of the body (T = ⋅ + ⋅1
2

1
2p v L ω) is below a pre-

defi ned threshold. The kinetic energy is usually mass-normalized so that
a single threshold can be used for all bodies regardless of their masses.

 The motion of a body that is about to go to sleep might be progressively
damped so that it comes to a smooth stop rather than stopping abruptly.

Simulation Islands

Both Havok and PhysX further optimize their performance by automatically
grouping objects that either are interacting or have the potential to interact in
the near future into sets called simulation islands . Each simulation island can be
simulated independently of all the other islands—an approach that is highly
conducive to cache coherency optimizations and parallel processing.

Havok and PhysX both put entire islands to sleep rather than individu-
al rigid bodies. This approach has its pros and cons. The performance boost
is obviously larger when a whole group of interacting objects can be put to
sleep. On the other hand, if even one object in an island is awake, the entire
island is awake. Overall, it seems that the pros tend to outweigh the cons, so

12.4. Rigid Body Dynamics

658 12. Collision and Rigid Body Dynamics

the simulation island design is one we’re likely to continue to see in future
versions of these SDKs.

12.4.8. Constraints

An unconstrained rigid body has six degrees of freedom (DOF): It can trans-
late in three dimensions, and it can rotate about the three Cartesian axes. Con-
straints restrict an object’s motion, reducing its degrees of freedom either par-
tially or completely. Constraints can be used to model all sorts of interesting
behaviors in a game. Here are a few examples:

 a swinging chandelier (point-to-point constraint);
 a door that can be kicked, slammed, blown of its hinges (hinge con-

straint);
 a vehicle’s wheel assembly (axle constraint with damped springs for

suspension);
 a train or a car pulling a trailer (stiff spring/rod constraint);
 a rope or chain (chain of stiff springs or rods);
 a rag doll (specialized constraints that mimic the behavior of various

joints in the human skeleton).

In the sections that follow, we’ll briefl y investigate these and some of the
other most common kinds of constraints typically provided by a physics SDK.

12.4.8.1. Point-to-Point Constraints

A point-to-point constraint is the simplest type of constraint. It acts like a ball
and socket joint—bodies can move in any way they like, as long as a specifi ed
point on one body lines up with a specifi ed point on the other body. This is
illustrated in Figure 12.30.

12.4.8.2. Stiff Springs

A stiff spring constraint is a lot like a point-to-point constraint except that it
keeps the two points separated by a specifi ed distance. This kind of constraint

Figure 12.30. A
point-to-point
constraint re-
quires that a
point on body A
align with a point
on body B.

Figure 12.31. A stiff spring constraint requires that a point on body A be separated from a
point on body B by a user-specifi ed distance.

659

acts like an invisible rod between the two constrained points. Figure 12.31 il-
lustrates this constraint.

12.4.8.3. Hinge Constraints

A hinge constraint limits rotational motion to only a single degree of freedom,
about the hinge’s axis. An unlimited hinge acts like an axle, allowing the con-
strained object to complete an unlimited number of full rotations. It’s com-
mon to defi ne limited hinges that can only move through a predefi ned range
of angles about the one allowed axis. For example, a one-way door can only
move through a 180 degree arc, because otherwise it would pass through the
adjacent wall. Likewise, a two-way door is constrained to move through a
±180 degree arc. Hinge constraints may also be given a degree of friction in
the form of a torque that resists rotation about the hinge’s axis. A limited hinge
constraint is shown in Figure 12.32.

Figure 12.32. A limited hinge constraint mimics the behavior of a door.

Figure 12.33. A prismatic constraint acts like a piston.

12.4.8.4. Prismatic Constraints

Prismatic constraints act like a piston: A constrained body’s motion is restrict-
ed to a single translational degree of freedom. A prismatic constraint may or
may not permit rotation about the translation axis of the piston. Prismatic
constraints can of course be limited or unlimited and may or may not include
friction. A prismatic constraint is illustrated in Figure 12.33.

12.4. Rigid Body Dynamics

660 12. Collision and Rigid Body Dynamics

12.4.8.5. Other Common Constraint Types

Many other types of constraints are possible, of course. Here are just a few
examples:

 Planar . Objects are constrained to move in a two-dimensional plane.
 Wheel . This is typically a hinge constraint with unlimited rotation,

coupled with some form of vertical suspension simulated via a spring-
damper as sembly.

 Pulley . In this specialized constraint, an imaginary rope passes through
a pulley and is att ached to two bodies. The bodies move along the line
of the rope via a leverage ratio.

Constraints may be breakable , meaning that aft er enough force is ap-
plied, they automatically come apart. Alternatively, the game can turn the
constraint on and off at will, using its own criteria for when the constraint
should break.

12.4.8.6. Constraint Chains

Long chains of linked bodies are sometimes diffi cult to simulate in a stable
manner because of the iterative nature of the constraint solver. A constraint
chain is a specialized group of constraints with information that tells the
constraint solver how the objects are connected. This allows the solver to
deal with the chain in a more stable manner than would otherwise be pos-
sible.

12.4.8.7. Rag Dolls

A rag doll is a physical simulation of the way a human body might move
when it is dead or unconscious and hence entirely limp. Rag dolls are created
by linking together a collection of rigid bodies, one for each semi-rigid part
of the body. For example, we might have capsules for the feet, calves, thighs,
hands, upper and lower arms, and head and possibly a few for the torso to
simulate the fl exibility of the spine.

The rigid bodies in a rag doll are connected to one another via constraints.
Rag doll constraints are specialized to mimic the kinds of motions the joints in
a real human body can perform. We usually make use of constraint chains to
improve the stability of the simulation.

A rag doll simulation is always tightly integrated with the animation
system. As the rag doll moves in the physics world, we extract the positions
and rotations of the rigid bodies, and use this information to drive the posi-
tions and orientations of certain joints in the animated skeleton. So in eff ect, a
rag doll is really just a form of procedural animation that happens to be driven

661

by the physics system. (See Chapter 11 for more details on skeletal anima-
tion.)

Of course, implementing a rag doll is not quite as simple as I’ve made it
sound here. For one thing, there’s usually not a one-to-one mapping between
the rigid bodies in the rag doll and the joints in the animated skeleton —the
skeleton usually has more joints than the rag doll has bodies. Therefore, we
need a system that can map rigid bodies to joints (i.e., one that “knows” to
which joint each rigid body in the rag doll corresponds). There may be addi-
tional joints between those that are being driven by the rag doll bodies, so the
mapping system must also be capable of determining the correct pose trans-
forms for these intervening joints. This is not an exact science. We must apply
artistic judgment and/or some knowledge of human biomechanics in order to
achieve a natural-looking rag doll.

12.4.8.8. Powered Constraints

Constraints can also be “powered,” meaning that an external engine system
such as the animation system can indirectly control the translations and orien-
tations of the rigid bodies in the rag doll.

Let’s take an elbow joint as an example. An elbow acts prett y much like
a limited hinge, with a litt le less than 180 degrees of free rotation. (Actual-
ly, an elbow can also rotate axially, but we’ll ignore that for the purposes of
this discussion.) To power this constraint, we model the elbow as a rotational
spring . Such a spring exerts a torque proportional to the spring’s angle of de-
fl ection away from some predefi ned rest angle, N = –k(θ – θ rest). Now imagine
changing the rest angle externally, say by ensuring that it always matches the
angle of the elbow joint in an animated skeleton. As the rest angle changes, the
spring will fi nd itself out of equilibrium , and it will exert a torque that tends

Bone Collision
Capsule

Capsule strikes
an obstacle

Bone continues
to move

Figure 12.34. Left: with a powered rag doll constraint, and in the absence of any additional
forces or torques, a rigid body representing the lower arm can be made to exactly track the
movements of an animated elbow joint. Right: if an obstacle blocks the motion of the body, it
will diverge from that of the animated elbow joint in a realistic way.

12.4. Rigid Body Dynamics

662 12. Collision and Rigid Body Dynamics

to rotate the elbow back into alignment with θ rest. In the absence of any other
forces or torques, the rigid bodies will exactly track the motion of the elbow
joint in the animated skeleton. But if other forces are introduced (for example,
the lower arm comes in contact with an immovable object), then these forces
will play into the overall motion of the elbow joint, allowing it to diverge from
the animated motion in a realistic manner. As illustrated in Figure 12.34, this
provides the illusion of a human who is trying her best to move in a certain
way (i.e., the “ideal” motion provided by the animation) but who is some-
times unable to do so due to the limitations of the physical world (e.g., her arm
gets caught on something as she tries to swing it forward).

12.4.9. Controlling the Motions of Rigid Bodies

Most game designs call for a degree of control over the way rigid bodies move
over and above the way they would move naturally under the infl uence of
gravity and in response to collisions with other objects in the scene. For ex-
ample:

 An air vent applies an upward force to any object that enters its shaft of
infl uence.

 A car is coupled to a trailer and exerts a pulling force on it as it moves.
 A tractor beam exerts a force on an unwitt ing space craft .
 An anti-gravity device causes objects to hover.
 The fl ow of a river creates a force fi eld that causes objects fl oating in the

river to move downstream.

And the list goes on. Most physics engines typically provide their users with
a number of ways to exert control over the bodies in the simulation. We’ll out-
line the most common of these mechanisms in the following sections.

12.4.9.1. Gravity

Gravity is ubiquitous in most games that take place on the surface of the Earth
or some other planet (or on a spacecraft with simulated gravity!). Gravity is
technically not a force but rather a (roughly) constant acceleration, so it af-
fects all bodies equally regardless of their mass. Because of its ubiquitous and
special nature, the magnitude and direction of the gravitational acceleration
is specifi ed via a global sett ing in most SDKs. (If you’re writing a space game,
you can always set gravity to zero to eliminate it from the simulation.)

12.4.9.2. Applying Forces

Any number of forces can be applied to the bodies in a game physics simula-
tion. A force always acts over a fi nite time interval. (If it acted instantaneous-

663

ly, it would be called an impulse—more on that below.) The forces in a game
are oft en dynamic in nature—they oft en change their directions and/or their
magnitudes every frame. So the force-application function in most physics
SDKs is designed to be called once per frame for the duration of the force’s
infl uence. The signature of such a function usually looks something like this:
applyForce(const Vector& forceInNewtons), where the duration of the
force is assumed to be Δt.

12.4.9.3. Applying Torques

When a force is applied such that its line of action passes through the center of
mass of a body, no torque is generated, and only the body’s linear acceleration
is aff ected. If it is applied off -center, it will induce both a linear and a rotational
acceleration. A pure torque can be applied to a body as well by applying two
equal and opposite forces to points equidistant from the center of mass. The
linear motions induced by such a pair of forces will cancel each other out (since
for the purposes of linear dynamics, the forces both act at the center of mass).
This leaves only their rotational eff ects. A pair of torque-inducing forces like
this is known as a couple (htt p://en.wikipedia.org/wiki/Couple_(mechanics)).
A special function such as applyTorque(const Vector& torque) may be
provided for this purpose. However, if your physics SDK provides no apply
Torque() function, you can always write one and have it generate a suitable
couple instead.

12.4.9.4. Applying Impulses

As we saw in Section 12.4.7.2, an impulse is an instantaneous change in veloc-
ity (or actually, a change in momentum). Technically speaking, an impulse
is a force that acts for an infi nitesimal amount of time. However, the short-
est possible duration of force application in a time-stepped dynamics simu-
lation is Δt, which is not short enough to simulate an impulse adequately.
As such, most physics SDKs provide a function with a signature such as
applyImpulse(const Vector& impulse) for the purposes of applying
impulses to bodies. Of course, impulses come in two fl avors—linear and an-
gular—and a good SDK should provide functions for applying both types.

12.4.10. The Collision/Physics Step

Now that we’ve covered the theory and some of the technical details behind
implementing a collision and physics system, let’s take a brief look at how
these systems actually perform their updates every frame.

Every collision/physics engine performs the following basic tasks during
its update step . Diff erent physics SDKs may perform these phases in diff erent

12.4. Rigid Body Dynamics

664 12. Collision and Rigid Body Dynamics

orders. That said, the technique I’ve seen used most oft en goes something like
this:

The forces and torques acting on the bodies in the physics world are 1.
integrated forward by Δt in order to determine their tentative positions
and orientations next frame.

The collision detection library is called to determine if any new contacts 2.
have been generated between any of the objects as a result of their
tentative movement. (The bodies normally keep track of their contacts
in order to take advantage of temporal coherency. Hence at each step of
the simulation, the collision engine need only determine whether any
previous contacts have been lost and whether any new contacts have
been added.)
Collisions are resolved, oft en by applying impulses or penalty forces 3.
or as part of the constraint solving step below. Depending on the SDK,
this phase may or may not include continuous collision detection (CCD,
otherwise known as time of impact detection or TOI).
Constraints are satisfi ed by the constraint solver.4.

At the conclusion of step 4, some of the bodies may have moved away from
their tentative positions as determined in step 1. This movement may cause
additional interpenetrations between objects or cause other previously sat-
isfi ed constraints to be broken. Therefore, steps 1 through 4 (or sometimes
only 2 through 4, depending on how collisions and constraints are resolved)
are repeated until either (a) all collisions have been successfully resolved
and all constraints are satisfi ed, or (b) a predefi ned maximum number of
iterations has been exceeded. In the latt er case, the solver eff ectively “gives
up,” with the hope that things will resolve themselves naturally during sub-
sequent frames of the simulation. This helps to avoid performance spikes
by amortizing the cost of collision and constraint resolution over multiple
frames. However, it can lead to incorrect-looking behavior if the errors are
too large or if the time step is too long or is inconsistent. Penalty forces can
be blended into the simulation in order to gradually resolve these problems
over time.

12.4.10.1. The Constraint Solver

A constraint solver is essentially an iterative algorithm that att empts to satisfy
a large number of constraints simultaneously by minimizing the error between
the actual positions and rotations of the bodies in the physics world and their
ideal positions and rotations as defi ned by the constraints. As such, constraint
solvers are essentially iterative error minimization algorithms.

665

Let’s take a look fi rst at how a constraint solver works in the trivial case
of a single pair of bodies connected by a single constraint. During each step of
the physics simulation, the numerical integrator will fi nd new tentative trans-
forms for the two bodies. The constraint solver then evaluates their relative
positions and calculates the error between the positions and orientations of
their shared axis of rotation. If any error is detected, the solver moves the
bodies in such a way as to minimize or eliminate it. Since there are no other
bodies in the system, the second iteration of the step should discover no new
contacts, and the constraint solver will fi nd that the one hinge constraint is
now satisfi ed. Hence the loop can exit without further iterations.

When more than one constraint must be satisfi ed simultaneously, more
iterations may be required. During each iteration, the numerical integrator
will sometimes tend to move the bodies out of alignment with their con-
straints, while the constraint solver tends to put them back into alignment.
With luck, and a carefully designed approach to minimizing error in the con-
straint solver, this feedback loop should eventually sett le into a valid solution.
However, the solution may not always be exact. This is why, in games with
physics engines, you sometimes witness seemingly impossible behaviors, like
chains that stretch (opening up litt le gaps between the links), objects that in-
terpenetrate briefl y, or hinges that momentarily move beyond their allowable
ranges. The goal of the constraint solver is to minimize error—it’s not always
possible to eliminate it completely.

12.4.10.2. Variations between Engines

The description given above is of course an over-simplifi cation of what re-
ally goes on in a physics/collision engine every frame. The way in which the
various phases of computation are performed, and their order relative to one
another, may vary from physics SDK to physics SDK. For example, some
kinds of constraints are modeled as forces and torques that are taken care
of by the numerical integration step rather than being resolved by the con-
straint solver. Collision may be run before the integration step rather than
aft er. Collisions may be resolved in any number of diff erent ways. Our goal
here is merely to give you a taste of how these systems work. For a detailed
understanding of how any one SDK operates, you’ll want to read its docu-
mentation and probably also inspect its source code (presuming the relevant
bits are available for you to read!). The curious and industrious reader can
get a good start by downloading and experimenting with ODE and/or PhysX,
as these two SDKs are available for free. You can also learn a great deal from
ODE’s wiki, which is available at htt p://opende.sourceforge.net/wiki/index.
php/Main_Page.

12.4. Rigid Body Dynamics

666 12. Collision and Rigid Body Dynamics

12.5. Integrating a Physics Engine
 into Your Game

Obviously, a collision/physics engine is of litt le use by itself—it must be integrat-
ed into your game engine. In this section, we’ll discuss the most common inter-
face points between the collision/physics engine and the rest of the game code.

12.5.1. The Linkage between Game Objects and Rigid Bodies

The rigid bodies and collidables in the collision/physics world are nothing
more than abstract mathematical descriptions. In order for them to be useful
in the context of a game, we need to link them in some way to their visual
representations on-screen. Usually, we don’t draw the rigid bodies directly
(except for debugging purposes). Instead, the rigid bodies are used to describe
the shape, size, and physical behavior of the logical objects that make up the
virtual game world. We’ll discuss game objects in depth in Chapter 14, but for
the time being, we’ll rely on our intuitive notion of what a game object is—a
logical entity in the game world, such as a character, a vehicle, a weapon,
a fl oating power-up, and so on. So the linkage between a rigid body in the
physics world and its visual representation on-screen is usually indirect, with
the logical game object serving as the hub that links the two together. This is
illustrated in Figure 12.35.

In general, a game object is represented in the collision/physics world by
zero or more rigid bodies. The following list describes three possible scenarios:

 Zero rigid bodies. Game objects without any rigid bodies in the phys-
ics world act as though they are not solid, because they have no colli-
sion representation at all. Decorative objects with which the player or

Rigid Body /
Collidable

Game
Object

Mesh
Instance

Rendering
Engine

Debug Draw

Drive Update

Submit

Figure 12.35. Rigid bodies are linked to their visual representations by way of game objects.
An optional direct rendering path is usually provided so that the locations of the rigid bodies
can be visualized for debugging purposes.

667

non-player characters cannot interact, such as birds fl ying overhead or
portions of the game world that can be seen but never reached, might
have no collision. This scenario can also apply to objects whose collision
detection is handled manually (without the help of the collision/physics
engine) for some reason.

 One rigid body. Most simple game objects need only be represented by a
single rigid body. In this case, the shape of the rigid body’s collidable is
chosen to closely approximate the shape of the game object’s visual rep-
resentation, and the rigid body’s position and orientation exactly match
the position and orientation of the game object itself.

 Multiple rigid bodies. Some complex game objects are represented by
multiple rigid bodies in the collision/physics world. Examples include
characters, machinery, vehicles, or any object that is composed of multi-
ple solid pieces. Such game objects usually make use of a skeleton (i.e., a
hierarchy of affi ne transforms) to track the locations of their component
pieces (although other means are certainly possible as well). The rigid
bodies are usually linked to the joints of the skeleton in such a way that
the position and orientation of each rigid body corresponds to the posi-
tion and orientation of one of the joints. The joints in the skeleton might
be driven by an animation, in which case the associated rigid bodies
simply come along for the ride. Alternatively, the physics system might
drive the locations of rigid bodies and hence indirectly control the loca-
tions of the joints. The mapping from joints to rigid bodies may or may
not be one-to-one—some joints might be controlled entirely by anima-
tion, while others are linked to rigid bodies.

The linkage between game objects and rigid bodies must be managed by
the engine, of course. Typically, each game object will manage its own rigid
bodies, creating and destroying them when necessary, adding and removing
them from the physics world as needed, and maintaining the connection be-
tween each rigid body’s location and the location of the game object and/or
one of its joints. For complex game objects consisting of multiple rigid bodies,
a wrapper class of some kind may be used to manage them. This insulates
the game objects from the nitt y-gritt y details of managing a collection of rigid
bodies and allows diff erent kinds of game objects to manage their rigid bodies
in a consistent way.

12.5.1.1. Physics-Driven Bodies

If our game has a rigid body dynamics system, then presumably we want
the motions of at least some of the objects in the game to be driven entirely

12.5. Integrating a Physics Engine into Your Game

668 12. Collision and Rigid Body Dynamics

by the simulation. Such game objects are called physics-driven objects. Bits of
debris, exploding buildings, rocks rolling down a hillside, empty magazines
and shell casings—these are all examples of physics-driven objects.

A physics-driven rigid body is linked to its game object by stepping the
simulation and then querying the physics system for the body’s position and
orientation. This transform is then applied either to the game object as a whole
or to a joint or some other data structure within the game object.

Example: Building a Safe with a Detachable Door

When physics-driven rigid bodies are linked to the joints of a skeleton, the
bodies are oft en constrained to produce a desired kind of motion. As an ex-
ample, let’s look at how a safe with a detachable door might be modeled.

Visually, let’s assume that the safe consists of a single triangle mesh with
two submeshes, one for the housing and one for the door. A two-joint skeleton
is used to control the motions of these two pieces. The root joint is bound to
the housing of the safe, while the child joint is bound to the door in such a way
that rotating the door joint causes the door submesh to swing open and shut
in a suitable way.

The collision geometry for the safe is broken into two independent pieces
as well, one for the housing and one for the door. These two pieces are used
to create two totally separate rigid bodies in the collision/physics world. The
rigid body for the safe’s housing is att ached to the root joint in the skeleton,
and the door’s rigid body is linked to the door joint. A hinge constraint is then
added to the physics world to ensure that the door body swings properly
relative to the housing when the dynamics of the two rigid bodies are simu-
lated. The motions of the two rigid bodies representing the housing and the
door are used to update the transforms of the two joints in the skeleton. Once
the skeleton’s matrix palett e has been generated by the animation system, the
rendering engine will end up drawing the housing and door submeshes in the
locations of the rigid bodies within the physics world.

If the door needs to be blown off at some point, the constraint can be
broken, and impulses can be applied to the rigid bodies to send them fl y-
ing. Visibly, it will appear to the human player that the door and the housing
have become separate objects. But in reality, it’s still a single game object and
a single triangle mesh with two joints and two rigid bodies.

12.5.1.2. Game-Driven Bodies

In most games, certain objects in the game world need to be moved about in
a non-physical way. The motions of such objects might be determined by an
animation or by following a spline path, or they might be under the control

669

of the human player. We oft en want these objects to participate in collision
detection—to be capable of pushing the physics-driven objects out of their
way, for example—but we do not want the physics system to interfere with
their motion in any way. To accommodate such objects, most physics SDKs
provide a special type of rigid body known as a game-driven body. (Havok calls
these “key framed” bodies.)

Game-driven bodies do not experience the eff ects of gravity. They are also
considered to be infi nitely massive by the physics system (usually denoted by
a mass of zero, since this is an invalid mass for a physics-driven body). The
assumption of infi nite mass ensures that forces and collision impulses within
the simulation can never change the velocity of a game-driven body.

To move a game-driven body around in the physics world, we cannot
simply set its position and orientation every frame to match the location of
the corresponding game object. Doing so would introduce discontinuities that
would be very diffi cult for the physical simulation to resolve. (For example,
a physics-driven body might fi nd itself suddenly interpenetrating a game-
driven body, but it would have no information about the game-driven body’s
momentum with which to resolve the collision.) As such, game-driven bodies
are usually moved using impulses —instantaneous changes in velocity that,
when integrated forward in time, will position the bodies in the desired places
at the end of the time step. Most physics SDKs provide a convenience func-
tion that will calculate the linear and angular impulses required in order to
achieve a desired position and orientation on the next frame. When moving
a game-driven body, we do have to be careful to zero out its velocity when it
is supposed to stop. Otherwise, the body will continue forever along its last
non-zero trajectory.

Example: Animated Safe Door

Let’s continue our example of the safe with a detachable door. Imagine that
we want a character to walk up to the safe, dial the combination, open the
door, deposit some money, and close and lock the door again. Later, we want
a diff erent character to get the money in a rather less-civilized manner—by
blowing the door off the safe. To do this, the safe would be modeled with an
additional submesh for the dial and an additional joint that allows the dial to
be rotated. No rigid body is required for the dial, however, unless of course
we want it to fl y off when the door explodes.

During the animated sequence of the person opening and closing the safe,
its rigid bodies can be put into game-driven mode. The animation now drives
the joints, which in turn drive the rigid bodies. Later, when the door is to be
blown off , we can switch the rigid bodies into physics-driven mode, break the
hinge constraint, apply the impulse, and watch the door fl y.

12.5. Integrating a Physics Engine into Your Game

670 12. Collision and Rigid Body Dynamics

As you’ve probably already noticed, the hinge constraint is not actually
needed in this particular example. It would only be required if the door is to
be left open at some point and we want to see the door swinging naturally in
response to the safe being moved or the door being bumped.

12.5.1.3. Fixed Bodies

Most game worlds are composed of both static geometry and dynamic objects.
To model the static components of the game world, most physics SDKs pro-
vide a special kind of rigid body known as a fi xed body. Fixed bodies act a bit
like game-driven bodies, but they do not take part in the dynamics simulation
at all. They are, in eff ect, collision-only bodies. This optimization can give a
big performance boost to most games, especially those whose worlds contain
only a small number of dynamic objects moving around within a large static
world.

12.5.1.4. Havok’s Motion Type

In Havok, all types of rigid body are represented by instances of the class hkp
RigidBody. Each instance contains a fi eld that specifi es its motion type . The
motion type tells the system whether the body is fi xed, game-driven (what
Havok calls “key framed”), or physics-driven (what Havok calls “dynamic”).
If a rigid body is created with the fi xed motion type, its type can never be
changed. Otherwise, the motion type of a body can be changed dynamically at
runtime. This feature can be incredibly useful. For example, an object that is in
a character’s hand would be game-driven. But as soon as the character drops
or throws the object, it would be changed to physics-driven so the dynamics
simulation can take over its motion. This is easily accomplished in Havok by
simply changing the motion type at the moment of release.

The motion type also doubles as a way to give Havok some hints about
the inertia tensor of a dynamic body. As such, the “dynamic” motion type is
broken into subcategories such as “dynamic with sphere inertia,” “dynamic
with box inertia,” and so on. Using the body’s motion type, Havok can decide
to apply various optimizations based on assumptions about the internal struc-
ture of the inertia tensor.

12.5.2. Updating the Simulation

The physics simulation must of course be updated periodically, usually once
per frame. This does not merely involve stepping the simulation (numerically
integrating, resolving collisions, and applying constraints). The linkages be-
tween the game objects and their rigid bodies must be maintained as well. If
the game needs to apply any forces or impulses to any of the rigid bodies, this

671

must also be done every frame. The following steps are required to completely
update the physics simulation:

 Update game-driven rigid bodies . The transforms of all game-driven rigid
bodies in the physics world are updated so that they match the trans-
forms of their counterparts (game objects or joints) in the game world.

 Update phantoms . A phantom shape acts like a game-driven collidable
with no corresponding rigid body. It is used to perform certain kinds
of collision queries. The locations of all phantoms are updated prior to
the physics step, so that they will be in the right places when collision
detection is run.

 Update forces, apply impulses, and adjust constraints. Any forces being ap-
plied by the game are updated. Any impulses caused by game events
that occurred this frame are applied. Constraints are adjusted if neces-
sary. (For example, a breakable hinge might be checked to determine if
it has been broken; if so, the physics engine is instructed to remove the
constraint.)

 Step the simulation . We saw in Section 12.4.10 that the collision and phys-
ics engines must both be updated periodically. This involves numerically
integrating the equations of motion to fi nd the physical state of all bodies
on the next frame, running the collision detection algorithm to add and
remove contacts from all rigid bodies in the physics world, resolving col-
lisions, and applying constraints. Depending on the SDK, these update
phases may be hidden behind a single atomic step() function, or it
may be possible to run them individually.

 Update physics-driven game objects . The transforms of all physics-driven
objects are extracted from the physics world, and the transforms of the
corresponding game objects or joints are updated to match.

 Query phantoms. The contacts of each phantom shape are read aft er the
physics step and used to make decisions.

 Perform collision cast queries . Ray casts and shape casts are kicked off , either
synchronously or asynchronously. When the results of these queries become
available, they are used by various engine systems to make decisions.

These tasks are usually performed in the order shown above, with the
exception of ray and shape casts, which can theoretically be done at any time
during the game loop. Clearly it makes sense to update game-driven bod-
ies and apply forces and impulses prior to the step, so that the eff ects will
be “seen” by the simulation. Likewise, physics-driven game objects should
always be updated aft er the step, to ensure that we’re using the most up-to-
date body transforms. Rendering typically happens aft er everything else in

12.5. Integrating a Physics Engine into Your Game

672 12. Collision and Rigid Body Dynamics

the game loop. This ensures that we are rendering a consistent view of the
game world at a particular instant in time.

12.5.2.1. Timing Collision Queries

In order to query the collision system for up-to-date information, we need to
run our collision queries (ray and shape casts) aft er the physics step has run
during the frame. However, the physics step is usually run toward the end of
the frame, aft er the game logic has made most of its decisions and the new lo-
cations of any game-driven physics bodies have been determined. When then
should collision queries be run ?

This question does not have an easy answer. We have a number of op-
tions, and most games end up using some or all of them:

 Base decisions on last frame’s state. In many cases, decisions can be made
correctly based on last frame’s collision information. For example, we
might want to know whether or not the player was standing on some-
thing last frame, in order to decide whether or not he should start falling
this frame. In this case, we can safely run our collision queries prior to
the physics step.

 Accept a one-frame lag. Even if we really want to know what is happen-
ing this frame, we may be able to tolerate a one-frame lag in our collision
query results. This is usually only true if the objects in question aren’t
moving too fast. For example, we might move one object forward in
time and then want to know whether or not that object is now in the
player’s line of sight. A one-frame-off error in this kind of query may
not be noticeable to the player. If this is the case, we can run the collision
query prior to the physics step (returning collision information from the
previous frame) and then use these results as if they were an approxima-
tion to the collision state at the end of the current frame.

 Run the query aft er the physics step. Another approach is to run certain
queries aft er the physics step. This is feasible when the decisions being
made based on the results of the query can be deferred until late in the
frame. For example, a rendering eff ect that depends on the results of a
collision query could be implemented this way.

12.5.2.2. Single-Threaded Updating

A very simple single-threaded game loop might look something like this:

F32 dt = 1.0f/30.0f;

for (;;) // main game loop
{
 g_hidManager->poll();

673

 g_gameObjectManager-> preAnimationUpdate(dt);

 g_animationEngine->updateAnimations(dt);

 g_gameObjectManager-> postAnimationUpdate(dt);

g_physicsWorld->step(dt);

 g_animationEngine->updateRagDolls(dt);
 g_gameObjectManager-> postPhysicsUpdate(dt);
 g_animationEngine->finalize();

 g_effectManager->update(dt);
 g_audioEngine->udate(dt);
 // etc.

 g_renderManager->render();

 dt = calcDeltaTime();
}

In this example, our game objects are updated in three phases: once before an-
imation runs (during which they can queue up new animations, for example),
once aft er the animation system has calculated fi nal local poses and a tenta-
tive global pose (but before the fi nal global pose and matrix palett e has been
generated), and once aft er the physics system has been stepped.

 The locations of all game-driven rigid bodies are generally updated in
preAnimationUpdate() or postAnimationUpdate(). Each game-
driven body’s transform is set to match the location of either the game
object that owns it or a joint in the owner’s skeleton.

 The location of each physics-driven rigid body is generally read in
postPhysicsUpdate() and used to update the location of either the
game object or one of the joints in its skeleton.

One important concern is the frequency with which you are stepping
the physics simulation. Most numerical integrators, collision detection algo-
rithms, and constraint solvers operate best when the time between steps (Δt)
is constant. It’s usually a good idea to step your physics/collision SDK with an
ideal 1/30 second or 1/60 second time delta and then govern the frame rate of
your overall game loop.

12.5.2.3. Multithreaded Updating

Things get a bit more complicated when a physics engine is integrated into
a multiprocessor or multithreaded game engine. In Section 7.6, we saw that
there are many possible ways to structure the game loop to take advantage of
multiprocessor hardware. Let’s take a brief look at some of the physics-specifi c
issues that arise when applying these techniques.

12.5. Integrating a Physics Engine into Your Game

674 12. Collision and Rigid Body Dynamics

Running Physics in a Separate Thread

One option is to run the physics/collision engine in a dedicated thread .
As you might guess, this kind of design can lead to race conditions. If a
game object doesn’t update its game-driven rigid bodies in time, the physics
thread might end up using out-of-date locations in the simulation. Likewise,
if the simulation isn’t quite done by the time we want to update our physics-
driven objects, the game objects might end up using out-of-date locations as
well.

This problem can be solved by arranging for the physics and main threads
to wait for one another—a process known as thread synchronization . This is
done via mutexes, semaphores, or critical sections. Thread synchronization
is usually a relatively expensive operation, so we generally aim to reduce the
number of synchronization points between threads. In the case of the physics
engine, we need two synchronization points at minimum—one that allows
the physics simulation to begin each frame (aft er all game-driven rigid bodies
have been updated) and one that notifi es the main thread when the simulation
is complete (thereby allowing physics-driven bodies to be queried).

As part of a strategy to reduce synchronization points, communication
between threads is usually done via a command queue. The main thread locks
a critical section, writes some commands into the queue, and then quickly re-
leases it. The physics thread picks up the next batch of commands whenever
it gets the chance, again locking the critical section to ensure that the main
thread isn’t overwriting the queue during the read.

In the presence of collision queries , things get even more complicated.
To manage access to the collision/physics world by multiple threads, phys-
ics engines like Havok allow the world to be locked and unlocked separately
for reading and for writing. This allows collision queries to be performed at
any time during the game loop (during which the world is locked for read)
except while the physics world is being updated (during which it is locked
for write).

Fork and Join

The nice thing about a fork and join architecture for physics is that it essen-
tially eliminates all inter-thread synchronization issues. The main thread runs
as usual until the physics system needs to be stepped. Then we fork the step
off into separate threads (ideally one per processing core or hardware thread)
in order to execute it as quickly as possible. When all threads have completed
their work, the results can be collated, and the main thread can continue as in
the single-threaded case. Of course, for this to work, the physics system must
be designed to support fork and join. Most physics SDKs, including Havok

675

and PhysX, make use of collision islands—groups of rigid bodies that can be
simulated independently of one another. This design lends itself well to a fork
and join architecture, as the islands can be dynamically distributed among the
available threads.

Jobs

A job model can be particularly useful for physics processing if the physics
SDK allows the individual phases of its update step (integration, collision de-
tection, constraint solving, CCD, etc.) to be run independently. This allows
us to kick off each phase whenever it is most convenient and perform useful
unrelated work in the main thread while we wait for the physics engine to do
its thing.

Jobs are even more useful when doing collision queries (ray and shape
casts). This is because while a game engine typically only needs to step the
physics simulation once per frame, collision queries may be required at many
diff erent points during the game loop. If lightweight jobs are used to run
queries, we can simply kick off jobs whenever we need them. On the other
hand, if collision queries can only be run at certain times during the frame
(because they are being executed by a fork or a dedicated thread), this makes
the job of the game programmer more diffi cult. He or she needs to collect all
the collision queries in a queue and then execute them as a batch the next time
queries are run during the frame. These two approaches are compared in Fig-
ure 12.36.

PPU

SPU JobJob Job

Main
Thread

Collision
Thread Process Batch Process Batch P...

Job Job Job J..J

Game Loop

Game Loop

Figure 12.36. Collision queries are often batched, to be run at a few well-chosen points dur-
ing the game loop. However, with a job model, queries can be kicked off at any time, without
the need to batch them.

12.5.3. Example Uses of Collision and Physics in a Game

To make our discussion of collision and physics more concrete, let’s take a
high-level look at a few common examples of how collision and/or physics
simulations are commonly used in real games.

12.5. Integrating a Physics Engine into Your Game

676 12. Collision and Rigid Body Dynamics

12.5.3.1. Simple Rigid Body Game Objects

Many games include simple physically simulated objects like weapons, rocks
that can be picked up and thrown, empty magazines, furniture, objects on
shelves that can be shot, and so on. Such objects might be implemented by
creating a custom game object class and giving it a reference to a rigid body
in the physics world (e.g., hkRigidBody if we’re using Havok). Or we might
create an add-on component class that handles simple rigid body collision
and physics, allowing this feature to be added to virtually any type of game
object in the engine.

Simple physics objects usually change their motion type at runtime. They
are game-driven when being held in a character’s hand and physics-driven
when in free fall aft er having been dropped.

Imagine that a simple physics object is to be placed on a table or shelf, to
be knocked off at some point by being struck by a bullet or other object. What
motion type should it be given initially? Should we make it physics-driven
and let the simulation put it to sleep until it is struck? Or should we keep
it game-driven when at rest and change it to physics-driven when hit? This
depends largely on the game design. If we require tight control over when
the object is allowed to be knocked down, then we might go the game-driven
route; otherwise, physics-driven may suffi ce.

12.5.3.2. Bullet Traces

Whether or not you approve of game violence, the fact remains that bullets
and projectiles of one form or another are a big part of most games. Let’s look
at how these are typically implemented.

Sometimes bullets are implemented using ray casts. On the frame that the
weapon is fi red, we shoot off a ray cast, determine what object was hit, and
immediately impart the impact to the aff ected object.

Unfortunately, the ray cast approach does not account for the travel time
of the projectile. It also does not account for the slight downward trajectory
caused by the infl uence of gravity. If these details are important to the game,
we can model our projectiles using real rigid bodies that move through the
collision/physics world over time. This is especially useful for slower-moving
projectiles, like thrown objects or rockets.

There are plenty of issues to consider and deal with when implementing
bullets and projectiles. Here are a few of the most common ones:

 Does the ray come from the camera focal point or from the tip of the gun
in the player character’s hands? This is especially problematic in a third-
person shooter, where the ray coming out of the player’s gun usually

677

does not align with the ray coming from the camera focal point through
the reticle in the center of the screen. This can lead to situations in which
the reticle appears to be on top of a target yet the third-person character
is clearly behind an obstacle and would not be able to shoot that target
from his point of view. Various “tricks” must usually be employed to
ensure that the player feels like he or she is shooting what he or she is
aiming at while maintaining plausible visuals on the screen.

 Mismatches between collision geometry and visible geometry can lead
to situations in which the player can see the target through a small crack
or just over the edge of some other object and yet the collision geometry
is solid and hence the bullet cannot reach the target. (This is usually
only a problem for the player character.) One solution to this problem is
to use a render query instead of a collision query to determine if the ray
actually hit the target. For example, during one of the rendering passes,
we could generate a texture in which each pixel stores the unique identi-
fi er of the game object to which it corresponds. We can then query this
texture to determine whether or not an enemy character or other suit-
able target is beneath the weapon’s reticle.

 AI characters may need to “lead” their shots if projectiles take a fi nite
amount of time to reach their targets.

 When bullets hit their targets, we may want to trigger a sound or a par-
ticle eff ect, lay down a decal, or perform other tasks.

12.5.3.3. Grenades

Grenades in games are sometimes implemented as free-moving physics objects.
However, this leads to a signifi cant loss of control. Some control can be regained
by imposing various artifi cial forces or impulses on the grenade. For example,
we could apply an extreme air drag once the grenade bounces for the fi rst time,
in an att empt to limit the distance it can bounce away from its target.

Some game teams actually go so far as to manage the grenade’s motion en-
tirely manually. The arc of a grenade’s trajectory can be calculated beforehand,
using a series of ray casts to determine what target it would hit if released. The
trajectory can even be shown to the player via some kind of on-screen display.
When the grenade is thrown, the game moves it along its arc and can then
carefully control the bounce so that it never goes too far away from its target,
while still looking natural.

12.5.3.4. Explosions

In a game, an explosion typically has a few components: some kind of visual
eff ect like a fi reball and smoke, audio eff ects to mimic the sound of the explo-

12.5. Integrating a Physics Engine into Your Game

678 12. Collision and Rigid Body Dynamics

sion and its impacts with objects in the world, and a growing damage radius
that aff ects any objects in its wake.

When an object fi nds itself in the radius of an explosion, its health is typi-
cally reduced, and we oft en also want to impart some motion to mimic the ef-
fect of the shock wave. This might be done via an animation. (For example, the
reaction of character to an explosion might best be done this way.) We might
also wish to allow the impact reaction to be driven entirely by the dynamics
simulation. We can accomplish this by having the explosion apply impulses
to any suitable objects within its radius. It’s prett y easy to calculate direction
of these impulses—they are typically radial, calculated by normalizing the
vector from the center of the explosion to the center of the impacted object
and then scaling this vector by the magnitude of the explosion (and perhaps
falling off as the distance from the epicenter increases).

Explosions may interact with other engine systems as well. For example,
we might want to impart a “force” to the animated foliage system, causing
grass, plants and trees to momentarily bend as a result of the explosion’s
shock wave.

12.5.3.5. Destructible Objects

Destructible objects are commonplace in many games. These objects are pecu-
liar because they start out in an undamaged state in which they must appear
to be a single cohesive object, and yet they must be capable of breaking into
many separate pieces. We may want the pieces to break off one by one, al-
lowing the object to be “whitt led down” gradually, or we may only require a
single catastrophic explosion.

Deformable body simulations like DMM can handle destruction naturally.
However, we can also implement breakable objects using rigid body dynamics.
This is typically done by dividing a model into a number of breakable pieces
and assigning a separate rigid body to each one. For reasons of performance op-
timization and/or visual quality, we might decide to use special “undamaged”
versions of the visual and collision geometry, each of which is constructed as
a single solid piece. This model can be swapped out for the damaged version
when the object needs to start breaking apart. In other cases, we may want to
model the object as separate pieces at all times. This might be appropriate if the
object is a stack of bricks or a pile of pots and pans, for example.

To model a multi-piece object, we could simply stack a bunch of rigid
bodies and let physics simulation take care of it. This can be made to work
in good-quality physics engines (although it’s not always trivial to get right).
However, we may want some Hollywood-style eff ects that cannot be achieved
with a simple stack of rigid bodies.

679

For example, we may want to defi ne the structure of the object. Some
pieces might be indestructible, like the base of a wall or the chassis of a car.
Others might be non-structural—they just fall off when hit by bullets or other
objects. Still other pieces might be structural—if they are hit, not only do they
fall, but they also impart forces to other pieces lying on top of them. Some
pieces could be explosive—when they are hit, they create secondary explosions
or propagate damage throughout the structure. We may want some pieces to
act as valid cover points for characters but not others. This implies that our
breakable object system may have some connections to the cover system.

We might also want our breakable objects to have a notion of health. Dam-
age might build up until eventually the whole thing collapses, or each piece
might have a health, requiring multiples shots or impacts before it is allowed
to break. Constraints might also be employed to allow broken pieces to hang
off the object rather than coming away from it completely.

We may also want our structures to take time to collapse completely. For
example, if a long bridge is hit by an explosion at one end, the collapse should
slowly propagate from one end to the other so that the bridge looks massive.
This is another example of a feature the physics system won’t give you for
free—it would just wake up all rigid bodies in the simulation island simulta-
neously. These kinds of eff ects can be implemented through judicious use of
the game-driven motion type.

12.5.3.6. Character Mechanics

For a game like bowling, pinball, or Marble Madness, the “main character” is
a ball that rolls around in an imaginary game world. For this kind of game,
we could very well model the ball as a free-moving rigid body in the physics
simulation and control its movements by applying forces and impulses to it
during gameplay.

In character-based games, however, we usually don’t take this kind of ap-
proach. The movement of a humanoid or animal character is usually far too
complex to be controlled adequately with forces and impulses. Instead, we
usually model characters as a set of game-driven capsule-shaped rigid bodies,
each one linked to a joint in the character’s animated skeleton. These bodies
are primarily used for bullet hit detection or to generate secondary eff ects
such as when a character’s arm bumps an object off a table. Because these
bodies are game-driven , they won’t avoid interpenetrations with immovable
objects in the physics world, so it is up to the animator to ensure that the char-
acter’s movements appear believable.

To move the character around in the game world, most games use sphere
or capsule casts to probe in the direction of desired motion. Collisions are
resolved manually. This allows us to do cool stuff like:

12.5. Integrating a Physics Engine into Your Game

680 12. Collision and Rigid Body Dynamics

 having the character slide along walls when he runs into them at an
oblique angle;

 allowing the character to “pop up” over low curbs rather than gett ing
stuck;

 preventing the character from entering a “falling” state when he walks
off a low curb;

 preventing the character from walking up slopes that are too steep
(most games have a cut-off angle aft er which the character will slide
back rather than being able to walk up the slope);

 adjusting animations to accommodate collisions.

As an example of this last point, if the character is running directly into a
wall at a roughly 90 degree angle, we can let the character “moonwalk” into
the wall forever, or we can slow down his animation. We can also do some-
thing even more slick, like playing an animation in which the character sticks
out his hand and touches the wall and then idles sensibly until the movement
direction changes.

Havok provides a character controller system that handles many of these
things. In Havok’s system, illustrated in Figure 12.37, a character is modeled
as a capsule phantom that is moved each frame to fi nd a potential new loca-
tion. A collision contact manifold (i.e., a collection of contact planes, cleaned
up to eliminate noise) is maintained for the character. This manifold can be

Figure 12.37. Havok’s character controller models a character as a capsule-shaped phantom.
The phantom maintains a noise-reduced collision manifold (a collection of contact planes)
that can be used by the game to make movement decisions.

681

analyzed each frame in order to determine how best to move the character,
adjust animations, and so on.

12.5.3.7. Camera Collision

In many games, the camera follows the player’s character or vehicle around
in the game world, and it can oft en by rotated or controlled in limited ways
by the person playing the game. It’s important in such games to never permit
the camera to interpenetrate geometry in the scene, as this would break the
illusion of realism. The camera system is therefore another important client of
the collision engine in many games.

The basic idea behind most camera collision systems is to surround the
virtual camera with one or more sphere phantoms or sphere cast queries that
can detect when it is gett ing close to colliding with something. The system can
respond by adjusting the camera’s position and/or orientation in some way
to avoid the potential collision before the camera actually passes through the
object in question.

This sounds simple enough, but it is actually an incredibly tricky problem
requiring a great deal of trial and error to get right. To give you a feel for how
much eff ort can be involved, many game teams have a dedicated engineer
working on the camera system for the entire duration of the project. We can’t
possibly cover camera collision detection and resolution in any depth here,
but the following list should give you a sense of some of the most pertinent
issues to be aware of:

 Zooming the camera in to avoid collisions works well in a wide variety
of situations. In a third-person game, you can zoom all the way in to a
fi rst-person view without causing too much trouble (other than making
sure the camera doesn’t interpenetrate the character’s head in the pro-
cess).

 It’s usually a bad idea to drastically change the horizontal angle of the
camera in response to collisions, as this tends to mess with camera-rel-
ative player controls. However, some degree of horizontal adjustment
can work well, depending on what the player is expected to be doing
at the time. If she is aiming at a target, she’ll be angry with you if you
throw off her aim to bring the camera out of collision. But if she’s just
locomoting through the world, the change in camera orientation may
feel entirely natural.

 You can adjust the vertical angle of the camera to some degree, but it’s
important not to do too much of this or the player will lose track of the
horizon and end up looking down onto the top of the player character’s
head!

12.5. Integrating a Physics Engine into Your Game

682 12. Collision and Rigid Body Dynamics

 Some games allow the camera to move along an arc lying in a vertical
plane, perhaps described by a spline . This permits a single HID control
such as the vertical defl ection of the left thumb stick to control both the
zoom and the vertical angle of the camera in an intuitive way. (The cam-
era in Uncharted: Drake’s Fortune works this way.) When the camera comes
into collision with objects in the world, it can be automatically moved
along this same arc to avoid the collision, the arc might be compressed
horizontally, or any number of other approaches might be taken.

 It’s important to consider not only what’s behind and beside the camera
but what is in front of it as well. For example, what should happen if
a pillar or another character comes between the camera and the player
character? In some games, the off ending object becomes translucent ; in
others, the camera zooms in or swings around to avoid the collision.
This may or may not feel good to the person playing the game! How
you handle these kinds of situations can make or break the perceived
quality of your game.

 You may want the camera to react to collisions diff erently in diff erent
situations. For example, when the main character is not engaged in a
batt le, it might be acceptable to swing the camera horizontally to avoid
collisions. But when the player is trying to fi re at targets, both horizontal
and vertical camera swings will throw off his or her aim, so zoom may
be the only option.

Even aft er taking account of these and many other problematic situations,
your camera may not look or feel right! Always budget plenty of time for trial
and error when implementing a camera collision system.

12.5.3.8. Rag Doll Integration

 In Section 12.4.8.7, we learned how special types of constraints can be used to
link a collection of rigid bodies together to mimic the behavior of a limp (dead
or unconscious) human body. In this section, we’ll investigate a few of the is-
sues that arise when integrating rag doll physics into your game.

As we saw in Section 12.5.3.6, the gross movements of a conscious char-
acter are usually determined by performing shape casts or moving a phantom
shape around in the game world. The detailed movements of the character’s
body are typically driven by animations. Game-driven rigid bodies are some-
times att ached to the limbs for the purposes of weapons targeting or to allow
the character to knock over other objects in the world.

When a character becomes unconscious, the rag doll system kicks in.
The character’s limbs are modeled as capsule-shaped rigid bodies connected

683

via constraints and linked to joints in the character’s animated skeleton. The
physics system simulates the motions of these bodies, and we update the
skeletal joints to match, thereby allowing physics to move the character’s
body .

The set of rigid bodies used for rag doll physics might not be the same
ones affi xed to the character’s limbs when it was alive. This is because the
two collision models have very diff erent requirements. When the character
is alive, its rigid bodies are game-driven, so we don’t care if they interpen-
etrate. And in fact, we usually want them to overlap, so there aren’t any holes
through which an enemy character might shoot. But when the character turns
into a rag doll, it’s important that the rigid bodies do not interpenetrate, as
this would cause the collision resolution system to impart large impulses that
would tend to make the limbs explode outward! For these reasons, it’s actually
quite common for characters to have entirely diff erent collision/physics repre-
sentations depending on whether they’re conscious or unconscious.

Another issue is how to transition from the conscious state to the uncon-
scious state. A simple LERP animation blend between animation-generated
and physics-generated poses usually doesn’t work very well, because the phys-
ics pose very quickly diverges from the animation pose. (A blend between two
totally unrelated poses usually doesn’t look natural.) As such, we may want to
use powered constraints during the transition (see Section 12.4.8.8).

Characters oft en interpenetrate background geometry when they are con-
scious (i.e., when their rigid bodies are game-driven). This means that the rigid
bodies might be inside another solid object when the character transitions to
rag doll (physics-driven) mode. This can give rise to huge impulses that cause
rather wild-looking rag doll behavior in-game. To avoid these problems, it
is best to author death animations carefully, so that the character’s limbs are
kept out of collision as best as possible. It’s also important to detect collisions
via phantoms or collision callbacks during the game-driven mode so that you
can drop the character into rag doll mode the moment any part of his body
touches something solid.

Even when these steps are taken, rag dolls have a tendency to get stuck
inside other objects. Single-sided collision can be an incredibly important fea-
ture when trying to make rag dolls look good. If a limb is partly embedded
in a wall, it will tend to be pushed out of the wall rather than staying stuck
inside it. However, even single-sided collision doesn’t solve all problems. For
example, when the character is moving quickly or if the transition to rag doll
isn’t executed properly, one rigid body in the rag doll can end up on the far
side of a thin wall. This causes the character to hang in mid air rather than fall-
ing properly to the ground.

12.5. Integrating a Physics Engine into Your Game

684 12. Collision and Rigid Body Dynamics

Another rag doll feature that is in vogue these days is the ability for un-
conscious characters to regain consciousness and get back up . To implement
this, we need a way to search for a suitable “stand up” animation. We want
to fi nd an animation whose pose on frame zero most closely matches the rag
doll’s pose aft er it has come to rest (which is totally unpredictable in general).
This can be done by matching the poses of only a few key joints, like the up-
per thighs and the upper arms. Another approach is to manually guide the
rag doll into a pose suitable for gett ing up by the time it comes to rest, using
powered constraints.

As a fi nal note, we should mention that sett ing up a rag doll’s constraints
can be a tricky business. We generally want the limbs to move freely but with-
out doing anything biomechanically impossible. This is one reason special-
ized types of constraints are oft en used when constructing rag dolls. None-
theless, you shouldn’t assume that your rag dolls will look great without
some eff ort. High-quality physics engines like Havok provide a rich set of
content creation tools that allow an artist to set up constraints within a DCC
package like Maya and then test them in real time to see how they might look
in-game.

All in all, gett ing rag doll physics to work in your game isn’t particularly
diffi cult, but gett ing it to look good can take a lot of work! As with many things
in game programming, it’s a good idea to budget plenty of time for trial and
error, especially when it’s your fi rst time working with rag dolls.

12.6. A Look Ahead: Advanced Physics Features

A rigid body dynamics simulation with constraints can cover an amazing
range of physics-driven eff ects in a game. However, such a system clearly has
its limitations. Recent research and development is seeking to expand physics
engines beyond constrained rigid bodies. Here are just a few examples:

 Deformable bodies. As hardware capabilities improve and more-effi cient
algorithms are developed, physics engines are beginning to provide
support for deformable bodies . DMM is an excellent example of such an
engine.

 Cloth. Cloth can be modeled as a sheet of point masses, connected by
stiff springs. However, cloth is notoriously diffi cult to get right, as many
diffi culties arise with respect to collision between cloth and other ob-
jects, numerical stability of the simulation, etc.

 Hair. Hair can be modeled by a large number of small physically simu-
lated fi lments, or a simpler approach can be used to make a character’s

685

hair move as if it were a rope or deformable body. This is an active area
of research, and the quality of hair in games continues to improve.

 Water surface simulations and buoyancy. Games have been doing water
surface simulations and buoyancy for some time now. This can be done
via a special-case system (not part of the physics engine per se), or it can
be modeled via forces within the physics simulation. Organic move-
ment of the water surface is oft en a rendering eff ect only and does not
aff ect the physics simulation at all. From the point of view of physics,
the water surface is oft en modeled as a plane. For large displacements
in the water surface, the entire plane might be moved. However, some
game teams and researchers are pushing the limits of these simulations,
allowing for dynamic water surfaces, waves that crest, realistic current
simulations, and more.

 General fl uid dynamics simulations. Right now, fl uid dynamics falls into
the realm of specialized simulation libraries. However, this is an active
area of research, and it may well eventually fi nd its way into mainstream
physics engines.

12.6. A Look Ahead: Advanced Physics Features

Part IV
Gameplay

13
 Introduction to

Gameplay Systems

Up until now, everything we’ve talked about in this book has focused on
technology. We’ve learned that a game engine is a complex, layered soft -

ware system built on top of the hardware, drivers, and operating system of the
target machine. We’ve seen how low-level engine systems provide services
that are required by the rest of the engine; how human interface devices such
as joypads, keyboards, mice, and other devices can allow a human player to
provide inputs to the engine; how the rendering engine produces 3D images
on-screen; how the collision system detects and resolves interpenetrations be-
tween shapes; how the physics simulation causes objects to move in physi-
cally realistic ways; how the animation system allows characters and objects
to move naturally. But despite the wide range of powerful features provided
by these components, if we were to put them all together, we still wouldn’t
have a game!

A game is defi ned not by its technology but by its gameplay . Gameplay can
be defi ned as the overall experience of playing a game. The term game mechan-
ics pins down this idea a bit more concretely—it is usually defi ned as the set
of rules that govern the interactions between the various entities in the game.
It also defi nes the objectives of the player(s), criteria for success and failure,
the player character’s abilities, the number and types of non-player entities that
exist within the game’s virtual world, and the overall fl ow of the gaming expe-
rience as a whole. In many games, these elements are intertwined with a com-

689

690 13. Introduction to Gameplay Systems

pelling story and a rich cast of characters. However, story and characters are
defi nitely not a necessary part of every video game, as evidenced by wildly
successful puzzle games like Tetris. In their paper, “A Survey of ‘Game’ Por-
tability” (htt p://www.dcs.shef.ac.uk/intranet/research/resmes/CS0705.pdf),
Ahmed BinSubaih, Steve Maddock, and Daniela Romano of the University of
Sheffi eld refer to the collection of soft ware systems used to implement game-
play as a game’s G-factor . In the next three chapters, we’ll explore the crucial
tools and engine systems that defi ne and manage the game mechanics (a.k.a.
gameplay, a.k.a. G-factor) of a game.

13.1. Anatomy of a Game World

Gameplay designs vary widely from genre to genre and from game to game.
That said, most 3D games, and a good number of 2D games as well, conform
more or less to a few basic structural patt erns. We’ll discuss these patt erns
in the following sections, but please keep in mind that there are bound to be
games out there that do not fi t neatly into this mold.

13.1.1. World Elements

Most video games take place in a two- or three-dimensional virtual game
world . This world is typically comprised of numerous discrete elements . Gen-
erally, these elements fall into two categories: static elements and dynamic
elements. Static elements include terrain, buildings, roads, bridges, and prett y
much anything that doesn’t move or interact with gameplay in an active way.
Dynamic elements include characters, vehicles, weaponry, fl oating power-ups
and health packs, collectible objects, particle emitt ers, dynamic lights, invis-
ible regions used to detect important events in the game, splines that defi ne
the paths of objects, and so on. This breakdown of the game world is illus-
trated in Figure 13.1.

Gameplay is generally concentrated within the dynamic elements of a
game. Clearly, the layout of the static background plays a crucial role in how
the game plays out. For example, a cover-based shooter wouldn’t be very
much fun if it were played in a big, empty, rectangular room. However, the
soft ware systems that implement gameplay are primarily concerned with up-
dating the locations, orientations, and internal states of the dynamic elements,
since they are the elements that change over time. The term game state refers to
the current state of all dynamic game world elements, taken as a whole.

The ratio of dynamic to static elements also varies from game to game.
Most 3D games consist of a relatively small number of dynamic elements mov-

http://www.dcs.shef.ac.uk/intranet/research/resmes/CS0705.pdf

691

ing about within a relatively large static background area. Other games, like
the arcade classic Asteroids or the Xbox 360 retro hit Geometry Wars, have no
static elements to speak of (other than a black screen). The dynamic elements
of a game are usually more expensive than the static elements in terms of CPU
resources, so most 3D games are constrained to a limited number of dynamic
elements. However, the higher the ratio of dynamic to static elements, the
more “alive” the game world can seem to the player. As gaming hardware
becomes more and more powerful, games are achieving higher and higher
dynamic-to-static ratios.

It’s important to note that the distinction between the dynamic and static
elements in a game world is oft en a bit blurry. For example, in the arcade game
Hydro Thunder, the waterfalls were dynamic, in the sense that their textures
animated, they had dynamic mist eff ects at their bases, and they could be
placed into the game world and positioned by a game designer independently
of the terrain and water surface. However, from an engineering standpoint,
waterfalls were treated as static elements because they did not interact with
the boats in the race in any way (other than to obscure the player’s view of hid-

Figure 13.1. A typical game world is comprised of both static and dynamic elements.

13.1. Anatomy of a Game World

692 13. Introduction to Gameplay Systems

den boost power-ups and secret passageways). Diff erent game engines draw
diff erent lines between static and dynamic elements, and some don’t draw a
distinction at all (i.e., everything is potentially a dynamic element).

The distinction between static and dynamic serves primarily as an opti-
mization tool—we can do less work when we know that the state of an object
isn’t going to change. For example, the vertices of a static triangle mesh can
be specifi ed in world space, thereby saving the per-vertex matrix multiplica-
tion normally required to transform from model space to world space during
rendering. Lighting can be precomputed, in the form of static vertex lighting,
light maps, shadow maps, static ambient occlusion information, or precom-
puted radiance transfer (PRT) spherical harmonics coeffi cients. Virtually any
computation that must be done at runtime for a dynamic world element is a
good candidate for precomputation or omission when applied to a static ele-
ment.

Games with destructible environments are an example of how the line
between the static and dynamic elements in a game world can blur. For in-
stance, we might defi ne three versions of every static element—an undam-
aged version, a damaged version, and a fully destroyed version. These back-
ground elements act like static world elements most of the time, but they can
be swapped dynamically during an explosion to produce the illusion of be-
coming damaged. In reality, static and dynamic world elements are just two
extremes along a gamut of possible optimizations. Where we draw the line
between the two categories (if we draw one at all) shift s as our optimization
methodologies change and adapt to the needs of the game design.

13.1.1.1. Static Geometry

 The geometry of a static world element is oft en defi ned in a tool like Maya. It
might be one giant triangle mesh, or it might be broken up into discrete pieces.
The static portions of the scene are sometimes built out of instanced geometry .
Instancing is a memory conservation technique in which a relatively small
number of unique triangle meshes are rendered multiple times throughout
the game world, at diff erent locations and orientations, in order to provide the
illusion of variety. For example, a 3D modeler might create fi ve diff erent kinds
of short wall sections and then piece them together in random combinations
in order to construct miles of unique-looking walls.

Static visual elements and collision data might also be constructed from
brush geometry . This kind of geometry originated with the Quake family of
engines. A brush describes a shape as a collection of convex volumes, each
bounded by a set of planes. Brush geometry is fast and easy to create and
integrates well into a BSP-tree -based rendering engine. Brushes can be real-

693

ly useful for rapidly blocking out the contents of a game world. This allows
gameplay to be tested early, when it is cheap to do so. If the layout proves its
worth, the art team can either texture map and fi ne-tune the brush geometry
or replace it with more-detailed custom mesh assets. On the other hand, if
the level requires redesign, the brush geometry can be easily revised without
creating a lot of rework for the art team.

13.1.2. World Chunks

When a game takes place in a very large virtual world, it is typically divided
into discrete playable regions, which we’ll call world chunks . Chunks are also
known as levels, maps, stages, or areas. The player can usually see only one, or at
most a handful, of chunks at any given moment while playing the game, and
he or she progresses from chunk to chunk as the game unfolds.

Originally, the concept of “levels” was invented as a mechanism to pro-
vide greater variety of gameplay within the memory limitations of early gam-

Figure 13.2. Many game worlds are divided into chunks for various reasons, including memory
limitations, the need to control the fl ow of the game through the world, and as a division-of-
labor mechanism during development.

Chunk 2

Chunk 1

13.1. Anatomy of a Game World

694 13. Introduction to Gameplay Systems

ing hardware. Only one level could exist in memory at a time, but the player
could progress from level to level for a much richer overall experience. Since
then, game designs have branched out in many directions, and linear level-
based games are much less common today. Some games are essentially still
linear, but the delineations between world chunks are usually not as obvious
to the player as they once were. Other games use a star topology, in which the
player starts in a central hub area and can access other areas at random from
the hub (perhaps only aft er they have been unlocked). Others use a graph-like
topology, where areas are connected to one another in arbitrary ways. Still
others provide the illusion of a vast, open world .

Despite the richness of modern game designs, all but the smallest of game
worlds are still divided into chunks of some kind. This is done for a number of
reasons. First of all, memory limitations are still an important constraint (and
will be until game machines with infi nite memory hit the market!). World
chunks are also a convenient mechanism for controlling the overall fl ow of the
game. Chunks can serve as a division-of-labor mechanism as well; each chunk
can be constructed and managed by a relatively small group of designers and
artists. World chunks are illustrated in Figure 13.2.

13.1.3. High-Level Game Flow

A game’s high-level fl ow defi nes a sequence, tree, or graph of player objectives .
Objectives are sometimes called tasks , stages, levels (a term that can also apply
to world chunks), or waves (if the game is primarily about defeating hordes of
att acking enemies). The high-level fl ow also provides the defi nition of success
for each objective (e.g., clear all the enemies and get the key) and the penalty
for failure (e.g., go back to the start of the current area, possibly losing a “life”
in the process). In a story-driven game, this fl ow might also include various
in-game movies that serve to advance the player’s understanding of the story
as it unfolds. These sequences are sometimes called cut-scenes, in-game cin-
ematics (IGC), or noninteractive sequences (NIS). When they are rendered off -
line and played back as a full-screen movie, such sequences are usually called
full-motion videos (FMV).

Early games mapped the objectives of the player one-to-one to particular
world chunks (hence the dual meaning of the term “level”). For example, in
Donkey Kong, each new level presents Mario with a new objective (namely to
reach the top of the structure and progress to the next level). However, this
one-to-one mapping between world chunks and objectives is less popular in
modern game design. Each objective is associated with one or more world
chunks, but the coupling between chunks and objectives remains deliberately
loose. This kind of design off ers the fl exibility to alter game objectives and

695

world subdivision independently, which is extremely helpful from a logistic
and practical standpoint when developing a game. Many games group their
objectives into coarser sections of gameplay, oft en called chapters or acts. A
typical gameplay architecture is shown in Figure 13.3.

13.2. Implementing Dynamic Elements:
 Game Objects

The dynamic elements of a game are usually designed in an object-oriented
fashion. This approach is intuitive and natural and maps well to the game de-
signer’s notion of how the world is constructed. He or she can visualize char-
acters, vehicles, fl oating health packs, exploding barrels, and myriad other
dynamic objects moving about in the game. So it is only natural to want to
be able to create and manipulate these elements in the game world editor .
Likewise, programmers usually fi nd it natural to implement dynamic ele-
ments as largely autonomous agents at runtime. In this book, we’ll use the
term game object (GO) to refer to virtually any dynamic element within a game
world. However, this terminology is by no means standard within the indus-
try. Game objects are commonly referred to as entities, actors, or agents, and the
list of terms goes on.

Chapter 1

Chunk 1

Chunk 2

Chunk 3

Objective 1 B

Objective 1 A

Objective 1 C

Optional
Objective 1D

Objective 1 E

Objective 1 G

Optoinal
Objective 1 F

Chapter 2

Chunk 4

Chunk 5

Chunk 6

Chunk 7

Objective 2 B

Objective 2 A

Objective 2 C

Objective 2 D

Objective 2 G

Optoinal
Objective 2 H

Optional
Objective 2 F

Optional
Objective 2E

Objective 2 I

Figure 13.3. Gameplay objectives are typically arranged in a sequence, tree, or graph, and
each one maps to one or more game world chunks.

13.2. Implementing Dynamic Elements: Game Objects

696 13. Introduction to Gameplay Systems

As is customary in object-oriented design, a game object is essentially a
collection of att ributes (the current state of the object) and behaviors (how the
state changes over time and in response to events). Game objects are usually
classifi ed by type . Diff erent types of objects have diff erent att ribute schemas
and diff erent behaviors. All instances of a particular type share the same at-
tribute schema and the same set of behaviors, but the values of the att ributes
diff er from instance to instance. (Note that if a game object’s behavior is data-
driven, say through script code or via a set of data-driven rules governing the
object’s responses to events, then behavior too can vary on an instance-by-
instance basis.)

The distinction between a type and an instance of a type is a crucial one. For
example, the game of Pac-Man involves four game object types: ghosts, pellets,
power pills, and Pac-Man. However, at any moment in time, there may be up
to four instances of the type “ghost,” 50–100 instances of the type “pellet,”
four “power pill” instances, and one instance of the “Pac-Man” type.

Most object-oriented systems provide some mechanism for the inheritance
of att ributes, behavior, or both. Inheritance encourages code and design reuse.
The specifi cs of how inheritance works varies widely from game to game, but
most game engines support it in some form.

13.2.1. Game Object Models

In computer science, the term object model has two related but distinct mean-
ings. It can refer to the set of features provided by a particular programming
language or formal design language. For example, we might speak of the C++
object model or the OMT object model . It can also refer to a specifi c object-ori-
ented programming interface (i.e., a collection of classes, methods, and inter-
relationships designed to solve a particular problem). One example of this
latt er usage is the Microsoft Excel object model , which allows external programs
to control Excel in various ways. (See htt p://en.wikipedia.org/wiki/Object_
model for further discussion of the term object model.)

In this book, we will use the term game object model to describe the facili-
ties provided by a game engine in order to permit the dynamic entities in the
virtual game world to be modeled and simulated. In this sense, the term game
object model has aspects of both of the defi nitions given above:

 A game’s object model is a specifi c object-oriented programming inter-
face intended to solve the particular problem of simulating the specifi c
set of entities that make up a particular game.

 Additionally, a game’s object model oft en extends the programming
language in which the engine was writt en. If the game is implemented

697

in a non-object-oriented language like C, object-oriented facilities can
be added by the programmers. And even if the game is writt en in an
object-oriented language like C++, advanced features like refl ection, per-
sistence, and network replication are oft en added. A game object model
sometimes melds the features of multiple languages. For example, a
game engine might combine a compiled programming language such as
C or C++ with a scripting language like Python, Lua, or Pawn and pro-
vide a unifi ed object model that can be accessed from either language.

13.2.2. Tool-Side Design versus Runtime Design

The object model presented to the designers via the world editor (discussed
below) needn’t be the same object model used to implement the game at run-
time.

 The tool-side game object model might be implemented at runtime us-
ing a language with no native object-oriented features at all, like C.

 A single GO type on the tool side might be implemented as a collection
of classes at runtime (rather than as a single class as one might at fi rst
expect).

 Each tool-side GO might be nothing more than a unique id at runtime,
with all of its state data stored in tables or collections of loosely coupled
objects.

Therefore, a game really has two distinct but closely interrelated object models:

 The tool-side object model is defi ned by the set of game object types seen by
the designers within the world editor .

 The runtime object model is defi ned by whatever set of language con-
structs and soft ware systems the programmers have used to implement
the tool-side object model at runtime. The runtime object model might
be identical to the tool-side model or map directly to it, or it might be
entirely diff erent than the tool-side model under the hood.

In some game engines, the line between the tool-side and runtime designs
is blurred or non-existent. In others, it is very well delineated. In some engines,
the implementation is actually shared between the tools and the runtime. In
others, the runtime implementation looks almost totally alien relative to the
tool-side view of things. Some aspects of the implementation almost always
creep up into the tool-side design, and game designers must be cognizant of
the performance and memory consumption impacts of the game worlds they
construct and the gameplay rules and object behaviors they design. That said,

13.2. Implementing Dynamic Elements: Game Objects

698 13. Introduction to Gameplay Systems

virtually all game engines have some form of tool-side object model and a cor-
responding runtime implementation of that object model.

13.3. Data-Driven Game Engines

In the early days of game development, games were largely hard-coded by
programmers. Tools, if any, were primitive. This worked because the amount
of content in a typical game was miniscule, and the bar wasn’t particularly
high, thanks in part to the primitive graphics and sound of which early game
hardware was capable.

Today, games are orders of magnitude more complex, and the quality bar
is so high that game content is oft en compared to the computer-generated ef-
fects in Hollywood blockbusters. Game teams have grown much larger, but
the amount of game content is growing faster than team size. In the most
recent generation, defi ned by the Wii, the Xbox 360, and the PLAYSTATION 3,
game teams routinely speak of the need to produce ten times the content, with
teams that are at most 25% larger than in the previous generation. This trend
means that a game team must be capable of producing very large amounts of
content in an extremely effi cient manner.

Engineering resources are oft en a production bott leneck because high-
quality engineering talent is limited and expensive and because engineers
tend to produce content much more slowly than artists and game designers
(due to the complexities inherent in computer programming). Most teams
now believe that it’s a good idea to put at least some of the power to cre-
ate content directly into the hands of the folks responsible for producing that
content—namely the designers and the artists. When the behavior of a game
can be controlled, in whole or in part, by data provided by artists and design-
ers rather than exclusively by soft ware produced by programmers, we say the
engine is data-driven .

Data-driven architectures can improve team effi ciency by fully leveraging
all staff members to their fullest potential and by taking some of the heat off
the engineering team. It can also lead to improved iteration times. Whether a
developer wants to make a slight tweak to the game’s content or completely
revise an entire level, a data-driven design allows the developer to see the
eff ects of the changes quickly, ideally with litt le or no help from an engineer.
This saves valuable time and can permit the team to polish their game to a
very high level of quality.

That being said, it’s important to realize that data-driven features oft en
come at a heavy cost. Tools must be provided to allow game designers and art-
ists to defi ne game content in a data-driven manner. The runtime code must

699

be changed to handle the wide range of possible inputs in a robust way. Tools
must also be provided in-game to allow artists and designers to preview their
work and troubleshoot problems. All of this soft ware requires signifi cant time
and eff ort to write, test, and maintain.

Sadly, many teams make a mad rush into data-driven architectures with-
out stopping to study the impacts of their eff orts on their particular game de-
sign and the specifi c needs of their team members. In their haste, such teams
oft en dramatically overshoot the mark, producing overly complex tools and
engine systems that are diffi cult to use, bug-ridden, and virtually impossible
to adapt to the changing requirements of the project. Ironically, in their eff orts
to realize the benefi ts of a data-driven design, a team can easily end up with
signifi cantly lower productivity than the old-fashioned hard-coded methods.

Every game engine should have some data-driven components, but a
game team must exercise extreme care when selecting which aspects of the
engine to data-drive. It’s crucial to weigh the costs of creating a data-driven
or rapid iteration feature against the amount of time the feature is expected to
save the team over the course of the project. It’s also incredibly important to
keep the KISS mantra (“keep it simple, stupid”) in mind when designing and
implementing data-driven tools and engine systems. To paraphrase Albert
Einstein, everything in a game engine should be made as simple as possible,
but no simpler.

13.4. The Game World Editor

We’ve already discussed data-driven asset-creation tools, such as Maya, Pho-
toshop, Havok content tools, and so on. These tools generate individual assets
for consumption by the rendering engine, animation system, audio system,
physics system, and so on. The analog to these tools in the gameplay space
is the game world editor —a tool (or a suite of tools) that permits game world
chunks to be defi ned and populated with static and dynamic elements.

All commercial game engines have some kind of world editor tool. A well-
known tool called Radiant is used to create maps for the Quake and Doom fam-
ily of engines. A screen shot of Radiant is shown in Figure 13.4. Valve’s Source
engine, the engine that drives Half-Life 2, The Orange Box and Team Fortress 2,
provides an editor called Hammer (previously distributed under the names
Worldcraft and The Forge). Figure 13.5 shows a screen shot of Hammer.

The game world editor generally permits the initial states of game objects
(i.e., the values of their att ributes) to be specifi ed. Most game world editors
also give their users some sort of ability to control the behaviors of the dynamic
objects in the game world. This control might be via data-driven confi guration

13.4. The Game World Editor

700 13. Introduction to Gameplay Systems

Figure 13.5. Valve’s Hammer editor for the Source engine.

Figure 13.4. The Radiant world editor for the Quake and Doom family of engines.

701

parameters (e.g., object A should start in an invisible state, object B should
immediately att ack the player when spawned, object C is fl ammable, etc.),
or behavioral control might be via a scripting language, thereby shift ing the
game designers’ tasks into the realm of programming. Some world editors
even allow entirely new types of game objects to be defi ned, with litt le or no
programmer intervention.

13.4.1. Typical Features of a Game World Editor

The design and layout of game world editors varies widely, but most editors
provide a reasonably standard set of features. These include, but are certainly
not limited to, the following.

13.4.1.1. World Chunk Creation and Management

The unit of world creation is usually a chunk (also known as a level or map—
see Section 13.1.2). The game world editor typically allows new chunks to
be created and existing chunks to be renamed, broken up, combined, or de-
stroyed. Each chunk can be linked to one or more static meshes and/or other
static data elements such as AI navigation maps, descriptions of ledges that
can be grabbed by the player, cover point defi nitions, and so on. In some en-
gines, a chunk is defi ned by a single background mesh and cannot exist with-
out one. In other engines, a chunk may have an independent existence, per-
haps defi ned by a bounding volume (e.g., AABB, OBB, or arbitrary polygonal
region), and can be populated by zero or more meshes and/or brush geometry
(see Section 1.7.3.1).

Some world editors provide dedicated tools for authoring terrain, water ,
and other specialized static elements. In other engines, these elements might
be authored using standard DCC applications but tagged in some way to indi-
cate to the asset conditioning pipeline and/or the runtime engine that they are
special. (For example, in Uncharted: Drake’s Fortune, the water was authored
as a regular triangle mesh, but it was mapped with a special material that in-
dicated that it was to be treated as water.) Sometimes, special world elements
are created and edited in a separate, standalone tool. For example, the height
fi eld terrain in Medal of Honor: Pacifi c Assault was authored using a customized
version of a tool obtained from another team within Electronic Arts because
this was more expedient than trying to integrate a terrain editor into Radiant,
the world editor being used on the project at the time.

13.4.1.2. Game World Visualization

It’s important for the user of a game world editor to be able to visualize the
contents of the game world . As such, virtually all game world editors provide

13.4. The Game World Editor

702 13. Introduction to Gameplay Systems

a three-dimensional perspective view of the world and/or a two-dimensional
orthographic projection. It’s common to see the view pane divided into four
sections, three for top, side, and front orthographic elevations and one for the
3D perspective view.

Some editors provide these world views via a custom rendering engine
integrated directly into the tool. Other editors are themselves integrated into
a 3D geometry editor like Maya or 3ds Max, so they can simply leverage the
tool’s viewports. Still other editors are designed to communicate with the ac-
tual game engine and use it to render the 3D perspective view. Some editors
are even integrated into the engine itself.

13.4.1.3. Navigation

Clearly, a world editor wouldn’t be of much use if the user weren’t able to
move around within the game world. In an orthographic view, it’s important
to be able to scroll and zoom in and out. In a 3D view, various camera control
schemes are used. It may be possible to focus on an individual object and
rotate around it. It may also be possible to switch into a “fl y through” mode
where the camera rotates about its own focal point and can be moved forward,
backward, up, and down and panned left and right.

Some editors provide a host of convenience features for navigation. These
include the ability to select an object and focus in on it with a single key press,
the ability to save various relevant camera locations and then jump between
them, various camera movement speed modes for coarse navigation and fi ne
camera control, a Web-browser-like navigation history that can be used to
jump around the game world, and so on.

13.4.1.4. Selection

A game world editor is primarily designed to allow the user to populate a
game world with static and dynamic elements. As such, it’s important for the
user to be able to select individual elements for editing. Some editors only
allow a single object to be selected at a time, while more-advanced editors
permit multiobject selections. Objects might be selected via a rubber-band box
in the orthographic view or by ray-cast style picking in the 3D view. Many
editors also display a list of all world elements in a scrolling list or tree view so
that objects can be found and selected by name. Some world editors also allow
selections to be named and saved for later retrieval.

Game worlds are oft en quite densely populated. As such, it can some-
times be diffi cult to select a desired object because other objects are in the way.
This problem can be overcome in a number of ways. When using a ray cast
to select objects in 3D, the editor might allow the user to cycle through all of

703

the objects that the ray is currently intersecting rather than always selecting
the nearest one. Many editors allow the currently selected object(s) to be tem-
porarily hidden from view. That way, if you don’t get the object you want the
fi rst time, you can always hide it and try again. As we’ll see in the next section,
layers can also be an eff ective way to reduce clutt er and improve the user’s
ability to select objects successfully.

13.4.1.5. Layers

Some editors also allow objects to be grouped into predefi ned or user-defi ned
layers. This can be an incredibly useful feature, allowing the contents of the
game world to be organized sensibly. Entire layers can be hidden or shown to
reduce clutt er on-screen. Layers might be color-coded for easy identifi cation.
Layers can be an important part of a division-of-labor strategy, as well. For
example, when the lighting team is working on a world chunk, they can hide
all of the elements in the scene that are not relevant to lighting.

What’s more, if the game world editor is capable of loading and saving
layers individually, confl icts can be avoided when multiple people are work-
ing on a single world chunk at the same time. For example, all of the lights
might be stored in one layer, all of the background geometry in another, and
all AI characters in a third. Since each layer is totally independent, the light-
ing, background, and NPC teams can all work simultaneously on the same
world chunk.

13.4.1.6. Property Grid

The static and dynamic elements that populate a game world chunk typically
have various properties (also known as att ributes) that can be edited by the
user. Properties might be simple key-value pairs and be limited to simple
atomic data types like Booleans, integers, fl oating-point numbers, and strings.
In some editors, more-complex properties are supported, including arrays of
data and nested compound data structures.

Most world editors display the att ributes of the currently selected object(s)
in a scrollable property grid view. An example of a property grid is shown in
Figure 13.6. The grid allows the user to see the current values of each att ribute
and edit the values by typing, using check boxes or drop-down combo boxes,
dragging spinner controls up and down, and so on.

Editing Multiobject Selections

In editors that support multiobject selection , the property grid may support
multiobject editing as well. This advanced feature displays an amalgam of the
att ributes of all objects in the selection. If a particular att ribute has the same
value across all objects in the selection, the value is shown as-is, and editing

13.4. The Game World Editor

704 13. Introduction to Gameplay Systems

the value in the grid causes the property value to be updated in all selected
objects. If the att ribute’s value diff ers from object to object within the selection,
the property grid typically shows no value at all. In this case, if a new value is
typed into the fi eld in the grid, it will overwrite the values in all selected ob-
jects, bringing them all into agreement. Another problem arises when the se-
lection contains a heterogeneous collection of objects (i.e., objects whose types
diff er). Each type of object can potentially have a diff erent set of att ributes, so
the property grid must only display those att ributes that are common to all
object types in the selection. This can still be useful, however, because game
object types oft en inherit from a common base type. For example, most objects
have a position and orientation. In a heterogeneous selection, the user can still
edit these shared att ributes even though more-specifi c att ributes are tempo-
rarily hidden from view.

Free-Form Properties

Normally, the set of properties associated with an object, and the data types of
those properties, are defi ned on a per-object-type basis. For example, a render-

Figure 13.6. A typical property grid.

705

able object has a position, orientation, scale, and mesh, while a light has posi-
tion, orientation, color, intensity, and light type. Some editors also allow addi-
tional “free-form” properties to be defi ned by the user on a per-instance basis.
These properties are usually implemented as a fl at list of key-value pairs . The
user is free to choose the name (key) of each free-form property, along with
its data type and its value. This can be incredibly useful for prototyping new
gameplay features or implementing one-off scenarios.

13.4.1.7. Object Placement and Alignment Aids

 Some object properties are treated in a special way by the world editor. Typi-
cally the position, orientation, and scale of an object can be controlled via spe-
cial handles in the orthographic and perspective viewports, just like in Maya
or Max. In addition, asset linkages oft en need to be handled in a special way.
For example, if we change the mesh associated with an object in the world, the
editor should display this mesh in the orthographic and 3D perspective view-
ports. As such, the game world editor must have special knowledge of these
properties—it cannot treat them generically, as it can most object properties.

Many world editors provide a host of object placement and alignment
aids in addition to the basic translation, rotation, and scale tools. Many of
these features borrow heavily from the feature sets of commercial graphics
and 3D modeling tools like Photoshop, Maya, Visio, and others. Examples
include snap to grid, snap to terrain, align to object, and many more.

13.4.1.8. Special Object Types

Just as some object properties must be handled in a special way by the world ed-
itor, certain types of objects also require special handling. Examples include:

 Lights. The world editor usually uses special icons to represent lights,
since they have no mesh. The editor may att empt to display the light’s
approximate eff ect on the geometry in the scene as well, so that design-
ers can move lights around in real time and get a reasonably good feel
for how the scene will ultimately look.

 Particle emitt ers. Visualization of particle eff ects can also be problematic
in editors that are built on a standalone rendering engine. In this case,
particle emitt ers might be displayed using icons only, or some att empt
might be made to emulate the particle eff ect in the editor. Of course, this
is not a problem if the editor is in-game or can communicate with the
running game for live tweaking.

 Regions . A region is a volume of space that is used by the game to de-
tect relevant events such as objects entering or leaving the volume or to

13.4. The Game World Editor

706 13. Introduction to Gameplay Systems

demark areas for various purposes. Some game engines restrict regions
to being modeled as spheres or oriented boxes, while others may per-
mit arbitrary convex polygonal shapes when viewed from above, with
strictly horizontal sides. Still others might allow regions to be construct-
ed out of more-complex geometry, such as k-DOPs (see Section 12.3.4.5).
If regions are always spherical then the designers might be able to make
do with a “Radius” property in the property grid, but to defi ne or mod-
ify the extents of an arbitrarily shaped region, a special-case editing tool
is almost certainly required.

 Splines. A spline is a three-dimensional curve defi ned by a set of control
points and possibly tangent vectors at the points, depending on the type
of mathematical curve used. Catmull-Rom splines are commonly used
because they are fully defi ned by a set of control points (without tan-
gents) and the curve always passes through all of the control points. But
no matt er what type of splines are supported, the world editor typically
needs to provide the ability to display the splines in its viewports, and
the user must be able to select and manipulate individual control points.
Some world editors actually support two selection modes—a “coarse”
mode for selecting objects in the scene and a “fi ne” mode for select-
ing the individual components of a selected object, such as the control
points of a spline or the vertices of a region.

13.4.1.9. Saving and Loading World Chunks

Of course, no world editor would be complete if it were unable to load and
save world chunks . The granularity with which world chunks can be load-
ed and saved diff ers widely from engine to engine. Some engines store each
world chunk in a single fi le, while others allow individual layers to be loaded
and saved independently. Data formats also vary across engines. Some use
custom binary formats, others text formats like XML. Each design has its pros
and cons, but every editor provides the ability to load and save world chunks
in some form—and every game engine is capable of loading world chunks so
that they can be played at runtime.

13.4.1.10. Rapid Iteration

A good game world editor usually supports some degree of dynamic tweak-
ing for rapid iteration. Some editors run within the game itself, allowing the
user to see the eff ects of his or her changes immediately. Others provide a
live connection from the editor to the running game. Still other world editors
operate entirely off -line, either as a standalone tool or as a plug-in to a DCC
application like Lightwave or Maya. These tools sometimes permit modifi ed

707

data to be reloaded dynamically into the running game. The specifi c mecha-
nism isn’t important—all that matt ers is that users have a reasonably short
round-trip iteration time (i.e., the time between making a change to the game
world and seeing the eff ects of that change in-game). It’s important to realize
that iterations don’t have to be instantaneous. Iteration times should be com-
mensurate with the scope and frequency of the changes being made. For ex-
ample, we might expect tweaking a character’s maximum health to be a very
fast operation, but when making major changes to the lighting environment
for an entire world chunk, a much longer iteration time might be acceptable.

13.4.2. Integrated Asset Management Tools

In some engines, the game world editor is integrated with other aspects of
game asset database management, such as defi ning mesh and material prop-
erties, defi ning animations, blend trees, animation state machines, sett ing up
collision and physical properties of objects, managing texture resources, and
so on. (See Section 6.2.1.2 for a discussion of the game asset database.)

Perhaps the best-known example of this design in action is UnrealEd , the
editor used to create content for games built on the Unreal Engine. UnrealEd
is integrated directly into the game engine, so any changes made in the editor
are made directly to the dynamic elements in the running game. This makes
rapid iteration very easy to achieve. But UnrealEd is much more than a game
world editor—it is actually a complete content-creation package. It manages

Figure 13.7. UnrealEd’s Generic Browser provides access to the entire game asset database.

13.4. The Game World Editor

708 13. Introduction to Gameplay Systems

the entire database of game assets, from animations to audio clips to triangle
meshes to textures to materials and shaders and much more. UnrealEd pro-
vides its user with a unifi ed, real-time, WYSIWYG view into the entire asset
database, making it a powerful enabler of any rapid, effi cient game develop-
ment process. A few screen shots from UnrealEd are shown in Figure 13.7 and
Figure 13.8.

13.4.2.1. Data Processing Costs

In Section 6.2.1, we learned that the asset conditioning pipeline (ACP) con-
verts game assets from their various source formats into the formats required
by the game engine. This is typically a two-step process. First, the asset is
exported from the DCC application to a platform-independent intermediate
format that only contains the data that is relevant to the game. Second, the
asset is processed into a format that is optimized for a specifi c platform. On a
project targeting multiple gaming platforms, a single platform-independent
asset gives rise to multiple platform-specifi c assets during this second phase.

One of the key diff erences between tools pipelines is the point at which
this second platform-specifi c optimization step is performed. UnrealEd per-

Figure 13.8. UnrealEd also provides a world editor.

709

forms it when assets are fi rst imported into the editor. This approach pays off
in rapid iteration time when iterating on level design. However, it can make
the cost of changing source assets like meshes, animations, audio assets, and
so on more painful. Other engines like the Source engine and the Quake engine
pay the asset optimization cost when baking out the level prior to running the
game. Halo gives the user the option to change raw assets at any time; they are
converted into optimized form when they are fi rst loaded into the engine, and
the results are cached to prevent the optimization step from being performed
needlessly every time the game is run.

13.4. The Game World Editor

711

14
Runtime Gameplay

Foundation Systems

14.1. Components of the Gameplay
 Foundation System

Most game engines provide a suite of runtime soft ware components that
together provide a framework upon which a game’s unique rules, objec-

tives, and dynamic world elements can be constructed. There is no standard
name for these components within the game industry, but we will refer to them
collectively as the engine’s gameplay foundation system . If a line can reasonably
be drawn between the game engine and the game itself, then these systems
lie just beneath this line. In theory, one can construct gameplay foundation
systems that are for the most part game-agnostic. However, in practice, these
systems almost always contain genre- or game-specifi c details. In fact, the line
between the engine and the game can probably be best visualized as one big
blur—a gradient that arcs across these components as it links the engine to
the game. In some game engines, one might even go so far as to consider the
gameplay foundation systems as lying entirely above the engine-game line.
The diff erences between game engines are most acute when it comes to the
design and implementation of their gameplay components. That said, there
are a surprising number of common patt erns across engines, and those com-
monalities will be the topic of our discussions here.

712 14. Runtime Gameplay Foundation Systems

Every game engine approaches the problem of gameplay soft ware design
a bit diff erently. However, most engines provide the following major subsys-
tems in some form:

 Runtime game object model . This is an implementation of the abstract game
object model advertised to the game designers via the world editor .

 Level management and streaming . This system loads and unloads the
contents of the virtual worlds in which gameplay takes place. In many
engines, level data is streamed into memory during gameplay, thus
providing the illusion of a large seamless world (when in fact it is broken
into discrete chunks).

 Real-time object model updating . In order to permit the game objects
in the world to behave autonomously, each object must be updated
periodically. This is where all of the disparate systems in a game engine
truly come together into a cohesive whole.

 Messaging and event handling. Most game objects need to communicate
with one another. This is usually done via an abstract messaging system.
Inter-object messages oft en signal changes in the state of the game world
called events. So the messaging system is referred to as the event system
in many studios.

 Scripting . Programming high-level game logic in a language like C or
C++ can be cumbersome. To improve productivity, allow rapid iteration,
and put more power into the hands of the non-programmers on the
team, a scripting language is oft en integrated into the game engine.
This language might be text-based, like Python or Lua, or it might be a
graphical language, like Unreal’s Kismet.

 Objectives and game fl ow management. This subsystem manages the play-
er’s objectives and the overall fl ow of the game. This is usually described
by a sequence, tree, or graph of player objectives. Objectives are oft en
grouped into chapters, especially if the game is highly story-driven as
many modern games are. The game fl ow management system manages
the overall fl ow of the game, tracks the player’s accomplishment of ob-
jectives, and gates the player from one area of the game world to the
next as the objectives are accomplished. Some designers refer to this as
the “spine” of the game.

Of these major systems, the runtime object model is probably the most
complex. It typically provides most, if not all, of the following features:

 Spawning and destroying game objects dynamically. The dynamic elements
in a game world oft en need to come and go during gameplay. Health

713 14.1. Components of the Gameplay Foundation System

packs disappear once they have been picked up, explosions appear
and then dissipate, and enemy reinforcements mysteriously come from
around a corner just when you think you’ve cleared the level. Many
game engines provide a system for managing the memory and other re-
sources associated with dynamically spawned game objects. Other en-
gines simply disallow dynamic creation or destruction of game objects
altogether.

 Linkage to low-level engine systems . Every game object has some kind of
linkage to one or more underlying engine systems. Most game objects are
visually represented by renderable triangle meshes. Some have particle
eff ects. Many generate sounds. Some animate. Many have collision,
and some are dynamically simulated by the physics engine. One of the
primary responsibilities of the gameplay foundation system is to ensure
that every game object has access to the services of the engine systems
upon which it depends.

 Real-time simulation of object behaviors . At its core, a game engine is a real-
time dynamic computer simulation of an agent-based model. This is just
a fancy way of saying that the game engine needs to update the states
of all the game objects dynamically over time. The objects may need to
be updated in a very particular order, dictated in part by dependencies
between the objects, in part by their dependencies on various engine
subsystems, and in part because of the interdependencies between those
engine subsystems themselves.

 Ability to defi ne new game object types . Every game’s requirements change
and evolve as the game is developed. It’s important that the game object
model be fl exible enough to permit new object types to be added easily
and exposed to the world editor. In an ideal world, it should be possible
to defi ne a new type of object in an entirely data-driven manner.
However, in many engines, the services of a programmer are required
in order to add new game object types.

 Unique object ids . Typical game worlds contain hundreds or even
thousands of individual game objects of various types. At runtime, it’s
important to be able to identify or search for a particular object. This
means each object needs some kind of unique identifi er. A human-
readable name is the most convenient kind of id, but we must be wary
of the performance costs of using strings at runtime. Integer ids are
the most effi cient choice, but they are very diffi cult for human game
developers to work with. Arguably the best solution is to use hashed
string ids (see Section 5.4.3.1) as our object identifi ers, as they are as

714 14. Runtime Gameplay Foundation Systems

effi cient as integers but can be converted back into string form for ease
of reading.

 Game object queries . The gameplay foundation system must provide some
means of fi nding objects within the game world. We might want to fi nd
a specifi c object by its unique id, or all the objects of a particular type, or
we might want to perform advanced queries based on arbitrary criteria
(e.g., fi nd all enemies within a 20 meter radius of the player character).

 Game object references . Once we’ve found the objects, we need some
mechanism for holding references to them, either briefl y within a single
function or for much longer periods of time. An object reference might
be as simple as a pointer to a C++ class instance, or it might be something
more sophisticated, like a handle or a reference-counted smart pointer .

 Finite state machine support. Many types of game objects are best modeled
as fi nite state machines. Some game engines provide the ability for a
game object to exist in one of many possible states, each with its own
att ributes and behavioral characteristics.

 Network replication . In a networked multiplayer game, multiple game
machines are connected together via a LAN or the Internet. The state of
a particular game object is usually owned and managed by one machine.
However, that object’s state must also be replicated (communicated) to
the other machines involved in the multiplayer game so that all players
have a consistent view of the object.

 Saving and loading games / object persistence. Many game engines allow
the current states of the game objects in the world to be saved to disk
and later reloaded. This might be done to support a “save anywhere ”
save-game system or as a way of implementing network replication, or
it might simply be the primary means of loading game world chunks
that were authored in the world editor tool. Object persistence usually
requires certain language features, such as runtime type identifi cation
(RTTI), refl ection , and abstract construction . RTTI and refl ection provide
soft ware with a means of determining an object’s type, and what att ri-
butes and methods its class provides, dynamically at runtime. Abstract
construction allows instances of a class to be created without having
to hard-code the name of the class—a very useful feature when serial-
izing an object instance into memory from disk. If RTTI, refl ection, and
abstract construction are not natively supported in your language of
choice, these features can be added manually.

We’ll spend the remainder of this chapter delving into each of these subsys-
tems in depth.

715 14.2. Runtime Object Model Architectures

14.2. Runtime Object Model Architectures

In the world editor , the game designer is presented with an abstract game
object model, which defi nes the various types of dynamic elements that can
exist in the game, how they behave, and what kinds of att ributes they have.
At runtime, the gameplay foundation system must provide a concrete imple-
mentation of this object model. This is by far the largest component of any
gameplay foundation system.

The runtime object model implementation may or may not bear any re-
semblance to the abstract tool-side object model. For example, it might not be
implemented in an object-oriented programming language at all, or it might
use a collection of interconnected class instances to represent a single abstract
game object. Whatever its design, the runtime object model must provide a
faithful reproduction of the object types, att ributes, and behaviors advertised
by the world editor.

The runtime object model is the in-game manifestation of the abstract
tool-side object model presented to the designers in the world editor. Designs
vary widely, but most game engines follow one of two basic architectural
styles:

 Object-centric. In this style, each tool-side game object is represented at
runtime by a single class instance or a small collection of interconnected
instances. Each object has a set of att ributes and behaviors that are encap-
sulated within the class (or classes) of which the object is an instance.
The game world is just a collection of game objects.

 Property-centric. In this style, each tool-side game object is represented
only by a unique id (implemented as an integer, hashed string id, or
string). The properties of each game object are distributed across many
data tables, one per property type, and keyed by object id (rather than
being centralized within a single class instance or collection of inter-
connected instances). The properties themselves are oft en implemented
as instances of hard-coded classes. The behavior of a game object is im-
plicitly defi ned by the collection of properties from which it is com-
posed. For example, if an object has the “Health” property, then it can be
damaged, lose health, and eventually die. If an object has the “MeshIn-
stance” property, then it can be rendered in 3D as an instance of a tri-
angle mesh.

There are distinct advantages and disadvantages to each of these architec-
tural styles. We’ll investigate each one in some detail and note where one style
has signifi cant potential benefi ts over the other as they arise.

716 14. Runtime Gameplay Foundation Systems

14.2.1. Object-Centric Architectures

In an object-centric game world object architecture, each logical game object
is implemented as an instance of a class, or possibly a collection of intercon-
nected class instances. Under this broad umbrella, many diff erent designs are
possible. We’ll investigate a few of the most common designs in the following
sections.

14.2.1.1. A Simple Object-Based Model in C: Hydro Thunder

Game object models needn’t be implemented in an object-oriented language
like C++ at all. For example, the arcade hit Hydro Thunder , by Midway Home
Entertainment in San Diego, was writt en entirely in C. Hydro employed a very
simple game object model consisting of only a few object types:

 boats (player- and AI -controlled),
 fl oating blue and red boost icons,
 ambient animated objects (animals on the side of the track, etc.),
 the water surface,
 ramps,
 waterfalls,
 particle e ff ects,
 race track sectors (two-dimensional polygonal regions connected to one

another and together defi ning the watery region in which boats could
race),

 static geometry (terrain , foliage, buildings along the sides of the track,
etc.),

 two-dimensional heads-up display (HUD) elements.

A few screen shots of Hydro Thunder are shown in Figure 14.1. Notice the hov-
ering boost icons in both screen shots and the shark swimming by in the left
image (an example of an ambient animated object).

Hydro had a C struct named World_t that stored and managed the con-
tents of a game world (i.e., a single race track). The world contained pointers
to arrays of various kinds of game objects. The static geometry was a single
mesh instance. The water surface, waterfalls, and particle eff ects were each
represented by custom data structures. The boats, boost icons, and other dy-
namic objects in the game were represented by instances of a general-purpose
struct called WorldOb_t (i.e., a world object). This was Hydro’s equivalent of
a game object as we’ve defi ned it in this chapter.

The WorldOb_t data structure contained data members encoding the po-
sition and orientation of the object, the 3D mesh used to render it, a set of colli-

717

sion spheres, simple animation state information (Hydro only supported rigid
hierarchical animation), physical properties like velocity, mass, and buoyancy,
and other data common to all of the dynamic objects in the game. In addi-
tion, each WorldOb_t contained three pointers: a void* “user data” pointer,
a pointer to a custom “update” function, and a pointer to a custom “draw”
function. So while Hydro Thunder was not object-oriented in the strictest sense,
the Hydro engine did extend its non-object-oriented language (C) to support
rudimentary implementations of two important OOP features: inheritance and
polymorphism. The user data pointer permitt ed each type of game object to
maintain custom state information specifi c to its type while inheriting the fea-
tures common to all world objects. For example, the Banshee boat had a dif-
ferent booster mechanism than the Rad Hazard, and each booster mechanism
required diff erent state information to manage its deployment and stowing
animations. The two function pointers acted like virtual functions, allowing
world objects to have polymorphic behaviors (via their “update” functions)
and polymorphic visual appearances (via their “draw” functions).

struct WorldOb_s
{
 Orient_t m_transform; /* position/rotation */

 Mesh3d* m_pMesh; /* 3D mesh */

 /* ... */
 void* m_pUserData; /* custom state */

 void (*m_pUpdate)(); /* polymorphic update */
 void (*m_pDraw)(); /* polymorphic draw */

Figure 14.1. Screen shots from the arcade smash Hydro Thunder, developed by Midway Home
Entertainment in San Diego.

14.2. Runtime Object Model Architectures

718 14. Runtime Gameplay Foundation Systems

};
typedef struct WorldOb_s WorldOb_t;

14.2.1.2. Monolithic Class Hierarchies

It’s natural to want to classify game object types taxonomically. This tends to
lead game programmers toward an object-oriented language that supports
inheritance. A class hierarchy is the most intuitive and straightforward way to
represent a collection of interrelated game object types. So it is not surprising
that the majority of commercial game engines employ a class hierarchy based
technique.

Figure 14.2 shows a simple class hierarchy that could be used to imple-
ment the game Pac-Man. This hierarchy is rooted (as many are) at a common
class called GameObject, which might provide some facilities needed by all
object types, such as RTTI or serialization. The MovableObject class repre-
sents any object that has a position and orientation. RenderableObject gives
the object an ability to be rendered (in the case of traditional Pac-Man, via a
sprite, or in the case of a modern 3D Pac-Man game, perhaps via a triangle
mesh). From RenderableObject are derived classes for the ghosts, Pac-Man,
pellets, and power pills that make up the game. This is just a hypothetical
example, but it illustrates the basic ideas that underlie most game object class
hierarchies—namely that common, generic functionality tends to exist at the
root of the hierarchy, while classes toward the leaves of the hierarchy tend to
add increasingly specifi c functionality.

Figure 14.2. A hypothetical class hierarchy for the game Pac-Man.

GameObject

MovableObject

RenderableObject

PacMan Ghost

PowerPellet

Pellet ...

...

...

719

A game object class hierarchy usually begins small and simple, and in
that form, it can be a powerful and intuitive way to describe a collection of
game object types. However, as class hierarchies grow, they have a tendency
to deepen and widen simultaneously, leading to what I call a monolithic class
hierarchy . This kind of hierarchy arises when virtually all classes in the game
object model inherit from a single, common base class. The Unreal Engine’s
game object model is a classic example, as Figure 14.3 illustrates.

14.2.1.3. Problems with Deep, Wide Hierarchies

Monolithic class hierarchies tend to cause problems for the game develop-
ment team for a wide range of reasons. The deeper and wider a class hierarchy
grows, the more extreme these problems can become. In the following sec-
tions, we’ll explore some of the most common problems caused by wide, deep
class hierarchies.

Actor

Brush

Controller

AIController

PlayerController

Info

GameInfo

Pawn

Vehicle

UnrealPawn

RedeemerWarhead

Scout

Light

Inventory

Ammunition

Powerups

Weapon

HUD

Pickup

Ammo

ArmorPickup

WeaponPickup

...

...

...
...

...

...

... ...

...

Figure 14.3. An excerpt from the game object class hierarchy from Unreal Tournament 2004.

14.2. Runtime Object Model Architectures

720 14. Runtime Gameplay Foundation Systems

Understanding, Maintaining, and Modifying Classes

The deeper a class lies within a class hierarchy, the harder it is to understand,
maintain, and modify. This is because to understand a class, you really need to
understand all of its parent classes as well. For example, modifying the behav-
ior of an innocuous-looking virtual function in a derived class could violate
the assumptions made by any one of the many base classes, leading to subtle,
diffi cult-to-fi nd bugs.

Inability to Describe Multidimensional Taxonomies

A hierarchy inherently classifi es objects according to a particular system of
criteria known as a taxonomy . For example, biological taxonomy (also known
as alpha taxonomy) classifi es all living things according to genetic similarities,
using a tree with eight levels: domain, kingdom, phylum, class, order, family,
genus, and species. At each level of the tree, a diff erent criterion is used to di-
vide the myriad life forms on our planet into more and more refi ned groups.

One of the biggest problems with any hierarchy is that it can only classify
objects along a single “axis”—according to one particular set of criteria—at
each level of the tree. Once the criteria have been chosen for a particular hier-
archy, it becomes diffi cult or impossible to classify along an entirely diff erent
set of “axes.” For example, biological taxonomy classifi es objects according to
genetic traits, but it says nothing about the colors of the organisms. In order to
classify organisms by color, we’d need an entirely diff erent tree structure.

In object-oriented programming, this limitation of hierarchical classifi ca-
tion oft en manifests itself in the form of wide, deep, and confusing class hier-
archies. When one analyzes a real game’s class hierarchy, one oft en fi nds that
its structure att empts to meld a number of diff erent classifi cation criteria into
a single class tree. In other cases, concessions are made in the class hierarchy
to accommodate a new type of object whose characteristics were not antici-
pated when the hierarchy was fi rst designed. For example, imagine the seem-

Vehicle

Motorcycle SpeedBoat

Car Truck HovercraftYacht

LandVehicle WaterVehicle

Figure 14.4. A seemingly logical class hierarchy describing various kinds of vehicles.

721

ingly logical class hierarchy describing diff erent types of vehicles, depicted in
Figure 14.4.

What happens when the game designers announce to the programmers
that they now want the game to include an amphibious vehicle? Such a vehicle
does not fi t into the existing taxonomic system. This may cause the program-
mers to panic or, more likely, to “hack” their class hierarchy in various ugly
and error-prone ways.

Multiple Inheritance: The Deadly Diamond

One solution to the amphibious vehicle problem is to utilize C++’s multiple
inheritance (MI) features, as shown in Figure 14.5. At fi rst glance, this seems
like a good solution. However, multiple inheritance in C++ poses a number
of practical problems. For example, multiple inheritance can lead to an object
that contains multiple copies of its base class’s members—a condition known
as the “deadly diamond ” or “diamond of death.” (See Section 3.1.1.3 for more
details.)

The diffi culties in building an MI class hierarchy that works and that is
understandable and maintainable usually outweigh the benefi ts. As a result,
most game studios prohibit or severely limit the use of multiple inheritance in
their class hierarchies.

Vehicle

AmphibiousVehicle

LandVehicle WaterVehicle

Figure 14.5. A diamond-shaped class hierarchy for amphibious vehicles.

Mix-In Classes

Some teams do permit a limited form of MI, in which a class may have any
number of parent classes but only one grandparent. In other words, a class
may inherit from one and only one class in the main inheritance hierarchy,
but it may also inherit from any number of mix-in classes (stand-alone classes
with no base class). This permits common functionality to be factored out into
a mix-in class and then spot-patched into the main hierarchy wherever it is
needed. This is shown in Figure 14.6. However, as we’ll see below, it’s usually
bett er to compose or aggregate such classes than to inherit from them.

14.2. Runtime Object Model Architectures

722 14. Runtime Gameplay Foundation Systems

The Bubble-Up Effect

When a monolithic class hierarchy is fi rst designed, the root class(es) are usu-
ally very simple, each one exposing only a minimal feature set. However, as
more and more functionality is added to the game, the desire to share code
between two or more unrelated classes begins to cause features to “bubble up ”
the hierarchy.

For example, we might start out with a design in which only wooden
crates can fl oat in water. However, once our game designers see those cool
fl oating crates, they begin to ask for other kinds of fl oating objects, like charac-
ters, bits of paper, vehicles, and so on. Because “fl oating versus non-fl oating”
was not one of the original classifi cation criteria when the hierarchy was de-
signed, the programmers quickly discover the need to add fl otation to classes
that are totally unrelated within the class hierarchy. Multiple inheritance is
frowned upon, so the programmers decide to move the fl otation code up the
hierarchy, into a base class that is common to all objects that need to fl oat. The
fact that some of the classes that derive from this common base class cannot
fl oat is seen as less of a problem than duplicating the fl otation code across mul-
tiple classes. (A Boolean member variable called something like m_bCanFloat
might even be added to make the distinction clear.) The ultimate result is that
fl otation eventually becomes a feature of the root object in the class hierarchy
(along with prett y much every other feature in the game).

The Actor class in Unreal is a classic example of this “bubble-up eff ect.” It
contains data members and code for managing rendering, animation, physics,
world interaction, audio eff ects, network replication for multiplayer games,

GameObject

+GetHealth()
+ApplyDamage()
+IsDead()
+OnDeath()

MHealth +PickUp()
+Drop()
+IsBeingCarried()

MCarryable

NPCPlayer Tank Jeep Pistol MG Canteen Ammo

Character Vehicle Weapon Item

Figure 14.6. A class hierarchy with mix-in classes. The MHealth mix-in class adds the notion
of health and the ability to be killed to any class that inherits it. The MCarryable mix-in class
allows an object that inherits it to be carried by a Character.

723

object creation and destruction, actor iteration (i.e., the ability to iterate over
all actors meeting a certain criteria and perform some operation on them),
and message broadcasting. Encapsulating the functionality of various engine
subsystems is diffi cult when features are permitt ed to “bubble up” to the root-
most classes in a monolithic class hierarchy.

14.2.1.4. Using Composition to Simplify the Hierarchy

Perhaps the most prevalent cause of monolithic class hierarchies is over-use
of the “is-a” relationship in object-oriented design. For example, in a game’s
GUI, a programmer might decide to derive the class Window from a class
called Rectangle, using the logic that GUI windows are always rectangular.
However, a window is not a rectangle—it has a rectangle, which defi nes its
boundary. So a more workable solution to this particular design problem is to
embed an instance of the Rectangle class inside the Window class, or to give
the Window a pointer or reference to a Rectangle.

In object-oriented design, the “has-a” relationship is known as composi-
tion . In composition, a class A either contains an instance of class B directly, or
contains a pointer or reference to an instance of B. Strictly speaking, in order for
the term “composition” to be applicable, class A must own class B. This means
that when an instance of class A is created, it automatically creates an instance
of class B as well; when that instance of A is destroyed, its instance of B is de-
stroyed, too. We can also link classes to one another via a pointer or reference
without having one of the classes manage the other’s lifetime . In that case, the
technique is usually called aggregation .

Converting Is-A to Has-A

Converting “is-a” relationships into “has-a” relationships can be a useful tech-
nique for reducing the width, depth, and complexity of a game’s class hier-
archy. To illustrate, let’s take a look at the hypothetical monolithic hierarchy
shown in Figure 14.7. The root GameObject class provides some basic func-
tionality required by all game objects (e.g., RTTI, refl ection, persistence via
serialization, network replication, etc.). The MovableObject class represents
any game object that has a transform (i.e., a position, orientation, and optional
scale). RenderableObject adds the ability to be rendered on-screen. (Not all
game objects need to be rendered—for example, an invisible TriggerRegion
class could be derived directly from MovableObject.) The Collidable
Object class provides collision information to its instances. The Animating
Object class grants to its instances the ability to be animated via a skeletal
joint hierarchy. Finally, the PhysicalObject gives its instances the ability to
be physically simulated (e.g., a rigid body falling under the infl uence of grav-
ity and bouncing around in the game world).

14.2. Runtime Object Model Architectures

724 14. Runtime Gameplay Foundation Systems

One big problem with this class hierarchy is that it limits our design
choices when creating new types of game objects. If we want to defi ne an
object type that is physically simulated, we are forced to derive its class from
PhysicalObject even though it may not require skeletal animation. If we
want a game object class with collision, it must inherit from Collidable even
though it may be invisible and hence not require the services of Renderable.

A second problem with the hierarchy shown in Figure 14.7 is that it is
diffi cult to extend the functionality of the existing classes. For example, let’s
imagine we want to support morph target animation, so we derive two new
classes from AnimatingObject called SkeletalObject and MorphTarget
Object. If we wanted both of these new classes to have the ability to be physi-
cally simulated, we’d be forced to re-factor PhysicalObject into two nearly-
identical classes, one derived from SkeletalObject and one from Morph
TargetObject, or turn to multiple inheritance.

One solution to these problems is to isolate the various features of a
GameObject into independent classes, each of which provides a single, well-
defi ned service. Such classes are sometimes called components or service objects.
A componentized design allows us to select only those features we need for
each type of game object we create. In addition, it permits each feature to be
maintained, extended, or re-factored without aff ecting the others. The indi-
vidual components are also easier to understand, and easier to test, because
they are decoupled from one another. Some component classes correspond
directly to a single engine subsystem, such as rendering, animation, collision,
physics, audio, etc. This allows these subsystems to remain distinct and well-

GameObject

MovableObject

RenderableObject

CollidableObject

AnimatingObject

PhysicalObject

Figure 14.7. A hypo-
thetical game object
class hierarchy us-
ing only inheritance
to associate the
classes.

Figure 14.8. Our hypothetical game object class hierarchy, re-factored to favor class composi-
tion over inheritance.

GameObject

Transform

MeshInstance AnimationController

RigidBody

1

1

1 1
1

1

11

725

encapsulated when they are integrated together for use by a particular game
object.

Figure 14.8 shows how our class hierarchy might look aft er re-factoring
it into components. In this revised design, the GameObject class acts like a
hub, containing pointers to each of the optional components we’ve defi ned.
The MeshInstance component is our replacement for the Renderable
Object class—it represents an instance of a triangle mesh and encapsulates
the knowledge of how to render it. Likewise, the AnimationController
component replaces AnimatingObject, exposing skeletal animation services
to the GameObject. Class Transform replaces MovableObject by maintain-
ing the position, orientation, and scale of the object. The RigidBody class rep-
resents the collision geometry of a game object and provides its GameObject
with an interface into the low-level collision and physics systems, replacing
CollidableObject and PhysicsObject.

Component Creation and Ownership

 In this kind of design, it is typical for the “hub” class to own its components,
meaning that it manages their lifetimes . But how should a GameObject “know”
which components to create? There are numerous ways to solve this problem,
but one of the simplest is provide the root GameObject class with pointers
to all possible components. Each unique type of game object is defi ned as a
derived class of GameObject. In the GameObject constructor, all of the com-
ponent pointers are initially set to NULL. Each derived class’s constructor is
then free to create whatever components it may need. For convenience, the
default GameObject destructor can clean up all of the components automati-
cally. In this design, the hierarchy of classes derived from GameObject serves
as the primary taxonomy for the kinds of objects we want in our game, and the
component classes serve as optional add-on features.

One possible implementation of the component creation and destruction
logic for this kind of hierarchy is shown below. However, it’s important to
realize that this code is just an example—implementation details vary widely,
even between engines that employ essentially the same kind of class hierarchy
design.

class GameObject
{
protected:

 // My transform (position, rotation, scale).
 Transform m_transform;

 // Standard components:
 MeshInstance* m_pMeshInst;

14.2. Runtime Object Model Architectures

726 14. Runtime Gameplay Foundation Systems

 AnimationController* m_pAnimController;

 RigidBody* m_pRigidBody;

public:

GameObject()
 {
 // Assume no components by default. Derived
 // classes will override.
 m_pMeshInst = NULL;

 m_pAnimController = NULL;

 m_pRigidBody = NULL;
 }

~GameObject()
 {
 // Automatically delete any components created by
 // derived classes.
 delete m_pMeshInst;

 delete m_pAnimController;

 delete m_pRigidBody;
 }

 // ...
};

class Vehicle : public GameObject
{
protected:
 // Add some more components specific to Vehicles...
 Chassis* m_pChassis;
 Engine* m_pEngine;

 // ...

public:

Vehicle()
 {
 // Construct standard GameObject components.
 m_pMeshInst = new MeshInstance;

 m_pRigidBody = new RigidBody;

 // NOTE: We’ll assume the animation controller
 // must be provided with a reference to the mesh
 // instance so that it can provide it with a
 // matrix palette.
 m_pAnimController
 = new AnimationController(*m_pMeshInst);

727

 // Construct vehicle-specific components.
 m_pChassis = new Chassis(*this,
 *m_pAnimController);
 m_pEngine = new Engine(*this);

 }

~Vehicle()
 {
 // Only need to destroy vehicle-specific
 // components, as GameObject cleans up the
 // standard components for us.
 delete m_pChassis;

 delete m_pEngine;
 }
};

14.2.1.5. Generic Components

 Another more-fl exible (but also trickier to implement) alternative is to provide
the root game object class with a generic linked list of components. The com-
ponents in such a design usually all derive from a common base class—this
allows us to iterate over the linked list and perform polymorphic operations,
such as asking each component what type it is or passing an event to each
component in turn for possible handling. This design allows the root game
object class to be largely oblivious to the component types that are available
and thereby permits new types of components to be created without modify-
ing the game object class in many cases. It also allows a particular game object
to contain an arbitrary number of instances of each type of component. (The

GameObject

Transform

MeshInstance

AnimationController

RigidBody

+GetType()
+IsType()
+ReceiveEvent()
+Update()

Component

1 *

Asterisk indicates zero
or more instances
(e.g., linked list).

Figure 14.9. A linked list of components can provide fl exibility by allowing the hub game ob-
ject to be unaware of the details of any particular component.

14.2. Runtime Object Model Architectures

728 14. Runtime Gameplay Foundation Systems

hard-coded design permitt ed only a fi xed number, determined by how many
pointers to each component existed within the game object class.)

This kind of design is illustrated in Figure 14.9. It is trickier to implement
than a hard-coded component model because the game object code must be
writt en in a totally generic way. The component classes can likewise make no
assumptions about what other components might or might not exist within
the context of a particular game object. The choice between hard-coding the
component pointers or using a generic linked list of components is not an easy
one to make. Neither design is clearly superior—they each have their pros and
cons, and diff erent game teams take diff erent approaches.

14.2.1.6. Pure Component Models

 What would happen if we were to take the componentization concept to
its extreme? We would move literally all of the functionality out of our root
GameObject class into various component classes. At this point, the game ob-
ject class would quite literally be a behavior-less container, with a unique id
and a bunch of pointers to its components, but otherwise containing no logic
of its own. So why not eliminate the class entirely? One way to do this is to
give each component a copy of the game object’s unique id. The components
are now linked together into a logical grouping by id. Given a way to quickly
look up any component by id, we would no longer need the GameObject
“hub” class at all. I will use the term pure component model to describe this kind
of architecture. It is illustrated in Figure 14.10.

A pure component model is not quite as simple as it fi rst sounds, and it
is not without its share of problems. For one thing, we still need some way
of defi ning the various concrete types of game objects our game needs and
then arranging for the correct component classes to be instantiated whenever

Figure 14.10. In a pure component model, a logical game object is comprised of many compo-
nents, but the components are linked together only indirectly, by sharing a unique id.

-m_uniqueId : int = 72
GameObject

-m_uniqueId : int = 72
Transform

-m_uniqueId : int = 72
MeshInstance

-m_uniqueId : int = 72
AnimationController

-m_uniqueId : int = 72
RigidBody

729

an instance of the type is created. Our GameObject hierarchy used to handle
construction of components for us. Instead, we might use a factory patt ern,
in which we defi ne factory classes, one per game object type, with a virtual
construction function that is overridden to create the proper components for
each game object type. Or we might turn to a data-driven model, where the
game object types are defi ned in a text fi le that can be parsed by the engine
and consulted whenever a type is instantiated.

Another issue with a components-only design is inter-component com-
munication. Our central GameObject acted as a “hub,” marshalling commu-
nications between the various components. In pure component architectures,
we need an effi cient way for the components making up a single game object
to talk to one another. This could be done by having each component look up
the other components using the game object’s unique id. However, we prob-
ably want a much more effi cient mechanism—for example the components
could be prewired into a circular linked list.

In the same sense, sending messages from one game object to another
is diffi cult in a pure componentized model. We can no longer communicate
with the GameObject instance, so we either need to know a priori with which
component we wish to communicate, or we must multicast to all components
that make up the game object in question. Neither option is ideal.

Pure component models can and have been made to work on real game
projects. These kinds of models have their pros and cons, but again, they are
not clearly bett er than any of the alternative designs. Unless you’re part of a
research and development eff ort, you should probably choose the architecture
with which you are most comfortable and confi dent, and which best fi ts the
needs of the particular game you are building.

14.2.2. Property-Centric Architectures

Programmers who work frequently in an object-oriented programming lan-
guage tend to think naturally in terms of objects that contain att ributes (data
members) and behaviors (methods, member functions). This is the object-cen-
tric view:

 Object1

Position = (0, 3, 15) □

Orientation = (0, 43, 0) □

 Object2

Position = (–12, 0, 8) □

Health = 15 □

14.2. Runtime Object Model Architectures

730 14. Runtime Gameplay Foundation Systems

 Object3

Orientation = (0, –87, 10) □

However, it is possible to think primarily in terms of the att ributes, rather
than the objects. We defi ne the set of all properties that a game object might
have. Then for each property, we build a table containing the values of that
property corresponding to each game object that has it. The property values
are keyed by the objects’ unique ids. This is what we will call the property-
centric vi ew:

 Position

Object1 = (0, 3, 15) □

Object2 = (–12, 0, 8) □

 Orientation

Object1 = (0, 43, 0) □

Object3 = (0, –87, 10) □

 Health

Object2 = 15 □

Property-centric object models have been used very successfully on many
commercial games, including Deus Ex 2 and the Thief series of games. See Sec-
tion 14.2.2.5 for more details on exactly how these projects designed their ob-
ject systems.

A property-centric design is more akin to a relational database than an
object model. Each att ribute acts like a column in a database table (or a stand-
alone table), with the game objects’ unique id as the primary key. Of course, in
object-oriented design, an object is defi ned not only by its att ributes, but also
by its behavior. If all we have are tables of properties, then where do we imple-
ment the behavior? The answer to this question varies somewhat from engine
to engine, but most oft en the behaviors are implemented in one or both of the
following places:

 in the properties themselves, and/or

 via script code.

Let’s explore each of these ideas further.

14.2.2.1. Implementing Behavior via Property Classes

Each type of property can be implemented as a property class. Properties can be
as simple as a single Boolean or fl oating-point value or as complex as a render-
able triangle mesh or an AI “brain.” Each property class can provide behav-
iors via its hard-coded methods (member functions). The overall behavior of

731

a particular game object is determined by the aggregation of the behaviors of
all its properties.

For example, if a game object contains an instance of the Health property,
it can be damaged and eventually destroyed or killed. The Health object can
respond to any att acks made on the game object by decrementing the object’s
health level appropriately. A property object can also communicate with other
property objects within the same game object to produce cooperative behav-
iors. For example, when the Health property detects and responds to an at-
tack, it could possibly send a message to the AnimatedSkeleton property,
thereby allowing the game object to play a suitable hit reaction animation.
Similarly, when the Health property detects that the game object is about to
die or be destroyed, it can talk to the RigidBodyDynamics property to acti-
vate a physics-driven explosion or a “rag doll” dead body simulation.

14.2.2.2. Implementing Behavior via Script

Another option is to store the property values as raw data in one or more data-
base-like tables and use script code to implement a game object’s behaviors. Ev-
ery game object could have a special property called something like ScriptId,
which, if present, specifi es the block of script code (script function, or script
object if the scripting language is itself object-oriented) that will manage the ob-
ject’s behavior. Script code could also be used to allow a game object to respond
to events that occur within the game world. See Section 14.7 for more details on
event systems and Section 14.8 for a discussion of game scripting languages.

In some property-centric engines, a core set of hard-coded property classes
are provided by the engineers, but a facility is provided allowing game design-
ers and programmers to implement new property types entirely in script. This
approach was used successfully on the Dungeon Siege project, for example.

14.2.2.3. Properties versus Components

It’s important to note that many of the authors cited in Section 14.2.2.5 use the
term “component” to refer to what I call a “property object ” here. In Section
14.2.1.4, I used the term “component” to refer to a subobject in an object-cen-
tric design, which isn’t quite the same as a property object.

However, property objects are very closely related to components in many
ways. In both designs, a single logical game object is made up of multiple sub-
objects. The main distinction lies in the roles of the subobjects. In a property-
centric design, each subobject defi nes a particular att ribute of the game object
itself (e.g., health, visual representation, inventory, a particular magic power,
etc.), whereas in a component-based (object-centric) design, the subobjects of-
ten represent linkages to particular low-level engine subsystems (renderer,
animation, collision and dynamics, etc.) This distinction is so subtle as to be

14.2. Runtime Object Model Architectures

732 14. Runtime Gameplay Foundation Systems

virtually irrelevant in many cases. You can call your design a pure component
model (Section 14.2.1.6) or a property-centric design as you see fi t, but at the end
of the day, you’ll have essentially the same result—a logical game object that is
comprised of, and derives its behavior from, a collection of subobjects.

14.2.2.4. Pros and Cons of Property-Centric Designs

 There are a number of potential benefi ts to an att ribute-centric approach.
It tends to be more memory effi cient, because we need only store att ribute
data that is actually in use (i.e., there are never game objects with unused
data members). It is also easier to construct such a model in a data-driven
manner—designers can defi ne new att ributes easily, without recompiling the
game, because there are no game object class defi nitions to be changed. Pro-
grammers need only get involved when entirely new types of properties need
to be added (presuming the property cannot be added via script).

A property-centric design can also be more cache-friendly than an object-
centric model, because data of the same type is stored contiguously in memory.
This is a commonplace optimization technique on modern gaming hardware,
where the cost of accessing memory is far higher than the cost of executing
instructions and performing calculations. (For example, on the PLAYSTA-
TION 3, the cost of a single cache miss is equivalent to the cost of executing lit-
erally thousands of CPU instructions.) By storing data contiguously in RAM,
we can reduce or eliminate cache misses, because when we access one element
of a data array, a large number of its neighboring elements are loaded into the
same cache line. This approach to data design is sometimes called the struct of
arrays technique, in contrast to the more-traditional array of structs approach.
The diff erences between these two memory layouts are illustrated by the code
snippet below. (Note that we wouldn’t really implement a game object model
in exactly this way—this example is meant only to illustrate the way in which
a property-centric design tends to produce many contiguous arrays of like-
typed data, rather than a single array of complex objects.)

static const U32 MAX_GAME_OBJECTS = 1024;

// Traditional array-of-structs approach.

struct GameObject
{
 U32 m_uniqueId;
 Vector m_pos;
 Quaternion m_rot;
 float m_health;
 // ...
};
GameObject g_aAllGameObjects[MAX_GAME_OBJECTS];

733

// Cache-friendlier struct-of-arrays approach.

struct AllGameObjects
{
 U32 m_aUniqueId [MAX_GAME_OBJECTS];
 Vector m_aPos [MAX_GAME_OBJECTS];
 Quaternion m_aRot [MAX_GAME_OBJECTS];
 float m_aHealth [MAX_GAME_OBJECTS];
 // ...
};
AllGameObjects g_allGameObjects;

Att ribute-centric models have their share of problems as well. For ex-
ample, when a game object is just a grab bag of properties, it becomes much
more diffi cult to enforce relationships between those properties. It can be hard
to implement a desired large-scale behavior merely by cobbling together the
fi ne-grained behaviors of a group of property objects. It’s also much trickier
to debug such systems, as the programmer cannot slap a game object into
the watch window in the debugger in order to inspect all of its properties at
once.

14.2.2.5. Further Reading

A number of interesting PowerPoint presentations on the topic of property-
centric architectures have been given by prominent engineers in the game
industry at various game development conferences. You should be able to
access them by visiting the following URLs:

 Rob Fermier, “Creating a Data Driven Engine,” Game Developer’s Con-
ference, 2002. htt p://www.gamasutra.com/features/gdcarchive/2002/
rob_fermier.ppt.

 Scott Bilas, “A Data-Driven Game Object System,” Game Developer’s
Conference, 2002. htt p://www.drizzle.com/~scott b/gdc/game-objects.
ppt.

 Alex Duran, “Building Object Systems: Features, Tradeoff s, and
Pitfalls,” Game Developer’s Conference, 2003. htt p://www.gamasutra.
com/features/gdcarchive/2003/Duran_Alex.ppt.

 Jeremy Chatelaine, “Enabling Data Driven Tuning via Existing Tools,”
Game Developer’s Conference, 2003. htt p://www.gamasutra.com/
features/gdcarchive/2003/Chatelaine_Jeremy.ppt.

 Doug Church, “Object Systems,” presented at a game development con-
ference in Seoul, Korea, 2003; conference organized by Chris Hecker,
Casey Muratori, Jon Blow, and Doug Church. htt p://chrishecker.com/
images/6/6f/ObjSys.ppt.

14.2. Runtime Object Model Architectures

http://www.gamasutra.com/features/gdcarchive/2002/
http://www.drizzle.com/~scott
http://www.gamasutra
http://www.gamasutra.com/

734 14. Runtime Gameplay Foundation Systems

14.3. World Chunk Data Formats

 As we’ve seen, a world chunk generally contains both static and dynamic
world elements . The static geometry might be represented by one big triangle
mesh, or it might be comprised of many smaller meshes. Each mesh might be
instanced multiple times—for example, a single door mesh might be re-used
for all of the doorways in the chunk. The static data usually includes colli-
sion information stored as a triangle soup , a collection of convex shapes, and/
or other simpler geometric shapes like planes, boxes, capsules, or spheres.
Other static elements include volumetric regions that can be used to detect
events or delineate areas within the game world, an AI navigation mesh, a set
of line segments delineating edges within the background geometry that can
be grabbed by the player character, and so on. We won’t get into the details
of these data formats here, because we’ve already discussed most of them in
previous chapters.

The dynamic portion of the world chunk contains some kind of repre-
sentation of the game objects within that chunk. A game object is defi ned by
its att ributes and its behaviors, and an object’s behaviors are determined either
directly or indirectly by its type. In an object-centric design, the object’s type
directly determines which class(es) to instantiate in order to represent the ob-
ject at runtime. In a property-centric design, a game object’s behavior is deter-
mined by the amalgamation of the behaviors of its properties, but the type still
determines which properties the object should have (or one might say that an
object’s properties defi ne its type). So, for each game object, a world chunk
data fi le generally contains:

 The initial values of the object’s att ributes. The world chunk defi nes the
state of each game object as it should exist when fi rst spawned into the
game world. An object’s att ribute data can be stored in a number of dif-
ferent formats. We’ll explore a few popular formats below.

 Some kind of specifi cation of the object’s type. In an object-centric engine,
this might be a string, a hashed string id, or some other unique type id.
In a property-centric design, the type might be stored explicitly, or it
might be defi ned implicitly by the collection of properties/att ributes of
which the object is comprised.

14.3.1. Binary Object Images

One way to store a collection of game objects into a disk fi le is to write a binary
image of each object into the fi le, exactly as it looks in memory at runtime.
This makes spawning game objects trivial. Once the game world chunk has

735

been loaded into memory, we have ready-made images of all our objects, so
we simply let them fl y.

Well, not quite. Storing binary images of “live” C++ class instances is
problematic for a number of reasons, including the need to handle pointers
and virtual tables in a special way, and the possibility of having to endian-
swap the data within each class instance. (These techniques are described in
detail in Section 6.2.2.9.) Moreover, binary object images are infl exible and not
robust to making changes. Gameplay is one of the most dynamic and unstable
aspects of any game project, so it is wise to select a data format that supports
rapid development and is robust to frequent changes. As such, the binary ob-
ject image format is not usually a good choice for storing game object data
(although this format can be suitable for more stable data structures, like mesh
data or collision geometry).

14.3.2. Serialized Game Object Descriptions

Serialization is another means of storing a representation of a game object’s in-
ternal state to a disk fi le. This approach tends to be more portable and simpler
to implement than the binary object image technique. To serialize an object out
to disk, the object is asked to produce a stream of data that contains enough
detail to permit the original object to be reconstructed later. When an object is
serialized back into memory from disk, an instance of the appropriate class is
created, and then the stream of att ribute data is read in order to initialize the
new object’s internal state. If the original serialized data stream was complete,
the new object should be identical to the original for all intents and purposes.

Serialization is supported natively by some programming languages. For
example, C# and Java both provide standardized mechanisms for serializing
object instances to and from an XML text format. The C++ language unfortu-
nately does not provide a standardized serialization facility. However, many
C++ serialization systems have been successfully built, both inside and out-
side the game industry. We won’t get into all the details of how to write a C++
object serialization system here, but we’ll describe the data format and a few
of the main systems that need to be writt en in order to get serialization to
work in C++.

Serialization data isn’t a binary image of the object. Instead, it is usually
stored in a more-convenient and more-portable format. XML is a popular for-
mat for object serialization because it is well-supported and standardized, it is
somewhat human-readable, and it has excellent support for hierarchical data
structures, which arise frequently when serializing collections of interrelated
game objects. Unfortunately, XML is notoriously slow to parse, which can
increase world chunk load times. For this reason, some game engines use a

14.3. World Chunk Data Formats

736 14. Runtime Gameplay Foundation Systems

proprietary binary format that is faster to parse and more compact than XML
text.

The mechanics of serializing an object to and from disk are usually imple-
mented in one of two basic ways:

 We can introduce a pair of virtual functions called something like
SerializeOut() and SerializeIn() in our base class and arrange
for each derived class to provide custom implementations of them that
“know” how to serialize the att ributes of that particular class.

 We can implement a refl ection system for our C++ classes. We can then
write a generic system that can automatically serialize any C++ object
for which refl ection information is available.

Refl ection is a term used by the C# language, among others. In a nutshell,
refl ection data is a runtime description of the contents of a class. It stores infor-
mation about the name of the class, what data members it contains, the types
of each data member, and the off set of each member within the object’s mem-
ory image, and it also contains information about all of the class’s member
functions. Given refl ection information for an arbitrary C++ class, we could
quite easily write a general-purpose object serialization system.

The tricky part of a C++ refl ection system is generating the refl ection data
for all of the relevant classes. This can be done by encapsulating a class’s data
members in #def ine macros that extract relevant refl ection information by
providing a virtual function that can be overridden by each derived class in
order to return appropriate refl ection data for that class, by hand-coding a
refl ection data structure for each class, or via some other inventive approach.

In addition to att ribute information, the serialization data stream invari-
ably includes the name or unique id of each object’s class or type. The class id
is used to instantiate the appropriate class when the object is serialized into
memory from disk. A class id can be stored as a string, a hashed string id, or
some other kind of unique id.

Unfortunately, C++ provides no way to instantiate a class given only its
name as a string or id. The class name must be known at compile time, and
so it must be hard-coded by a programmer (e.g., new ConcreteClass). To
work around this limitation of the language, C++ object serialization systems
invariably include a class factory of some kind. A factory can be implemented
in any number of ways, but the simplest approach is to create a data table that
maps each class name/id to some kind of function or functor object that has
been hard-coded to instantiate that particular class. Given a class name or id,
we simply look up the corresponding function or functor in the table and call
it to instantiate the class.

737

14.3.3. Spawners and Type Schemas

Both binary object images and serialization formats have an Achilles heel. They
are both defi ned by the runtime implementation of the game object types they
store, and hence they both require the world editor to contain intimate knowl-
edge of the game engine’s runtime implementation. For example, in order for
the world editor to write out a binary image of a heterogeneous collection of
game objects, it must either link directly with the runtime game engine code,
or it must be painstakingly hand-coded to produce blocks of bytes that exactly
match the data layout of the game objects at runtime. Serialization data is less-
tightly coupled to the game object’s implementation, but again, the world edi-
tor either needs to link with runtime game object code in order to gain access
to the classes’ SerializeIn() and SerializeOut() functions, or it needs
access to the classes’ refl ection information in some way.

The coupling between the game world editor and the runtime engine
code can be broken by abstracting the descriptions of our game objects in an
implementation-independent way. For each game object in a world chunk
data fi le, we store a litt le block of data, oft en called a spawner . A spawner is
a lightweight, data-only representation of a game object that can be used to
instantiate and initialize that game object at runtime. It contains the id of
the game object’s tool-side type. It also contains a table of simple key-value
pairs that describe the initial att ributes of the game object. These att ributes
oft en include a model-to-world transform, since most game objects have
a distinct position, orientation, and scale in world space. When the game
object is spawned, the appropriate class or classes are instantiated, as de-
termined by the spawner’s type. These runtime objects can then consult
the dictionary of key-value pairs in order to initialize their data members
appropriately.

A spawner can be confi gured to spawn its game object immediately upon
being loaded, or it can lie dormant until asked to spawn at some later time
during the game. Spawners can be implemented as fi rst-class objects, so they
can have a convenient functional interface and can store useful meta-data in
addition to object att ributes. A spawner can even be used for purposes other
than spawning game objects. For example, in Uncharted: Drake’s Fortune, de-
signers used spawners to defi ne important points or coordinate axes in the
game world. These were called position spawners or locator spawners. Locators
have many uses in a game, such as:

 defi ning points of interest for an AI character,

 defi ning a set of coordinate axes relative to which a set of animations
can be played in perfect synchronization,

14.3. World Chunk Data Formats

738 14. Runtime Gameplay Foundation Systems

 defi ning the location at which a particle eff ect or audio eff ect should
originate,

 defi ning waypoints along a race track,

 and the list goes on.

14.3.3.1. Object Type Schemas

A game object’s att ributes and behaviors are defi ned by its type. In a game
world editor that employs a spawner-based design, a game object type can be
represented by a data-driven schema that defi nes the collection of att ributes
that should be visible to the user when creating or editing an object of that
type. At runtime, the tool-side object type can be mapped in either a hard-
coded or data-driven way to a class or collection of classes that must be instan-
tiated in order to spawn a game object of the given type.

Type schemas can be stored in a simple text fi le for consumption by the
world editor and for inspection and editing by its users. For example, a sche-
ma fi le might look something like this:

enum LightType
{
 Ambient, Directional, Point, Spot
}

type Light
{
 String UniqueId;

LightType Type;

 Vector Pos;
 Quaternion Rot;

 Float Intensity : min(0.0), max(1.0);

 ColorARGB DiffuseColor;

 ColorARGB SpecularColor;
 ...
}

type Vehicle
{
 String UniqueId;
 Vector Pos;
 Quaternion Rot;

 MeshReference Mesh;

 Int NumWheels : min(2), max(4);

739

 Float TurnRadius;

 Float TopSpeed : min(0.0);
 ...
}

...

The above example brings a few important details to light. You’ll notice
that the data types of each att ribute are defi ned, in addition to their names.
These can be simple types like strings, integers, and fl oating-point values, or
they can be specialized types like vectors, quaternions, ARGB colors, or ref-
erences to special asset types like meshes, collision data, and so on. In this
example, we’ve even provided a mechanism for defi ning enumerated types,
like LightType. Another subtle point is that the object type schema provides
additional information to the world editor, such as what type of GUI element
to use when editing the att ribute. Sometimes an att ribute’s GUI requirements
are implied by its data type—strings are generally edited with a text fi eld,
Booleans via a check box, vectors via three text fi elds for the x-, y-, and z-
coordinates or perhaps via a specialized GUI element designed for manipu-
lating vectors in 3D. The schema can also specify meta-information for use
by the GUI, such as minimum and maximum allowable values for integer
and fl oating-point att ributes, lists of available choices for drop-down combo
boxes, and so on.

Some game engines permit object type schemas to be inherited , much like
classes. For example, every game object needs to know its type and must have
a unique id so that it can be distinguished from all the other game objects at
runtime. These att ributes could be specifi ed in a top-level schema, from which
all other schemas are derived.

14.3.3.2. Default Attribute Values

As you can well imagine, the number of att ributes in a typical game object
schema can grow quite large. This translates into a lot of data that must be
specifi ed by the game designer for each instance of each game object type he
or she places into the game world. It can be extremely helpful to defi ne default
values in the schema for many of the att ributes. This permits game designers
to place “vanilla” instances of a game object type with litt le eff ort but still
permits him or her to fi ne-tune the att ribute values on specifi c instances as
needed.

One inherent problem with default values arises when the default val-
ue of a particular att ribute changes. For example, our game designers might
have originally wanted Orcs to have 20 hit points. Aft er many months of pro-

14.3. World Chunk Data Formats

740 14. Runtime Gameplay Foundation Systems

duction, it might be decided that Orcs should have a more powerful 30 hit
points by default. Any new Orcs placed into a game world will now have 30
hit points unless otherwise specifi ed. But what about all the Orcs that were
placed into game world chunks prior to the change? Do we need to fi nd all of
these previously-created Orcs and manually change their hit points to 30?

Ideally, we’d like to design our spawner system so that changes in de-
fault values automatically propagate to all preexisting instances that have not
had their default values overridden explicitly. One easy way to implement
this feature is to simply omit key-value pairs for att ributes whose value does
not diff er from the default value. Whenever an att ribute is missing from the
spawner, the appropriate default can be used. (This presumes that the game
engine has access to the object type schema fi le, so that it can read in the at-
tributes’ default values.) In our example, most of the preexisting Orc spawners
would have had no HitPoints key-value pair at all (unless of course one of the
spawner’s hit points had been changed from the default value manually). So
when the default value changes from 20 to 30, these Orcs will automatically
use the new value.

Some engines allow default values to be overridden in derived object
types. For example, the schema for a type called Vehicle might defi ne a de-
fault TopSpeed of 80 miles per hour. A derived Motorcycle type schema could
override this TopSpeed to be 100 miles per hour.

14.3.3.3. Some Beneifts of Spawners and Type Schemas

 The key benefi ts of separating the spawner from the implementation of the
game object are simplicity, fl exibility, and robustness. From a data management
point of view, it is much simpler to deal with a table of key-value pairs than it
is to manage a binary object image with pointer fi x-ups or a custom serialized
object format. The key-value pairs approach also makes the data format ex-
tremely fl exible and robust to changes. If a game object encounters key-value
pairs that it is not expecting to see, it can simply ignore them. Likewise, if the
game object is unable to fi nd a key-value pair that it needs, it has the option
of using a default value instead. This makes a key-value pair data format ex-
tremely robust to changes made by both the designers and the programmers.

Spawners also simplify the design and implementation of the game world
editor, because it only needs to know how to manage lists of key-value pairs
and object type schemas. It doesn’t need to share code with the runtime game
engine in any way, and it is only very loosely coupled to the engine’s imple-
mentation details.

Spawners and archetypes give game designers and programmers a great
deal of fl exibility and power. Designers can defi ne new game object type sche-

741

mas within the world editor with litt le or no programmer intervention. The
programmer can implement the runtime implementation of these new object
types whenever his or her schedule allows it. The programmer does not need
to immediately provide an implementation of each new object type as it is
added in order to avoid breaking the game. New object data can exist safely in
the world chunk fi les with or without a runtime implementation, and runtime
implementations can exist with or without corresponding data in the world
chunk fi le.

14.4. Loading and Streaming Game Worlds

To bridge the gap between the off -line world editor and our runtime game
object model, we need a way to load world chunks into memory and un-
load them when they are no longer needed. The game world loading sys-
tem has two main responsibilities: to manage the fi le I/O necessary to load
game world chunks and other needed assets from disk into memory and to
manage the allocation and deallocation of memory for these resources. The
engine also needs to manage the spawning and destruction of game objects as
they come and go in the game, both in terms of allocating and deallocating
memory for the objects and ensuring that the proper classes are instantiated
for each game object. In the following sections, we’ll investigate how game
worlds are loaded and also have a look at how object spawning systems typi-
cally work.

14.4.1. Simple Level Loading

 The most straightforward game world loading approach, and the one used by
all of the earliest games, is to allow one and only one game world chunk (a.k.a.
level) to be loaded at a time. When the game is fi rst started, and between pairs
of levels, the player sees a static or simply animated two-dimensional loading
screen while he or she waits for the level to load.

Memory management in this kind of design is quite straightforward. As
we mentioned in Section 6.2.2.7, a stack-based allocator is very well-suited
to a one-level-at-a-time world loading design. When the game fi rst runs, any
resource data that is required across all game levels is loaded at the bott om
of the stack. I will call this load-and-stay-resident (LSR) data. The location of
the stack pointer is recorded aft er the LSR data has been fully loaded. Each
game world chunk, along with its associated mesh, texture, audio, anima-
tion, and other resource data, is loaded on top of the LSR data on the stack.
When the level has been completed by the player, all of its memory can be

14.4. Loading and Streaming Game Worlds

742 14. Runtime Gameplay Foundation Systems

freed by simply resett ing the stack pointer to the top of the LSR data block.
At this point, a new level can be loaded in its place. This is illustrated in
Figure 14.11.

While this design is very simple, it has a number of drawbacks. For one
thing, the player only sees the game world in discrete chunks—there is no
way to implement a vast, contiguous, seamless world using this technique.
Another problem is that during the time the level’s resource data is being
loaded, there is no game world in memory. So the player is forced to watch a
two-dimensional loading screen of some sort.

14.4.2. Toward Seamless Loading: Air Locks

The best way to avoid boring level-loading screens is to permit the player
to continue playing the game while the next world chunk and its associated

Figure 14.11. A stack-based memory allocator is extremely well-suited to a one-level-at-a-
time world loading system.

743

resource data are being loaded. One simple approach would be to divide the
memory that we’ve set aside for game world assets into two equally sized
blocks. We could load level A into one memory block, allow the player to start
playing level A, and then load level B into the other block using a streaming
fi le I/O library (i.e., the loading code would run in a separate thread). The big
problem with this technique is that it cuts the size of each level in half relative
to what would be possible with a one-level-at-a-time approach.

We can achieve a similar eff ect by dividing the game world memory into
two unequally-sized blocks—a large block that can contain a “full” game
world chunk and a small block that is only large enough to contain a tiny
world chunk. The small chunk is sometimes known as an “air lock .”

When the game starts, a “full” chunk and an “air lock” chunk are loaded.
The player progresses through the full chunk and into the air lock, at which
point some kind of gate or other impediment ensures that the player can nei-
ther see the previous full world area nor return to it. The full chunk can then
be un-loaded, and a new full-sized world chunk can be loaded. During the
load, the player is kept busy doing some task within the air lock. The task
might be as simple as walking from one end of a hallway to the other, or it
could be something more engaging, like solving a puzzle or fi ghting some
enemies.

Asynchronous fi le I/O is what enables the full world chunk to be loaded
while the player is simultaneously playing in the air lock region. See Section
6.1.3 for more details. It’s important to note that an air lock system does not free
us from displaying a loading screen whenever a new game is started, because
during the initial load there is no game world in memory in which to play.
However, once the player is in the game world, he or she needn’t see a loading
screen ever again, thanks to air locks and asynchronous data loading.

Halo for the Xbox used a technique similar to this. The large world areas
were invariably connected by smaller, more confi ned areas. As you play Halo,
watch for confi ned areas that prevent you from back-tracking—you’ll fi nd one
roughly every 5-10 minutes of gameplay. Jak 2 for the PlayStation 2 used the
air lock technique as well. The game world was structured as a hub area (the
main city) with a number of off -shoot areas, each of which was connected to
the hub via a small, confi ned air lock region.

14.4.3. Game World Streaming

Many game designs call for the player to feel like he or she is playing in a
huge, contiguous, seamless world. Ideally, the player should not be confi ned
to small air lock regions periodically—it would be best if the world simply
unfolded in front of the player as naturally and believably as possible.

14.4. Loading and Streaming Game Worlds

744 14. Runtime Gameplay Foundation Systems

Modern game engines support this kind of seamless world by using a
technique known as streaming . World streaming can be accomplished in vari-
ous ways. The main goals are always (a) to load data while the player is en-
gaged in regular gameplay tasks and (b) to manage the memory in such a way
as to eliminate fragmentation while permitt ing data to be loaded and unloaded
as needed as the player progresses through the game world.

Recent consoles and PCs have a lot more memory than their predecessors,
so it is now possible to keep multiple world chunks in memory simultane-
ously. We could imagine dividing our memory space into, say, three equally
sized buff ers. At fi rst, we load world chunks A, B, and C into these three buf-
fers and allow the player to start playing through chunk A. When he or she
enters chunk B and is far enough along that chunk A can no longer be seen,
we can unload chunk A and start loading a new chunk D into the fi rst buff er.
When B can no longer be seen, it can be dumped and chunk E loaded. This
recycling of buff ers can continue until the player has reached the end of the
contiguous game world.

The problem with a coarse-grained approach to world streaming is that
it places onerous restrictions on the size of a world chunk. All chunks in the
entire game must be roughly the same size—large enough to fi ll up the major-
ity of one of our three memory buff ers but never any larger.

One way around this problem is to employ a much fi ner-grained subdivi-
sion of memory. Rather than streaming relatively large chunks of the world, we
can divide every game asset, from game world chunks to foreground meshes
to textures to animation banks, into equally-sized blocks of data. We can then
use a chunky, pool-based memory allocation system like the one described in
Section 6.2.2.7 to load and unload resource data as needed without having to
worry about memory fragmentation. This is the technique employed by the
Uncharted: Drake’s Fortune engine.

14.4.3.1. Determining Which Resources to Load

One question that arises when using a fi ne-grained chunky memory allocator
for world streaming is how the engine will know what resources to load at
any given moment during gameplay. In Uncharted: Drake’s Fortune (UDF), we
used a relatively simple system of level load regions to control the loading and
unloading of assets.

UDF is set in two geographically distinct, contiguous game worlds—
the jungle and the island. Each of these worlds exists in a single, consistent
world space, but they are divided up into numerous geographically adjacent
chunks. A simple convex volume known as a region encompasses each of the
chunks; the regions overlap each other somewhat. Each region contains a list

745

of the world chunks that should be in memory when the player is in that
region.

At any given moment, the player is within one or more of these regions.
To determine the set of world chunks that should be in memory, we simply
take the union of the chunk lists from each of the regions enclosing the Na-
than Drake character. The level loading system periodically checks this master
chunk list and compares it against the set of world chunks that are currently
in memory. If a chunk disappears from the master list, it is unloaded, thereby
freeing up all of the allocation blocks it occupied. If a new chunk appears in
the list, it is loaded into any free allocation blocks that can be found. The level
load regions and world chunks are designed in such a way as to ensure that
the player never sees a chunk disappear when it is unloaded and that there’s
enough time between the moment at which a chunk starts loading and the
moment its contents are fi rst seen by the player to permit the chunk to be fully
streamed into memory. This technique is illustrated in Figure 14.12.

14.4.4. Memory Management for Object Spawning

Once a game world has been loaded into memory, we need to manage the pro-
cess of spawning the dynamic game objects in the world. Most game engines
have some kind of game object spawning system that manages the instantia-
tion of the class or classes that make up each game object and handles destruc-
tion of game objects when they are no longer needed. One of the central jobs of
any object spawning system is to manage the dynamic allocation of memory
for newly spawned game objects. Dynamic allocation can be slow, so steps
must be taken to ensure allocations are as effi cient as possible. And because
game objects come in a wide variety of sizes, dynamically allocating them can
cause memory to become fragmented , leading to premature out-of-memory
conditions. There are a number of diff erent approaches to game object memo-
ry management. We’ll explore a few common ones in the following sections.

14.4. Loading and Streaming Game Worlds

1 2
3

4

1 2

Level 1
Level 2

3

Level 2
Level 3

4

Level 3
Level 4

Figure 14.12. A game world divided into chunks. Level load regions, each with a requested
chunk list, are arranged in such a way as to guarantee that the player never sees a chunk pop
in or out of view.

746 14. Runtime Gameplay Foundation Systems

14.4.4.1. Off-Line Memory Allocation for Object Spawning

Some game engines solve the problems of allocation speed and memory frag-
mentation in a rather draconian way, by simply disallowing dynamic mem-
ory allocation during gameplay altogether. Such engines permit game world
chunks to be loaded and unloaded dynamically, but they spawn in all dy-
namic game objects immediately upon loading a chunk. Thereaft er, no game
objects can be created or destroyed. You can think of this technique as obeying
a “law of conservation of game objects.” No game objects are created or de-
stroyed once a world chunk has been loaded.

This technique avoids memory fragmentation because the memory re-
quirements of all the game objects in a world chunk are (a) known a priori
and (b) bounded. This means that the memory for the game objects can be
allocated off -line by the world editor and included as part of the world chunk
data itself. All game objects are therefore allocated out of the same memory
used to load the game world and its resources, and they are no more prone
to fragmentation than any other loaded resource data. This approach also has
the benefi t of making the game’s memory usage patt erns highly predictable.
There’s no chance that a large group of game objects is going to spawn into the
world unexpectedly, and cause the game to run out of memory.

On the downside, this approach can be quite limiting for game designers.
Dynamic object spawning can be simulated by allocating a game object in the
world editor but instructing it to be invisible and dormant when the world
is fi rst loaded. Later, the object can “spawn” by simply activating itself and
making itself visible. But the game designers have to predict the total number
of game objects of each type that they’ll need when the game world is fi rst
created in the world editor. If they want to provide the player with an infi nite
supply of health packs, weapons, enemies, or some other kind of game object,
they either need to work out a way to recycle their game objects, or they’re
out of luck.

14.4.4.2. Dynamic Memory Management for Object Spawning

Game designers would probably prefer to work with a game engine that sup-
ports true dynamic object spawning. Although this is more diffi cult to imple-
ment than a static game object spawning approach, it can be implemented in
a number of diff erent ways.

Again, the primary problem is memory fragmentation. Because diff erent
types of game objects (and sometimes even diff erent instances of the same
type of object) occupy diff erent amounts of memory, we cannot use our fa-
vorite fragmentation-free allocator—the pool allocator. And because game ob-
jects are generally destroyed in a diff erent order than that in which they were

747

spawned, we cannot use a stack-based allocator either. Our only choice ap-
pears to be a fragmentation-prone heap allocator. Thankfully, there are many
ways to deal with the fragmentation problem. We’ll investigate a few common
ones in the following sections.

One Memory Pool per Object Type

If the individual instances of each game object type are guaranteed to all occu-
py the same amount of memory, we could consider using a separate memory
pool for each object type. Actually, we only need one pool per unique game
object size, so object types of the same size can share a single pool.

Doing this allows us to completely avoid memory fragmentation, but
one limitation of this approach is that we need to maintain lots of separate
pools. We also need to make educated guesses about how many of each type
of object we’ll need. If a pool has too many elements, we end up wasting
memory; if it has too few, we won’t be able to satisfy all of the spawn requests
at runtime, and game objects will fail to spawn. That said, many commer-
cial game engines do successfully employ this kind of memory management
technique.

Small Memory Allocators

We can transform the idea of one pool per game object type into something
more workable by allowing a game object to be allocated out of a pool whose
elements are larger than the object itself. This can reduce the number of unique
memory pools we need signifi cantly, at the cost of some potentially wasted
memory in each pool.

For example, we might create a set of pool allocators, each one with ele-
ments that are twice as large as those of its predecessor—perhaps 8, 16, 32,
64, 128, 256, and 512 bytes. We can also use a sequence of element sizes that
conforms to some other suitable patt ern or base the list of sizes on allocation
statistics collected from the running game.

Whenever we try to allocate a game object, we search for the smallest pool
whose elements are larger than or equal to the size of the object we’re allocat-
ing. We accept that for some objects, we’ll be wasting space. In return, we al-
leviate all of our memory fragmentation problems—a reasonably fair trade. If
we ever encounter a memory allocation request that is larger than our largest
pool, we can always turn it over to the general-purpose heap allocator, know-
ing that fragmentation of large memory blocks is not nearly as problematic as
fragmentation involving tiny blocks.

This type of allocator is sometimes called a small memory allocator . It can
eliminate fragmentation (for allocations that fi t into one of the pools). It can
also speed up memory allocations signifi cantly for small chunks of data, be-

14.4. Loading and Streaming Game Worlds

748 14. Runtime Gameplay Foundation Systems

cause a pool allocation involves two pointer manipulations to remove the ele-
ment from the linked list of free elements—a much less-expensive operation
than a general-purpose heap allocation.

Memory Relocation

Another way to eliminate fragmentation is to att ack the problem directly. This
approach is known as memory relocation . It involves shift ing allocated memory
blocks down into adjacent free holes to remove fragmentation. Moving the
memory is easy, but because we are moving “live” allocated objects, we need
to be very careful about fi xing up any pointers into the memory blocks we
move. See Section 5.2.2.2 for more details.

14.4.5. Saved Games

 Many games allow the player to save his or her progress, quit the game, and
then load up the game at a later time in exactly the state he or she left it. A saved
game system is similar to the world chunk loading system in that it is capable
of loading the state of the game world from a disk fi le or memory card. But the
requirements of this system diff er somewhat from those of a world loading
system, so the two are usually distinct (or overlap only partially).

To understand the diff erences between the requirements of these two sys-
tems, let’s briefl y compare world chunks to saved game fi les. World chunks
specify the initial conditions of all dynamic objects in the world, but they also
contain a full description of all static world elements. Much of the static infor-
mation, such as background meshes and collision data, tends to take up a lot
of disk space. As such, world chunks are sometimes comprised of multiple
disk fi les, and the total amount of data associated with a world chunk is usu-
ally large.

A saved game fi le must also store the current state information of the
game objects in the world. However, it does not need to store a duplicate copy
of any information that can be determined by reading the world chunk data.
For example, there’s no need to save out the static geometry in a saved game
fi le. A saved game need not store every detail of every object’s state either.
Some objects that have no impact on gameplay can be omitt ed altogether. For
the other game objects, we may only need to store partial state information.
As long as the player can’t tell the diff erence between the state of the game
world before and aft er it has been saved and reloaded (or if the diff erences
are irrelevant to the player), then we have a successful saved game system.
As such, saved game fi les tend to be much smaller than world chunk fi les and
may place more of an emphasis on data compression and omission. Small fi le
sizes are especially important when numerous saved game fi les must fi t onto

749

the tiny memory cards that were used on older consoles. But even today, with
consoles that are equipped with large hard drives, it’s still a good idea to keep
the size of a saved game fi le as small as possible.

14.4.5.1. Check Points

One approach to save games is to limit saves to specifi c points in the game,
known as check points . The benefi t of this approach is that most of the knowl-
edge about the state of the game is saved in the current world chunk(s) in the
vicinity of each check point. This data is always exactly the same, no matt er
which player is playing the game, so it needn’t be stored in the saved game.
As a result, saved game fi les based on check points can be extremely small. We
might need to store only the name of the last check point reached, plus per-
haps some information about the current state of the player character, such as
the player’s health, number of lives remaining, what items he has in his inven-
tory, which weapon(s) he has, and how much ammo each one contains. Some
games based on check points don’t even store this information—they start the
player off in a known state at each check point. Of course, the downside of a
game based on check points is the possibility of user frustration, especially if
check points are few and far between.

14.4.5.2. Save Anywhere

Some games support a feature known as save anywhere . As the name implies,
such games permit the state of the game to be saved at literally any point dur-
ing play. To implement this feature, the size of the saved game data fi le must
increase signifi cantly. The current locations and internal states of every game
object whose state is relevant to gameplay must be saved and then restored
when the game is loaded again later.

In a save anywhere design, a saved game data fi le contains basically the
same information as a world chunk, minus the world’s static components. It
is possible to utilize the same data format for both systems, although there
may be factors that make this infeasible. For example, the world chunk data
format might be designed for fl exibility, but the saved game format might be
compressed to minimize the size of each saved game.

As we’ve mentioned, one way to reduce the amount of data that needs to
be stored in a saved game fi le is to omit certain irrelevant game objects and to
omit some irrelevant details of others. For example, we needn’t remember the
exact time index within every animation that is currently playing or the exact
momentums and velocities of every physically simulated rigid body. We can
rely on the imperfect memories of human gamers and save only a rough ap-
proximation to the game’s state.

14.4. Loading and Streaming Game Worlds

750 14. Runtime Gameplay Foundation Systems

14.5. Object References and World Queries

Every game object generally requires some kind of unique id so that it can be
distinguished from the other objects in the game, found at runtime, serve as a
target of inter-object communication, and so on. Unique object ids are equally
helpful on the tool side, as they can be used to identify and fi nd game objects
within the world editor .

At runtime, we invariably need various ways to fi nd game objects. We
might want to fi nd an object by its unique id, by its type, or by a set of arbi-
trary criteria. We oft en need to perform proximity-based queries, for example
fi nding all enemy aliens within a 10 meter radius of the player character.

Once a game object has been found via a query , we need some way to re-
fer to it. In a language like C or C++, object references might be implemented
as pointers, or we might use something more sophisticated, like handles or
smart pointers . The lifetime of an object reference can vary widely, from the
scope of a single function call to a period of many minutes.

In the following sections, we’ll fi rst investigate various ways to implement
object references. Then we’ll explore the kinds of queries we oft en require when
implementing gameplay and how those queries might be implemented.

14.5.1. Pointers

In C or C++, the most straightforward way to implement an object reference is
via a pointer (or a reference in C++). Pointers are powerful and are just about
as simple and intuitive as you can get. However, pointers suff er from a num-
ber of problems:

 Orphaned objects. Ideally, every object should have an owner—another
object that is responsible for managing its lifetime—creating it and then
deleting it when it is no longer needed. But pointers don’t give the pro-
grammer any help in enforcing this rule. The result can be an orphaned
object—an object that still occupies memory but is no longer needed or
referenced by any other object in the system.

 Stale pointers . If an object is deleted, ideally we should null-out any and
all pointers to that object. If we forget to do so, however, we end up
with a stale pointer—a pointer to a block of memory that used to be
occupied by a valid object but is now free memory. If anyone tries to
read or write data through a stale pointer, the result can be a crash or
incorrect program behavior. Stale pointers can be diffi cult to track down
because they may continue to work for some time aft er the object has
deleted. Only much later, when a new object is allocated on top of the
stale memory block, does the data actually change and cause a crash.

751

 Invalid pointers . A programmer is free to store any address in a pointer,
including a totally invalid address. A common problem is dereferencing
a null pointer. These problems can be guarded against by using asser-
tion macros to check that pointers are never null prior to dereferencing
them. Even worse, if a piece of data is misinterpreted as a pointer, deref-
erencing it can cause the program to read or write an essentially random
memory address. This usually results in a crash or other major problem
that can be very tough to debug.

Many game engines make heavy use of pointers, because they are by far
the fastest, most effi cient, and easiest-to-work-with way to implement object
references. However, experienced programmers are always wary of pointers,
and some game teams turn to more sophisticated kinds of object references,
either out of a desire to use safer programming practices or out of necessity.
For example, if a game engine relocates allocated data blocks at runtime to
eliminate memory fragmentation (see Section 5.2.2.2), simple pointers cannot
be used. We either need to use a type of object reference that is robust to mem-
ory relocation, or we need to manually fi x up any pointers into every relocated
memory block at the time it is moved.

14.5.2. Smart Pointers

A smart pointer is a small object that acts like a pointer for most intents and pur-
poses but avoids most of the problems inherent with native C/C++ pointers. At
its simplest, a smart pointer contains a native pointer as a data member and
provides a set of overloaded operators that make it act like a pointer in most
ways. Pointers can be dereferenced, so the * and -> operators are overloaded
to return the address as expected. Pointers can undergo arithmetic operations,
so the +, -, ++, and -- operators are also overloaded appropriately.

Because a smart pointer is an object, it can contain additional meta-data
and/or take additional steps not possible with a regular pointer. For example, a
smart pointer might contain information that allows it to recognize when the ob-
ject to which it points has been deleted and start returning a NULL address if so.

Smart pointers can also help with object lifetime management by cooper-
ating with one another to determine the number of references to a particular
object. This is called reference counting. When the number of smart pointers
that reference a particular object drops to zero, we know that the object is no
longer needed, so it can be automatically deleted. This can free the program-
mer from having to worry about object ownership and orphaned objects.

Smart pointers have their share of problems. For one thing, they are rela-
tively easy to implement, but they are extremely tough to get right. There are
a great many cases to handle, and the std::auto_ptr class provided by the

14.5. Object References and World Queries

752 14. Runtime Gameplay Foundation Systems

standard C++ library is widely recognized to be inadequate in many situa-
tions. The Boost C++ template library provides six diff erent varieties of smart
pointers:

 scoped_ptr. A pointer to a single object with one owner.
 scoped_array. A pointer to an array of objects with one owner.
 shared_ptr. A pointer to an object whose lifetime is shared by multiple

owners.
 shared_array. A pointer to an array of objects whose lifetimes are

shared by multiple owners.
 weak_ptr. A pointer that does not own or automatically destroy the

object it references (whose lifetime is assumed to be managed by a
shared_ptr).

 intrusive_ptr. A pointer that implements reference counting by as-
suming that the pointed-to object will maintain the reference count it-
self. Intrusive pointers are useful because they are the same size as a na-
tive C++ pointer (because no reference-counting apparatus is required)
and because they can be constructed directly from native pointers.

Properly implementing a smart pointer class can be a daunting task. Have
a glance at the Boost smart pointer documentation (htt p://www.boost.org/
doc/libs/1_36_0/libs/smart_ptr/smart_ptr.htm) to see what I mean. All sorts of
issues come up, including:

 type safety of smart pointers,
 the ability for a smart pointer to be used with an incomplete type,
 correct smart pointer behavior when an exception occurs,
 runtime costs, which can be high.

I have worked on a project that att empted to implement its own smart point-
ers, and we were fi xing all sorts of nasty bugs with them up until the very end
of the project. My personal recommendation is to stay away from smart point-
ers, or if you must use them, use a mature implementation such as Boost’s
rather than trying to roll your own.

14.5.3. Handles

A handle acts like a smart pointer in many ways, but it is simpler to implement
and tends to be less prone to problems. A handle is basically an integer index
into a global handle table. The handle table, in turn, contains pointers to the
objects to which the handles refer. To create a handle, we simply search the
handle table for the address of the object in question and store its index in the
handle. To dereference a handle, the calling code simply indexes the appropri-

http://www.boost.org/

753

ate slot in the handle table and dereferences the pointer it fi nds there. This is
illustrated in Figure 14.13.

Because of the simple level of indirection aff orded by the handle table,
handles are much safer and more fl exible than raw pointers. If an object is
deleted, it can simply null out its entry in the handle table. This causes all
existing handles to the object to be immediately and automatically converted
to null references. Handles also support memory relocation. When an object
is relocated in memory, its address can be found in the handle table and up-
dated appropriately. Again, all existing handles to the object are automatically
updated as a result.

A handle can be implemented as a raw integer. However, the handle table
index is usually wrapped in a simple class so that a convenient interface for
creating and dereferencing the handle can be provided.

Handles are prone to the possibility of referencing a stale object. For ex-
ample, let’s say we create a handle to object A, which occupies slot 17 in the
handle table. Later, object A is deleted, and slot 17 is nulled out. Later still, a
new object B is created, and it just happens to occupy slot 17 in the handle
table. If there are still any handles to object A lying around when object B is
created, they will suddenly start referring to object B (instead of null). This is
almost certainly not desirable behavior.

One simple solution to the stale object problem is to include a unique
object id in each handle. That way, when a handle to object A is created, it con-
tains not only slot index 17, but the object id “A.” When object B takes A’s place
in the handle table, any left -over handles to A will agree on the handle index
but disagree on the object id. This allows stale object A handles to continue

14.5. Object References and World Queries

Figure 14.13. A handle table contains raw object pointers. A handle is simply an index into
this table.

NULL

NULL

Object1

Object2

Object3

Object4

Object5

Handle Table

m_handleIndex == 6

0

1

2

3

4
5

6

Handle to Object 5

754 14. Runtime Gameplay Foundation Systems

to return null when dereferenced rather than returning a pointer to object B
unexpectedly.

The following code snippet shows how a simple handle class might be
implemented. Notice that we’ve also included the handle index in the Game
Object class itself—this allows us to create new handles to a GameObject
very quickly without having to search the handle table for its address to de-
termine its handle table index.

// Within the GameObject class, we store a unique id,
// and also the object’s handle index, for efficient
// creation of new handles.
class GameObject
{

private:
 // ...
 GameObjectId m_uniqueId; // object’s unique id
 U32 m_handleIndex; // speedier handle

 // creation

 friend class GameObjectHandle; // access to id and
 // index
 // ...

public:
GameObject() // constructor

 {
 // The unique id might come from the world editor,
 // or it might be assigned dynamically at runtime.
 m_uniqueId = AssignUniqueObjectId();

 // The handle index is assigned by finding the
 // first free slot in the handle table.
 m_handleIndex = FindFreeSlotInHandleTable();

 // ...
 }

 // ...
};

// This constant defines the size of the handle table,
// and hence the maximum number of game objects that can
// exist at any one time.
static const U32 MAX_GAME_OBJECTS = ...;

// This is the global handle table -- a simple array of
// pointers to GameObjects.
static GameObject* g_apGameObject[MAX_GAME_OBJECTS];

755

// This is our simple game object handle class.
class GameObjectHandle
{
private:
 U32 m_handleIndex; // index into the handle
 // table
 GameObjectId m_uniqueId; // unique id avoids stale
 // handles

public:
 explicit GameObjectHandle(GameObject& object) :
 m_handleIndex(object.m_handleIndex),
 m_uniqueId(object.m_uniqueId)
 {
 }

 // This function dereferences the handle.
 GameObject* ToObject() const
 {
 GameObject* pObject
 = g_apGameObject[m_handleIndex];
 if (pObject != NULL
 && pObject->m_uniqueId == m_uniqueId)
 {
 return pObject;
 }
 return NULL;
 }
};

This example is functional but incomplete. We might want to implement copy
semantics, provide additional constructor variants, and so on. The entries in
the global handle table might contain additional information, not just a raw
pointer to each game object. And of course, a fi xed-size handle table imple-
mentation like this one isn’t the only possible design; handle systems vary
somewhat from engine to engine.

We should note that one fortunate side benefi t of a global handle table is
that it gives us a ready-made list of all active game objects in the system. The
global handle table can be used to quickly and effi ciently iterate over all game
objects in the world, for example. It can also make implementing other kinds
of queries easier in some cases.

14.5.4. Game Object Queries

Every game engine provides at least a few ways to fi nd game objects at run-
time. We’ll call these searches game object queries . The simplest type of query is
to fi nd a particular game object by its unique id. However, a real game engine

14.5. Object References and World Queries

756 14. Runtime Gameplay Foundation Systems

makes many other types of game object queries. Here are just a few examples
of the kinds of queries a game developer might want to make:

 Find all enemy characters with line of sight to the player.
 Iterate over all game objects of a certain type.
 Find all destructible game objects with more than 80% health.
 Transmit damage to all game objects within the blast radius of an

explosion.
 Iterate over all objects in the path of a bullet or other projectile, in near-

est-to-farthest order.

This list could go on for many pages, and of course its contents are highly
dependent upon the design of the particular game being made.

For maximum fl exibility in performing game object queries, we could
imagine a general-purpose game object database, complete with the ability to
formulate arbitrary queries using arbitrary search criteria. Ideally, our game
object database would perform all of these queries extremely effi ciently and
rapidly, making maximum use of whatever hardware and soft ware resources
are available.

In reality, such an ideal combination of fl exibility and blinding speed is
generally not possible. Instead, game teams usually determine which types
of queries are most likely to be needed during development of the game, and
specialized data structures are implemented to accelerate those particular
types of queries. As new queries become necessary, the engineers either lever-
age preexisting data structures to implement them, or they invent new ones
if suffi cient speed cannot be obtained. Here are a few examples of specialized
data structures that can accelerate specifi c types of game object queries:

 Finding game objects by unique id . Pointers or handles to the game objects
could be stored in a hash table or binary search tree keyed by unique
id.

 Iterating over all objects that meet a particular criterion. The game objects
could be presorted into linked lists based on various criteria (presuming
the criteria are known a priori). For example, we might construct a list of
all game objects of a particular type, maintain a list of all objects within
a particular radius of the player, etc.

 Finding all objects in the path of a projectile or with line of sight to some target
point. The collision system is usually leveraged to perform these kinds of
game object queries. Most collision systems provide ultra-fast ray casts,
and some also provide the ability to cast other shapes such as spheres or
arbitrary convex volumes into the world to determine what they hit.

757

 Finding all objects within a given region or radius. We might consider stor-
ing our game objects in some kind of spatial hash data structure. This
could be as simple as a horizontal grid placed over the entire game
world or something more sophisticated, such as a quadtree, octt ree, kd-
tree, or other data structure that encodes spatial proximity.

14.6. Updating Game Objects in Real Time

 Every game engine, from the simplest to the most complex, requires some
means of updating the internal state of every game object over time. The state
of a game object can be defi ned as the values of all its att ributes (sometimes
called its properties, and called data members in the C++ language). For example,
the state of the ball in Pong is described by its (x, y) position on the screen
and its velocity (speed and direction of travel). Because games are dynamic,
time-based simulations, a game object’s state describes its confi guration at one
specifi c instant in time. In other words, a game object’s notion of time is discrete
rather than continuous. (However, as we’ll see, it’s helpful to think of the ob-
jects’ states as changing continuously and then being sampled discretely by
the engine, because it helps you to avoid some common pitfalls.)

In the following discussions, we’ll use the symbol Si(t) to denote the state
of object i at an arbitrary time t. The use of vector notation here is not strictly
mathematically correct, but it reminds us that a game object’s state acts like
a heterogeneous n-dimensional vector, containing all sorts of information of
various data types. We should note that this usage of the term “state” is not
the same as the states in a fi nite state machine . A game object may very well
be implemented in terms of one—or many—fi nite state machines, but in that
case, a specifi cation of the current state of each FSM would merely be a part of
the game object’s overall state vector S(t).

Most low-level engine subsystems (rendering, animation, collision,
physics, audio, and so on) require periodic updating, and the game object
system is no exception. As we saw in Chapter 7, updating is usually done via
a single master loop called the game loop (or possibly via multiple game loops ,
each running in a separate thread). Virtually all game engines update game
object states as part of their main game loop—in other words, they treat the
game object model as just another engine subsystem that requires periodic
servicing.

Game object updating can therefore be thought of as the process of de-
termining the state of each object at the current time Si(t) given its state at a
previous time Si(t – Δt). Once all object states have been updated, the current
time t becomes the new previous time (t – Δt), and this process repeats for

14.6. Updating Game Objects in Real Time

758 14. Runtime Gameplay Foundation Systems

as long as the game is running. Usually, one or more clocks are maintained
by the engine—one that tracks real time exactly and possibly others that
may or may not correspond to real time. These clocks provide the engine
with the absolute time t and/or with the change in time Δt from iteration
to iteration of the game loop. The clock that drives the updating of game
object states is usually permitt ed to diverge from real time. This allows the
behaviors of the game objects to be paused, slowed down, sped up, or even
run in reverse—whatever is required in order to suit the needs of the game
design. These features are also invaluable for debugging and development
of the game.

As we mentioned in Chapter 1, a game object updating system is an ex-
ample of what is known as a dynamic, real-time, agent-based computer simulation
in computer science. Game object updating systems also exhibit some aspects
of discrete event simulations (see Section 14.7 for more details on events). These
are well-researched areas of computer science, and they have many appli-
cations outside the fi eld of interactive entertainment. Games are one of the
more-complex kinds of agent-based simulation—as we’ll see, updating game
object states over time in a dynamic, interactive virtual environment can be
surprisingly diffi cult to get right. Game programmers can learn a lot about
game object updating by studying the wider fi eld of agent-based and discrete
event simulations. And researchers in those fi elds can probably learn a thing
or two from game engine design as well!

As with all high-level game engine systems, every engine takes a slightly
(or sometimes radically) diff erent approach. However, as before, most game
teams encounter a common set of problems, and certain design patt erns tend
to crop up again and again in virtually every engine. In this section, we’ll
investigate these common problems and some common solutions to them.
Please bear in mind that game engines may exist that employ very diff er-
ent solutions to the ones described here, and some game designs face unique
problems that we can’t possibly cover here.

14.6.1. A Simple Approach (That Doesn’t Work)

The simplest way to update the states of a collection of game objects is to
iterate over the collection and call a virtual function, named something like
Update(), on each object in turn. This is typically done once during each
iteration of the main game loop (i.e., once per frame). Game object classes can
provide custom implementations of the Update() function in order to per-
form whatever tasks are required to advance the state of that type of object
to the next discrete time index. The time delta from the previous frame can
be passed to the update function so that objects can take proper account of

759

the passage of time. At its simplest, then, our Update() function’s signature
might look something like this:

virtual void Update(float dt);

For the purposes of the following discussions, we’ll assume that our en-
gine employs a monolithic object hierarchy, in which each game object is rep-
resented by a single instance of a single class. However, we can easily extend
the ideas here to virtually any object-centric design. For example, to update a
component-based object model, we could call Update() on every component
that makes up each game object, or we could call Update() on the “hub”
object and let it update its associated components as it sees fi t. We can also ex-
tend these ideas to property-centric designs, by calling some sort of Update()
function on each property instance every frame.

They say that the devil is in the details, so let’s investigate two important
details here. First, how should we maintain the collection of all game objects?
And second, what kinds of things should the Update() function be respon-
sible for doing?

14.6.1.1. Maintaining a Collection of Active Game Objects

The collection of active game objects is oft en maintained by a singleton
manager class, perhaps named something like GameWorld or GameObject
Manager. The collection of game objects generally needs to be dynamic, be-
cause game objects are spawned and destroyed as the game is played. Hence a
linked list of pointers, smart pointers, or handles to game objects is one simple
and eff ective approach. (Some game engines disallow dynamic spawning and
destroying of game objects; such engines can use a statically-sized array of
game object pointers, smart pointers, or handles rather than a linked list.) As
we’ll see below, most engines use more-complex data structures to keep track
of their game objects rather than just a simple, fl at linked list. But for the time
being, we can visualize the data structure as a linked list for simplicity.

14.6.1.2. Responsibilities of the Update() Function

A game object’s Update() function is primarily responsible for determining
the state of that game object at the current discrete time index Si(t) given its
previous state Si(t – Δt). Doing this may involve applying a rigid body dynam-
ics simulation to the object, sampling a preauthored animation, reacting to
events that have occurred during the current time step, and so on.

Most game objects interact with one or more engine subsystems. They
may need to animate , be rendered, emit particle eff ects, play audio , collide
with other objects and static geometry, and so on. Each of these systems has
an internal state that must also be updated over time, usually once or a few

14.6. Updating Game Objects in Real Time

760 14. Runtime Gameplay Foundation Systems

times per frame. It might seem reasonable and intuitive to simply update all of
these subsystems directly from within the game object’s Update() function.
For example, consider the following hypothetical update function for a Tank
object:

virtual void Tank::Update(float dt)
{

 // Update the state of the tank itself.
 MoveTank(dt);

 DeflectTurret(dt);

 FireIfNecessary();

 // Now update low-level engine subsystems on behalf
 // of this tank. (NOT a good idea... see below!)
 m_pAnimationComponent->Update(dt);

 m_pCollisionComponent->Update(dt);

 m_pPhysicsComponent->Update(dt);

 m_pAudioComponent->Update(dt);
 m_pRenderingComponent->draw();
}

Given that our Update() functions are structured like this, the game loop
could be driven almost entirely by the updating of the game objects, like this:

while (true)
{
 PollJoypad();

 float dt = g_gameClock.CalculateDeltaTime();

 for (each gameObject)
 {
 // This hypothetical Update() function updates
 // all engine subsystems!

gameObject.Update(dt);
 }

 g_renderingEngine.SwapBuffers();
}

However att ractive the simple approach to object updating shown above
may seem, it is usually not viable in a commercial-grade game engine. In the
following sections, we’ll explore some of the problems with this simplistic ap-
proach and investigate common ways in which each problem can be solved.

761

14.6.2. Performance Constraints and Batched Updates

Most low-level engine systems have extremely stringent performance con-
straints. They operate on a large quantity of data, and they must do a large
number of calculations every frame as quickly as possible. As a result, most
engine systems benefi t from batched updating. For example, it is usually far
more effi cient to update a large number of animations in one batch than it is
to update each object’s animation interleaved with other unrelated operations,
such as collision detection, physical simulation, and rendering.

In most commercial game engines, each engine subsystem is updated di-
rectly or indirectly by the main game loop rather than being updated on a
per-game object basis from within each object’s Update() function. If a game
object requires the services of a particular engine subsystem, it asks that sub-
system to allocate some subsystem-specifi c state information on its behalf. For
example, a game object that wishes to be rendered via a triangle mesh might
request the rendering subsystem to allocate a mesh instance for its use. (A mesh
instance represents a single instance of a triangle mesh—it keeps track of the
position, orientation, and scale of the instance in world space whether or not
it is visible, per-instance material data, and any other per-instance information
that may be relevant.) The rendering engine maintains a collection of mesh in-
stances internally. It can manage the mesh instances however it sees fi t in order
to maximize its own runtime performance. The game object controls how it is
rendered by manipulating the properties of the mesh instance object, but the
game object does not control the rendering of the mesh instance directly. In-
stead, aft er all game objects have had a chance to update themselves, the ren-
dering engine draws all visible mesh instances in one effi cient batch update.

With batched updating, a particular game object’s Update() function,
such as that of our hypothetical tank object, might look more like this:

virtual void Tank::Update(float dt)
{

 // Update the state of the tank itself.
 MoveTank(dt);

 DeflectTurret(dt);

 FireIfNecessary();

 // Control the properties of my various engine
 // subsystem components, but do NOT update
 // them here...
 if (justExploded)
 {
 m_pAnimationComponent->PlayAnimation("explode");
 }

14.6. Updating Game Objects in Real Time

762 14. Runtime Gameplay Foundation Systems

 if (isVisible)
 {

 m_pCollisionComponent->Activate();
 m_pRenderingComponent->Show();
 }
 else
 {

 m_pCollisionComponent->Deactivate();

 m_pRenderingComponent->Hide();
 }
 // etc.
}

The game loop then ends up looking more like this:

while (true)
{
 PollJoypad();

 float dt = g_gameClock.CalculateDeltaTime();

 for (each gameObject)
 {

gameObject.Update(dt);
 }

 g_animationEngine. Update(dt);

 g_physicsEngine. Simulate(dt);

 g_collisionEngine. DetectAndResolveCollisions(dt);

 g_audioEngine. Update(dt);

 g_renderingEngine. RenderFrameAndSwapBuffers();
}

Batched updating provides many performance benefi ts, including but not
limited to:

 Maximal cache coherency . Batched updating allows an engine subsys-
tem to achieve maximum cache coherency because its per-object data
is maintained internally and can be arranged in a single, contiguous
region of RAM.

 Minimal duplication of computations. Global calculations can be done once
and reused for many game objects rather than being redone for each
object.

763

 Reduced reallocation of resources. Engine subsystems oft en need to allocate
and manage memory and/or other resources during their updates. If
the update of a particular subsystem is interleaved with those of other
engine subsystems, these resources must be freed and reallocated for
each game object that is processed. But if the updates are batched, the
resources can be allocated once per frame and reused for all objects in
the batch.

 Effi cient pipelining . Many engine subsystems perform a virtually identi-
cal set of calculations on each and every object in the game world. When
updates are batched, new optimizations become possible, and special-
ized hardware resources can be leveraged. For example, the PLAY-
STATION 3 provides a batt ery of high-speed microprocessors known
as SPUs, each of which has its own private high-speed memory area.
When processing a batch of animations, the pose of one character can be
calculated while we simultaneously DMA the data for the next charac-
ter into SPU memory. This kind of parallelism cannot be achieved when
processing each object in isolation.

Performance benefi ts aren’t the only reason to favor a batch updating ap-
proach. Some engine subsystems simply don’t work at all when updated on
a per-object basis. For example, if we are trying to resolve collisions within
a system of multiple dynamic rigid bodies, a satisfactory solution cannot be
found in general by considering each object in isolation. The interpenetrations
between these objects must be resolved as a group, either via an iterative ap-
proach or by solving a linear system.

14.6.3. Object and Subsystem Interdependencies

Even if we didn’t care about performance, a simplistic per-object updating ap-
proach breaks down when game objects depend on one another. For example,
a human character might be holding a cat in her arms. In order to calculate
the world-space pose of the cat’s skeleton, we fi rst need to calculate the world-
space pose of the human. This implies that the order in which objects are up-
dated is important to the proper functioning of the game.

Another related problem arises when engine subsystems depend on one
another. For example, a rag doll physics simulation must be updated in con-
cert with the animation engine. Typically, the animation system produces an
intermediate, local-space skeletal pose. These joint transforms are converted
to world space and applied to a system of connected rigid bodies that approxi-
mate the skeleton within the physics system. The rigid bodies are simulated
forward in time by the physics system, and then the fi nal resting places of the

14.6. Updating Game Objects in Real Time

764 14. Runtime Gameplay Foundation Systems

joints are applied back to their corresponding joints in the skeleton. Finally,
the animation system calculates the fi nal world-space pose and skinning ma-
trix palett e. So once again, the updating of the animation and physics systems
must occur in a particular order in order to produce correct results. These
kinds of inter-subsystem dependencies are commonplace in game engine de-
sign.

14.6.3.1. Phased Updates

 To account for inter-subsystem dependencies, we can explicitly code our en-
gine subsystem updates in the proper order within the main game loop. For
example, to handle the interplay between the animation system and rag doll
physics, we might write something like this:

while (true) // main game loop
{
 // ...

 g_animationEngine. CalculateIntermediatePoses(dt);

 g_ragdollSystem. ApplySkeletonsToRagDolls();

 g_physicsEngine. Simulate(dt); // runs ragdolls too

 g_collisionEngine. DetectAndResolveCollisions(dt);

 g_ragdollSystem. ApplyRagDollsToSkeletons();

 g_animationEngine. FinalizePoseAndMatrixPalette();

 // ...
}

We must be careful to update the states of our game objects at the right
time during the game loop. This is oft en not as simple as calling a single Up-
date() function per game object per frame. Game objects may depend upon
the intermediate results of calculations performed by various engine subsys-
tems. For example, a game object might request that animations be played
prior to the animation system running its update. However, that same object
may also want to procedurally adjust the intermediate pose generated by the
animation system prior to that pose being used by the rag doll physics system
and/or the fi nal pose and matrix palett e being generated. This implies that the
object must be updated twice, once before the animation calculates its inter-
mediate poses and once aft erward.

Many game engines allow game objects to update at multiple points
during the frame. For example, an engine might update game objects three
times—once before animation blending, once aft er animation blending but

765

prior to fi nal pose generation, and once aft er fi nal pose generation. This can
be accomplished by providing each game object class with three virtual func-
tions that act as “hooks.” In such a system, the game loop ends up looking
something like this:

while (true) // main game loop
{
 // ...

 for (each gameObject)
 {
 gameObject. PreAnimUpdate(dt);
 }

 g_animationEngine. CalculateIntermediatePoses(dt);

 for (each gameObject)
 {
 gameObject. PostAnimUpdate(dt);
 }

 g_ragdollSystem. ApplySkeletonsToRagDolls();

 g_physicsEngine. Simulate(dt); // runs ragdolls too

 g_collisionEngine. DetectAndResolveCollisions(dt);

 g_ragdollSystem. ApplyRagDollsToSkeletons();

 g_animationEngine. FinalizePoseAndMatrixPalette();

 for (each gameObject)
 {
 gameObject. FinalUpdate(dt);
 }

 // ...
}

We can provide our game objects with as many update phases as we see
fi t. But we must be careful, because iterating over all game objects and calling
a virtual function on each one can be expensive. Also, not all game objects
require all update phases—iterating over objects that don’t require a particu-
lar phase is a pure waste of CPU bandwidth. One way to minimize the cost
of iteration is to maintain multiple linked lists of game objects—one for each
update phase. If a particular object wants to be included in one of the update

14.6. Updating Game Objects in Real Time

766 14. Runtime Gameplay Foundation Systems

phases, it adds itself to the corresponding linked list. This avoids having to
iterate over objects that are not interested in a particular update phase.

14.6.3.2. Bucketed Updates

 In the presence of inter-object dependencies, the phased updates technique de-
scribed above must be adjusted a litt le. This is because inter-object dependen-
cies can lead to confl icting rules governing the order of updating. For exam-
ple, let’s imagine that object B is being held by object A. Further, let’s assume
that we can only update object B aft er A has been fully updated, including the
calculation of its fi nal world-space pose and matrix palett e. This confl icts with
the need to batch animation updates of all game objects together in order to
allow the animation system to achieve maximum throughput.

Inter-object dependencies can be visualized as a forest of dependency
trees. The game objects with no parents (no dependencies on any other object)
represent the roots of the forest. An object that depends directly on one of
these root objects resides in the fi rst tier of children in one of the trees in the
forest. An object that depends on a fi rst-tier child becomes a second-tier child,
and so on. This is illustrated in Figure 14.14.

One solution to the problem of confl icting update order requirements is
to collect objects into independent groups, which we’ll call buckets here for
lack of a bett er name. The fi rst bucket consists of all root objects in the forest.
The second bucket is comprised of all fi rst-tier children. The third bucket con-
tains all second-tier children, and so on. For each bucket, we run a complete
update of the game objects and the engine systems, complete with all update

Figure 14.14. Inter-object update order dependencies can be viewed as a forest of depen-
dency trees.

767

phases. Then we repeat the entire process for each bucket until there are no
more buckets.

In theory, the depths of the trees in our dependency forest are unbounded.
However, in practice, they are usually quite shallow. For example, we might
have characters holding weapons, and those characters might or might not be
riding on a moving platform or a vehicle. To implement this, we only need
three tiers in our dependency forest, and hence only three buckets: one for
platforms/vehicles, one for characters, and one for the weapons in the charac-
ters’ hands. Many game engines explicitly limit the depth of their dependency
forest so that they can use a fi xed number of buckets (presuming they use a
bucketed approach at all—there are of course many other ways to architect a
game loop).

Here’s what a bucketed, phased, batched update loop might look like:

void UpdateBucket(Bucket bucket)
{
 // ...

 for (each gameObject in bucket)
 {
 gameObject.PreAnimUpdate(dt);
 }

 g_animationEngine.CalculateIntermediatePoses
 (bucket, dt);

 for (each gameObject in bucket)
 {
 gameObject.PostAnimUpdate(dt);
 }

 g_ragdollSystem.ApplySkeletonsToRagDolls(bucket);

 g_physicsEngine.Simulate(bucket, dt); // runs
 // ragdolls too

 g_collisionEngine.DetectAndResolveCollisions
 (bucket, dt);

 g_ragdollSystem.ApplyRagDollsToSkeletons(bucket);

 g_animationEngine.FinalizePoseAndMatrixPalette
 (bucket);

 for (each gameObject in bucket)
 {
 gameObject.FinalUpdate(dt);
 }

14.6. Updating Game Objects in Real Time

768 14. Runtime Gameplay Foundation Systems

 // ...
}

void RunGameLoop()
{

 while (true)
 {
 // ...

UpdateBucket(g_bucketVehiclesAndPlatforms);

UpdateBucket(g_bucketCharacters);

UpdateBucket(g_bucketAttachedObjects);

 // ...

 g_renderingEngine.RenderSceneAndSwapBuffers();
 }
}

In practice, things might a bit more complex than this. For example, some
engine subsystems like the physics engine might not support the concept of
buckets, perhaps because they are third-party SDKs or because they cannot
be practically updated in a bucketed manner. However, this bucketed update
is essentially what we used at Naughty Dog to implement Uncharted: Drake’s
Fortune and are using again for our upcoming title, Uncharted 2: Among Thieves.
So it’s a method that has proven to be practical and reasonably effi cient.

14.6.3.3. Object State Inconsistencies and One-Frame-Off Lag

Let’s revisit game object updating, but this time thinking in terms of each ob-
ject’s local notion of time. We said in Section 14.6 that the state of game object i
at time t can be denoted by a state vector Si(t). When we update a game object,
we are converting its previous state vector Si(t1) into a new current state vector
Si(t2) (where t2 = t1 + Δt).

In theory, the states of all game objects are updated from time t1 to time
t2 instantaneously and in parallel, as depicted in Figure 14.15. However, in
practice, we can only update the objects one by one—we must loop over each
game object and call some kind of update function on each one in turn. If
we were to stop the program half-way through this update loop, half of our
game objects’ states would have been updated to Si(t2), while the remaining
half would still be in their previous states, Si(t1). This implies that if we were
to ask two of our game objects what the current time is during the update
loop, they may or may not agree! What’s more, depending on where exactly
we interrupt the update loop, the objects may all be in a partially updated

769

state. For example, animation pose blending may have been run, but physics
and collision resolution may not yet have been applied. This leads us to the
following rule:

The states of all game objects are consistent before and aft er the
update loop, but they may be inconsistent during it.

This is illustrated in Figure 14.16.
The inconsistency of game object states during the update loop is a major

source of confusion and bugs, even among professionals within the game in-
dustry. The problem rears its head most oft en when game objects query one

t1

t

SAObjectA SA

ObjectB SB

ObjectC SC

ObjectD SD

t2

SB

SC

SD

Δt

Figure 14.15. In theory, the states of all game objects are updated instantaneously and in
parallel during each iteration of the game loop.

14.6. Updating Game Objects in Real Time

Figure 14.16. In practice, the states of the game objects are updated one by one. This means
that at some arbitrary moment during the update loop, some objects will think the current
time is t2 while others think it is still t1. Some objects may be only partially updated, so their
states will be internally inconsistent. In effect, the state of such an object lies at a point be-
tween t1 and t2.

t1

t

SAObjectA

ObjectB

SA

ObjectC

ObjectD

SC

t2

SB

SD

SB

SC

770 14. Runtime Gameplay Foundation Systems

another for state information during the update loop (which implies that there
is a dependency between them). For example, if object B looks at the velocity
of object A in order to determine its own velocity at time t, then the program-
mer must be clear about whether he or she wants to read the previous state of
object A, SA(t1), or the new state, SA(t2). If the new state is needed but object A
has not yet been updated, then we have an update order problem that can lead
to a class of bugs known as one-frame-off lags . In this type of bug, the state of
one object lags one frame behind the states of its peers, which manifests itself
on-screen as a lack of synchronization between game objects.

14.6.3.4. Object State Caching

 As described above, one solution to this problem is to group the game ob-
jects into buckets (Section 14.6.3.2). One problem with a simple bucketed up-
date approach is that it imposes somewhat arbitrary limitations on the way in
which game objects are permitt ed to query one another for state information.
If a game object A wants the updated state vector SB(t2) of another object B, then
object B must reside in a previously updated bucket. Likewise, if object A wants
the previous state vector SB(t1) of object B, then object B must reside in a yet-to-
be-updated bucket. Object A should never ask for the state vector of an object
within its own bucket, because as we stated in the rule above, those state vec-
tors may be only partially updated.

One way to improve consistency is to arrange for each game object to
cache its previous state vector Si(t1) while it is calculating its new state vector
Si(t2) rather than overwriting it in-place during its update. This has two im-
mediate benefi ts. First, it allows any object to safely query the previous state
vector of any other object without regard to update order. Second, it guar-
antees that a totally consistent state vector (Si(t1)) will always be available,
even during the update of the new state vector. To my knowledge there is no
standard terminology for this technique, so I’ll call it state caching for lack of
a bett er name.

Another benefi t of state caching is that we can linearly interpolate be-
tween the previous and next states in order to approximate the state of an
object at any moment between these two points in time. The Havok physics
engine maintains the previous and current state of every rigid body in the
simulation for just this purpose.

The downside of state caching is that it consumes twice the memory of the
update-in-place approach. It also only solves half the problem, because while
the previous states at time t1 are fully consistent, the new states at time t2 still
suff er from potential inconsistency. Nonetheless, the technique can be useful
when applied judiciously.

771

14.6.3.5. Time-Stamping

 One easy and low-cost way to improve the consistency of game object states
is to time-stamp them. It is then a trivial matt er to determine whether a game
object’s state vector corresponds to its confi guration at a previous time or the
current time. Any code that queries the state of another game object during
the update loop can assert or explicitly check the time stamp to ensure that the
proper state information is being obtained.

Time-stamping does not address the inconsistency of states during the
update of a bucket. However, we can set a global or static variable to refl ect
which bucket is currently being updated. Presumably every game object
“knows” in which bucket it resides. So we can check the bucket of a queried
game object against the currently updating bucket and assert that they are not
equal in order to guard against inconsistent state queries.

14.6.4. Designing for Parallelism

In Section 7.6, we introduced a number of approaches that allow a game en-
gine to take advantage of the parallel processing resources that have become
the norm in recent gaming hardware. How, then, does parallelism aff ect the
way in which game object states are updated?

14.6.4.1. Parallelizing the Game Object Model Itself

 Game object models are notoriously diffi cult to parallelize, for a few reasons.
Game objects tend to be highly interdependent upon one another and upon
the data used and/or generated by numerous engine subsystems. Game ob-
jects communicate with one another, sometimes multiple times during the up-
date loop, and the patt ern of communication can be unpredictable and highly
sensitive to the inputs of the player and the events that are occurring in the
game world. This makes it diffi cult to process game object updates in mul-
tiple threads , for example, because the amount of thread synchronization that
would be required to support inter-object communication is usually prohibi-
tive from a performance standpoint. And the practice of peeking directly into
a foreign game object’s state vector makes it impossible to DMA a game object
to the isolated memory of a coprocessor, such as the PLAYSTATION 3’s SPU,
for updating.

That said, game object updating can theoretically be done in parallel.
To make it practical, we’d need to carefully design the entire object model
to ensure that game objects never peek directly into the state vectors of oth-
er game objects. All inter-object communication would have to be done via
message-passing, and we’d need an effi cient system for passing messages be-

14.6. Updating Game Objects in Real Time

772 14. Runtime Gameplay Foundation Systems

tween game objects even when those objects reside in totally separate memory
spaces or are being processed by diff erent physical CPU cores. Some research
has been done into using a distributed programming language, such as Er-
icsson’s Erlang (htt p://www.erlang.org), to code game object models. Such
languages provide built-in support for parallel processing and message pass-
ing and handle context switching between threads much more effi ciently and
quickly than in a language like C or C++, and their programming idioms help
programmers to never “break the rules” that allow concurrent, distributed,
multiple agent designs to function properly and effi ciently.

14.6.4.2. Interfacing with Concurrent Engine Subsystems

 Although sophisticated, concurrent, distributed object models are theoreti-
cally feasible and are an area of extremely interesting research, at present
most game teams do not use them. Instead, most game teams leave the ob-
ject model in a single thread and use an old-fashioned game loop to update
them. They focus their att ention instead on parallelizing many of the lower-
level engine systems upon which the game objects depend. This gives teams
the biggest “bang for their buck,” because low-level engine subsystems tend
to be more performance-critical than the game object model. This is because
low-level subsystems must process huge volumes of data every frame, while
the amount of CPU power used by the game object model is oft en somewhat
smaller. This is an example of the 80-20 rule in action.

Of course, using a single-threaded game object model does not mean that
game programmers can be totally oblivious to parallel programming issues.
The object model must still interact with engine subsystems that are them-
selves running concurrently with the object model. This paradigm shift re-
quires game programmers to avoid certain programming paradigms that may
have served them well in the pre-parallel-processing era and adopt some new
ones in their place.

Probably the most important shift a game programmer must make is to
begin thinking asynchronously . As described in Section 7.6.5, this means that
when a game object requires a time-consuming operation to be performed, it
should avoid calling a blocking function—a function that does its work direct-
ly in the context of the calling thread, thereby blocking that thread until the
work has been completed. Instead, whenever possible, large or expensive jobs
should be requested by calling a non-blocking function—a function that sends
the request to be executed by another thread, core, or processor and then im-
mediately returns control to the calling function. The main game loop can
proceed with other unrelated work, including updating other game objects,
while the original object waits for the results of its request. Later in the same

http://www.erlang.org

773

frame, or next frame, that game object can pick up the results of its request and
make use of them.

Batching is another shift in thinking for game programmers. As we men-
tioned in Section 14.6.2, it is more effi cient to collect similar tasks into batches
and perform them en masse than it is to run each task independently. This
applies to the process of updating game object states as well. For example, if
a game object needs to cast 100 rays into the collision world for various pur-
poses, it is best if those ray cast requests can be queued up and executed as
one big batch. If an existing game engine is being retrofi tt ed for parallelism,
this oft en requires code to be rewritt en so that it batches requests rather than
doing them individually.

One particularly tricky aspect of converting synchronous, unbatched code
to use an asynchronous, batched approach is determining when during the
game loop (a) to kick off the request and (b) to wait for and utilize the results.
In doing this, it is oft en helpful to ask ourselves the following questions:

 How early can we kick off this request? The earlier we make the request, the
more likely it is to be done when we actually need the results—and this
maximizes CPU utilization by helping to ensure that the main thread
is never idle waiting for an asynchronous request to complete. So for
any given request, we should determine the earliest point during the
frame at which we have enough information to kick it off , and kick it
there.

 How long can we wait before we need the results of this request? Perhaps we
can wait until later in the update loop to do the second half of an opera-
tion. Perhaps we can tolerate a one-frame lag and use last frame’s results
to update the object’s state this frame. (Some subsystems like AI can
tolerate even longer lag times because they update only every few sec-
onds.) In many circumstances, code that uses the results of a request can
in fact be deferred until later in the frame, given a litt le thought, some
code re-factoring, and possibly some additional caching of intermediate
data.

14.7. Events and Message-Passing

Games are inherently event-driven. An event is anything of interest that hap-
pens during gameplay. An explosion going off , the player being sighted by an
enemy, a health pack gett ing picked up—these are all events. Games generally
need a way to (a) notify interested game objects when an event occurs and (b)
arrange for those objects to respond to interesting events in various ways—we

14.6. Updating Game Objects in Real Time

774 14. Runtime Gameplay Foundation Systems

call this handling the event. Diff erent types of game objects will respond in dif-
ferent ways to an event. The way in which a particular type of game object re-
sponds to an event is a crucial aspect of its behavior, just as important as how
the object’s state changes over time in the absence of any external inputs. For
example, the behavior of the ball in Pong is governed in part by its velocity, in
part by how it reacts to the event of striking a wall or paddle and bouncing off ,
and in part by what happens when the ball is missed by one of the players.

14.7.1. The Problem with Statically Typed Function Binding

One simple way to notify a game object that an event has occurred is to sim-
ply call a method (member function) on the object. For example, when an
explosion goes off , we could query the game world for all objects within the
explosion’s damage radius and then call a virtual function named something
like OnExplosion() on each one. This is illustrated by the following pseudo-
code:

void Explosion::Update()
{

 // ...

 if (ExplosionJustWentOff())
 {
 GameObjectCollection damagedObjects;
 g_world. QueryObjectsInSphere(GetDamageSphere(),

damagedObjects);

 for (each object in damagedObjects)
 {
 object. OnExplosion(*this);
 }
 }

 // ...
}

The call to OnExplosion() is an example of statically typed late function
binding . Function binding is the process of determining which function im-
plementation to invoke at a particular call location—the implementation is,
in eff ect, bound to the call. Virtual functions, such as our OnExplosion()
event-handling function, are said to be late-bound . This means that the com-
piler doesn’t actually know which of the many possible implementations of
the function is going to be invoked at compile time—only at runtime, when
the type of the target object is known, will the appropriate implementation
be invoked. We say that a virtual function call is statically typed because the

775

compiler does know which implementation to invoke given a particular object
type. It knows, for example, that Tank::OnExplosion() should be called
when the target object is a Tank and that Crate::OnExplosion() should be
called when the object is a Crate.

The problem with statically typed function binding is that it introduces
a degree of infl exibility into our implementation. For one thing, the virtual
OnExplosion() function requires all game objects to inherit from a common
base class. Moreover, it requires that base class to declare the virtual function
OnExplosion(), even if not all game objects can respond to explosions. In
fact, using statically typed virtual functions as event handlers would require
our base GameObject class to declare virtual functions for all possible events
in the game! This would make adding new events to the system diffi cult. It
precludes events from being created in a data-driven manner—for example,
within the world editing tool. It also provides no mechanism for certain types
of objects, or certain individual object instances, to register interest in certain
events but not others. Every object in the game, in eff ect, “knows” about every
possible event, even if its response to the event is to do nothing (i.e., to imple-
ment an empty, do-nothing event handler function).

What we really need for our event handlers, then, is dynamically typed
late function binding. Some programming languages support this feature na-
tively (e.g., C#’s delegates). In other languages, the engineers must implement
it manually. There are many ways to approach this problem, but most boil
down to taking a data-driven approach. In other words, we encapsulate the
notion of a function call in an object and pass that object around at runtime in
order to implement a dynamically typed late-bound function call.

14.7.2. Encapsulating an Event in an Object

An event is really comprised of two components: its type (explosion, friend
injured, player spott ed, health pack picked up, etc.) and its arguments . The
arguments provide specifi cs about the event (How much damage did the ex-
plosion do? Which friend was injured? Where was the player spott ed? How
much health was in the health pack?). We can encapsulate these two compo-
nents in an object, as shown by the following pseudocode:

struct Event
{
 const U32 MAX_ARGS = 8;

 EventType m_type;
 U32 m_numArgs;
 EventArg m_aArgs[MAX_ARGS];
};

14.7. Events and Message-Passing

776 14. Runtime Gameplay Foundation Systems

Some game engines call these things messages or commands instead of events.
These names emphasize the idea that informing objects about an event is es-
sentially equivalent to sending a message or command to those objects.

Practically speaking, event objects are usually not quite this simple. We
might implement diff erent types of events by deriving them from a root event
class, for example. The arguments might be implemented as a linked list or a
dynamically allocated array capable of containing arbitrary numbers of argu-
ments, and the arguments might be of various data types.

Encapsulating an event (or message) in an object has many benefi ts:

 Single event handler function. Because the event object encodes its type
internally, any number of diff erent event types can be represented by an
instance of a single class (or the root class of an inheritance hierarchy).
This means that we only need one virtual function to handle all types of
events (e.g., virtual void OnEvent(Event& event);).

 Persistence . Unlike a function call, whose arguments go out of scope
aft er the function returns, an event object stores both its type and its
arguments as data. An event object therefore has persistence. It can be
stored in a queue for handling at a later time, copied and broadcast to
multiple receivers, and so on.

 Blind event forwarding . An object can forward an event that it receives to
another object without having to “know” anything about the event. For
example, if a vehicle receives a Dismount event, it can forward it to all
of its passengers, thereby allowing them to dismount the vehicle, even
though the vehicle itself knows nothing about dismounting.

This idea of encapsulating an event/message/command in an object is com-
monplace in many fi elds of computer science. It is found not only in game
engines but in other systems like graphical user interfaces, distributed com-
munication systems, and many others. The well-known “Gang of Four” de-
sign patt erns book [17] calls this the Command patt ern.

14.7.3. Event Types

 There are many ways to distinguish between diff erent types of events. One
simple approach in C or C++ is to defi ne a global enum that maps each event
type to a unique integer.

enum EventType
{
 EVENT_TYPE_LEVEL_STARTED,

 EVENT_TYPE_PLAYER_SPAWNED,

777

 EVENT_TYPE_ENEMY_SPOTTED,

 EVENT_TYPE_EXPLOSION,

 EVENT_TYPE_BULLET_HIT,
 // ...
}

This approach enjoys the benefi ts of simplicity and effi ciency (since integers
are usually extremely fast to read, write, and compare). However, it also suf-
fers from two problems. First, knowledge of all event types in the entire game
is centralized, which can be seen as a form of broken encapsulation (for bett er
or for worse—opinions on this vary). Second, the event types are hard-coded,
which means new event types cannot easily be defi ned in a data-driven man-
ner. Third, enumerators are just indices, so they are order-dependent. If some-
one accidentally adds a new event type in the middle of the list, the indices
of all subsequent event ids change, which can cause problems if event ids
are stored in data fi les. As such, an enumeration-based event typing system
works well for small demos and prototypes but does not scale very well at all
to real games.

Another way to encode event types is via strings. This approach is totally
free-form, and it allows a new event type to be added to the system by merely
thinking up a name for it. But it suff ers from many problems, including a
strong potential for event name confl icts, the possibility of events not work-
ing because of a simple typo, increased memory requirements for the strings
themselves, and the relatively high cost of comparing strings next to that of
comparing integers. Hashed string ids can be used instead of raw strings to
eliminate the performance problems and increased memory requirements,
but they do nothing to address event name confl icts or typos. Nonetheless,
the extreme fl exibility and data-driven nature of a string- or string-id-based
event system is considered worth the risks by some game teams.

Tools can be implemented to help avoid some of the risks involved in us-
ing strings to identify events. For example, a central database of all event type
names could be maintained. A user interface could be provided to permit new
event types to be added to the database. Naming confl icts could be automati-
cally detected when a new event is added, and the user could be disallowed
from adding duplicate event types. When selecting a preexisting event, the
tool could provide a sorted list in a drop-down combo box rather than requir-
ing the user to remember the name and type it manually. The event database
could also store meta-data about each type of event, including documentation
about its purpose and proper usage and information about the number and
types of arguments it supports. This approach can work really well, but we

14.7. Events and Message-Passing

778 14. Runtime Gameplay Foundation Systems

should not forget to account for the costs of sett ing up such a system, as they
are not insignifi cant.

14.7.4. Event Arguments

The arguments of an event usually act like the argument list of a function, pro-
viding information about the event that might be useful to the receiver. Event
arguments can be implemented in all sorts of ways.

We might derive a new type of Event class for each unique type of event. The
arguments can then be hard-coded as data members of the class. For example:

class ExplosionEvent : public Event
{

 float m_damage;
 Point m_center;
 float m_radius;
};

Another approach is to store the event’s arguments as a collection of vari-
ants . A variant is a data object that is capable of holding more than one type of
data. It usually stores information about the data type that is currently being
stored, as well as the data itself. In an event system, we might want our argu-
ments to be integers, fl oating-point values, Booleans, or hashed string ids. So
in C or C++, we could defi ne a variant class that looks something like this:

struct Variant
{
 enum Type
 {
 TYPE_INTEGER,
 TYPE_FLOAT,
 TYPE_BOOL,
 TYPE_STRING_ID,
 TYPE_COUNT // number of unique types
 };

 Type m_type;

 union
 {
 I32 m_asInteger;
 F32 m_asFloat;
 bool m_asBool;
 U32 m_asStringId;

 };
};

779

The collection of variants might be implemented as an array with a small,
fi xed maximum size (say 4, 8, or 16 elements). This imposes an arbitrary limit
on the number of arguments that can be passed with an event, but it also side-
steps the problems of dynamically allocating memory for each event’s argu-
ment payload, which can be a big benefi t, especially in memory-constrained
console games.

The collection of variants might be implemented as a dynamically sized
data structure, like a dynamically sized array (like std::vector) or a linked
list (like std::list). This provides a great deal of additional fl exibility over a
fi xed-size design, but it incurs the cost of dynamic memory allocation. A pool
allocator could be used to great eff ect here, presuming that each Variant is
the same size.

14.7.4.1. Event Arguments as Key-Value Pairs

A fundamental problem with an indexed collection of event arguments is order
dependency. Both the sender and the receiver of an event must “know” that
the arguments are listed in a specifi c order. This can lead to confusion and
bugs. For example, a required argument might be accidentally omitt ed or an
extra one added.

This problem can be avoided by implementing event arguments as key-
value pairs . Each argument is uniquely identifi ed by its key, so the arguments
can appear in any order, and optional arguments can be omitt ed altogether.
The argument collection might be implemented as a closed or open hash table,
with the keys used to hash into the table, or it might be an array, linked list, or
binary search tree of key-value pairs. These ideas are illustrated in Table 14.1.
The possibilities are numerous, and the specifi c choice of implementation is
largely unimportant as long as the game’s particular requirements have been
eff ectively and effi ciently met.

14.7. Events and Message-Passing

float

Value

10.3

int 25

bool true

"radius"

"event"

"damage"

"grenade"

Key
Type

stringid "explosion"

Table 14.1. The arguments of an event object can be implemented as a collection of key-value
pairs. The keys help to avoid order-dependency problems because each event argument is
uniquely identifi ed by its key.

780 14. Runtime Gameplay Foundation Systems

14.7.5. Event Handlers

When an event, message, or command is received by a game object, it needs to
respond to the event in some way. This is known as handling the event, and it
is usually implemented by a function or a snippet of script code called an event
handler. (We’ll have more to say about game scripting later on.)

Oft en an event handler is a single native virtual function or script function
that is capable of handling all types of events (e.g., OnEvent(Event& event)).
In this case, the function usually contains some kind of switch statement or
cascaded if/else-if clause to handle the various types of events that might be
received. A typical event handler function might look something like this:

virtual void SomeObject::OnEvent(Event& event)
{
 switch (event.GetType())
 {
 case EVENT_ATTACK:
 RespondToAttack(event.GetAttackInfo());
 break;

 case EVENT_HEALTH_PACK:
 AddHealth(event.GetHealthPack().GetHealth());
 break;

 // ...
default:

 // Unrecognized event.
 break;
 }
}

Alternatively, we might implement a suite of handler functions, one for
each type of event (e.g., OnThis(), OnThat(), …). However, as we discussed
above, a proliferation of event handler functions can be problematic.

A Windows GUI toolkit called Microsoft Foundation Classes (MFC) was
well-known for its message maps —a system that permitt ed any Windows mes-
sage to be bound at runtime to an arbitrary non-virtual or virtual function.
This avoided the need to declare handlers for all possible Windows messages
in a single root class, while at the same time avoiding the big switch statement
that is commonplace in non-MFC Windows message-handling functions. But
such a system is probably not worth the hassle—a switch statement works re-
ally well and is simple and clear.

14.7.6. Unpacking an Event’s Arguments

The example above glosses over one important detail—namely, how to ex-
tract data from the event’s argument list in a type-safe manner. For example,

781

event.GetHealthPack() presumably returns a HealthPack game object,
which in turn we presume provides a member function called GetHealth().
This implies that the root Event class “knows” about health packs (as well as,
by extension, every other type of event argument in the game!) This is prob-
ably an impractical design. In a real engine, there might be derived Event
classes that provide convenient data-access APIs such as GetHealthPack().
Or the event handler might have to unpack the data manually and cast them
to the appropriate types. This latt er approach raises type safety concerns, al-
though practically speaking it usually isn’t a huge problem because the type
of the event is always known when the arguments are unpacked.

14.7.7. Chains of Responsibility

Game objects are almost always dependent upon one another in various ways.
For example, game objects usually reside in a transformation hierarchy, which
allows an object to rest on another object or be held in the hand of a charac-
ter. Game objects might also be made up of multiple interacting components,
leading to a star topology or a loosely connected “cloud” of component ob-
jects. A sports game might maintain a list of all the characters on each team. In
general, we can envision the interrelationships between game objects as one
or more relationship graphs (remembering that a list and a tree are just special
cases of a graph). A few examples of relationship graphs are shown in Fig-
ure 14.17.

14.7. Events and Message-Passing

Figure 14.17. Game objects are interrelated in various ways, and we can draw graphs depicting
these relationships. Any such graph might serve as a distribution channel for events.

Attachment
Graph

Event1

Event3

Component
Graph

Event2

Team
Graph

Team

CarterEvan

Quinn Cooper

ObjectA

ComponentA2ComponentA1

ComponentA3

ClipWeaponCharacterVehicle

782 14. Runtime Gameplay Foundation Systems

It oft en makes sense to be able to pass events from one object to the next
within these relationship graphs. For example, when a vehicle receives an
event, it may be convenient to pass the event to all of the passengers riding on
the vehicle, and those passengers may wish to forward the event to the objects
in their inventories. When a multicomponent game object receives an event, it
may be necessary to pass the event to all of the components so that they all get
a crack at handling it. Or when an event is received by a character in a sports
game, we might want to pass it on to all of his or her teammates as well.

The technique of forwarding events within a graph of objects is a com-
mon design patt ern in object-oriented, event-driven programming, sometimes
referred to as a chain of responsibility [17]. Usually, the order in which the event
is passed around the system is predetermined by the engineers. The event is
passed to the fi rst object in the chain, and the event handler returns a Boolean
or an enumerated code indicating whether or not it recognized and handled
the event. If the event is consumed by a receiver, the process of event for-
warding stops; otherwise, the event is forwarded on to the next receiver in
the chain. An event handler that supports chain-of-responsibility style event
forwarding might look something like this:

virtual bool SomeObject::OnEvent(Event& event)
{
 // Call the base class’ handler first.
 if (BaseClass::OnEvent(event))
 {
 return true;
 }

 // Now try to handle the event myself.
 switch (event.GetType())
 {
 case EVENT_ATTACK:
 RespondToAttack(event.GetAttackInfo());
 return false; // OK to forward this event to others.

 case EVENT_HEALTH_PACK:
 AddHealth(event.GetHealthPack().GetHealth());
 return true; // I consumed the event; don’t forward.

 // ...
default:

 return false; // I didn’t recognize this event.
 }
}

When a derived class overrides an event handler, it can be appropriate to
call the base class’s implementation as well if the class is augmenting but not re-

783

placing the base class’s response. In other situations, the derived class might be
entirely replacing the response of the base class, in which case the base class’s
handler should not be called. This is another kind of responsibility chain.

Event forwarding has other applications as well. For example, we might
want to multicast an event to all objects within a radius of infl uence (for an
explosion, for example). To implement this, we can leverage our game world’s
object query mechanism to fi nd all objects within the relevant sphere and then
forward the event to all of the returned objects.

14.7.8. Registering Interest in Events

It’s reasonably safe to say that most objects in a game do not need to respond
to every possible event. Most types of game objects have a relatively small set
of events in which they are “interested.” This can lead to ineffi ciencies when
multicasting or broadcasting events, because we need to iterate over a group
of objects and call each one’s event handler, even if the object is not interested
in that particular kind of event.

One way to overcome this ineffi ciency is to permit game objects to regis-
ter interest in particular kinds of events. For example, we could maintain one
linked list of interested game objects for each distinct type of event, or each
game object could maintain a bit array, in which the sett ing of each bit corre-
sponds to whether or not the object is interested in a particular type of event.
By doing this, we can avoid calling the event handlers of any objects that do
not care about the event. Calling virtual functions can incur a non-trivial per-
formance hit, especially on consoles with relatively primitive RAM caches, so
fi ltering objects by interest in an event can greatly improve the effi ciency of
event multicasting and broadcasting.

Even bett er, we might be able to restrict our original game object query to
include only those objects that are interested in the event we wish to multicast.
For example, when an explosion goes off , we can ask the collision system for
all objects that are within the damage radius and that can respond to Explo-
sion events. This can save time overall, because we avoid iterating over objects
that we know aren’t interested in the event we’re multicasting. Whether or not
such an approach will produce a net gain depends on how the query mecha-
nism is implemented and the relative costs of fi ltering the objects during the
query versus fi ltering them during the multicast iteration.

14.7.9. To Queue or Not to Queue

 Most game engines provide a mechanism for handling events immediately
when they are sent. In addition to this, some engines also permit events to be
queued for handling at an arbitrary future time. Event queuing has some at-

14.7. Events and Message-Passing

784 14. Runtime Gameplay Foundation Systems

tractive benefi ts, but it also increases the complexity of the event system and
poses some unique problems. We’ll investigate the pros and cons of event
queuing in the following sections and learn how such systems are implement-
ed in the process.

14.7.9.1. Some Benefi ts of Event Queuing

Control Over When Events are Handled

We have seen that we must be careful to update engine subsystems and game
objects in a specifi c order to ensure correct behavior and maximize runtime
performance. In the same sense, certain kinds of events may be highly sen-
sitive to exactly when within the game loop they are handled. If all events
are handled immediately upon being sent, the event handler functions end
up being called in unpredictable and diffi cult-to-control ways throughout the
course of the game loop. By deferring events via an event queue, the engineers
can take steps to ensure that events are only handled when it is safe and ap-
propriate to do so.

Ability to Post Events into the Future

When an event is sent, the sender can usually specify a delivery time—for
example, we might want the event to be handled later in the same frame, next
frame, or some number of seconds aft er it was sent. This feature amounts to
an ability to post events into the future, and it has all sorts of interesting uses.
We can implement a simple alarm clock by posting an event into the future. A
periodic task, such as blinking a light every two seconds, can be executed by
posting an event whose handler performs the periodic task and then posts a
new event of the same type one period into the future .

To implement the ability to post events into the future, each event is
stamped with a desired delivery time prior to being queued. An event is only
handled when the current game clock matches or exceeds its delivery time. An
easy way to make this work is to sort the events in the queue in order of increas-
ing delivery time. Each frame, the fi rst event on the queue can be inspected and
its delivery time checked. If the delivery time is in the future, we abort imme-
diately because we know that all subsequent events are also in the future. But
if we see an event whose delivery time is now or in the past, we extract it from
the queue and handle it. This continues until an event is found whose delivery
time is in the future. The following pseudocode illustrates this process:

// This function is called at least once per frame. Its
// job is to dispatch all events whose delivery time is
// now or in the past.
void EventQueue::DispatchEvents(F32 currentTime)
{

785

 // Look at, but don’t remove, the next event on the
 // queue.
 Event* pEvent = PeekNextEvent();

 while (pEvent && pEvent->GetDeliveryTime() <=
 currentTime)
 {

 // OK, now remove the event from the queue.
RemoveNextEvent();

 // Dispatch it to its receiver’s event handler.

 pEvent-> Dispatch();

 // Peek at the next event on the queue (again
 // without removing it).

 pEvent = PeekNextEvent();
 }
}

Event Prioritization

Even if our events are sorted by delivery time in the event queue, the order
of delivery is still ambiguous when two or more events have exactly the same
delivery time. This can happen more oft en than you might think, because it is
quite common for events’ delivery times to be quantized to an integral num-
ber of frames. For example, if two senders request that events be dispatched
“this frame,” “next frame,” or “in seven frames from now,” then those events
will have identical delivery times.

One way to resolve these ambiguities is to assign priorities to events.
Whenever two events have the same timestamp, the one with higher pri-
ority should always be serviced fi rst. This is easily accomplished by fi rst
sorting the event queue by increasing delivery times and then sorting each
group of events with identical delivery times in order of decreasing prior-
ity.

We could allow up to four billion unique priority levels by encoding our
priorities in a raw, unsigned 32-bit integer, or we could limit ourselves to only
two or three unique priority levels (e.g., low, medium, and high). In every
game engine, there exists some minimum number of priority levels that will
resolve all real ambiguities in the system. It’s usually best to aim as close to
this minimum as possible. With a very large number of priority levels, it can
become a small nightmare to fi gure out which event will be handled fi rst in
any given situation. However, the needs of every game’s event system are dif-
ferent, and your mileage may vary.

14.7. Events and Message-Passing

786 14. Runtime Gameplay Foundation Systems

14.7.9.2. Some Problems with Event Queuing

Increased Event System Complexity

In order to implement a queued event system, we need more code, additional
data structures, and more-complex algorithms than would be necessary to
implement an immediate event system. Increased complexity usually trans-
lates into longer development times and a higher cost to maintain and evolve
the system during development of the game.

Deep-Copying Events and Their Arguments

With an immediate event handling approach, the data in an event’s arguments
need only persist for the duration of the event handling function (and any
functions it may call). This means that the event and its argument data can
reside literally anywhere in memory, including on the call stack. For example,
we could write a function that looks something like this:

void SendExplosionEventToObject(GameObject& receiver)
{
 // Allocate event args on the call stack.

 F32 damage = 5.0f;
 Point centerPoint(-2.0f, 31.5f, 10.0f);
 F32 radius = 2.0f;

 // Allocate the event on the call stack.
Event event("Explosion");

 event.SetArgFloat("Damage", damage);

 event.SetArgPoint("Center", ¢erPoint);

 event.SetArgFloat("Radius", radius);

 // Send the event, which causes the receiver’s event
 // handler to be called immediately, as shown below.
 event. Send(receiver);
 //{
 // receiver.OnEvent(event);
 //}
}

When an event is queued, its arguments must persist beyond the scope of
the sending function. This implies that we must copy the entire event object
prior to storing the event in the queue. We must perform a deep-copy , meaning
that we copy not only the event object itself but its entire argument payload as
well, including any data to which it may be pointing. Deep-copying the event
ensures that there are no dangling references to data that exist only in the

787

sending function’s scope, and it permits the event to be stored indefi nitely. The
example event-sending function shown above still looks basically the same
when using a queued event system, but as you can see in the italicized code
below, the implementation of the Event::Queue() function is a bit more
complex than its Send() counterpart:

void SendExplosionEventToObject(GameObject& receiver)
{
 // We can still allocate event args on the call
 // stack.

 F32 damage = 5.0f;
 Point centerPoint(-2.0f, 31.5f, 10.0f);
 F32 radius = 2.0f;

 // Still OK to allocate the event on the call stack.
Event event("Explosion");

 event.SetArgFloat("Damage", damage);

 event.SetArgPoint("Center", ¢erPoint);

 event.SetArgFloat("Radius", radius);

 // This stores the event in the receiver’s queue for
 // handling at a future time. Note how the event
 // must be deep-copied prior to being enqueued, since
 // the original event resides on the call stack and
 // will go out of scope when this function returns.
 event. Queue(receiver);
 //{
 // Event* pEventCopy = DeepCopy(event);
 // receiver.EnqueueEvent(pEventCopy);
 //}
}

Dynamic Memory Allocation for Queued Events

 Deep-copying of event objects implies a need for dynamic memory allocation,
and as we’ve already noted many times, dynamic allocation is undesirable in
a game engine due to its potential cost and its tendency to fragment memory.
Nonetheless, if we want to queue events, we’ll need to dynamically allocate
memory for them.

As with all dynamic allocation in a game engine, it’s best if we can select
a fast and fragmentation-free allocator. We might be able to use a pool allocator,
but this will only work if all of our event objects are the same size and if their
argument lists are comprised of data elements that are themselves all the same
size. This may well be the case—for example, the arguments might each be a

14.7. Events and Message-Passing

788 14. Runtime Gameplay Foundation Systems

Variant, as described above. If our event objects and/or their arguments can
vary in size, a small memory allocator might be applicable. (Recall that a small
memory allocator maintains multiple pools, one for each of a few predeter-
mined small allocation sizes.) When designing a queued event system, always
be careful to take dynamic allocation requirements into account.

Debugging Diffi culties

 With queued events, the event handler is not called directly by the sender of
that event. So, unlike in immediate event handling, the call stack does not tell us
where the event came from. We cannot walk up the call stack in the debugger
to inspect the state of the sender or the circumstances under which the event
was sent. This can make debugging deferred events a bit tricky, and things get
even more diffi cult when events are forwarded from one object to another.

Some engines store debugging information that forms a paper trail of the
event’s travels throughout the system, but no matt er how you slice it, event
debugging is usually much easier in the absence of queuing.

Event queuing also leads to interesting and hard-to-track-down race con-
dition bugs. We may need to pepper multiple event dispatches throughout our
game loop, to ensure that events are delivered without incurring unwanted
one-frame delays yet still ensuring that game objects are updated in the proper
order during the frame. For example, during the animation update, we might
detect that a particular animation has run to completion. This might cause an
event to be sent whose handler wants to play a new animation. Clearly, we
want to avoid a one-frame delay between the end of the fi rst animation and
the start of the next. To make this work, we need to update animation clocks
fi rst (so that the end of the animation can be detected and the event sent), then
we should dispatch events (so that the event handler has a chance to request
a new animation), and fi nally we can start animation blending (so that the
fi rst frame of the new animation can be processed and displayed). This is il-
lustrated in the code snippet below:

while (true) // main game loop
{
 // ...

 // Update animation clocks. This may detect the end
 // of a clip, and cause EndOfAnimation events to
 // be sent.
 g_animationEngine. UpdateLocalClocks(dt);

 // Next, dispatch events. This allows an
 // EndOfAnimation event handler to start up a new
 // animation this frame if desired.
 g_eventSystem. DispatchEvents();

789

 // Finally, start blending all currently-playing
 // animations (including any new clips started
 // earlier this frame).
 g_animationEngine. StartAnimationBlending();

 // ...
}

14.7.10. Some Problems with Immediate Event Sending

Not queuing events also has its share of issues. For example, immediate event
handling can lead to extremely deep call stacks. Object A might send object B
an event, and in its event handler, B might send another event, which might
send another event, and another, and so on. In a game engine that supports
immediate event handling, it’s not uncommon to see a call stack that looks
something like this:

…
ShoulderAngel::OnEvent()
Event::Send()
Characer::OnEvent()
Event::Send()
Car::OnEvent()
Event::Send()
HandleSoundEffect()
AnimationEngine::PlayAnimation()
Event::Send()
Character::OnEvent()
Event::Send()
Character::OnEvent()
Event::Send()
Character::OnEvent()
Event::Send()
Car::OnEvent()
Event::Send()
Car::OnEvent()
Event::Send()
Car::Update()
GameWorld::UpdateObjectsInBucket()
Engine::GameLoop()
main()

A deep call stack like this can exhaust available stack space in extreme
cases (especially if we have an infi nite loop of event sending), but the real
crux of the problem here is that every event handler function must be writt en
to be fully re-entrant. This means that the event handler can be called recur-
sively without any ill side-eff ects. As a contrived example, imagine a function

14.7. Events and Message-Passing

790 14. Runtime Gameplay Foundation Systems

that increments the value of a global variable. If the global is supposed to be
incremented only once per frame, then this function is not re-entrant, because
multiple recursive calls to the function will increment the variable multiple
times.

14.7.11. Data-Driven Event/Message-Passing Systems

 Event systems give the game programmer a great deal of fl exibility over and
above what can be accomplished with the statically typed function calling
mechanisms provided by languages like C and C++. However, we can do bet-
ter. In our discussions thus far, the logic for sending and receiving events is
still hard-coded and therefore under the exclusive control of the engineers. If
we could make our event system data-driven, we could extend its power into
the hands of our game designers.

There are many ways to make an event system data-driven. Starting with
the extreme of an entirely hard-coded (non-data-driven) event system, we
could imagine providing some simple data-driven confi gurability. For exam-
ple, designers might be allowed to confi gure how individual objects, or entire
classes of object, respond to certain events. In the world editor , we can imagine
selecting an object and then bringing up a scrolling list of all possible events
that it might receive. For each one, the designer could use drop-down combo
boxes and check boxes to control if, and how, the object responds, by selecting
from a set of hard-coded, predefi ned choices. For example, given the event
“PlayerSpott ed,” AI characters might be confi gured to do one of the following
actions: run away, att ack, or ignore the event altogether. The event systems of
some real commercial game engines are implemented in essentially this way.

At the other end of the gamut, our engine might provide the game design-
ers with a simple scripting language (a topic we’ll explore in detail in Section
14.8). In this case, the designer can literally write code that defi nes how a partic-
ular kind of game object will respond to a particular kind of event. In a scripted
model, the designers are really just programmers (working with a somewhat
less powerful but also easier-to-use and hopefully less error-prone language
than the engineers), so anything is possible. Designers might defi ne new types
of events, send events, and receive and handle events in arbitrary ways.

The problem with a simple, confi gurable event system is that it can se-
verely limit what the game designers are capable of doing on their own, with-
out the help of a programmer. On the other hand, a fully scripted solution
has its own share of problems: Many game designers are not professional
soft ware engineers by training, so some designers fi nd learning and using a
scripting language a daunting task. Designers are also probably more prone to
introducing bugs into the game than their engineer counterparts, unless they

791

have practiced scripting or programming for some time. This can lead to some
nasty surprises during alpha.

As a result, some game engines aim for a middle ground. They employ
sophisticated graphical user interfaces to provide a great deal of fl exibility
without going so far as to provide users with a full-fl edged, free-form scripting
language. One approach is to provide a fl ow-chart-style graphical program-
ming language. The idea behind such a system is to provide the user with a
limited and controlled set of atomic operations from which to choose but with
plenty of freedom to wire them up in arbitrary ways. For example, in response
to an event like “PlayerSpott ed,” the designer could wire up a fl ow chart that
causes a character to retreat to the nearest cover point, play an animation, wait
5 seconds, and then att ack. A GUI can also provide error-checking and valida-
tion to help ensure that bugs aren’t inadvertently introduced.

14.7.11.1. Data Pathway Communication Systems

One of the problems with converting a function-call-like event system into
a data-driven system is that diff erent types of events tend to be incompat-
ible. For example, let’s imagine a game in which the player has an electro-
magnetic pulse gun. This pulse causes lights and electronic devices to turn
off , scares small animals, and produces a shock wave that causes any nearby
plants to sway. Each of these game object types may already have an event
response that performs the desired behavior. A small animal might respond
to the “Scare” event by scurrying away. An electronic device might respond
to the “TurnOff ” event by turning itself off . And plants might have an event
handler for a “Wind” event that causes them to sway. The problem is that our
EMP gun is not compatible with any of these objects’ event handlers. As a re-
sult, we end up having to implement a new event type, perhaps called “EMP,”
and then write custom event handlers for every type of game object in order
to respond to it.

 One solution to this problem is to take the event type out of the equation
and to think solely in terms of sending streams of data from one game object to
another. In such a system, every game object has one or more input ports, to
which a data stream can be connected, and one or more output ports, through
which data can be sent to other objects. Provided we have some way of wir-
ing these ports together, such as a graphical user interface in which ports can
be connected to each other via rubber-band lines, then we can construct ar-
bitrarily complex behaviors. Continuing our example, the EMP gun would
have an output port, perhaps named “Fire,” that sends a Boolean signal. Most
of the time, the port produces the value 0 (false), but when the gun is fi red, it
sends a brief (one-frame) pulse of the value 1 (true). The other game objects in

14.7. Events and Message-Passing

792 14. Runtime Gameplay Foundation Systems

the world have binary input ports that trigger various responses. The animals
might have a “Scare” input, the electronic devices a “TurnOn” input, and the
foliage objects a “Sway” input. If we connect the EMP gun’s “Fire” output port
to the input ports of these game objects, we can cause the gun to trigger the de-
sired behaviors. (Note that we’d have to pipe the gun’s “Fire” output through
a node that inverts its input, prior to connecting it to the “TurnOn” input of the
electronic devices. This is because we want them to turn off when the gun is
fi ring.) The wiring diagram for this example is shown in Figure 14.18.

Programmers decide what kinds of port(s) each type of game object will
have. Designers using the GUI can then wire these ports together in arbitrary
ways in order to construct arbitrary behaviors in the game. The programmers
also provide various other kinds of nodes for use within the graph, such as a
node that inverts its input, a node that produces a sine wave, or a node that
outputs the current game time in seconds.

Various types of data might be sent along a data pathway. Some ports
might produce or expect Boolean data, while others might be coded to produce
or expect data in the form of a unit fl oat. Still others might operate on 3D vec-
tors, colors, integers, and so on. It’s important in such a system to ensure that
connections are only made between ports with compatible data types, or we
must provide some mechanism for automatically converting data types when
two diff erently typed ports are connected together. For example, connecting a
unit-fl oat output to a Boolean input might automatically cause any value less

Animal
Scare

Foliage

Sway

Radio

TurnOnInvertIn OutEMP Gun

Fire

Figure 14.18. The EMP gun produces a 1 at its “Fire” output when fi red. This can be connected
to any input port that expects a Boolean value, in order to trigger the behavior associated
with that input.

793

than 0.5 to be converted to false, and any value greater than or equal to 0.5 to
be converted to true. This is the essence of GUI-based event systems like Un-
real Engine 3’s Kismet. A screen shot of Kismet is shown in Figure 14.19.

14.7.11.2. Some Pros and Cons of GUI-Based Programming

The benefi ts of a graphical user interface over a straightforward, text-fi le-
based scripting language are probably prett y obvious: ease of use, a gradual
learning curve with the potential for in-tool help and tool tips to guide the
user, and plenty of error-checking. The downsides of a fl ow-chart style GUI
include the high cost to develop, debug, and maintain such a system, the addi-
tional complexity, which can lead to annoying or sometimes schedule-killing
bugs, and the fact that designers are sometimes limited in what they can do
with the tool. A text-fi le based programming language has some distinct ad-
vantages over a GUI-based programming system, including its relative sim-
plicity (meaning that it is much less prone to bugs), the ability to easily search
and replace within the source code, and the freedom of each user to choose the
text editor with which they are most comfortable.

14.7. Events and Message-Passing

Figure 14.19. Unreal Engine 3’s Kismet.

794 14. Runtime Gameplay Foundation Systems

14.8. Scripting

A scripting language can be defi ned as a programming language whose pri-
mary purpose is to permit users to control and customize the behavior of a
soft ware application. For example, the Visual Basic language can be used to
customize the behavior of Microsoft Excel; both MEL and Python can be used
to customize the behavior of Maya. In the context of game engines, a script-
ing language is a high-level, relatively easy-to-use programming language that
provides its users with convenient access to most of the commonly used fea-
tures of the engine. As such, a scripting language can be used by program-
mers and non-programmers alike to develop a new game or to customize—or
“mod”—an existing game.

14.8.1. Runtime versus Data Defi nition

We should be careful to make an important distinction here. Game scripting
languages generally come in two fl avors:

 Data-defi nition languages. The primary purpose of a data-defi nition lan-
guage is to permit users to create and populate data structures that are
later consumed by the engine. Such languages are oft en declarative (see
below) and are either executed or parsed off -line or at runtime when the
data is loaded into memory.

 Runtime scripting languages . Runtime scripting languages are intended to
be executed within the context of the engine at runtime. These languag-
es are usually used to extend or customize the hard-coded functionality
of the engine’s game object model and/or other engine systems.

In this section, we’ll focus primarily on using a runtime scripting language for
the purpose of implementing gameplay features by extending and custom-
izing the game’s object model.

14.8.2. Programming Language Characteristics

In our discussion of scripting languages , it will be helpful for us all to be on
the same page with regard to programming language terminology. There are
all sorts of programming languages out there, but they can be classifi ed ap-
proximately according to a relatively small number of criteria. Let’s take a
brief look at these criteria:

 Interpreted versus compiled languages. The source code of a compiled lan-
guage is translated by a program called a compiler into machine code,
which can be executed directly by the CPU. In contrast, the source code

795

of an interpreted language is either parsed directly at runtime or is pre-
compiled into platform-independent byte code , which is then executed
by a virtual machine at runtime. A virtual machine acts like an emulation
of an imaginary CPU, and byte code acts like a list of machine language
instructions that are consumed by this CPU. The benefi t of a virtual
machine is that it can be quite easily ported to almost any hardware
platform and embedded within a host application like a game engine.
The biggest cost we pay for this fl exibility is execution speed—a virtual
machine usually executes its byte code instructions much more slowly
than the native CPU executes its machine language instructions.

 Imperative langages. In an imperative language, a program is described
by a sequence of instructions, each of which performs an operation and/
or changes the state of data in memory. C and C++ are imperative lan-
guages.

 Declarative languages. A declarative language describes what is to be done
but does not specify exactly how the result should be obtained. That de-
cision is left up to the people implementing the language. Prolog is an
example of a declarative language. Mark-up languages like HTML and
TeX can also be classifi ed as declarative languages.

 Functional languages. Functional languages, which are technically a sub-
set of declarative languages, aim to avoid state altogether. In a func-
tional language, programs are defi ned by a collection of functions. Each
function produces its results with no side-eff ects (i.e., it causes no ob-
servable changes to the system, other than to produce its output data).
A program is constructed by passing input data from one function to the
next until the fi nal desired result has been generated. These languages
tend to be well-suited to implementing data-processing pipelines. Oca-
ml, Haskell, and F# are examples of functional languages.

 Procedural versus object-oriented languages. In a procedural language, the
primary atom of program construction is the procedure (or function).
These procedures and functions perform operations, calculate results,
and/or change the state of various data structures in memory. In con-
strast, an object-oriented language’s primary unit of program construc-
tion is the class, a data structure that is tightly coupled with a set of
procedures/functions that “know” how to manage and manipulate the
data within that data structure.

 Refl ective languages. In a refl ective language, information about the data
types, data member layouts, functions, and hierarchical class relation-
ships in the system is available for inspection at runtime. In a non-refl ec-

14.8. Scripting

796 14. Runtime Gameplay Foundation Systems

tive language, the majority of this meta-information is known only at
compile time; only a very limited amount of it is exposed to the runtime
code. C# is an example of a refl ective language, while C and C++ are
examples of non-refl ective languages.

14.8.2.1. Typical Characteristics of Game Scripting Languages

The characteristics that set a game scripting language apart from its native pro-
gramming language brethren include:

 Interpreted. Most game scripting languages are interpreted by a virtual
machine, not compiled. This choice is made in the interest of fl exibility,
portability, and rapid iteration (see below). When code is represented
as platform-independent byte code, it can easily be treated like data by
the engine. It can be loaded into memory just like any other asset rather
than requiring help from the operating system (as is necessary with a
DLL on a PC platform or an IRX on the PLAYSTATION 3, for example).
Because the code is executed by a virtual machine rather than directly
by the CPU, the game engine is aff orded a great deal of fl exibility re-
garding how and when script code will be run.

 Lightweight. Most game scripting languages have been designed for
use in an embedded system. As such, their virtual machines tend to be
simple, and their memory footprints tend to be quite small.

 Support for rapid iteration. Whenever native code is changed, the program
must be recompiled and relinked, and the game must be shut down
and rerun in order to see the eff ects of the changes. On the other hand,
when script code is changed, the eff ects of the changes can usually be
seen very rapidly. Some game engines permit script code to be reloaded
on the fl y, without shutt ing down the game at all. Others require the
game to be shut down and rerun. But either way, the turnaround time
between making a change and seeing its eff ects in-game is usually much
faster than when making changes to the native language source code.

 Convenience and ease of use. Scripting languages are oft en customized to
suit the needs of a particular game. Features can be provided that make
common tasks simple, intuitive, and less error-prone. For example, a
game scripting language might provide functions for fi nding game ob-
jects by name, sending and handling events, pausing or manipulating
the passage of time, waiting for a specifi ed amount of time to pass, im-
plementing fi nite state machines, exposing tweakable parameters to the
world editor for use by the game designers, or even handling network
replication for multiplayer games.

797

14.8.3. Some Common Game Scripting Languages

When implementing a runtime game scripting system, we have one funda-
mental choice to make: Do we select a third-party commercial or open-source
language and customize it to suit our needs, or do we design and implement
a custom language from scratch?

Creating a custom language from scratch is usually not worth the hassle
and the cost of maintenance throughout the project. It can also be diffi cult or
impossible to hire game designers and programmers who are already familiar
with a custom, in-house language, so there’s usually a training cost as well.
However, this is clearly the most fl exible and customizable approach, and that
fl exibility can be worth the investment.

For many studios, it is more convenient to select a reasonably well-known
and mature scripting language and extend it with features specifi c to your
game engine. There are a great many third-party scripting languages from
which to choose, and many are mature and robust, having been used in a
great many projects both within and outside the game industry.

In the following sections, we’ll explore a number of custom game script-
ing languages and a number of game-agnostic languages that are commonly
adapted for use in game engines.

14.8.3.1. QuakeC

Id Soft ware’s John Carmack implemented a custom scripting language for
Quake, known as QuakeC (QC). This language was essentially a simplifi ed
variant of the C programming language with direct hooks into the Quake en-
gine. It had no support for pointers or defi ning arbitrary structs, but it could
manipulate entities (Quake’s name for game objects) in a convenient manner,
and it could be used to send and receive/handle game events. QuakeC is an
interpreted, imperative, procedural programming language.

The power that QuakeC put into the hands of gamers is one of the fac-
tors that gave birth to what is now known as the mod community. Scripting
languages and other forms of data-driven customization allow gamers to
turn many commercial games into all sorts of new gaming experiences—from
slight modifi cations on the original theme to entirely new games.

14.8.3.2. UnrealScript

Probably the best-known example of an entirely custom scripting language
is Unreal Engine’s UnrealScript . This language is based on a C++-like syntacti-
cal style, and it supports most of the concepts that C and C++ programmers
have become accustomed to, including classes, local variables, looping, arrays
and structs for data organization, strings, hashed string ids (called FName in

14.8. Scripting

798 14. Runtime Gameplay Foundation Systems

Unreal), and object references (but not free-form pointers). In addition, Un-
realScript provides a number of extremely powerful game-specifi c features,
which we’ll explore briefl y below. UnrealScript is an interpreted, imperative,
object-oriented language.

Ability to Extend the Class Hierarchy

This is perhaps UnrealScript’s biggest claim to fame. The Unreal object model
is essentially a monolithic class hierarchy, with add-on components provid-
ing interfaces to various engine systems. The root classes in the hierarchy are
known as native classes, because they are implemented in the native C++ lan-
guage. But UnrealScript’s real power comes from the fact that it can be used to
derive new classes that are implemented entirely in script.

This may not sound like a big deal until you try to imagine how you
would implement such a thing! In eff ect, UnrealScript redefi nes and extends
C++’s native object model, which is really quite astounding. For native Unreal
classes, the UnrealScript source fi les (normally named with the extension .uc)
take the place of C++’s header fi les (.h fi les) as the primary defi nition of each
class—the UnrealScript compiler actually generates the C++ .h fi les from the .uc
fi les, and the programmer implements the classes in regular .cpp source fi les.
Doing this allows the UnrealScript compiler to introduce additional features
into every Unreal class, and these features permit new script-only classes to be
defi ned by users that inherit from native classes or other script-only classes.

Latent Functions

Latent functions are functions whose execution may span multiple frames of
gameplay. A latent function can execute some instructions and then “go to
sleep” waiting for an event or for a specifi ed amount of time to pass. When the
relevant event occurs or the time period elapses, the function is “woken up” by
the engine, and it continues executing where it left off . This feature is highly use-
ful for managing behaviors in the game that depend upon the passage of time.

Convenient Linkage to UnrealEd

The data members of any UnrealScript-based class can be optionally marked with
a simple annotation, indicating that that data member is to be made available for
viewing and editing in Unreal’s world editor , UnrealEd . No GUI programming
is required. This makes data-driven game design extremely easy (as long as Un-
realEd’s built-in data member editing GUI suits your needs, of course).

Network Replication for Multiplayer Games

Individual data elements in UnrealScript can be marked for replication. In
Unreal networked games, each game object exists in its full form on one

799

particular machine; all the other machines have a lightweight version of the
object known as a remote proxy . When you mark a data member for replica-
tion, you are telling the engine that you want that data to be replicated from
the master object to all of the remote proxies. This allows a programmer or
designer to easily control which data should be made available across the
network. This indirectly controls the amount of network bandwidth required
by the game.

14.8.3.3. Lua

Lua is a well-known and popular scripting language that is easy to integrate
into an application such as a game engine. The Lua website (htt p://www.lua.
org/about.html) calls the language the “leading scripting language in games.”

According to the Lua website, Lua’s key benefi ts are:

 Robust and mature. Lua has been used on numerous commercial prod-
ucts, including Adobe’s Photoshop Lightroom, and many games, includ-
ing World of Warcraft .

 Good documentation. Lua’s reference manual [21] is complete and
understandable and is available in online and book formats. A number
of books have been writt en about Lua, including [22] and [43].

 Excellent runtime performance. Lua executes its byte code more quickly
and effi ciently than many other scripting languages.

 Portable. Out of the box, Lua runs on all fl avors of Windows and
UNIX, mobile devices, and embedded microprocessors. Lua is writt en
in a portable manner, making it easy to adapt to new hardware plat-
forms.

 Designed for embedded systems. Lua’s memory footprint is very small
(approximately 350 kB for the interpreter and all libraries).

 Simple, powerful, and extensible. The core Lua language is very small and
simple, but it is designed to support meta-mechanisms that extend its
core functionality in virtually limitless ways. For example, Lua itself
is not an object-oriented language, but OOP support can and has been
added via a meta-mechanism.

 Free. Lua is open source and is distributed under the very liberal MIT
license.

Lua is a dynamically typed language, meaning that variables don’t have
types—only values do. (Every value carries its type information along with it.)
Lua’s primary data structure is the table, also known as an associative array. A
table is essentially a list of key-value pairs with an optimized ability to index
into the array by key.

14.8. Scripting

http://www.lua

800 14. Runtime Gameplay Foundation Systems

Lua provides a convenient interface to the C language—the Lua virtual
machine can call and manipulate functions writt en in C as easily as it can
those writt en in Lua itself.

Lua treats blocks of code, called chunks, as fi rst-class objects that can be
manipulated by the Lua program itself. Code can be executed in source code
format or in precompiled byte code format. This allows the virtual machine
to execute a string that contains Lua code, just as if the code were compiled
into the original program. Lua also supports some powerful advanced pro-
gramming constructs, including coroutines. This is a simple form of coopera-
tive multitasking , in which each thread must yield the CPU to other threads
explicitly (rather than being time-sliced as in a preemptive multithreading
system).

Lua does have some pitfalls. For example, its fl exible function binding
mechanism makes it possible (and quite easy) to redefi ne an important global
function like sin() to perform a totally diff erent task (which is usually not
something one intends to do). But all in all, Lua has proven itself to be an ex-
cellent choice for use as a game scripting language.

14.8.3.4. Python

Python is a procedural, object-oriented, dynamically typed scripting lan-
guage, designed with ease of use, integration with other programming lan-
guages, and fl exibility in mind. Like Lua, Python is a common choice for use
as a game scripting language. According to the offi cial Python website (htt p://
www.python.org), some of Python’s best features include:

 Clear and readable syntax. Python code is easy to read, in part because
the syntax enforces a specifi c indentation style. (It actually parses the
whitespace used for intentation in order to determine the scope of each
line of code.)

 Refl ective language. Python includes powerful runtime introspection
facilities. Classes in Python are fi rst-class objects, meaning they can be
manipulated and queried at runtime, just like any other object.

 Object-oriented. One advantage of Python over Lua is that OOP is built
into the core language. This makes integrating Python with a game’s
object model a litt le easier.

 Modular. Python supports hierarchical packages, encouraging clean
system design and good encapsulation.

 Exception-based error handling. Exceptions make error-handling code in
Python simpler, more elegant, and more localized than similar code in a
non-exception based language.

http://www.python.org

801

 Extensive standard libraries and third-party modules. Python libraries exist
for virtually every task imaginable. (Really!)

 Embeddable. Python can be easily embedded into an application, such as
a game engine.

 Extensive documentation. There’s plenty of documentation and tutorials
on Python, both online and in book form. A good place to start is the
Python website, htt p://www.python.org.

Python syntax is reminiscent of C in many respects (for example, its use
of the = operator for assignment and == for equality testing). However, in
Python, code indentation serves as the only means of defi ning scope (as opposed
to C’s opening and closing braces). Python’s primary data structures are the
list—a linearly indexed sequence of atomic values or other nested lists—and
the dictionary—a table of key-value pairs. Each of these two data structures
can hold instances of the other, allowing arbitrarily complex data structures to
be constructed easily. In addition, classes—unifi ed collections of data elements
and functions—are built right into the language.

Python supports duck typing , which is a style of dynamic typing in which
the functional interface of an object determines its type (rather than being de-
fi ned by a static inheritance hierarchy). In other words, any class that supports
a particular interface (i.e., a collection of functions with specifi c signatures)
can be used interchangeably with any other class that supports that same
interface. This is a powerful paradigm: In eff ect, Python supports polymor-
phism without requiring the use of inheritance. Duck typing is similar in some
respects to C++ template meta-programming, although it is arguably more
fl exible because the bindings between caller and callee are formed dynami-
cally, at runtime. Duck typing gets its name from the well-known phrase (at-
tributed to James Whitcomb Riley), “If it walks like a duck and quacks like a
duck, I would call it a duck.” See htt p://en.wikipedia.org/wiki/Duck_typing
for more information on duck typing.

In summary, Python is easy to use and learn, embeds easily into a game
engine, integrates well with a game’s object model, and can be an excellent
and powerful choice as a game scripting language.

14.8.3.5. Pawn / Small / Small-C

Pawn is a lightweight, dynamically typed, C-like scripting language created
by Marc Peter. The language was formerly known as Small, which itself was
an evolution of an earlier subset of the C language called Small-C, writt en by
Ron Cain and James Hendrix. It is an interpreted language—the source code
is compiled into byte code (also known as P-code), which is interpreted by a
virtual machine at runtime.

14.8. Scripting

http://www.python.org

802 14. Runtime Gameplay Foundation Systems

Pawn was designed to have a small memory footprint and to execute its
byte code very quickly. Unlike C, Pawn’s variables are dynamically typed.
Pawn also supports fi nite state machines, including state-local variables. This
unique feature makes it a good fi t for many game applications. Good online
documentation is available for Pawn (htt p://www.compuphase.com/pawn/
pawn.htm). Pawn is open source and can be used free of charge under the
Zlib/libpng license (htt p://www.opensource.org/licenses/zlib-license.php).

Pawn’s C-like syntax makes it easy to learn for any C/C++ programmer
and easy to integrate with a game engine writt en in C. Its fi nite state machine
support can be very useful for game programming. It has been used success-
fully on a number of game projects, including Freaky Flyers by Midway. Pawn
has shown itself to be a viable game scripting language.

14.8.4. Architectures for Scripting

Script code can play all sorts of roles within a game engine. There’s a gamut of
possible architectures, from tiny snippets of script code that perform simple
functions on behalf of an object or engine system to high-level scripts that
manage the operation of the game. Here are just a few of the possible archi-
tectures:

 Scripted callbacks . In this approach, the engine’s functionality is largely
hard-coded in the native programming language, but certain key bits of
functionality are designed to be customizable. This is oft en implement-
ed via a hook function or callback—a user-supplied function that is called
by the engine for the purpose of allowing customization. Hook func-
tions can be writt en in the native language, of course, but they can also
be writt en in a scripting language. For example, when updating game
objects during the game loop, the engine might call an optional callback
function that can be writt en in script. This gives users the opportunity to
customize the way in which the game object updates itself over time.

 Scripted event handlers . An event handler is really just a special type of
hook function whose purpose is to allow a game object to respond to
some relevant occurrence within the game world (e.g., responding to
an explosion going off) or within the engine itself (e.g., responding to
an out-of-memory condition). Many game engines allow users to write
event handler hooks in script as well as in the native language.

 Extending game object types, or defi ning new ones, with script . Some script-
ing languages allow game object types that have been implemented in
the native language to be extended via script. In fact, callbacks and event
handlers are examples of this on a small scale, but the idea can be ex-

http://www.compuphase.com/pawn/
http://www.opensource.org/licenses/zlib-license.php

803

tended even to the point of allowing entirely new types of game objects
to be defi ned in script. This might be done via inheritance (i.e., deriving a
class writt en in script from a class writt en in the native language) or via
composition / aggregation (i.e., att aching an instance of a scripted class to a
native game object).

 Scripted components or properties . In a component- or property-based
game object model, it only makes sense to permit new components or
property objects to be constructed partially or entirely in script. This ap-
proach was used by Gas Powered Games for Dungeon Siege (htt p://www.
drizzle.com /~scott b /gdc /game-objects.ppt). The game object model was
property-based, and it was possible to implement properties in either
C++ or Gas Powered Games’ custom scripting language, Skrit (htt p://
ds.heavengames.com/library/dstk/skrit/skrit). By the end of the project,
they had approximately 148 scripted property types and 21 native C++
property types.

 Script-driven engine systems . Script might be used to drive an entire
engine system. For example, the game object model could conceiv-
ably be written entirely in script, calling into the native engine code
only when it requires the services of lower-level engine compo-
nents.

 Script-driven game. Some game engines actually fl ip the relationship
between the native language and the scripting language on its head.
In these engines, the script code runs the whole show, and the native
engine code acts merely as a library that is called to access certain
high-speed features of the engine. The Panda3D engine (htt p://www.
panda3d.org) is an example of this kind of architecture. Panda3D games
can be writt en entirely in the Python language, and the native engine
(implemented in C++) acts like a library that is called by script code.
(Panda3D games can also be writt en entirely in C++.)

14.8.5. Features of a Runtime Game Scripting Language

The primary purpose of many game scripting languages is to implement
gameplay features, and this is oft en accomplished by augmenting and cus-
tomizing a game’s object model. In this section, we’ll explore some of the most
common requirements and features of such a scripting system.

14.8.5.1. Interface with the Native Programming Language

In order for a scripting language to be useful, it must not operate in a vacuum.
It’s imperative for the game engine to be able to execute script code, and it’s

14.8. Scripting

http://www.drizzle.com
http://www.drizzle.com
http://www.panda3d.org
http://www.panda3d.org

804 14. Runtime Gameplay Foundation Systems

usually equally important for script code to be capable of initiating operations
within the engine as well.

A runtime scripting language’s virtual machine is generally embedded
within the game engine. The engine initializes the virtual machine, runs script
code whenever required, and manages those scripts’ execution. The unit of
execution varies depending on the specifi cs of the language and the game’s
implementation.

 In a functional scripting language, the function is oft en the primary unit of
execution. In order for the engine to call a script function, it must look up
the byte code corresponding to the name of the desired function and spawn
a virtual machine to execute it (or instruct an existing VM to do so).

 In an object-oriented scripting language, classes are typically the prima-
ry unit of execution. In such a system, objects can be spawned and de-
stroyed, and methods (member functions) can be invoked on individual
class instances.

It’s usually benefi cial to allow two-way communication between script
and native code. Therefore, most scripting languages allowing native code to
be invoked from script as well. The details are language- and implementation-
specifi c, but the basic approach is usually to allow certain script functions to
be implemented in the native language rather than in the scripting language.
To call an engine function, script code simply makes an ordinary function call.
The virtual machine detects that the function has a native implementation,
looks up the corresponding native function’s address (perhaps by name or via
some other kind of unique function identifi er), and calls it. For example, some
or all of the member functions of a Python class or module can be implement-
ed using C functions. Python maintains a data structure, known as a method
table , that maps the name of each Python function (represented as a string) to
the address of the C function that implements it.

Case Study: Naughty Dog’s DC Language

As an example, let’s have a brief look at how Naughty Dog’s runtime scripting
language, a language called DC, was integrated into the engine.

DC is a variant of the Scheme language (which is itself a variant of Lisp).
Chunks of executable code in DC are known as script lambdas , which are the
approximate equivalent of functions or code blocks in the Lisp family of lan-
guages. A DC programmer writes script lambdas and identifi es them by giving
them globally unique names. The DC compiler converts these script lambdas
into chunks of byte code, which are loaded into memory when the game runs
and can be looked up by name using a simple functional interface in C++.

805

Once the engine has a pointer to a chunk of script lambda byte code , it can
execute the code by calling a function in the engine and passing the pointer to
the byte code to it. The function itself is surprisingly simple. It spins in a loop,
reading byte code instructions one-by-one, and executing each instruction.
When all instructions have been executed, the function returns.

The virtual machine contains a bank of registers, which can hold any kind
of data the script may want to deal with. This is implemented using a variant
data type—a union of all the data types (see 14.7.4 for a discussion of vari-
ants). Some instructions cause data to be loaded into a register; others cause
the data held in a register to be looked up and used. There are instructions for
performing all of the mathematical operations available in the language, as
well as instructions for performing conditional checks—implementations of
DC’s (if …), (when …), and (cond …) instructions and so on.

The virtual machine also supports a function call stack. Script lambdas in
DC can call other script lambdas (i.e., functions) that have been defi ned by
a script programmer via DC’s (defun …) syntax. Just like any procedural
programming language, a stack is needed to keep track of the states of the
registers and the return address when one function calls another. In the DC
virtual machine, the call stack is literally a stack of register banks—each new
function gets its own private bank of registers. This prevents us from having
to save off the state of the registers, call the function, and then restore the reg-
isters when the called function returns. When the virtual machine encounters
a byte code instruction that tells it to call another script lambda, the byte code
for that script lambda is looked up by name, a new stack frame is pushed, and
execution continues at the fi rst instruction of that script lambda. When the vir-
tual machine encounters a return instruction, the stack frame is popped from
the stack, along with the return “address” (which is really just the index of the
byte code instruction in the calling script lambda aft er the one that called the
function in the fi rst place).

The following pseudocode should give you a feel for what the core in-
struction-processing loop of the DC virtual machine looks like:

void DcExecuteScript(DCByteCode* pCode)
{

 DCStackFrame* pCurStackFrame =
DcPushStackFrame(pCode);

 // Keep going until we run out of stack frames (i.e.,
 // the top-level script lambda "function" returns).
 while (pCurStackFrame != NULL)
 {

14.8. Scripting

806 14. Runtime Gameplay Foundation Systems

 // Get the next instruction. We will never run
 // out, because the return instruction is always
 // last, and it will pop the current stack frame
 // below.

 DCInstruction& instr
 = pCurStackFrame->GetNextInstruction();

 // Perform the operation of the instruction.
 switch (instr.GetOperation())
 {

 case DC_LOAD_REGISTER_IMMEDIATE:
 {
 // Grab the immediate value to be loaded
 // from the instruction.
 Variant& data = instr.GetImmediateValue();

 // Also determine into which register to
 // put it.
 U32 iReg = instr.GetDestRegisterIndex();

 // Grab the register from the stack frame.
 Variant& reg
 = pCurStackFrame->GetRegister(iReg);

 // Store the immediate data into the
 // register.

reg = data;
 }
 break;

 // Other load and store register operations...

 case DC_ADD_REGISTERS:
 {
 // Determine the two registers to add. The
 // result will be stored in register A.
 U32 iRegA = instr.GetDestRegisterIndex();
 U32 iRegB = instr.GetSrcRegisterIndex();

 // Grab the 2 register variants from the
 // stack.
 Variant& dataA
 = pCurStackFrame->GetRegister(iRegA);
 Variant& dataB
 = pCurStackFrame->GetRegister(iRegB);

 // Add the registers and store in
 // register A.

dataA = dataA + dataB;
 }
 break;

807

 // Other math operations...

 case DC_CALL_SCRIPT_LAMBDA:
 {
 // Determine in which register the name of
 // the script lambda to call is stored.
 // (Presumably it was loaded by a previous
 // load instr.)
 U32 iReg = instr.GetSrcRegisterIndex();

 // Grab the appropriate register, which
 // contains the name of the lambda to call.
 Variant& lambda
 = pCurStackFrame->GetRegister(iReg);

 // Look up the byte code of the lambda by
 // name.
 DCByteCode* pCalledCode
 = DcLookUpByteCode(lambda.AsStringId());

 // Now "call" the lambda by pushing a new
 // stack frame.
 if (pCalledCode)
 {

pCurStackFrame
 = DcPushStackFrame(pCalledCode);
 }

 }
 break;

 case DC_RETURN:
 {
 // Just pop the stack frame. If we’re in
 // the top lambda on the stack, this
 // function will return NULL, and the loop
 // will terminate.

pCurStackFrame = DcPopStackFrame();
 }
 break;

 // Other instructions...

 // ...

 } // end switch
 } // end for
}

In the above example, we assume that the global functions DcPushStack
Frame() and DcPopStackFrame() manage the stack of register banks for us

14.8. Scripting

808 14. Runtime Gameplay Foundation Systems

in some suitable way and that the global function DcLookUpByteCode() is
capable of looking up any script lambda by name. We won’t show implemen-
tations of those functions here, because the purpose of this example is simply
to show how the inner loop of a script virtual machine might work, not to
provide a complete functional implementation.

DC script lambdas can also call native functions—i.e., global functions
writt en in C++ that serve as hooks into the engine itself. When the virtual ma-
chine comes across an instruction that calls a native function, the address of
the C++ function is looked up by name using a global table that has been hard-
coded by the engine programmers. If a suitable C++ function is found, the
arguments to the function are taken from registers in the current stack frame,
and the function is called. This implies that the C++ function’s arguments are
always of type Variant. If the C++ function returns a value, it too must be a
Variant, and its value will be stored into a register in the current stack frame
for possible use by subsequent instructions.

The global function table might look something like this:

typedef Variant DcNativeFunction(U32 argCount,
 Variant* aArgs);

struct DcNativeFunctionEntry
{
 StringId m_name;
 DcNativeFunction* m_pFunc;
};

DcNativeFunctionEntry g_aNativeFunctionLookupTable[] = {
 { SID("get-object-pos"), DcGetObjectPos },

 { SID("animate-object"), DcAnimateObject },
 // etc.
 // ...
};

A native DC function implementation might look something like the fol-
lowing. Notice how the Variant arguments are passed to the function as an
array. The function must verify that the number of arguments passed to it
equals the number of arguments it expects. It must also verify that the types of
the argument(s) are as expected and be prepared to handle errors that the DC
script programmer may have made when calling the function.

Variant DcGetObjectPos(U32 argCount, Variant* aArgs)
{
 // Set up a default return value.
 Variant result;
 result. SetAsVector(Vector(0.0f, 0.0f, 0.0f));

809

 if (argCount != 1)
 {

 DcErrorMessage("get-object-pos:
 Invalid arg count.\n");

return result;
 }

 if (aArgs[0].GetType() != Variant::TYPE_STRING_ID)
 {

 DcErrorMessage("get-object-pos: Expected
 string id.\n");

return result;
 }

 StringId objectName = aArgs[0].AsStringId();

 GameObject* pObject = GameObject::LookUpByName
(objectName);

 if (pObject == NULL)
 {

 DcErrorMessage(
 "get-object-pos: Object ‘%s’ not found.\n",
 objectName.ToString());

return result;
 }

 result. SetAsVector(pObject->GetPosition());
return result;

}

14.8.5.2. Game Object Handles

Script functions oft en need to interact with game objects, which themselves
may be implemented partially or entirely in the engine’s native language. The
native language’s mechanisms for referencing objects (e.g., pointers or refer-
ences in C++) won’t necessarily be valid in the scripting language. (It may not
support pointers at all, for example.) Therefore, we need to come up with
some reliable way for script code to reference game objects.

There are a number of ways to accomplish this. One approach is to refer to
objects in script via opaque numeric handles . The script code can obtain object
handles in various ways. It might be passed a handle by the engine, or it might
perform some kind of query, such as asking for the handles of all game objects
within a radius of the player or looking up the handle that corresponds to a
particular object name. The script can then perform operations on the game

14.8. Scripting

810 14. Runtime Gameplay Foundation Systems

object by calling native functions and passing the object’s handle as an argu-
ment. On the native language side, the handle is converted back into a pointer
to the native object, and then the object can be manipulated as appropriate.

Numeric handles have the benefi t of simplicity and should be easy to sup-
port in any scripting language that supports integer data. However, they can
be unintuitive and diffi cult to work with. Another alternative is to use the
names of the objects, represented as strings, as our handles. This has some
interesting benefi ts over the numeric handle technique. For one thing, strings
are human-readable and intuitive to work with. There is a direct correspon-
dence to the names of the objects in the game’s world editor. In addition, we
can choose to reserve certain special object names and give them “magic”
meanings. For example, in Naughty Dog’s scripting language, the reserved
name “self” always refers to the object to which the currently-running script is
att ached. This allows game designers to write a script, att ach it to an object in
the game, and then use the script to play an animation on the object by simply
writing (animate "self" name-of-animation).

Using strings as object handles has its pitfalls, of course. Strings oft en
occupy more memory than integer ids. And because strings vary in length,
dynamic memory allocation is required in order to copy them. String com-
parisons are slow. Script programmers are apt to make mistakes when typing
the names of game objects, which can lead to bugs. In addition, script code can
be broken if someone changes the name of an object in the game world editor
but forgets to update the name of the object in script.

Hashed string ids overcome most of these problems by converting any
strings (regardless of length) into an integer. In theory, hashed string ids enjoy
the best of both worlds—they can be read by users just like strings, but they
have the runtime performance characteristics of an integer. However, for this
to work, your scripting language needs to support hashed string ids in some
way. Ideally, we’d like the script compiler to convert our strings into hashed
ids for us. That way, the runtime code doesn’t have to deal with the strings at
all, only the hashed ids (except possibly for debugging purposes—it’s nice to
be able to see the string corresponding to a hashed id in the debugger). How-
ever, this isn’t always possible in all scripting languages. Another approach is
to allow the user to use strings in script and convert them into hashed ids at
runtime, whenever a native function is called.

14.8.5.3. Receiving and Handling Events

Events are a ubiquitous communication mechanism in most game engines. By
permitt ing event handler functions to be writt en in script, we open up a pow-
erful avenue for customizing the hard-coded behavior of our game.

811

Events are usually sent to individual objects and handled within the con-
text of that object. Hence scripted event handlers need to be associated with
an object in some way. Some engines use the game object type system for this
purpose—scripted event handlers can be registered on a per-object-type basis.
This allows diff erent types of game objects to respond in diff erent ways to the
same event but ensures that all instances of each type respond in a consis-
tent and uniform way. The event handler functions themselves can be simple
script functions, or they can be members of a class if the scripting language is
object-oriented. In either case, the event handler is typically passed a handle
to the particular object to which the event was sent, much as C++ member
functions are passed the this pointer.

In other engines, scripted event handlers are associated with individual
object instances rather than with object types. In this approach, diff erent in-
stances of the same type might respond diff erently to the same event.

There are all sorts of other possibilities, of course. For example, in Naughty
Dog’s Uncharted engine, scripts are objects in their own right. They can be as-
sociated with individual game objects, they can be att ached to regions (convex
volumes that are used to trigger game events), or they can exist as standalone
objects in the game world. Each script can have multiple states (that is, scripts
are fi nite state machines in the Uncharted engine). In turn, each state can have
one or more event handler code blocks. When a game object receives an event,
it has the option of handling the event in native C++. It also checks for an at-
tached script object, and if one is found, the event is sent to that script’s current
state. If the state has an event handler for the event, it is called. Otherwise, the
script simply ignores the event.

14.8.5.4. Sending Events

Allowing scripts to handle game events that are generated by the engine is
certainly a powerful feature. Even more powerful is the ability to generate and
send events from script code either back to the engine or to other scripts.

Ideally, we’d like to be able not only to send predefi ned types of events
from script but to defi ne entirely new event types in script. Implementing this
is trivial if event types are strings. To defi ne a new event type, the script pro-
grammer simply comes up with a new event type name and types it into his
or her script code. This can be a highly fl exible way for scripts to communicate
with one another. Script A can defi ne a new event type and send it to Script B.
If Script B defi nes an event handler for this type of event, we’ve implemented
a simple way for Script A to “talk” to Script B. In some game engines, event- or
message-passing is the only supported means of inter-object communication
in script. This can be an elegant yet powerful and fl exible solution.

14.8. Scripting

812 14. Runtime Gameplay Foundation Systems

14.8.5.5. Object-Oriented Scripting Languages

Some scripting languages are inherently object-oriented. Others do not sup-
port objects directly but provide mechanisms that can be used to implement
classes and objects. In many engines, gameplay is implemented via an object-
oriented game object model of some kind. So it makes sense to permit some
form of object-oriented programming in script as well.

Defi ning Classes in Scripts

A class is really just a bunch of data with some associated functions. So any
scripting language that permits new data structures to be defi ned, and pro-
vides some way to store and manipulate functions, can be used to implement
classes. For example, in Lua, a class can be built out of a table that stores data
members and member functions.

Inheritance in Script

Object-oriented languages do not necessarily support inheritance . However,
if this feature is available, it can be extremely useful, just as it is in native pro-
gramming languages like C++.

In the context of game scripting languages, there are two kinds of in-
heritance: deriving scripted classes from other scripted classes and deriving
scripted classes from native classes. If your scripting language is object-orient-
ed, chances are the former is supported out of the box. However, the latt er is
tough to implement even if the scripting language supports inheritance. The
problem is bridging the gap between two languages and two low-level object
models. We won’t get into the details of how this might be implemented here,
as the implementation is bound to be specifi c to the pair of languages being
integrated. UnrealScript is the only scripting language I’ve seen that allows
scripted classes to derive from native classes in a seamless way.

Composition/Aggregation in Script

We don’t need to rely on inheritance to extend a hierarchy of classes—we can
also use composition or aggregation to similar eff ect. In script, then, all we
really need is a way to defi ne classes and associate instances of those classes
with objects that have been defi ned in the native programming language. For
example, a game object could have a pointer to an optional component writ-
ten entirely in script. We can delegate certain key functionality to the script
component, if it exists. The script component might have an Update() function
that is called whenever the game object is updated, and the scripted compo-
nent might also be permitt ed to register some of its member functions/meth-
ods as event handlers. When an event is sent to the game object, it calls the

813

appropriate event handler on the scripted component, thus giving the script
programmer an opportunity to modify or extend the behavior of the natively
implemented game object.

14.8.5.6. Scripted Finite State Machines

Many problems in game programming can be solved naturally using fi nite
state machines (FSM). For this reason, some engines build the concept of fi nite
state machines right into the core game object model. In such engines, every
game object can have one or more states, and it is the states—not the game
object itself—that contain the update function, event handler functions, and
so on. Simple game objects can be created by defi ning a single state, but more-
complex game objects have the freedom to defi ne multiple states, each with a
diff erent update and event-handling behavior.

If your engine supports a state-driven game object model, it makes a lot of
sense to provide fi nite state machine support in the scripting language as well.
And of course, even if the core game object model doesn’t support fi nite state
machines natively, one can still provide state-driven behavior by using a state
machine on the script side. An FSM can be implemented in any programming
language by using class instances to represent states, but some scripting lan-
guages provide tools especially for this purpose. An object-oriented scripting
language might provide custom syntax that allows a class to contains multiple
states, or it might provide tools that help the script programmer easily aggre-
gate state objects together within a central hub object and then delegate the
update and event-handling functions to it in a straightforward way. But even
if your scripting language provides no such features, you can always adopt a
methodology for implementing FSMs and follow those conventions in every
script you write.

14.8.5.7. Multithreaded Scripts

It’s oft en useful to be able to execute multiple scripts in parallel. This is espe-
cially true on today’s highly parallelized hardware architectures. If multiple
scripts can run at the same time, we are in eff ect providing parallel threads of
execution in script code, much like the threads provided by most multitasking
operating systems. Of course, the scripts may not actually run in parallel—if
they are all running on a single CPU, the CPU must take turns executing each
one. However, from the point of view of the script programmer, the paradigm
is one of parallel multithreading.

Most scripting systems that provide parallelism do so via cooperative
multitasking . This means that a script will execute until it explicitly yields to
another script. This is in contrast with a preemptive multitasking approach, in

14.8. Scripting

814 14. Runtime Gameplay Foundation Systems

which the execution of any script could be interrupted at any time to permit
another script to execute.

One simple approach to cooperative multitasking in script is to permit
scripts to explicitly go to sleep, waiting for something relevant to happen. A
script might wait for a specifi ed number of seconds to elapse, or it might wait
until a particular event is received. It might wait until another thread of execu-
tion has reached a predefi ned synchronization point. Whatever the reason,
whenever a script goes to sleep, it puts itself on a list of sleeping script threads
and tells the virtual machine that it can start executing another eligible script.
The system keeps track of the conditions that will wake up each sleeping
script—when one of these conditions becomes true, the script(s) waiting on
the condition are woken up and allowed to continue executing.

To see how this works in practice, let’s look at an example of a multi-
threaded script. This script manages the animations of two characters and
a door. The two characters are instructed to walk up to the door—each one
might take a diff erent, and unpredictable, amount of time to reach it. We’ll
put the script’s threads to sleep while they wait for the characters to reach the
door. Once they both arrive at the door, one of the two characters opens the
door, which it does by playing an “open door” animation. Note that we don’t
want to hard-code the duration of the animation into the script itself. That
way, if the animators change the animation, we won’t have to go back and
modify our script. So we’ll put the threads to sleep again while the wait for the
animation to complete. A script that accomplishes this is shown below, using
a simple C-like pseudocode syntax.

function DoorCinematic
{

 thread Guy1
 {

 // Ask guy1 to walk to the door.
 CharacterWalkToPoint(guy1, doorPosition);
 WaitUntil(ARRIVAL); // go to sleep until he gets
 // there

 // OK, we’re there. Tell the other threads via a
 // signal.
 RaiseSignal("Guy1Arrived");

 // Wait for the other guy to arrive as well.
 WaitUntil(SIGNAL, "Guy2Arrived");

 // Now tell guy1 to play the "open door"
 // animation.
 CharacterAnimate(guy1, "OpenDoor");
 WaitUntil(ANIMATION_DONE);

815

 // OK, the door is open. Tell the other threads.
 RaiseSignal("DoorOpen");

 // Now walk thru the door.
 CharacterWalkToPoint(guy1, beyondDoorPosition);
 }

 thread Guy2
 {

 // Ask guy2 to walk to the door.
 CharacterWalkToPoint(guy2, doorPosition);
 WaitUntil(ARRIVAL); // go to sleep until he gets
 // there

 // OK, we’re there. Tell the other threads via a
 // signal.
 RaiseSignal("Guy2Arrived");

 // Wait for the other guy to arrive as well.
 WaitUntil(SIGNAL, "Guy1Arrived");

 // Now wait until guy1 opens the door for me.
 WaitUntil(SIGNAL, "DoorOpen");

 // OK, the door is open. Now walk thru the door.
 CharacterWalkToPoint(guy2, beyondDoorPosition);
 }
}

In the above, we assume that our hypothetical scripting language pro-
vides a simple syntax for defi ning threads of execution within a single func-
tion. We defi ne two threads, one for Guy1 and one for Guy2.

The thread for Guy1 tells the character to walk to the door and then goes
to sleep waiting for his arrival. We’re hand-waving a bit here, but let’s imagine
that the scripting language magically allows a thread to go to sleep, wait-
ing until a character in the game arrives at a target point to which he was
requested to walk. In reality, this might be implemented by arranging for the
character to send an event back to the script and then waking the thread up
when the event arrives.

Once Guy1 arrives at the door, his thread does two things that warrant
further explanation. First, it raises a signal called “Guy1Arrived.” Second, it
goes to sleep waiting for another signal called “Guy2Arrived.” If we look at
the thread for Guy2, we see a similar patt ern, only reversed. The purpose of
this patt ern of raising a signal and then waiting for another signal is used to
synchronize the two threads.

In our hypothetical scripting language, a signal is just a Boolean fl ag with
a name. The fl ag starts out false, but when a thread calls RaiseSignal(name),

14.8. Scripting

816 14. Runtime Gameplay Foundation Systems

the named fl ag’s value changes to true. Other threads can go to sleep, wait-
ing for a particular named signal to become true. When it does, the sleeping
thread(s) wake up and continue executing. In this example, the two threads
are using the “Guy1Arrived” and “Guy2Arrived” signals to synchronize with
one another. Each thread raises its signal and then waits for the other thread’s
signal. It does not matt er which signal is raised fi rst—only when both signals
have been raised will the two threads wake up. And when they do, they will
be in perfect synchronization. Two possible scenarios are illustrated in Fig-
ure 14.20, one in which Guy1 arrives fi rst, the other in which Guy2 arrives
fi rst. As you can see, the order in which the signals are raised is irrelevant, and
the threads always end up in sync aft er both signals have been raised.

14.9. High-Level Game Flow

 A game object model provides the foundations upon which a rich and en-
tertaining collection of game object types can be implemented with which to
populate our game worlds. However, by itself, a game object model only per-
mits us to defi ne the kinds of objects that exist in our game world and how
they behave individually. It says nothing of the player’s objectives, what hap-
pens if he or she completes them, and what fate should befall the player if he
or she fails.

For this, we need some kind of system to control high-level game fl ow.
This is oft en implemented as a fi nite state machine . Each state usually repre-

Walk

Signal

Wait

Walk

Signal
(No Wait)

Guy1 Guy2

Sync

Walk
Signal

Wait

Walk

Signal
(No Wait)

Guy1 Guy2

Sync

Figure 14.20. Two examples showing how a simple pattern of raising one signal and then
waiting on another can be used to synchronize a pair of script threads.

817

sents a single player objective or encounter and is associated with a particular
locale within the virtual game world. As the player completes each task, the
state machine advances to the next state, and the player is presented with a
new set of goals. The state machine also defi nes what should happen in the
event of the player’s failure to accomplish the necessary tasks or objectives .
Oft en, failure sends the player back to the beginning of the current state, so he
or she can try again. Sometimes aft er enough failures, the player has run out
of “lives” and will be sent back to the main menu, where he or she can choose
to play a new game. The fl ow of the entire game, from the menus to the fi rst
“level” to the last, can be controlled through this high-level state machine.

The task system used in Naughty Dog’s Jak and Daxter and Uncharted fran-
chises is an example of such a state-machine-based system. It allows for linear
sequences of states (called tasks at Naughty Dog). It also permits parallel tasks,
where one task branches out into two or more parallel tasks, which eventu-
ally merge back into the main task sequence. This parallel task feature sets
the Naughty Dog task graph apart from a regular state machine, since state
machines typically can only be in one state at a time.

14.9. High-Level Game Flow

Part V
Conclusion

15
You Mean There’s More?

Congratulations! You’ve reached the end of your journey through the
landscape of game engine architecture in one piece (and hopefully none

the worse for wear). With any luck, you’ve learned a great deal about the
major components that comprise a typical game engine. But of course, every
journey’s end is another’s beginning. There’s a great deal more to be learned
within each and every topic area covered within these pages. As technology
and computing hardware continue to improve, more things will become pos-
sible in games—and more engine systems will be invented to support them.
What’s more, this book’s focus was on the game engine itself. We haven’t even
begun to discuss the rich world of gameplay programming, a topic that could
fi ll many more volumes.

In the following brief sections, I’ll identify a few of the engine and game-
play systems we didn’t have room to cover in any depth in this book, and I’ll
suggest some resources for those who wish to learn more about them.

15.1. Some Engine Systems We Didn’t Cover

15.1.1. Audio

I mentioned in Section 1.6.13 that audio oft en takes a back seat to other aspects
of game development, much to the chagrin of the audio engineers, sound de-

821

822 15. You Mean There’s More?

signers, voice actors, and composers who work so hard to add that all-too-
critical fourth dimension to the virtual game world. And yet, sadly, the same
thing has happened in this book—I am out of room and out of time, so a full
treatment of audio will have to wait until the second edition. (In keeping with
a long and painfully unfortunate tradition in game development, once again
audio gets the shaft !)

Thankfully, a number of other books and online resources do provide a
wealth of information on audio development. First off , I recommend reading
the documentation for Microsoft ’s XACT sound authoring tool and runtime
API, located on the MSDN website under XACT: Tutorials and Samples (htt p://
msdn.microsoft .com/en-us/library/bb172329(VS.85).aspx). XACT supports
virtually every audio feature the average game programmer would want, and
its documentation is quite easy to digest. The Game Programming Gems book
series also includes a plethora of articles on audio—see [7] Section 6 and [40]
Section 6.

15.1.2. Movie Player

Most games include a movie player for displaying prerendered movies, also
known as full-motion video (FMV). The basic components of the movie player
are an interface to the streaming fi le I/O system (see Section 6.1.3), a codec to
decode the compressed video stream, and some form of synchronization with
the audio playback system for the sound track.

A number of diff erent video encoding standards and corresponding
codecs are available, each one suited to a particular type of application. For
example, video CDs (VCD) and DVDs use MPEG-1 and MPEG-2 (H.262)
codecs, respectively. The H.261 and H.263 standards are designed primar-
ily for online video conferencing applications. Games oft en use standards
like MPEG-4 part 2 (e.g., DivX), MPEG-4 Part 10 / H.264, Windows Media
Video (WMV), or Bink Video (a standard designed specifi cally for games by
Rad Game Tools, Inc.). See htt p://en.wikipedia.org/wiki/Video_codec and
htt p://www.radgametools.com/bnkmain.htm for more information on video
codecs.

15.1.3. Multiplayer Networking

Although we have touched on a number of aspects of multiplayer game ar-
chitecture and networking (e.g., Sections 1.6.14, 7.7, and 14.8.3.2), this book’s
coverage of the topic is far from complete. For an in-depth treatment of multi-
player networking, see [3].

http://www.radgametools.com/bnkmain.htm

823 15.2. Gameplay Systems

15.2. Gameplay Systems

A game is of course much more than just its engine. On top of the gameplay
foundation layer (discussed in Chapter 14), you’ll fi nd a rich assortment of
genre- and game-specifi c gameplay systems. These systems tie the myriad
game engine technologies described in this book together into a cohesive
whole, breathing life into the game.

15.2.1. Player Mechanics

Player mechanics are of course the most important gameplay system. Each
genre is defi ned by a general style of player mechanics and gameplay, and
of course every game within a genre has its own specifi c designs. As such,
player mechanics is a huge topic. It involves the integration of human inter-
face device systems, motion simulation, collision detection, animation, and
audio, not to mention integration with other gameplay systems like the game
camera, weapons, cover, specialized traversal mechanics (ladders, swinging
vines, etc.), vehicle systems, puzzle mechanics, and so on.

Clearly player mechanics are as varied as the games themselves, so there’s
no one place you can go to learn all about them. It’s best to tackle this topic
by studying a single genre at a time. Play games and try to reverse-engineer
their player mechanics. Then try to implement them yourself! And as a very
modest start on reading, you can check out [7] Section 4.11 for a discussion of
Mario-style platformer player mechanics.

15.2.2. Cameras

A game’s camera system is almost as important as the player mechanics. In
fact, the camera can make or break the gameplay experience. Each genre tends
to have its own camera control style, although of course every game within a
particular genre does it a litt le bit diff erently (and some very diff erently!). See
[6] Section 4.3 for some basic game camera control techniques. In the follow-
ing paragraphs, I’ll briefl y outline some of the most prevalent kinds of cam-
eras in 3D games, but please note that this is far from a complete list.

Look-at cameras.• This type of camera rotates about a target point and can
be moved in and out relative to this point.
Follow cameras.• This type of camera is prevalent in platformer, third-
person shooter, and vehicle-based games. It acts much like a look-at
camera focused on the player character/avatar/vehicle, but its motion
typically lags the player. A follow camera alos includes advanced
collision detection and avoidance logic and provides the human player

824 15. You Mean There’s More?

with some degree of control over the camera’s orientation relative to the
player avatar.

First-person cameras.• As the player character moves about in the game
world, a fi rst-person camera remains affi xed to the character’s virtual
eyes. The player typically has full control over the direction in which
the camera should be pointed, either via mouse or joypad control.
The look direction of the camera also translates directly into the aim
direction of the player’s weapon, which is typically indicated by a set of
disembodied arms and a gun att ached to the bott om of the screen, and a
reticle at the center of the screen.

RTS cameras.• Real-time strategy and god games tend to employ a camera
that fl oats above the terrain, looking down at an angle. The camera can
be panned about over the terrain, but the pitch and yaw of the camera
are usually not under direct player control.

Cinematic cameras.• Most three-dimensional games have at least some
cinematic moments in which the camera fl ies about within the scene
in a more fi lmic manner rather than being tethered to an object in the
game.

15.2.3. Artifi cial Intelligence

Another major component of most character-based games is artifi cial intelli-
gence (AI). At its lowest level, an AI system is usually founded in technologies
like basic path fi nding (which commonly makes use of the well-known A*
algorithm), perception systems (line of sight, vision cones, knowledge of the
environment, etc.) and some form of memory.

On top of these foundations, character control logic is implemented.
A character control system determines how to make the character perform
specifi c actions like locomoting, navigating unusual terrain features, using
weapons, driving vehicles, taking cover, and so on. It typically involves com-
plex interfaces to the collision, physics, and animation systems within the
engine. Character control is discussed in detail in Sections 11.11 and 11.12.

Above the character control layer, an AI system typically has goal sett ing
and decision making logic, emotional state, group behaviors (coordination,
fl anking, crowd and fl ocking behaviors, etc.), and possibly some advanced
features like an ability to learn from past mistakes or adapt to a changing
environment.

Of course, the term “artifi cial intelligence” is a bit of a misnomer when
applied to games. Game AI is usually more smoke and mirrors than it is an
att empt at true artifi cial intelligence. It’s important to realize that, in a game,

825

all that really matt ers is the player’s perception of what is going on. A classic
example comes from the game Halo . When Bungie fi rst implemented their AI
system, they included a simple rule that stated that the small “grunt” aliens
would all run away when their leader had died. In play test aft er play test,
no one realized that this was why the litt le guys were running away. Even af-
ter the Bungie team had made various adjustments to the animations and AI
behaviors in the game, still no one got the connection. Finally, the developers
resorted to having one of the grunts say, “Leader dead! Run away!” This just
goes to show that all the AI logic in the world doesn’t amount to anything if
the player doesn’t perceive the meaning behind it.

AI programming is a rich topic, and we certainly have not done it justice
in this book. For more information, see [16], [6] Section 3, [7] Section 3, and
[40] Section 3.

15.2.4. Other Gameplay Systems

Clearly there’s a lot more to a game than just player mechanics, cameras, and
AI. Some games have drivable vehicles, implement specialized types of weap-
onry, allow the player to destroy the environment with the help of a dynam-
ic physics simulation, let the player create his or her own characters, build
custom levels, require the player to solve puzzles, or… Of course, the list of
genre- and game-specifi c features, and all of the specialized soft ware systems
that implement them, could go on forever. Gameplay systems are as rich and
varied as games are. Perhaps this is where your next journey as a game pro-
grammer will begin!

15.2. Gameplay Systems

827

 References

[1] Tomas Akenine-Moller, Eric Haines, and Naty Hoff man. Real-Time Rendering
(3rd Edition). Wellesley, MA: A K Peters, 2008.

[2] Andrei Alexandrescu. Modern C++ Design: Generic Programming and Design
Patt erns Applied. Resding, MA: Addison-Wesley, 2001.

[3] Grenville Armitage, Mark Claypool and Philip Branch. Networking and Online
Games: Understanding and Engineering Multiplayer Internet Games. New York,
NY: John Wiley and Sons, 2006.

[4] James Arvo (editor). Graphics Gems II. San Diego, CA: Academic Press,
1991.

[5] Grady Booch, Robert A. Maksimchuk, Michael W. Engel, Bobbi J. Young,
Jim Conallen, and Kelli A. Houston. Object-Oriented Analysis and Design with
Applications, third edition. Reading, MA: Addison-Wesley, 2007.

[6] Mark DeLoura (editor). Game Programming Gems. Hingham, MA: Charles
River Media, 2000.

[7] Mark DeLoura (editor). Game Programming Gems 2. Hingham, MA: Charles
River Media, 2001.

[8] Philip Dutré, Kavita Bala and Philippe Bekaert. Advanced Global Illumination
(Second Edition). Wellesley, MA: A K Peters, 2006.

828 References

[9] David H. Eberly. 3D Game Engine Design: A Practical Approach to Real-Time
Computer Graphics. San Francisco, CA: Morgan Kaufmann, 2001.

[10] David H. Eberly. 3D Game Engine Architecture: Engineering Real-Time
Applications with Wild Magic. San Francisco, CA: Morgan Kaufmann, 2005.

[11] David H. Eberly. Game Physics. San Francisco, CA: Morgan Kaufmann,
2003.

[12] Christer Ericson. Real-Time Collision Detection. San Francisco, CA: Morgan
Kaufmann, 2005.

[13] Randima Fernando (editor). GPU Gems: Programming Techniques, Tips and
Tricks for Real-Time Graphics. Reading, MA: Addison-Wesley, 2004.

[14] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes.
Computer Graphics: Principles and Practice in C, second edition. Reading, MA:
Addison-Wesley, 1995.

[15] Grant R. Fowles and George L. Cassiday. Analytical Mechanics (7th Edition).
Pacifi c Grove, CA: Brooks Cole, 2005.

[16] John David Funge. AI for Games and Animation: A Cognitive Modeling Approach.
Wellesley, MA: A K Peters, 1999.

[17] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissiddes.
Design Patt erns: Elements of Reusable Object-Oriented Soft ware. Reading, MA:
Addison-Wesley, 1994.

[18] Andrew S. Glassner (editor). Graphics Gems I. San Francisco, CA: Morgan
Kaufmann, 1990.

[19] Paul S. Heckbert (editor). Graphics Gems IV. San Diego, CA: Academic Press,
1994.

[20] Maurice Herlihy, Nir Shavit. The Art of Multiprocessor Programming. San
Francisco, CA: Morgan Kaufmann, 2008.

[21] Roberto Ierusalimschy, Luiz Henrique de Figueiredo and Waldemar Celes.
Lua 5.1 Reference Manual. Lua.org, 2006.

[22] Roberto Ierusalimschy. Programming in Lua, 2nd Edition. Lua.org, 2006.

[23] Isaac Victor Kerlow. The Art of 3-D Computer Animation and Imaging (Second
Edition). New York, NY: John Wiley and Sons, 2000.

[24] David Kirk (editor). Graphics Gems III. San Francisco, CA: Morgan Kaufmann,
1994.

[25] Danny Kodicek. Mathematics and Physics for Game Programmers. Hingham,
MA: Charles River Media, 2005.

829 References

[26] Raph Koster. A Theory of Fun for Game Design. Phoenix, AZ: Paraglyph,
2004.

[27] John Lakos. Large-Scale C++ Soft ware Design. Reading, MA: Addison-Wesley,
1995.

[28] Eric Lengyel. Mathematics for 3D Game Programming and Computer Graphics,
2nd Edition. Hingham, MA: Charles River Media, 2003.

[29] Tuoc V. Luong, James S. H. Lok, David J. Taylor and Kevin Driscoll.
Internationalization: Developing Soft ware for Global Markets. New York, NY:
John Wiley & Sons, 1995.

[30] Steve Maguire. Writing Solid Code: Microsoft ’s Techniques for Developing Bug-
Free C Programs. Bellevue, WA: Microsoft Press, 1993.

[31] Scott Meyers. Eff ective C++: 55 Specifi c Ways to Improve Your Programs and
Designs (3rd Edition). Reading, MA: Addison-Wesley, 2005.

[32] Scott Meyers. More Eff ective C++: 35 New Ways to Improve Your Programs and
Designs. Reading, MA: Addison-Wesley, 1996.

[33] Scott Meyers. Eff ective STL: 50 Specifi c Ways to Improve Your Use of the Standard
Template Library. Reading, MA: Addison-Wesley, 2001.

[34] Ian Millington. Game Physics Engine Development. San Francisco, CA: Morgan
Kaufmann, 2007.

[35] Hubert Nguyen (editor). GPU Gems 3. Reading, MA: Addison-Wesley, 2007.

[36] Alan W. Paeth (editor). Graphics Gems V. San Francisco, CA: Morgan
Kaufmann, 1995.

[37] C. Michael Pilato, Ben Collins-Sussman, and Brian W. Fitzpatrick. Version
Control with Subversion, second edition. Sebastopol , CA: O’Reilly Media,
2008. (Commonly known as “The Subversion Book.” Available online at
htt p://svnbook.red-bean.com.)

[38] Matt Pharr (editor). GPU Gems 2: Programming Techniques for High-Performance
Graphics and General-Purpose Computation. Reading, MA: Addison-Wesley,
2005.

[39] Bjarne Stroustrup. The C++ Programming Language, special edition (3rd
edition). Reading, MA: Addison-Wesley, 2000.

[40] Dante Treglia (editor). Game Programming Gems 3. Hingham, MA: Charles
River Media, 2002.

[41] Gino van den Bergen. Collision Detection in Interactive 3D Environments. San
Francisco, CA: Morgan Kaufmann, 2003.

830 References

[42] Alan Watt . 3D Computer Graphics (3rd Edition). Reading, MA: Addison
Wesley, 1999.

[43] James Whitehead II, Bryan McLemore and Matt hew Orlando. World of
Warcraft Programming: A Guide and Reference for Creating WoW Addons. New
York, NY: John Wiley & Sons, 2008.

[44] Richard Williams. The Animator’s Survival Kit. London, England: Faber &
Faber, 2002.

	Front Cover
	Title Page
	Copyright
	Dedication
	Contents
	Foreword
	Preface
	Part I. Foundations
	Chapter 1. Introduction
	Chapter 2. Tools of the Trade
	Chapter 3. Fundamentals of Software Engineering for Games
	Chapter 4. 3D Math for Games

	Part II. Low-Level Engine Systems
	Chapter 5. Engine Support Systems
	Chapter 6. Resources and the File System
	Chapter 7. The Game Loop and Real-Time Simulation
	Chapter 8. Human Interface Devices (HID)
	Chapter 9. Tools for Debugging and Development

	Part III. Graphics and Motion
	Chapter 10. The Rendering Engine
	Chapter 11. Animation Systems
	Chapter 12. Collision and Rigid Body Dynamics
	Chapter 13. Introduction to Gameplay Systems
	Chapter 14. Runtime Gameplay Foundation Systems
	Chapter 15. You Mean There’s More?

	References

