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Foreword

he very first video game was built entirely out of hardware, but rapid ad-

vancements in microprocessors have changed all that. These days, video
games are played on versatile PCs and specialized video game consoles that
use software to make it possible to offer a tremendous variety of gaming ex-
periences. It’s been 50 years since those first primitive games, but the industry
is still considered by many to be immature. It may be young, but when you
take a closer look, you will find that things have been developing rapidly.
Video games are now a multibillion-dollar industry covering a wide range of
demographics.

Video games come in all shapes and sizes, falling into categories or
“genres” covering everything from solitaire to massively multiplayer online
role-playing games, and these games are played on virtually anything with a
microchip in it. These days, you can get games for your PC, your cell phone,
as well as a number of different specialized gaming consoles—both handheld
and those that connect to your home TV. These specialized home consoles
tend to represent the cutting edge of gaming technology, and the pattern of
these platforms being released in cycles has come to be called console “gen-
erations.” The powerhouses of this latest generation are Microsoft’s Xbox 360
and Sony’s PLAYSTATION 3, but the ever-present PC should never be over-
looked, and the extremely popular Nintendo Wii represents something new
this time around.

Xiii
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Foreword

The recent explosion of downloadable and casual games has added even
more complexity to the diverse world of commercial video games. Even so,
big games are still big business. The incredible computing power available
on today’s complicated platforms has made room for increased complexity in
the software. Naturally, all this advanced software has to be created by some-
one, and that has driven up the size of development teams—not to mention
development costs. As the industry matures, we're always looking for better,
more efficient ways to build our products, and development teams have be-
gun compensating for the increased complexity by taking advantage of things
like reusable software and middleware.

With so many different styles of game on such a wide array of platforms,
there cannot be any single ideal software solution. However, certain patterns
have developed, and there is a vast menu of potential solutions out there. The
problem today is choosing the right solution to fit the needs of the particular
project. Going deeper, a development team must consider all the different as-
pects of a project and how they fit together. It is rare to find any one software
package that perfectly suits every aspect of a new game design.

Those of us who are now veterans of the industry found ourselves pio-
neering unknown territory. Few programmers of our generation have Com-
puter Science degrees (Matt’s is in Aeronautical Engineering, and Jason’s is
in Systems Design Engineering), but these days many colleges are starting to
programs and degrees in video games. The students and developers of today
need a good place to turn to for solid game-development information. For
pure high-end graphics, there are a lot of sources of very good information
from research to practical jewels of knowledge. However, these sources are
often not directly applicable to production game environments or suffer from
not having actual production-quality implementations. For the rest of game
development, there are so-called beginner books that so gloss over the details
and act as if they invented everything without giving references that they are
just not useful or often even accurate. Then there are high-end specialty books
for various niches like physics, collision, Al, etc. But these can be needlessly
obtuse or too high level to be understood by all, or the piecemeal approach just
doesn't all fit together. Many are even so directly tied to a particular piece of
technology as to become rapidly dated as the hardware and software change.

Then there is the Internet, which is an excellent supplementary tool for
knowledge gathering. However, broken links, widely inaccurate data, and
variable-to-poor quality often make it not useful at all unless you know ex-
actly what you are after.

Enter Jason Gregory, himself an industry veteran with experience at
Naughty Dog—one of the most highly regarded video game studios in the
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world. While teaching a course in game programming at USC, Jason found
himself facing a shortage of textbooks covering the fundamentals of video-
game architecture. Luckily for the rest of us, he has taken it upon himself to
fill that gap.

What Jason has done is pull together production-quality knowledge actu-
ally used in shipped game projects and bring together the entire game-devel-
opment picture. His experience has allowed him to bring together not only
the ideas and techniques but also actual code samples and implementation
examples to show you how the pieces come together to actually make a game.
The references and citations make it a great jumping-off point to dig deeper
into any particular aspect of the process. The concepts and techniques are the
actual ones we use to create games, and while the examples are often ground-
ed in a technology, they extend way beyond any particular engine or APL

This is the kind of book we wanted when we were getting started, and we
think it will prove very instructive to people just starting out as well as those
with experience who would like some exposure to the larger context.

Jeff Lander
Matthew Whiting






Preface

Welcome to Game Engine Architecture. This book aims to present a com-
plete discussion of the major components that make up a typical com-
mercial game engine. Game programming is an immense topic, so we have a
lot of ground to cover. Nevertheless, I trust you'll find that the depth of our
discussions is sufficient to give you a solid understanding of both the theory
and the common practices employed within each of the engineering disci-
plines we’ll cover. That said, this book is really just the beginning of a fasci-
nating and potentially life-long journey. A wealth of information is available
on all aspects of game technology, and this text serves both as a foundation-
laying device and as a jumping-off point for further learning.

Our focus in this book will be on game engine technologies and architec-
ture. This means we’ll cover both the theory underlying the various subsys-
tems that comprise a commercial game engine and also the data structures,
algorithms, and software interfaces that are typically used to implement them.
The line between the game engine and the game is rather blurry. We’ll fo-
cus primarily on the engine itself, including a host of low-level foundation
systems, the rendering engine, the collision system, the physics simulation,
character animation, and an in-depth discussion of what I call the gameplay
foundation layer. This layer includes the game’s object model, world editor,
event system, and scripting system. We’ll also touch on some aspects of game-

XVii
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play programming, including player mechanics, cameras, and Al. However,
by necessity, the scope of these discussions will be limited mainly to the ways
in which gameplay systems interface with the engine.

This book is intended to be used as a course text for a two- or three-course
college-level series in intermediate game programming. Of course, it can also
be used by amateur software engineers, hobbyists, self-taught game program-
mers, and existing members of the game industry alike. Junior engineers can
use this text to solidify their understanding of game mathematics, engine ar-
chitecture, and game technology. And some senior engineers who have de-
voted their careers to one particular specialty may benefit from the bigger
picture presented in these pages, as well.

To get the most out of this book, you should have a working knowledge
of basic object-oriented programming concepts and at least some experience
programming in C++. Although a host of new and exciting languages are be-
ginning to take hold within the game industry, industrial-strength 3D game
engines are still written primarily in C or C++, and any serious game pro-
grammer needs to know C++. We'll review the basic tenets of object-oriented
programming in Chapter 3, and you will no doubt pick up a few new C++
tricks as you read this book, but a solid foundation in the C++ language is best
obtained from [39], [31], and [32]. If your C++ is a bit rusty, I recommend you
refer to these or similar books to refresh your knowledge as you read this text.
If you have no prior C++ experience, you may want to consider reading at least
the first few chapters of [39], or working through a few C++ tutorials online,
before diving into this book.

The best way to learn computer programming of any kind is to actually
write some code. As you read through this book, I strongly encourage you to
select a few topic areas that are of particular interest to you and come up with
some projects for yourself in those areas. For example, if you find character
animation interesting, you could start by installing Ogre3D and exploring its
skinned animation demo. Then you could try to implement some of the anima-
tion blending techniques described in this book, using Ogre. Next you might
decide to implement a simple joypad-controlled animated character that can
run around on a flat plane. Once you have something relatively simple work-
ing, expand upon it! Then move on to another area of game technology. Rinse
and repeat. It doesn’t particularly matter what the projects are, as long as
you're practicing the art of game programming, not just reading about it.

Game technology is a living, breathing thing that can never be entirely
captured within the pages of a book. As such, additional resources, errata,
updates, sample code, and project ideas will be posted from time to time on
this book’s website at http://gameenginebook.com.
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Introduction

hen I got my first game console in 1979 —a way-cool Intellivision sys-

tem by Mattel —the term “game engine” did not exist. Back then, video
and arcade games were considered by most adults to be nothing more than
toys, and the software that made them tick was highly specialized to both
the game in question and the hardware on which it ran. Today, games are
a multi-billion-dollar mainstream industry rivaling Hollywood in size and
popularity. And the software that drives these now-ubiquitous three-dimen-
sional worlds—game engines like id Software’s Quake and Doom engines, Epic
Games’ Unreal Engine 3 and Valve’s Source engine—have become fully fea-
tured reusable software development kits that can be licensed and used to
build almost any game imaginable.

While game engines vary widely in the details of their architecture and
implementation, recognizable coarse-grained patterns are emerging across
both publicly licensed game engines and their proprietary in-house counter-
parts. Virtually all game engines contain a familiar set of core components, in-
cluding the rendering engine, the collision and physics engine, the animation
system, the audio system, the game world object model, the artificial intelli-
gence system, and so on. Within each of these components, a relatively small
number of semi-standard design alternatives are also beginning to emerge.

There are a great many books that cover individual game engine subsys-
tems, such as three-dimensional graphics, in exhaustive detail. Other books

3
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cobble together valuable tips and tricks across a wide variety of game technol-
ogy areas. However, I have been unable to find a book that provides its reader
with a reasonably complete picture of the entire gamut of components that
make up a modern game engine. The goal of this book, then, is to take the
reader on a guided hands-on tour of the vast and complex landscape of game
engine architecture.

In this book you will learn

e how real industrial-strength production game engines are architected;

e how game development teams are organized and work in the real
world;

e which major subsystems and design patterns appear again and again in
virtually every game engine;

e the typical requirements for each major subsystem;

e which subsystems are genre- or game-agnostic, and which ones are typ-
ically designed explicitly for a specific genre or game;

e where the engine normally ends and the game begins.

We'll also get a first-hand glimpse into the inner workings of some popu-
lar game engines, such as Quake and Unreal, and some well-known mid-
dleware packages, such as the Havok Physics library, the OGRE rendering
engine, and Rad Game Tools” Granny 3D animation and geometry man-
agement toolkit.

Before we get started, we'll review some techniques and tools for large-
scale software engineering in a game engine context, including

o the difference between logical and physical software architecture;
e configuration management, revision control, and build systems;

e some tips and tricks for dealing with one of the common development
environments for C and C++, Microsoft Visual Studio.

In this book I assume that you have a solid understanding of C++ (the
language of choice among most modern game developers) and that you un-
derstand basic software engineering principles. I also assume you have some
exposure to linear algebra, three-dimensional vector and matrix math, and
trigonometry (although we’ll review the core concepts in Chapter 4). Ideally
you should have some prior exposure to the basic concepts of real-time and
event-driven programming. But never fear —I will review these topics briefly,
and I'll also point you in the right direction if you feel you need to hone your
skills further before we embark.



1.I. Structure of a Typical Game Team

1.1 Structure of a Typical Game Team

Before we delve into the structure of a typical game engine, let’s first take a
brief look at the structure of a typical game development team. Game stu-
dios are usually composed of five basic disciplines: engineers, artists, game
designers, producers, and other management and support staff (marketing,
legal, information technology/technical support, administrative, etc.). Each
discipline can be divided into various subdisciplines. We'll take a brief look
at each below.

1.1, Engineers

The engineers design and implement the software that makes the game, and
the tools, work. Engineers are often categorized into two basic groups: runtime
programmers (who work on the engine and the game itself) and tools program-
mers (who work on the off-line tools that allow the rest of the development
team to work effectively). On both sides of the runtime/tools line, engineers
have various specialties. Some engineers focus their careers on a single engine
system, such as rendering, artificial intelligence, audio, or collision and phys-
ics. Some focus on gameplay programming and scripting, while others prefer
to work at the systems level and not get too involved in how the game actu-
ally plays. Some engineers are generalists—jacks of all trades who can jump
around and tackle whatever problems might arise during development.

Senior engineers are sometimes asked to take on a technical leadership
role. Lead engineers usually still design and write code, but they also help to
manage the team’s schedule, make decisions regarding the overall technical
direction of the project, and sometimes also directly manage people from a
human resources perspective.

Some companies also have one or more technical directors (TD), whose
job it is to oversee one or more projects from a high level, ensuring that the
teams are aware of potential technical challenges, upcoming industry devel-
opments, new technologies, and so on. The highest engineering-related posi-
tion at a game studio is the chief technical officer (CTO), if the studio has one.
The CTO’s job is to serve as a sort of technical director for the entire studio, as
well as serving a key executive role in the company.

1.1.2.  Artists

As we say in the game industry, “content is king.” The artists produce all of
the visual and audio content in the game, and the quality of their work can
literally make or break a game. Artists come in all sorts of flavors:
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o Concept artists produce sketches and paintings that provide the team
with a vision of what the final game will look like. They start their work
early in the concept phase of development, but usually continue to pro-
vide visual direction throughout a project’s life cycle. It is common for
screen shots taken from a shipping game to bear an uncanny resem-
blance to the concept art.

e 3D modelers produce the three-dimensional geometry for everything
in the virtual game world. This discipline is typically divided into
two subdisciplines: foreground modelers and background model-
ers. The former create objects, characters, vehicles, weapons, and the
other objects that populate the game world, while the latter build
the world’s static background geometry (terrain, buildings, bridges,
etc.).

o Texture artists create the two-dimensional images known as textures,
which are applied to the surfaces of 3D models in order to provide de-
tail and realism.

e Lighting artists lay out all of the light sources in the game world, both
static and dynamic, and work with color, intensity, and light direction to
maximize the artfulness and emotional impact of each scene.

e Animators imbue the characters and objects in the game with motion.
The animators serve quite literally as actors in a game production,
just as they do in a CG film production. However, a game animator
must have a unique set of skills in order to produce animations that
mesh seamlessly with the technological underpinnings of the game
engine.

e Motion capture actors are often used to provide a rough set of motion
data, which are then cleaned up and tweaked by the animators before
being integrated into the game.

o Sound designers work closely with the engineers in order to produce and
mix the sound effects and music in the game.

e Voice actors provide the voices of the characters in many games.

e Many games have one or more composers, who compose an original
score for the game.

As with engineers, senior artists are often called upon to be team lead-
ers. Some game teams have one or more art directors—very senior artists who
manage the look of the entire game and ensure consistency across the work of
all team members.
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1.1.3.  Game Designers

The game designers’ job is to design the interactive portion of the player’s
experience, typically known as gameplay. Different kinds of designers work
at different levels of detail. Some (usually senior) game designers work at the
macro level, determining the story arc, the overall sequence of chapters or lev-
els, and the high-level goals and objectives of the player. Other designers work
on individual levels or geographical areas within the virtual game world, lay-
ing out the static background geometry, determining where and when en-
emies will emerge, placing supplies like weapons and health packs, designing
puzzle elements, and so on. Still other designers operate at a highly technical
level, working closely with gameplay engineers and/or writing code (often in
a high-level scripting language). Some game designers are ex-engineers, who
decided they wanted to play a more active role in determining how the game
will play.

Some game teams employ one or more writers. A game writer’s job can
range from collaborating with the senior game designers to construct the story
arc of the entire game, to writing individual lines of dialogue.

As with other disciplines, some senior designers play management roles.
Many game teams have a game director, whose job it is to oversee all aspects
of a game’s design, help manage schedules, and ensure that the work of indi-
vidual designers is consistent across the entire product. Senior designers also
sometimes evolve into producers.

1.1.4. Producers

The role of producer is defined differently by different studios. In some game
companies, the producer’s job is to manage the schedule and serve as a hu-
man resources manager. In other companies, producers serve in a senior game
design capacity. Still other studios ask their producers to serve as liaisons be-
tween the development team and the business unit of the company (finance,
legal, marketing, etc.). Some smaller studios don’t have producers at all. For
example, at Naughty Dog, literally everyone in the company, including the
two co-presidents, play a direct role in constructing the game; team man-
agement and business duties are shared between the senior members of the
studio.

1.1.5.  Other Staff

The team of people who directly construct the game is typically supported by
a crucial team of support staff. This includes the studio’s executive manage-
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ment team, the marketing department (or a team that liaises with an external
marketing group), administrative staff, and the IT department, whose job is
to purchase, install, and configure hardware and software for the team and to
provide technical support.

1.1.6. Publishers and Studios

The marketing, manufacture, and distribution of a game title are usually
handled by a publisher, not by the game studio itself. A publisher is typically
a large corporation, like Electronic Arts, THQ, Vivendi, Sony, Nintendo, etc.
Many game studios are not affiliated with a particular publisher. They sell
each game that they produce to whichever publisher strikes the best deal with
them. Other studios work exclusively with a single publisher, either via a long-
term publishing contract, or as a fully owned subsidiary of the publishing
company. For example, THQ’s game studios are independently managed, but
they are owned and ultimately controlled by THQ. Electronic Arts takes this
relationship one step further, by directly managing its studios. First-party de-
velopers are game studios owned directly by the console manufacturers (Sony,
Nintendo, and Microsoft). For example, Naughty Dog is a first-party Sony
developer. These studios produce games exclusively for the gaming hardware
manufactured by their parent company.

1.2. What Is a Game?

We probably all have a pretty good intuitive notion of what a game is. The
general term “game” encompasses board games like chess and Monopoly, card
games like poker and blackjack, casino games like roulette and slot machines,
military war games, computer games, various kinds of play among children,
and the list goes on. In academia we sometimes speak of “game theory,” in
which multiple agents select strategies and tactics in order to maximize their
gains within the framework of a well-defined set of game rules. When used
in the context of console or computer-based entertainment, the word “game”
usually conjures images of a three-dimensional virtual world featuring a hu-
manoid, animal, or vehicle as the main character under player control. (Or for
the old geezers among us, perhaps it brings to mind images of two-dimen-
sional classics like Pong, Pac-Man, or Donkey Kong.) In his excellent book, A
Theory of Fun for Game Design, Raph Koster defines a “game” to be an inter-
active experience that provides the player with an increasingly challenging
sequence of patterns which he or she learns and eventually masters [26]. Ko-
ster’s assertion is that the activities of learning and mastering are at the heart
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of what we call “fun,” just as a joke becomes funny at the moment we “get it”
by recognizing the pattern.

For the purposes of this book, we’ll focus on the subset of games that
comprise two- and three-dimensional virtual worlds with a small number of
players (between one and 16 or thereabouts). Much of what we’ll learn can
also be applied to Flash games on the Internet, pure puzzle games like Tetris,
or massively multiplayer online games (MMOG). But our primary focus will
be on game engines capable of producing first-person shooters, third-person
action/platform games, racing games, fighting games, and the like.

1.2.1.  Video Games as Soft Real-Time Simulations

Most two- and three-dimensional video games are examples of what comput-
er scientists would call soft real-time interactive agent-based computer simulations.
Let’s break this phrase down in order to better understand what it means.

In most video games, some subset of the real world—or an imaginary
world —is modeled mathematically so that it can be manipulated by a com-
puter. The model is an approximation to and a simplification of reality (even
if it’s an imaginary reality), because it is clearly impractical to include every
detail down to the level of atoms or quarks. Hence, the mathematical model
is a simulation of the real or imagined game world. Approximation and sim-
plification are two of the game developer’s most powerful tools. When used
skillfully, even a greatly simplified model can sometimes be almost indistin-
guishable from reality —and a lot more fun.

An agent-based simulation is one in which a number of distinct entities
known as “agents” interact. This fits the description of most three-dimen-
tsional computer games very well, where the agents are vehicles, characters,
fireballs, power dots, and so on. Given the agent-based nature of most games,
it should come as no surprise that most games nowadays are implemented in
an object-oriented, or at least loosely object-based, programming language.

All interactive video games are temporal simulations, meaning that the vir-
tual game world model is dynamic—the state of the game world changes over
time as the game’s events and story unfold. A video game must also respond
to unpredictable inputs from its human player(s)—thus interactive temporal
simulations. Finally, most video games present their stories and respond to
player input in real-time, making them interactive real-time simulations. One
notable exception is in the category of turn-based games like computerized
chess or non-real-time strategy games. But even these types of games usually
provide the user with some form of real-time graphical user interface. So for
the purposes of this book, we’ll assume that all video games have at least some
real-time constraints.
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At the core of every real-time system is the concept of a deadline. An obvi-
ous example in video games is the requirement that the screen be updated
at least 24 times per second in order to provide the illusion of motion. (Most
games render the screen at 30 or 60 frames per second because these are mul-
tiples of an NTSC monitor’s refresh rate.) Of course, there are many other
kinds of deadlines in video games as well. A physics simulation may need
to be updated 120 times per second in order to remain stable. A character’s
artificial intelligence system may need to “think” at least once every second to
prevent the appearance of stupidity. The audio library may need to be called
at least once every 1/60 second in order to keep the audio buffers filled and
prevent audible glitches.

A “soft” real-time system is one in which missed deadlines are not cata-
strophic. Hence all video games are soft real-time systems—if the frame rate
dies, the human player generally doesn’t! Contrast this with a hard real-time
system, in which a missed deadline could mean severe injury to or even the
death of a human operator. The avionics system in a helicopter or the control-
rod system in a nuclear power plant are examples of hard real-time systems.

Mathematical models can be analytic or numerical. For example, the ana-
lytic (closed-form) mathematical model of a rigid body falling under the influ-
ence of constant acceleration due to gravity is typically written as follows:

y(ty=Yagt+o t+y,. (1.1)

An analytic model can be evaluated for any value of its independent variables,
such as the time ¢ in the above equation, given only the initial conditions o,
and y, and the constant g. Such models are very convenient when they can be
found. However many problems in mathematics have no closed-form solu-
tion. And in video games, where the user’s input is unpredictable, we cannot
hope to model the entire game analytically.

A numerical model of the same rigid body under gravity might be

y(t+ A = Fy(t), 5 (1), §(0), -..) - (12)

That is, the height of the rigid body at some future time (# + Af) can be found as
a function of the height and its first and second time derivatives at the current
time . Numerical simulations are typically implemented by running calcula-
tions repeatedly, in order to determine the state of the system at each discrete
time step. Games work in the same way. A main “game loop” runs repeatedly,
and during each iteration of the loop, various game systems such as artificial
intelligence, game logic, physics simulations, and so on are given a chance to
calculate or update their state for the next discrete time step. The results are
then “rendered” by displaying graphics, emitting sound, and possibly pro-
ducing other outputs such as force feedback on the joypad.
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1.3.  What Is a Game Engine?

The term “game engine” arose in the mid-1990s in reference to first-person
shooter (FPS) games like the insanely popular Doom by id Software. Doom was
architected with a reasonably well-defined separation between its core soft-
ware components (such as the three-dimensional graphics rendering system,
the collision detection system, or the audio system) and the art assets, game
worlds, and rules of play that comprised the player’s gaming experience. The
value of this separation became evident as developers began licensing games
and re-tooling them into new products by creating new art, world layouts,
weapons, characters, vehicles, and game rules with only minimal changes to
the “engine” software. This marked the birth of the “mod community” —a
group of individual gamers and small independent studios that built new
games by modifying existing games, using free toolkits provided by the origi-
nal developers. Towards the end of the 1990s, some games like Quake III Arena
and Unreal were designed with reuse and “modding” in mind. Engines were
made highly customizable via scripting languages like id’s Quake C, and en-
gine licensing began to be a viable secondary revenue stream for the develop-
ers who created them. Today, game developers can license a game engine and
reuse significant portions of its key software components in order to build
games. While this practice still involves considerable investment in custom
software engineering, it can be much more economical than developing all of
the core engine components in-house.

The line between a game and its engine is often blurry. Some engines
make a reasonably clear distinction, while others make almost no attempt
to separate the two. In one game, the rendering code might “know” specifi-
cally how to draw an orc. In another game, the rendering engine might pro-
vide general-purpose material and shading facilities, and “orc-ness” might
be defined entirely in data. No studio makes a perfectly clear separation
between the game and the engine, which is understandable considering that
the definitions of these two components often shift as the game’s design so-
lidifies.

Arguably a data-driven architecture is what differentiates a game en-
gine from a piece of software that is a game but not an engine. When a
game contains hard-coded logic or game rules, or employs special-case
code to render specific types of game objects, it becomes difficult or im-
possible to reuse that software to make a different game. We should prob-
ably reserve the term “game engine” for software that is extensible and
can be used as the foundation for many different games without major
modification.



1. Introduction

Can be “modded” to

Cannot be used to build Can be customized to build any game in a Can be used to build any
more than one game make very similar games specific genre game imaginable
1 ] ] ]
| I I |
! ﬁ L) ﬁ L) ﬁ !
Unreal ﬁ
PacMan Hydro Thunder Quake /Il Engine Probably
Engine Engine 3 impossible

Figure 1.I. Game engine reusability gamut.

Clearly this is not a black-and-white distinction. We can think of a gamut
of reusability onto which every engine falls. Figure 1.1 takes a stab at the loca-
tions of some well-known games/engines along this gamut.

One would think that a game engine could be something akin to Apple
QuickTime or Microsoft Windows Media Player —a general-purpose piece of
software capable of playing virtually any game content imaginable. However
this ideal has not yet been achieved (and may never be). Most game engines
are carefully crafted and fine-tuned to run a particular game on a particular
hardware platform. And even the most general-purpose multiplatform en-
gines are really only suitable for building games in one particular genre, such
as first-person shooters or racing games. It’s safe to say that the more general-
purpose a game engine or middleware component is, the less optimal it is for
running a particular game on a particular platform.

This phenomenon occurs because designing any efficient piece of soft-
ware invariably entails making trade-offs, and those trade-offs are based on
assumptions about how the software will be used and/or about the target
hardware on which it will run. For example, a rendering engine that was de-
signed to handle intimate indoor environments probably won't be very good
at rendering vast outdoor environments. The indoor engine might use a BSP
tree or portal system to ensure that no geometry is drawn that is being oc-
cluded by walls or objects that are closer to the camera. The outdoor engine,
on the other hand, might use a less-exact occlusion mechanism, or none at all,
but it probably makes aggressive use of level-of-detail (LOD) techniques to
ensure that distant objects are rendered with a minimum number of triangles,
while using high resolution triangle meshes for geometry that is close to the
camera.

The advent of ever-faster computer hardware and specialized graphics
cards, along with ever-more-efficient rendering algorithms and data struc-
tures, is beginning to soften the differences between the graphics engines of
different genres. It is now possible to use a first-person shooter engine to build
a real-time strategy game, for example. However, the trade-off between gener-
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ality and optimality still exists. A game can always be made more impressive
by fine-tuning the engine to the specific requirements and constraints of a
particular game and/or hardware platform.

1.4. Engine Differences Across Genres

Game engines are typically somewhat genre specific. An engine designed
for a two-person fighting game in a boxing ring will be very different from a
massively multiplayer online game (MMOG) engine or a first-person shooter
(FPS) engine or a real-time strategy (RTS) engine. However, there is also a
great deal of overlap—all 3D games, regardless of genre, require some form
of low-level user input from the joypad, keyboard, and/or mouse, some form
of 3D mesh rendering, some form of heads-up display (HUD) including text
rendering in a variety of fonts, a powerful audio system, and the list goes on.
So while the Unreal Engine, for example, was designed for first-person shoot-
er games, it has been used successfully to construct games in a number of
other genres as well, including the wildly popular third-person shooter Gears
of War by Epic Games; the character-based action-adventure game Grimm, by
American McGee’s Shanghai-based development studio, Spicy Horse; and
Speed Star, a futuristic racing game by South Korea-based Acro Games.

Let’s take a look at some of the most common game genres and explore
some examples of the technology requirements particular to each.

1.4.1.  First-Person Shooters (FPS)

The first-person shooter (FPS) genre is typified by games like Quake, Unreal
Tournament, Half-Life, Counter-Strike, and Call of Duty (see Figure 1.2). These
games have historically involved relatively slow on-foot roaming of a poten-
tially large but primarily corridor-based world. However, modern first-person
shooters can take place in a wide variety of virtual environments including
vast open outdoor areas and confined indoor areas. Modern FPS traversal me-
chanics can include on-foot locomotion, rail-confined or free-roaming ground
vehicles, hovercraft, boats, and aircraft. For an overview of this genre, see
http://en.wikipedia.org/wiki/First-person_shooter.

First-person games are typically some of the most technologically chal-
lenging to build, probably rivaled in complexity only by third-person shooter/
action/platformer games and massively multiplayer games. This is because
first-person shooters aim to provide their players with the illusion of being
immersed in a detailed, hyperrealistic world. It is not surprising that many of
the game industry’s big technological innovations arose out of the games in
this genre.
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Figure 1.2. Call of Duty 2 (Xbox 360/PLAYSTATION 3).

First-person shooters typically focus on technologies, such as

efficient rendering of large 3D virtual worlds;

a responsive camera control/aiming mechanic;

high-fidelity animations of the player’s virtual arms and weapons;

a wide range of powerful hand-held weaponry;

a forgiving player character motion and collision model, which often
gives these games a “floaty” feel;

high-fidelity animations and artificial intelligence for the non-player
characters (the player’s enemies and allies);

small-scale online multiplayer capabilities (typically supporting up to
64 simultaneous players), and the ubiquitous “death match” gameplay
mode.

The rendering technology employed by first-person shooters is almost

always highly optimized and carefully tuned to the particular type of envi-
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ronment being rendered. For example, indoor “dungeon crawl” games often
employ binary space partitioning (BSP) trees or portal-based rendering sys-
tems. Outdoor FPS games use other kinds of rendering optimizations such as
occlusion culling, or an offline sectorization of the game world with manual
or automated specification of which target sectors are visible from each source
sector.

Of course, immersing a player in a hyperrealistic game world requires
much more than just optimized high-quality graphics technology. The charac-
ter animations, audio and music, rigid-body physics, in-game cinematics, and
myriad other technologies must all be cutting-edge in a first-person shooter.
So this genre has some of the most stringent and broad technology require-
ments in the industry.

1.4.2. Platformers and Other Third-Person Games

“Platformer” is the term applied to third-person character-based action games
where jumping from platform to platform is the primary gameplay mechanic.
Typical games from the 2D era include Space Panic, Donkey Kong, Pitfall!, and

Figure 1.3. jak & Daxter: The Precursor Legacy.
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Figure 1.4. Gears of War.

Super Mario Brothers. The 3D era includes platformers like Super Mario 64, Crash
Bandicoot, Rayman 2, Sonic the Hedgehog, the Jak and Daxter series (Figure 1.3),
the Ratchet & Clank series, and more recently Super Mario Galaxy. See http://
en.wikipedia.org/wiki/Platformer for an in-depth discussion of this genre.

In terms of their technological requirements, platformers can usually be
lumped together with third-person shooters and third-person action/adven-
ture games, like Ghost Recon, Gears of War (Figure 1.4), and Uncharted: Drake’s
Fortune.

Third-person character-based games have a lot in common with first-per-
son shooters, but a great deal more emphasis is placed on the main character’s
abilities and locomotion modes. In addition, high-fidelity full-body character
animations are required for the player’s avatar, as opposed to the somewhat
less-taxing animation requirements of the “floating arms” in a typical FPS
game. It’s important to note here that almost all first-person shooters have an
online multiplayer component, so a full-body player avatar must be rendered
in addition to the first-person arms. However the fidelity of these FPS player
avatars is usually not comparable to the fidelity of the non-player characters




1.4. Engine Differnces Across Genres

in these same games; nor can it be compared to the fidelity of the player avatar
in a third-person game.

In a platformer, the main character is often cartoon-like and not particu-
larly realistic or high-resolution. However, third-person shooters often feature
a highly realistic humanoid player character. In both cases, the player charac-
ter typically has a very rich set of actions and animations.

Some of the technologies specifically focused on by games in this genre
include

e moving platforms, ladders, ropes, trellises, and other interesting loco-
motion modes;

e puzzle-like environmental elements;

e athird-person “follow camera” which stays focused on the player char-
acter and whose rotation is typically controlled by the human player via
the right joypad stick (on a console) or the mouse (on a PC—note that
while there are a number of popular third-person shooters on PC, the
platformer genre exists almost exclusively on consoles);

e a complex camera collision system for ensuring that the view point
never “clips” through background geometry or dynamic foreground
objects.

1.4.3. Fighting Games

Fighting games are typically two-player games involving humanoid char-
acters pummeling each other in a ring of some sort. The genre is typified
by games like Soul Calibur and Tekken (see Figure 1.5). The Wikipedia page
http://en.wikipedia.org/wiki/Fighting_game provides an overview of this
genre.

Traditionally games in the fighting genre have focused their technology
efforts on

e arich set of fighting animations;

e accurate hit detection;

e a user input system capable of detecting complex button and joystick
combinations;

e crowds, but otherwise relatively static backgrounds.

Since the 3D world in these games is small and the camera is centered
on the action at all times, historically these games have had little or no need
for world subdivision or occlusion culling. They would likewise not be ex-
pected to employ advanced three-dimensional audio propagation models, for
example.
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Figure 1.5. Tekken 3 (PlayStation).

State-of-the-art fighting games like EA’s Fight Night Round 3 (Figure 1.6)
have upped the technological ante with features like

e high-definition character graphics, including realistic skin shaders with
subsurface scattering and sweat effects;

e high-fidelity character animations;

e physics-based cloth and hair simulations for the characters.

It’s important to note that some fighting games like Heavenly Sword take
place in a large-scale virtual world, not a confined arena. In fact, many people
consider this to be a separate genre, sometimes called a brawler. This kind of
fighting game can have technical requirements more akin to those of a first-
person shooter or real-time strategy game.

vww .allitebooks.cond
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Figure 1.6. Fight Night Round 3 (PLAYSTATION 3).

1.4.4. Racing Games

The racing genre encompasses all games whose primary task is driving a car
or other vehicle on some kind of track. The genre has many subcategories.
Simulation-focused racing games (“sims”) aim to provide a driving experi-
ence that is as realistic as possible (e.g., Gran Turismo). Arcade racers favor
over-the-top fun over realism (e.g., San Francisco Rush, Cruisin’ USA, Hydro
Thunder). A relatively new subgenre explores the subculture of street racing
with tricked out consumer vehicles (e.g., Need for Speed, Juiced). Kart racing is
a subcategory in which popular characters from platformer games or cartoon
characters from TV are re-cast as the drivers of whacky vehicles (e.g., Mario
Kart, Jak X, Freaky Flyers). “Racing” games need not always involve time-based
competition. Some kart racing games, for example, offer modes in which play-
ers shoot at one another, collect loot, or engage in a variety of other timed
and untimed tasks. For a discussion of this genre, see http://en.wikipedia.org/
wiki/Racing_game.
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A racing game is often very linear, much like older FPS games. However,
travel speed is generally much faster than in a FPS. Therefore more focus is
placed on very long corridor-based tracks, or looped tracks, sometimes with
various alternate routes and secret short-cuts. Racing games usually focus all
their graphic detail on the vehicles, track, and immediate surroundings. How-
ever, kart racers also devote significant rendering and animation bandwidth
to the characters driving the vehicles. Figure 1.7 shows a screen shot from the
latest installment in the well-known Gran Turismo racing game series, Gran
Turismo 5.

Some of the technological properties of a typical racing game include the
following techniques.

e Various “tricks” are used when rendering distant background elements,
such as employing two-dimensional cards for trees, hills, and mountains.

e The track is often broken down into relatively simple two-dimension-
al regions called “sectors.” These data structures are used to optimize
rendering and visibility determination, to aid in artificial intelligence
and path finding for non-human-controlled vehicles, and to solve many
other technical problems.

Figure 1.7. Gran Turismo 5 (PLAYSTATION 3).
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e The camera typically follows behind the vehicle for a third-person per-
spective, or is sometimes situated inside the cockpit first-person style.

e When the track involves tunnels and other “tight” spaces, a good deal
of effort is often put into ensuring that the camera does not collide with
background geometry.

1.4.5. Real-Time Strategy (RTS)

The modern real-time strategy (RTS) genre was arguably defined by Dune II:
The Building of a Dynasty (1992). Other games in this genre include Warcraft,
Command & Conquer, Age of Empires, and Starcraft. In this genre, the player
deploys the battle units in his or her arsenal strategically across a large play-
ing field in an attempt to overwhelm his or her opponent. The game world is
typically displayed at an oblique top-down viewing angle. For a discussion of
this genre, see http://en.wikipedia.org/wiki/Real-time_strategy.

The RTS player is usually prevented from significantly changing the
viewing angle in order to see across large distances. This restriction permits
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Figure 1.8. Age of Empires.
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developers to employ various optimizations in the rendering engine of an RTS
game.

Older games in the genre employed a grid-based (cell-based) world con-
struction, and an orthographic projection was used to greatly simplify the ren-
derer. For example, Figure 1.8 shows a screen shot from the classic RTS Age
of Empires.

Modern RTS games sometimes use perspective projection and a true 3D
world, but they may still employ a grid layout system to ensure that units and
background elements, such as buildings, align with one another properly. A
popular example, Command & Congquer 3, is shown in Figure 1.9.

Some other common practices in RTS games include the following tech-
niques.

P
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Figure 1.9. Command & Conquer 3.
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e FEach unit is relatively low-res, so that the game can support large num-
bers of them on-screen at once.

e Height-field terrain is usually the canvas upon which the game is de-
signed and played.

e The player is often allowed to build new structures on the terrain in ad-
dition to deploying his or her forces.

e User interaction is typically via single-click and area-based selection of
units, plus menus or toolbars containing commands, equipment, unit
types, building types, etc.

1.4.6. Massively Multiplayer Online Games (MMOG)

The massively multiplayer online game (MMOG) genre is typified by games
like Neverwinter Nights, EverQuest, World of Warcraft, and Star Wars Galaxies, to
name a few. An MMOG is defined as any game that supports huge numbers of
simultaneous players (from thousands to hundreds of thousands), usually all

[Deadly Poison VIl]
[Deadly Poison VIl]
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playing in one very large, persistent virtual world (i.e., a world whose internal
state persists for very long periods of time, far beyond that of any one player’s
gameplay session). Otherwise, the gameplay experience of an MMOG is often
similar to that of their small-scale multiplayer counterparts. Subcategories of
this genre include MMO role-playing games (MMORPG), MMO real-time
strategy games (MMORTS), and MMO first-person shooters (MMOEFPS). For a
discussion of this genre, see http://en.wikipedia.org/wiki/MMOG. Figure 1.10
shows a screen shot from the hugely popular MMORPG World of Warcraft.

At the heart of all MMOGs is a very powerful battery of servers. These
servers maintain the authoritative state of the game world, manage users sign-
ing in and out of the game, provide inter-user chat or voice-over-IP (VoIP)
services, etc. Almost all MMOGs require users to pay some kind of regular
subscription fee in order to play, and they may offer micro-transactions within
the game world or out-of-game as well. Hence, perhaps the most important
role of the central server is to handle the billing and micro-transactions which
serve as the game developer’s primary source of revenue.

Graphics fidelity in an MMOG is almost always lower than its non-mas-
sively multiplayer counterparts, as a result of the huge world sizes and ex-
tremely large numbers of users supported by these kinds of games.

1.4.7. Other Genres

There are of course many other game genres which we won't cover in depth
here. Some examples include

e sports, with subgenres for each major sport (football, baseball, soccer,
golf, etc.);

e role-playing games (RPG);

e God games, like Populus and Black & White;

e environmental/social simulation games, like SimCity or The Sims;

e puzzle games like Tetris;

e conversions of non-electronic games, like chess, card games, go, etc.;

e web-based games, such as those offered at Electronic Arts” Pogo site;

e and the list goes on.

We have seen that each game genre has its own particular technologi-
cal requirements. This explains why game engines have traditionally differed
quite a bit from genre to genre. However, there is also a great deal of tech-
nological overlap between genres, especially within the context of a single
hardware platform. With the advent of more and more powerful hardware,
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differences between genres that arose because of optimization concerns are
beginning to evaporate. So it is becoming increasingly possible to reuse the
same engine technology across disparate genres, and even across disparate
hardware platforms.

1.5.  Game Engine Survey

1.5.1.  The Quake Family of Engines

The first 3D first-person shooter (FPS) game is generally accepted to be Castle
Wolfenstein 3D (1992). Written by id Software of Texas for the PC platform, this
game led the game industry in a new and exciting direction. Id Software went
on to create Doom, Quake, Quake 11, and Quake I1I. All of these engines are very
similar in architecture, and I will refer to them as the Quake family of engines.
Quake technology has been used to create many other games and even other
engines. For example, the lineage of Medal of Honor for the PC platform goes
something like this:

o Quakel II (Id);

e Sin (Ritual);

e FAKK. 2 (Ritual);

e Medal of Honor: Allied Assault (2015 & Dreamworks Interactive);
e Medal of Honor: Pacific Assault (Electronic Arts, Los Angeles).

Many other games based on Quake technology follow equally circuitous paths
through many different games and studios. In fact, Valve’s Source engine (used
to create the Hualf-Life games) also has distant roots in Quake technology.

The Quake and Quake II source code is freely available, and the original
Quake engines are reasonably well architected and “clean” (although they
are of course a bit outdated and written entirely in C). These code bases serve
as great examples of how industrial-strength game engines are built. The full
source code to Quake and Quake I is available on id’s website at http://www.
idsoftware.com/business/techdownloads.

If you own the Quake and/or Quake II games, you can actually build the
code using Microsoft Visual Studio and run the game under the debugger
using the real game assets from the disk. This can be incredibly instructive.
You can set break points, run the game, and then analyze how the engine
actually works by stepping through the code. I highly recommend down-
loading one or both of these engines and analyzing the source code in this
manner.
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1.5.2.  The Unreal Family of Engines

Epic Games Inc. burst onto the FPS scene in 1998 with its legendary game Un-
real. Since then, the Unreal Engine has become a major competitor to Quake
technology in the FPS space. Unreal Engine 2 (UE2) is the basis for Unreal
Tournament 2004 (UT2004) and has been used for countless “mods,” university
projects, and commercial games. Unreal Engine 3 (UE3) is the next evolution-
ary step, boasting some of the best tools and richest engine feature sets in
the industry, including a convenient and powerful graphical user interface for
creating shaders and a graphical user interface for game logic programming
called Kismet. Many games are being developed with UE3 lately, including of
course Epic’s popular Gears of War.

The Unreal Engine has become known for its extensive feature set and
cohesive, easy-to-use tools. The Unreal Engine is not perfect, and most devel-
opers modify it in various ways to run their game optimally on a particular
hardware platform. However, Unreal is an incredibly powerful prototyping
tool and commercial game development platform, and it can be used to build
virtually any 3D first-person or third-person game (not to mention games in
other genres as well).

The Unreal Developer Network (UDN) provides a rich set of documenta-
tion and other information about the various versions of the Unreal Engine
(see http://udn.epicgames.com). Some of the documentation on Unreal Engine
2 is freely available, and “mods” can be constructed by anyone who owns a
copy of UT2004. However, access to the balance of the UE2 docs and all of the
UE3 docs are restricted to licensees of the engine. Unfortunately, licenses are
extremely expensive, and hence out of reach for all independent game devel-
opers and most small studios as well. But there are plenty of other useful web-
sites and wikis on Unreal. One popular one is http://www.beyondunreal.com.

1.5.3. The Half Life Source Engine

Source is the game engine that drives the smash hit Half-Life 2 and its sequels
HL2: Episode One, HL2: Episode Two, Team Fortress 2, and Portal (shipped to-
gether under the title The Orange Box). Source is a high-quality engine, rivaling
Unreal Engine 3 in terms of graphics capabilities and tool set.

1.5.4. Microsoft’'s XNA Game Studio

Microsoft’s XNA Game Studio is an easy-to-use and highly accessible game
development platform aimed at encouraging players to create their own
games and share them with the online gaming community, much as YouTube
encourages the creation and sharing of home-made videos.
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XNA is based on Microsoft’s C# language and the Common Language
Runtime (CLR). The primary development environment is Visual Studio or
its free counterpart, Visual Studio Express. Everything from source code
to game art assets are managed within Visual Studio. With XNA, develop-
ers can create games for the PC platform and Microsoft’s Xbox 360 console.
After paying a modest fee, XNA games can be uploaded to the Xbox Live
network and shared with friends. By providing excellent tools at essentially
zero cost, Microsoft has brilliantly opened the floodgates for the average
person to create new games. XNA clearly has a bright and fascinating future
ahead of it.

1.5.5. Other Commercial Engines

There are lots of other commercial game engines out there. Although indie
developers may not have the budget to purchase an engine, many of these
products have great online documentation and/or wikis that can serve as a
great source of information about game engines and game programming in
general. For example, check out the C4 Engine by Terathon Software (http://
www.terathon.com), a company founded by Eric Lengyel in 2001. Docu-
mentation for the C4 Engine can be found on Terathon’s website, with ad-
ditional details on the C4 Engine wiki (http://www.terathon.com/wiki/index.
php?title=Main_Page).

1.5.6. Proprietary in-House Engines

Many companies build and maintain proprietary in-house game engines.
Electronic Arts built many of its RTS games on a proprietary engine called
SAGE, developed at Westwood Studios. Naughty Dog’s Crash Bandicoot, Jak
and Daxter series, and most recently Uncharted: Drake’s Fortune franchises were
each built on in-house engines custom-tailored to the PlayStation, PlayStation
2, and PLAYSTATION 3 platforms, respectively. And of course, most commer-
cially licensed game engines like Quake, Source, or the Unreal Engine started
out as proprietary in-house engines.

1.5.7.  Open Source Engines

Open source 3D game engines are engines built by amateur and professional
game developers and provided online for free. The term “open source” typi-
cally implies that source code is freely available and that a somewhat open de-
velopment model is employed, meaning almost anyone can contribute code. Li-
censing, if it exists at all, is often provided under the Gnu Public License (GPL)
or Lesser Gnu Public License (LGPL). The former permits code to be freely used
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by anyone, as long as their code is also freely available; the latter allows the
code to be used even in proprietary for-profit applications. Lots of other free
and semi-free licensing schemes are also available for open source projects.

There are a staggering number of open source engines available on the
web. Some are quite good, some are mediocre, and some are just plain aw-
ful! The list of game engines provided online at http://cg.cs.tu-berlin.de/~ki/
engines.html will give you a feel for the sheer number of engines that are out
there.

OGRE 3D is a well-architected, easy-to-learn, and easy-to-use 3D render-
ing engine. It boasts a fully featured 3D renderer including advanced lighting
and shadows, a good skeletal character animation system, a two-dimensional
overlay system for heads-up displays and graphical user interfaces, and a
post-processing system for full-screen effects like bloom. OGRE is, by its au-
thors” own admission, not a full game engine, but it does provide many of the
foundational components required by pretty much any game engine.

Some other well-known open source engines are listed here.

e Panda3D is a script-based engine. The engine’s primary interface is the
Python custom scripting language. It is designed to make prototyping
3D games and virtual worlds convenient and fast.

e Yake is a relatively new fully featured game engine built on top of
OGRE.

e Crystal Space is a game engine with an extensible modular architecture.

e Torque and Irrlicht are also well-known and widely used engines.

1.6. Runtime Engine Architecture

A game engine generally consists of a tool suite and a runtime component.
We'll explore the architecture of the runtime piece first and then get into tools
architecture in the following section.

Figure 1.11 shows all of the major runtime components that make up a
typical 3D game engine. Yeah, it’s big! And this diagram doesn’t even account
for all the tools. Game engines are definitely large software systems.

Like all software systems, game engines are built in layers. Normally up-
per layers depend on lower layers, but not vice versa. When a lower layer
depends upon a higher layer, we call this a circular dependency. Dependency
cycles are to be avoided in any software system, because they lead to un-
desirable coupling between systems, make the software untestable, and in-
hibit code reuse. This is especially true for a large-scale system like a game
engine.

vww allitebooks.conl



http://www.allitebooks.org

1.6. Runtime Engine Architecture

GAME-SPECIFIC SUBSYSTEMS
‘ Weapons ‘ ‘ Power-Ups ‘ ‘ Vehicles ‘ Puzzles ‘ etc.
Game-Specific Rendering Player Mechanics ‘ ‘ Game Cameras Al
State Machine & Camera-Relative n Scripted/Animated Goals & Decision- Actions
Animation Controls (HID) ‘ ‘ (A e Cameras Making (Engine Interface)
. n Water Simulation . ’ Player-Follow Debug Fly- Sight Traces & - "
Terrain Rendering & Rendering Collision Manifold ‘ Movement ‘ Gz H Through Cam Perception Path Finding (A*)
Front End ‘ ‘ Gameplay Foundations
Heads-Up Display || Full-Motion Video H In-Game Cinematics High-Level Game Flow System/FSM
(IGC)
‘ In-Game GUI H In-Game Menus H Wrapp,a:;/ eAttract ‘ Scripting System ‘
Static World Dynamic Game Real-Time Agent- Event/Messaging World Loading /
Visual Effects Elements Object Model Based Simulation System Streaming
Light Mapping & HDR Lighting PRT Lighting, Hierarchical
Dynamic Shadows Subsurf. Scatter Skeletal Animation | Object Attachment Online Multiplayer Audio
Particle & Decal Environment Animation State Inverse Game-Specific Match-Making &
Systems H PRostiEfiects H Mapping Tree &Layers H Kinematics (IK) Post-Processing Game Mgmt. DSP/Effects
LERP and Animation Sub-skeletal Object Authority .
Scene Graph/ Culling Optimizations Additive Blending Playback Animation Policy 3D Audio Model
Spatial Subdivision Ocdlusion & PVS LOD System Game State Audio Playback /
(BSP Tree, kd-Tree, ...)| i Management
Skeletal Mesh Ragdoll
Rendering Physics.
Low-Level Renderer Profiling &Debugging Collision &Physics Human Interface
Devices (HID)
Materials & Static & Dynamic Recording & Forces & Ray/Shape
Shaders Lighting ‘ Camees ‘ ‘ et lonts ‘ Playback Constraints || Casting (Queries)
—
Primitive Viewports & Texture and Debug Drawing Memory & . . Game-Specific
Submission ‘ ‘ Virtual Screens ‘ ‘ Surface Mgmt. ‘ ‘ (Lines etc.) Performance Stats XKl Gianbns Interface
- In-Game Menus Shapes/ Physics [Collision Physical Device
GEPhC DSl B or Console Colidables World 110
Resources (Game Assets)
3D Model Texture Material Font Skeleton Collision Physics Game "
Resource Resource Resource Resource Resource Resource Parameters World/Map et
Resource Manager
Core Systems
Module Start-Up ; " . p Strings and Debug Printing Localization .
and Shut-Down ‘ Assertions H Unit Testing Memory Allocation Math Library Hashed String Ids and Logging Services Movie Player
Parsers (CSV, Profiling / Stats Engine Config Random Number Curves & RTTI/ Reflection Object Handles / Asynchronous Memory Card /O
XML, etc.) Gathering (INI files etc.) Generator Surfaces Library & Serialization Unique Ids File /0 (Older Consoles)
Platform Independence Layer
9 Atomic Data Collections and . Network Transport " . o Graphics Physics /Coll.
Platform Detection Types H e ‘ ‘ File System Layer (UDP/TCP) Hi-Res Timer Threading Library Wrappers Wrapper
3 Party SDKs
DirectX, OpenGL, Havok, PhysX, Granny, Havok .
libgem, Edge, etc. ODE etc. H Boost++ H STL/STLPort Kynapse H Animation, etc. Euphoria GiE
0os
Drivers
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What follows is a brief overview of the components shown in the diagram
in Figure 1.11. The rest of this book will be spent investigating each of these
components in a great deal more depth and learning how these components
are usually integrated into a functional whole.

1.6.1. Target Hardware

The target hardware layer, shown in isolation in Figure 1.12, represents the
computer system or console on which the game will run. Typical platforms
include Microsoft Windows- and Linux-based PCs, the Apple iPhone and
Macintosh, Microsoft’s Xbox and Xbox 360, Sony’s PlayStation, PlayStation 2,
PlayStation Portable (PSP), and PLAYSTATION 3, and Nintendo’s DS, Game-
Cube, and Wii. Most of the topics in this book are platform-agnostic, but we’ll
also touch on some of the design considerations peculiar to PC or console
development, where the distinctions are relevant.

Figure 1.12. Hardware layer.

1.6.2. Device Drivers

As depicted in Figure 1.13, device drivers are low-level software components
provided by the operating system or hardware vendor. Drivers manage hard-
ware resources and shield the operating system and upper engine layers from
the details of communicating with the myriad variants of hardware devices
available.

Figure 1.13. Device driver layer.

1.6.3. Operating System

On a PC, the operating system (OS) is running all the time. It orchestrates the
execution of multiple programs on a single computer, one of which is your
game. The OS layer is shown in Figure 1.14. Operating systems like Microsoft
Windows employ a time-sliced approach to sharing the hardware with mul-
tiple running programs, known as pre-emptive multitasking. This means that
a PC game can never assume it has full control of the hardware —it must “play
nice” with other programs in the system.
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Figure 1.14. Operating system layer.

On a console, the operating system is often just a thin library layer that is
compiled directly into your game executable. On a console, the game typically
“owns” the entire machine. However, with the introduction of the Xbox 360
and PLAYSTATION 3, this is no longer strictly the case. The operating sys-
tem on these consoles can interrupt the execution of your game, or take over
certain system resources, in order to display online messages, or to allow the
player to pause the game and bring up the PS3’s Xross Media Bar or the Xbox
360’s dashboard, for example. So the gap between console and PC develop-
ment is gradually closing (for better or for worse).

1.6.4. Third-Party SDKs and Middleware

Most game engines leverage a number of third-party software development
kits (SDKs) and middleware, as shown in Figure 1.15. The functional or class-
based interface provided by an SDK is often called an application program-
ming interface (API). We will look at a few examples.

3" Party SDKs

DirectX, OpenGL,
libgem, Edge, etc.

Havok, PhysX,
ODE etc.

Granny, Havok

STL /STLPort Animation, etc.

Kynapse

‘ Boats+

- H

Figure 1.15. Third-party SDK layer.

1.6.4.1. Data Structures and Algorithms

Like any software system, games depend heavily on collection data structures
and algorithms to manipulate them. Here are a few examples of third-party
libraries which provide these kinds of services.

e STL. The C++ standard template library provides a wealth of code and
algorithms for managing data structures, strings, and stream-based
I/O.

e STLport. This is a portable, optimized implementation of STL.

e Boost. Boost is a powerful data structures and algorithms library,
designed in the style of STL. (The online documentation for Boost is
also a great place to learn a great deal about computer science!)

e Loki. Loki is a powerful generic programming template library which is
exceedingly good at making your brain hurt!
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Game developers are divided on the question of whether to use template
libraries like STL in their game engines. Some believe that the memory alloca-
tion patterns of STL, which are not conducive to high-performance program-
ming and tend to lead to memory fragmentation (see Section 5.2.1.4), make
STL unusable in a game. Others feel that the power and convenience of STL
outweigh its problems, and that most of the problems can in fact be worked
around anyway. My personal belief is that STL is all right for use on a PC, be-
cause its advanced virtual memory system renders the need for careful mem-
ory allocation a bit less crucial (although one must still be very careful). On a
console, with limited or no virtual memory facilities and exorbitant cache miss
costs, you're probably better off writing custom data structures that have pre-
dictable and/or limited memory allocation patterns. (And you certainly won't
go far wrong doing the same on a PC game project either.)

1.6.4.2. Graphics

Most game rendering engines are built on top of a hardware interface library,
such as the following:

e Glide is the 3D graphics SDK for the old Voodoo graphics cards. This
SDK was popular prior to the era of hardware transform and lighting
(hardware T&L) which began with DirectX 8.

e OpenGL is a widely used portable 3D graphics SDK.
e DirectX is Microsoft’s 3D graphics SDK and primary rival to OpenGL.

o libgcm is alow-level direct interface to the PLAYSTATION 3's RSX graph-
ics hardware, which was provided by Sony as a more efficient alterna-
tive to OpenGL.

e Edgeis a powerful and highly-efficient rendering and animation engine
produced by Naughty Dog and Sony for the PLAYSTATION 3 and used
by a number of first- and third-party game studios.

1.6.4.3. Collision and Physics

Collision detection and rigid body dynamics (known simply as “physics”
in the game development community) are provided by the following well-
known SDKs.

e Havok is a popular industrial-strength physics and collision engine.

e PhysX is another popular industrial-strength physics and collision en-
gine, available for free download from NVIDIA.

e  Open Dynamics Engine (ODE) is a well-known open source physics/col-
lisionp ackage.
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1.6.4.4. Character Animation

A number of commercial animation packages exist, including but certainly
not limited to the following.

e Granny. Rad Game Tools” popular Granny toolkit includes robust 3D
model and animation exporters for all the major 3D modeling and ani-
mation packages like Maya, 3D Studio MAX, etc., a runtime library for
reading and manipulating the exported model and animation data, and
a powerful runtime animation system. In my opinion, the Granny SDK
has the best-designed and most logical animation API of any I've seen,
commercial or proprietary, especially its excellent handling of time.

e Havok Animation. The line between physics and animation is becoming
increasingly blurred as characters become more and more realistic. The
company that makes the popular Havok physics SDK decided to create
a complimentary animation SDK, which makes bridging the physics-
animation gap much easier than it ever has been.

e Edge. The Edge library produced for the PS3 by the ICE team at Naughty
Dog, the Tools and Technology group of Sony Computer Entertainment
America, and Sony’s Advanced Technology Group in Europe includes
a powerful and efficient animation engine and an efficient geometry-
processing engine for rendering.

1.6.4.5. Artificial Intelligence

e Kynapse. Until recently, artificial intelligence (AI) was handled in a cus-
tom manner for each game. However, a company called Kynogon has
produced a middleware SDK called Kynapse. This SDK provides low-
level AI building blocks such as path finding, static and dynamic object
avoidance, identification of vulnerabilities within a space (e.g., an open
window from which an ambush could come), and a reasonably good
interface between Al and animation.

1.6.4.6. Biomechanical Character Models

e Endorphin and Euphoria. These are animation packages that produce
character motion using advanced biomechanical models of realistic hu-
man movement.

As we mentioned above, the line between character animation and phys-
ics is beginning to blur. Packages like Havok Animation try to marry physics
and animation in a traditional manner, with a human animator providing the
majority of the motion through a tool like Maya and with physics augmenting
that motion at runtime. But recently a firm called Natural Motion Ltd. has pro-



34

1. Introduction

duced a product that attempts to redefine how character motion is handled in
games and other forms of digital media.

Its first product, Endorphin, is a Maya plug-in that permits animators
to run full biomechanical simulations on characters and export the resulting
animations as if they had been hand-animated. The biomechanical model ac-
counts for center of gravity, the character’s weight distribution, and detailed
knowledge of how a real human balances and moves under the influence of
gravity and other forces.

Its second product, Euphoria, is a real-time version of Endorphin intend-
ed to produce physically and biomechanically accurate character motion at
runtime under the influence of unpredictable forces.

1.6.5. Platform Independence Layer

Most game engines are required to be capable of running on more than one
hardware platform. Companies like Electronic Arts and Activision/Blizzard,
for example, always target their games at a wide variety of platforms, because
it exposes their games to the largest possible market. Typically, the only game
studios that do not target at least two different platforms per game are first-
party studios, like Sony’s Naughty Dog and Insomniac studios. Therefore,
most game engines are architected with a platform independence layer, like
the one shown in Figure 1.16. This layer sits atop the hardware, drivers, oper-
ating system, and other third-party software and shields the rest of the engine
from the majority of knowledge of the underlying platform.

By wrapping or replacing the most commonly used standard C library
functions, operating system calls, and other foundational application pro-
gramming interfaces (APIs), the platform independence layer ensures consis-
tent behavior across all hardware platforms. This is necessary because there is
a good deal of variation across platforms, even among “standardized” librar-
ies like the standard C library.

Platform Independence Layer

Platform Detection

Atomic Data
Types

Collections and
Iterators

Network Transport

Layer (UDP/TCP) || Hi-Res Timer

Graphics H Physics /Coll. ‘

File System Wrappers Wrapper

Threading Library

Figure 1.16. Platform independence layer.

1.6.6. Core Systems

Every game engine, and really every large, complex C++ software application,
requires a grab bag of useful software utilities. We'll categorize these under
the label “core systems.” A typical core systems layer is shown in Figure 1.17.
Here are a few examples of the facilities the core layer usually provides.
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Figure 1.17. Core engine systems.

e Assertions are lines of error-checking code that are inserted to catch logi-
cal mistakes and violations of the programmer’s original assumptions.
Assertion checks are usually stripped out of the final production build
of the game.

e Memory management. Virtually every game engine implements its own
custom memory allocation system(s) to ensure high-speed allocations
and deallocations and to limit the negative effects of memory fragmen-
tation (see Section 5.2.1.4).

e Math library. Games are by their nature highly mathematics-intensive. As
such, every game engine has at least one, if not many, math libraries. These
libraries provide facilities for vector and matrix math, quaternion rota-
tions, trigonometry, geometric operations with lines, rays, spheres, frusta,
etc., spline manipulation, numerical integration, solving systems of equa-
tions, and whatever other facilities the game programmers require.

o Custom data structures and algorithms. Unless an engine’s designers de-
cided to rely entirely on a third-party package such as STL, a suite of
tools for managing fundamental data structures (linked lists, dynamic
arrays, binary trees, hash maps, etc.) and algorithms (search, sort, etc.)
is usually required. These are often hand-coded to minimize or elimi-
nate dynamic memory allocation and to ensure optimal runtime perfor-
mance on the target platform(s).

A detailed discussion of the most common core engine systems can be
found in Part II.

1.6.7. Resource Manager

Present in every game engine in some form, the resource manager provides
a unified interface (or suite of interfaces) for accessing any and all types of
game assets and other engine input data. Some engines do this in a highly
centralized and consistent manner (e.g., Unreal’s packages, OGRE 3D’s Re-
sourceManager class). Other engines take an ad hoc approach, often leaving
it up to the game programmer to directly access raw files on disk or within
compressed archives such as Quake’s PAK files. A typical resource manager
layer is depicted in Figure 1.18.
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Figure 1.18. Resource manager.

1.6.8. Rendering Engine

The rendering engine is one of the largest and most complex components of
any game engine. Renderers can be architected in many different ways. There
is no one accepted way to do it, although as we’ll see, most modern rendering
engines share some fundamental design philosophies, driven in large part by
the design of the 3D graphics hardware upon which they depend.

One common and effective approach to rendering engine design is to em-
ploy a layered architecture as follows.

1.6.8.1. Low-Level Renderer

The low-level renderer, shown in Figure 1.19, encompasses all of the raw ren-
dering facilities of the engine. At this level, the design is focused on rendering
a collection of geometric primitives as quickly and richly as possible, without
much regard for which portions of a scene may be visible. This component is
broken into various subcomponents, which are discussed below.

Skeletal Mesh

Rendering
Low-Level Renderer

Materials & Static & Dynamic

Shaders Lighting Cameras Text & Fonts

1

Primitive Viewports & Texture and Debug Drawing

Submission Virtual Screens Surface Mgmt. (Lines etc.)
Graphics Device Interface

Figure 1.19. Low-level rendering engine.

Graphics Device Interface

Graphics SDKs, such as DirectX and OpenGL, require a reasonable amount of
code to be written just to enumerate the available graphics devices, initialize
them, set up render surfaces (back-buffer, stencil buffer etc.), and so on. This
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is typically handled by a component that I'll call the graphics device interface
(although every engine uses its own terminology).

For a PC game engine, you also need code to integrate your renderer with
the Windows message loop. You typically write a “message pump” that ser-
vices Windows messages when they are pending and otherwise runs your
render loop over and over as fast as it can. This ties the game’s keyboard poll-
ing loop to the renderer’s screen update loop. This coupling is undesirable,
but with some effort it is possible to minimize the dependencies. We’ll explore
this topic in more depth later.

Other Renderer Components

The other components in the low-level renderer cooperate in order to collect
submissions of geometric primitives (sometimes called render packets), such as
meshes, line lists, point lists, particles, terrain patches, text strings, and what-
ever else you want to draw, and render them as quickly as possible.

The low-level renderer usually provides a viewport abstraction with an
associated camera-to-world matrix and 3D projection parameters, such as field
of view and the location of the near and far clip planes. The low-level renderer
also manages the state of the graphics hardware and the game’s shaders via
its material system and its dynamic lighting system. Each submitted primitive
is associated with a material and is affected by n dynamic lights. The mate-
rial describes the texture(s) used by the primitive, what device state settings
need to be in force, and which vertex and pixel shader to use when rendering
the primitive. The lights determine how dynamic lighting calculations will
be applied to the primitive. Lighting and shading is a complex topic, which
is covered in depth in many excellent books on computer graphics, including
[14], [42], and [1].

1.6.8.2. Scene Graph/Culling Optimizations

The low-level renderer draws all of the geometry submitted to it, without
much regard for whether or not that geometry is actually visible (other than
back-face culling and clipping triangles to the camera frustum). A higher-level
component is usually needed in order to limit the number of primitives sub-
mitted for rendering, based on some form of visibility determination. This
layer is shown in Figure 1.20.

For very small game worlds, a simple frustum cull (i.e., removing objects
that the camera cannot “see”) is probably all that is required. For larger game
worlds, a more advanced spatial subdivision data structure might be used to
improve rendering efficiency, by allowing the potentially visible set (PVS)
of objects to be determined very quickly. Spatial subdivisions can take many
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Scene Graph/ Culling Optimizations

Spatial Subdivision

(BSP Tres, kd-Tres, ...) Occlusion & PVS LOD System

Figure 1.20. A typical scene graph/spatial subdivision layer, for culling optimization.

forms, including a binary space partitioning (BSP) tree, a quadtree, an octree,
a kd-tree, or a sphere hierarchy. A spatial subdivision is sometimes called a
scene graph, although technically the latter is a particular kind of data struc-
ture and does not subsume the former. Portals or occlusion culling methods
might also be applied in this layer of the rendering engine.

Ideally, the low-level renderer should be completely agnostic to the type
of spatial subdivision or scene graph being used. This permits different game
teams to reuse the primitive submission code, but craft a PVS determination
system that is specific to the needs of each team’s game. The design of the
OGRE 3D open source rendering engine (http://www.ogre3d.org) is a great
example of this principle in action. OGRE provides a plug-and-play scene
graph architecture. Game developers can either select from a number of pre-
implemented scene graph designs, or they can provide a custom scene graph
implementation.

1.6.8.3. Visual Effects

Modern game engines support a wide range of visual effects, as shown in
Figure 1.21, including

e particle systems (for smoke, fire, water splashes, etc.);
e decal systems (for bullet holes, foot prints, etc.);

e light mapping and environment mapping;

e dynamic shadows;

e full-screen post effects, applied after the 3D scene has been rendered to
an offscreen buffer.

Visual Effects

Light Mapping & Ffiors PRT Lighting,
Dynamic Shadows GRREHNg Subsurf. Scatter
Particle & Decal Post Effects Environment

Systems Mapping

Figure 1.21. Visual effects.
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Some examples of full-screen post effects include

e high dynamic range (HDR) lighting and bloom;
e full-screen anti-aliasing (FSAA);

e color correction and color-shift effects, including bleach bypass, satura-
tion and de-saturation effects, etc.

It is common for a game engine to have an effects system component that
manages the specialized rendering needs of particles, decals, and other vi-
sual effects. The particle and decal systems are usually distinct components
of the rendering engine and act as inputs to the low-level renderer. On the
other hand, light mapping, environment mapping, and shadows are usually
handled internally within the rendering engine proper. Full-screen post ef-
fects are either implemented as an integral part of the renderer or as a separate
component that operates on the renderer’s output buffers.

1.6.8.4. Front End

Most games employ some kind of 2D graphics overlaid on the 3D scene for
various purposes. These include

o the game’s heads-up display (HUD);
e in-game menus, a console, and/or other development tools, which may or
may not be shipped with the final product;

e possibly an in-game graphical user interface (GUI), allowing the player to
manipulate his or her character’s inventory, configure units for battle, or
perform other complex in-game tasks.

This layer is shown in Figure 1.22. Two-dimensional graphics like these are
usually implemented by drawing textured quads (pairs of triangles) with an
orthographic projection. Or they may be rendered in full 3D, with the quads
bill-boarded so they always face the camera.

We've also included the full-motion video (FMV) system in this layer. This
system is responsible for playing full-screen movies that have been recorded

Front End

Heads-Up Display || Full-Motion Video In-Game Cinematics
(HUD) (FMV) (IGC)

Wrappers/ Attract

In-Game GUI In-Game Menus Mode

Figure 1.22. Front end graphics.
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earlier (either rendered with the game’s rendering engine or using another
rendering package).

A related system is the in-game cinematics (IGC) system. This component
typically allows cinematic sequences to be choreographed within the game it-
self, in full 3D. For example, as the player walks through a city, a conversation
between two key characters might be implemented as an in-game cinematic.
IGCs may or may not include the player character(s). They may be done as a
deliberate cut-away during which the player has no control, or they may be
subtly integrated into the game without the human player even realizing that
an IGC is taking place.

1.6.9. Profiling and Debugging Tools

Games are real-time systems and, as such, game engineers often need to profile
the performance of their games in order to optimize performance. In addition,
memory resources are usually scarce, so developers make heavy use of mem-
ory analysis tools as well. The profiling and debugging layer, shown in Figure
1.23, encompasses these tools and also includes in-game debugging facilities,
such as debug drawing, an in-game menu system or console, and the ability to
record and play back gameplay for testing and debugging purposes.

There are plenty of good general-purpose software profiling tools avail-
able, including

o Intel’s VIune,
e IBM'’s Quantify and Purify (part of the PurifyPlus tool suite),
o Compuware’s Bounds Checker.
However, most game engines also incorporate a suite of custom profiling

and debugging tools. For example, they might include one or more of the fol-
lowing;:
e a mechanism for manually instrumenting the code, so that specific sec-
tions of code can be timed;

e afacility for displaying the profiling statistics on-screen while the game
is running;

e a facility for dumping performance stats to a text file or to an Excel
spreadsheet;

e a facility for determining how much memory is being used by the en-
gine, and by each subsystem, including various on-screen displays;

e the ability to dump memory usage, high-water mark, and leakage stats
when the game terminates and/or during gameplay;
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e tools that allow debug print statements to be peppered throughout the
code, along with an ability to turn on or off different categories of debug
output and control the level of verbosity of the output;

e the ability to record game events and then play them back. This is tough
to get right, but when done properly it can be a very valuable tool for
tracking down bugs.

1.6.10. Collision and Physics

Collision detection is important for every game. Without it, objects would in-
terpenetrate, and it would be impossible to interact with the virtual world
in any reasonable way. Some games also include a realistic or semi-realistic
dynamics simulation. We call this the “physics system” in the game industry,
although the term rigid body dynamics is really more appropriate, because we
are usually only concerned with the motion (kinematics) of rigid bodies and
the forces and torques (dynamics) that cause this motion to occur. This layer
is depicted in Figure 1.24.

Collision and physics are usually quite tightly coupled. This is because
when collisions are detected, they are almost always resolved as part of the
physics integration and constraint satisfaction logic. Nowadays, very few
game companies write their own collision/physics engine. Instead, a third-
party SDK is typically integrated into the engine.

e Havok is the gold standard in the industry today. It is feature-rich and
performs well across the boards.

e PhysX by NVIDIA is another excellent collision and dynamics engine.
It was integrated into Unreal Engine 3 and is also available for free as
a standalone product for PC game development. PhysX was originally
designed as the interface to Ageia’s new physics accelerator chip. The

Ragdoll
Physics
Collision & Physics
Forces & Ray/Shape
Constraints Casting (Queries)
Rigid Bodies Phantoms
Shapes/ Physics /Collision
Collidables World

Figure 1.24. Collision and physics subsystem.
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SDK is now owned and distributed by NVIDIA, and the company is
adapting PhysX to run on its latest GPUs.

Open source physics and collision engines are also available. Perhaps the
best-known of these is the Open Dynamics Engine (ODE). For more informa-
tion, see http://www.ode.org. I-Collide, V-Collide, and RAPID are other popu-
lar non-commercial collision detection engines. All three were developed at the
University of North Carolina (UNC). For more information, see http://www.
cs.unc.edu/~geom/I_COLLIDE/index.html, http://www.cs.unc.edu/~geom/V_
COLLIDE/index.html, and http://www.cs.unc.edu/~geom/OBB/OBBT.html.

1.6.11.  Animation

Any game that has organic or semi-organic characters (humans, animals, car-
toon characters, or even robots) needs an animation system. There are five
basic types of animation used in games:

e sprite/texturean imation,

e rigid body hierarchy animation,
e skeletal animation,

e vertex animation, and

e morph targets.

Skeletal animation permits a detailed 3D character mesh to be posed by
an animator using a relatively simple system of bones. As the bones move, the
vertices of the 3D mesh move with them. Although morph targets and vertex
animation are used in some engines, skeletal animation is the most prevalent
animation method in games today; as such, it will be our primary focus in this
book. A typical skeletal animation system is shown in Figure 1.25.

Skeletal Animation
Animation State Inverse Game-Specific
Tree & Layers Kinematics (IK) Post-Processing
LERP and Animation Sub-skeletal
Additive Blending Playback Animation
Animation
Decompression

Figure 1.25. Skeletal animation subsystem.
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You'll notice in Figure 1.11 that Skeletal Mesh Rendering is a component
that bridges the gap between the renderer and the animation system. There
is a tight cooperation happening here, but the interface is very well defined.
The animation system produces a pose for every bone in the skeleton, and
then these poses are passed to the rendering engine as a palette of matrices.
The renderer transforms each vertex by the matrix or matrices in the palette,
in order to generate a final blended vertex position. This process is known as
skinning.

There is also a tight coupling between the animation and physics systems,
when rag dolls are employed. A rag doll is a limp (often dead) animated char-
acter, whose bodily motion is simulated by the physics system. The physics
system determines the positions and orientations of the various parts of the
body by treating them as a constrained system of rigid bodies. The animation
system calculates the palette of matrices required by the rendering engine in
order to draw the character on-screen.

1.6.12. Human Interface Devices (HID)

Every game needs to process input from the player, obtained from various
human interface devices (HIDs) including

e the keyboard and mouse,

e ajoypad, or

e other specialized game controllers, like steering wheels, fishing rods,
dance pads, the WiiMote, etc.

We sometimes call this component the player I/O component, because we
may also provide output to the player through the HID, such as force feed-
back/rumble on a joypad or the audio produced by the WiiMote. A typical
HID layer is shown in Figure 1.26.

The HID engine component is sometimes architected to divorce the
low-level details of the game controller(s) on a particular hardware platform
from the high-level game controls. It massages the raw data coming from the
hardware, introducing a dead zone around the center point of each joypad
stick, de-bouncing button-press inputs, detecting button-down and button-
up events, interpreting and smoothing accelerometer inputs (e.g., from the
PLAYSTATION 3 Sixaxis controller), and more. It often provides a mecha-
nism allowing the player to customize the mapping between physical controls
and logical game functions. It sometimes also includes a system for detecting
chords (multiple buttons pressed together), sequences (buttons pressed in se-
quence within a certain time limit), and gestures (sequences of inputs from the
buttons, sticks, accelerometers, etc.).

Human Interface
Devices (HID)

Game-Specific
Interface

Physical Device
110

Figure 126. The
player  input/out-
put system, also
known as the hu-
man interface de-
vice (HID) layer.
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1.6.13. Audio

Audio is just as important as graphics in any game engine. Unfortunately,
audio often gets less attention than rendering, physics, animation, Al, and
gameplay. Case in point: Programmers often develop their code with their
speakers turned off! (In fact, 've known quite a few game programmers
who didn’t even have speakers or headphones.) Nonetheless, no great game
is complete without a stunning audio engine. The audio layer is depicted in
Figure 1.27.

Audio engines vary greatly in sophistication. Quake’s and Unreal’s au-
dio engines are pretty basic, and game teams usually augment them with
custom functionality or replace them with an in-house solution. For DirectX
platforms (PC and Xbox 360), Microsoft provides an excellent audio tool suite
called XACT. Electronic Arts has developed an advanced, high-powered au-
dio engine internally called SoundR!OT. In conjunction with first-party stu-
dios like Naughty Dog, Sony Computer Entertainment America (SCEA) pro-
vides a powerful 3D audio engine called Scream, which has been used on
a number of PS3 titles including Naughty Dog’s Uncharted: Drake’s Fortune.
However, even if a game team uses a pre-existing audio engine, every game
requires a great deal of custom software development, integration work, fine-
tuning, and attention to detail in order to produce high-quality audio in the
final product.

1.6.14. Online Multiplayer/Networking

Many games permit multiple human players to play within a single virtual
world. Multiplayer games come in at least four basic flavors.

o Single-screen multiplayer. Two or more human interface devices (joypads,
keyboards, mice, etc.) are connected to a single arcade machine, PC, or
console. Multiple player characters inhabit a single virtual world, and a
single camera keeps all player characters in frame simultaneously. Ex-
amples of this style of multiplayer gaming include Smash Brothers, Lego
Star Wars, and Gauntlet.

e Split-screen multiplayer. Multiple player characters inhabit a single vir-
tual world, with multiple HIDs attached to a single game machine, but
each with its own camera, and the screen is divided into sections so that
each player can view his or her character.

o Networked multiplayer. Multiple computers or consoles are networked
together, with each machine hosting one of the players.

o Massively multiplayer online games (MMOG). Literally hundreds of
thousands of users can be playing simultaneously within a giant, per-
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sistent, online virtual world hosted by a powerful battery of central
servers.

The multiplayer networking layer is shown in Figure 1.28.

Multiplayer games are quite similar in many ways to their single-player
counterparts. However, support for multiple players can have a profound
impact on the design of certain game engine components. The game world
object model, renderer, human input device system, player control system,
and animation systems are all affected. Retrofitting multiplayer features into
a pre-existing single-player engine is certainly not impossible, although it can
be a daunting task. Still, many game teams have done it successfully. That
said, it is usually better to design multiplayer features from day one, if you
have that luxury.

It is interesting to note that going the other way—converting a multi-
player game into a single-player game—is typically trivial. In fact, many game
engines treat single-player mode as a special case of a multiplayer game, in
which there happens to be only one player. The Quake engine is well known
for its client-on-top-of-server mode, in which a single executable, running on a
single PC, acts both as the client and the server in single-player campaigns.

1.6.15. Gameplay Foundation Systems

The term gameplay refers to the action that takes place in the game, the rules
that govern the virtual world in which the game takes place, the abilities of
the player character(s) (known as player mechanics) and of the other characters
and objects in the world, and the goals and objectives of the player(s). Game-
play is typically implemented either in the native language in which the rest
of the engine is written, or in a high-level scripting language —or sometimes
both. To bridge the gap between the gameplay code and the low-level engine
systems that we’ve discussed thus far, most game engines introduce a layer
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Object Authority
Policy

Game State
Replication

Figure 1.28. On-
line  multiplayer
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Figure 1.29. Gameplay foundation systems.
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that I'll call the gameplay foundations layer (for lack of a standardized name).
Shown in Figure 1.29, this layer provides a suite of core facilities, upon which
game-specific logic can be implemented conveniently.

1.6.15.1. Game Worlds and Object Models

The gameplay foundations layer introduces the notion of a game world, con-
taining both static and dynamic elements. The contents of the world are usu-
ally modeled in an object-oriented manner (often, but not always, using an
object-oriented programming language). In this book, the collection of object
types that make up a game is called the game object model. The game object
model provides a real-time simulation of a heterogeneous collection of objects
in the virtual game world.
Typical types of game objects include

e static background geometry, like buildings, roads, terrain (often a spe-
cial case), etc,;

e dynamic rigid bodies, such as rocks, soda cans, chairs, etc.;

e player characters (PC);

e non-player characters (NPC);

e weapons;

e projectiles;

e vehicles;

e lights (which may be present in the dynamic scene at run time, or only
used for static lighting offline);

e cameras;

e and the list goes on.

The game world model is intimately tied to a software object model, and
this model can end up pervading the entire engine. The term software object
model refers to the set of language features, policies, and conventions used to
implement a piece of object-oriented software. In the context of game engines,
the software object model answers questions, such as:

e Isyour game engine designed in an object-oriented manner?

e What language will you use? C? C++? Java? OCaml?

e How will the static class hierarchy be organized? One giant monolithic
hierarchy? Lots of loosely coupled components?

e Will you use templates and policy-based design, or traditional polymor-
phism?

e How are objects referenced? Straight old pointers? Smart pointers?
Handles?
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e How will objects be uniquely identified? By address in memory only?
By name? By a global unique identifier (GUID)?

e How are the lifetimes of game objects managed?

e How are the states of the game objects simulated over time?

We'll explore software object models and game object models in consider-
able depth in Section 14.2.

1.6.15.2. Event System

Game objects invariably need to communicate with one another. This can be
accomplished in all sorts of ways. For example, the object sending the message
might simply call a member function of the receiver object. An event-driven
architecture, much like what one would find in a typical graphical user inter-
face, is also a common approach to inter-object communication. In an event-
driven system, the sender creates a little data structure called an event or mes-
sage, containing the message’s type and any argument data that are to be sent.
The event is passed to the receiver object by calling its event handler function.
Events can also be stored in a queue for handling at some future time.

1.6.15.3. Scripting System

Many game engines employ a scripting language in order to make develop-
ment of game-specific gameplay rules and content easier and more rapid.
Without a scripting language, you must recompile and relink your game ex-
ecutable every time a change is made to the logic or data structures used in the
engine. But when a scripting language is integrated into your engine, changes
to game logic and data can be made by modifying and reloading the script
code. Some engines allow script to be reloaded while the game continues to
run. Other engines require the game to be shut down prior to script recompi-
lation. But either way, the turn-around time is still much faster than it would
be if you had to recompile and relink the game’s executable.

1.6.15.4. Artificial Intelligence Foundations

Traditionally, artificial intelligence (AI) has fallen squarely into the realm of
game-specific software—it was usually not considered part of the game en-
gine per se. More recently, however, game companies have recognized pat-
terns that arise in almost every Al system, and these foundations are slowly
starting to fall under the purview of the engine proper.

A company called Kynogon has developed a commercial Al engine called
Kynapse, which acts as an “Al foundation layer” upon which game-specific
Al logic can be quite easily developed. Kynapse provides a powerful suite of
features, including
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e anetwork of path nodes or roaming volumes, that defines areas or paths
where Al characters are free to move without fear of colliding with static
world geometry;

e simplified collision information around the edges of each free-roaming
area;

e knowledge of the entrances and exits from a region, and from where in
each region an enemy might be able to see and/or ambush you;

e a path-finding engine based on the well-known A* algorithm;

e hooks into the collision system and world model, for line-of-sight (LOS)
traces and other perceptions;

e acustom world model which tells the Al system where all the entities of
interest (friends, enemies, obstacles) are, permits dynamic avoidance of
moving objects, and so on.

Kynapse also provides an architecture for the Al decision layer, including
the concept of brains (one per character), agents (each of which is responsible
for executing a specific task, such as moving from point to point, firing on an
enemy, searching for enemies, etc.), and actions (responsible for allowing the
character to perform a fundamental movement, which often results in playing
animations on the character’s skeleton).

1.6.16. Game-Specific Subsystems

On top of the gameplay foundation layer and the other low-level engine com-
ponents, gameplay programmers and designers cooperate to implement the
features of the game itself. Gameplay systems are usually numerous, highly
varied, and specific to the game being developed. As shown in Figure 1.30,
these systems include, but are certainly not limited to the mechanics of the
player character, various in-game camera systems, artificial intelligence for
the control of non-player characters (NPCs), weapon systems, vehicles, and

GAME-SPECIFIC SUBSYSTEMS
‘ Weapons ‘ Power-Ups Vehicles ‘ ‘ Puzzles ‘ ‘ etc. ‘
Game-Specific Rendering Player Mechanics ‘ ‘ Game Cameras Al
sostamnos | comaraate || romacanaes [|Sowistmana | | [cosspen [ _pae |
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Figure 1.30. Game-specific subsystems.
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the list goes on. If a clear line could be drawn between the engine and the
game, it would lie between the game-specific subsystems and the gameplay
foundations layer. Practically speaking, this line is never perfectly distinct.
At least some game-specific knowledge invariably seeps down through the
gameplay foundations layer and sometimes even extends into the core of the
engine itself.

1.7.  Tools and the Asset Pipeline

Any game engine must be fed a great deal of data, in the form of game assets,
configuration files, scripts, and so on. Figure 1.31 depicts some of the types of
game assets typically found in modern game engines. The thicker dark-grey
arrows show how data flows from the tools used to create the original source
assets all the way through to the game engine itself. The thinner light-grey ar-
rows show how the various types of assets refer to or use other assets.

1.7.1.  Digital Content Creation Tools

Games are multimedia applications by nature. A game engine’s input data
comes in a wide variety of forms, from 3D mesh data to texture bitmaps to
animation data to audio files. All of this source data must be created and ma-
nipulated by artists. The tools that the artists use are called digital content cre-
ation (DCC) applications.

A DCC application is usually targeted at the creation of one particular
type of data—although some tools can produce multiple data types. For ex-
ample, Autodesk’s Maya and 3ds Max are prevalent in the creation of both
3D meshes and animation data. Adobe’s Photoshop and its ilk are aimed at
creating and editing bitmaps (textures). SoundForge is a popular tool for cre-
ating audio clips. Some types of game data cannot be created using an off-
the-shelf DCC app. For example, most game engines provide a custom editor
for laying out game worlds. Still, some engines do make use of pre-existing
tools for game world layout. I've seen game teams use 3ds Max or Maya as a
world layout tool, with or without custom plug-ins to aid the user. Ask most
game developers, and they’ll tell you they can remember a time when they
laid out terrain height fields using a simple bitmap editor, or typed world
layouts directly into a text file by hand. Tools don’t have to be pretty —game
teams will use whatever tools are available and get the job done. That said,
tools must be relatively easy fo use, and they absolutely must be reliable, if a
game team is going to be able to develop a highly polished product in a timely
manner.
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Figure 1.31. Tools and the asset pipeline.

1.7.2.  Asset Conditioning Pipeline

The data formats used by digital content creation (DCC) applications are rare-
ly suitable for direct use in-game. There are two primary reasons for this.

1. The DCC app’s in-memory model of the data is usually much more
complex than what the game engine requires. For example, Maya stores
a directed acyclic graph (DAG) of scene nodes, with a complex web
of interconnections. It stores a history of all the edits that have been
performed on the file. It represents the position, orientation, and scale
of every object in the scene as a full hierarchy of 3D transformations,
decomposed into translation, rotation, scale, and shear components. A
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game engine typically only needs a tiny fraction of this information in
order to render the model in-game.

2. The DCC application’s file format is often too slow to read at run time,
and in some cases it is a closed proprietary format.

Therefore, the data produced by a DCC app is usually exported to a more ac-
cessible standardized format, or a custom file format, for use in-game.

Once data has been exported from the DCC app, it often must be fur-
ther processed before being sent to the game engine. And if a game studio
is shipping its game on more than one platform, the intermediate files might
be processed differently for each target platform. For example, 3D mesh data
might be exported to an intermediate format, such as XML or a simple binary
format. Then it might be processed to combine meshes that use the same ma-
terial, or split up meshes that are too large for the engine to digest. The mesh
data might then be organized and packed into a memory image suitable for
loading on a specific hardware platform.

The pipeline from DCC app to game engine is sometimes called the asset
conditioning pipeline. Every game engine has this in some form.

1.7.3. 3D Model/Mesh Data

The visible geometry you see in a game is typically made up of two kinds of
data.

1.7.3.1.  Brush Geometry

Brush geometry is defined as a collection of convex hulls, each of which is de-
fined by multiple planes. Brushes are typically created and edited directly in
the game world editor. This is what some would call an “old school” approach
to creating renderable geometry, but it is still used.
Pros:
e fast and easy to create;
e accessible to game designers—often used to “block out” a game level for
prototyping purposes;
e can serve both as collision volumes and as renderable geometry.

Cons:

e low-resolution — difficult to create complex shapes;

e cannot support articulated objects or animated characters.
1.7.3.2. 3D Models (Meshes)

For detailed scene elements, 3D models (also referred to as meshes) are superior
to brush geometry. A mesh is a complex shape composed of triangles and ver-



52

1. Introduction

tices. (A mesh might also be constructed from quads or higher-order subdivi-
sion surfaces. But on today’s graphics hardware, which is almost exclusively
geared toward rendering rasterized triangles, all shapes must eventually be
translated into triangles prior to rendering.) A mesh typically has one or more
materials applied to it, in order to define visual surface properties (color, re-
flectivity, bumpiness, diffuse texture, etc.). In this book, I will use the term
“mesh” to refer to a single renderable shape, and “model” to refer to a com-
posite object that may contain multiple meshes, plus animation data and other
metadata for use by the game.

Meshes are typically created in a 3D modeling package such as 3ds Max,
Maya, or Softlmage. A relatively new tool called ZBrush allows ultra high-
resolution meshes to be built in a very intuitive way and then down-converted
into a lower-resolution model with normal maps to approximate the high-
frequency detail.

Exporters must be written to extract the data from the digital content
creation (DCC) tool (Maya, Max, etc.) and store it on disk in a form that
is digestible by the engine. The DCC apps provide a host of standard or
semi-standard export formats, although none are perfectly suited for game
development (with the possible exception of COLLADA). Therefore, game
teams often create custom file formats and custom exporters to go with
them.

1.7.4. Skeletal Animation Data

A skeletal mesh is a special kind of mesh that is bound to a skeletal hierarchy
for the purposes of articulated animation. Such a mesh is sometimes called a
skin, because it forms the skin that surrounds the invisible underlying skel-
eton. Each vertex of a skeletal mesh contains a list of indices indicating to
which joint(s) in the skeleton it is bound. A vertex usually also includes a
set of joint weights, specifying the amount of influence each joint has on the
vertex.

In order to render a skeletal mesh, the game engine requires three distinct
kinds of data.

1. the mesh itself,

2. the skeletal hierarchy (joint names, parent-child relationships and the
base pose the skeleton was in when it was originally bound to the mesh),
and

3. one or more animation clips, which specify how the joints should move
over time.
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The mesh and skeleton are often exported from the DCC application as a sin-
gle data file. However, if multiple meshes are bound to a single skeleton, then
it is better to export the skeleton as a distinct file. The animations are usually
exported individually, allowing only those animations which are in use to be
loaded into memory at any given time. However, some game engines allow
a bank of animations to be exported as a single file, and some even lump the
mesh, skeleton, and animations into one monolithic file.

An unoptimized skeletal animation is defined by a stream of 4 x 3 matrix
samples, taken at a frequency of at least 30 frames per second, for each of the
joints in a skeleton (of which there are often 100 or more). Thus animation data
is inherently memory-intensive. For this reason, animation data is almost al-
ways stored in a highly compressed format. Compression schemes vary from
engine to engine, and some are proprietary. There is no one standardized for-
mat for game-ready animation data.

1.7.5. Audio Data

Audio clips are usually exported from Sound Forge or some other audio pro-
duction tool in a variety of formats and at a number of different data sam-
pling rates. Audio files may be in mono, stereo, 5.1, 7.1, or other multichannel
configurations. Wave files (.wav) are common, but other file formats such as
PlayStation ADPCM files (.vag and .xvag) are also commonplace. Audio clips
are often organized into banks for the purposes of organization, easy loading
into the engine, and streaming.

1.7.6. Particle Systems Data

Modern games make use of complex particle effects. These are authored by
artists who specialize in the creation of visual effects. Third-party tools, such
as Houdini, permit film-quality effects to be authored; however, most game
engines are not capable of rendering the full gamut of effects that can be cre-
ated with Houdini. For this reason, many game companies create a custom
particle effect editing tool, which exposes only the effects that the engine actu-
ally supports. A custom tool might also let the artist see the effect exactly as it
will appear in-game.

1.7.7.  Game World Data and the World Editor

The game world is where everything in a game engine comes together. To my
knowledge, there are no commercially available game world editors (i.e., the
game world equivalent of Maya or Max). However, a number of commercially
available game engines provide good world editors.
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e Some variant of the Radiant game editor is used by most game engines
based on Quake technology;

e The Half-Life 2 Source engine provides a world editor called Hammer;

e UnrealEd is the Unreal Engine’s world editor. This powerful tool also
serves as the asset manager for all data types that the engine can con-
sume.

Writing a good world editor is difficult, but it is an extremely important
part of any good game engine.

1.7.8. Some Approaches to Tool Architecture

A game engine’s tool suite may be architected in any number of ways. Some
tools might be standalone pieces of software, as shown in Figure 1.32. Some
tools may be built on top of some of the lower layers used by the runtime en-
gine, as Figure 1.33 illustrates. Some tools might be built into the game itself.
For example, Quake- and Unreal-based games both boast an in-game console
that permits developers and “modders” to type debugging and configuration
commands while running the game.

As an interesting and unique example, Unreal’s world editor and asset
manager, UnrealEd, is built right into the runtime game engine. To run the
editor, you run your game with a command-line argument of “editor.” This
unique architectural style is depicted in Figure 1.34. It permits the tools to
have total access to the full range of data structures used by the engine and

Run-Time Engine

‘ Core Systems ‘

Tools and World Builder

‘ Platform Independence Layer ‘

‘ 3" Party SDKs

os

Figure 1.32. Standalone tools architecture.
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Figure 1.34. UnrealEngine’s tool architecture.

avoids a common problem of having to have two representations of every
data structure — one for the runtime engine and one for the tools. It also means
that running the game from within the editor is very fast (because the game
is actually already running). Live in-game editing, a feature that is normally
very tricky to implement, can be developed relatively easily when the editor is
a part of the game. However, an in-engine editor design like this does have its
share of problems. For example, when the engine is crashing, the tools become
unusable as well. Hence a tight coupling between engine and asset creation
tools can tend to slow down production.
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Tools of the Trade

Before we embark on our journey across the fascinating landscape of game
engine architecture, it is important that we equip ourselves with some ba-
sic tools and provisions. In the next two chapters, we will review the software
engineering concepts and practices that we will need during our voyage. In
Chapter 2, we’ll explore the tools used by the majority of professional game
engineers. Then in Chapter 3, we’ll round out our preparations by reviewing
some key topics in the realms of object-oriented programming, design pat-
terns, and large-scale C++ programming.

Game development is one of the most demanding and broad areas of soft-
ware engineering, so believe me, we’ll want to be well equipped if we are to
safely navigate the sometimes-treacherous terrain we’ll be covering. For some
readers, the contents of this chapter and the next will be very familiar. How-
ever, I encourage you not to skip these chapters entirely. I hope that they will
serve as a pleasant refresher; and who knows—you might even pick up a new
trick or two.

2.1.  Version Control

A version control system is a tool that permits multiple users to work on a
group of files collectively. It maintains a history of each file, so that changes
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can be tracked and reverted if necessary. It permits multiple users to modify
files—even the same file—simultaneously, without everyone stomping on
each other’s work. Version control gets its name from its ability to track the
version history of files. It is sometimes called source control, because it is pri-
marily used by computer programmers to manage their source code. Howev-
er, version control can be used for other kinds of files as well. Version control
systems are usually best at managing text files, for reasons we will discover
below. However, many game studios use a single version control system to
manage both source code files (which are text) and game assets like textures,
3D meshes, animations, and audio files (which are usually binary).

2.1.1.  Why Use Version Control?

Version control is crucial whenever software is developed by a team of mul-
tiple engineers. Version control

e provides a central repository from which engineers can share source
code;

e keeps a history of the changes made to each source file;

e provides mechanisms allowing specific versions of the code base to be
tagged and later retrieved;

e permits versions of the code to be branched off from the main develop-
ment line, a feature often used to produce demos or make patches to
older versions of the software.

A source control system can be useful even on a single-engineer project. Al-
though its multiuser capabilities won't be relevant, its other abilities, such
as maintaining a history of changes, tagging versions, creating branches for
demos and patches, tracking bugs, etc., are still invaluable.

2.1.2.  Common Version Control Systems

Here are the most common source control systems you'll probably encounter
during your career as a game engineer.

e SCCS and RCS. The Source Code Control System (SCCS) and the Revi-
sion Control System (RCS) are two of the oldest version control systems.

Both employ a command-line interface. They are prevalent primarily on
UNIX platforms.

e CVS. The Concurrent Version System (CVS) is a heavy-duty profession-
al-grade command-line-based source control system, originally built on
top of RCS (but now implemented as a standalone tool). CVS is preva-

vww allitebooks.conl



http://www.allitebooks.org

2.1. Version Control

59

lent on UNIX systems but is also available on other development plat-
forms such as Microsoft Windows. It is open source and licensed under
the Gnu General Public License (GPL). CVSNT (also known as WinCVS)
is a native Windows implementation that is based on, and compatible
with, CVS.

Subversion. Subversion is an open source version control system aimed
at replacing and improving upon CVS. Because it is open source and
hence free, it is a great choice for individual projects, student projects,
and small studios.

Git. This is an open source revision control system that has been
used for many venerable projects, including the Linux kernel. In the
git development model, the programmer makes changes to files and
commits the changes to a branch. The programmer can then merge
his changes into any other code branch quickly and easily, because git
“knows” how to rewind a sequence of diffs and reapply them onto
a new base revision—a process git calls rebasing. The net result is a
revision control system that is highly efficient and fast when dealing
with multiple code branches. More information on git can be found at
http://git-scm.com/.

Perforce. Perforce is a professional-grade source control system, with
both text-based and GUI interfaces. One of Perforce’s claims to fame is
its concept of change lists. A change list is a collection of source files that
have been modified as a logical unit. Change lists are checked into the
repository atomically — either the entire change list is submitted, or none
of it is. Perforce is used by many game companies, including Naughty
Dog and Electronic Arts.

NxN Alienbrain. Alienbrain is a powerful and feature-rich source control
system designed explicitly for the game industry. Its biggest claim to
fame is its support for very large databases containing both text source
code files and binary game art assets, with a customizable user interface
that can be targeted at specific disciplines such as artists, producers, or
programmers.

ClearCase. ClearCase is professional-grade source control system aimed
at very large-scale software projects. It is powerful and employs a
unique user interface that extends the functionality of Windows Explor-
er. | haven’t seen ClearCase used much in the game industry, perhaps
because it is one of the more expensive version control systems.

Microsoft Visual SourceSafe. SourceSafe is a light-weight source control
package that has been used successfully on some game projects.
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2.13. Overview of Subversion and TortoiseSVN

I'have chosen to highlight Subversion in this book for a few reasons. First off,
it’s free, which is always nice. It works well and is reliable, in my experience.
A Subversion central repository is quite easy to set up; and as we’ll see, there
are already a number of free repository servers out there, if you don’t want to
go to the trouble of setting one up yourself. There are also a number of good
Windows and Mac Subversion clients, such as the freely available Tortois-
eSVN for Windows. So while Subversion may not be the best choice for a large
commercial project (I personally prefer Perforce for that purpose), I find it
perfectly suited to small personal and educational projects. Let’s take a look at
how to set up and use Subversion on a Microsoft Windows PC development
platform. As we do so, we’ll review core concepts that apply to virtually any
version control system.

Subversion, like most other version control systems, employs a client-
server architecture. The server manages a central repository, in which a ver-
sion-controlled directory hierarchy is stored. Clients connect to the server and
request operations, such as checking out the latest version of the directory
tree, committing new changes to one or more files, tagging revisions, branch-
ing the repository, and so on. We won't discuss setting up a server here; we’ll
assume you have a server, and instead we will focus on setting up and using
the client. You can learn how to set up a Subversion server by reading Chap-
ter 6 of [37]. However you probably will never need to do so, because you
can always find free Subversion servers. For example, Google provides free
Subversion code hosting at http://code.google.com/.

2.14. Setting up a Code Repository on Google

The easiest way to get started with Subversion is to visit http://code.google.
com/ and set up a free Subversion repository. Create a Google user name and
password if you don’t already have one, then navigate to Project Hosting un-
der Developer Resources (see Figure 2.1). Click “Create a new project,” then
enter a suitable unique project name, like “mygoogleusername-code.” You can
enter a summary and/or description if you like, and even provide tags so that
other users all over the world can search for and find your repository. Click
the “Create Project” button and you're off to the races.

Once you've created your repository, you can administer it on the Google
Code website. You can add and remove users, control options, and perform a
wealth of advanced tasks. But all you really need to do next is set up a Subver-
sion client and start using your repository.
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Figure 2.1. Google Code home page, Project Hosting link.

2.1.5. Installing TortoiseSVN

TortoiseSVN is a popular front-end for Subversion. It extends the functionality
of the Microsoft Windows Explorer via a convenient right-click menu and over-
lay icons to show you the status of your version-controlled files and folders.

To get TortoiseSVN, visit http://tortoisesvn.tigris.org/. Download the lat-
est version from the download page. Install it by double-clicking the .msi file
that you've downloaded and following the installation wizard’s instructions.

Once TortoiseSVN is installed, you can go to any folder in Windows Ex-
plorer and right-click—TortoiseSVN’s menu extensions should now be vis-
ible. To connect to an existing code repository (such as one you created on
Google Code), create a folder on your local hard disk and then right-click
and select “SVN Checkout....” The dialog shown in Figure 2.2 will appear.
In the “URL of repository” field, enter your repository’s URL. If you are using
Google Code, it should be https://myprojectname.googlecode.com/svn/trunk,
where myprojectname is whatever you named your project when you first cre-
ated it (e.g., “mygoogleusername-code”).

If you forget the URL of your repository, just log in to http://code.google.
com/, go to “Project Hosting” as before, sign in by clicking the “Sign in” link
in the upper right-hand corner of the screen, and then click the Settings link,
also found in the upper right-hand corner of the screen. Click the “My Profile”
tab, and you should see your project listed there. Your project’s URL is https://
myprojectname.googlecode.com/svn/trunk, where myprojectname is whatever
name you see listed on the “My Profile” tab.

You should now see the dialog shown in Figure 2.3. The user name
should be your Google login name. The password is not your Google login
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Figure 2.2. TortoiseSVN initial check-out dialog. Figure 2.3. TortoiseSVN user authentication dialog.

password —it is an automatically generated password that can be obtained by
signing in to your account on Goggle’s “Project Hosting” page and clicking
on the “Settings” link. (See above for details.) Checking the “Save authenti-
cation” option on this dialog allows you to use your repository without ever
having to log in again. Only select this option if you are working on your own
personal machine—never on a machine that is shared by many users.

Once you've authenticated your user name, TortoiseSVN will download
(“check out”) the entire contents of your repository to your local disk. If you
just set up your repository, this will be ... nothing! The folder you created
will still be empty. But now it is connected to your Subversion repository on
Google (or wherever your server is located). If you refresh your Windows
Explorer window (hit F5), you should now see a little green and white check-
mark on your folder. This icon indicates that the folder is connected to a Sub-
version repository via TortoiseSVN and that the local copy of the repository
is up-to-date.

2.1.6. File Versions, Updating, and Committing

As we’ve seen, one of the key purposes of any source control system like Sub-
version is to allow multiple programmers to work on a single software code
base by maintaining a central repository or “master” version of all the source
code on a server. The server maintains a version history for each file, as shown
in Figure 2.4. This feature is crucial to large-scale multiprogrammer software
development. For example, if someone makes a mistake and checks in code
that “breaks the build,” you can easily go back in time to undo those changes
(and check the log to see who the culprit was!). You can also grab a snapshot
of the code as it existed at any point in time, allowing you to work with, dem-
onstrate, or patch previous versions of the software.
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Each programmer gets a local copy of the code on his or her machine. In
the case of TortoiseSVN, you obtain your initial working copy by “checking
out” the repository, as described above. Periodically you should update your
local copy to reflect any changes that may have been made by other program-
mers. You do this by right-clicking on a folder and selecting “SVN Update”
from the pop-up menu.

You can work on your local copy of the code base without affecting the
other programmers on the team (Figure 2.5). When you are ready to share
your changes with everyone else, you commit your changes to the repository
(also known as submitting or checking in). You do this by right-clicking on the
folder you want to commit and selecting “SVN Commit...” from the pop-up
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Figure 2.6. TortoiseSVN Commit dialog.
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Foo.cpp (version 5)

Foo.cpp (version 4)

Figure 2.7. Com-
mitting local edits
to the repository.

menu. You will get a dialog like the one shown in Figure 2.6, asking you to
confirm the changes.

During a commit operation, Subversion generates a diff between your lo-
cal version of each file and the latest version of that same file in the repository.
The term “diff” means difference, and it is typically produced by performing
a line-by-line comparison of the two versions of the file. You can double-click
on any file in the TortoiseSVN Commit dialog (Figure 2.6) to see the diffs be-
tween your version and the latest version on the server (i.e., the changes you
made). Files that have changed (i.e., any files that “have diffs”) are committed.
This replaces the latest version in the repository with your local version, add-
ing a new entry to the file’s version history. Any files that have not changed
(i.e., your local copy is identical to the latest version in the repository) are
ignored by default during a commit. An example commit operation is shown
in Figure 2.7.

If you created any new files prior to the commit, they will be listed as
“non-versioned” in the Commit dialog. You can check the little check boxes
beside them in order to add them to the repository. Any files that you deleted
locally will likewise show up as “missing” —if you check their check boxes,
they will be deleted from the repository. You can also type a comment in the
Commit dialog. This comment is added to the repository’s history log, so that
you and others on your team will know why these files were checked in.

2.1.7.  Multiple Check-Out, Branching, and Merging

Some version control systems require exclusive check-out. This means that you
must first indicate your intentions to modify a file by checking it out and lock-
ing it. The file(s) that are checked out to you are writable on your local disk
and cannot be checked out by anyone else. All other files in the repository are
read-only on your local disk. Once you're done editing the file, you can check
it in, which releases the lock and commits the changes to the repository for ev-
eryone else to see. The process of exclusively locking files for editing ensures
that no two people can edit the same file simultaneously.

Subversion, CVS, Perforce, and many other high-quality version control
systems also permit multiple check-out.; i.e.,, you can be editing a file while
someone else is editing that same file. Whichever user’s changes are commit-
ted first become the latest version of the file in the repository. Any subsequent
commits by other users require that programmer to merge his or her changes
with the changes made by the programmer(s) who committed previously.

Because more than one set of changes (diffs) have been made to the same
file, the version control system must merge the changes in order to produce a
final version of the file. This is often not a big deal, and in fact many conflicts
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Figure 2.8. Three-way merge due to local edits by two different users.

can be resolved automatically by the version control system. For example, if
you changed function £ () and another programmer changed function g (),
then your edits would have been to a different range of lines in the file than
those of the other programmer. In this case, the merge between your changes
and his or her changes will usually resolve automatically without any con-
flicts. However, if you were both making changes to the same function £ (),
then the second programmer to commit his or her changes will need to do a
three-way merge (see Figure 2.8).

For three-way merges to work, the version control server has to be smart
enough to keep track of which version of each file you currently have on your
local disk. That way, when you merge the files, the system will know which ver-
sion is the base version (the common ancestor, such as version 4 in Figure 2.8).

Subversion permits multiple check-out, and in fact it doesn’t require you
to check out files explicitly at all. You simply start editing the files locally —all
files are writable on your local disk at all times. (By the way, this is one reason
that Subversion doesn't scale well to large projects, in my opinion. To deter-
mine which files you have changed, Subversion must search the entire tree of
source files, which can be slow. Version control systems like Perforce, which
explicitly keep track of which files you have modified, are usually easier to
work with when dealing with large amounts of code. But for small projects,
Subversion’s approach works just fine.)



66

2. Tools of the Trade

When you perform a commit operation by right-clicking on any folder
and selecting “SVN Commit...” from the pop-up menu, you may be prompt-
ed to merge your changes with changes made by someone else. But if no one
has changed the file since you last updated your local copy, then your changes
will be committed without any further action on your part. This is a very con-
venient feature, but it can also be dangerous. It’s a good idea to always check
your commits carefully to be sure you aren’t committing any files that you
didn’t intend to modify. When TortoiseSVN displays its Commit Files dialog,
you can double-click on an individual file in order to see the diffs you made
prior to hitting the “OK” button.

2.1.8. Deleting Files

When a file is deleted from the repository, it’s not really gone. The file still ex-
ists in the repository, but its latest version is simply marked “deleted” so that
users will no longer see the file in their local directory trees. You can still see
and access previous versions of a deleted file by right-clicking on the folder in
which the file was contained and selecting “Show log” from the TortoiseSVN
menu.

You can undelete a deleted file by updating your local directory to the
version immediately before the version in which the file was marked deleted.
Then simply commit the file again. This replaces the latest deleted version of
the file with the version just prior to the deletion, effectively undeleting the
file.

2.2. Microsoft Visual Studio

Compiled languages, such as C++, require a compiler and linker in order to
transform source code into an executable program. There are many com-
pilers/linkers available for C++ but for the Microsoft Windows platform
the most commonly used package is probably Microsoft Visual Studio. The
fully featured Professional Edition of the product can be purchased at any
store that sells Windows software. And Visual Studio Express, its lighter-
weight cousin, is available for free download at http://www.microsoft.com/
express/download/. Documentation on Visual Studio is available online at the
Microsoft Developer’s Network (MSDN) site (http://msdn.microsoft.com/en-
us/library/52{3sw5c.aspXx).

Visual Studio is more than just a compiler and linker. It is an integrated
development environment (IDE), including a slick and fully featured text editor
for source code and a powerful source-level and machine-level debugger. In
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this book, our primary focus is the Windows platform, so we’ll investigate
Visual Studio in some depth. Much of what you learn below will be applicable
to other compilers, linkers, and debuggers, so even if you're not planning on
ever using Visual Studio, I suggest you skim this section for useful tips on us-
ing compilers, linkers, and debuggers in general.

2.2.1. Source Files, Headers, and Translation Units

A program written in C++ is comprised of source files. These typically have a .c,
.CC, .cxX, or .cpp extension, and they contain the bulk of your program’s source
code. Source files are technically known as translation units, because the com-
piler translates one source file at a time from C++ into machine code.

A special kind of source file, known as a header file, is often used in order to
share information, such as type declarations and function prototypes, between
translation units. Header files are not seen by the compiler. Instead, the C++
preprocessor replaces each #include statement with the contents of the corre-
sponding header file prior to sending the translation unit to the compiler. This
is a subtle but very important distinction to make. Header files exist as distinct
files from the point of view of the programmer—but thanks to the preproces-
sor’s header file expansion, all the compiler ever sees are translation units.

2.2.2. libraries, Executables, and Dynamic Link Libraries

When a translation unit is compiled, the resulting machine code is placed in
an object file (files with a .obj extension under Windows, or .0 under UNIX-
based operating systems). The machine code in an object file is

o relocatable, meaning that the memory addresses at which the code re-
sides have not yet been determined, and

o unlinked, meaning that any external references to functions and global
data that are defined outside the translation unit have not yet been re-
solved.

Object files can be collected into groups called libraries. Alibrary is simply
an archive, much like a Zip or tar file, containing zero or more object files. Li-
braries exist merely as a convenience, permitting a large number of object files
to be collected into a single easy-to-use file.

Object files and libraries are linked into an executable by the linker. The
executable file contains fully resolved machine code that can be loaded and
run by the operating system. The linker’s jobs are

e to calculate the final relative addresses of all the machine code, as it will
appear in memory when the program is run, and
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e to ensure that all external references to functions and global data made
by each translation unit (object file) are properly resolved.

It's important to remember that the machine code in an executable file is still
relocatable, meaning that the addresses of all instructions and data in the file
are still relative to an arbitrary base address, not absolute. The final absolute
base address of the program is not known until the program is actually loaded
into memory, just prior to running it.

A dynamic link library (DLL) is a special kind of library that acts like a
hybrid between a regular static library and an executable. The DLL acts like
a library, because it contains functions that can be called by any number of
different executables. However, a DLL also acts like an executable, because it
can be loaded by the operating system independently, and it contains some
start-up and shut-down code that runs much the way the main () function in
a C++ executable does.

The executables that use a DLL contain partially linked machine code. Most
of the function and data references are fully resolved within the final execut-
able, but any references to external functions or data that exist in a DLL re-
main unlinked. When the executable is run, the operating system resolves the
addresses of all unlinked functions by locating the appropriate DLLs, load-
ing them into memory if they are not already loaded, and patching in the
necessary memory addresses. Dynamically linked libraries are a very useful
operating system feature, because individual DLLs can be updated without
changing the executable(s) that use them.

2.2.3. Projects and Solutions

Now that we understand the difference between libraries, executables, and
dynamic link libraries (DLLs), let’s see how to create them. In Visual Studio,
a project is a collection of source files which, when compiled, produce a library,
an executable, or a DLL. Projects are stored in project files with a .vcproj ex-
tension. In Visual Studio .NET 2003 (version 7), Visual Studio 2005 (version 8),
and Visual Studio 2008 (version 9), .vcproj files are in XML format, so they are
reasonably easy for a human to read and even edit by hand if necessary.

All versions of Visual Studio since version 7 (Visual Studio 2003) employ
solution files (files with a .sln extension) as a means of containing and manag-
ing collections of projects. A solution is a collection of dependent and/or in-
dependent projects intended to build one or more libraries, executables and/
or DLLs. In the Visual Studio graphical user interface, the Solution Explorer is
usually displayed along the right or left side of the main window, as shown
in Figure 2.9.
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Figure 2.9. The VisualStudio Solution Explorer window.

The Solution Explorer is a tree view. The solution itself is at the root, with
the projects as its immediate children. Source files and headers are shown as
children of each project. A project can contain any number of user-defined
folders, nested to any depth. Folders are for organizational purposes only and
have nothing to do with the folder structure in which the files may reside
on-disk. However it is common practice to mimic the on-disk folder structure
when setting up a project’s folders.

2.2.4. Build Configurations

The C/C++ preprocessor, compiler, and linker offer a wide variety of options
to control how your code will be built. These options are normally specified
on the command line when the compiler is run. For example, a typical com-
mand to build a single translation unit with the Microsoft compiler might look
like this:

C:\> ¢l /c foo.cpp /Fo foo.obj /Wall /0d /zi

This tells the compiler/linker to compile but not link (/c) the translation unit
named foo.cpp, output the result to an object file named foo.obj (/Fo foo.obj),
turn on all warnings (/Wall), turn off all optimizations (/Od), and generate
debugging information (/Zi).

Modern compilers provide so many options that it would be impracti-
cal and error prone to specify all of them every time you build your code.
That’s where build configurations come in. A build configuration is really just
a collection of preprocessor, compiler, and linker options associated with a
particular project in your solution. You can define any number of build con-
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figurations, name them whatever you want, and configure the preprocessor,
compiler, and linker options differently in each configuration. By default, the
same options are applied to every translation unit in the project, although you
can override the global project settings on an individual translation unit basis.
(I recommend avoiding this if at all possible, because it becomes difficult to
tell which .cpp files have custom settings and which do not.)

Most projects have at least two build configurations, typically called
“Debug” and “Release.” The release build is for the final shipping software,
while the debug build is for development purposes. A debug build runs more
slowly than a release build, but it provides the programmer with invaluable
information for developing and debugging the program.

2.2.4.1. Common Build Options

This section lists some of the most common options you'll want to control via
build configurations for a game engine project.

Preprocessor Settings

The C++ preprocessor handles the expansion of #included files and the defi-
nition and substitution of #defined macros. One extremely powerful feature
of all modern C++ preprocessors is the ability to define preprocessor macros
via command-line options (and hence via build configurations). Macros de-
fined in this way act as though they had been written into your source code
with a #define statement. For most compilers, the command line option for
this is -D or /D, and any number of these directives can be used.

This feature allows you to communicate various build options to your
code, without having to modify the source code itself. As a ubiquitous exam-
ple, the symbol _DEBUG is always defined for a debug build, while in release
builds the symbol NDEBUG is defined instead. The source code can check these
flags and in effect “know” whether it is being built in debug or release mode.
This is known as conditional compilation. For example:

void £ ()

{

#ifdef DEBUG

printf (“*Calling function £ ()\n”);
#endif

//
}

The compiler is also free to introduce “magic” preprocessor macros into
your code, based on its knowledge of the compilation environment and target
platform. For example, the macro _ cplusplus is defined by most C/C++
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compilers when compiling a C++ file. This allows code to be written that auto-
matically adapts to being compiled for C or C++.

As another example, every compiler identifies itself to the source code
via a “magic” preprocessor macro. When compiling code under the Microsoft
compiler, the macro _MSC_VER is defined; when compiling under the GNU
compiler (gcc), the macro _GNUC_ is defined instead, and so on for the oth-
er compilers. The target platform on which the code will be run is likewise
identified via macros. For example, when building for a 32-bit Windows
machine, the symbol _WIN32 is always defined. These key features permit
cross-platform code to be written, because they allow your code to “know”
what compiler is compiling it and on which target platform it is destined to
be run.

Compiler Settings

One of the most common compiler options controls whether or not the com-
piler should include debugging information with the object files it produces.
This information is used by debuggers to step through your code, display the
values of variables, and so on. Debugging information makes your executa-
bles larger on disk and also opens the door for hackers to reverse-engineer
your code. So, it is always stripped from the final shipping version of your
executable. However, during development, debugging information is invalu-
able and should always be included in your builds.

The compiler can also be told whether or not to expand inline functions.
When inline function expansion is turned off, every inline function appears
only once in memory, at a distinct address. This makes the task of tracing
through the code in the debugger much simpler, but obviously comes at the
expense of the execution speed improvements normally achieved by inlin-
ing.

Inline function expansion is but one example of generalized code trans-
formations known as optimizations. The aggressiveness with which the com-
piler attempts to optimize your code, and the kinds of optimizations its uses,
can be controlled via compiler options. Optimizations have a tendency to re-
order the statements in your code, and they also cause variables to be stripped
out of the code altogether, or moved around, and can cause CPU registers to
be reused for new purposes later in the same function. Optimized code usu-
ally confuses most debuggers, causing them to “lie” to you in various ways,
and making it difficult or impossible to see what'’s really going on. As a result,
all optimizations are usually turned off in a debug build. This permits every
variable and every line of code to be scrutinized as it was originally coded.
But, of course, such code will run much more slowly than its fully optimized
counterpart.
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Linker Settings

The linker also exposes a number of options. You can control what type of
output file to produce—an executable or a DLL. You can also specify which
external libraries should be linked into your executable, and which directory
paths to search in order to find them. A common practice is to link with de-
bug libraries when building a debug executable and with optimized libraries
when building in release mode.

Linker options also control things like stack size, the preferred base ad-
dress of your program in memory, what type of machine the code will run on
(for machine-specific optimizations), and a host of other minutia with which
we will not concern ourselves here.

2.2.4.2. Typical Build Configurations

Game projects often have more than just two build configurations. Here are a
few of the common configurations I've seen used in game development.

e Debug. A debug build is a very slow version of your program, with all
optimizations turned off, all function inlining disabled, and full debug-
ging information included. This build is used when testing brand new
code and also to debug all but the most trivial problems that arise dur-
ing development.

e Release. A release build is a faster version of your program, but with
debugging information and assertions still turned on. (See Section
3.3.3.3 for a discussion of assertions.) This allows you to see your game
running at a speed representative of the final product, but still gives you
some opportunity to debug problems.

e Production. A production configuration is intended for building the final
game that you will ship to your customers. It is sometimes called a “Fi-
nal” build or “Disk” build. Unlike a release build, all debugging informa-
tion is stripped out of a production build, all assertions are usually turned
off, and optimizations are cranked all the way up. A production build is
very tricky to debug, but it is the fastest and leanest of all build types.

e Tools. Some game studios utilize code libraries that are shared between
offline tools and the game itself. In this scenario, it often makes sense
to define a “Tools” build, which can be used to conditionally compile
shared code for use by the tools. The tools build usually defines a pre-
processor macro (e.g., TOOLS_BUILD) that informs the code that it is be-
ing built for use in a tool. For example, one of your tools might require
certain C++ classes to expose editing functions that are not needed by
the game. These functions could be wrapped in an #ifdef TOOLS_
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BUILD directive. Since you usually want both debug and release ver-
sions of your tools, you will probably find yourself creating two tools
builds, named something like “ToolsDebug” and “ToolsRelease.”

Hybrid Builds

Ahybrid build is a build configuration in which the majority of the translation
units are built in release mode, but a small subset of them is built in debug
mode. This permits the segment of code that is currently under scrutiny to be
easily debugged, while the rest of the code continues to run at full speed.

With a text-based build system like make, it is quite easy to set up a hybrid
build which permits users to specify the use of debug mode on a per-transla-
tion-unit basis. In a nutshell, we define a make variable called something like
$HYBRID_SOURCES, which lists the names of all translation units (.cpp files)
that should be compiled in debug mode for our hybrid build. We set up build
rules for compiling both debug and release versions of every translation unit,
and arrange for the resulting object files (.obj/.0) to be placed into two differ-
ent folders, one for debug and one for release. The final link rule is set up to
link with the debug versions of the object files listed in $HYBRID SOURCES
and with the release versions of all other object files. If we’ve set it up properly,
make’s dependency rules will take care of the rest.

Unfortunately, this is not so easy to do in Visual Studio, because its build
configurations are designed to be applied on a per-project basis, not per trans-
lation unit. The crux of the problem is that we cannot easily define a list of
the translation units that we want to build in debug mode. However, if your
source code is already organized into libraries, you can set up a “Hybrid”
build configuration at the solution level, which picks and chooses between
debug and release builds on a per-project (and hence per-library) basis. This
isn’t as flexible as having control on a per-translation-unit basis, but it does
work reasonably well if your libraries are sufficiently granular.

Build Configurations and Testability

The more build configurations your project supports, the more difficult test-
ing becomes. Although the differences between the various configurations
may be slight, there’s a finite probability that a critical bug may exist in one
of them but not in the others. Therefore, each build configuration must be
tested equally thoroughly. Most game studios do not formally test their debug
builds, because the debug configuration is primarily intended for internal use
during initial development of a feature and for the debugging of problems
found in one of the other configurations. However, if your testers spend most
of their time testing your release configuration, then you cannot simply make
a production build of your game the night before Gold Master and expect it
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to have an identical bug profile to that of the release build. Practically speak-
ing, the test team must test both your release and production builds equally
throughout alpha and beta, to ensure that there aren’t any nasty surprises
lurking in your production build. In terms of testability, there is a clear advan-
tage to keeping your build configurations to a minimum, and in fact some stu-
dios have no production build for this reason —they simply ship their release
build once it has been thoroughly tested.

2.2.43. Project Configuration Tutorial

Right-clicking on any project in the Solution Explorer and selecting “Proper-
ties...” from the menu brings up the project’s “Property Pages” dialog. The
tree view on the left shows various categories of settings. Of these, the three
we will use most are

e Configuration Properties/General,

e Configuration Properties/Debugging,
e Contfiguration Properties/C++,

e Configuration Properties/Linker.

Configurations Drop-Down Combo Box

Notice the drop-down combo box labeled “Configuration:” at the top-left cor-
ner of the window. All of the properties displayed on these property pages ap-
ply separately to each build configuration. If you set a property for the debug
configuration, this does not necessarily mean that the same setting exists for
the release configuration.

If you click on the combo box to drop down the list, you'll find that you
can select a single configuration or multiple configurations, including “All
configurations.” As a rule of thumb, try to do most of your build configuration
editing with “All configurations” selected. That way, you won’t have to make
the same edits multiple times, once for each configuration—and you don’t risk
setting things up incorrectly in one of the configurations by accident. How-
ever, be aware that some settings need to be different between the debug and
release configurations. For example, function inlining and code optimization
settings should of course be different between debug and release builds.

General Tab
On the General tab, shown in Figure 2.10, the most useful fields are the fol-
lowing.

e Output directory. This defines where the final product(s) of the build will
go—namely the executable, library, or DLL that the compiler/linker ul-
timately outputs.
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Figure 2.10. Visual Studio project property pages—General page.

Intermediate directory. This defines where intermediate files, primarily
object files (.obj extension), are placed during a build. Intermediate files
are never shipped with your final program—they are only required
during the process of building your executable, library, or DLL. Hence,
it is a good idea to place intermediate files in a different directory than
the final products (.exe, .1ib or .dll files).

Note that VisualStudio provides a macro facility which may be used

when specifying directories and other settings in the “Project Property Pages”
dialog. A macro is essentially a named variable that contains a global value and
that can be referred to in your project configuration settings.

Macros are invoked by writing the name of the macro enclosed in paren-

theses and prefixed with a dollar sign (e.g., $ (ConfigurationName)). Some
commonly used macros are listed below.

$ (TargetFileName) . The name of the final executable, library, or DLL
file being built by this project.

$ (TargetPath) . The full path of the folder containing the final execut-
able, library, or DLL.

$ (ConfigurationName) . The name of the build config, typically “De-
bug” or “Release.”
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e $(outDir) . The value of the “Output Directory” field specified in this
dialog.

e $(IntDir). The value of the “Intermediate Directory” field in this
dialog.

e $(vCInstallDir) . The directory in which Visual Studio’s standard C
library is currently installed.

The benefit of using macros instead of hard-wiring your configuration
settings is that a simple change of the global macro’s value will automatically
affect all configuration settings in which the macro is used. Also, some macros
like $ (ConfigurationName) automatically change their values depending
on the build configuration, so using them can permit you to use identical set-
tings across all your configurations.

To see a complete list of all available macros, click in either the “Output
Directory” field or the “Intermediate Directory” field on the “General” tab,
click the little arrow to the right of the text field, select “Edit...” and then click
the “Macros” button in the dialog that comes up.

Debugging Tab

The “Debugging” tab is where the name and location of the executable to
debug is specified. On this page, you can also specify the command-line
argument(s) that should be passed to the program when it runs. We'll discuss
debugging your program in more depth below.

C/C++ Tab

The C/C++ tab controls compile-time language settings—things that affect
how your source files will be compiled into object files (.obj extension). The
settings on this page do not affect how your object files are linked into a final
executable or DLL.

You are encouraged to explore the various subpages of the C/C++ tab to
see what kinds of settings are available. Some of the most commonly used set-
tings include the following.

o General Tab/Include Directories. This field lists the on-disk directories that
will be searched when looking for #included header files.
Important: 1t is always best to specify these directories using relative
paths and/or with Visual Studio macros like $ (OutDir) or $ (IntDir).
That way, if you move your build tree to a different location on disk or to
another computer with a different root folder, everything will continue
to work properly.

o General Tab/Debug Information. This field controls whether or not debug
information is generated. Typically both debug and release configura-
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tions include debugging information so that you can track down prob-
lems during development of your game. The final production build will
have all the debug info stripped out to prevent hacking.

e Preprocessor Tab/Preprocessor Definitions. This very handy field lists any
number of C/C++ preprocessor symbols that should be defined in the
code when it is compiled. See Preprocessor Settings in Section 2.2.4.1 for a
discussion of preprocessor-defined symbols.

Linker Tab

The “Linker” tab lists properties that affect how your object code files will be
linked into an executable or DLL. Again, you are encouraged to explore the
various subpages. Some commonly used settings follow.

o General Tab/Output File. This setting lists the name and location of the
final product of the build, usually an executable or DLL.

o General Tab/Additional Library Directories. Much like the C/C++ Include
Directories field, this field lists zero or more directories that will be
searched when looking for libraries and object files to link into the final
executable.

o Input Tab/Additional Dependencies. This field lists external libraries that you
want linked into your executable or DLL. For example, the Ogre libraries
would be listed here if you are building an Ogre-enabled application.

Note that Visual Studio employs various “magic spells” to specify librar-
ies that should be linked into an executable. For example, a special #pragma
instruction in your source code can be used to instruct the linker to automati-
cally link with a particular library. For this reason, you may not see all of the
libraries you're actually linking to in the “Additional Dependencies” field. (In
fact, that’s why they are called additional dependencies.) You may have noticed,
for example, that Direct X applications do not list all of the DirectX libraries
manually in their “Additional Dependencies” field. Now you know why.

2.2.44. Creating New .vcproj Files

With so many preprocessor, compiler, and linker options, all of which must
be set properly, creating a new project may seem like an impossibly daunting
task. I usually take one of the following two approaches when creating a new
Visual Studio project.

Use a Wizard

Visual Studio provides a wide variety of wizards to create new projects of
various kinds. If you can find a wizard that does what you want, this is the
easiest way to create a new project.
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Copy an Existing Project

If I am creating a project that is similar to an existing project that I know al-
ready works, I'll often just copy that .vcproj file and then modify it as neces-
sary. In Visual Studio 2005, this is very easy. You simply copy the .vcproj file
on disk, then add the newly copied project to your solution by right-clicking
the solution in the Solution Explorer and selecting “Add...”
project...” from the pop-up menus.

One caveat when copying project files is that the name of the project is
stored inside the .vcproj file itself. So when you load up the new project for the
first time in Visual Studio 2005, it will still have the original name. To rectify

this, you can simply select the project in the Solution Explorer window, and

and “Existing

hit F2 to rename it appropriately.

Another problem arises when the name of the executable, library, or DLL
that the project creates is specified explicitly in the .vcproj file. For example,
the executable might be specified as “C:\MyGame\bin\MyGame.exe” or
“$ (OutDir) \MyGame.exe.” In this case, you'll need to open the .vcproj file
and do a global search-and-replace of the executable, library, or DLL name
and/or its directory path. This is not too difficult. Project files are XML, so you
can rename your copied .vcproj file to have an “.xml” extension and then open
it in Visual Studio (or any other XML or raw text editor). One elegant solution
to this problem is to use Visual Studio’s macro system when specifying all out-
put files in your project. For example, if you specify the output executable as
“$ (OutDir) \$ (ProjectName) . exe”, then the project’s name will automati-
cally be reflected in the name of the output executable file.

I should mention that using a text editor to manipulate .vcproj files is not
always to be avoided. In fact, the practice is quite common, at least in my ex-
perience. For example, let’s say you decided to move the folder containing all
of your graphics header files to a new path on disk. Rather than manually open
each project in turn, open the Project Property Pages window, navigate to the
C/C++ tab, and finally update the include path manually, it's much easier and
less error-prone to edit the files as XML text and do a search-and-replace. You
can even do a “Replace in files” operation in Visual Studio for mass edits.

2.2.5. Debugging Your Code

One of the most important skills any programmer can learn is how to effec-
tively debug code. This section provides some useful debugging tips and
tricks. Some are applicable to any debugger and some are specific to Microsoft
Visual Studio. However, you can usually find an equivalent to Visual Studio’s
debugging features in other debuggers, so this section should prove useful
even if you don’t use Visual Studio to debug your code.
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2.2.5.1. The Start-Up Project

A Visual Studio solution can contain more than one project. Some of these
projects build executables, while others build libraries or DLLs. It’s possible
to have more than one project that builds an executable in a single solution.
However, you cannot debug more than one program at a time. For this reason,
Visual Studio provides a setting known as the “Start-Up Project.” This is the
project that is considered “current” for the purposes of the debugger.
The start-up project is highlighted in bold in the Solution Explorer.

Hitting F5 to run your program in the debugger will run the .exe built by the
start-up project (if the start-up project builds an executable).

2.2.5.2. Break Points

Break points are the bread and butter of code debugging. A break point in-
structs the program to stop at a particular line in your source code so that you
can inspect what'’s going on.

In Visual Studio, select a line and hit F9 to toggle a break point. When you
run your program and the line of code containing the break point is about to
be executed, the debugger will stop the program. We say that the break point
has been “hit.” A little arrow will show you which line of code the CPU’s pro-
gram counter is currently on. This is shown in Figure 2.11.
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Figure 2.11. Setting a break point in Visual Studio.

2.2.53. Stepping through Your Code

Once a break point has been hit, you can single-step your code by hitting the
F10 key. The yellow program-counter arrow moves to show you the lines as
they execute. Hitting F11 steps into a function call (i.e., the next line of code
you'll see is the first line of the called function), while F10 steps over that func-
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tion call (i.e., the debugger calls the function at full speed and then breaks
again on the line right after the call).

2.2.5.4. The Call Stack

The call stack window, shown in Figure 2.12, shows you the stack of functions
that have been called at any given moment during the execution of your code.
To display the call stack (if it is not already visible), go to the “Debug” menu
on the main menu bar, select “Windows,” and then “Call Stack.”

Once a break point has been hit (or the program is manually paused), you
can move up and down the call stack by double-clicking on entries in the “Call
Stack” window. This is very useful for inspecting the chain of function calls
that were made between main () and the current line of code. For example,
you might trace back to the root cause of a bug in a parent function which has
manifested itself in a deeply nested child function.
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Figure 2.12. The call stack window.
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2.2.5.5. The Watch Window

As you step through your code and move up and down the call stack, you will
want to be able to inspect the values of the variables in your program. This
is what watch windows are for. To open a watch window, go to the “Debug”
menu, select “Windows...,” then select “Watch...,” and finally select one of
“Watch 17 through “Watch 4.” (Visual Studio allows you to open up to four
watch windows simultaneously.) Once a watch window is open, you can type
the names of variables into the window or drag expressions in directly from
your source code.

As you can see in Figure 2.13, variables with simple data types are shown
with their values listed immediately to the right of their names. Complex
data types are shown as little tree views that can be easily expanded to “drill



2.2. Microsoft Visual Studio

| Mame | Value | Type
this 0x051 2970 ExampleFramelistener * canst
*thi a 0x00baf00s Og —
—# @ [OgrenOctreecamera]l  {. ) ogreOctresCamera
@ Oagre::Frustum {mProjType=PT_PERSPECTIVE mFOWy={...} r COgre::Frustum
¢ miame "PlayerCam" 3, - stdi:basic_string<char,std: :char _traits <cha
4 maceneMgr 000025520 {mbvisible=[ 000000007 ...} mOn Ogre::SceneManager *
y morigntation fw=0.75120849 x=-0.034054432 y=0.65840 Ogre::Quaternion
y mPosition {x=100,00000 w=20,000000 z=0,00000000 + COgre::Yeckard
¢ mDerivedOrientation {w=0,75129549 x=-0,034054432 y=0,65840 Ogre::Quaternion
4# mberivedPosition 4x=100.00000 =20.000000 z=0.00000000 } Ogre::veckord
W mRealOrientation {w=0,75129549 x=-0,034054432 y=0.65540 Ogre::Quaternion
W mRealPosition {x=100,00000 w=20,000000 z=0,00000000 + Ogre::Yeckard
g mitawFixed true bl
4 mitawFixedixis 4x=0.00000000 =1.0000000 z=0,00000000 Ogre::veckord =
n

. 3 \
B utos | ] Lorals | 5] Threads | & Modules | E5]watch 1 5] Find Resulrs 1 |5 Find Results 2

Figure 2.13. Visual Studio’s watch window.

down” into virtually any nested structure. The base class of a class is always
shown as the first child of an instance of a derived class. This allows you to
inspect not only the class’ data members, but also the data members of its base
class(es).

You can type virtually any valid C/C++ expression into the watch window,
and Visual Studio will evaluate that expression and attempt to display the
resulting value. For example, you could type “5+3” and Visual Studio will
display “8.” You can cast variables from one type to another by using C or C++
casting syntax. For example, typing “ (float) myIntegerVariable * 0.5f”
in the watch window will display the value of myIntegervVariable divided
by two, as a floating-point value.

You can even call functions in your program from within the watch window.
Visual Studio re-evaluates the expressions typed into the watch window(s)
automatically, so if you invoke a function in the watch window, it will be
called every time you hit a break point or single-step your code. This allows
you to leverage the functionality of your program in order to save yourself
work when trying to interpret the data that you're inspecting in the debug-
ger. For example, let’s say that your game engine provides a function called
quatToAngleDeg () which converts a quaternion to an angle of rotation in
degrees. You can call this function in the watch window in order to easily in-
spect the rotation angle of any quaternion from within the debugger.

You can also use various suffixes on the expressions in the watch window
in order to change the way Visual Studio displays the data, as shown in Fig-
ure 2.14.

e The “, d” suffix forces values to be displayed in decimal notation.

e The “, x” suffix forces values to be displayed in hexadecimal notation.
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Figure 2.14. Comma suffixes in the Visual Studio watch window.

e The “, n” suffix (where 1 is any positive integer) forces Visual Studio to
treat the value as an array with n elements. This allows you to expand
array data that is referenced through a pointer.

Be careful when expanding very large data structures in the watch window, be-
cause it can sometimes slow the debugger down to the point of being unusable.

2.2.5.6. Data Break Points

Regular break points trip when the CPU’s program counter hits a particular
machine instruction or line of code. However, another incredibly useful fea-
ture of modern debuggers is the ability to set a break point that trips when-
ever a specific memory address is written to (i.e., changed). These are called
data break points, because they are triggered by changes to data, or sometimes
hardware break points, because they are implemented via a special feature of the
CPU’s hardware —namely the ability to raise an interrupt when a predefined
memory address is written to.

Here’s how data break points are typically used. Let’s say you are tracking
down a bug that manifests itself as a zero (0. 0£) value mysteriously appear-
ing inside a member variable of a particular object called m_angle that should
always contain a nonzero angle. You have no idea which function might be
writing that zero into your variable. However, you do know the address of the
variable. (You can just type “&object.m_angle” into the watch window to
find its address.) To track down the culprit, you can set a data break point on
the address of object .m_angle, and then simply let the program run. When
the value changes, the debugger will stop automatically. You can then inspect
the call stack to catch the offending function red-handed.

To set a data break point in Visual Studio, take the following steps.

e Bring up the “Breakpoints” window found on the “Debug” menu under
“Windows” and then “Breakpoints” (Figure 2.15).

e Select the “New” drop-down button in the upper-left corner of the win-
dow.
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Figure 2.16. Defining a data break point.

e Select “New Data Breakpoint.”
e Type in the raw address or an address-valued expression, such as
“&myVariable” (Figure 2.16).

The “Byte count” field should almost always contain the value 4. This is
because 32-bit Pentium CPUs can really only inspect 4-byte (32-bit) values na-
tively. Specifying any other data size requires the debugger to do some trickery
which tends to slow your program’s execution to a crawl (if it works at all).

2.2.5.7. Conditional Break Points

You'll also notice in the “Break Points” window that you can set conditions
and hit counts on any type break point—data break points or regular line-of-
code break points.

A conditional break point causes the debugger to evaluate the C/C++ expres-
sion you provide every time the break point is hit. If the expression is true, the
debugger stops your program and gives you a chance to see what’s going on.
If the expression is false, the break point is ignored and the program contin-
ues. This is very useful for setting break points that only trip when a function
is called on a particular instance of a class. For example, let’s say you have
a game level with 20 tanks on-screen, and you want to stop your program
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when the third tank, whose memory address you know to be 0x12345678,
is running. By setting the break point’s condition express to something like
“(unsigned)this == 0x12345678", you can restrict the break point only to
the class instance whose memory address (this pointer) is 0x12345678.

Specifying a hit count for a break point causes the debugger to decrement
a counter every time the break point is hit, and only actually stop the program
when that counter reaches zero. This is really useful for situations where your
break point is inside a loop, and you need to inspect what’s happening during
the 376th iteration of the loop (e.g., the 376th element in an array). You can't
very well sit there and hit the F5 key 375 times! But you can let the hit count
feature of Visual Studio do it for you.

One note of caution: Conditional break points cause the debugger to eval-
uate the conditional expression every time the break point is hit, so they can
bog down the performance of the debugger and your game.

2.2.5.8. Debugging Optimized Builds

I mentioned above that it can be very tricky to debug problems using a release
build, due primarily to the way the compiler optimizes the code. Ideally, every
programmer would prefer to do all of his or her debugging in a debug build.
However, this is often not possible. Sometimes a bug occurs so rarely that
you'll jump at any chance to debug the problem, even if it occurs in a release
build on someone else’s machine. Other bugs only occur in your release build,
but magically disappear whenever you run the debug build. These dreaded
release-only bugs are sometimes caused by uninitialized variables, because vari-
ables and dynamically allocated memory blocks are often set to zero in debug
mode, but are left containing garbage in a release build. Other common causes
of release-only bugs include code that has been accidentally omitted from the
release build (e.g., when important code is erroneously placed inside an asser-
tion statement), data structures whose size or data member packing changes
between debug and release builds, bugs that are only triggered by inlining or
compiler-introduced optimizations, and (in rare cases) bugs in the compiler’s
optimizer itself, causing it to emit incorrect code in a fully optimized build.
Clearly, it behooves every programmer to be capable of debugging prob-
lems in a release build, unpleasant as it may seem. The best ways to reduce the
pain of debugging optimized code is to practice doing it and to expand your
skill set in this area whenever you have the opportunity. Here are a few tips.

o Learn to read and step through disassembly in the debugger. In a release build,
the debugger often has trouble keeping track of which line of source
code is currently being executed. Thanks to instruction reordering,
you'll often see the program counter jump around erratically within the
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function when viewed in source code mode. However, things become
sane again when you work with the code in disassembly mode (i.e., step
through the assembly language instructions individually). Every C/C++
programmer should be at least a little bit familiar with the architecture
and assembly language of their target CPU(s). That way, even if the de-
bugger is confused, you won't be.

Use registers to deduce variables’ values or addresses. The debugger will
sometimes be unable to display the value of a variable or the contents of
an object in a release build. However, if the program counter is not too
far away from the initial use of the variable, there’s a good chance its ad-
dress or value is still stored in one of the CPU’s registers. If you can trace
back through the disassembly to where the variable is first loaded into
a register, you can often discover its value or its address by inspecting
that register. Use the register window, or type the name of the register
into a watch window, to see its contents.

Inspect variables and object contents by address. Given the address of a vari-
able or data structure, you can usually see its contents by casting the
address to the appropriate type in a watch window. For example, if we
know that an instance of the Foo class resides at address 0x1378 A0C0, we
can type “ (Foo*) 0x1378A0C0” in a watch window, and the debugger
will interpret that memory address as if it were a pointer to a Foo object.

Leverage static and global variables. Even in an optimized build, the de-
bugger can usually inspect global and static variables. If you cannot de-
duce the address of a variable or object, keep your eye open for a static
or global that might contain its address, either directly or indirectly. For
example, if we want to find the address of an internal object within the
physics system, we might discover that it is in fact stored in a member
variable of the global PhysicsWorld object.

Modify the code. If you can reproduce a release-only bug relatively eas-
ily, consider modifying the source code to help you debug the problem.
Add print statements so you can see what'’s going on. Introduce a global
variable to make it easier to inspect a problematic variable or object in
the debugger. Add code to detect a problem condition or to isolate a
particular instance of a class.

Profiling Tools

Games are typically high-performance real-time programs. As such, game en-
gine programmers are always looking for ways to speed up their code. There
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is a well-known, albeit rather unscientific, rule of thumb known as the Pareto
principle (see http://en.wikipedia.org/wiki/Pareto_principle). It is also known
as the 80-20 rule, because it states that in many situations, 80% of the effects
of some event come from only 20% of the possible causes. In computer sci-
ence, we often use a variant of this principle known as the 90-10 rule, which
states that 90% of the wall clock time spent running any piece of software is
accounted for by only 10% of the code. In other words, if you optimize 10% of
your code, you can potentially realize 90% of all the gains in execution speed
you'll ever realize.

So, how do you know which 10% of your code to optimize? For that, you
need a profiler. A profiler is a tool that measures the execution time of your
code. It can tell you how much time is spent in each function. You can then di-
rect your optimizations toward only those functions that account for the lion’s
share of the execution time.

Some profilers also tell you how many times each function is called. This
is an important dimension to understand. A function can eat up time for two
reasons: (a) it takes a long time to execute on its own, or (b) it is called fre-
quently. For example, a function that runs an A* algorithm to compute the
optimal paths through the game world might only be called a few times each
frame, but the function itself may take a significant amount of time to run. On
the other hand, a function that computes the dot product may only take a few
cycles to execute, but if you call it hundreds of thousands of times per frame,
it might drag down your game’s frame rate.

Even more information can be obtained, if you use the right profiler. Some
profilers report the call graph, meaning that for any given function, you can
see which functions called it (these are known as parent functions) and which
functions it called (these are known as child functions or descendants). You can
even see what percentage of the function’s time was spent calling each of its
descendants and the percentage of the overall running time accounted for by
each individual function.

Profilers fall into two broad categories.

1. Statistical profilers. This kind of profiler is designed to be unobtrusive,
meaning that the target code runs at almost the same speed, wheth-
er or not profiling is enabled. These profilers work by sampling the
CPU’s program counter register periodically and noting which func-
tion is currently running. The number of samples taken within each
function yields an approximate percentage of the total running time
that is eaten up by that function. Intel’s VTune is the gold standard in
statistical profilers for Windows machines employing Intel Pentium
processors, and it is now also available for Linux. See http://www.
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intel.com/cd/software/products/asmo-na/eng/vtune/239144.htm  for
details.

2. Instrumenting profilers. This kind of profiler is aimed at providing the
most accurate and comprehensive timing data possible, but at the ex-
pense of real-time execution of the target program —when profiling is
turned on, the target program usually slows to a crawl. These profilers
work by preprocessing your executable and inserting special prologue
and epilogue code into every function. The prologue and epilogue code
calls into a profiling library, which in turn inspects the program’s call
stack and records all sorts of details, including which parent function
called the function in question and how many times that parent has
called the child. This kind of profiler can even be set up to monitor every
line of code in your source program, allowing it to report how long each
line is taking to execute. The results are stunningly accurate and com-
prehensive, but turning on profiling can make a game virtually unplay-
able. IBM’s Rational Quantify, available as part of the Rational Purify
Plus tool suite, is an excellent instrumenting profiler. See http://www.
ibm.com/developerworks/rational/library/957.html for an introduction
to profiling with Quantify.

Microsoft has also published a profiler that is a hybrid between the two
approaches. It is called LOP, which stands for low-overhead profiler. It uses
a statistical approach, sampling the state of the processor periodically, which
means it has a low impact on the speed of the program’s execution. However,
with each sample it analyzes the call stack, thereby determining the chain of
parent functions that resulted in each sample. This allows LOP to provide
information normally not available with a statistical profiler, such as the dis-
tribution of calls across parent functions.

2.3.1. List of Profilers

There are a great many profiling tools available. See http://en.wikipedia.org/
wiki/List_of_performance_analysis_tool for a reasonably comprehensive list.

2.4. Memory Leak and Corruption Detection

Two other problems that plague C and C++ programmers are memory leaks
and memory corruption. A memory leak occurs when memory is allocated
but never freed. This wastes memory and eventually leads to a potentially
fatal out-of-memory condition. Memory corruption occurs when the program
inadvertently writes data to the wrong memory location, overwriting the im-
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portant data that was there —while simultaneously failing to update the mem-
ory location where that data should have been written. Blame for both of these
problems falls squarely on the language feature known as the pointer.

A pointer is a powerful tool. It can be an agent of good when used prop-
erly—but it can also be all-too-easily transformed into an agent of evil. If a
pointer points to memory that has been freed, or if it is accidentally assigned
a nonzero integer or floating-point value, it becomes a dangerous tool for cor-
rupting memory, because data written through it can quite literally end up
anywhere. Likewise, when pointers are used to keep track of allocated mem-
ory, it is all too easy to forget to free the memory when it is no longer needed.
This leads to memory leaks.

Clearly good coding practices are one approach to avoiding pointer-re-
lated memory problems. And it is certainly possible to write solid code that
essentially never corrupts or leaks memory. Nonetheless, having a tool to help
you detect potential memory corruption and leak problems certainly can’t
hurt. Thankfully, many such tools exist.

My personal favorite is IBM’s Rational Purify, which comes as part of the
Purify Plus tool kit. Purify instruments your code prior to running it, in order
to hook into all pointer dereferences and all memory allocations and dealloca-
tions made by your code. When you run your code under Purify, you get a
live report of the problems—real and potential —encountered by your code.
And when the program exits, you get a detailed memory leak report. Each
problem is linked directly to the source code that caused the problem, making
tracking down and fixing these kinds of problems relatively easy. You can find
more information on Purify at http://www-306.ibm.com/software/awdtools
[purify.

Another popular tool is Bounds Checker by CompuWare. It is similar
to Purify in purpose and functionality. You can find more information on
Bounds Checker at http://www.compuware.com/products/devpartner/visualc
htm.

2.5. Other Tools

There are a number of other commonly used tools in a game programmer’s
toolkit. We won't cover them in any depth here, but the following list will
make you aware of their existence and point you in the right direction if you
want to learn more.

e Difference tools. A difference tool, or diff tool, is a program that com-
pares two versions of a text file and determines what has changed be-
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tween them. (See http://en.wikipedia.org/wiki/Diff for a discussion of
diff tools.) Diffs are usually calculated on a line-by-line basis, although
modern diff tools can also show you a range of characters on a changed
line that have been modified. Most version control systems come with
a diff tool. Some programmers like a particular diff tool and configure
their version control software to use the tool of their choice. Popular
tools include ExamDiff (http://www.prestosoft.com/edp_examdiff.asp),
AraxisMerge (http://www.araxis.com), WinDiff (available in the Op-
tions Packs for most Windows versions and available from many inde-
pendent websites as well), and the GNU diff tools package (http://www.
gnu.org/software/diffutils/diffutils.html).

o  Three-way merge tools. When two people edit the same file, two inde-
pendent sets of diffs are generated. A tool that can merge two sets of
diffs into a final version of the file that contains both person’s changes
is called a three-way merge tool. The name “three-way” refers to the
fact that three versions of the file are involved: the original, user A’s
version, and user B’s version. (See http://en.wikipedia.org/wiki/3-way_
merge#Three-way_merge for a discussion of two-way and three-way
merge technologies.) Many merge tools come with an associated diff
tool. Some popular merge tools include AraxisMerge (http://www.arax-
is.com) and WinMerge (http://winmerge.org). Perforce also comes with
an excellent three-way merge tool (http://www.perforce.com/perforce/
products/merge.html).

e Hex editors. A hex editor is a program used for inspecting and modify-
ing the contents of binary files. The data are usually displayed as in-
tegers in hexadecimal format, hence the name. Most good hex editors
can display data as integers from one byte to 16 bytes each, in 32- and
64-bit floating point format and as ASCII text. Hex editors are particu-
larly useful when tracking down problems with binary file formats or
when reverse-engineering an unknown binary format—both of which
are relatively common endeavors in game engine development circles.
There are quite literally a million different hex editors out there; I've
had good luck with HexEdit by Expert Commercial Software (http://
www.expertcomsoft.com/index.html), but your mileage may vary.

As a game engine programmer you will undoubtedly come across other
tools that make your life easier, but I hope this chapter has covered the main
tools you'll use on a day-to-day basis.
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3
Fundamentals of Software
Engineering for Games

In this chapter, we’ll briefly review the basic concepts of object-oriented pro-
gramming and then delve into some advanced topics which should prove
invaluable in any software engineering endeavor (and especially when creat-
ing games). As with Chapter 2, I hope you will not to skip this chapter en-
tirely; it's important that we all embark on our journey with the same set of
tools and supplies.

3.1. C++ Review and Best Practices

3.1.1.  Brief Review of Object-Oriented Programming

Much of what we’ll discuss in this book assumes you have a solid understand-
ing of the principles of object-oriented design. If you're a bit rusty, the follow-
ing section should serve as a pleasant and quick review. If you have no idea
what I'm talking about in this section, I recommend you pick up a book or two
on object-oriented programming (e.g., [5]) and C++ in particular (e.g., [39] and
[31]) before continuing.

3..LI.  Classes and Objects

A class is a collection of attributes (data) and behaviors (code) which together
form a useful, meaningful whole. A class is a specification describing how in-
9l
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dividual instances of the class, known as objects, should be constructed. For
example, your pet Rover is an instance of the class “dog.” Thus there is a one-
to-many relationship between a class and its instances.

3.1.1.2.  Encapsulation

Encapsulation means that an object presents only a limited interface to the out-
side world; the object’s internal state and implementation details are kept hid-
den. Encapsulation simplifies life for the user of the class, because he or she
need only understand the class’ limited interface, not the potentially intricate
details of its implementation. It also allows the programmer who wrote the
class to ensure that its instances are always in a logically consistent state.

3.1.1.3. Inheritance

Inheritance allows new classes to be defined as extensions to pre-existing class-
es. The new class modifies or extends the data, interface, and/or behavior of
the existing class. If class Child extends class Parent, we say that Child in-
herits from or is derived from Parent. In this relationship, the class Parent is
known as the base class or superclass, and the class child is the derived class
or subclass. Clearly, inheritance leads to hierarchical (tree-structured) relation-
ships between classes.

Inheritance creates an “is-a” relationship between classes. For example,
a circle is a type of shape. So if we were writing a 2D drawing application,
it would probably make sense to derive our Circle class from a base class
called shape.

We can draw diagrams of class hierarchies using the conventions defined
by the Unified Modeling Language (UML). In this notation, a rectangle repre-
sents a class, and an arrow with a hollow triangular head represents inheritance.
The inheritance arrow points from child class to parent. See Figure 3.1 for an ex-
ample of a simple class hierarchy represented as a UML static class diagram.

VAN

| Circle | | Rectanglel | Triangle |

Figure 3.1. UML static class diagram depicting a simple class hierarchy.

Multipleln heritance

Some languages support multiple inheritance (MI), meaning that a class can
have more than one parent class. In theory MI can be quite elegant, but in
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Figure 3.2. “Deadly diamond” in a multiple inheritance hierarchy.

Animator is a hypothetical mix-in
Shape class that adds animation
functionality to whatever class it
is inherited by.

+Draw()
Animator
+Animate()
Circle Rectangle Triangle
+Draw() +Draw() +Draw()

Figure 3.3. Example of a mix-in class.

practice this kind of design usually gives rise to a lot of confusion and techni-
cal difficulties (see http://en.wikipedia.org/wiki/Multiple_inheritance). This is
because multiple inheritance transforms a simple tree of classes into a poten-
tially complex graph. A class graph can have all sorts of problems that never
plague a simple tree—for example, the deadly diamond (http://en.wikipedia.
org/wiki/Diamond_problem), in which a derived class ends up containing two
copies of a grandparent base class (see Figure 3.2). In C++, virtual inheritance al-
lows one to avoid this doubling of the grandparent’s data.

Most C++ software developers avoid multiple inheritance completely or
only permit it in a limited form. A common rule of thumb is to allow only
simple, parentless classes to be multiply inherited into an otherwise strictly
single-inheritance hierarchy. Such classes are sometimes called mix-in classes
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because they can be used to introduce new functionality at arbitrary pointsin a
class tree. See Figure 3.3 for a somewhat contrived example of a mix-in class.

3.1.1.4.  Polymorphism

Polymorphism is a language feature that allows a collection of objects of differ-
ent types to be manipulated through a single common interface. The common
interface makes a heterogeneous collection of objects appear to be homoge-
neous, from the point of view of the code using the interface.

For example, a 2D painting program might be given a list of various
shapes to draw on-screen. One way to draw this heterogeneous collection of
shapes is to use a switch statement to perform different drawing commands
for each distinct type of shape.

void drawShapes (std::list<Shape*> shapes)

{
std::list<Shape*>::iterator pShape = shapes.begin() ;
std::list<Shape*>::iterator pEnd = shapes.end() ;

for ( ; pShape != pEnd; ++pShape)

switch (pShape->mType)

{

case CIRCLE:

// draw shape as a circle
break;
case RECTANGLE :

// draw shape as a rectangle
break;
case TRIANGLE:

// draw shape as a triangle
break;
/] ...

}
}
}

The problem with this approach is that the drawShapes () function needs
to “know” about all of the kinds of shapes that can be drawn. This is fine in a
simple example, but as our code grows in size and complexity, it can become
difficult to add new types of shapes to the system. Whenever a new shape
type is added, one must find every place in the code base where knowledge
of the set of shape types is embedded —like this switch statement—and add a
case to handle the new type.

The solution is to insulate the majority of our code from any knowledge of
the types of objects with which it might be dealing. To accomplish this, we can



3.1. C++ Review and Best Practices

95

define classes for each of the types of shapes we wish to support. All of these
classes would inherit from the common base class Shape. A virtual function—
the C++ language’s primary polymorphism mechanism—would be defined
called praw (), and each distinct shape class would implement this function
in a different way. Without “knowing” what specific types of shapes it has
been given, the drawing function can now simply call each shape’s Draw ()
function in turn.

struct Shape

{
Vi

virtual void Draw() = 0; // pure virtual function

struct Circle : public Shape

{
{

}
bi

virtual void Draw ()

// draw shape as a circle

struct Rectangle : public Shape

{
{

}
Vi

virtual void Draw ()

// draw shape as a rectangle

struct Triangle : public Shape

{
{

}
bi

void Draw ()

// draw shape as a triangle

void drawShapes (std::list<Shape*> shapes)

{
std::list<Shape*>::iterator pShape = shapes.begin() ;
std::list<Shape*>::iterator pEnd = shapes.end() ;

for ( ; pShape != pEnd; ++pShape)

{

pShape->Draw () ;

}
}
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3.1.1.5.  Composition and Aggregation

Composition is the practice of using a group of interacting objects to accomplish
a high-level task. Composition creates a “has-a” or “uses-a” relationship be-
tween classes. (Technically speaking, the “has-a” relationship is called com-
position, while the “uses-a” relationship is called aggregation.) For example, a
space ship has an engine, which in turn has a fuel tank. Composition/aggrega-
tion usually results in the individual classes being simpler and more focused.
Inexperienced object-oriented programmers often rely too heavily on inheri-
tance and tend to underutilize aggregation and composition.

As an example, imagine that we are designing a graphical user interface
for our game’s front end. We have a class Window that represents any rectan-
gular GUI element. We also have a class called Rectangle that encapsulates
the mathematical concept of a rectangle. A naive programmer might derive
the window class from the Rectangle class (using an “is-a” relationship). But
in a more flexible and well-encapsulated design, the Window class would refer
to or contain a Rectangle (employing a “has-a” or “uses-a” relationship). This
makes both classes simpler and more focused and allows the classes to be
more easily tested, debugged, and reused.

3.1.1.6. Design Patterns

When the same type of problem arises over and over, and many different pro-
grammers employ a very similar solution to that problem, we say that a design
pattern has arisen. In object-oriented programming, a number of common de-
sign patterns have been identified and described by various authors. The most
well-known book on this topic is probably the “Gang of Four” book [17].
Here are a few examples of common general-purpose design patterns.

e Singleton. This pattern ensures that a particular class has only one in-
stance (the singleton instance) and provides a global point of access to it.

e Iterator. An iterator provides an efficient means of accessing the indi-
vidual elements of a collection, without exposing the collection’s under-
lying implementation. The iterator “knows” the implementation details
of the collection, so that its users don’t have to.

e Abstract factory. An abstract factory provides an interface for creating
families of related or dependent classes without specifying their con-
crete classes.

The game industry has its own set of design patterns, for addressing
problems in every realm from rendering to collision to animation to audio.
In a sense, this book is all about the high-level design patterns prevalent in
modern 3D game engine design.
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3.1.2. Coding Standards: Why and How Much?

Discussions of coding conventions among engineers can often lead to heated
“religious” debates. I do not wish to spark any such debate here, but I will go
so far as to suggest that following at least some minimal coding standards is a

good idea. Coding standards exist for two primary reasons.

1.

Some standards make the code more readable, understandable, and
maintainable.

Other conventions help to prevent programmers from shooting them-
selves in the foot. For example, a coding standard might encourage the
programmer to use only a smaller, more testable, and less error-prone
subset of the whole language. The C++ language is rife with possibili-
ties for abuse, so this kind of coding standard is particularly important
when using C++.

In my opinion, the most important things to achieve in your coding con-

ventions are the following.

Interfaces are king. Keep your interfaces (.h files) clean, simple, minimal,
easy to understand, and well-commented.

Good names encourage understanding and avoid confusion. Stick to intuitive
names that map directly to the purpose of the class, function, or vari-
able in question. Spend time up-front identifying a good name. Avoid
a naming scheme that requires programmers to use a look-up table in
order to decipher the meaning of your code. Remember that high-level
programming languages like C++ are intended for humans to read. (If
you disagree, just ask yourself why you don't write all your software
directly in machine language.)

Don’t clutter the global namespace. Use C++ namespaces or a common
naming prefix to ensure that your symbols don’t collide with symbols
in other libraries. (But be careful not to overuse namespaces, or nest
them too deeply.) Name #defined symbols with extra care; remember
that C++ preprocessor macros are really just text substitutions, so they
cut across all C/C++ scope and namespace boundaries.

Follow C++ best practices. Books like the Effective C++ series by Scott Mey-
ers [31, 32], Meyers’ Effective STL [33], and Large-Scale C++ Software De-
sign by John Lakos [27] provide excellent guidelines that will help keep
you out of trouble.

Be consistent. The rule I try to use is as follows: If you're writing a body
of code from scratch, feel free to invent any convention you like —then
stick to it. When editing pre-existing code, try to follow whatever con-
ventions have already been established.
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e Make errors stick out. Joel Spolsky wrote an excellent article on coding
conventions, which can be found at http://www.joelonsoftware.com/
articles/Wrong.html. Joel suggests that the “cleanest” code is not neces-
sarily code that looks neat and tidy on a superficial level, but rather the
code that is written in a way that makes common programming errors
easier to see. Joel’s articles are always fun and educational, and I highly
recommend this one.

3.2. Data, Code, and Memory in C/C++

3.2.1.  Numeric Representations

Numbers are at the heart of everything that we do in game engine development
(and software development in general). Every software engineer should under-
stand how numbers are represented and stored by a computer. This section will
provide you with the basics you'll need throughout the rest of the book.

3.2.1.1.  Numeric Bases

People think most naturally in base ten, also known as decimal notation. In this
notation, ten distinct digits are used (0 through 9), and each digit from right
to left represents the next highest power of 10. For example, the number 7803
= (7x10°) + (8x10) + (0x10") + (3x10°) = 7000 + 800 + 0 + 3.

In computer science, mathematical quantities such as integers and real-
valued numbers need to be stored in the computer’s memory. And as we know,
computers store numbers in binary format, meaning that only the two digits 0
and 1 are available. We call this a base-two representation, because each digit
from right to left represents the next highest power of 2. Computer scientists
sometimes use a prefix of “Ob” to represent binary numbers. For example, the
binary number 0b1101 is equivalent to decimal 13, because 0b1101 = (1x23) +
(1x22) + (0x21) + (1x2°) =8 + 4 + 0 + 1 = 13.

Another common notation popular in computing circles is hexadecimal, or
base 16. In this notation, the 10 digits 0 through 9 and the six letters A through
F are used; the letters A through F replace the decimal values 10 through 15,
respectively. A prefix of “Ox” is used to denote hex numbers in the C and C++
programming languages. This notation is popular because computers gener-
ally store data in groups of 8 bits known as bytes, and since a single hexadeci-
mal digit represents 4 bits exactly, a pair of hex digits represents a byte. For
example, the value OxFF = 0b11111111 = 255 is the largest number that can be
stored in 8 bits (1 byte). Each digit in a hexadecimal number, from right to left,
represents the next power of 16. So, for example, 0xB052 = (11x16°%) + (0x16) +
(5x16") + (2x16°) = (11x4096) + (0x256) + (5x16) + (2x1) = 45,138.
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3.2.1.2. Signed and Unsigned Integers

In computer science, we use both signed and unsigned integers. Of course,
the term “unsigned integer” is actually a bit of a misnomer—in mathematics,
the whole numbers or natural numbers range from 0 (or 1) up to positive infinity,
while the integers range from negative infinity to positive infinity. Neverthe-
less, we’ll use computer science lingo in this book and stick with the terms
“signed integer” and “unsigned integer.”

Most modern personal computers and game consoles work most easily
with integers that are 32 bits or 64 bits wide (although 8- and 16-bit integers
are also used a great deal in game programming as well). To represent a 32-
bit unsigned integer, we simply encode the value using binary notation (see
above). The range of possible values for a 32-bit unsigned integer is 0x00000000
(0) to OXFFFFFFFF (4,294,967,295).

To represent a signed integer in 32 bits, we need a way to differentiate be-
tween positive and negative vales. One simple approach would be to reserve
the most significant bit as a sign bit—when this bit is zero the value is positive,
and when it is one the value is negative. This gives us 31 bits to represent the
magnitude of the value, effectively cutting the range of possible magnitudes
in half (but allowing both positive and negative forms of each distinct magni-
tude, including zero).

Most microprocessors use a slightly more efficient technique for encod-
ing negative integers, called two’s complement notation. This notation has only
one representation for the value zero, as opposed to the two representations
possible with simple sign bit (positive zero and negative zero). In 32-bit two’s
complement notation, the value OxFFFFFFFF is interpreted to mean -1, and
negative values count down from there. Any value with the most significant
bit set is considered negative. So values from 0x00000000 (0) to Ox7FFFFFFF
(2,147,483,647) represent positive integers, and 0x80000000 (-2,147,483,648) to
OxFFFFFFFF (-1) represent negative integers.

3.2.1.3. Fixed-Point Notation

Integers are great for representing whole numbers, but to represent fractions
and irrational numbers we need a different format that expresses the concept
of a decimal point.

One early approach taken by computer scientists was to use fixed-point
notation. In this notation, one arbitrarily chooses how many bits will be used
to represent the whole part of the number, and the rest of the bits are used
to represent the fractional part. As we move from left to right (i.e., from the
most significant bit to the least significant bit), the magnitude bits represent
decreasing powers of two (..., 16, 8, 4, 2, 1), while the fractional bits represent
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sign magnitude (16 bits) fraction (15 bits)

‘1‘0‘o‘o‘o‘o‘o‘0‘0‘1‘0‘1‘o‘1‘1‘0‘1‘0‘1‘0‘0‘0‘0‘0‘0‘o‘o‘o‘o‘o‘o‘o‘ =-173.25

31 15 0
0x80 0x56 0xA0 0x00

Figure 3.4. Fixed-point notation with 16-bit magnitude and 16-bit fraction.

decreasing inverse powers of two ('/,, '/,, /5, '/, -..)- For example, to store the
number —173.25 in 32-bit fixed-point notation, with one sign bit, 16 bits for the
magnitude and 15 bits for the fraction, we first convert the sign, the whole part
and fractional part into their binary equivalents individually (negative = 0b1,
173 =0b0000000010101101, and 0.25 = 1/4 = 0b010000000000000). Then we pack
those values together into a 32-bit integer. The final result is 0x8056 A000. This
is illustrated in Figure 3.4.

The problem with fixed-point notation is that it constrains both the range
of magnitudes that can be represented and the amount of precision we can
achieve in the fractional part. Consider a 32-bit fixed-point value with 16 bits
for the magnitude, 15 bits for the fraction, and a sign bit. This format can only
represent magnitudes up to 65,535, which isn’t particularly large. To over-
come this problem, we employ a floating-point representation.

3.2.1.4. Floating-Point Notation

In floating-point notation, the position of the decimal place is arbitrary and is
specified with the help of an exponent. A floating-point number is broken into
three parts: the mantissa, which contains the relevant digits of the number on
both sides of the decimal point, the exponent, which indicates where in that
string of digits the decimal point lies, and a sign bit, which of course indicates
whether the value is positive or negative. There are all sorts of different ways
to lay out these three components in memory, but the most common standard
is IEEE-754. It states that a 32-bit floating-point number will be represented
with the sign in the most significant bit, followed by 8 bits of exponent, and
finally 23 bits of mantissa.

The value v represented by a sign bit s, an exponent ¢ and a mantissa m is
v=5x 27120 x (1 + m).

The sign bit s has the value +1 or —1. The exponent e is biased by 127 so
that negative exponents can be easily represented. The mantissa begins with
an implicit 1 that is not actually stored in memory, and the rest of the bits are
interpreted as inverse powers of two. Hence the value represented is really 1
+ m, where m is the fractional value stored in the mantissa.
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sign  exponent (8 bits) mantissa (23 bits)

‘0‘0‘1‘1‘1‘1‘1‘0‘0‘0‘1‘0‘0‘0‘0‘o‘o‘o‘o‘o‘o‘o‘o‘o‘o‘o‘o‘o‘o‘o‘o‘o‘ =0.15625

31 23 0

Figure 3.5. IEEE-754 32-bit floating-point format.

For example, the bit pattern shown in Figure 3.5 represents the value
0.15625, because s = 0 (indicating a positive number), e = 0b01111100 = 124,
and m =0b0100... = 0x2" + 1x22 = V4. Therefore,

v=5x 2120 x (1 +m)
= (+1) x 202127 x (1 + /)
=27x%, (3.1)
=%,

=0.125 x 1.25=0.15625.

The Trade-Off between Magnitude and Precision

The precision of a floating-point number increases as the magnitude decreases,
and vice versa. This is because there are a fixed number of bits in the mantissa,
and these bits must be shared between the whole part and the fractional part
of the number. If a large percentage of the bits are spent representing a large
magnitude, then a small percentage of bits are available to provide fractional
precision. In physics the term significant digits is typically used to describe this
concept (http://en.wikipedia.org/wiki/Significant_digits).

To understand the trade-off between magnitude and precision, let’s look
at the largest possible floating-point value, FLT MAX = 3.403x10%, whose rep-
resentation in 32-bit IEEE floating-point format is Ox7F7FFFFF. Let’s break this
down:

e The largest absolute value that we can represent with a 23-bit mantissa
is OXOOFFFFFF in hexadecimal, or 24 consecutive binary ones—that’s 23
ones in the mantissa, plus the implicit leading one.

e An exponent of 255 has a special meaning in the IEEE-754 format—it is
used for values like not-a-number (NaN) and infinity —so it cannot be
used for regular numbers. Hence the maximum 8-bit exponent is actu-
ally 254, which translates into 127 after subtracting the implicit bias of
127.

So FLT_MAX is OXOOFFFFFFx2'% = 0xFFFFFF00000000000000000000000000. In
other words, our 24 binary ones were shifted up by 127 bit positions, leav-
ing 127 — 23 = 104 binary zeros (or 104/4 = 26 hexadecimal zeros) after the



102

3. Fundamentals of Software Engineering for Games

least significant digit of the mantissa. Those trailing zeros don't correspond
to any actual bits in our 32-bit floating-point value—they just appear out of
thin air because of the exponent. If we were to subtract a small number (where
“small” means any number composed of fewer than 26 hexadecimal digits)
from FLT_MAZ, the result would still be FLT_MAX, because those 26 least sig-
nificant hexadecimal digits don’t really exist!

The opposite effect occurs for floating-point values whose magnitudes
are much less than one. In this case, the exponent is large but negative, and
the significant digits are shifted in the opposite direction. We trade the ability
to represent large magnitudes for high precision. In summary, we always have
the same number of significant digits (or really significant bits) in our floating-
point numbers, and the exponent can be used to shift those significant bits into
higher or lower ranges of magnitude.

Another subtlety to notice is that there is a finite gap between zero and the
smallest nonzero value we can represent with any floating-point notation. The
smallest nonzero magnitude we can represent is FLT_MIN = 2% = 1.175x107%,
which has a binary representation of 0x00800000 (i.e., the exponent is 0x01,
or —126 after subtracting the bias, and the mantissa is all zeros, except for the
implicit leading one). There is no way to represent a nonzero magnitude that
is smaller than 1.175x10-%, because the next smallest valid value is zero. Put
another way, the real number line is quantized when using a floating-point
representation.

For a particular floating-point representation, the machine epsilon is de-
fined to be the smallest floating-point value ¢ that satisfies the equation, 1 +
& # 1. For an IEEE-754 floating-point number, with its 23 bits of precision, the
value of gis 2%, which is approximately 1.192x107. The most significant digit
of ¢ falls just inside the range of significant digits in the value 1.0, so adding
any value smaller than ¢ to 1.0 has no effect. In other words, any new bits con-
tributed adding a value smaller than & will get “chopped off” when we try to
fit the sum into a mantissa with only 23 bits.

The concepts of limited precision and the machine epsilon have real im-
pacts on game software. For example, let’s say we use a floating-point vari-
able to track absolute game time in seconds. How long can we run our game
before the magnitude of our clock variable gets so large that adding 1/30" of
a second to it no longer changes its value? The answer is roughly 12.9 days.
That’s longer than most games will be left running, so we can probably get
away with using a 32-bit floating-point clock measured in seconds in a game.
But clearly it’s important to understand the limitations of the floating-point
format, so that we can predict potential problems and take steps to avoid them
when necessary.
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IEEE Floating-Point Bit Tricks

See [7], Section 2.1, for a few really useful IEEE floating-point “bit tricks” that
can make floating-point calculations lightning-fast.

3.2.1.5. Atomic Data Types

As you know, C and C++ provide a number of atomic data types. The C and
C++ standards provide guidelines on the relative sizes and signedness of these
data types, but each compiler is free to define the types slightly differently in
order to provide maximum performance on the target hardware.

e char A char is usually 8 bits and is generally large enough to hold an
ASCII or UTF-8 character (see Section 5.4.4.1). Some compilers define
char to be signed, while others use unsigned chars by default.

e int, short, long. An int issupposed to hold a signed integer value
that is the most efficient size for the target platform; it is generally de-
fined to be 32 bits wide on Pentium class PCs. A short is intended to
be smaller than an int and is 16 bits on many machines. A long is as
large as or larger than an int and may be 32 or 64 bits, depending on
the hardware.

e float. On most modern compilers, a £loat is a 32-bit IEEE-754 float-
ing-point value.

e double. A double is a double-precision (i.e., 64-bit) IEEE-754 floating-
point value.

e Dbool. Abool is atrue/false value. The size of a bool varies widely across
different compilers and hardware architectures. It is never implemented
as a single bit, but some compilers define it to be 8 bits while others use
a full 32 bits.

Compiler-Specific Sized Types

The standard C/C++ atomic data types were designed to be portable and
therefore nonspecific. However, in many software engineering endeavors, in-
cluding game engine programming, it is often important to know exactly how
wide a particular variable is. The Visual Studio C/C++ compiler defines the fol-
lowing extended keywords for declaring variables that are an explicit number
of bits wide: __int8, intl6, int32,and  inté4.

SIMD Types

The CPUs on many modern computers and game consoles have a special-
ized type of arithmetic logic unit (ALU) referred to as a vector processor or
vector unit. A vector processor supports a form of parallel processing known
as single instruction, multiple data (SIMD), in which a mathematical operation
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is performed on multiple quantities in parallel, using a single machine in-
struction. In order to be processed by the vector unit, two or more quanti-
ties are packed into a 64- or 128-bit CPU register. In game programming,
the most commonly used SIMD register format packs four 32-bit IEEE-754
floating-point quantities into a 128-bit SIMD register. This format allows us to
perform calculations such as vector dot products and matrix multiplications
much more efficiently than would be possible with a SISD (single instruction,
single data) ALU.

Each microprocessor has a different name for its SIMD instruction set,
and the compilers that target those microprocessors use a custom syntax to
declare SIMD variables. For example, on a Pentium class CPU, the SIMD in-
struction set is known as SSE (streaming SIMD extensions), and the Microsoft
Visual Studio compiler provides the built-in data type _ m128 to represent a
four-float SIMD quantity. The PowerPC class of CPUs used on the PLAYSTA-
TION 3 and Xbox 360 calls its SIMD instruction set Altivec, and the Gnu C++
compiler uses the syntax vector float to declare a packed four-float SIMD
variable. We'll discuss how SIMD programming works in more detail in Sec-
tion 4.7.

Portable Sized Types

Most other compilers have their own “sized” data types, with similar seman-
tics but slightly different syntax. Because of these differences between compil-
ers, most game engines achieve source code portability by defining their own
custom atomic data types. For example, at Naughty Dog we use the following
atomic types:

e F32isa 32-bit IEEE-754 floating-point value.

e U8, I8, Ule, I16, U32, I32, U64, and I64 are unsigned and signed 8-,
16-, 32-, and 64-bit integers, respectively.

e U32F and I32F are “fast” unsigned and signed 32-bit values, respec-
tively. Each of these data types acts as though it contains a 32-bit value,
but it actually occupies 64 bits in memory. This permits the PS3’s cen-
tral PowerPC-based processor (called the PPU) to read and write these
variables directly into its 64-bit registers, providing a significant speed
boost over reading and writing 32-bit variables.

e VF32 represents a packed four-float SIMD value.
OGRE's Atomic Data Types

OGRE defines a number of atomic types of its own. Ogre: :uints, Ogre: :
uint16 and Ogre: :uint32 are the basic unsigned sized integral types.
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Ogre ::Realdefines a real floating-point value. It is usually defined to
be 32 bits wide (equivalent to a £1oat), but it can be redefined globally to be
64 bits wide (like a double) by defining the preprocessor macro OGRE_DOU-
BLE_PRECISION to 1. This ability to change the meaning of Ogre: :Real is
generally only used if one’s game has a particular requirement for double-
precision math, which is rare. Graphics chips (GPUs) always perform their
math with 32-bit or 16-bit floats, the CPU/FPU is also usually faster when
working in single-precision, and SIMD vector instructions operate on 128-bit
registers that contain four 32-bit floats each. Hence most games tend to stick
to single-precision floating-point math.

The data types Ogre ::uchar Ogre::ushort, Ogre::uint and
Ogre: :ulong are just shorthand notations for C/C++’s unsigned char, un-
signed short, and unsigned long, respectively. As such, they are no more
or less useful than their native C/C++ counterparts.

The types Ogre ::Radiarand Ogre: :Degree are particularly interest-
ing. These classes are wrappers around a simple Ogre : : Real value. The pri-
mary role of these types is to permit the angular units of hard-coded literal
constants to be documented and to provide automatic conversion between
the two unit systems. In addition, the type Ogre: : Angle represents an angle
in the current “default” angle unit. The programmer can define whether the
default will be radians or degrees when the OGRE application first starts
up.

Perhaps surprisingly, OGRE does not provide a number of sized atomic
data types that are commonplace in other game engines. For example, it de-
fines no signed 8-, 16-, or 64-bit integral types. If you are writing a game en-
gine on top of OGRE, you will probably find yourself defining these types
manually at some point.

3.2.1.6. Multi-Byte Values and Endianness

Values that are larger than eight bits (one byte) wide are called multi-byte quan-
tities. They’re commonplace on any software project that makes use of integers
and floating-point values that are 16 bits or wider. For example, the integer
value 4660 = 0x1234 is represented by the two bytes 0x12 and 0x34. We call
0x12 the most significant byte (MSB) and 0x34 the least significant byte (LSB).
In a 32-bit value, such as 0OxABCD1234, the MSB is 0OxAB and the LSB is 0x34.
The same concepts apply to 64-bit integers and to 32- and 64-bit floating-point
values as well.

Multi-byte integers can be stored into memory in one of two ways, and
different microprocessors may differ in their choice of storage method (see
Figure 3.6).
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U32 value = 0xABCD1234;
U8* pBytes = (U8%*)&value;

Big-endian Littleendian
pBytes + 0x0 O0xAB pBytes + 0x0 0x34
pBytes + 0x1 OxCD pBytes + 0x1 0x12
pBytes + 0x2 0x12 pBytes + 0x2 OxCD
pBytes + 0x3 0x34 pBytes + 0x3 0xAB

Figure 3.6. Big- and little-endian representations of the value OXABCDI234.

e Little-endian. If a microprocessor stores the least significant byte (LSB) of
a multi-byte value at a lower memory address than the most significant
byte (MSB), we say that the processor is [ittle-endian. On a little-endian
machine, the number 0XABCD1234 would be stored in memory using
the consecutive bytes 0x34, 0x12, 0xCD, 0xAB.

e Big-endian. If a microprocessor stores the most significant byte (MSB) of
a multi-byte value at a lower memory address than the least significant
byte (LSB), we say that the processor is big-endian. On a big-endian ma-
chine, the number 0OxABCD1234 would be stored in memory using the
bytes 0xAB, 0xCD, 0x12, 0x34.

Most programmers don't need to think much about endianness. How-
ever, when you're a game programmer, endianness can become a bit of a thorn
in your side. This is because games are usually developed on a PC or Linux ma-
chine running an Intel Pentium processor (which is little-endian), but run on
a console such as the Wii, Xbox 360, or PLAYSTATION 3 —all three of which
utilize a variant of the PowerPC processor (which can be configured to use
either endianness, but is big-endian by default). Now imagine what happens
when you generate a data file for consumption by your game engine on an
Intel processor and then try to load that data file into your engine running on
a PowerPC processor. Any multi-byte value that you wrote out into that data
file will be stored in little-endian format. But when the game engine reads the
file, it expects all of its data to be in big-endian format. The result? You'll write
0xABCD1234, but you'll read 0x3412CDAB, and that’s clearly not what you
intended!

There are at least two solutions to this problem.

1. You could write all your data files as text and store all multi-byte num-
bers as sequences of decimal digits, one character (one byte) per digit.
This would be an inefficient use of disk space, but it would work.
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2. You can have your tools endian-swap the data prior to writing it into a
binary data file. In effect, you make sure that the data file uses the endi-
anness of the target microprocessor (the game console), even if the tools
are running on a machine that uses the opposite endianness.

Integer Endian-Swapping

Endian-swapping an integer is not conceptually difficult. You simply start at
the most significant byte of the value and swap it with the least significant
byte; you continue this process until you reach the half-way point in the value.

For example, 0xA7891023 would become 0x231089A7.

The only tricky part is knowing which bytes to swap. Let’s say you're writ-
ing the contents of a C struct or C++ class from memory out to a file. To
properly endian-swap this data, you need to keep track of the locations and
sizes of each data member in the struct and swap each one appropriately

based on its size. For example, the structure

struct Example

{

U32 m aj;
Ule m _b;
U32 m cC;

Vi

might be written out to a data file as follows:

void writeExampleStruct (Example& ex,

{

Stream& stream)

stream.writeU32 (swapU32(ex.m a)) ;
stream.writeUlé6 (swapUl6 (ex.m b)) ;
stream.writeU32 (swapU32 (ex.m c)) ;

}

and the swap functions might be defined like this:

inline Ul6 swapUlé6 (Ul6 value)

{

return ((value & 0xO00FF)
| ((value & O0xFF00)

}

inline U32 swapU32 (U32 value)

((value
| ((value
((value
((value

0x000000FF
0x0000FFO0O0
0x00FFO0000
0xXFF000000

)
)
)
)

<< 8)
>> 8);

<<
<<
>>
>>

24)
8)
8)
24) ;
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You cannot simply cast the Example object into an array of bytes and
blindly swap the bytes using a single general-purpose function. We need to
know both which data members to swap and how wide each member is; and each
data member must be swapped individually.

Floating-Point Endian-Swapping

Let’s take a brief look at how floating-point endian-swapping differs from in-
teger endian-swapping. As we’'ve seen, an IEEE-754 floating-point value has
a detailed internal structure involving some bits for the mantissa, some bits
for the exponent, and a sign bit. However, you can endian-swap it just as if it
were an integer, because bytes are bytes. You can reinterpret floats as integers
by using C++'s reinterpret_cast operator on a pointer to the float; this is
known as type punning. But punning can lead to optimization bugs when strict
aliasing is enabled. (See http://cocoawithlove.com/2008/04/using-pointers-to-
recast-in-c-is-bad.html for an excellent description of this problem.) One con-
venient approach is to use a union, as follows:

union U32F32

{

U32 m_asU32;
F32 m_asF32;

Vi

inline F32 swapF32(F32 value)

{

U32F32 u;
u.m_asF32 = value;

// endian-swap as integer
u.m_asU32 swapU32(u.m_asU32);

returm.m asF32;

3.2.2. Declarations, Definitions, and Linkage

3.2.2.1. Translation Units Revisited

As we saw in Chapter 2, a C or C++ program is comprised of translation units.
The compiler translates one .cpp file at a time, and for each one it generates
an output file called an object file (.0 or .obj). A .cpp file is the smallest unit of
translation operated on by the compiler; hence, the name “translation unit.”
An object file contains not only the compiled machine code for all of the func-
tions defined in the .cpp file, but also all of its global and static variables. In ad-
dition, an object file may contain unresolved references to functions and global
variables defined in other .cpp files.
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foo.cpp

[» extern U32 gGlobalC ;

U32 gGlobalA ;

void £ ()
/]
gGlobalC = 5.3f;
/]

}

bar.cpp

™ extern U32 gGlobalA ;
—» extern U32 gGlobalB ;
extern void £ () ;

F32 gGlobalC ;

void g ()

\//
U32 a

Figure 3.7. Unresolved external references in two translation units.

foo.cpp

extern U32 gGlobalC ;

U32 gGlobalA ;

gGlobalC = 5.3f;
/...

e

bar.cpp

extern U32 gGlobalA ;
extern U32 gGlobalB ;
extern void £ () ;

void g ()

{

™ /...

U32 a = gGlobalA ;
/..

—£0

i

N/

gGlobalB = 0;
1

/]

Figure 3.8. Fully resolved external references after successful linking.

- Multiply-Defined Symbol -

spam.cpp

Unresolved Reference

foo.cpp bar.cpp
extern U32 gGlobalC ; etern U 22 gClobaln;
extern U32 gGlobalB ;
U32 gGlobalA ; extern void £ () ;
¥
???
~
N
~
S
AT v
NU32 a = gGlobala ;7
gGlobalC = 5.3f; 7
gGlobalD = -2;\ 20
/o . P
: N gGlobalB = 0;
AN }
R Y
?2??

Figure 3.9. The two most common linker errors.
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The compiler only operates on one translation unit at a time, so whenever
it encounters a reference to an external global variable or function, it must
“go on faith” and assume that the entity in question really exists, as shown
in Figure 3.7. It is the linker’s job to combine all of the object files into a final
executable image. In doing so, the linker reads all of the object files and at-
tempts to resolve all of the unresolved cross-references between them. If it is
successful, an executable image is generated containing all of the functions,
global variables, and static variables, with all cross-translation-unit references
properly resolved. This is depicted in Figure 3.8.

The linker’s primary job is to resolve external references, and in this ca-
pacity it can generate only two kinds of errors:

1. The target of an extern reference might not be found, in which case the
linker generates an “unresolved symbol” error.

2. The linker might find more than one variable or function with the same
name, in which case it generates a “multiply defined symbol” error.

These two situations are shown in Figure 3.9.
3.2.2.2. Declaration versus Definition

In the C and C++ languages, variables and functions must be declared and de-
fined before they can be used. It is important to understand the difference be-
tween a declaration and a definition in C and C++.

e Adeclaration is a description of a data object or function. It provides the
compiler with the name of the entity and its data type or function signature
(i.e., return type and argument type(s)).

e A definition, on the other hand, describes a unique region of memory in
the program. This memory might contain a variable, an instance of a
struct or class, or the machine code of a function.

In other words, a declaration is a reference to an entity, while a definition is the
entity itself. A definition is always a declaration, but the reverse is not always
the case—it is possible to write a pure declaration in C and C++ that is not a
definition.

Functions are defined by writing the body of the function immediately af-
ter the signature, enclosed in curly braces:

foo.cpp

// definition of the max() function
int max(int a, int b)

{
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return (a > b) ? a : b;

}

// definition of the min() function
int min(int a, int b)

{
}

A pure declaration can be provided for a function so that it can be used in
other translation units (or later in the same translation unit). This is done by
writing a function signature followed by a semicolon, with an optional prefix

return (a <= b) ? a : b;

of extern:
foo.h
extern int max(int a, int b); // a function declaration
int min(int a, int b); // also a declaration (the
// ‘extern’ is optional/
// assumed)

Variables and instances of classes and structs are defined by writing the
data type followed by the name of the variable or instance, and an optional
array specifier in square brackets:

foo.cpp

// All of these are variable definitions:
U32 gGloballInteger = 5;

F32 gGlobalFloatArray[1l6];

MyClass gGlobalInstance;

A global variable defined in one translation unit can optionally be declared for
use in other translation units by using the extern keyword:

foo.h

// These are all pure declarations:
extern U332 gGloballInteger;

extern F32 gGlobalFloatArray[16];
extern MyClass gGloballInstance;

Multiplicity of Declarations and Definitions

Not surprisingly, any particular data object or function in a C/C++ program
can have multiple identical declarations, but each can have only one defini-
tion. If two or more identical definitions exist in a single translation unit,
the compiler will notice that multiple entities have the same name and
flag an error. If two or more identical definitions exist in different transla-
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tion units, the compiler will not be able to identify the problem, because
it operates on one translation unit at a time. But in this case, the linker
will give us a “multiply defined symbol” error when it tries to resolve the
cross-references.

Definitions in Header Files and Inlining

It is usually dangerous to place definitions in header files. The reason for this
should be pretty obvious: If a header file containing a definition is #included
into more than one .cpp file, it’s a sure-fire way of generating a “multiply de-
fined symbol” linker error.

Inline function definitions are an exception to this rule, because each in-
vocation of an inline function gives rise to a brand new copy of that function’s
machine code, embedded directly into the calling function. In fact, inline func-
tion definitions must be placed in header files if they are to be used in more
than one translation unit. Note that it is not sufficient to tag a function declara-
tion with the inline keyword in a .k file and then place the body of that func-
tion in a .cpp file. The compiler must be able to “see” the body of the function
in order to inline it. For example:

foo.h

// This function definition will be inlined properly.
inline int max(int a, int b)

{

return (a > b) ? a : b;

}

// This declaration cannot be inlined because the
// compiler cannot “see” the body of the function.
inline int min(int a, int b);

foo.cpp
// The body of min() is effectively “hidden” from the
// compiler, and so it can ONLY be inlined within

// foo.cpp.
int min(int a, int b)

{
}

return (a <= b) ? a : b;

The inline keyword is really just a hint to the compiler. It does a cost/
benefit analysis of each inline function, weighing the size of the function’s
code versus the potential performance benefits of inling it, and the compiler
gets the final say as to whether the function will really be inlined or not. Some
compilers provide syntax like _ forceinline, allowing the programmer
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to bypass the compiler’s cost/benefit analysis and control function inlining
directly.

3.2.2.3. Linkage

Every definition in C and C++ has a property known as linkage. A definition
with external linkage is visible to and can be referenced by translation units
other than the one in which it appears. A definition with internal linkage can
only be “seen” inside the translation unit in which it appears and thus cannot
be referenced by other translation units. We call this property linkage because
it dictates whether or not the linker is permitted to cross-reference the entity
in question. So, in a sense, linkage is the translation unit’s equivalent of the
public: and private: keywords in C++ class definitions.

By default, definitions have external linkage. The static keyword is
used to change a definition’s linkage to internal. Note that two or more identi-
cal static definitions in two or more different .cpp files are considered to be
distinct entities by the linker (just as if they had been given different names),
so they will not generate a “multiply defined symbol” error. Here are some
examples:

foo.cpp

// This variable can be used by other .cpp files
// (external linkage) .
U32 gExternalVariable;

// This variable is only usable within foo.cpp (internal
// linkage) .
static U32 gInternalVariable;

// This function can be called from other .cpp files
// (external linkage) .
void externalFunction/()

{
}

// This function can only be called from within foo.cpp
// (internal linkage) .
static void internalFunction ()

{
}

//

//

bar.cpp

// This declaration grants access to foo.cpp’s variable.
extern U32 gExternalVariable;
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// This ‘gInternalVariable’ is distinct from the one
// defined in foo.cpp - no error. We could just as

// well have named it gInternalVariableForBarCpp - the
// net effect is the same.

static U32 gInternalVariable;

// This function is distinct from foo.cpp’s

// version - no error. It acts as if we had named it
// internalFunctionForBarCpp () .

static void internalFunction ()

{
}

//

// ERROR - multiply defined symbol!
void externalFunction/()

{
}

//

Technically speaking, declarations don’t have a linkage property at all, be-
cause they do not allocate any storage in the executable image; therefore, there
is no question as to whether or not the linker should be permitted to cross-
reference that storage. A declaration is merely a reference to an entity defined
elsewhere. However, it is sometimes convenient to speak about declarations
as having internal linkage, because a declaration only applies to the transla-
tion unit in which it appears. If we allow ourselves to loosen our terminology
in this manner, then declarations always have internal linkage—there is no
way to cross-reference a single declaration in multiple .cpp files. (If we put a
declaration in a header file, then multiple .cpp files can “see” that declaration,
but they are in effect each getting a distinct copy of the declaration, and each
copy has internal linkage within that translation unit.)

This leads us to the real reason why inline function definitions are permit-
ted in header files: It is because inline functions have internal linkage by de-
fault, just as if they had been declared static. If multiple .cpp files #include
a header containing an inline function definition, each translation unit gets a
private copy of that function’s body, and no “multiply defined symbol” errors
are generated. The linker sees each copy as a distinct entity.

3.23. C/C++ Memory Layout

A program written in C or C++ stores its data in a number of different places in
memory. In order to understand how storage is allocated and how the various
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types of C/C++ variables work, we need to understand the memory layout of
a C/C++ program.

3.2.3.1. Executable Image

When a C/C++ program is built, the linker creates an executable file. Most UN-
IX-like operating systems, including many game consoles, employ a popular
executable file format called the executable and linking format (ELF). Executable
files on those systems therefore have an .elf extension. The Windows execut-
able format is similar to the ELF format; executables under Windows have
an .exe extension. Whatever its format, the executable file always contains a
partial image of the program as it will exist in memory when it runs. I say a
“partial” image because the program generally allocates memory at runtime
in addition to the memory laid out in its executable image.

The executable image is divided into contiguous blocks called segments
or sections. Every operating system lays things out a little differently, and the
layout may also differ slightly from executable to executable on the same op-
erating system. But the image is usually comprised of at least the following
four segments:

1. Text segment. Sometimes called the code segment, this block contains ex-
ecutable machine code for all functions defined by the program.

2. Data segment. This segment contains all initialized global and static vari-
ables. The memory needed for each global variable is laid out exactly
as it will appear when the program is run, and the proper initial values
are all filled in. So when the executable file is loaded into memory, the
initialized global and static variables are ready to go.

3. BSS segment. “BSS” is an outdated name which stands for “block started
by symbol.” This segment contains all of the uninitialized global and stat-
ic variables defined by the program. The C and C++ languages explicitly
define the initial value of any uninitialized global or static variable to be
zero. But rather than storing a potentially very large block of zeros in
the BSS section, the linker simply stores a count of how many zero bytes
are required to account for all of the uninitialized globals and statics in
the segment. When the executable is loaded into memory, the operating
system reserves the requested number of bytes for the BSS section and
fills it with zeros prior to calling the program’s entry point (e.g. main ()
or WinMain ()).

4. Read-only data segment. Sometimes called the rodata segment, this seg-
ment contains any read-only (constant) global data defined by the pro-
gram. For example, all floating-point constants (e.g., const float kPi
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= 3.141592f;) and all global object instances that have been declared
with the const keyword (e.g., const Foo gReadOnlyFoo; ) reside in
this segment. Note that integer constants (e.g., const int kMaxMon-
sters = 255; ) are often used as manifest constants by the compiler,
meaning that they are inserted directly into the machine code wherever
they are used. Such constants occupy storage in the text segment, but
they are not present in the read-only data segment.

Global variables, i.e., variables defined at file scope outside any function or
class declaration, are stored in either the data or BSS segments, depending on
whether or not they have been initialized. The following global will be stored
in the data segment, because it has been initialized:

foo.cpp
F32 gInitializedGlobal = -2.0f;

and the following global will be allocated and initialized to zero by the operat-
ing system, based on the specifications given in the BSS segment, because it
has not been initialized by the programmer:

foo.cpp
F32 gUninitializedGlobal;

We've seen that the static keyword can be used to give a global vari-
able or function definition internal linkage, meaning that it will be “hidden”
from other translation units. The static keyword can also be used to declare
a global variable within a function. A function-static variable is lexically scoped
to the function in which it is declared (i.e., the variable’s name can only be
“seen” inside the function). It is initialized the first time the function is called
(rather than before main () is called as with file-scope statics). But in terms of
memory layout in the executable image, a function-static variable acts identi-
cally to a file-static global variable—it is stored in either the data or BSS seg-
ment based on whether or not it has been initialized.

void readHitchhikersGuide (U32 book)

{

static U32 sBooksInTheTrilogy = 5; // data segment
static U32 sBooksRead; // BSS segment
//

}
3.2.3.2. Program Stack

When an executable program is loaded into memory and run, the operating
system reserves an area of memory for the program stack. Whenever a function
is called, a contiguous area of stack memory is pushed onto the stack—we call
this block of memory a stack frame. If function a () calls another function b (),
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anew stack frame for b () is pushed on top of a () ’s frame. When b () returns,
its stack frame is popped, and execution continues wherever a () left off.
A stack frame stores three kinds of data:

1. It stores the return address of the calling function, so that execution may
continue in the calling function when the called function returns.

2. The contents of all relevant CPU registers are saved in the stack frame.
This allows the new function to use the registers in any way it sees fit,
without fear of overwriting data needed by the calling function. Upon
return to the calling function, the state of the registers is restored so that
execution of the calling function may resume. The return value of the
called function, if any, is usually left in a specific register so that the call-
ing function can retrieve it, but the other registers are restored to their
original values.

3. The stack frame also contains all local variables declared by the func-
tion; these are also known as automatic variables. This allows each dis-
tinct function invocation to maintain its own private copy of every local
variable, even when a function calls itself recursively. (In practice, some
local variables are actually allocated to CPU registers rather than being
stored in the stack frame but, for the most part, such variables operate as
if they were allocated within the function’s stack frame.) For example:

function a() is called function b() is called function c() is called
return address return address return address
saved CPU registers saved CPU registers saved CPU registers
a()s a()s a()s
stack stack stack
frame frame frame
alocalsA1[5] alocalsA1[5] alocalsA1[5]
localA2 localA2 localA2
return address return address
saved CPU registers saved CPU registers
b()s b()s
stack stack
localB1 frame localB 1 frame
localB2 localB2
return address
c()s
saved CPU registers stack
frame
localC 1

Figure 3.10. Stack frames.
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void someFunction ()

{

U32 anInteger;
//
}

Pushing and popping stack frames is usually implemented by adjusting
the value of a single register in the CPU, known as the stack pointer. Figure
3.10 illustrates what happens when the functions shown below are executed.

void c ()

{

U32 localCil;

//
}
F32 b{()
{
F32 localBl;
I32 localB2;
//
c(); // call function c{()
//
return localBl;
}
void af()

{

U32 alLocalsAl[5];

//
F32 localA2 = b(); // call function b{()

//
}

When a function containing automatic variables returns, its stack frame
is abandoned and all automatic variables in the function should be treated as
if they no longer exist. Technically, the memory occupied by those variables
is still there in the abandoned stack frame —but that memory will very likely
be overwritten as soon as another function is called. A common error involves
returning the address of a local variable, like this:
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U32* getMeaningOfLife ()

{

U32 anlInteger = 42;
return &anInteger;

}

You might get away with this if you use the returned pointer immediately and
don’t call any other functions in the interim. But more often than not, this kind
of code will crash—in ways that can be difficult to debug.

3.2.3.3. Dynamic Allocation Heap

Thus far, we've seen that a program’s data can be stored as global or static
variables or as local variables. The globals and statics are allocated within the
executable image, as defined by the data and BSS segments of the executable
file. The locals are allocated on the program stack. Both of these kinds of stor-
age are statically defined, meaning that the size and layout of the memory
is known when the program is compiled and linked. However, a program’s
memory requirements are often not fully known at compile time. A program
usually needs to allocate additional memory dynamically.

To allow for dynamic allocation, the operating system maintains a block
of memory that can be allocated by a running program by calling malloc ()
and later returned to the pool for use by other programs by calling free ().
This memory block is known as heap memory, or the free store. When we al-
locate memory dynamically, we sometimes say that this memory resides on
the heap.

In C++, the global new and delete operators are used to allocate and free
memory to and from the heap. Be wary, however—individual classes may
overload these operators to allocate memory in custom ways, and even the
global new and delete operators can be overloaded, so you cannot simply as-
sume that new is always allocating from the heap.

We will discuss dynamic memory allocation in more depth in Chap-
ter 6. For additional information, see http://en.wikipedia.org/wiki/Dynamic_
memory_allocation.

3.2.4. Member Variables

C structs and C++ classes allow variables to be grouped into logical units.
It’s important to remember that a class or struct declaration allocates no
memory. It is merely a description of the layout of the data—a cookie cutter
which can be used to stamp out instances of that struct or class later on.
For example:
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struct Foo // struct declaration

{

U32 mUnsignedvValue;
F32 mFloatValue;
bool mBooleanValue;

Once a struct or class has been declared, it can be allocated (defined) in
any of the ways that an atomic data type can be allocated, for example,
e as an automatic variable, on the program stack;

void someFunction ()

{

Foo localFoo;
//
}

e asa global, file-static or function-static;
Foo gFoo;

static Foo sFoo;

void someFunction ()

static Foo sLocalFoo;
//

e dynamically allocated from the heap. In this case, the pointer or refer-
ence variable used to hold the address of the data can itself be allocated
as an automatic, global, static, or even dynamically.

Foo* gpFoo = NULL; // global pointer to a Foo

void someFunction ()

// allocate a Foo instance from the heap
gpFoo = new Foo;

//

// allocate another Foo, assign to local
// pointer
Foo* pAnotherFoo = new Foo;

//

// allocate a POINTER to a Foo from the heap
Foo** ppFoo = new Foo¥*;
(*ppFoo) = pAnotherFoo;
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3.2.4.1. Class-Static Members

As we've seen, the static keyword has many different meanings depending
on context:

e  When used at file scope, static means “restrict the visibility of this
variable or function so it can only be seen inside this .cpp file.”

e When used at function scope, static means “this variable is a global,
not an automatic, but it can only be seen inside this function.”

e When used inside a struct or class declaration, static means “this
variable is not a regular member variable, but instead acts just like a
global.”

Notice that when static is used inside a class declaration, it does not
control the visibility of the variable (as it does when used at file scope)—
rather, it differentiates between regular per-instance member variables
and per-class variables that act like globals. The wvisibility of a class-static
variable is determined by the use of public:, protected: or private:
keywords in the class declaration. Class-static variables are automatically
included within the namespace of the class or struct in which they are
declared. So the name of the class or struct must be used to disambigu-
ate the variable whenever it is used outside that class or struct (e.g.,
Foo: :sVarName).

Like an extern declaration for a regular global variable, the declaration
of a class-static variable within a class allocates no memory. The memory for
the class-static variable must be defined in a .cpp file. For example:

foo.h

class Foo

{

public:
static F32 sClassStatic; // allocates no
// memory !
Vi
foo.cpp
F32 Foo::sClassStatic = -1.0f; // define memory and
// init

3.2.5. Object Layout in Memory

It’s useful to be able to visualize the memory layout of your classes and
structs. This is usually pretty straightforward —we can simply draw a box
for the struct or class, with horizontal lines separating data members. An
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10%0 | mUnsignedvalue example of such a diagram for the struct Foo listed below is shown in Fig-
+0x4 mFloatValue ure 3.11.
+0x8 mSignedValue
: struct Foo
Figure 3.1l. Memory {
layout of a simple , dvalue:
Struct. U32 mUnsignedValue;
F32 mFloatValue;
I32 mSignedvValue;

+0x0 mUnsignedValue

+0x4 mFloatValue

+0x8 | mBogleanValue

Figure 3.12. A memory
layout using width to
indicate member sizes.

+0x0 muU1
+0x4 mF2
+0x8 | mB3 ‘
+0xC ml4
+0x10 | mB5 ‘
+0x14 mP6

Figure 3.13. Inefficient
struct packing due to
mixed data member
sizes.

The sizes of the data members are important and should be represented
in your diagrams. This is easily done by using the width of each data member
to indicate its size in bits—i.e., a 32-bit integer should be roughly four times
the width of an 8-bit integer (see Figure 3.12).

struct Bar

{

U32 mUnsignedValue;
F32 mFloatValue;
bool mBooleanValue; // diagram assumes this is 8 bits

bi
3.2.5.1. Alignment and Packing

As we start to think more carefully about the layout of our structs and classes
in memory, we may start to wonder what happens when small data members
are interspersed with larger members. For example:

struct InefficientPacking

{

U32 mU1l; // 32 bits

F32 mF2; // 32 bits
U8 mB3; // 8 bits

I32 mI4; // 32 bits
bool mB5 ; // 8 bits
char* mP6; // 32 bits

Vi

You might imagine that the compiler simply packs the data members into
memory as tightly as it can. However, this is not usually the case. Instead,
the compiler will typically leave “holes” in the layout, as depicted in Fig-
ure 3.13. (Some compilers can be requested not to leave these holes by us-
ing a preprocessor directive like #pragma pack, or via command-line op-
tions; but the default behavior is to space out the members as shown in Fig-
ure 3.13.)
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Why does the compiler leave these “holes?” The reason lies in the fact that
every data type has a natural alignment which must be respected in order to
permit the CPU to read and write memory effectively. The alignment of a data
object refers to whether its address in memory is a multiple of its size (which is
generally a power of two):

e An object with one-byte alignment resides at any memory address.

e An object with two-byte alignment resides only at even addresses (i.e.,
addresses whose least significant nibble is 0x0, 0x2, 0x4, 0x8, 0xA, 0xC,
or OxE).

e An object with four-byte alignment resides only at addresses that are a
multiple of four (i.e., addresses whose least significant nibble is 0x0, 0x4,
0x8, or 0xC).

e A l6-byte aligned object resides only at addresses that are a multiple of
16 (i.e., addresses whose least significant nibble is 0x0).

Alignment is important because many modern processors can actually
only read and write properly aligned blocks of data. For example, if a program
requests that a 32-bit (four-byte) integer be read from address 0x6A341174, the
memory controller will load the data happily because the address is four-byte
aligned (in this case, its least significant nibble is 0x4). However, if a request is
made to load a 32-bit integer from address 0x6A341173, the memory control-
ler now has to read two four-byte blocks: the one at 0x6A341170 and the one
at 0x6A341174. It must then mask and shift the two parts of the 32-bit integer
and logically OR them together into the destination register on the CPU. This
is shown in Figure 3.14.

Some microprocessors don’t even go this far. If you request a read or write
of unaligned data, you might just get garbage. Or your program might just
crash altogether! (The PlayStation 2 is a notable example of this kind of intol-
erance for unaligned data.)

Different data types have different alignment requirements. A good rule
of thumb is that a data type should be aligned to a boundary equal to the
width of the data type in bytes. For example, 32-bit values generally have a
four-byte alignment requirement, 16-bit values should be two-byte aligned,
and 8-bit values can be stored at any address (one-byte aligned). On CPUs that
support SIMD vector math, the SIMD registers each contain four 32-bit floats,
for a total of 128 bits or 16 bytes. And as you would guess, a four-float SIMD
vector typically has a 16-byte alignment requirement.

This brings us back to those “holes” in the layout of struct Ineffi-
cientPacking shown in Figure 3.13. When smaller data types like 8-bit bools
are interspersed with larger types like 32-bit integers or £loats in a structure
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+0x0

+0x4

mF2

+0x8

ml4

+0xC

mP6

+0x10 | mB3

Figure 3.15. More ef-

ficient

packing

(pad)

by

grouping small mem-
bers together.

Aligned read from Unaligned read from
0x6A341174 0x6A341173
0x6A341170 0x6A341170 un-
0x6A341174 alignedValue 0x6A341174 -alignedValue
0x6A341178 0x6A341178
# un-
CPU -alignedValue )

-alignedValue

CPU

Figure 3.14. Aligned and unaligned reads of a 32-bit integer.

or class, the compiler introduces padding (holes) in order to ensure that every-
thing is properly aligned. It's a good idea to think about alignment and pack-
ing when declaring your data structures. By simply rearranging the members
of struct InefficientPacking from the example above, we can eliminate
some of the wasted padding space, as shown below and in Figure 3.15:

struct MoreEfficientPacking

{

U32 mU1l; // 32 bits (4-byte aligned)

F32 mF2 ; // 32 bits (4-byte aligned)

I32 mI4; // 32 bits (4-byte aligned)
char* mP6; // 32 bits (4-byte aligned)
Us mB3; // 8 bits (1-byte aligned)
bool mB5 ; // 8 bits (1-byte aligned)

}i

You'll notice in Figure 3.15 that the size of the structure as a whole is
now 20 bytes, not 18 bytes as we might expect, because it has been padded
by two bytes at the end. This padding is added by the compiler to ensure
proper alignment of the structure in an array context. That is, if an array of
these structs is defined and the first element of the array is aligned, then the
padding at the end guarantees that all subsequent elements will also be aligned
properly.

The alignment of a structure as a whole is equal to the largest alignment
requirement among its members. In the example above, the largest mem-
ber alignment is four-byte, so the structure as a whole should be four-byte
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aligned. I usually like to add explicit padding to the end of my structs, to make
the wasted space visible and explicit, like this:

struct BestPacking

{

U32 mU1; // 32 bits (4-byte aligned)
F32 mF2 ; // 32 bits (4-byte aligned)
I32 mI4; // 32 bits (4-byte aligned)
char* mP6 ; // 32 bits (4-byte aligned)
Us mB3; // 8 bits (1-byte aligned)
bool mB5 ; // 8 bits (1-byte aligned)
Us _pad[2]; // explicit padding

Vi
3.2.5.2. Memory Layout of C++ Classes

Two things make C++ classes a little different from C structures in terms of
memory layout: inheritance and virtual functions.

When class B inherits from class A, B’s data members simply appear im-
mediately after A’s in memory, as shown in Figure 3.16. Each new derived
class simply tacks its data members on at the end, although alignment re-
quirements may introduce padding between the classes. (Multiple inheritance
does some whacky things, like including multiple copies of a single base class
in the memory layout of a derived class. We won't cover the details here, be-
cause game programmers usually prefer to avoid multiple inheritance alto-
gether anyway.)

If a class contains or inherits one or more virtual functions, then four ad-
ditional bytes (or however many bytes a pointer occupies on the target hard-
ware) are added to the class layout, typically at the very beginning of the
class’ layout. These four bytes are collectively called the virtual table pointer
or vpointer, because they contain a pointer to a data structure known as the
virtual function table or vtable. The vtable for a particular class contains pointers
to all the virtual functions that it declares or inherits. Each concrete class has
its own virtual table, and every instance of that class has a pointer to it, stored
in its vpointer.

The virtual function table is at the heart of polymorphism, because it al-
lows code to be written that is ignorant of the specific concrete classes it is deal-
ing with. Returning to the ubiquitous example of a Shape base class with de-
rived classes for Circle, Rectangle, and Triangle, let’s imagine that Shape
defines a virtual function called Draw (). The derived classes all override
this function, providing distinct implementations named Circle: :Draw(),
Rectangle: :Draw(), and Triangle::Draw (). The virtual table for any
class derived from Shape will contain an entry for the Draw () function, but
that entry will point to different function implementations, depending on the

+0x0

+sizeof(A)

B

Figure 3.16. Effect of
inheritance on class

layout.
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pShape 1 Shape : : SetId (int id)
{

stance of Circle Circle’s Virtual Table }
+0x00 vtable pointer P> pointer to Setld ()
+0x04 Shape::m_id pointer to Draw ()
+0x08 Circle::m_center \A
Circle : :Draw ()
+0x14 Circle::m_radius
// code to draw a Circle

Figure 3.17. pShapel points to an instance of class Circle.

concrete class. Circle’s vtable will contain a pointer to Circle: :Draw(),
while Rectangle’s virtual table will point to Rectangle: :Draw (), and Tri-
angle’s vtable will point to Triangle: :Draw (). Given an arbitrary point-
er to a Shape (Shape* pShape), the code can simply dereference the vtable
pointer, look up the Draw () function’s entry in the vtable, and call it. The
result will be to call Circle: :Draw() when pShape points to an instance
of Circle, Rectangle: :Draw () when pShape points to a Rectangle, and
Triangle: :Draw () when pShape points to a Triangle.

These ideas are illustrated by the following code excerpt. Notice that the
base class Shape defines two virtual functions, Set1d () and Draw (), the lat-
ter of which is declared to be pure virtual. (This means that Shape provides
no default implementation of the Draw () function, and derived classes must
override it if they want to be instantiable.) Class Circle derives from Shape,
adds some data members and functions to manage its center and radius, and
overrides the Draw () function; this is depicted in Figure 3.17. Class Triangle
also derives from Shape. It adds an array of Vector3 objects to store its three
vertices and adds some functions to get and set the individual vertices. Class
Triangle overrides Draw () as we'd expect, and for illustrative purposes it
also overrides SetId (). The memory image generated by the Triangle class
is shown in Figure 3.18.

class Shape

{
public:
virtual void SetId(int id) { m_id = id; }
int GetId() const { return m_id; }
virtual void Draw() = 0; // pure virtual - no impl.
private:
int m_id;

Vi
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pShape 2 ‘

Triangle’s Virtual Table

\Qin:e of Triangle

Triangle ::SetId (int id)

{

Shape ::SetId (id) ;

// do additional work
// specific to Triangles

+0x00 vtable pointer ' pointer to Setld () }
+0x04 Shape::m_id pointer to Draw ()
+0x08 Triangle ::m_vtx[0] \/
Triangle ::Draw ()
+0x14 Triangle ::m_vtx[1] {
// code to draw a Triangle
+0x20 | Triangle :m_vix[2] ¥

Figure 3.18. pShape2 points to an instance of class Triangle

class Circle

{

public Shape

{ m_center=c; }

- r; )

public:
void SetCenter (const Vector3& c)
Vector3  GetCenter() const { return m center; }
void SetRadius (float r) { m_radius
float

virtual void Draw ()

{
}

// code to draw a circle

private:
Vector3 m_center;
float m_radius;

Vi

class Triangle

{

public Shape

public:
void SetVertex (int i,
Vector3 GetVertex (int 1)

{

virtual void Draw()

// code to draw a triangle

virtual void SetId(int id)

Shape::SetId(id) ;

GetRadius () const { return m radius; }

const Vector3& v);
const { return m vtx[i]; }
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// do additional work specific to Triangles...

}

private:
Vector3 m vtx[3];

Vi

void main (int, char**)

{
Shape* pShapel = new Circle;
Shape* pShape2 = new Triangle;

//

pShapel->Draw () ;
pShape2->Draw () ;

//

3.3. Catching and Handling Errors

There are a number of ways to catch and handle error conditions in a game
engine. As a game programmer, it’s important to understand these different
mechanisms, their pros and cons, and when to use each one.

3.3.1. Types of Errors

In any software project there are two basic kinds of error conditions: user er-
rors and programmer errors. A user error occurs when the user of the program
does something incorrect, such as typing an invalid input, attempting to open
a file that does not exist, etc. A programmer error is the result of a bug in the
code itself. Although it may be triggered by something the user has done, the
essence of a programmer error is that the problem could have been avoided if
the programmer had not made a mistake, and the user has a reasonable expec-
tation that the program should have handled the situation gracefully.

Of course, the definition of “user” changes depending on context. In the
context of a game project, user errors can be roughly divided into two catego-
ries: errors caused by the person playing the game and errors caused by the
people who are making the game during development. It is important to keep
track of which type of user is affected by a particular error and handle the er-
ror appropriately.
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There’s actually a third kind of user—the other programmers on your
team. (And if you are writing a piece of game middleware software, like
Havok or OpenGL, this third category extends to other programmers all over
the world who are using your library.) This is where the line between user er-
rors and programmer errors gets blurry. Let’s imagine that programmer A writes
a function £ (), and programmer B tries to call it. If B calls £ () with invalid
arguments (e.g., a NULL pointer, or an out-of-range array index), then this
could be seen as a user error by programmer A, but it would be a program-
mer error from B’s point of view. (Of course, one can also argue that program-
mer A should have anticipated the passing of invalid arguments and should
have handled them gracefully, so the problem really is a programmer error,
on A’s part.) The key thing to remember here is that the line between user and
programmer can shift depending on context—it is rarely a black-and-white
distinction.

3.3.2. Handling Errors

When handling errors, the requirements differ significantly between the two
types. It is best to handle user errors as gracefully as possible, displaying some
helpful information to the user and then allowing him or her to continue
working —or in the case of a game, to continue playing. Programmer errors,
on the other hand, should not be handled with a graceful “inform and contin-
ue” policy. Instead, it is usually best to halt the program and provide detailed
low-level debugging information, so that a programmer can quickly identify
and fix the problem. In an ideal world, all programmer errors would be caught
and fixed before the software ships to the public.

3.3.2.1. Handling Player Errors

When the “user” is the person playing your game, errors should obviously be
handled within the context of gameplay. For example, if the player attempts to
reload a weapon when no ammo is available, an audio cue and/or an anima-
tion can indicate this problem to the player without taking him or her “out of
the game.”

3.3.2.2. Handling Developer Errors

When the “user” is someone who is making the game, such as an artist, ani-
mator or game designer, errors may be caused by an invalid asset of some sort.
For example, an animation might be associated with the wrong skeleton, or a
texture might be the wrong size, or an audio file might have been sampled at
an unsupported sample rate. For these kinds of developer errors, there are two
competing camps of thought.
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On the one hand, it seems important to prevent bad game assets from
persisting for too long. A game typically contains literally thousands of assets,
and a problem asset might get “lost,” in which case one risks the possibility of
the bad asset surviving all the way into the final shipping game. If one takes
this point of view to an extreme, then the best way to handle bad game assets
is to prevent the entire game from running whenever even a single problem-
atic asset is encountered. This is certainly a strong incentive for the developer
who created the invalid asset to remove or fix it immediately.

On the other hand, game development is a messy and iterative process,
and generating “perfect” assets the first time around is rare indeed. By this
line of thought, a game engine should be robust to almost any kind of problem
imaginable, so that work can continue even in the face of totally invalid game
asset data. But this too is not ideal, because the game engine would become
bloated with error-catching and error-handling code that won't be needed
once the development pace settles down and the game ships. And the prob-
ability of shipping the product with “bad” assets becomes too high.

In my experience, the best approach is to find a middle ground between
these two extremes. When a developer error occurs, I like to make the error
obvious and then allow the team to continue to work in the presence of the
problem. It is extremely costly to prevent all the other developers on the team
from working, just because one developer tried to add an invalid asset to the
game. A game studio pays its employees well, and when multiple team mem-
bers experience downtime, the costs are multiplied by the number of people
who are prevented from working. Of course, we should only handle errors in
this way when it is practical to do so, without spending inordinate amounts of
engineering time, or bloating the code.

As an example, let’s suppose that a particular mesh cannot be loaded. In
my view, it’s best to draw a big red box in the game world at the places that
mesh would have been located, perhaps with a text string hovering over each
one that reads, “Mesh blah-dee-blah failed to load.” This is superior to printing
an easy-to-miss message to an error log. And it’s far better than just crashing
the game, because then no one will be able to work until that one mesh refer-
ence has been repaired. Of course, for particularly egregious problems it’s fine
to just spew an error message and crash. There’s no silver bullet for all kinds
of problems, and your judgment about what type of error handling approach
to apply to a given situation will improve with experience.

3.3.23. Handling Programmer Errors

The best way to detect and handle programmer errors (a.k.a. bugs) is often
to embed error-checking code into your source code and arrange for failed
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error checks to halt the program. Such a mechanism is known as an assertion
system; we'll investigate assertions in detail in Section 3.3.3.3. Of course, as we
said above, one programmer’s user error is another programmer’s bug; hence,
assertions are not always the right way to handle every programmer error.
Making a judicious choice between an assertion and a more graceful error
handling technique is a skill that one develops over time.

3.3.3. Implementation of Error Detection and Handling

We've looked at some philosophical approaches to handling errors. Now let’s
turn our attention to the choices we have as programmers when it comes to
implementing error detection and handling code.

3.3.3.1. Error Return Codes

A common approach to handling errors is to return some kind of failure code
from the function in which the problem is first detected. This could be a Bool-
ean value indicating success or failure or it could be an “impossible” value,
one that is outside the range of normally returned results. For example, a
function that returns a positive integer or floating-point value could return a
negative value to indicate that an error occurred. Even better than a Boolean or
an “impossible” return value, the function could be designed to return an enu-
merated value to indicate success or failure. This clearly separates the error
code from the output(s) of the function, and the exact nature of the problem
can be indicated on failure (e.g., enum Error { kSuccess, kAssetNot-
Found, kInvalidRange, ... };).

The calling function should intercept error return codes and act appro-
priately. It might handle the error immediately. Or it might work around the
problem, complete its own execution, and then pass the error code on to what-
ever function called it.

3.3.3.2. Exceptions

Error return codes are a simple and reliable way to communicate and respond
to error conditions. However, error return codes have their drawbacks. Per-
haps the biggest problem with error return codes is that the function that
detects an error may be totally unrelated to the function that is capable of
handling the problem. In the worst-case scenario, a function that is 40 calls
deep in the call stack might detect a problem that can only be handled by
the top-level game loop, or by main (). In this scenario, every one of the 40
functions on the call stack would need to be written so that it can pass an
appropriate error code all the way back up to the top-level error-handling
function.
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One way to solve this problem is to throw an exception. Structured excep-
tion handling (SEH) is a very powerful feature of C++. It allows the function
that detects a problem to communicate the error to the rest of the code with-
out knowing anything about which function might handle the error. When an
exception is thrown, relevant information about the error is placed into a data
object of the programmer’s choice known as an exception object. The call stack
is then automatically unwound, in search of a calling function that wrapped
its call in a try-catch block. If a try-catch block is found, the exception object
is matched against all possible catch blocks and if a match is found, the cor-
responding catch block’s code is executed. The destructors of any automatic
variables are called as needed during the stack unwinding.

The ability to separate error detection from error handling in such a clean
way is certainly attractive, and exception handling is an excellent choice for
some software projects. However, SEH adds a lot of overhead to the program.
Every stack frame must be augmented to contain additional information re-
quired by the stack unwinding process. Also, the stack unwind is usually very
slow —on the order of two to three times more expensive than simply return-
ing from the function. Also, if even one function in your program (or a library
that your program links with) uses SEH, your entire program must use SEH.
The compiler can’t know which functions might be above you on the call stack
when you throw an exception.

Therefore, there’s a pretty strong argument for turning off structured ex-
ception handling in your game engine altogether. This is the approach em-
ployed at Naughty Dog and also on most of the projects I've worked on at
Electronic Arts and Midway. Console game engines should probably never
use SEH, because of a console’s limited memory and processing bandwidth.
However, a game engine that is intended to be run on a personal computer
might be able to use SEH without any problems.

There are many interesting articles on this topic on the web. Here are links
to a few of them:

e http://www.joelonsoftware.com/items/2003/10/13.html
e http://www.nedbatchelder.com/text/exceptions-vs-status.html

e http://www.joelonsoftware.com/items/2003/10/15.html

3.3.3.3. Assertions

An assertion is a line of code that checks an expression. If the expression evalu-
ates to true, nothing happens. But if the expression evaluates to false, the pro-
gram is stopped, a message is printed, and the debugger is invoked if possible.
Steve Maguire provides an in-depth discussion of assertions in his must-read
book, Writing Solid Code [30].


http://www.joelonsoft
http://www.nedbatchelder.com/text/exceptions-vs-status.html
http://www.joelonsoft
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Assertions check a programmer’s assumptions. They act like land mines
for bugs. They check the code when it is first written to ensure that it is func-
tioning properly. They also ensure that the original assumptions continue to
hold for long periods of time, even when the code around them is constantly
changing and evolving. For example, if a programmer changes code that
used to work, but accidentally violates its original assumptions, they’ll hit
the land mine. This immediately informs the programmer of the problem
and permits him or her to rectify the situation with minimum fuss. Without
assertions, bugs have a tendency to “hide out” and manifest themselves later
in ways that are difficult and time-consuming to track down. But with as-
sertions embedded in the code, bugs announce themselves the moment they
are introduced —which is usually the best moment to fix the problem, while
the code changes that caused the problem are fresh in the programmer’s
mind.

Assertions are implemented as a #define macro, which means that the
assertion checks can be stripped out of the code if desired, by simply changing
the #define. The cost of the assertion checks can usually be tolerated during
development, but stripping out the assertions prior to shipping the game can
buy back that little bit of crucial performance if necessary.

Assertion Implementation

Assertions are usually implemented via a combination of a #defined macro
that evaluates to an if/else clause, a function that is called when the asser-
tion fails (the expression evaluates to false), and a bit of assembly code that
halts the program and breaks into the debugger when one is attached. Here’s
a typical implementation:

#if ASSERTIONS ENABLED
// define some inline assembly that causes a break
// into the debugger - this will be different on each
// target CPU
#define debugBreak() asm { int 3 }

// check the expression and fail if it is false
#define ASSERT (expr) \
if (expr) { } \
else \
{ \
reportAssertionFailure (#expr, \
__FILE_, \
__LINE_ ); \
debugBreak () ; \

}
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#else
#define ASSERT (expr) // evaluates to nothing
#endif

Let’s break down this definition so we can see how it works:

The outer #if/#elsef#endif is used to strip assertions from the
code base. When ASSERTIONS ENABLED is nonzero, the ASSERT ()
macro is defined in its fully glory, and all assertion checks in the code
will be included in the program. But when assertions are turned off,
ASSERT (expr) evaluates to nothing, and all instances of it in the code
are effectively removed.

The debugBreak () macro evaluates to whatever assembly-language
instructions are required in order to cause the program to halt and the
debugger to take charge (if one is connected). This differs from CPU to
CPU, but it is usually a single assembly instruction.

The ASSERT () macro itself is defined using a full i f/else statement (as
opposed to a lone if). This is done so that the macro can be used in any
context, even within other unbracketed if/else statements.

Here’s an example of what would happen if ASSERT () were defined
using a solitary if:

#define ASSERT (expr) 1f (! (expr)) debugBreak()
void £ ()

{
if (a < 5)
ASSERT (a >= 0);
else
doSomething(a) ;
1

This expands to the following incorrect code:

void f£()

if (a < 5)
if (! (a >= 0))
debugBreak () ;
else // Oops! Bound to the wrong if ()!
doSomething(a) ;

}

The else clause of an ASSERT () macro does two things. It displays
some kind of message to the programmer indicating what went wrong,
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and then it breaks into the debugger. Notice the use of #expr as the first
argument to the message display function. The pound (#) preprocessor
operator causes the expression expr to be turned into a string, thereby
allowing it to be printed out as part of the assertion failure message.

e Noticealsotheuseof FILE and_LINE .These compiler-defined
macros magically contain the .cpp file name and line number of the line
of code on which they appear. By passing them into our message dis-
play function, we can print the exact location of the problem.

I highly recommend the use of assertions in your code. However, it’s im-
portant to be aware of their performance cost. You may want to consider de-
fining two kinds of assertion macros. The regular ASSERT () macro can be left
active in all builds, so that errors are easily caught even when not running
in debug mode. A second assertion macro, perhaps called SLOW_ASSERT (),
could be activated only in debug builds. This macro could then be used in
places where the cost of assertion checking is too high to permit inclusion
in release builds. Obviously sLOW_ASSERT () is of lower utility, because it is
stripped out of the version of the game that your testers play every day. But at
least these assertions become active when programmers are debugging their
code.

It’s also extremely important to use assertions properly. They should be
used to catch bugs in the program itself —never to catch user errors. Also, as-
sertions should always cause the entire game to halt when they fail. It's usu-
ally a bad idea to allow assertions to be skipped by testers, artists, designers,
and other non-engineers. (This is a bit like the boy who cried wolf: if assertions
can be skipped, then they cease to have any significance, rendering them inef-
fective.) In other words, assertions should only be used to catch fatal errors. If
it'’s OK to continue past an assertion, then it’s probably better to notify the user
of the error in some other way, such as with an on-screen message, or some
ugly bright-orange 3D graphics. For a great discussion on the proper usage of
assertions, see http://www.wholesalealgorithms.com/blog9.


http://www.wholesalealgorithms.com/blog9
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3D Math for Games

A game is a mathematical model of a virtual world simulated in real-time on
a computer of some kind. Therefore, mathematics pervades everything we do
in the game industry. Game programmers make use of virtually all branches
of mathematics, from trigonometry to algebra to statistics to calculus. How-
ever, by far the most prevalent kind of mathematics you'll be doing as a game
programmer is 3D vector and matrix math (i.e., 3D linear algebra).

Even this one branch of mathematics is very broad and very deep, so we
cannot hope to cover it in any great depth in a single chapter. Instead, I will
attempt to provide an overview of the mathematical tools needed by a typical
game programmer. Along the way, I'll offer some tips and tricks which should
help you keep all of the rather confusing concepts and rules straight in your
head. For an excellent in-depth coverage of 3D math for games, I highly rec-
ommend Eric Lengyel’s book on the topic [28].

4.1. Solving 3D Problems in 2D

Many of the mathematical operations we're going to learn about in the follow-
ing chapter work equally well in 2D and 3D. This is very good news, because
it means you can sometimes solve a 3D vector problem by thinking and draw-
ing pictures in 2D (which is considerably easier to do!) Sadly, this equivalence
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Figure 4.1. A point rep-
resented in Cartesian
coordinates.

Figure 4.2. A
point represent-
ed in cylindrical
coordinates.

between 2D and 3D does not hold all the time. Some operations, like the cross
product, are only defined in 3D, and some problems only make sense when all
three dimensions are considered. Nonetheless, it almost never hurts to start by
thinking about a simplified two-dimensional version of the problem at hand.
Once you understand the solution in 2D, you can think about how the prob-
lem extends into three dimensions. In some cases, you'll happily discover that
your 2D result works in 3D as well. In others, you'll be able to find a coor-
dinate system in which the problem really is two-dimensional. In this book,
we’ll employ two-dimensional diagrams wherever the distinction between 2D
and 3D is not relevant.

4.2. Points and Vectors

The majority of modern 3D games are made up of three-dimensional objects
in a virtual world. A game engine needs to keep track of the positions, orien-
tations, and scales of all these objects, animate them in the game world, and
transform them into screen space so they can be rendered on screen. In games,
3D objects are almost always made up of triangles, the vertices of which are
represented by points. So before we learn how to represent whole objects in
a game engine, let’s first take a look the point and its closely related cousin,
the vector.

4.2.1. Points and Cartesian Coordinates

Technically speaking, a point is a location in n-dimensional space. (In games,
n is usually equal to 2 or 3.) The Cartesian coordinate system is by far the
most common coordinate system employed by game programmers. It uses
two or three mutually perpendicular axes to specify a position in 2D or 3D
space. So a point P is represented by a pair or triple of real numbers, (P, P,)
or (Px, Py, P,).

Of course, the Cartesian coordinate system is not our only choice. Some
other common systems include:

e Cylindrical coordinates. This system employs a vertical “height” axis /1, a
radial axis r emanating out from the vertical, and a yaw angle theta (6).
In cylindrical coordinates, a point P is represented by the triple of num-
bers (Py, Pr, Py). This is illustrated in Figure 4.2.

e Spherical coordinates. This system employs a pitch angle phi (¢), a yaw
angle theta (0), and a radial measurement r. Points are therefore rep-
resented by the triple of numbers (P, Py, Py). This is illustrated in Fig-
ure 4.3.
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Cartesian coordinates are by far the most widely used coordinate system
in game programming. However, always remember to select the coordinate
system that best maps to the problem at hand. For example, in the game Crank
the Weasel by Midway Home Entertainment, the main character Crank runs
around an art-deco city picking up loot. I wanted to make the items of loot
swirl around Crank’s body in a spiral, getting closer and closer to him until
they disappeared. I represented the position of the loot in cylindrical coor-
dinates relative to the Crank character’s current position. To implement the
spiral animation, I simply gave the loot a constant angular speed in 6, a small
constant linear speed inward along its radial axis , and a very slight constant
linear speed upward along the h-axis so the loot would gradually rise up to
the level of Crank’s pants pockets. This extremely simple animation looked
great, and it was much easier to model using cylindrical coordinates than it
would have been using a Cartesian system.

4.2.2. Left-Handed vs. Right-Handed Coordinate Systems

In three-dimensional Cartesian coordinates, we have two choices when ar-
ranging our three mutually perpendicular axes: right-handed (RH) and left-
handed (LH). In a right-handed coordinate system, when you curl the fingers
of your right hand around the z-axis with the thumb pointing toward positive
z coordinates, your fingers point from the x-axis toward the y-axis. In a left-
handed coordinate system the same thing is true using your left hand.

The only difference between a left-handed coordinate system and a right-
handed coordinate system is the direction in which one of the three axes is
pointing. For example, if the y-axis points upward and x points to the right,
then z comes toward us (out of the page) in a right-handed system, and away
from us (into the page) in a left-handed system. Left- and right-handed Carte-
sian coordinate systems are depicted in Figure 4.4.

Y y

Left-Handed Right-Handed

Figure 4.4. Left- and right-handed Cartesian coordinate systems.

Figure 43. A point
representedinspherical
coordinates.
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It is easy to convert from LH to RH coordinates and vice-versa. We sim-
ply flip the direction of any one axis, leaving the other two axes alone. It's
important to remember that the rules of mathematics do not change between
LH and RH coordinate systems. Only our interpretation of the numbers—our
mental image of how the numbers map into 3D space—changes. Left-handed
and right-handed conventions apply to visualization only, not to the underly-
ing mathematics. (Actually, handedness does matter when dealing with cross
products in physical simulations, but we can safely ignore these subtleties
for the majority of our game programming tasks. For more information, see
http://en.wikipedia.org/wiki/Pseudovector.)

The mapping between the numerical representation and the visual repre-
sentation is entirely up to us as mathematicians and programmers. We could
choose to have the y-axis pointing up, with z forward and x to the left (RH)
or right (LH). Or we could choose to have the z-axis point up. Or the x-axis
could point up instead —or down. All that matters is that we decide upon a
mapping, and then stick with it consistently.

That being said, some conventions do tend to work better than others for
certain applications. For example, 3D graphics programmers typically work
with a left-handed coordinate system, with the y-axis pointing up, x to the
right and positive z pointing away from the viewer (i.e., in the direction the
virtual camera is pointing). When 3D graphics are rendered onto a 2D screen
using this particular coordinate system, increasing z-coordinates correspond
to increasing depth into the scene (i.e., increasing distance away from the vir-
tual camera). As we will see in subsequent chapters, this is exactly what is
required when using a z-buffering scheme for depth occlusion.

4.2.3. Vectors

Awector is a quantity that has both a magnitude and a direction in n-dimensional
space. A vector can be visualized as a directed line segment extending from a
point called the tail to a point called the head. Contrast this to a scalar (i.e., an
ordinary real-valued number), which represents a magnitude but has no di-
rection. Usually scalars are written in italics (e.g., v) while vectors are written
in boldface (e.g., v).

A 3D vector can be represented by a triple of scalars (x, y, z), just as a point
can be. The distinction between points and vectors is actually quite subtle.
Technically, a vector is just an offset relative to some known point. A vector
can be moved anywhere in 3D space—as long as its magnitude and direction
don’t change, it is the same vector.

A vector can be used to represent a point, provided that we fix the tail of
the vector to the origin of our coordinate system. Such a vector is sometimes
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called a position vector or radius vector. For our purposes, we can interpret any
triple of scalars as either a point or a vector, provided that we remember that
a position vector is constrained such that its tail remains at the origin of the
chosen coordinate system. This implies that points and vectors are treated in
subtly different ways mathematically. One might say that points are absolute,
while vectors are relative.

The vast majority of game programmers use the term “vector” to refer
both to points (position vectors) and to vectors in the strict linear algebra sense
(purely directional vectors). Most 3D math libraries also use the term “vector”
in this way. In this book, we’ll use the term “direction vector” or just “direc-
tion” when the distinction is important. Be careful to always keep the differ-
ence between points and directions clear in your mind (even if your math
library doesn’t). As we'll see in Section 4.3.6.1, directions need to be treated
differently from points when converting them into homogeneous coordinates
for manipulation with 4 x 4 matrices, so getting the two types of vector mixed
up can and will lead to bugs in your code.

4.2.3.1. Cartesian Basis Vectors

It is often useful to define three orthogonal unit vectors (i.e., vectors that are mu-
tually perpendicular and each with a length equal to one), corresponding to
the three principal Cartesian axes. The unit vector along the x-axis is typically
called i, the y-axis unit vector is called j, and the z-axis unit vector is called k.
The vectors i, j, and k are sometimes called Cartesian basisve ctors.

Any point or vector can be expressed as a sum of scalars (real numbers)
multiplied by these unit basis vectors. For example,

(5,3, -2) = 5i + 3j - 2k.

4.2.4. Vector Operations

Most of the mathematical operations that you can perform on scalars can be
applied to vectors as well. There are also some new operations that apply only
to vectors.

4.24.1. Multiplication by a Scalar
Multiplication of a vector a by a scalar s is accomplished by multiplying the
individual components of a by s:

sa = (sax, say, sa ).

Multiplication by a scalar has the effect of scaling the magnitude of the
vector, while leaving its direction unchanged, as shown in Figure 4.5. Multi-
plication by —1 flips the direction of the vector (the head becomes the tail and
vice-versa).
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Figure 4.5. Multiplication of a vector by the scalar 2.

The scale factor can be different along each axis. We call this nonuniform
scale, and it can be represented as the component-wise product of a scaling vector
s and the vector in question, which we’ll denote with the ® operator. Techni-
cally speaking, this special kind of product between two vectors is known as
the Hadamard product. It is rarely used in the game industry —in fact, nonuni-
form scaling is one of its only commonplace uses in games:

s ®a = (sxflx,Syy, S20z) - (4.1)

As we'll see in Section 4.3.7.3, a scaling vector s is really just a compact way to
represent a 3 x 3 diagonal scaling matrix S. So another way to write Equation
(4.1) is as follows:

sx 0 0
aS=[ax a, a:]|0 s, O|=[sxax sya, s:a:].
0 0 s

4.2.4.2. Addition and Subtraction

The addition of two vectors a and b is defined as the vector whose components
are the sums of the components of a and b. This can be visualized by placing the
head of vector a onto the tail of vector b—the sum is then the vector from the
tail of a to the head of b:

a+b=[(a+b), (ay+by), (a.+b) |.

Vector subtraction a — b is nothing more than addition of a and -b (i.e., the
result of scaling b by —1, which flips it around). This corresponds to the vector

Figure 4.6. Vector addition and subtraction.
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whose components are the difference between the components of a and the
components of b:

a- b = [ (al' - bx)l (ay - by)/ (az - bz) ]
Vector addition and subtraction are depicted in Figure 4.6.

Adding and Subtracting Points and Directions
You can add and subtract direction vectors freely. However, technically speak-
ing, points cannot be added to one another—you can only add a direction
vector to a point, the result of which is another point. Likewise, you can take
the difference between two points, resulting in a direction vector. These opera-
tions are summarized below:

e direction + direction = direction

e direction — direction = direction

e point + direction = point

e point — point = direction

e point + point = nonsense (don't do it!)
4.2.4.3. Magnitude

The magnitude of a vector is a scalar representing the length of the vector as
it would be measured in 2D or 3D space. It is denoted by placing vertical bars
around the vector’s boldface symbol. We can use the Pythagorean theorem to
calculate a vector’s magnitude, as shown in Figure 4.7:

la| = \Jaz +aj +aZ.

ax

Figure 4.7. Magnitude of a vector (shown in 2D for ease of illustration).

4.2.4.4. Vector Operations in Action

Believe it or not, we can already solve all sorts of real-world game problems
given just the vector operations we’ve learned thus far. When trying to solve a
problem, we can use operations like addition, subtraction, scaling, and mag-
nitude to generate new data out of the things we already know. For example,
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Figure 4.8. Simple vec-
tor addition can be used
to find a character’s po-
sition in the next frame,
given her position and
velocity In the current
frame.

if we have the current position vector of an A.IL character Py, and a vector v
representing her current velocity, we can find her position on the next frame
P, by scaling the velocity vector by the frame time interval A, and then adding
it to the current position. As shown in Figure 4.8, the resulting vector equation
is P, = Py + (At)v. (This is known as explicit Euler integration—it’s actually only
valid when the velocity is constant, but you get the idea.)

As another example, let’s say we have two spheres, and we want to know
whether they intersect. Given that we know the center points of the two
spheres, C; and Cz, we can find a direction vector between them by simply
subtracting the points, d = C, — Ci. The magnitude of this vector d = |d| de-
termines how far apart the spheres’ centers are. If this distance is less than the
sum of the spheres’ radii, they are intersecting; otherwise they’re not. This is

shown in Figure 4.9.

Square roots are expensive to calculate on most computers, so game
programmers should always use the squared magnitude whenever it is valid to do
s0:

af® =(a§ +aj +11§).

Using the squared magnitude is valid when comparing the relative lengths of
two vectors (“is vector a longer than vector b?”), or when comparing a vector’s
magnitude to some other (squared) scalar quantity. So in our sphere-sphere
intersection test, we should calculate 2 = |d|* and compare this to the squared
sum of the radii, (1 + r2)* for maximum speed. When writing high-perfor-
mance software, never take a square root when you don’t have to!

Figure 4.9. A sphere-sphere intersection test involves only vector subtraction, vector mag-
nitude, and floating-point comparison operations.

4.2.4.5. Normalization and Unit Vectors

A unit vector is a vector with a magnitude (length) of one. Unit vectors are very
useful in 3D mathematics and game programming, for reasons we’ll see below.
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Given an arbitrary vector v of length v = |v|, we can convert it to a unit
vector u that points in the same direction as v, but has unit length. To do this,
we simply multiply v by the reciprocal of its magnitude. We call this normal-
ization:

4.2.4.6. Normal Vectors

A vector is said to be normal to a surface if it is perpendicular to that surface.
Normal vectors are highly useful in games and computer graphics. For ex-
ample, a plane can be defined by a point and a normal vector. And in 3D
graphics, lighting calculations make heavy use of normal vectors to define
the direction of surfaces relative to the direction of the light rays impinging
upon them.

Normal vectors are usually of unit length, but they do not need to be. Be
careful not to confuse the term “normalization” with the term “normal vec-
tor.” A normalized vector is any vector of unit length. A normal vector is any
vector that is perpendicular to a surface, whether or not it is of unit length.

4.2.4.7. Dot Product and Projection

Vectors can be multiplied, but unlike scalars there are a number of different
kinds of vector multiplication. In game programming, we most often work
with the following two kinds of multiplication:

e the dot product (a.k.a. scalar product or inner product), and

o the cross product (a.k.a. vector product or outer product).

The dot product of two vectors yields a scalar; it is defined by adding the
products of the individual components of the two vectors:

a-b=a.b; +a,b, +a.b. =d (ascalar).

The dot product can also be written as the product of the magnitudes of the
two vectors and the cosine of the angle between them:

a-b=la| |b| cos(0).

The dot product is commutative (i.e., the order of the two vectors can be
reversed) and distributive over addition:

ab=b-a;

a‘(b+c)=a-b+a-c.
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And the dot product combines with scalar multiplication as follows:

sa-b=a-sb=s(a‘b).

Vector Projection

If u is a unit vector (|u| = 1), then the dot product (a - u) represents the length
of the projection of vector a onto the infinite line defined by the direction of
u, as shown in Figure 4.10. This projection concept works equally well in 2D
or 3D and is highly useful for solving a wide variety of three-dimensional
problems.

Figure 4.10. Vector projection using the dot product.

Magnitude as a Dot Product

The squared magnitude of a vector can be found by taking the dot product of
that vector with itself. Its magnitude is then easily found by taking the square
root:

la]* =a-a;

la|=+a-a.

This works because the cosine of zero degrees is 1, so all that is left is
lal || =la*.

Dot Product Tests

Dot products are great for testing if two vectors are collinear or perpendicular,
or whether they point in roughly the same or roughly opposite directions. For
any two arbitrary vectors a and b, game programmers often use the following
tests, as shown in Figure 4.11:

e Collinear. (a - b) = |a| [b| = ab (i.e., the angle between them is exactly 0
degrees—this dot product equals +1 when a and b are unit vectors).

e Collinear but opposite. (a - b) = —-ab (i.e., the angle between them is 180
degrees—this dot product equals —1 when a and b are unit vectors).
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(a*b)y=ab a
(a*b)=—ab
b
(a*b)=0
a
(a*b)<0
(@a*b)>0 b

Figure 4.11. Some common dot product tests.

e Perpendicular. (a- b) =0 (i.e., the angle between them is 90 degrees).

e Same direction. (a - b) > 0 (i.e., the angle between them is less than 90

degrees).

e Opposite directions. (a-b) <0 (i.e., the angle between them is greater than

90 degrees).

Some Other Applications of the Dot Product

Dot products can be used for all sorts of things in game programming. For ex-
ample, let’s say we want to find out whether an enemy is in front of the player
character or behind him. We can find a vector from the player’s position P to
the enemy’s position E by simple vector subtraction (v = E — P). Let’s assume
we have a vector f pointing in the direction that the player is facing. (As we’ll
see in Section 4.3.10.3, the vector f can be extracted directly from the player’s
model-to-world matrix.) The dot product d =v - f can be used to test whether
the enemy is in front of or behind the player—it will be positive when the

enemy is in front and negative when the enemy is behind.

Figure 4.12. The dot product can be used to find the height of a point above or below a

plane.
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Figure 4.13. The cross
product of vectors a
and b (right-handed).

The dot product can also be used to find the height of a point above or
below a plane (which might be useful when writing a moon-landing game for
example). We can define a plane with two vector quantities: a point Q lying
anywhere on the plane, and a unit vector n that is perpendicular (i.e., normal)
to the plane. To find the height & of a point P above the plane, we first calculate
a vector from any point on the plane (Q will do nicely) to the point in ques-
tion P. So we have v =P — Q. The dot product of vector v with the unit-length
normal vector n is just the projection of v onto the line defined by n. But that
is exactly the height we’re looking for. Therefore, h =v - n=(P - Q) - n. This
is illustrated in Figure 4.12.

4.2.4.8. Cross Product

The cross product (also known as the outer product or vector product) of two vec-
tors yields another vector that is perpendicular to the two vectors being multi-
plied, as shown in Figure 4.13. The cross product operation is only defined in
three dimensions:

ax b = [(”ybz - azb]/)/ (asz - ﬂxbz), (axby - aybx)]
= (ayb: — azby )i+ (a:bx — a:b:)j + (axby — a,bx k.

Magnitude of the Cross Product

The magnitude of the cross product vector is the product of the magnitudes of
the two vectors and the sine of the angle between them. (This is similar to the
definition of the dot product, but it replaces the cosine with the sine.)

laxb|=/al |b| sin(6).

The magnitude of the cross product |aXxb| is equal to the area of the par-
allelogram whose sides are a and b, as shown in Figure 4.14. Since a triangle
is one-half of a parallelogram, the area of a triangle whose vertices are speci-
fied by the position vectors Vi, Vs, and V3 can be calculated as one-half of the
magnitude of the cross product of any two of its sides:

Atriangle = %|(V2 - Vl) X (V3 - V1)|

Figure 4.14. Area of a parallelogram expressed as the magnitude of a cross product.



4.2. Points and Vectors

149

Direction of the Cross Product

When using a right-handed coordinate system, you can use the right-hand rule
to determine the direction of the cross product. Simply cup your fingers such
that they point in the direction you'd rotate vector a to move it on top of vector
b, and the cross product (a x b) will be in the direction of your thumb.

Note that the cross product is defined by the left-hand rule when using
a left-handed coordinate system. This means that the direction of the cross
product changes depending on the choice of coordinate system. This might
seem odd at first, but remember that the handedness of a coordinate system
does not affect the mathematical calculations we carry out—it only changes
our visualization of what the numbers look like in 3D space. When converting
from a RH system to a LH system or vice-versa, the numerical representations
of all the points and vectors stay the same, but one axis flips. Our visualization
of everything is therefore mirrored along that flipped axis. So if a cross prod-
uct just happens to align with the axis we're flipping (e.g., the z-axis), it needs
to flip when the axis flips. If it didn't, the mathematical definition of the cross
product itself would have to be changed so that the z-coordinate of the cross
product comes out negative in the new coordinate system. I wouldn't lose too
much sleep over all of this. Just remember: when visualizing a cross product,
use the right-hand rule in a right-handed coordinate system and the left-hand
rule in a left-handed coordinate system.

Properties of the Cross Product

The cross product is not commutative (i.e., order matters):
axb#bxa.
However, it is anti-commutative:
axb=-bxa.
The cross product is distributive over addition:
ax(b+c)=(axb)+(axc).
And it combines with scalar multiplication as follows:
(sa) x b=a x (sb) =s(a x b).
The Cartesian basis vectors are related by cross products as follows:

(ixj)==(jxi)=k,
(ixk)=—(kxj)=1,
(kxi)=—(ixk)=j.



150

4. 3D Math for Games

These three cross products define the direction of positive rotations about the
Cartesian axes. The positive rotations go from x to y (about z), from y to z
(about x) and from z to x (about y). Notice how the rotation about the y-axis
“reversed” alphabetically, in that it goes from z to x (not from x to z). As we’ll
see below, this gives us a hint as to why the matrix for rotation about the y-axis
looks inverted when compared to the matrices for rotation about the x- and
Z-axes.

The Cross Product in Action

The cross product has a number of applications in games. One of its most
common uses is for finding a vector that is perpendicular to two other vectors.
As we'll see in Section 4.3.10.2, if we know an object’s local unit basis vectors,
(L1ocat , jlocat, and kiocal), we can easily find a matrix representing the object’s
orientation. Let’s assume that all we know is the object’s kioca vector—i.e., the
direction in which the object is facing. If we assume that the object has no roll
about kiocal, then we can find iiocal by taking the cross product between kioca
(which we already know) and the world-space up vector jwora (Which equals
[0 1 0]). We do so as follows: ijocal = normalize(jworta X Kiocal). We can then find
jlocat by simply crossing iioca and Kiocar as follows: jiocat = Kiocal X iiocal-

A very similar technique can be used to find a unit vector normal to the
surface of a triangle or some other plane. Given three points on the plane P,
P», and P;, the normal vector is just n = normalize[ (P> — P1) x (P3 - P1)].

Cross products are also used in physics simulations. When a force is ap-
plied to an object, it will give rise to rotational motion if and only if it is ap-
plied off-center. This rotational force is known as a torque, and it is calculated
as follows. Given a force F, and a vector r from the center of mass to the point
at which the force is applied, the torque N =r x F.

4.2.5. Linear Interpolation of Points and Vectors

In games, we often need to find a vector that is midway between two known
vectors. For example, if we want to smoothly animate an object from point A
to point B over the course of two seconds at 30 frames per second, we would
need to find 60 intermediate positions between A and B.

A linear interpolation is a simple mathematical operation that finds an in-
termediate point between two known points. The name of this operation is
often shortened to LERP. The operation is defined as follows, where f ranges
from 0 to 1 inclusive:

L=LERP(A,B,)=(1— f)A+ B
=[(1-pB)A«+pB:, (1-p)A,+BB,, (1-p)A:+pB:].
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Geometrically, L = LERP(A, B, f) is the position vector of a point that lies
B percent of the way along the line segment from point A to point B, as shown
in Figure 4.15. Mathematically, the LERP function is just a weighted average of
the two input vectors, with weights (1 — ) and f3, respectively. Notice that the
weights always add to 1, which is a general requirement for any weighted
average.

4.3. Matrices

A matrix is a rectangular array of m x n scalars. Matrices are a convenient way
of representing linear transformations such as translation, rotation, and scale.

A matrix M is usually written as a grid of scalars M, enclosed in square
brackets, where the subscripts r and ¢ represent the row and column indices
of the entry, respectively. For example, if M is a 3 x 3 matrix, it could be writ-
ten as follows:

Mu M Mis
M=|{Mx M»n Muy3].
Mz Mz Mss

We can think of the rows and/or columns of a 3 x 3 matrix as 3D vectors.
When all of the row and column vectors of a 3 x 3 matrix are of unit magni-
tude, we call it a special orthogonal matrix. This is also known as an isotropic
matrix, or an orthonormal matrix. Such matrices represent pure rotations.

Under certain constraints, a 4 x 4 matrix can represent arbitrary 3D trans-
formations, including translations, rotations, and changes in scale. These are
called transformation matrices, and they are the kinds of matrices that will be
most useful to us as game engineers. The transformations represented by a
matrix are applied to a point or vector via matrix multiplication. We'll inves-
tigate how this works below.

An affine matrix is a 4 x 4 transformation matrix that preserves parallelism
of lines and relative distance ratios, but not necessarily absolute lengths and
angles. An affine matrix is any combination of the following operations: rota-
tion, translation, scale and/or shear.

4.3.1.  Matrix Multiplication

The product P of two matrices A and B is written P = AB. If A and B are
transformation matrices, then the product P is another transformation matrix
that performs both of the original transformations. For example, if A is a scale
matrix and B is a rotation, the matrix P would both scale and rotate the points

A
L =LERP(A, B, 0.4)
B=0 B
B=04

B=1
Figure 4.15. Linear in-
terpolation (LERP) be-
tween points A and B,
with = 04.
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or vectors to which it is applied. This is particularly useful in game program-
ming, because we can precalculate a single matrix that performs a whole se-
quence of transformations and then apply all of those transformations to a
large number of vectors efficiently.

To calculate a matrix product, we simply take dot products between the
rows of the 14 x ma matrix A and the columns of the #p x mp matrix B. Each dot
product becomes one component of the resulting matrix P. The two matrices
can be multiplied as long as the inner dimensions are equal (i.e., ma = ng). For
example, if A and B are 3 x 3 matrices, then

P =AB,
Pi1=Aw1 'Bcoll; P2 = Arowt 'BCOIZ; Pz =Arow1- Bcol3;
Po1=Aw2- Bcoll; Po=Aiw2- BcolZ; P =Arow2- Bcol?:;
P31 = Arows *Beort; P = Avows - Beol2; Ps3 = Avows  Beols.

Matrix multiplication is not commutative. In other words, the order in
which matrix multiplication is done matters:

AB =BA.

We'll see exactly why this matters in Section 4.3.2.

Matrix multiplication is often called concatenation, because the product
of n transformation matrices is a matrix that concatenates, or chains together,
the original sequence of transformations in the order the matrices were mul-
tiplied.

4.3.2. Representing Points and Vectors as Matrices

Points and vectors can be represented as row matrices (1 x n) or column matrices
(n x 1), where n is the dimension of the space we’re working with (usually 2 or
3). For example, the vector v = (3, 4, —1) can be written either as

vi=[3 4 -1],
or as
3
vo=| 4 [=v].
-1

The choice between column and row vectors is a completely arbitrary
one, but it does affect the order in which matrix multiplications are written.
This happens because when multiplying matrices, the inner dimensions of the
two matrices must be equal, so:
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e tomultiply a 1 x n row vector by an n x n matrix, the vector must appear
to the left of the matrix (Vixn = Vixn Muxn ), whereas

e to multiply an n x n matrix by an n x 1 column vector, the vector must
appear to the right of the matrix (Vix1 = Muxx Viux1 ).

If multiple transformation matrices A, B, and C are applied in order to a
vector v, the transformations “read” from left to right when using row vectors,
but from right to left when using column vectors. The easiest way to remember
this is to realize that the matrix closest to the vector is applied first. This is il-
lustrated by the parentheses below:

v =(((vA)B)C) Row vectors: read left-to-right;
v =(C(B(Av))) Column vectors: read right-to-left.

In this book we’ll adopt the row vector convention, because the left-to-right
order of transformations is most intuitive to read for English-speaking people.
That said, be very careful to check which convention is used by your game
engine, and by other books, papers, or web pages you may read. You can
usually tell by seeing whether vector-matrix multiplications are written with
the vector on the left (for row vectors) or the right (for column vectors) of the
matrix. When using column vectors, you'll need to transpose all the matrices
shown in this book.

43.3. The ldentity Matrix

The identity matrix is a matrix that, when multiplied by any other matrix,
yields the very same matrix. It is usually represented by the symbol I. The
identity matrix is always a square matrix with 1’s along the diagonal and 0’s
everywhere else:

Isxs =

O O =

o = O

= O O
<

Al=TA=A.

43.4. Matrix Inversion

The inverse of a matrix A is another matrix (denoted A1) that undoes the effects
of matrix A. So, for example, if A rotates objects by 37 degrees about the z-axis,
then A~ will rotate by 37 degrees about the z-axis. Likewise, if A scales objects
tobe twice their original size, then A~ scales objects tobe half-sized. Whenama-
trix is multiplied by its own inverse, the result is always the identity matrix, so
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A(A™")=(A"")A =1 Not all matrices have inverses. However, all affine matri-
ces (combinations of pure rotations, translations, scales, and shears) do have
inverses. Gaussian elimination or LU decomposition can be used to find the
inverse, if one exists.

Since we'll be dealing with matrix multiplication a lot, it’s important to
note here that the inverse of a sequence of concatenated matrices can be written
as the reverse concatenation of the individual matrices” inverses. For example,

(ABC)'=C'BA".

4.3.5. Transposition

The transpose of a matrix M is denoted M". It is obtained by reflecting the en-
tries of the original matrix across its diagonal. In other words, the rows of the
original matrix become the columns of the transposed matrix, and vice-versa:

a b ] a d g
d e f|=|b e h|.
g h i c f i

The transpose is useful for a number of reasons. For one thing, the inverse
of an orthonormal (pure rotation) matrix is exactly equal to its transpose—
which is good news, because it’s much cheaper to transpose a matrix than it is
to find its inverse in general. Transposition can also be important when mov-
ing data from one math library to another, because some libraries use column
vectors while others expect row vectors. The matrices used by a row-vector-
based library will be transposed relative to those used by a library that employs
the column vector convention.

As with the inverse, the transpose of a sequence of concatenated matrices
can be rewritten as the reverse concatenation of the individual matrices’ trans-
poses. For example,

(ABC)'=CTBTAT".
This will prove useful when we consider how to apply transformation matri-
ces to points and vectors.

4.3.6. Homogeneous Coordinates

You may recall from high-school algebra that a 2 x 2 matrix can represent a
rotation in two dimensions. To rotate a vector r through an angle of ¢ degrees
(where positive rotations are counter-clockwise), we can write

cos¢ sin q)}

—sing cos¢

[ ny]=[n ry][
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It’s probably no surprise that rotations in three dimensions can be represented
by a 3 x 3 matrix. The two-dimensional example above is really just a three-
dimensional rotation about the z-axis, so we can write

cos¢ sing 0
[n rp r]l=[n 1 r]|-—sing cos¢ O0].
0 0 1

The question naturally arises: Can a 3 x 3 matrix be used to represent
translations? Sadly, the answer is no. The result of translating a point r by a
translation t requires adding the components of t to the components of r in-
dividually:

r+t=[(n+t:) (r,+t)) (+t)].

Matrix multiplication involves multiplication and addition of matrix ele-
ments, so the idea of using multiplication for translation seems promising.
But, unfortunately, there is no way to arrange the components of t within a 3 x
3 matrix such that the result of multiplying it with the column vector r yields
sums like (r; + ty).

The good news is that we can obtain sums like this if we use a 4 x 4 matrix.
What would such a matrix look like? Well, we know that we don’t want any
rotational effects, so the upper 3 x 3 should contain an identity matrix. If we
arrange the components of t across the bottom-most row of the matrix and
set the fourth element of the r vector (usually called w) equal to 1, then taking
the dot product of the vector r with column 1 of the matrix will yield (1xr) +
(0xry) + (0x7z) + (f:x1) = (rx + ), which is exactly what we want. If the bottom
right-hand corner of the matrix contains a 1 and the rest of the fourth column
contains zeros, then the resulting vector will also have a 1 in its w component.
Here’s what the final 4x4 translation matrix looks like:

1 0 0 0
0 1 0 O
r+t=[rn n r 1] 00 1 0
ety b1

=[(rttx) (ry+ty) (=+t) 1].

When a point or vector is extended from three dimensions to four in this
manner, we say that it has been written in homogeneous coordinates. A point in
homogeneous coordinates always has w = 1. Most of the 3D matrix math done
by game engines is performed using 4 x 4 matrices with four-element points
and vectors written in homogeneous coordinates.
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43.6.1. Transforming Direction Vectors

Mathematically, points (position vectors) and direction vectors are treated in
subtly different ways. When transforming a point by a matrix, the translation,
rotation, and scale of the matrix are all applied to the point. But when trans-
forming a direction by a matrix, the translational effects of the matrix are ig-
nored. This is because direction vectors have no translation per se—applying
a translation to a direction would alter its magnitude, which is usually not
what we want.

In homogeneous coordinates, we achieve this by defining points to have
their w components equal to one, while direction vectors have their w com-
ponents equal to zero. In the example below, notice how the w = 0 component
of the vector v multiplies with the t vector in the matrix, thereby eliminating
translation in the final result:

U o
[v 01{t 1]=[(vU+0t) 0]=[vU 0].

Technically, a point in homogeneous (four-dimensional) coordinates can
be converted into non-homogeneous (three-dimensional) coordinates by di-
viding the x, y, and z components by the w component:

[x v z w]E[ﬁ LA i].
w o ow w

This sheds some light on why we set a point’s w component to one and a vec-
tor’s w component to zero. Dividing by w = 1 has no effect on the coordinates
of a point, but dividing a pure direction vector’s components by w = 0 would
yield infinity. A point at infinity in 4D can be rotated but not translated, be-
cause no matter what translation we try to apply, the point will remain at in-
finity. So in effect, a pure direction vector in three-dimensional space acts like
a point at infinity in four-dimensional homogeneous space.

43.7. Atomic Transformation Matrices

Any affine transformation matrix can be created by simply concatenating a
sequence of 4x4 matrices representing pure translations, pure rotations, pure
scale operations, and/or pure shears. These atomic transformation building
blocks are presented below. (We’ll omit shear from these discussions, as it
tends to be used only rarely in games.)

Notice that all affine 4 x 4 transformation matrices can be partitioned into

four components:
Usxs  03xa
tixs 1]
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e the upper 3 x 3 matrix U, which represents the rotation and/or scale,

e a1 x 3 translation vector t,

e a3 x1vectorofzeros0=[000 ] and

e ascalar 1 in the bottom-right corner of the matrix.
When a point is multiplied by a matrix that has been partitioned like this, the
result is as follows:

Usxs  03x1

1 }=[(rU+t) 1.

[1"1><3 1]=[rlx3 1] |:

43.7.1. Translation

The following matrix translates a point by the vector t:

1 0 0 O
0 1 0
r+t=[n n r 1] 00 1 0
be oty b1

=[(n+tx) (ny+ty) (=+t) 1],

or in partitioned shorthand:

1 bo 1

x|, |=le+ 1.

To invert a pure translation matrix, simply negate the vector t (i.e., negate t.,
t,, and t;).

4.3.7.2. Rotation

All4 x 4 pure rotation matrices have the form:

R 0
[x 1][0 J=[rR 1].

The t vector is zero and the upper 3 x 3 matrix R contains cosines and sines of
the rotation angle, measured in radians.
The following matrix represents rotation about the x-axis by an angle ¢:

1 0 0 0
0 cos¢p sing O

rotatex(r,@)=[rr 1, = 1] 0 —sing cos¢p O]
0 0 0 1
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The matrix below represents rotation about the y-axis by an angle 0. Notice
that this one is transposed relative to the other two—the positive and negative
sine terms have been reflected across the diagonal:

cos® 0 —sinf 0
0 1 0 0
rotate,(r,0)=[r n, r 1] sinf 0 cos6® O
0 0 0 1

This matrix represents rotation about the z-axis by an angle y:
cosy siny

rotate.(r,y)=[n 1 1 1] 0 0

0
—siny cosy 0
1
0 0 0

_ O O O

Here are a few observations about these matrices:

e The 1 within the upper 3 x 3 always appears on the axis we're rotating
about, while the sine and cosine terms are off-axis.

e Positive rotations go from x to y (about z), from y to z (about x), and from
z to x (about y). The z to x rotation “wraps around,” which is why the
rotation matrix about the y-axis is transposed relative to the other two.
(Use the right-hand or left-hand rule to remember this.)

e The inverse of a pure rotation is just its transpose. This works because
inverting a rotation is equivalent to rotating by the negative angle. You
may recall that cos(—0) = cos(0) while sin(-0) = -sin(0), so negating the
angle causes the two sine terms to effectively switch places, while the
cosine terms stay put.

4.3.73. Scale

The following matrix scales the point r by a factor of s, along the x-axis, s,
along the y-axis, and s. along the z-axis:

ss 0 0 O
0 s, 0O
1S=[rn 1, r 1] 0 0 s 0
0 0 0 1

=[sxre sy1y sz 1]
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or in partitioned shorthand:
1 Ssxs 0 _1rS "
v 1) 5 {|TESse 1]

Here are some observations about this kind of matrix:

e To invert a scaling matrix, simply substitute sy, s,, and s, with their re-
ciprocals (i.e., 1/sy, 1/sy, and 1/s:).

e When the scale factor along all three axes is the same (s, =, =5s.), we call
this uniform scale. Spheres remain spheres under uniform scale, whereas
under nonuniform scale they become ellipsoids. To keep the mathemat-
ics of bounding sphere checks simple and fast, many game engines im-
pose the restriction that only uniform scale may be applied to render-
able geometry or collision primitives.

e When a uniform scale matrix S, and a rotation matrix R are concat-
enated, the order of multiplication is unimportant (i.e., S,.R = RS,). This
only works for uniform scale!

43.8. 4 x 3 Matrices

The rightmost column of an affine 4 x 4 matrix always contains the vector
[0 0 0 1]% As such, game programmers often omit the fourth column to
save memory. You'll encounter 4 x 3 affine matrices frequently in game math
libraries.

4.3.9. Coordinate Spaces

We’ve seen how to apply transformations to points and direction vectors us-
ing 4 x 4 matrices. We can extend this idea to rigid objects by realizing that
such an object can be thought of as an infinite collection of points. Applying
a transformation to a rigid object is like applying that same transformation to
every point within the object. For example, in computer graphics an object is
usually represented by a mesh of triangles, each of which has three vertices
represented by points. In this case, the object can be transformed by applying
a transformation matrix to all of its vertices in turn.

We said above that a point is a vector whose tail is fixed to the origin of
some coordinate system. This is another way of saying that a point (position
vector) is always expressed relative to a set of coordinate axes. The triplet of
numbers representing a point changes numerically whenever we select a new
set of coordinate axes. In Figure 4.16, we see a point P represented by two
different position vectors—the vector P, gives the position of P relative to the
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Xa

Figure 4.16. Position vectors for the point P relative to different coordinate axes.

“A” axes, while the vector Py gives the position of that same point relative to a
different set of axes “B.”

In physics, a set of coordinate axes represents a frame of reference, so
we sometimes refer to a set of axes as a coordinate frame (or just a frame).
People in the game industry also use the term coordinate space (or simply
space) to refer to a set of coordinate axes. In the following sections, we’ll look
at a few of the most common coordinate spaces used in games and computer
graphics.

4.3.9.1. Model Space

When a triangle mesh is created in a tool such as Maya or 3DStudioMAX, the
positions of the triangles’ vertices are specified relative to a Cartesian coordi-
nate system which we call model space (also known as object space or local space).
The model space origin is usually placed at a central location within the object,
such as at its center of mass, or on the ground between the feet of a humanoid
or animal character.

Most game objects have an inherent directionality. For example, an air-
plane has a nose, a tail fin, and wings that correspond to the front, up, and
left/right directions. The model space axes are usually aligned to these natural
directions on the model, and they’re given intuitive names to indicate their
directionality as illustrated in Figure 4.17.

e Front. This name is given to the axis that points in the direction that the
object naturally travels or faces. In this book, we’ll use the symbol F to
refer to a unit basis vector along the front axis.

e Up. This name is given to the axis that points towards the top of the
object. The unit basis vector along this axis will be denoted U.

e Left or right. The name “left” or “right” is given to the axis that points
toward the left or right side of the object. Which name is chosen de-
pends on whether your game engine uses left-handed or right-handed
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Figure 4.17. One possible choice of the model-space front, left and up axis basis vectors for
an airplane.

coordinates. The unit basis vector along this axis will be denoted L or R,
as appropriate.

The mapping between the (front, up, left) labels and the (x, y, z) axes is com-
pletely arbitrary. A common choice when working with right-handed axes is
to assign the label front to the positive z-axis, the label left to the positive x-axis,
and the label up to the positive y-axis (or in terms of unit basis vectors, F =k,
L =i, and U =j). However, it’s equally common for +x to be front and +z to be
right (F =1, R =k, U =j). I've also worked with engines in which the z-axis is
oriented vertically. The only real requirement is that you stick to one conven-
tion consistently throughout your engine.

As an example of how intuitive axis names can reduce confusion, consid-
er Euler angles (pitch, yaw, roll), which are often used to describe an aircraft’s
orientation. It's not possible to define pitch, yaw, and roll angles in terms of
the (i, j, k) basis vectors because their orientation is arbitrary. However, we can
define pitch, yaw, and roll in terms of the (L, U, F) basis vectors, because their
orientations are clearly defined. Specifically,

e pitch is rotation about L or R,
e yaw is rotation about U, and

e 70ll is rotation about F.
4.3.9.2. World Space

World space is a fixed coordinate space, in which the positions, orientations,
and scales of all objects in the game world are expressed. This coordinate
space ties all the individual objects together into a cohesive virtual world.
The location of the world-space origin is arbitrary, but it is often placed
near the center of the playable game space to minimize the reduction in float-
ing-point precision that can occur when (x, y, z) coordinates grow very large.
Likewise, the orientation of the x-, y-, and z-axes is arbitrary, although most
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Left
Wingtip:

(5,0,0)u

v~

(-25,50,8),

Figure 4.18. Alear jet whose left wingtip is at (5, 0, 0) in model space. If the jet is rotated by 90
degrees about the world-space y-axis, and its model-space origin translated to (=25, 50, 8) in
world space, then its left wingtip would end up at (25, 50, 3) when expressed in world space
coordinates.

(-25,50,3),,

of the engines I've encountered use either a y-up or a z-up convention. The
y-up convention was probably an extension of the two-dimensional conven-
tion found in most mathematics textbooks, where the y-axis is shown going
up and the x-axis going to the right. The z-up convention is also common, be-
cause it allows a top-down orthographic view of the game world to look like
a traditional two-dimensional xy-plot.

As an example, let’s say that our aircraft’s left wingtip is at (5, 0, 0) in mod-
el space. (In our game, front vectors correspond to the positive z-axis in model
space with y up, as shown in Figure 4.17.) Now imagine that the jet is facing
down the positive x-axis in world space, with its model-space origin at some
arbitrary location, such as (-25, 50, 8). Because the F vector of the airplane,
which corresponds to +z in model space, is facing down the +x-axis in world
space, we know that the jet has been rotated by 90 degrees about the world
y-axis. So if the aircraft were sitting at the world space origin, its left wingtip
would be at (0, 0, -5) in world space. But because the aircraft’s origin has been
translated to (25, 50, 8), the final position of the jet’s left wingtip in model
space is (-25, 50, [8 — 5]) = (25, 50, 3). This is illustrated in Figure 4.18.

We could of course populate our friendly skies with more than one Lear
jet. In that case, all of their left wingtips would have coordinates of (5, 0, 0)
in model space. But in world space, the left wingtips would have all sorts of
interesting coordinates, depending on the orientation and translation of each
aircraft.

4.3.93. View Space

View space (also known as camera space) is a coordinate frame fixed to the cam-
era. The view space origin is placed at the focal point of the camera. Again,
any axis orientation scheme is possible. However, a y-up convention with z
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Right-Handed Left-Handed

Figure 4.19. Left- and right-handed examples of view space, also known as camera space.

increasing in the direction the camera is facing (left-handed) is typical because
it allows z coordinates to represent depths into the screen. Other engines and
APIs, such as OpenGL, define view space to be right-handed, in which case the
camera faces towards negative z, and z coordinates represent negative depths.

4.3.10. Change of Basis

In games and computer graphics, it is often quite useful to convert an object’s
position, orientation, and scale from one coordinate system into another. We
call this operation a change of basis.

4.3.10.1. Coordinate Space Hierarchies

Coordinate frames are relative. That is, if you want to quantify the position,
orientation, and scale of a set of axes in three-dimensional space, you must
specify these quantities relative to some other set of axes (otherwise the num-
bers would have no meaning). This implies that coordinate spaces form a hi-
erarchy—every coordinate space is a child of some other coordinate space, and
the other space acts as its parent. World space has no parent; it is at the root
of the coordinate-space tree, and all other coordinate systems are ultimately
specified relative to it, either as direct children or more-distant relatives.

4.3.10.2. Building a Change of Basis Matrix

The matrix that transforms points and directions from any child coordinate
system C to its parent coordinate system P can be written Mc-r (pronounced
“C to P”). The subscript indicates that this matrix transforms points and direc-
tions from child space to parent space. Any child-space position vector Pc can
be transformed into a parent-space position vector Pp as follows:
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Pr =Pc Mc-p;
[ic 0
je 0
MC»P = kC 0
tc 0

ICx iCy iCz
ij jCy jCz
ka kC Y kCz

tex tCy fc.

_= O O O

In this equation,

e icis the unit basis vector along the child space x-axis, expressed in par-
ent space coordinates;

e jcis the unit basis vector along the child space y-axis, in parent space;

e kc is the unit basis vector along the child space z-axis, in parent space;
e tc is the translation of the child coordinate system relative to parent
space.

This result should not be too surprising. The tc vector is just the transla-
tion of the child space axes relative to parent space, so if the rest of the ma-
trix were identity, the point (0, 0, 0) in child space would become tc in parent
space, just as we'd expect. The ic, jc, and kc unit vectors form the upper 3 x 3
of the matrix, which is a pure rotation matrix because these vectors are of unit
length. We can see this more clearly by considering a simple example, such as
a situation in which child space is rotated by an angle y about the z-axis, with
no translation. The matrix for such a rotation is given by

cosy siny 0 0
—siny cosy 0 0

rotate,(r,y)=[rr 1, 1 1] 0 0o 1 ol (4.2)
0 0 01

But in Figure 4.20, we can see that the coordinates of the ic and jc vectors,
expressed in parent space, areic=[cosy siny 0]and jc=[-siny cosy 0].
When we plug these vectors into our formula for Mc-p , withke=[0 0 1], it
exactly matches the matrix rotate.(r, ) from Equation (4.2).

Scaling the Child Axes

Scaling of the child coordinate system is accomplished by simply scaling the
unit basis vectors appropriately. For example, if child space is scaled up by a
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A Y
cos(y)

sin(y) ic

-sin(y) cos(y) x

Figure 4.20. Change of basis when child axes are rotated by an angle y relative to parent.

factor of two, then the basis vectors ic, jc, and ke will be of length 2 instead
of unit length.

4.3.10.3. Extracting Unit Basis Vectors from a Matrix

The fact that we can build a change of basis matrix out of a translation and
three Cartesian basis vectors gives us another powerful tool: Given any affine
4 x 4 transformation matrix, we can go in the other direction and extract the
child-space basis vectors ic, jc, and k¢ from it by simply isolating the appropri-
ate rows of the matrix (or columns if your math library uses column vectors).

This can be incredibly useful. Let’s say we are given a vehicle’s model-
to-world transform as an affine 4 x 4 matrix (a very common representation).
This is really just a change of basis matrix, transforming points in model space
into their equivalents in world space. Let’s further assume that in our game,
the positive z-axis always points in the direction that an object is facing. So, to
find a unit vector representing the vehicle’s facing direction, we can simply ex-
tract ke directly from the model-to-world matrix (by grabbing its third row).
This vector will already be normalized and ready to go.

4.3.10.4. Transforming Coordinate Systems versus Vectors

We've said that the matrix Mc-p transforms points and directions from child
space into parent space. Recall that the fourth row of Mcsp contains tc, the
translation of the child coordinate axes relative to the world space axes. There-
fore, another way to visualize the matrix Mc-p is to imagine it taking the
parent coordinate axes and transforming them into the child axes. This is the
reverse of what happens to points and direction vectors. In other words, if a
matrix transforms vectors from child space to parent space, then it also trans-
forms coordinate axes from parent space to child space. This makes sense when
you think about it—moving a point 20 units to the right with the coordinate
axes fixed is the same as moving the coordinate axes 20 units to the left with
the point fixed. This concept is illustrated in Figure 4.21.
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Figure 4.21. Two ways to interpret a transformation matrix. On the left, the point moves
against a fixed set of axes. On the right, the axes move in the opposite direction while the
point remains fixed.

Of course, this is just another point of potential confusion. If you're think-
ing in terms of coordinate axes, then transformations go in one direction, but
if you're thinking in terms of points and vectors, they go in the other direction!
As with many confusing things in life, your best bet is probably to choose
a single “canonical” way of thinking about things and stick with it. For ex-
ample, in this book we’ve chosen the following conventions:

e Transformations apply to vectors (not coordinate axes).

e Vectors are written as rows (not columns).

Taken together, these two conventions allow us to read sequences of ma-
trix multiplications from left to right and have them make sense (e.g.,
Pp =PsMa-pMp-c Mc-p ). Obviously if you start thinking about the coordi-
nate axes moving around rather than the points and vectors, you either have
to read the transforms from right to left, or flip one of these two conventions
around. It doesn't really matter what conventions you choose as long as you
find them easy to remember and work with.

That said, it’s important to note that certain problems are easier to think
about in terms of vectors being transformed, while others are easier to work
with when you imagine the coordinate axes moving around. Once you get good
at thinking about 3D vector and matrix math, you'll find it pretty easy to flip
back and forth between conventions as needed to suit the problem at hand.

4.3.11. Transforming Normal Vectors

A normal vector is a special kind of vector, because in addition to (usually!) be-
ing of unit length, it carries with it the additional requirement that it should
always remain perpendicular to whatever surface or plane it is associated with.
Special care must be taken when transforming a normal vector, to ensure that
both its length and perpendicularity properties are maintained.
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In general, if a point or (non-normal) vector can be rotated from space A to
space B via the 3 x 3 marix Ma-g , then a normal vector n will be transformed
from space A to space B via the inverse transpose of that matrix, (Mals)" . We
will not prove or derive this result here (see [28], Section 3.5 for an excellent
derivation). However, we will observe that if the matrix Ma-g contains only
uniform scale and no shear, then the angles between all surfaces and vectors in
space B will be the same as they were in space A. In this case, the matrix Ma-s
will actually work just fine for any vector, normal or non-normal. However,
if Ma-p contains nonuniform scale or shear (i.e., is non-orthogonal), then the
angles between surfaces and vectors are not preserved when moving from
space A to space B. A vector that was normal to a surface in space A will not
necessarily be perpendicular to that surface in space B. The inverse transpose
operation accounts for this distortion, bringing normal vectors back into per-
pendicularity with their surfaces even when the transformation involves non-
uniform scale or shear.

4.3.12. Storing Matrices in Memory

In the C and C++ languages, a two-dimensional array is often used to store a
matrix. Recall that in C/C++ two-dimensional array syntax, the first subscript
is the row and the second is the column, and that the column index varies fast-
est as you move through memory sequentially.

float m([4][4]; // [row] [col]l, col varies fastest

// "flatten" the array to demonstrate ordering
float* pm = &m[0] [0];

ASSERT( &pm[0] == &m[0] [0] ) ;
ASSERT( &pm[1] == &m[0] [1] );
ASSERT( &pm[2] == &m[0] [2] );
// etc.

We have two choices when storing a matrix in a two-dimensional C/C++
array. We can either

1. store the vectors (ic, jc, kc, tc) contiguously in memory (i.e., each row
contains a single vector), or
2. store the vectors strided in memory (i.e., each column contains one vector).

The benefit of approach (1) is that we can address any one of the four vec-
tors by simply indexing into the matrix and interpreting the four contiguous
values we find there as a 4-element vector. This layout also has the benefit of
matching up exactly with row vector matrix equations (which is another reason
why I've selected row vector notation for this book). Approach (2) is some-
times necessary when doing fast matrix-vector multiplies using a vector-en-
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abled (SIMD) microprocessor, as we’ll see later in this chapter. In most game
engines I've personally encountered, matrices are stored using approach (1),
with the vectors in the rows of the two-dimensional C/C++ array. This is shown
below:

float M[4] [4];

M[0] [0]=ix; M[0][1]=1iy; MI[0][2]=1iz; MI[0][3]=0.0f;
M[1] [0]=9x; MI[1]I[1l=Fy; MI[1]1[2]1=j=z; MI[1][3]1=0.0f;
M[2] [0]=kx; MI[2]([1]=ky; MI[2][2]=kz; MI[2][3]=0.0f;
M[3] [0]=tx; MI[3][1]=ty; MI[3][2]=tz; MI[3]I[3]=1.0f;

The matrix M looks like this when viewed in a debugger:

MI[] []
[0]

(0] ix

[1] iy

[2] iz

[3] 0.0000
[1]

[0] jx

[1] jy

[2] jz

[3] 0.0000
[2]

[0] kx

[1] ky

[2] kz

[3] 0.0000
[3]

[0] tx

[1] ty

[2] tz

[31] 1.0000

One easy way to determine which layout your engine uses is to find a
function that builds a 4 x 4 translation matrix. (Every good 3D math library
provides such a function.) You can then inspect the source code to see where
the elements of the t vector are being stored. If you don’t have access to the
source code of your math library (which is pretty rare in the game industry),
you can always call the function with an easy-to-recognize translation like
(4, 3,2), and then inspect the resulting matrix. If row 3 contains the values 4 . 0,
3.0, 2.0, 1.0, then the vectors are in the rows, otherwise the vectors are in
the columns.
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4.4. Quaternions

We’ve seen that a 3 x 3 matrix can be used to represent an arbitrary rotation in
three dimensions. However, a matrix is not always an ideal representation of
a rotation, for a number of reasons:

1. We need nine floating-point values to represent a rotation, which seems
excessive considering that we only have three degrees of freedom—
pitch, yaw, and roll.

2. Rotating a vector requires a vector-matrix multiplication, which involves
three dot products, or a total of nine multiplications and six additions.
We would like to find a rotational representation that is less expensive
to calculate, if possible.

3. In games and computer graphics, it’s often important to be able to find
rotations that are some percentage of the way between two known rota-
tions. For example, if we are to smoothly animate a camera from some
starting orientation A to some final orientation B over the course of a
few seconds, we need to be able to find lots of intermediate rotations be-
tween A and B over the course of the animation. It turns out to be diffi-
cult to do this when the A and B orientations are expressed as matrices.

Thankfully, there is a rotational representation that overcomes these three
problems. It is a mathematical object known as a quaternion. A quaternion
looks a lot like a four-dimensional vector, but it behaves quite differently.
We usually write quaternions using non-italic, non-boldface type, like this:
q=[9+ 9y 9= Gu -

Quaternions were developed by Sir William Rowan Hamilton in 1843 as
an extension to the complex numbers. They were first used to solve prob-
lems in the area of mechanics. Technically speaking, a quaternion obeys a
set of rules known as a four-dimensional normed division algebra over the real
numbers. Thankfully, we won't need to understand the details of these rather
esoteric algebraic rules. For our purposes, it will suffice to know that the unit-
length quaternions (i.e., all quaternions obeying the constraint 4> + g,> + g.* +
g.* = 1) represent three-dimensional rotations.

There are a lot of great papers, web pages, and presentations on quater-
nions available on the web, for further reading. Here’s one of my favorites:
http://graphics.ucsd.edu/courses/cse169_w05/CSE169_04.ppt.

4.4.1. Unit Quaternions as 3D Rotations

A unit quaternion can be visualized as a three-dimensional vector plus a
fourth scalar coordinate. The vector part qv is the unit axis of rotation, scaled
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by the sine of the half-angle of the rotation. The scalar part gs is the cosine of
the half-angle. So the unit quaternion q can be written as follows:

q=I[qv gs]

=[asin% cos?],

where a is a unit vector along the axis of rotation, and 6 is the angle of rota-
tion. The direction of the rotation follows the right-hand rule, so if your thumb
points in the direction of a, positive rotations will be in the direction of your
curved fingers.

Of course, we can also write q as a simple four-element vector:

q=I[9x 9y q: Gu], where
(x =qvx = ax sin%,
qy =4qvy =‘1ySin%,
- =qv: =asing,

0
Ju={qs =CO0s%.

A unit quaternion is very much like an axis+angle representation of a ro-
tation (i.e., a four-element vector of the form [ a 0 ]). However, quaternions
are more convenient mathematically than their axistangle counterparts, as we
shall see below.

4.4.2. Quaternion Operations

Quaternions support some of the familiar operations from vector algebra,
such as magnitude and vector addition. However, we must remember that the
sum of two unit quaternions does not represent a 3D rotation, because such a
quaternion would not be of unit length. As a result, you won’t see any quater-
nion sums in a game engine, unless they are scaled in some way to preserve
the unit length requirement.

4.4.2.1. Quaternion Multiplication

One of the most important operations we will perform on quaternions is that
of multiplication. Given two quaternions p and q representing two rotations P
and Q, respectively, the product pq represents the composite rotation (i.e., ro-
tation Q followed by rotation P). There are actually quite a few different kinds
of quaternion multiplication, but we’ll restrict this discussion to the variety
used in conjunction with 3D rotations, namely the Grassman product. Using
this definition, the product pq is defined as follows:

pq=[(psqv +qspv +pv Xqv) (psgs—pv-qv)].



4.4. Quaternions

171

Notice how the Grassman product is defined in terms of a vector part, which
ends up in the x, y, and z components of the resultant quaternion, and a scalar
part, which ends up in the w component.

4.42.2. Conjugate and Inverse

The inverse of a quaternion q is denoted q* and is defined as a quaternion
which, when multiplied by the original, yields the scalar 1 (i.e., qq" = 0i + 0j
+ 0k + 1). The quaternion [0 0 0 1] represents a zero rotation (which makes
sense since sin(0) = 0 for the first three components, and cos(0) = 1 for the last
component).

In order to calculate the inverse of a quaternion, we must first define a
quantity known as the conjugate. This is usually denoted g* and it is defined
as follows:

q*=[-qv gs].

In other words, we negate the vector part but leave the scalar part unchaged.
Given this definition of the quaternion conjugate, the inverse quaternion
q'is defined as follows:

q'= q*z'
q|

Our quaternions are always of unit length (i.e., |ql = 1), because they represent
3D rotations. So, for our purposes, the inverse and the conjugate are identical:

q_1 =q*=[-qv gs] when |q| =1.

This fact is incredibly useful, because it means we can always avoid doing
the (relatively expensive) division by the squared magnitude when inverting
a quaternion, as long as we know a priori that the quaternion is normalized.
This also means that inverting a quaternion is generally much faster than in-
verting a 3 x 3 matrix—a fact that you may be able to leverage in some situa-
tions when optimizing your engine.

Conjugate and Inverse of a Product

The conjugate of a quaternion product (pq) is equal to the reverse product of
the conjugates of the individual quaternions:

(P9 =q"p".
Likewise the inverse of a quaternion product is equal to the reverse product of

the inverses of the individual quaternions:

-1

(Pg)'=q7'p 4.3)
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This is analogous to the reversal that occurs when transposing or inverting
matrix products.

4.43. Rotating Vectors with Quaternions

How can we apply a quaternion rotation to a vector? The first step is to rewrite
the vector in quaternion form. A vector is a sum involving the unit basis vectors
i, j, and k. A quaternion is a sum involving i, j, and k, but with a fourth scalar
term as well. So it makes sense that a vector can be written as a quaternion
with its scalar term gs equal to zero. Given the vector v, we can write a cor-
responding quaternionv=[v 0]=[v: vy, v: 0].

In order to rotate a vector v by a quaternion q, we pre-multiply the vec-
tor (written in its quaternion form v) by q and then post-multiply it by the
inverse quaternion, q~'. Therefore, the rotated vector v’ can be found as fol-
lows:

V' =rotate(q,v)=qvq .

This is equivalent to using the quaternion conjugate, because our quaternions
are always unit length:

v’ =rotate(q,v) =qvq*. (4.4)

The rotated vector v’ is obtained by simply extracting it from its quaternion
form v'.

Quaternion multiplication can be useful in all sorts of situations in real
games. For example, let’s say that we want to find a unit vector describing the
direction in which an aircraft is flying. We'll further assume that in our game,
the positive z-axis always points toward the front of an object by convention.
So the forward unit vector of any object in model space is always Fyy =[0 0 1]
by definition. To transform this vector into world space, we can simply take
our aircraft’s orientation quaternion q and use it with Equation (4.4) to rotate
our model-space vector Fy into its world space equivalent Fy (after converting
these vectors into quaternion form, of course):

Fw=qFuq '=q[0 0 1 0]q"

4.43.1. Quaternion Concatenation

Rotations can be concatenated in exactly the same way that matrix-based trans-
formations can, by multiplying the quaternions together. For example, consid-
er three distinct rotations, represented by the quaternions qi, qz2, and qs, with
matrix equivalents R, Rz, and Rs;. We want to apply rotation 1 first, followed
by rotation 2 and finally rotation 3. The composite rotation matrix Rpe: can be
found and applied to a vector v as follows:
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Rret = R1R2R3;
V/ = VR1R2R3 = VRnet.

Likewise, the composite rotation quaternion qre: can be found and applied to
vector v (in its quaternion form, v) as follows:

(net = q3q2q1,

V' =q392q1vqi 'q2'q3" = qnetVqnet -

Notice how the quaternion product must be performed in an order opposite
to that in which the rotations are applied (qsq2q1). This is because quaternion
rotations always multiply on both sides of the vector, with the uninverted
quaternions on the left and the inverted quaternions on the right. As we saw
in Equation (4.3), the inverse of a quaternion product is the reverse product of
the individual inverses, so the uninverted quaternions read right-to-left while
the inverted quaternions read left-to-right.

4.4.4. Quaternion-Matrix Equivalence

We can convert any 3D rotation freely between a 3 x 3 matrix representation
R and a quaternion representation q. If weletq=[ qv gs]=[gvx qvy qvz gs]=
[x y z w], then we can find R as follows:

1-2y* =2z 2xy+2zw 2xz —2yw
R=| 2xy—2zw 1-2x*—-22" 2yz+2xw
2xz+2yw 2yz—2xw  1-2x—2y°

Likewise, given R we can find q as follows (where g [0] =qvx, q[1] =qvy,
ql2] =qvz, and q[3] = qs). This code assumes that we are using row vectors
in C/C++ (i.e., that the rows of matrix R [row] [col] correspond to the rows
of the matrix R shown above). The code was adapted from a Gamasutra article
by Nick Bobic, published on July 5, 1998, which is available here: http://www.
gamasutra.com/view/feature/3278/rotating_objects_using_quaternions.php.
For a discussion of some even faster methods for converting a matrix to a
quaternion, leveraging various assumptions about the nature of the matrix,
see http://www.euclideanspace.com/maths/geometry/rotations/conversions/
matrixToQuaternion/index.htm.

void matrixToQuaternion (

const float RI[3][3],
float al/*4*/1)

float trace = R[0] [0] + RI[1][1] + RI[2][2];


http://www.gamasutra.com/view/feature/3278/rotating_objects_using_quaternions.php
http://www.gamasutra.com/view/feature/3278/rotating_objects_using_quaternions.php
http://www.euclideanspace.com/maths/geometry/rotations/conversions/

174

4. 3D Math for Games

//
if

else

}
}

check the diagonal
(trace > 0.0f)

float s = sqgrt(trace + 1.0f);
gql3] = s * 0.5f;

float t = 0.5f / s;

ql0] = (R[2][1] - R[1][2]) * t;
ql1l]l = (R[0][2] - R[2][0]) * t;
gl2] = (R[1]1[0] - R[O]I[1]) * t;

// diagonal is negative
int 1 = 0;

if (R[1][1] > R[O][O]) 1 = 1;
if (R[2][2] > RIi][4i]) 1 = 2;
static const int NEXT[3]

j = NEXTI[i];
k = NEXTI[j];

float s = sqrt ((R[1i][i]

- (RIJI[3¥ RIKI[k]))

. 0f) ;
gli] = s * 0.5f;
float t;
if (s != 0.0) t = 0.5f / s;
else t = s;
gl3] = (RIk][j] - RI[3I[k]) * t
qljl = (RI31[4i] + RIi1[3J]) * t
glkl = (R[k][i] + RI[il[k]) * t

4.4.5. Rotational Linear Interpolation

7
7

7
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Rotational interpolation has many applications in the animation, dynamics

and camera systems of a game engine. With the help of quaternions, rotations

can be easily interpolated just as vectors and points can.

The easiest and least computationally intensive approach is to perform
a four-dimensional vector LERP on the quaternions you wish to interpolate.

Given two quaternions qa and g representing rotations A and B, we can
find an intermediate rotation qrere that is § percent of the way from A to B as

follows:
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1—
quere = LERP(qa,q3, ) = %

(1—B)gax+Base |
(1= PB)qay + Bgsy

=normalize

(1= B)qa: + Bqs:
(1= B)qaw + Basw

CCERY)

quere = LERP(qa, g5, 0.4)

@ (B=0)

Figure 4.22. Linear interpolation (LERP) between quaternions g, and gs.

Notice that the resultant interpolated quaternion had to be renormalized. This
is necessary because the LERP operation does not preserve a vector’s length
in general.

Geometrically, quere = LERP(q4, g3, ) is the quaternion whose orientation
lies  percent of the way from orientation A to orientation B, as shown (in two
dimensions for clarity) in Figure 4.22. Mathematically, the LERP operation re-
sults in a weighed average of the two quaternions, with weights (1 — ) and
(notice that (1 - ) +p=1).

4.4.5.1. Spherical Linear Interpolation

The problem with the LERP operation is that it does not take account of the
fact that quaternions are really points on a four-dimensional hypersphere. A
LERP effectively interpolates along a chord of the hypersphere, rather than
along the surface of the hypersphere itself. This leads to rotation animations
that do not have a constant angular speed when the parameter 8 is changing
at a constant rate. The rotation will appear slower at the end points and faster
in the middle of the animation.
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qPB=1)

quere = LERP(q4, g5, 0.4)
qstere = SLERP (qu, gs, 0.4)
2

Figure 4.23. Spherical linear interpolation along a great circle arc of a 4D hypersphere.

To solve this problem, we can use a variant of the LERP operation known
as spherical linear interpolation, or SLERP for short. The SLERP operation uses
sines and cosines to interpolate along a great circle of the 4D hypersphere,
rather than along a chord, as shown in Figure 4.23. This results in a constant
angular speed when f§ varies at a constant rate.

The formula for SLERP is similar to the LERP formula, but the weights
(1 -p) and f are replaced with weights w, and w, involving sines of the angle
between the two quaternions.

SLERP(p,q, ) = wy ptw, q,
where
. Sin(@=p)0)
. sin(6)

_ sin(f30)
"7 sin(d)

The cosine of the angle between any two unit-length quaternions can
be found by taking their four-dimensional dot product. Once we know
cos(0), we can calculate the angle 0 and the various sines we need quite
easily:

€0s(0) = P-q = pae+ Pyy + p2f + Pulfu;
6 =cos '(p-q).
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4.45.2. To SLERP or Not to SLERP (That's Still the Question)

The jury is still out on whether or not to use SLERP in a game engine. Jonathan
Blow wrote a great article positing that SLERP is too expensive, and LERP’s
quality is not really that bad —therefore, he suggests, we should understand
SLERP but avoid it in our game engines (see http://number-none.com/prod-
uct/Understanding%20Slerp, %20Then%20Not%20Using %20It/index.html).
On the other hand, some of my colleagues at Naughty Dog have found that
a good SLERP implementation performs nearly as well as LERP. (For exam-
ple, on the PS3’s SPUs, Naughty Dog’s Ice team’s implementation of SLERP
takes 20 cycles per joint, while its LERP implementation takes 16.25 cycles per
joint.) Therefore, I'd personally recommend that you profile your SLERP and
LERP implementations before making any decisions. If the performance hit
for SLERP isn’t unacceptable, I say go for it, because it may result in slightly
better-looking animations. But if your SLERP is slow (and you cannot speed
it up, or you just don’t have the time to do so), then LERP is usually good
enough for most purposes.

4.5. Comparison of Rotational Representations

We’ve seen that rotations can be represented in quite a few different ways.
This section summarizes the most common rotational representations and
outlines their pros and cons. No one representation is ideal in all situations.
Using the information in this section, you should be able to select the best
representation for a particular application.

4.5.1. Euler Angles

We briefly explored Euler angles in Section 4.3.9.1. A rotation represented via
Euler angles consists of three scalar values: yaw, pitch, and roll. These quanti-
ties are sometimes represented by a 3D vector [ Oy Op Or].

The benefits of this representation are its simplicity, its small size (three
floating-point numbers), and its intuitive nature—yaw, pitch, and roll are easy
to visualize. You can also easily interpolate simple rotations about a single axis.
For example, it’s trivial to find intermediate rotations between two distinct yaw
angles by linearly interpolating the scalar 6y. However, Euler angles cannot be
interpolated easily when the rotation is about an arbitrarily-oriented axis.

In addition, Euler angles are prone to a condition known as gimbal lock.
This occurs when a 90-degree rotation causes one of the three principal axes
to “collapse” onto another principal axis. For example, if you rotate by 90
degrees about the x-axis, the y-axis collapses onto the z-axis. This prevents
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any further rotations about the original y-axis, because rotations about y and z
have effectively become equivalent.

Another problem with Euler angles is that the order in which the rotations
are performed around each axis matters. The order could be PYR, YPR, RYP,
and so on, and each ordering may produce a different composite rotation.
No one standard rotation order exists for Euler angles across all disciplines
(although certain disciplines do follow specific conventions). So the rotation
angles [ Oy Op Or ] do not uniquely define a particular rotation—you need to
know the rotation order to interpret these numbers properly.

A final problem with Euler angles is that they depend upon the mapping
from the x-, y-, and z-axes onto the natural front, left/right, and up directions for
the object being rotated. For example, yaw is always defined as rotation about
the up axis, but without additional information we cannot tell whether this
corresponds to a rotation about x, y, or z.

4.5.2. 3x3M atrices

A 3 x 3 matrix is a convenient and effective rotational representation for a
number of reasons. It does not suffer from gimbal lock, and it can represent
arbitrary rotations uniquely. Rotations can be applied to points and vectors in
a straightforward manner via matrix multiplication (i.e., a series of dot prod-
ucts). Most CPUs and all GPUs now have built-in support for hardware-accel-
erated dot products and matrix multiplication. Rotations can also be reversed
by finding an inverse matrix, which for a pure rotation matrix is the same
thing as finding the transpose—a trivial operation. And 4 x 4 matrices offer a
way to represent arbitrary affine transformations—rotations, translations, and
scaling—in a totally consistent way.

However, rotation matrices are not particularly intuitive. Looking at a big
table of numbers doesn't help one picture the corresponding transformation
in three-dimensional space. Also, rotation matrices are not easily interpolated.
Finally, a rotation matrix takes up a lot of storage (nine floating-point num-
bers) relative to Euler angles.

4.53. Axis + Angle

We can represent rotations as a unit vector defining the axis of rotation plus a
scalar for the angle of rotation. This is known as an axis+angle representation,
and it is sometimes denoted by the four-dimensional vector [ a O ], where a
is the axis of rotation and 0 the angle in radians. In a right-handed coordinate
system, the direction of a positive rotation is defined by the right-hand rule,
while in a left-handed system we use the left-hand rule instead.
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The benefits of the axis+angle representation are that it is reasonably intu-
itive and also compact (only requires four floating-point numbers, as opposed
to the nine required for a 3 x 3 matrix).

One important limitation of the axistangle representation is that rota-
tions cannot be easily interpolated. Also, rotations in this format cannot be
applied to points and vectors in a straightforward way —one needs to convert
the axis+angle representation into a matrix or quaternion first.

4.5.4. Quaternions

As we've seen, a unit-length quaternion can represent 3D rotations in a man-
ner analogous to the axistangle representation. The primary difference be-
tween the two representations is that a quaternion’s axis of rotation is scaled
by the sine of the half angle of rotation, and instead of storing the angle in the
fourth component of the vector, we store the cosine of the half angle.

The quaternion formulation provides two immense benefits over the
axistangle representation. First, it permits rotations to be concatenated and
applied directly to points and vectors via quaternion multiplication. Second,
it permits rotations to be easily interpolated via simple LERP or SLERP op-
erations. Its small size (four floating-point numbers) is also a benefit over the
matrix formulation.

4.5.5. SQT Transformations

By itself, a quaternion can only represent a rotation, whereas a 4 x 4 matrix
can represent an arbitrary affine transformation (rotation, translation, and
scale). When a quaternion is combined with a translation vector and a scale
factor (either a scalar for uniform scaling or a vector for nonuniform scaling),
then we have a viable alternative to the 4 x 4 matrix representation of affine
transformations. We sometimes call this an SQT transform, because it contains
a scale factor, a quaternion for rotation, and a franslation vector.

SQT=[s q t] (uniform scales),

or

SQT=[s q t] (non-uniform scale vector s).

SQT transforms are widely used in computer animation because of their
smaller size (eight floats for uniform scale, or ten floats for nonuniform scale,
as opposed to the 12 floating-point numbers needed for a 4 x 3 matrix) and
their ability to be easily interpolated. The translation vector and scale factor
are interpolated via LERP, and the quaternion can be interpolated with either
LERP or SLERP.
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4.5.6. Dual Quaternions

Complete transformations involving rotation, translation, and scale can be
represented using a mathematical object known as a dual quaternion. A dual
quaternion is like an ordinary quaternion, except that its four components are
dual numbers instead of regular real-valued numbers. A dual number can be
written as the sum of a non-dual part and a dual part as follows: 4 = ao + &de.
Here ¢ is a magical number called the dual unit, defined as ¢’ =0. (This is
analogous to the imaginary number i=v=1 used when writing a complex
number as the sum of a real and an imaginary part: c=a+1ib. )

Because each dual number can be represented by two real numbers
(the non-dual and dual parts), a dual quaternion can be represented by an
eight-element vector. It can also be represented as the sum of two ordinary
quaternions, where the second one is multiplied by the dual unit, as follows:

q=qo+eqe.

A full discussion of dual numbers and dual quaternions is beyond our
scope here. However, a number of excellent articles on them exist online and
in the literature. I recommend starting with https://www.cs.tcd.ie/publica-

tions/tech-reports/reports.06/TCD-CS-2006-46.pdf.

4.5.7. Rotations and Degrees of Freedom

The term “degrees of freedom” (or DOF for short) refers to the number of mu-
tually-independent ways in which an object’s physical state (position and ori-
entation) can change. You may have encountered the phrase “six degrees of
freedom” in fields such as mechanics, robotics, and aeronautics. This refers
to the fact that a three-dimensional object (whose motion is not artificially
constrained) has three degrees of freedom in its translation (along the x-, y-,
and z-axes) and three degrees of freedom in its rotation (about the x-, y-, and
z-axes), for a total of six degrees of freedom.

The DOF concept will help us to understand how different rotational rep-
resentations can employ different numbers of floating-point parameters, yet
all specify rotations with only three degrees of freedom. For example, Euler
angles require three floats, but axistangle and quaternion representations use
four floats, and a 3 x 3 matrix takes up nine floats. How can these representa-
tions all describe 3-DOF rotations?

The answer lies in constraints. All 3D rotational representations employ
three or more floating-point parameters, but some representations also have
one or more constraints on those parameters. The constraints indicate that the
parameters are not independent—a change to one parameter induces changes
to the other parameters in order to maintain the validity of the constraint(s).


http://www.cs.tcd.ie/publica-tions/tech-reports/reports.06/TCD-CS-2006-46.pdf
http://www.cs.tcd.ie/publica-tions/tech-reports/reports.06/TCD-CS-2006-46.pdf
http://www.cs.tcd.ie/publica-tions/tech-reports/reports.06/TCD-CS-2006-46.pdf
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If we subtract the number of constraints from the number of floating-point
parameters, we arrive at the number of degrees of freedom —and this number
should always be three for a 3D rotation:

NDOF = Nparameters — LN constraints- (45)

The following list shows Equation (4.5) in action for each of the rotational
representations we’ve encountered in this book.

e Luler Angles. 3 parameters — 0 constraints = 3 DOF.

e AxistAngle. 4 parameters — 1 constraint =3 DOF.
Constraint: Axis is constrained to be unit length.

e Quaternion. 4 parameters — 1 constraint =3 DOF.
Constraint: Quaternion is constrained to be unit length.

e 3 x3 Matrix. 9 parameters — 6 constraints = 3 DOF.
Constraints: All three rows and all three columns must be of unit length
(when treated as three-element vectors).

4.6. Other Useful Mathematical Objects

As game engineers, we will encounter a host of other mathematical objects,
in addition to points, vectors, matrices and quaternions. This section briefly
outlines the most common of these.

4.6.1.  Lines, Rays, and Line Segments

An infinite line can be represented by a point Py plus a unit vector u in the
direction of the line. A parametric equation of a line traces out every possible
point P along the line by starting at the initial point Py and moving an arbi-
trary distance ¢ along the direction of the unit vector u. The infinitely large set
of points P becomes a vector function of the scalar parameter #:

P(t) =Py + tu, where —oo <t < +oo. (4.73)
This is depicted in Figure 4.24.

w”7l2 =3
- =1

~r 0

t=-1

Figure 4.24. Parametric equation of a line.
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t=0

Figure 4.25. Parametric equation of a ray.

A ray is a line that extends to infinity in only one direction. This is easily
expressed as P(t) with the constraint ¢ > 0, as shown in Figure 4.25.

A line segment is bounded at both ends by Py and P;. It too can be repre-
sented by P(t), in either one of the following two ways (where L = P; — Pg and
L= LI is the length of the line segment):

1. P(t)=Po+tu, where0<t<L, or

2. P(t)=Po+tL, where 0<t<1.
The latter format, depicted in Figure 4.26, is particularly convenient because
the parameter t is normalized; in other words, t always goes from zero to one,
no matter which particular line segment we are dealing with. This means we

do not have to store the constraint L in a separate floating-point parameter; it
is already encoded in the vector L = Lu (which we have to store anyway).

t=0

Figure 4.26. Parametric equation of a line segment, with normalized parameter t.

4.6.2. Spheres

Spheres are ubiquitous in game engine programming. A sphere is typically
defined as a center point C plus a radius r, as shown in Figure 4.27. This packs

z

Figure 4.27. Point-radius representation of a sphere.
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nicely into a four-element vector, [ C; C, C. r |. As we'll see below when we dis-
cuss SIMD vector processing, there are distinct benefits to being able to pack
data into a vector containing four 32-bit floats (i.e., a 128-bit package).

4.6.3. Planes

A plane is a 2D surface in 3D space. As you may recall from high school alge-
bra, the equation of a plane is often written as follows:

Ax+By+Cz+D=0.

This equation is satisfied only for the locus of points P=[ x y z] that lie on
the plane.

Planes can be represented by a point Py and a unit vector n that is normal
to the plane. This is sometimes called point-normal form, as depicted in Fig-
ure 4.28.

It’s interesting to note that when the parameters A, B, and C from the tra-
ditional plane equation are interpreted as a 3D vector, that vector lies in the di-
rection of the plane normal. If the vector [ A B C]is normalized to unit length,
then the normalized sub-vector [ a4 b ¢ ] =n, and the normalized parameter
d=D/NA*+B +C* s just the distance from the plane to the origin. The sign
of d is positive if the plane’s normal vector (n) is pointing toward the origin
(i.e., the origin is on the “front” side of the plane) and negative if the normal
is pointing away from the origin (i.e., the origin is “behind” the plane). In
fact, the normalized equation ax + by + cz + d = 0 is just another way of writing
(n - P) =-d, which means that when any point P on the plane is projected onto
the plane normal n, the length of that projection will be —d.

A plane can actually be packed into a four-element vector, much like a
sphere can. To do so, we observe that to describe a plane uniquely, we need
only the normal vectorn=[4a b c]and the distance from the origin d. The
four-element vector L=[n d]=[a b ¢ d]is a compact and convenient way
to represent and store a plane in memory. Note that when P is written in ho-
mogeneous coordinates with w =1, the equation (L - P) = 0 is yet another way
of writing (n + P) = —d. (These equations are satisfied for all points P that lie
on the plane L.)

Planes defined in four-element vector form can be easily transformed
from one coordinate space to another. Given a matrix Ma-p that transforms
points and (non-normal) vectors from space A to space B, we already know
that to transform a normal vector such as the plane’s n vector, we need to use
the inverse transpose of that matrix, (Masp)' . Soit shouldn’t be a big surprise
to learn that applying the inverse transpose of a matrix to a four-element plane
vector L will, in fact, correctly transform that plane from space A to space B.

Figure 4.28. A plane
in point-normal form.
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Right

Bottom

Figure 4.29. A frustum.

We won't derive or prove this result any further here, but a thorough explana-
tion of why this little “trick” works is provided in Section 4.2.3 of [28].

4.6.4. Axis-Aligned Bounding Boxes (AABB)

An axis-aligned bounding box (AABB) is a 3D cuboid whose six rectangular
faces are aligned with a particular coordinate frame’s mutually orthogonal
axes. As such, an AABB can be represented by a six-element vector containing
the minimum and maximum coordinates along each of the 3 principal axes,
[ Xmin, Xmax, Ymin, Ymax, Zmin, Zmax ], OF two points Pmin and Prax.

This simple representation allows for a particularly convenient and in-
expensive method of testing whether a point P is inside or outside any given
AABB. We simply test if all of the following conditions are true:

P> xmin and Py < xmax and
Py > ymin and Py, < ymax and
P.>znn and P, < Zma.

Because intersection tests are so speedy, AABBs are often used as an “early
out” collision check; if the AABBs of two objects do not intersect, then there is
no need to do a more detailed (and more expensive) collision test.

4.6.5. Oriented Bounding Boxes (OBB)

An oriented bounding box (OBB) is a cuboid that has been oriented so
as to align in some logical way with the object it bounds. Usually an OBB
aligns with the local-space axes of the object. Hence it acts like an AABB
in local space, although it may not necessarily align with the world space
axes.

Various techniques exist for testing whether or not a point lies within
an OBB, but one common approach is to transform the point into the OBB’s
“aligned” coordinate system and then use an AABB intersection test as pre-
sented above.

4.6.6. Frusta

As shown in Figure 4.29, a frustum is a group of six planes that define a trun-
cated pyramid shape. Frusta are commonplace in 3D rendering because they
conveniently define the viewable region of the 3D world when rendered via a
perspective projection from the point of view of a virtual camera. Four of the
planes bound the edges of the screen space, while the other two planes repre-
sent the the near and far clipping planes (i.e., they define the minimum and
maximum z coordinates possible for any visible point).
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One convenient representation of a frustum is as an array of six planes,
each of which is represented in point-normal form (i.e., one point and one
normal vector per plane).

Testing whether a point lies inside a frustum is a bit involved, but the basic
idea is to use dot products to determine whether the point lies on the front or
back side of each plane. If it lies inside all six planes, it is inside the frustum.

A helpful trick is to transform the world-space point being tested, by
applying the camera’s perspective projection to it. This takes the point from
world space into a space known as homogeneous clip space. In this space, the
frustum is just an axis-aligned cuboid (AABB). This permits much simpler in/
out tests to be performed.

4.6.7. Convex Polyhedral Regions

A convex polyhedral region is defined by an arbitrary set of planes, all with nor-
mals pointing inward (or outward). The test for whether a point lies inside
or outside the volume defined by the planes is relatively straightforward; it
is similar to a frustum test, but with possibly more planes. Convex regions
are very useful for implementing arbitrarily-shaped trigger regions in games.
Many engines employ this technique; for example, the Quake engine’s ubiqui-
tous brushes are just volumes bounded by planes in exactly this way.

4.7. Hardware-Accelerated SIMD Math

SIMD stands for “single instruction multiple data.” This refers to the ability of
most modern microprocessors to perform a single mathematical operation on
multiple data items in parallel, using a single machine instruction. For exam-
ple, the CPU might multiply four pairs of floating-point numbers in parallel
with a single instruction. SIMD is widely used in game engine math libraries,
because it permits common vector operations such as dot products and matrix
multiplication to be performed extremely rapidly.

Intel first introduced MMX instructions with their Pentium line of CPUs
in 1994. These instructions permitted SIMD calculations to be performed on
8-, 16-, and 32-bit integers packed into special 64-bit MMX registers. Intel fol-
lowed this up with various revisions of an extended instruction set called
Streaming SIMD Extensions, or SSE, the first version of which appeared in the
Pentium III processor. The SSE instruction set utilizes 128-bit registers that can
contain integer or IEEE floating-point data.

The SSE mode most commonly used by game engines is called packed 32-
bit floating-point mode. In this mode, four 32-bit f1loat values are packed into
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a single 128-bit register; four operations such as additions or multiplications
are performed in parallel on four pairs of floats using a single instruction. This
is just what the doctor ordered when multiplying a four-element vector by a
4 x 4 matrix!

4.7.1.1.  SSE Registers

In packed 32-bit floating-point mode, each 128-bit SSE register contains four
32-bit floats. The individual floats within an SSE register are conveniently re-
ferred toas [ x y z w], just as they would be when doing vector/matrix math
in homogeneous coordinates on paper (see Figure 4.30). To see how the SSE
registers work, here’s an example of a SIMD instruction:

addps xmm0O, xmml

The addps instruction adds the four floats in the 128-bit XMMO register with
the four floats in the XMMI1 register, and stores the four results back into
XMMO. Put another way:

xmm0.x = xmm0.x + xmm1.x;
xmm0.y = xmmO0.y + xmm1l.y;
xmm0.z = xmm0.z + xmm1.z;

xmmO0.w = xmmO0.w + xmm1.w.

The four floating-point values stored in an SSE register can be extracted
to or loaded from memory or registers individually, but such operations tend
to be comparatively slow. Moving data between the x87 FPU registers and the
SSE registers is particularly bad, because the CPU has to wait for either the x87
or the SSE unit to spit out its pending calculations. This stalls out the CPU’s
entire instruction execution pipeline and results in a lot of wasted cycles. In a
nutshell, code that mixes regular f£1oat mathematics with SSE mathematics
should be avoided like the plague.

To minimize the costs of going back and forth between memory, x87 FPU
registers, and SSE registers, most SIMD math libraries do their best to leave
data in the SSE registers for as long as possible. This means that even scalar
values are left in SSE registers, rather than transferring them out to float
variables. For example, a dot product between two vectors produces a scalar
result, but if we leave that result in an SSE register it can be used later in other

k— 32bits —k— 32 bits | 32 bits | 32 bits —

L= [ : v |

Figure 4.30. The four components of an SSE register in 32-bit floating-point mode.
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vector calculations without incurring a transfer cost. Scalars are represented
by duplicating the single floating-point value across all four “slots” in an SSE
register. So to store the scalar s in an SSE register, we'd setx =y =z=w=s.

4.71.2. The _mi28 Data Type

Using one of these magic SSE 128-bit values in C or C++ is quite easy. The
Microsoft Visual Studio compiler provides a predefined data type called
__m128. This data type can be used to declare global variables, automatic vari-
ables, and even class and structure members. In many cases, variables of this
type will be stored in RAM. But when used in calculations,  m128 values are
manipulated directly in the CPU’s SSE registers. In fact, declaring automatic
variables and function arguments to be of type _ m128 often results in the
compiler storing those values directly in SSE registers, rather than keeping
them in RAM on the program stack.

Alignment of __mi28 Variables

When an __m128 variable is stored in RAM, it is the programmer’s responsi-
bility to ensure that the variable is aligned to a 16-byte address boundary. This
means that the hexadecimal address of an __m128 variable must always end
in the nibble 0x0. The compiler will automatically pad structures and classes
so that if the entire struct or class is aligned to a 16-byte boundary, all of the
__m128 data members within it will be properly aligned as well. If you de-
clare an automatic or global struct/class containing one or more _ m128s, the
compiler will align the object for you. However, it is still your responsibility
to align dynamically allocated data structures (i.e., data allocated with new or
malloc ()); the compiler can't help you there.

4.71.3. Coding with SSE Intrinsics

SSE mathematics can be done in raw assembly language, or via inline assem-
bly in C or C++. However, writing code like this is not only non-portable, it's
also a big pain in the butt. To make life easier, modern compilers provide
intrinsics —special commands that look and behave like regular C functions,
but are really boiled down to inline assembly code by the compiler. Many in-
trinsics translate into a single assembly language instruction, although some
are macros that translate into a sequence of instructions.

In order to use the ~ m128 data type and SSE intrinsics, your .cpp file
must #include <xmmintrin.hs.

As an example, let’s take another look at the addps assembly language
instruction. This instruction can be invoked in C/C++ using the intrinsic _mm
_add_ps (). Here’s a side-by-side comparison of what the code would look
like with and without the use of the intrinsic.
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~ ml28 addWithAssembly ( ~ ml28 addWithIntrinsics(
_ ml28 a, _ ml28 a,
~ ml28 b) ~ ml28 b)
{ {
_ ml28 r; _ ml28 r =
__asm ~mm add ps(a, b);
{ return r;
movaps xmmo0, }

xmmword ptr [al
movaps xmml,

xmmword ptr [b]
addps xmmO, xmml
movaps xmmword ptr [r],

xmmO

}

return r;

In the assembly language version, we have to use the __asm keyword to
invoke inline assembly instructions, and we must create the linkage between
the input parameters a and b and the SSE registers xmmo0 and xmm1 manually,
via movaps instructions. On the other hand, the version using intrinsics is
much more intuitive and clear, and the code is smaller. There’s no inline as-
sembly, and the SSE instruction looks just like a regular function call.

If you'd like to experiment with these example functions, they can be in-
voked via the following test bed main () function. Notice the use of another
intrinsic, _mm_load_ps (), which loads values from an in-memory array of
floats into an _ m128 variable (i.e., into an SSE register). Also notice that
we are forcing our four global float arrays to be 16-byte aligned via the
__declspec(align(16)) directive—if we omit these directives, the pro-
gram will crash.

#include <xmmintrin.h>

// ... function definitions from above
__declspec(align(16)) float A[]={2.0f,-1.0f,3.0f,4.0f};
__declspec(align(16)) float B[]={-1.0f,3.0f,4.0f,2.0£f};
__declspec(align(16)) float C[]={0.0f,0.0£,0.0£,0.0£f};
__declspec(align(16)) float D[]={0.0f,0.0£,0.0£f,0.0£f};

int main (int argc, char* argv([])

{

// load a and b from floating-point data arrays above
~ ml28 a = mm load ps(&A[0]);
~ ml28 b = mm load ps(&B[0]);
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}

// test the two functions
addWithAssembly (a, b);
addWithIntrinsics(a, b);

~ ml28 c =
_ ml28 d

// store the original values back to check that they
// weren’'t overwritten

_mm_store_ps(&A[0], a);
_mm_store_ps(&B[0], b);

// store results into float arrays so we can print

// them

_mm_store ps(&C[0], c);
_mm_store ps(&D[0], d);

// inspect
printf (“%g
printf (“%g
printf (“%g
printf (“%g

return O;

the results

oo

g
g

oo

o0 P
Q Q

%g %g\n”,
%$g %g\n”,
$g\n”,
$g\n”,

Afo]l, A[1l,
B[0], BI[1],
clol, clij,
D[0], D[1],

4.7.1.4. Vector-Matrix Multiplication with SSE

Let’s take a look at how vector-matrix multiplication might be implemented
using SSE instructions. We want to multiply the 1 x 4 vector v with the 4 x 4

matrix M to generate a result vector r.

The multiplication involves taking the dot product of the row vector v
with the columns of matrix M. So to do this calculation using SSE instructions,
we might first try storing v in an SSE register (__m128), and storing each of
the columns of M in SSE registers as well. Then we could calculate all of the

Al2],
B[2],
cla],
D[2],

7

A[3]
B[3]
Cc[3]
D[3]
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I
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My My M My
(oM (v:M12 (vxMiz  (vxMus
+UyM21 +UyM22 +vyM23 +UyM24
N +v. M3z +0. M3 +0v.M33 +0. M3y
+ZJwM41) +ZJwM42) +7)wM43) +7JwM44)

products vMj; in parallel using only four mulps instructions, like this:
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~ ml28 mulVectorMatrixAttemptl( ml28 v,

_ ml28 Mcoll, _ ml28 Mcol2,
_ ml28 Mcol3, _ ml28 Mcol4)
{

~ ml28 vMcoll = mm mul ps(v, Mcoll);
~ ml28 vMcol2 = mm mul ps(v, Mcol2);
~ ml28 vMcol3 = mm mul ps(v, Mcol3);
~ ml28 vMcol4 = mm mul ps(v, Mcol4);
// ... then what?

}

The above code would yield the following intermediate results:

vMcoll =[v:Mn v,Mn v-Ms1 VM ];
vMcol2 =[ v:Mi2 UyMzz UMz VM |;
vMcol3 =[ v.Miz v,Maz v-Mszs VM3 ];
vMcol4d =[ v:Mis v,May V-M3zs VMg ].

But the problem with doing it this way is that we now have to add “across
the registers” in order to generate the results we need. For example, r, =
(v:Mn1 + v,Mo1 + v-Ma1 + v,Ma1), so we'd need to add the four components of
vMcoll together. Adding across a register like this is difficult and inefficient,
and moreover it leaves the four components of the result in four separate SSE
registers, which would need to be combined into the single result vector r. We
can do better.

The “trick” here is to multiply with the rows of M, not its columns.
That way, we’ll have results that we can add in parallel, and the final sums
will end up in the four components of a single SSE register representing
the output vector r. However, we don’t want to multiply v as-is with the
rows of M—we want to multiply v, with all of row 1, v, with all of row 2,
v, with all of row 3, and v, with all of row 4. To do this, we need to replicate
a single component of v, such as v,, across a register to yield a vector like
[ vx vx vx vx]. Then we can multiply the replicated component vectors by the
appropriate rows of M.

Thankfully there’s a powerful SSE instruction which can replicate values
like this. It is called shufps, and it's wrapped by the intrinsic _mm_shuffle
ps (). This beast is a bit complicated to understand, because it's a general-
purpose instruction that can shuffle the components of an SSE register around
in arbitrary ways. However, for our purposes we need only know that the
following macros replicate the x, y, z or w components of a vector across an
entire register:

#define SHUFFLE PARAM(x, y, 2z, w) \
((x) | ((y) << 2) | ((2) << 4) | ((w) << 6))
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#define _mm_replicate x ps(v) \

~mm_shuffle ps((v), (v), SHUFFLE PARAM(0, 0, 0, 0))
#define _mm_replicate y ps(v) \

~mm_shuffle ps((v), (v), SHUFFLE PARAM(1, 1, 1, 1))
#define mm replicate z ps(v) \

_mm_shuffle ps((v), (v), SHUFFLE PARAM(2, 2, 2, 2))

#define  mm replicate w ps(v) \

_mm_shuffle ps((v), (v), SHUFFLE PARAM(3, 3, 3, 3))

Given these convenient macros, we can write our vector-matrix multipli-
cation function as follows:

~ ml28 mulVectorMatrixAttempt2( ml28 v,

_ ml28 Mrowl, _ ml28 Mrow2,
_ ml28 Mrow3, _ ml28 Mrow4)
{
~ ml28 xMrowl = mm mul ps( mm replicate x ps(v),
Mrowl) ;

~ ml28 yMrow2 = mm mul ps( mm replicate y ps(v),
Mrow2) ;

~ ml28 zMrow3 = mm mul ps( mm replicate z ps(v),
Mrow3) ;

~ ml28 wMrow4 = mm mul ps( mm replicate w ps(v),

Mrow4) ;
~ ml28 result = mm add ps(xMrowl, yMrow2) ;
result = mm add ps(result, zMrow3);

result

~mm add ps(result, wMrow4) ;

return result;

}

This code produces the following intermediate vectors:

xMrowl =[ v:Mn v:Mi2 v:Miz V-Mu ];
[oyM21 vMa v,Mos v,Mos |;

zMrow3 = [ v-Mz v:-Mz v-Mszs v-Ma ];

wMrowd = [ UMy VM UeMaz VMg ].

yMrow2 =

Adding these four vectors in parallel produces our result r:

(oM (v:Mi2 (vxMi3 (vxMia

+oyMoa  +o,Mx»n  +o,Mxn  +v,Mxn
+0:Ms1  +v-Ms  +v:Mss  +0.Mss
+ZJwM41) +ZJwM42) +’UwM43) +00Mas)

r=
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On some CPUs, the code shown above can be optimized even further by
using a rather handy multiply-and-add instruction, usually denoted madd. This
instruction multiplies its first two arguments and then adds the result to its
third argument. Unfortunately SSE doesn’t support a madd instruction, but we
can fake it reasonably well with a macro like this:

#define mm madd ps(a, b, c) \
~mm_add_ps( mm mul ps((a), (b)), (c))

~ ml28 mulVectorMatrixFinal( ml28 v,
_ ml28 Mrowl,  ml28 Mrow2,
~ ml28 Mrow3,  ml28 Mrow4)

~ ml28 result;

result = mm mul ps ( mm replicate x ps(v), Mrowl);

result = mm madd ps( mm replicate y ps(v), Mrow2,
result) ;

result = mm madd ps( mm replicate z ps(v), Mrow3,
result) ;

result = mm madd ps( mm replicate w ps(v), Mrow4,
result) ;

return result;

}

We can of course perform matrix-matrix multiplication using a similar
approach. Check out http://msdn.microsoft.com for a full listing of the SSE
intrinsics for the Microsoft Visual Studio compiler.

4.8. Random Number Generation

Random numbers are ubiquitous in game engines, so it behooves us to have
a brief look at the two most common random number generators, the linear
congruential generator and the Mersenne Twister. It's important to realize that
random number generators are just very complicated but totally deterministic
pre-defined sequences of numbers. For this reason, we call the sequences they
produce pseudo-random. What differentiates a good generator from a bad one
is how long the sequence of numbers is before it repeats (its period), and how
well the sequences hold up under various well-known randomness tests.

4.8.1. Linear Congruential Generators

Linear congruential generators are a very fast and simple way to generate a
sequence of pseudo-random numbers. Depending on the platform, this algo-
rithm is sometimes used in the standard C library’s rand () function. How-
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ever, your mileage may vary, so don’t count on rand () being based on any
particular algorithm. If you want to be sure, you'll be better off implementing
your own random number generator.

The linear congruential algorithm is explained in detail in the book Nu-
merical Recipes in C, so I won’t go into the details of it here.

What I will say is that this random number generator does not produce
particularly high-quality pseudo-random sequences. Given the same initial
seed value, the sequence is always exactly the same. The numbers produced
do not meet many of the criteria widely accepted as desirable, such as a long
period, low- and high-order bits that have similarly-long periods, and absence
of sequential or spatial correlation between the generated values.

4.8.2. Mersenne Twister

The Mersenne Twister pseudo-random number generator algorithm was de-
signed specifically to improve upon the various problems of the linear con-
gruential algorithm. Wikipedia provides the following description of the ben-
efits of the algorithm:

1. It was designed to have a colossal period of 2% — 1 (the creators of the
algorithm proved this property). In practice, there is little reason to use
larger ones, as most applications do not require 2'**¥” unique combina-
tions (21%9 ~ 4.3 x 10°07),

2. It has a very high order of dimensional equidistribution (see linear
congruential generator). Note that this means, by default, that there is
negligible serial correlation between successive values in the output se-
quence.

3. It passes numerous tests for statistical randomness, including the strin-
gent Diehard tests.

4. Ttis fast.

Various implementations of the Twister are available on the web, includ-
ing a particularly cool one that uses SIMD vector instructions for an extra
speed boost, called SEMT (SIMD-oriented fast Mersenne Twister). SEMT can
be downloaded from http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/
SFMT/index.html.

4.8.3. Mother-of-All and Xorshift

In 1994, George Marsaglia, a computer scientist and mathematician best known
for developing the Diehard battery of tests of randomness (http://www.stat.
fsu.edu/pub/diehard), published a pseudo-random number generation algo-
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rithm that is much simpler to implement and runs faster than the Mersenne
Twister algorithm. He claimed that it could produce a sequence of 32-bit pseu-
do-random numbers with a period of non-repetition of 2%°. It passed all of the
Diehard tests and still stands today as one of the best pseudo-random number
generators for high-speed applications. He called his algorithm the Mother of
All Pseudo-Random Number Generators, because it seemed to him to be the only
random number generator one would ever need.

Later, Marsaglia published another generator called Xorshift, which is be-
tween Mersenee and Mother-of-All in terms of randomness, but runs slightly
faster than Mother.

You can read about George Marsaglia at http://en.wikipedia.org/wiki/
George_Marsaglia, and about the Mother-of-All generator at ftp://ftp.forth.
org/pub/C/mother.c and at http://www.agner.org/random. You can down-
load a PDF of George’s paper on Xorshift at http://www.jstatsoft.org/v08/i14/

paper.
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5
Engine Support Systems

very game engine requires some low-level support systems that manage

mundane but crucial tasks, such as starting up and shutting down the en-
gine, configuring engine and game features, managing the engine’s memory
usage, handling access to file system(s), providing access to the wide range of
heterogeneous asset types used by the game (meshes, textures, animations,
audio, etc.), and providing debugging tools for use by the game development
team. This chapter will focus on the lowest-level support systems found in
most game engines. In the chapters that follow, we will explore some of the
larger core systems, including resource management, human interface devic-
es, and in-game debugging tools.

5.1.  Subsystem Start-Up and Shut-Down

A game engine is a complex piece of software consisting of many interacting
subsystems. When the engine first starts up, each subsystem must be config-
ured and initialized in a specific order. Interdependencies between subsys-
tems implicitly define the order in which they must be started —i.e., if sub-
system B depends on subsystem A, then A will need to be started up before B
can be initialized. Shut-down typically occurs in the reverse order, so B would
shut down first, followed by A.

197



198

5. Engine Support Systems

5.1.1. C++ Static Initialization Order (or Lack Thereof)

Since the programming language used in most modern game engines is C++,
we should briefly consider whether C++'s native start-up and shut-down se-
mantics can be leveraged in order to start up and shut down our engine’s sub-
systems. In C++, global and static objects are constructed before the program’s
entry point (main(), or WinMain () under Windows) is called. However,
these constructors are called in a totally unpredictable order. The destructors
of global and static class instances are called after main () (or WinMain())
returns, and once again they are called in an unpredictable order. Clearly this
behavior is not desirable for initializing and shutting down the subsystems
of a game engine, or indeed any software system that has interdependencies
between its global objects.

This is somewhat unfortunate, because a common design pattern for im-
plementing major subsystems such as the ones that make up a game engine
is to define a singleton class (often called a manager) for each subsystem. If C++
gave us more control over the order in which global and static class instances
were constructed and destroyed, we could define our singleton instances as
globals, without the need for dynamic memory allocation. For example, we
could write:

class RenderManager

{
public:
RenderManager ()

{
}

~RenderManager ()

{
}

// start up the manager...

// shut down the manager...

//
Vi

// singleton instance
static RenderManager gRenderManager;

Alas, with no way to directly control construction and destruction order, this
approach won’t work.

5.1.1.1.  Construct On Demand

There is one C++ “trick” we can leverage here. A static variable that is declared
within a function will not be constructed before main () is called, but rather
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on the first invocation of that function. So if our global singleton is function-
static, we can control the order of construction for our global singletons.

class RenderManager

{

public:

// Get the one and only instance.
static RenderManageré& get ()

{

// This function-static will be constructed on the
// first call to this function.
static RenderManager sSingleton;

return sSingleton;

}

RenderManager ()

{
// Start up other managers we depend on, by
// calling their get() functions first...
VideoManager: :get () ;
TextureManager: :get () ;

// Now start up the render manager.

//
1
~RenderManager ()
{
// Shut down the manager.
//

}
}i

You'll find that many software engineering textbooks suggest this de-
sign, or a variant that involves dynamic allocation of the singleton as shown
below.

static RenderManageré& get ()

{

static RenderManager* gpSingleton = NULL;
if (gpSingleton == NULL)
{

gpSingleton = new RenderManager;

ASSERT (gpSingleton) ;
return *gpSingleton;

}
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Unfortunately, this still gives us no way to control destruction order. It
is possible that C++ will destroy one of the managers upon which the
RenderManager depends for its shut-down procedure, prior to the
RenderManager’s destructor being called. In addition, it’s difficult to predict
exactly when the RenderManager singleton will be constructed, because the
construction will happen on the first call to RenderManager: :get () —and
who knows when that might be? Moreover, the programmers using the class
may not be expecting an innocuous-looking get () function to do something
expensive, like allocating and initializing a heavy-weight singleton. This is an
unpredictable and dangerous design. Therefore we are prompted to resort to
a more direct approach that gives us greater control.

5.1.2. A Simple Approach That Works

Let’s presume that we want to stick with the idea of singleton managers for
our subsystems. In this case, the simplest “brute-force” approach is to define
explicit start-up and shut-down functions for each singleton manager class.
These functions take the place of the constructor and destructor, and in fact
we should arrange for the constructor and destructor to do absolutely nothing.
That way, the start-up and shut-down functions can be explicitly called in the
required order from within main () (or from some over-arching singleton object
that manages the engine as a whole). For example:

class RenderManager

{
public:
RenderManager ()

{
}

// do nothing

~RenderManager ()

{
}

void startUp ()

{
}

// do nothing

// start up the manager...

void shutDown ()

{
}

// shut down the manager...
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//
class PhysicsManager { /* similar... */ };
class AnimationManager { /* similar... */ };
class MemoryManager { /* similar... */ };
class FileSystemManager { /* similar... */ };
//
RenderManager gRenderManager;
PhysicsManager gPhysicsManager;
AnimationManager gAnimationManager;
TextureManager gTextureManager;
VideoManager gVideoManager;
MemoryManager gMemoryManager ;
FileSystemManager gFileSystemManager;
//

int main(int argc, const char* argv)

{
// Start up engine systems in the correct order.
gMemoryManager. startUp () ;
gFileSystemManager. startUp () ;
gVideoManager. startUp () ;

gTextureManager. startUp () ;

gRenderManager. startUp () ;

gAnimationManager. startUp () ;

gPhysicsManager. startUp () ;
//

// Run the game.
gSimulationManager. run () ;

// Shut everything down, in reverse order.

//
gPhysicsManager. shutDown () ;
gAnimationManager. shutDown () ;
gRenderManager. shutDown () ;
gFileSystemManager. shutDown () ;
gMemoryManager . shutDown () ;

return 0;
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There are “more elegant” ways to accomplish this. For example, you could
have each manager register itself into a global priority queue and then walk
this queue to start up all the managers in the proper order. You could define
the manger-to-manager dependency graph by having each manager explicitly
list the other managers upon which it depends and then write some code to
calculate the optimal start-up order given their interdependencies. You could
use the construct-on-demand approach outlined above. In my experience, the
brute-force approach always wins out, because:

¢ It's simple and easy to implement.

e It’'s explicit. You can see and understand the start-up order immediately
by just looking at the code.

¢ It’s easy to debug and maintain. If something isn't starting early enough,
or is starting too early, you can just move one line of code.

One minor disadvantage to the brute-force manual start-up and shut-
down method is that you might accidentally shut things down in an order
that isn't strictly the reverse of the start-up order. But I wouldn’t lose any sleep
over it. As long as you can start up and shut down your engine’s subsystems
successfully, you're golden.

5.13. Some Examples from Real Engines

Let’s take a brief look at some examples of engine start-up and shut-down
taken from real game engines.

5.13.1.  Ogre3D

Ogre3D is by its authors’ admission a rendering engine, not a game engine
per se. But by necessity it provides many of the low-level features found in
full-fledged game engines, including a simple and elegant start-up and shut-
down mechanism. Everything in Ogre is controlled by the singleton object
Ogre: :Root. It contains pointers to every other subsystem in Ogre and man-
ages their creation and destruction. This makes it very easy for a programmer
to start up Ogre —just new an instance of Ogre : : Root and you're done.

Here are a few excerpts from the Ogre source code so we can see what
it’s doing;:

OgreRoot.h

class _OgreExport Root : public Singleton<Root>

{

// <some code omitted...>

// Singletons
LogManager* mLogManager;
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//
}i

ControllerManager* mControllerManager;
SceneManagerEnumerator* mSceneManagerEnum;
SceneManager* mCurrentSceneManager;
DynLibManager* mDynLibManager;
ArchiveManager* mArchiveManager;
MaterialManager* mMaterialManager;
MeshManager* mMeshManager;
ParticleSystemManager* mParticleManager;
SkeletonManager* mSkeletonManager;
OverlayElementFactory* mPanelFactory;
OverlayElementFactory* mBorderPanelFactory;
OverlayElementFactory* mTextAreaFactory;
OverlayManager* mOverlayManager;
FontManager* mFontManager;

ArchiveFactory *mZipArchiveFactory;
ArchiveFactory *mFileSystemArchiveFactory;
ResourceGroupManager* mResourceGroupManager;
ResourceBackgroundQueue* mResourceBackgroundQueue;
ShadowTextureManager* mShadowTextureManager;

etc.

OgreRoot.cpp

Root: :Root (const String& pluginFileName,

const String& configFileName,

const String& logFileName) :
mLogManager (0) ,
mCurrentFrame (0) ,
mFrameSmoothingTime (0.0f) ,
mNextMovableObjectTypeFlag(l),
mIsInitialised(false)

// superclass will do singleton checking
String msg;

// Init
mActiveRenderer = 0;

mVersion

+ 4+ + o+

StringConverter::toString (OGRE_VERSION_MAJOR)

StringConverter: :toString (OGRE_VERSION MINOR)
n n
StringConverter::toString (OGRE_VERSION_PATCH)
+ OGRE_VERSION SUFFIX + " "
+ "(" + OGRE_VERSION NAME + ")";
mConfigFileName = configFileName;

// Create log manager and default log file if there
// is no log manager yet
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if (LogManager: :getSingletonPtr () == 0)

mLogManager = new LogManager () ;
mLogManager->createlLog (logFileName, true, true);

// Dynamic library manager
mDynLibManager = new DynLibManager () ;
mArchiveManager = new ArchiveManager () ;

// ResourceGroupManager
mResourceGroupManager = new ResourceGroupManager () ;

// ResourceBackgroundQueue
mResourceBackgroundQueue
= new ResourceBackgroundQueue () ;

// and so on...

Ogre provides a templated Ogre: : Singleton base class from which all of its
singleton (manager) classes derive. If you look at its implementation, you'll
see that Ogre: :Singleton does not use deferred construction, but instead
relies on Ogre : : Root to explicitly new each singleton. As we discussed above,
this is done to ensure that the singletons are created and destroyed in a well-
defined order.

5.1.3.2. Naughty Dog’s Uncharted: Drake’s Fortune

The Uncharted: Drake’s Fortune engine created by Naughty Dog Inc. uses a
similar explicit technique for starting up its subsystems. You'll notice by look-
ing at the following code that engine start-up is not always a simple sequence
of allocating singleton instances. A wide range of operating system services,
third party libraries, and so on must all be started up during engine initial-
ization. Also, dynamic memory allocation is avoided wherever possible, so
many of the singletons are statically-allocated objects (e.g., g_fileSystem,
g_languageMgr, etc.) It’s not always pretty, but it gets the job done.

Err BigInit ()

{

init_ exception handler() ;

U8* pPhysicsHeap = new(kAllocGlobal, kAlignlé)
U8 [ALLOCATION GLOBAL PHYS HEAP] ;
PhysicsAllocatorInit (pPhysicsHeap,
ALLOCATION GLOBAL PHYS HEAP) ;

g_textDb.Init () ;
g_textSubDb.Init();
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g_spuMgr.Init () ;
g drawScript.InitPlatform() ;
PlatformUpdate () ;

thread_t init_thr;
thread create(&init thr, threadInit, 0, 30,
64*1024, 0, "Init");

char masterConfigFileName [256] ;
snprintf (masterConfigFileName,
sizeof (masterConfigFileName) ,
MASTER_CFG_PATH) ;

{
Err err = ReadConfigFromFile (
masterConfigFileName) ;
if (err.Failed())

{
MsgErr ("Config file not found (%s).\n",
masterConfigFileName) ;

}
}

memset (&g_discInfo, 0, sizeof (BootDiscInfo)) ;
int errl = GetBootDiscInfo (&g discInfo) ;

Msg ("GetBootDiscInfo() : 0x%x\n", errl);

if (errl == BOOTDISCINFO_RET_OK)

printf ("titlelId : [%$s]\n",
g discInfo.titleId);

printf ("parentalLevel : [%d]\n",
g discInfo.parentallLevel) ;

}
g fileSystem.Init (g _gameInfo.m onDisc) ;

g_languageMgr.Init () ;
if (g_shouldQuit) return Err::kOK;

// and so on...

5.2. Memory Management

As game developers, we are always trying to make our code run more quickly.
The performance of any piece of software is dictated not only by the algo-
rithms it employs, or the efficiency with which those algorithms are coded,
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but also by how the program utilizes memory (RAM). Memory affects perfor-
mance in two ways:

1. Dynamic memory allocation viamalloc () or C++s global operator new
is a very slow operation. We can improve the performance of our code
by either avoiding dynamic allocation altogether or by making use of
custom memory allocators that greatly reduce allocation costs.

2. On modern CPUs, the performance of a piece of software is often
dominated by its memory access patterns. As we’ll see, data that is located
in small, contiguous blocks of memory can be operated on much more
efficiently by the CPU than if that same data were to be spread out across
a wide range of memory addresses. Even the most efficient algorithm,
coded with the utmost care, can be brought to its knees if the data upon
which it operates is not laid out efficiently in memory.

In this section, we’ll learn how to optimize our code’s memory utilization
along these two axes.

5.2.1.  Optimizing Dynamic Memory Allocation

Dynamic memory allocation via malloc () and free () or C++’s global new
and delete operators—also known as heap allocation —is typically very slow.
The high cost can be attributed to two main factors. First, a heap allocator is
a general-purpose facility, so it must be written to handle any allocation size,
from one byte to one gigabyte. This requires a lot of management overhead,
making themalloc () and free () functions inherently slow. Second, on most
operating systems a calltomalloc () or £ree () must first context-switch from
user mode into kernel mode, process the request, and then context-switch
back to the program. These context switches can be extraordinarily expensive.
One rule of thumb often followed in game development is:

Keep heap allocations to a minimum, and never allocate from the
heap within a tight loop.

Of course, no game engine can entirely avoid dynamic memory alloca-
tion, so most game engines implement one or more custom allocators. A
custom allocator can have better performance characteristics than the oper-
ating system’s heap allocator for two reasons. First, a custom allocator can
satisfy requests from a preallocated memory block (itself allocated using
malloc () or new, or declared as a global variable). This allows it to run in
user mode and entirely avoid the cost of context-switching into the operat-
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ing system. Second, by making various assumptions about its usage pat-
terns, a custom allocator can be much more efficient than a general-purpose
heap allocator.

In the following sections, we’ll take a look at some common kinds of cus-
tom allocators. For additional information on this topic, see Christian Gyr-
ling’s excellent blog post, http://www.swedishcoding.com/2008/08/31/are-we-
out-of-memory.

5.2.1.1. Stack-Based Allocators

Many games allocate memory in a stack-like fashion. Whenever a new game
level is loaded, memory is allocated for it. Once the level has been loaded,
little or no dynamic memory allocation takes place. At the conclusion of
the level, its data is unloaded and all of its memory can be freed. It makes
a lot of sense to use a stack-like data structure for these kinds of memory
allocations.

A stack allocator is very easy to implement. We simply allocate a large con-
tiguous block of memory using malloc () or global new, or by declaring a
global array of bytes (in which case the memory is effectively allocated out of
the executable’s BSS segment). A pointer to the top of the stack is maintained.
All memory addresses below this pointer are considered to be in use, and all
addresses above it are considered to be free. The top pointer is initialized to
the lowest memory address in the stack. Each allocation request simply moves
the pointer up by the requested number of bytes. The most-recently allocated
block can be freed by simply moving the top pointer back down by the size
of the block.

It is important to realize that with a stack allocator, memory cannot be
freed in an arbitrary order. All frees must be performed in an order oppo-
site to that in which they were allocated. One simple way to enforce these
restrictions is to disallow individual blocks from being freed at all. Instead,
we can provide a function that rolls the stack top back to a previously-marked
location, thereby freeing all blocks between the current top and the roll-back
point.

It’s important to always roll the top pointer back to a point that lies
at the boundary between two allocated blocks, because otherwise new al-
locations would overwrite the tail end of the top-most block. To ensure
that this is done properly, a stack allocator often provides a function that
returns a marker representing the current top of the stack. The roll-back
function then takes one of these markers as its argument. This is depicted
in Figure 5.1. The interface of a stack allocator often looks something like
this.


http://www.swedishcoding.com/2008/08/31/are-we-out-of-memory
http://www.swedishcoding.com/2008/08/31/are-we-out-of-memory
http://www.swedishcoding.com/2008/08/31/are-we-out-of-memory
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Obtain marker after allocating blocks A and B.

A B

T

Allocate additional blocks C , D and E.

A B C D E

T

Free back to marker.

T

Figure 5.1. Stack allocation, and freeing back to a marker.

class StackAllocator

{

public:
// Stack marker: Represents the current top of the
// stack. You can only roll back to a marker, not to
// arbitrary locations within the stack.
typedef U32 Marker;

// Constructs a stack allocator with the given total
// size.
explicit StackAllocator (U32 stackSize bytes);

// Allocates a new block of the given size from stack

// top.
void* alloc (U32 size bytes);

// Returns a marker to the current stack top.
Marker getMarker () ;

// Rolls the stack back to a previous marker.
void freeToMarker (Marker marker) ;

// Clears the entire stack (rolls the stack back to
// zero) .
void clear () ;
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private:

//
i

Double-Ended Stack Allocators

A single memory block can actually contain two stack allocators—one which
allocates up from the bottom of the block and one which allocates down from
the top of the block. A double-ended stack allocator is useful because it uses
memory more efficiently by allowing a trade-off to occur between the memory
usage of the bottom stack and the memory usage of the top stack. In some situ-
ations, both stacks may use roughly the same amount of memory and meet in
the middle of the block. In other situations, one of the two stacks may eat up
a lot more memory than the other stack, but all allocation requests can still be
satisfied as long as the total amount of memory requested is not larger than
the block shared by the two stacks. This is depicted in Figure 5.2.

In Midway’s Hydro Thunder arcade game, all memory allocations are
made from a single large block of memory managed by a double-ended stack
allocator. The bottom stack is used for loading and unloading levels (race
tracks), while the top stack is used for temporary memory blocks that are al-
located and freed every frame. This allocation scheme worked extremely well
and ensured that Hydro Thunder never suffered from memory fragmentation
problems (see Section 5.2.1.4). Steve Ranck, Hydro Thunder’s lead engineer, de-
scribes this allocation technique in depth in [6], Section 1.9.

Lower |:> <):| Upper

Figure 5.2. A double-ended stack allocator.

5.2.1.2. Pool Allocators

It’s quite common in game engine programming (and software engineering in
general) to allocate lots of small blocks of memory, each of which are the same
size. For example, we might want to allocate and free matrices, or iterators, or
links in a linked list, or renderable mesh instances. For this type of memory
allocation pattern, a pool allocator is often the perfect choice.

A pool allocator works by preallocating a large block of memory whose
size is an exact multiple of the size of the elements that will be allocated. For
example, a pool of 4 x 4 matrices would be an exact multiple of 64 bytes (16 el-
ements per matrix times four bytes per element). Each element within the pool
is added to a linked list of free elements; when the pool is first initialized, the
free list contains all of the elements. Whenever an allocation request is made,
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we simply grab the next free element off the free list and return it. When an
element is freed, we simply tack it back onto the free list. Both allocations and
frees are O(1) operations, since each involves only a couple of pointer ma-
nipulations, no matter how many elements are currently free. (The notation
O(1) is an example of big “O” notation. In this case it means that the execution
time of both allocations and frees are roughly constant and do not depend on
things like the number of elements currently in the pool. See Section 5.3.3 for
an explanation of big “O” notation.)

The linked list of free elements can be a singly-linked list, meaning that

we need a single pointer (four bytes on most machines) for each free ele-
ment. Where should we obtain the memory for these pointers? Certainly
they could be stored in a separate preallocated memory block, occupying
(sizeof (void*) * numElementsInPool) bytes. However, this is unduly
wasteful. We need only realize that the blocks on the free list are, by definition,
free memory blocks. So why not use the free blocks themselves to store the
free list’s “next” pointers? This little “trick” works as long as elementSize >=
sizeof (void*).

If each element is smaller than a pointer, then we can use pool element in-
dices instead of pointers to implement our linked list. For example, if our pool
contains 16-bit integers, then we can use 16-bit indices as the “next pointers”
in our linked list. This works as long as the pool doesn’t contain more than 2'¢
= 65,536 elements.

5.2.1.3. Aligned Allocations

As we saw in Section 3.2.5.1, every variable and data object has an alignment
requirement. An 8-bit integer variable can be aligned to any address, but a
32-bit integer or floating-point variable must be 4-byte aligned, meaning its
address can only end in the nibbles 0x0, 0x4, 0x8 or 0xC. A 128-bit SIMD vector
value generally has a 16-byte alignment requirement, meaning that its mem-
ory address can end only in the nibble 0x0. On the PS3, memory blocks that
are to be transferred to an SPU via the direct memory access (DMA) controller
should be 128-bit aligned for maximum DMA throughput, meaning they can
only end in the bytes 0x00 or 0x80.

All memory allocators must be capable of returning aligned memory
blocks. This is relatively straightforward to implement. We simply allocate
a little bit more memory than was actually requested, adjust the address of
the memory block upward slightly so that it is aligned properly, and then re-
turn the adjusted address. Because we allocated a bit more memory than was
requested, the returned block will still be large enough, even with the slight
upward adjustment.
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In most implementations, the number of additional bytes allocated is
equal to the alignment. For example, if the request is for a 16-byte aligned
memory block, we would allocate 16 additional bytes. This allows for the
worst-case address adjustment of 15 bytes, plus one extra byte so that we can
use the same calculations even if the original block is already aligned. This
simplifies and speeds up the code at the expense of one wasted byte per al-
location. It’s also important because, as we’ll see below, we’ll need those extra
bytes to store some additional information that will be used when the block
is freed.

We determine the amount by which the block’s address must be adjusted
by masking off the least-significant bits of the original block’s memory ad-
dress, subtracting this from the desired alignment, and using the result as
the adjustment offset. The alignment should always be a power of two (four-
byte and 16-byte alignments are typical), so to generate the mask we simply
subtract one from the alignment. For example, if the request is for a 16-byte
aligned block, then the mask would be (16 — 1) = 15 = 0x0000000F. Taking
the bitwise AND of this mask and any misaligned address will yield the
amount by which the address is misaligned. For example, if the originally-
allocated block’s address is 0x50341233, ANDing this address with the mask
0x0000000F yields 0x00000003, so the address is misaligned by three bytes.
To align the address, we add (alignment — misalignment) = (16 — 3) = 13 =
0xD bytes to it. The final aligned address is therefore 0x50341233 + 0xD =
0x50341240.

Here’s one possible implementation of an aligned memory allocator:

// Aligned allocation function. IMPORTANT: 'alignment'
// must be a power of 2 (typically 4 or 16).
void* allocateAligned(U32 size bytes, U32 alignment)
{
// Determine total amount of memory to allocate.
U32 expandedSize bytes = size bytes + alignment;

// Allocate an unaligned block & convert address to a
// U32.
U32 rawAddress
= (U32)allocateUnaligned (expandedSize bytes) ;

// Calculate the adjustment by masking off the lower
// bits of the address, to determine how "misaligned"

// it is.
U32 mask = (alignment - 1);
U32 misalignment = (rawAddress & mask) ;

U32 adjustment = alignment - misalignment;
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// Calculate the adjusted address, and return as a
// pointer.

U32 alignedAddress = rawAddress + adjustment;
return (void*)alignedAddress;

}

When this block is later freed, the code will pass us the adjusted address,
not the original address we allocated. How, then, do we actually free the mem-
ory? We need some way to convert an adjusted address back into the original,
possibly misaligned address.

To accomplish this, we simply store some meta-information in those
extra bytes we allocated in order to align the data in the first place. The
smallest adjustment we might make is one byte. That’s enough room to
store the number of bytes by which the address was adjusted (since it will
never be more than 256). We always store this information in the byte im-
mediately preceding the adjusted address (no matter how many bytes of
adjustment we actually added), so that it is trivial to find it again, given the
adjusted address. Here’s how the modified allocateAligned () function
would look.

// Aligned allocation function. IMPORTANT: ‘alignment’
// must be a power of 2 (typically 4 or 16).
void* allocateAligned (U32 size bytes, U32 alignment)
{
// Clients must call allocateUnaligned() and
// freeUnaligned() if alignment == 1.
ASSERT (alignment > 1) ;

// Determine total amount of memory to allocate.
U32 expandedSize bytes = size bytes + alignment;

// Allocate an unaligned block & convert address to a
// U32.
U32 rawAddress

= (U32)allocateUnaligned (expandedSize bytes) ;

// Calculate the adjustment by masking off the lower
// bits of the address, to determine how “misaligned”

// it is.

U32 mask = (alignment - 1);

U32 misalignment = (rawAddress & mask) ;
U32 adjustment = alignment - misalignment;

// Calculate the adjusted address, and return as a
// pointer.
U32 alignedAddress = rawAddress + adjustment;
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// Store the adjustment in the four bytes immediately
// preceding the adjusted address that we’re
// returning.

U32* pAdjustment = (U32*) (alignedAddress - 4);
*pAdjustment = adjustment;

return (void*)alignedAddress;

}

And here’s how the corresponding freeAligned () function would be imple-
mented.

void freeAligned (void* p)

{

U32 alignedAddress = (U32)p;
U8* pAdjustment = (U8%*) (alignedAddress - 4);
U32 adjustment = (U32) *pAdjustment;

U32 rawAddress = alignedAddress - adjustment;

freeUnaligned ( (void*)rawAddress) ;

5.2.1.4. Single-Frame and Double-Buffered Memory Allocators

Virtually all game engines allocate at least some temporary data during the
game loop. This data is either discarded at the end of each iteration of the loop
or used on the next frame and then discarded. This allocation pattern is so
common that many engines support single- and double-buffered allocators.

Single-Frame Allocators

A single-frame allocator is implemented by reserving a block of memory and
managing it with a simple stack allocator as described above. At the beginning
of each frame, the stack’s “top” pointer is cleared to the bottom of the memory
block. Allocations made during the frame grow toward the top of the block.
Rinse and repeat.

StackAllocator g singleFrameAllocator;

// Main Game Loop

while (true)

{
// Clear the single-frame allocator’s buffer every
// frame.

g _singleFrameAllocator. clear () ;
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}

//

// Allocate from the single-frame buffer. We never
// need to free this data! Just be sure to use it
// only this frame.

void* p = g singleFrameAllocator.alloc (nBytes) ;

//

One of the primary benefits of a single-frame allocator is that allocated
memory needn’t ever be freed —we can rely on the fact that the allocator will
be cleared at the start of every frame. Single-frame allocators are also blind-
ingly fast. The one big negative is that using a single-frame allocator requires
a reasonable level of discipline on the part of the programmer. You need to
realize that a memory block allocated out of the single-frame buffer will only
be valid during the current frame. Programmers must never cache a pointer to
a single-frame memory block across the frame boundary!

Double-Buffered Allocators

A double-buffered allocator allows a block of memory allocated on frame i to
be used on frame (i + 1). To accomplish this, we create two single-frame stack
allocators of equal size and then ping-pong between them every frame.

class DoubleBufferedAllocator

{

U32 m curStack;
StackAllocator m stack([2];

public:

void swapBuffers ()

{
}

void clearCurrentBuffer ()

{

m_stack[m curStack]. clear();

}

void* alloc (U32 nBytes)

{

return m_stack [m_curStack] .alloc (nBytes) ;

}

m_curStack = (U32) !m _curStack;

//
}i
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//

DoubleBufferedAllocator g doubleBufAllocator;

// Main Game Loop
while (true)

{

// Clear the single-frame allocator every frame as
// before.
g singleFrameAllocator.clear() ;

// Swap the active and inactive buffers of the double
// buffered allocator.
g doubleBufAllocator. swapBuffers () ;

// Now clear the newly active buffer, leaving last
// frame’s buffer intact.
g doubleBufAllocator. clearCurrentBuffer () ;

//

// Allocate out of the current buffer, without

// disturbing last frame’s data. Only use this data
// this frame or next frame. Again, this memory never

// needs to be freed.

void* p = g doubleBufAllocator.alloc (nBytes) ;

//
}

This kind of allocator is extremely useful for caching the results of asyn-
chronous processing on a multicore game console like the Xbox 360 or the
PLAYSTATION 3. On frame i, we can kick off an asynchronous job on one of
the PS3’s SPUs, handing it the address of a destination buffer that has been
allocated from our double-buffered allocator. The job runs and produces its
results some time before the end of frame i, storing them into the buffer we
provided. On frame (i + 1), the buffers are swapped. The results of the job
are now in the inactive buffer, so they will not be overwritten by any double-
buffered allocations that might be made during this frame. As long as we use
the results of the job before frame (i + 2), our data won't be overwritten.

5.2.2. Memory Fragmentation

Another problem with dynamic heap allocations is that memory can become
fragmented over time. When a program first runs, its heap memory is entirely
free. When a block is allocated, a contiguous region of heap memory of the
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appropriate size is marked as “in use,” and the remainder of the heap remains
free. When a block is freed, it is marked as such, and adjacent free blocks are
merged into a single, larger free block. Over time, as allocations and dealloca-
tions of various sizes occur in random order, the heap memory begins to look
like a patchwork of free and used blocks. We can think of the free regions as
“holes” in the fabric of used memory. When the number of holes becomes
large, and/or the holes are all relatively small, we say the memory has become
fragmented. This is illustrated in Figure 5.3.

The problem with memory fragmentation is that allocations may fail
even when there are enough free bytes to satisfy the request. The crux of the
problem is that allocated memory blocks must always be contiguous. For ex-
ample, in order to satisfy a request of 128 kB, there must exist a free “hole”
that is 128 kB or larger. If there are 2 holes, each of which is 64 kB in size, then
enough bytes are available but the allocation fails because they are not contigu-
ous bytes.

After one allocation...

After eight allocations...

After eight allocations and three frees...

After n allocations and mfrees...

Il

Figure 5.3. Memory fragmentation.



5.2. Memory Management

217

Memory fragmentation is not as much of a problem on operating sys-
tems that support virtual memory. A virtual memory system maps discontigu-
ous blocks of physical memory known as pages into a virtual address space, in
which the pages appear to the application to be contiguous. Stale pages can
be swapped to the hard disk when physical memory is in short supply and
reloaded from disk when they are needed. For a detailed discussion of how
virtual memory works, see http://lyle.smu.edu/~kocan/7343/fall05/slides/
chapter08.ppt. Most embedded systems cannot afford to implement a virtual
memory system. While some modern consoles do technically support it, most
console game engines still do not make use of virtual memory due to the in-
herent performance overhead.

5.2.2.1. Avoiding Fragmentation with Stack and Pool Allocators

The detrimental effects of memory fragmentation can be avoided by using
stack and/or pool allocators.

¢ Astack allocator is impervious to fragmentation because allocations are
always contiguous, and blocks must be freed in an order opposite to
that in which they were allocated. This is illustrated in Figure 5.4.

* A pool allocator is also free from fragmentation problems. Pools do be-
come fragmented, but the fragmentation never causes premature out-
of-memory conditions as it does in a general-purpose heap. Pool alloca-
tion requests can never fail due to a lack of a large enough contiguous
free block, because all of the blocks are exactly the same size. This is
shown in Figure 5.5.

Allocated blocks, always contiguous Single free block, always contiguous

allocation

deallocation

N

Figure 5.4. A stack allocator is free from fragmentation problems.

Allocated and free blocks all the same size

Figure 5.5. A pool allocator is not degraded by fragmentation.
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5.2.2.2. Defragmentation and Relocation

When differently-sized objects are being allocated and freed in a random or-
der, neither a stack-based allocator nor a pool-based allocator can be used. In
such cases, fragmentation can be avoided by periodically defragmenting the
heap. Defragmentation involves coalescing all of the free “holes” in the heap
by shifting allocated blocks from higher memory addresses down to lower
addresses (thereby shifting the holes up to higher addresses). One simple al-
gorithm is to search for the first “hole” and then take the allocated block im-
mediately above the hole and shift it down to the start of the hole. This has the
effect of “bubbling up” the hole to a higher memory address. If this process is
repeated, eventually all the allocated blocks will occupy a contiguous region
of memory at the low end of the heap’s address space, and all the holes will
have bubbled up into one big hole at the high end of the heap. This is illus-
trated in Figure 5.6.

The shifting of memory blocks described above is not particularly tricky
to implement. What is tricky is accounting for the fact that we're moving al-
located blocks of memory around. If anyone has a pointer into one of these al-
located blocks, then moving the block will invalidate the pointer.

The solution to this problem is to patch any and all pointers into a shifted
memory block so that they point to the correct new address after the shift.
This procedure is known as pointer relocation. Unfortunately, there is no gen-
eral-purpose way to find all the pointers that point into a particular region

Figure 5.6. Defragmentation by shifting allocated blocks to lower addresses.
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of memory. So if we are going to support memory defragmentation in our
game engine, programmers must either carefully keep track of all the pointers
manually so they can be relocated, or pointers must be abandoned in favor of
something inherently more amenable to relocation, such as smart pointers or
handles.

A smart pointer is a small class that contains a pointer and acts like a
pointer for most intents and purposes. But because a smart pointer is a class,
it can be coded to handle memory relocation properly. One approach is to
arrange for all smart pointers to add themselves to a global linked list. When-
ever a block of memory is shifted within the heap, the linked list of all smart
pointers can be scanned, and each pointer that points into the shifted block of
memory can be adjusted appropriately.

A handle is usually implemented as an index into a non-relocatable ta-
ble which itself contains the pointers. When an allocated block is shifted in
memory, the handle table can be scanned and all relevant pointers found and
updated automatically. Because the handles are just indices into the pointer
table, their values never change no matter how the memory blocks are shifted,
so the objects that use the handles are never affected by memory relocation.

Another problem with relocation arises when certain memory blocks can-
not be relocated. For example, if you are using a third-party library that does
not use smart pointers or handles, it’s possible that any pointers into its data
structures will not be relocatable. The best way around this problem is usu-
ally to arrange for the library in question to allocate its memory from a special
buffer outside of the relocatable memory area. The other option is to simply
accept that some blocks will not be relocatable. If the number and size of the
non-relocatable blocks are both small, a relocation system will still perform
quite well.

It is interesting to note that all of Naughty Dog’s engines have supported
defragmentation. Handles are used wherever possible to avoid the need to re-
locate pointers. However, in some cases raw pointers cannot be avoided. These
pointers are carefully tracked and relocated manually whenever a memory
block is shifted due to defragmentation. A few of Naughty Dog’s game object
classes are not relocatable for various reasons. However, as mentioned above,
this doesn’t pose any practical problems, because the number of such objects
is always very small, and their sizes are tiny when compared to the overall
size of the relocatable memory area.

Amortizing Defragmentation Costs

Defragmentation can be a slow operation because it involves copying memory
blocks. However, we needn'’t fully defragment the heap all at once. Instead,
the cost can be amortized over many frames. We can allow up to N allocated
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blocks to be shifted each frame, for some small value of N like 8 or 16. If our
game is running at 30 frames per second, then each frame lasts 1/30 of a sec-
ond (33 ms). So the heap can usually be completely defragmented in less than
one second without having any noticeable effect on the game’s frame rate. As
long as allocations and deallocations aren’t happening at a faster rate than
the defragmentation shifts, the heap will remain mostly defragmented at all
times.

This approach is only valid when the size of each block is relatively small,
so that the time required to move a single block does not exceed the time al-
lotted to relocation each frame. If very large blocks need to be relocated, we
can often break them up into two or more subblocks, each of which can be
relocated independently. This hasn't proved to be a problem in Naughty Dog’s
engine, because relocation is only used for dynamic game objects, and they
are never larger than a few kilobytes—and usually much smaller.

5.2.3. Cache Coherency

To understand why memory access patterns affect performance, we need
first to understand how modern processors read and write memory. Access-
ing main system RAM is always a slow operation, often taking thousands of
processor cycles to complete. Contrast this with a register access on the CPU
itself, which takes on the order of tens of cycles or sometimes even a single
cycle. To reduce the average cost of reading and writing to main RAM, mod-
ern processors utilize a high-speed memory cache.

A cache is a special type of memory that can be read from and written to
by the CPU much more quickly than main RAM. The basic idea of memory
caching is to load a small chunk of memory into the high-speed cache when-
ever a given region of main RAM is first read. Such a memory chunk is called
a cache line and is usually between 8 and 512 bytes, depending on the micro-
processor architecture. On subsequent read operations, if the requested data
already exists in the cache, it is loaded from the cache directly into the CPU’s
registers—a much faster operation than reading from main RAM. Only if the
required data is not already in the cache does main RAM have to be accessed.
This is called a cache miss. Whenever a cache miss occurs, the program is forced
to wait for the cache line to be refreshed from main RAM.

Similar rules may apply when writing data to RAM. The simplest kind
of cache is called a write-through cache; in such a cache design, all writes to
the cache are simply mirrored to main RAM immediately. However, in a
write-back (or copy-back) cache design, data is first written into the cache and
the cache line is only flushed out to main RAM under certain circumstances,
such as when a dirty cache line needs to be evicted in order to read in a new
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cache line from main RAM, or when the program explicitly requests a flush to
occur.

Obviously cache misses cannot be totally avoided, since data has to move
to and from main RAM eventually. However, the trick to high-performance
computing is to arrange your data in RAM and code your algorithms in such
a way that the minimum number of cache misses occur. We’ll see exactly how
to accomplish this below.

5.23.1. Level 1 and Level 2 Caches

When caching techniques were first developed, the cache memory was locat-
ed on the motherboard, constructed from a faster and more expensive type
of memory module than main RAM in order to give it the required boost in
speed. However, cache memory was expensive, so the cache size was usually
quite small—on the order of 16 kB. As caching techniques evolved, an even
faster type of cache memory was developed that was located on the CPU die
itself. This gave rise to two distinct types of cache memory: an on-die level 1
(L1) cache and an on-motherboard level 2 (L2) cache. More recently, the L2
cache has also migrated onto the CPU die (see Figure 5.7).

The rules for moving data back and forth between main RAM are of course
complicated by the presence of a level 2 cache. Now, instead of data hopping
from RAM to cache to CPU and back again, it must make two hops —first from
main RAM to the L2 cache, and then from L2 cache to L1 cache. We won’t go
into the specifics of these rules here. (They differ slightly from CPU to CPU
anyway.) But suffice it to say that RAM is slower than L2 cache memory, and
L2 cache is slower than L1 cache. Hence L2 cache misses are usually more
expensive than L1 cache misses, all other things being equal.

CPU Die

Figure 5.7. Level l and level 2 caches.
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A load-hit-store is a particularly bad kind of cache miss, prevalent on the
PowerPC architectures found in the Xbox 360 and PLAYSTATION 3, in which
the CPU writes data to a memory address and then reads the data back before
ithas had a chance to make its way through the CPU’s instruction pipeline and
out into the L1 cache. See http://assemblyrequired.crashworks.org/2008/07/08/
load-hit-stores-and-the-__restrict-keyword for more details.

5.2.3.2. Instruction Cache and Data Cache

When writing high-performance code for a game engine or for any other per-
formance-critical system, it is important to realize that both data and code are
cached. The instruction cache (I-cache) is used to preload executable machine
code before it runs, while the data cache (D-cache) is used to speed up reading
and writing of data to main RAM. Most processors separate the two caches
physically. Hence it is possible for a program to slow down because of an I-
cache miss or because of a D-cache miss.

5.23.3. Avoiding Cache Misses

The best way to avoid D-cache misses is to organize your data in contiguous
blocks that are as small as possible and then access them sequentially. This
yields the minimum number of cache misses. When the data is contiguous
(i.e., you don’t “jump around” in memory a lot), a single cache miss will load
the maximum amount of relevant data in one go. When the data is small, it
is more likely to fit into a single cache line (or at least a minimum number
of cache lines). And when you access your data sequentially (i.e., you don't
“jump around” within the contiguous memory block), you achieve the mini-
mum number of cache misses, since the CPU never has to reload a cache line
from the same region of RAM.

Avoiding I-cache misses follows the same basic principle as avoiding D-
cache misses. However, the implementation requires a different approach.
The compiler and linker dictate how your code is laid out in memory, so you
might think you have little control over I-cache misses. However, most C/C++
linkers follow some simple rules that you can leverage, once you know what
they are:

® The machine code for a single function is almost always contiguous in
memory. That is, the linker almost never splits a function up in order
to intersperse another function in the middle. (Inline functions are the
exception to this rule—more on this topic below.)

e Functions are laid out in memory in the order they appear in the
translation unit’s source code (.cpp file).
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Therefore, functions in a single translation unit are always contiguous
in memory. That is, the linker never splits up a complied translation unit
(.obj file) in order to intersperse code from some other translation unit.

So, following the same principles that apply to avoiding D-cache misses,

we should follow the rules of thumb listed below.

Keep high-performance code as small as possible, in terms of number of
machine language instructions. (The compiler and linker take care of
keeping our functions contiguous in memory.)

Avoid calling functions from within a performance-critical section of
code.

If you do have to call a function, place it as close as possible to the calling
function—preferably immediately before or after the calling function
and never in a different translation unit (because then you completely
lose control over its proximity to the calling function).

Use inline functions judiciously. Inlining a small function can be a big
performance boost. However, too much inlining bloats the size of the
code, which can cause a performance-critical section of code to no
longer fit within the cache. Let’s say we write a tight loop that processes
a large amount of data—if the entire body of that loop doesn't fit into
the cache, then we are signing up for two I-cache misses during every
iteration of the loop. In such a situation, it is probably best to rethink the
algorithm and/or implementation so that less code is required within
critical loops.

5.3. Containers

Game programmers employ a wide variety of collection-oriented data struc-
tures, also known as containers or collections. The job of a container is always
the same—to house and manage zero or more data elements; however, the
details of how they do this varies greatly, and each type of container has its

pros and cons. Common container data types include, but are certainly not
limited to, the following.

Array. An ordered, contiguous collection of elements accessed by index.
The length of the array is usually statically defined at compile time. It
may be multidimensional. C and C++ support these natively (e.g., int
al[5]).

Dynamic array. An array whose length can change dynamically at
runtime (e.g., STL’s std: : vector)
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Linked list. An ordered collection of elements not stored contiguously
in memory but rather linked to one another via pointers (e.g., STL’s
std::list).

Stack. A container that supports the last-in-first-out (LIFO) model
for adding and removing elements, also known as push/pop (e.g.,
std: :stack).

Queue. A container that supports the first-in-first-out (FIFO) model for
adding and removing elements (e.g., std: : queue).

Deque. A double-ended queue —supports efficient insertion and removal
at both ends of the array (e.g., std: :deque).

Priority queue. A container that permits elements to be added in any or-
der and then removed in an order defined by some property of the ele-
ments themselves (i.e., their priority). It can be thought of as a list that
stays sorted at all times. A priority queue is typically implemented as a
binary search tree (e.g., std: :priority_queue).

Tree. A container in which elements are grouped hierarchically. Each ele-
ment (node) has zero or one parent and zero or more children. A tree is
a special case of a DAG (see below).

Binary search tree (BST) . A tree in which each node has at most two chil-
dren, with an order property to keep the nodes sorted by some well-de-
fined criteria. There are various kinds of binary search trees, including
red-black trees, splay trees, SVL trees, etc.

Binary heap. A binary tree that maintains itself in sorted order, much like
a binary search tree, via two rules: the shape property, which specifies that
the tree must be fully filled and that the last row of the tree is filled from
left to right; and the heap property, which states that every node is, by some
user-defined criterion, “greater than” or “equal to” all of its children.

Dictionary. A table of key-value pairs. A value can be “looked up” ef-
ficiently given the corresponding key. A dictionary is also known as a
map or hash table, although technically a hash table is just one possible
implementation of a dictionary (e.g., std: :map, std: :hash map).

Set. A container that guarantees that all elements are unique according to
some criteria. A set acts like a dictionary with only keys, but no values.
Graph. A collection of nodes connected to one another by unidirectional
or bidirectional pathways in an arbitrary pattern.

Directed acyclic graph (DAG). A collection of nodes with unidirectional
(i.e., directed) interconnections, with no cycles (i.e., there is no non-empty
path that starts and ends on the same node).
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5.3.1. Container Operations

Game engines that make use of container classes inevitably make use of vari-
ous commonplace algorithms as well. Some examples include:

e Insert. Add a new element to the container. The new element might be
placed at the beginning of the list, or the end, or in some other location;
or the container might not have a notion of ordering at all.

e Remove. Remove an element from the container; may require a find op-
eration (see below). However if an iterator is available that refers to the
desired element, it may be more efficient to remove the element using
the iterator.

e Sequential access (iteration). Accessing each element of the container in
some “natural” predefined order.

® Random access. Accessing elements in the container in an arbitrary or-
der.

® Find. Search a container for an element that meets a given criterion.
There are all sorts of variants on the find operation, including finding
in reverse, finding multiple elements, etc. In addition, different types of
data structures and different situations call for different algorithms (see
http://en.wikipedia.org/wiki/Search_algorithm).

e Sort. Sort the contents of a container according to some given criteria.
There are many different sorting algorithms, including bubble sort, se-
lection sort, insertion sort, quicksort, and so on. (See http://en.wikipedia.
org/wiki/Sorting_algorithm for details.)

5.3.2. lterators

An iterator is a little class that “knows” how to efficiently visit the elements
in a particular kind of container. It acts like an array index or pointer—it
refers to one element in the container at a time, it can be advanced to the
next element, and it provides some sort of mechanism for testing whether
or not all elements in the container have been visited. As an example, the
first of the following two code snippets iterates over a C-style array using a
pointer, while the second iterates over an STL linked list using almost identi-
cal syntax.

void processArray (int container[], int numElements)

int* pBegin = &container[0];
int* pEnd = &container [numElements] ;
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for (int* p = pBegin; p != pEnd; ++p)

int element = *p;
// process element...

void processList (std::list<int>& container)

{

std::list<int>:: iterator pBegin = container.begin() ;
std::list<int>:: iterator pEnd = container.end() ;
std::list<inf>:: iterator p;

for (p = pBegin; p != pEnd; ++p)

int element = *p;
// process element...

}
}

The key benefits to using an iterator over attempting to access the con-
tainer’s elements directly are:

* Direct access would break the container class’ encapsulation. An iterator,
on the other hand, is typically a friend of the container class, and as such
it can iterate efficiently without exposing any implementation details
to the outside world. (In fact, most good container classes hide their
internal details and cannot be iterated over without an iterator.)

* An iterator can simplify the process of iterating. Most iterators act like
array indices or pointers, so a simple loop can be written in which the
iterator is incremented and compared against a terminating condition—
even when the underlying data structure is arbitrarily complex. For
example, an iterator can make an in-order depth-first tree traversal look
no more complex than a simple array iteration.

5.3.2.1. Preincrement versus Postincrement

Notice in the above example that we are using C++'s preincrement operator,
++p, rather than the postincrement operator, p++. This is a subtle but some-
times important optimization. The preincrement operator returns the value of
the operand after the increment has been performed, whereas postincrement
returns the previous, unincremented value. Hence preincrement can simply
increment the pointer or iterator in place and return a reference to it. Postin-
crement must cache the old value, then increment the pointer or iterator, and
finally return the cached value. This isn’t a big deal for pointers or integer



228

5. Engine Support Systems

tion. If an algorithm executes a subalgorithm # times, and the subalgorithm is
O(log n), then the resulting algorithm would be O(n log n).

To select an appropriate container class, we should look at the opera-
tions that we expect to be most common, then select the container whose per-
formance characteristics for those operations are most favorable. The most
common orders you'll encounter are listed here from fastest to slowest: O(1),
O(log n), O(n), O(n log n), O(n?), O(n*) for k> 2.

We should also take the memory layout and usage characteristics
of our containers into account. For example, an array (e.g., int al[5] or
std: :vector) stores its elements contiguously in memory and requires no
overhead storage for anything other than the elements themselves. (Note that
a dynamic array does require a small fixed overhead.) On the other hand, a
linked list (e.g., std::1ist) wraps each element in a “link” data structure
that contains a pointer to the next element and possibly also a pointer to the
previous element, for a total of up to eight bytes of overhead per element. Also,
the elements in a linked list need not be contiguous in memory and often
aren’t. A contiguous block of memory is usually much more cache-friendly
than a set of disparate memory blocks. Hence, for high-speed algorithms, ar-
rays are usually better than linked lists in terms of cache performance (unless
the nodes of the linked list are themselves allocated from a small, contiguous
memory block of memory, which is rare but not entirely unheard of). But a
linked list is better for situations in which speed of inserting and removing
elements is of prime importance.

5.3.4. Building Custom Container Classes

Many game engines provide their own custom implementations of the com-
mon container data structures. This practice is especially prevalent in console
game engines and games targeted at mobile phone and PDA platforms. The
reasons for building these classes yourself include:

e Total control. You control the data structure’s memory requirements, the
algorithms used, when and how memory is allocated, etc.

e Opportunities for optimization. You can optimize your data structures
and algorithms to take advantage of hardware features specific to the
console(s) you are targeting; or fine-tune them for a particular applica-
tion within your engine.

* Customizability. You can provide custom algorithms not prevalent in
third-party libraries like STL (for example, searching for the n most-
relevant elements in a container, instead of just the single most-rele-
vant).
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e Elimination of external dependencies. Since you built the software your-
self, you are not beholden to any other company or team to maintain it.
If problems arise, they can be debugged and fixed immediately, rather
than waiting until the next release of the library (which might not be
until after you have shipped your game!)

We cannot cover all possible data structures here, but let’s look at a few
common ways in which game engine programmers tend to tackle contain-
ers.

5.3.4.1. To Build or Not to Build

We will not discuss the details of how to implement all of these data types
and algorithms here—a plethora of books and online resources are available
for that purpose. However, we will concern ourselves with the question of
where to obtain implementations of the types and algorithms that you need.
As game engine designers, we have a number of choices:

1. Build the needed data structures manually.

2. Rely on third-party implementations. Some common choices include
a. the C++standard template library (STL),
b. a variant of STL, such as STLport,

c. the powerful and robust Boost libraries (http://www.boost.org).

Both STL and Boost are attractive, because they provide a rich and power-
ful set of container classes covering pretty much every type of data structure
imaginable. In addition, both of these packages provide a powerful suite of
template-based generic algorithms—implementations of common algorithms,
such as finding an element in a container, which can be applied to virtually
any type of data object. However, third-party packages like these may not be
appropriate for some kinds of game engines. And even if we decide to use a
third-party package, we must select between Boost and the various flavors of
STL, or another third-party library. So let’s take a moment to investigate some
of the pros and cons of each approach.

STL
The benefits of the standard template library include:

e STL offers a rich set of features.

* Reasonably robust implementations are available on a wide variety of
platforms.

* STL comes “standard” with virtually all C++ compilers.
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However, the STL also has numerous drawbacks, including;:

STL has a steep learning curve. The documentation is now quite good,
but the header files are cryptic and difficult to understand on most plat-
forms.

STL is often slower than a data structure that has been crafted specifi-
cally for a particular problem.

STL also almost always eats up more memory than a custom-designed
data structure.

STL does a lot of dynamic memory allocation, and it’s sometimes chal-
lenging to control its appetite for memory in a way that is suitable for
high-performance, memory-limited console games.

STL’s implementation and behavior varies slightly from compiler to
compiler, making its use in multiplatform engines more difficult.

As long as the programmer is aware of the pitfalls of STL and uses it ju-

diciously, it can have a place in game engine programming. It is best suited
to a game engine that will run on a personal computer platform, because the
advanced virtual memory systems on modern PCs make memory allocation
cheaper, and the probability of running out of physical RAM is often negli-
gible. On the other hand, STL is not generally well-suited for use on memory-
limited consoles that lack advanced CPUs and virtual memory. And code that
uses STL may not port easily to other platforms. Here are some rules of thumb
that I use:

First and foremost, be aware of the performance and memory character-
istics of the particular STL class you are using.

Try to avoid heavier-weight STL classes in code that you believe will be
a performance bottleneck.

Prefer STL in situations where memory is not at a premium. For ex-
ample, embedding a std::1ist inside a game object is OK, but em-
bedding a std: :1ist inside every vertex of a 3D mesh is probably not
a good idea. Adding every vertex of your 3D mesh to a std::1ist is
probably also not OK—the std::1ist class dynamically allocates a
small “link” object for every element inserted into it, and that can result
in a lot of tiny, fragmented memory allocations.

If your engine is to be multiplatform, I highly recommend STLport
(http://www.stlport.org), an implementation of STL that was specifically
designed to be portable across a wide range of compilers and target
platforms, more efficient, and more feature-rich than the original STL
implementations.
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The Medal of Honor: Pacific Assault engine for the PC made heavy use of
STL, and while MOHPA did have its share of frame rate problems, the team
was able to work around the performance problems caused by STL (primarily
by carefully limiting and controlling its use). Ogre3D, the popular object-ori-
ented rendering library that we use for some of the examples in this book, also
makes heavy use of STL. Your mileage may vary. Using STL on a game engine
project is certainly feasible, but it must be used with utmost care.

Boost

The Boost project was started by members of the C++ Standards Committee
Library Working Group, but it is now an open-source project with many con-
tributors from across the globe. The aim of the project is to produce libraries
that extend and work together with STL, for both commercial and non-com-
mercial use. Many of the Boost libraries have already been included in the
C++ Standards Committee’s Library Technical Report (TR1), which is a step
toward becoming part of a future C++ standard. Here is a brief summary of
what Boost brings to the table:

e Boost provides a lot of useful facilities not available in STL.

¢ Insome cases, Boost provides alternatives to work around certain prob-
lems with STL’s design or implementation.

® Boost does a great job of handling some very complex problems, like
smart pointers. (Bear in mind that smart pointers are complex beasts,
and they can be performance hogs. Handles are usually preferable; see
Section 14.5 for details.)

¢ The Boost libraries” documentation is usually excellent. Not only does
the documentation explain what each library does and how to use it, but
in most cases it also provides an excellent in-depth discussion of the de-
sign decisions, constraints, and requirements that went into construct-
ing the library. As such, reading the Boost documentation is a great way
to learn about the principles of software design.

If you are already using STL, then Boost can serve as an excellent exten-
sion and/or alterative to many of STL’s features. However, be aware of the
following caveats:

® Most of the core Boost classes are templates, so all that one needs in
order to use them is the appropriate set of header files. However, some
of the Boost libraries build into rather large .lib files and may not be
feasible for use in very small-scale game projects.

e While the world-wide Boost community is an excellent support net-
work, the Boost libraries come with no guarantees. If you encounter a
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bug, it will ultimately be your team’s responsibility to work around it
or fix it.
* Backward compatibility may not be supported.

* The Boost libraries are distributed under the Boost Software License.
Read the license information (http://www.boost.org/more/license_info.
html) carefully to be sure it is right for your engine.

Loki

There is a rather esoteric branch of C++ programming known as template meta-
programming. The core idea is to use the compiler to do a lot of the work that
would otherwise have to be done at runtime by exploiting the template fea-
ture of C++ and in effect “tricking” the compiler into doing things it wasn't
originally designed to do. This can lead to some startlingly powerful and use-
ful programming tools.

By far the most well-known and probably most powerful template meta-
programming library for C++is Loki, a library designed and written by Andrei
Alexandrescu (whose home page is at http://www.erdani.org). The library can
be obtained from SourceForge at http://loki-lib.sourceforge.net.

Loki is extremely powerful; it is a fascinating body of code to study and
learn from. However, its two big weaknesses are of a practical nature: (a) its
code can be daunting to read and use, much less truly understand, and (b)
some of its components are dependent upon exploiting “side-effect” behav-
iors of the compiler that require careful customization in order to be made
to work on new compilers. So Loki can be somewhat tough to use, and it
is not as portable as some of its “less-extreme” counterparts. Loki is not for
the faint of heart. That said, some of Loki’s concepts such as policy-based pro-
gramming can be applied to any C++ project, even if you don't use the Loki
library per se. I highly recommend that all software engineers read Andrei’s
ground-breaking book, Modern C++ Design [2], from which the Loki library
was born.

5.3.4.2. Dynamic Arrays and Chunky Allocation

Fixed-size C-style arrays are used quite a lot in game programming, because
they require no memory allocation, are contiguous and hence cache-friendly,
and support many common operations such as appending data and searching
very efficiently.

When the size of an array cannot be determined a priori, programmers
tend to turn either to linked lists or dynamic arrays. If we wish to maintain the
performance and memory characteristics of fixed-length arrays, then the dy-
namic array is often the data structure of choice.


http://www.boost.org/more/license_info
http://www.erdani.org

5.3. Containers

233

The easiest way to implement a dynamic array is to allocate an n-element
buffer initially and then grow the list only if an attempt is made to add more
than n elements to it. This gives us the favorable characteristics of a fixed-
size array but with no upper bound. Growing is implemented by allocating
a new larger buffer, copying the data from the original buffer into the new
buffer, and then freeing the original buffer. The size of the buffer is increased
in some orderly manner, such as adding 7 to it on each grow, or doubling it
on each grow. Most of the implementations I've encountered never shrink the
array, only grow it (with the notable exception of clearing the array to zero
size, which might or might not free the buffer). Hence the size of the array be-
comes a sort of “high water mark.” The STL std: : vector class works in this
manner.

Of course, if you can establish a high water mark for your data, then you're
probably better off just allocating a single buffer of that size when the engine
starts up. Growing a dynamic array can be incredibly costly due to realloca-
tion and data copying costs. The impact of these things depends on the sizes
of the buffers involved. Growing can also lead to fragmentation when dis-
carded buffers are freed. So, as with all data structures that allocate memory,
caution must be exercised when working with dynamic arrays. Dynamic ar-
rays are probably best used during development, when you are as yet unsure
of the buffer sizes you'll require. They can always be converted into fixed size
arrays once suitable memory budgets have been established.)

5.3.4.3. Linked Lists

If contiguous memory is not a primary concern, but the ability to insert and
remove elements at random is paramount, then a linked list is usually the data
structure of choice. Linked lists are quite easy to implement, but they're also
quite easy to get wrong if you're not careful. This section provides a few tips
and tricks for creating robust linked lists.

The Basics of Linked Lists

A linked list is a very simple data structure. Each element in the list has a
pointer to the next element, and, in a doubly-linked list, it also has a pointer to
the previous element. These two pointers are referred to as links. The list as a
whole is tracked using a special pair of pointers called the head and tail point-
ers. The head pointer points to the first element, while the tail pointer points
to the last element.

Inserting a new element into a doubly-linked list involves adjusting the
next pointer of the previous element and the previous pointer of the next ele-
ment to both point at the new element and then setting the new element’s next
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Figure 5.8. The four cases that must be handled when adding an element to a linked list: add
first, prepend, append, and insert.

Tail

and previous pointers appropriately as well. There are four cases to handle
when adding a node to a linked list:

¢ Adding the first element to a previously-empty list;
¢ Prepending an element before the current head element;
e Appending an element after the current tail element;

¢ Inserting an interior element.

These cases are illustrated in Figure 5.8.

Removing an element involves the same kinds of operations in and
around the node being removed. Again there are four cases: removing the
head element, removing the tail element, removing an interior element, and
removing the last element (emptying the list).

The Link Data Structure

Linked list code isn’t particularly tough to write, but it can be error-prone.
As such, it’s usually a good idea to write a general-purpose linked list facility
that can be used to manage lists of any element type. To do this, we need to
separate the data structure that contains the links (i.e., the next and previ-
ous pointers) from the element data structure. The link data structure is typi-
cally a simple struct or class, often called something like Link, Node, or
LinkNode, and templated on the type of element to which it refers. It will usu-
ally look something like this.
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template< typename ELEMENT >
struct Link

{

Link<ELEMENT>* m pPrev;
Link<ELEMENT>* m pNext;
ELEMENT * m_pElem;

Vi
Extrusive Lists

An extrusive list is a linked list in which the Link data structures are entirely
separate from the element data structures. Each Link contains a pointer to the
element, as shown in the example. Whenever an element is to be inserted into
a linked list, a link is allocated for it, and the pointers to the element and the
next and previous links are set up appropriately. When an element is removed
from a linked list, its link can be freed.

The benefit of the extrusive design is that an element can reside in mul-
tiple linked lists simultaneously —all we need is one link per list. The down
side is that the Link objects must be dynamically allocated. Often a pool al-
locator (see Section 5.2.1.2) is used to allocate links, because they are always
exactly the same size (viz., 12 bytes on a machine with 32-bit pointers). A pool
allocator is an excellent choice due to its speed and its freedom from fragmen-
tation problems.

Intrusive Lists

An intrusive list is a linked list in which the Link data structure is embedded
in the target element itself. The big benefit of this approach is that we no lon-
ger need to dynamically allocate the links—we get a link “for free” whenever
we allocate an element. For example, we might have:

class SomeElement

{

Link<SomeElement> m_link;

// other members...

Vi

We can also derive our element class from class Link. Using inheri-
tance like this is virtually identical to embedding a Link as the first member
of the class, but it has the additional benefit of allowing a pointer to a link
(Link<SomeElement >*) to be down-cast into a pointer to the element itself
(SomeElement*). This means we can eliminate the back-pointer to the ele-
ment that would otherwise have to be embedded within the Link. Here’s how
such a design might be implemented in C++.
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template< typename ELEMENT >
struct Link

{

Link<ELEMENT>* m pPrev;

Link<ELEMENT>* m_pNext;

// No ELEMENT* pointer required, thanks to
// inheritance.

}i

class SomeElement : public Link<SomeElement>

{

}i

The big pitfall of the intrusive linked list design is that it prevents an ele-
ment from residing in more than one linked list at a time (because each ele-
ment has one and only one link). We can allow an element to be a member of
N concurrent lists by providing it with N embedded link instances (in which
case we cannot use the inheritance method). However, the number N must

// other members...

be fixed a priori, so this approach is still not quite as flexible as the extrusive
design.

The choice between intrusive and extrusive linked lists depends on the
application and the constraints under which you are operating. If dynamic
memory allocation must be avoided at all costs, then an intrusive list is prob-
ably best. If you can afford the overhead of pool allocation, then an extrusive
design may be preferable. Sometimes only one of the two approaches will
be feasible. For example, if we wish to store instances of a class defined by a
third-party library in a linked list and are unable or unwilling to modify that
library’s source code, then an extrusive list is the only option.

Head and Tail Pointers: Circular Lists

To fully implement a linked list, we need to provide a head and a tail pointer.
The simplest approach is to embed these pointers in their own data structure,
perhaps called LinkedList, as follows.

template< typename ELEMENT >
class LinkedList

{

Link<ELEMENT>* m pTail;
Link<ELEMENT>* m pHead;

// member functions for manipulating the list...

}i

You may have noticed that there isnt much difference between a
LinkedList and a Link—they both contain a pair of pointers to Link. As it



5.3. Containers

237

Figure 5.9. When the head and tail pointers are stored in a link, the linked list can be made
circular, which simplifies the implementation and has some additional benefits.

turns out, there are some distinct benefits to using an instance of class Link to
manage the head and tail of the list, like this:

template< typename ELEMENT >
class LinkedList

{

Link<ELEMENT> m root; // contains head and tail

// member functions for manipulating the list...

}i

The embedded m_root member is a Link, no different from any other Link in
the list (except that its m_pElement member will always be NULL). This allows
us to make the linked list circular as shown in Figure 5.9. In other words, the
m_pNext pointer of the last “real” node in the list points to m_root, as does
the m_pPrev pointer of the first “real” node in the list.

This design is preferable to the one involving two “loose” pointers for the
head and tail, because it simplifies the logic for inserting and removing ele-
ments. To see why this is the case, consider the code that would be required
to remove an element from a linked list when “loose” head and tail pointers
are being used.

void LinkedList::remove (Link<ELEMENT>& link)
{
if (link.m pNext)
link.m pNext->m pPrev = link.m pPrev;
else
// Removing last element in the list.
m pTail = link.m pPrev;

if (link.m pPrev)
link.m pPrev->m pNext = link.m pNext;
else
// Removing first element in the list.
m pHead = link.m_pNext;
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link.m pPrev = link.m pNext = NULL;

}

The code is a bit simpler when we use the m_root design:

void LinkedList::remove (Link<ELEMENT>& link)

{

// The link must currently be a member of the list.

ASSERT(link.m_pNext != NULL) ;
ASSERT (link.m pPrev != NULL) ;

link.m pNext->m pPrev = link.m pPrev;
link.m pPrev->m pNext = link.m pNext;

// Do this to indicate the link is no longer in any
// list.
link.m pPrev = link.m pNext = NULL;

}

The example code shown above highlights an additional benefit of the
circularly linked list approach: A link’s m_pPrev and m_pNext pointers are
never null, unless the link is not a member of any list (i.e., the link is unused/
inactive). This gives us a simple test for list membership.

Contrast this with the “loose” head/tail pointer design. In that case, the
m_pPrev pointer of the first element in the list is always null, as is the m_pN-
ext pointer of the last element. And if there is only one element in the list, that
link’s next and previous pointers will both be null. This makes it impossible to
know whether or not a given Link is a member of a list or not.

Singly-Linked Lists

Assingly-linked list is one in which the elements have a next pointer, but no pre-
vious pointer. (The list as a whole might have both a head and a tail pointer, or
it might have only a head pointer.) Such a design is obviously a memory saver,
but the cost of this approach becomes evident when inserting or removing an
element from the list. We have nom_pPrev pointer, so we need to traverse the
list from the head in order to find the previous element, so that its m_pNext
pointer can be updated appropriately. Therefore, removal is an O(1) operation
for a doubly-linked list, but it’s an O(n) operation for a singly-linked list.

This inherent insertion and removal cost is often prohibitive, so most
linked lists are doubly linked. However, if you know for certain that you will
only ever add and remove elements from the head of the list (as when imple-
menting a stack), or if you always add to the head and remove from the tail (as
with a queue—and your list has both a head and a tail pointer), then you can
get away with a singly-linked list and save yourself some memory.
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5.3.4.4. Dictionaries and Hash Tables

A dictionary is a table of key-value pairs. A value in the dictionary can be
looked up quickly, given its key. The keys and values can be of any data type.
This kind of data structure is usually implemented either as a binary search
tree or as a hash table.

In a binary tree implementation, the key-value pairs are stored in the
nodes of the binary tree, and the tree is maintained in key-sorted order. Look-
ing up a value by key involves performing an O(log 1) binary search.

In a hash table implementation, the values are stored in a fixed-size table,
where each slot in the table represents one or more keys. To insert a key-value
pair into a hash table, the key is first converted into integer form via a pro-
cess known as hashing (if it is not already an integer). Then an index into the
hash table is calculated by taking the hashed key modulo the size of the table.
Finally, the key-value pair is stored in the slot corresponding to that index.
Recall that the modulo operator (% in C/C++) finds the remainder of dividing
the integer key by the table size. So if the hash table has five slots, then a key of
3 would be stored atindex 3 (3 & 5 == 3), while a key of 6 would be stored
atindex1(6 % 5 == 1). Finding a key-value pair is an O(1) operation in the
absence of collisions.

Collisions: Open and Closed Hash Tables

Sometimes two or more keys end up occupying the same slot in the hash table.
This is known as a collision. There are two basic ways to resolve a collision, giv-
ing rise to two different kinds of hash tables:

® Open. In an open hash table (see Figure 5.10), collisions are resolved
by simply storing more than one key-value pair at each index, usually
in the form of a linked list. This approach is easy to implement and
imposes no upper bound on the number of key-value pairs that can be
stored. However, it does require memory to be allocated dynamically
whenever a new key-value pair is added to the table.

e (Closed. In a closed hash table (see Figure 5.11), collisions are resolved via
a process of probing until a vacant slot is found. (“Probing” means apply-
ing a well-defined algorithm to search for a free slot.) This approach is
a bit more difficult to implement, and it imposes an upper limit on the
number of key-value pairs that can reside in the table (because each slot
can hold only one key-value pair). But the main benefit of this kind of
hash table is that it uses up a fixed amount of memory and requires no dy-
namic memory allocation. Therefore it is often a good choice in a console
engine.
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Slot 0 —>{ (55, apple) ’—»‘ (0, orange)
Slot 1 — (26, grape)

Slot 2
Slot 3 (33, plum)
Slot 4

Figure 5.10. An open hash table.

collision!
0 ‘ (55, apple) ‘ 4—‘ (0, orange) O|| (55, apple)
1|| (26, grape) 1| (26, grape)
2 2
3|| (33, plum) 3|| (33, plum) || probe to
find new
4 4 || (0, orange) || < slot

Figure 5.11. A closed hash table.

Hashing

Hashing is the process of turning a key of some arbitrary data type into an
integer, which can be used modulo the table size as an index into the table.
Mathematically, given a key k, we want to generate an integer hash value h us-
ing the hash function H, and then find the index 7 into the table as follows:

h=H(k),
i=hmod N,

where N is the number of slots in the table, and the symbol mod represents the
modulo operation, i.e., finding the remainder of the quotient h/N.

If the keys are unique integers, the hash function can be the identity func-
tion, H(k) = k. If the keys are unique 32-bit floating-point numbers, a hash func-
tion might simply re-interpret the bit pattern of the 32-bit float as if it were a
32-bit integer.

U32 hashFloat (float £f)

{

union

{

float asFloat;
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U32  asU32;
}ou;

u.asFloat = f;
return u.asU32;

}

If the key is a string, we can employ a string hashing function, which combines
the ASCII or UTF codes of all the characters in the string into a single 32-bit
integer value.

The quality of the hashing function H(k) is crucial to the efficiency of the
hash table. A “good” hashing function is one that distributes the set of all valid
keys evenly across the table, thereby minimizing the likelihood of collisions.
A hash function must also be reasonably quick to calculate and deterministic
in the sense that it must produce the exact same output every time it is called
with an indentical input.

Strings are probably the most prevalent type of key you’ll encounter, so
it’s particularly helpful to know a “good” string hashing function. Here are a
few reasonably good ones:

e LOOKUP3 by Bob Jenkins (http://burtleburtle.net/bob/c/lookup3.c).

e Cycdlicredundancy check functions, such as CRC-32 (http://en.wikipedia.
org/wiki/Cyclic_redundancy_check).

e Message-digest algorithm 5 (MD5), a cryptographic hash which yields
excellent results but is quite expensive to calculate (http://en.wikipedia.
org/wiki/MD5).

* A number of other excellent alternatives can be found in an article by

Paul Hsieh available at http://www.azillionmonkeys.com/qed/hash.
html.

Implementing a Closed Hash Table

In a closed hash table, the key-value pairs are stored directly in the table, rath-
er than in a linked list at each table entry. This approach allows the program-
mer to define a priori the exact amount of memory that will be used by the
hash table. A problem arises when we encounter a collision —two keys that end
up wanting to be stored in the same slot in the table. To address this, we use a
process known as probing.

The simplest approach is linear probing. Imagining that our hashing func-
tion has yielded a table index of i, but that slot is already occupied, we simply
try slots (i + 1), (i +2), and so on until an empty slot is found (wrapping around
to the start of the table when 7 = N). Another variation on linear probing is to
alternate searching forwards and backwards, (i + 1), (i — 1), (i + 2), (i - 2), and
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so on, making sure to modulo the resulting indices into the valid range of the
table.

Linear probing tends to cause key-value pairs to “clump up.” To avoid
these clusters, we can use an algorithm known as quadratic probing. We start at
the occupied table index i and use the sequence of probes i = (i +j?) forj=1,2,
3, .... In other words, we try (i + 1?), (i — 1%), (i + 2?), (i — 2%), and so on, remem-
bering to always modulo the resulting index into the valid range of the table.

When using closed hashing, it is a good idea to make your table size a
prime number. Using a prime table size in conjunction with quadratic probing
tends to yield the best coverage of the available table slots with minimal clus-
tering. See http://www.cs.utk.edu/~eijkhout/594-LaTeX/handouts/hashing-
slides.pdf for a good discussion of why prime hash table sizes are preferable.

5.4. Strings

Strings are ubiquitous in almost every software project, and game engines are
no exception. On the surface, the string may seem like a simple, fundamental
data type. But when you start using strings in your projects, you will quickly
discover a wide range of design issues and constraints, all of which must be
carefully accounted for.

5.4.1. The Problem with Strings

The most fundamental question is how strings should be stored and managed
in your program. In C and C++, strings aren’t even an atomic type—they are
implemented as arrays of characters. The variable length of strings means we
either have to hard-code limitations on the sizes of our strings, or we need to
dynamically allocate our string buffers. C++ programmers often prefer to use
a string class, rather than deal directly with character arrays. But then, which
string class should we use? STL provides a reasonably good string class, but if
you've decided not to use STL you might be stuck writing your own.
Another big string-related problem is that of localization—the process of
adapting your software for release in other languages. This is also known as
internationalization, or 118N for short. Any string that you display to the user
in English must be translated into whatever languages you plan to support.
(Strings that are used internally to the program but are never displayed to the
user are exempt from localization, of course.) This not only involves making
sure that you can represent all the character glyphs of all the languages you
plan to support (via an appropriate set of fonts), but it also means ensuring
that your game can handle different text orientations. For example, Chinese
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text is oriented vertically instead of horizontally, and some languages like He-
brew read right-to-left. Your game also needs to gracefully deal with the pos-
sibility that a translated string will be either much longer, or much shorter,
than its English counterpart.

Finally, it's important to realize that strings are used internally within a
game engine for things like resource file names and object ids. For example,
when a game designer lays out a level, it’s highly convenient to permit him or
her to identify the objects in the level using meaningful names, like “Player-

o

Camera,” “enemy-tank-01,” or “explosionTrigger.”

How our engine deals with these internal strings often has pervasive ram-
ifications on the performance of the game. This is because strings are inherent-
ly expensive to work with at runtime. Comparing or copying ints or £loats
can be accomplished via simple machine language instructions. On the other
hand, comparing strings requires an O(n) scan of the character arrays using a
function like strcmp () (where # is the length of the string). Copying a string
requires an O(n) memory copy, not to mention the possibility of having to
dynamically allocate the memory for the copy. During one project I worked
on, we profiled our game’s performance only to discover that strcmp () and
strepy () were the top two most expensive functions! By eliminating unnec-
essary string operations and using some of the techniques outlined in this
section, we were able to all but eliminate these functions from our profile, and
increase the game’s frame rate significantly. (I've heard similar stories from
developers at a number of different studios.)

5.4.2. String Classes

String classes can make working with strings much more convenient for the
programmer. However, a string class can have hidden costs that are difficult
to see until the game is profiled. For example, passing a string to a function
using a C-style character array is fast because the address of the first character
is typically passed in a hardware register. On the other hand, passing a string
object might incur the overhead of one or more copy constructors, if the func-
tion is not declared or used properly. Copying strings might involve dynamic
memory allocation, causing what looks like an innocuous function call to end
up costing literally thousands of machine cycles.

For this reason, in game programming I generally like to avoid string
classes. However, if you feel a strong urge to use a string class, make sure you
pick or implement one that has acceptable runtime performance character-
istics—and be sure all programmers that use it are aware of its costs. Know
your string class: Does it treat all string buffers as read-only? Does it utilize
the copy on write optimization? (See http://en.wikipedia.org/wiki/Copy-on-
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write.) As a rule of thumb, always pass string objects by reference, never by
value (as the latter often incurs string-copying costs). Profile your code early
and often to ensure that your string class isn’t becoming a major source of lost
frame rate!

One situation in which a specialized string class does seem justifiable
to me is when storing and managing file system paths. Here, a hypothetical
Path class could add significant value over a raw C-style character array. For
example, it might provide functions for extracting the filename, file exten-
sion or directory from the path. It might hide operating system differences by
automatically converting Windows-style backslashes to UNIX-style forward
slashes or some other operating system’s path separator. Writing a Path class
that provides this kind of functionality in a cross-platform way could be high-
ly valuable within a game engine context. (See Section 6.1.1.4 for more details
on this topic.)

5.4.3. Unique ldentifiers

The objects in any virtual game world need to be uniquely identified in some
way. For example, in Pac Man we might encounter game objects named “pac_
man,” “blinky,” “pinky,” “inky,” and “clyde.” Unique object identifiers allow
game designers to keep track of the myriad objects that make up their game
worlds and also permit those objects to be found and operated on at runtime
by the engine. In addition, the assets from which our game objects are con-
structed —meshes, materials, textures, audio clips, animations, and so on—all
need unique identifiers as well.

Strings seem like a natural choice for such identifiers. Assets are often
stored in individual files on disk, so they can usually be identified uniquely by
their file paths, which of course are strings. And game objects are created by
game designers, so it is natural for them to assign their objects understandable
string names, rather than have to remember integer object indices, or 64- or
128-bit globally unique identifiers (GUIDs). However, the speed with which
comparisons between unique identifiers can be made is of paramount impor-
tance in a game, so strcmp () simply doesn’t cut it. We need a way to have
our cake and eat it too—a way to get all the descriptiveness and flexibility of a
string, but with the speed of an integer.

5.43.1. Hashed String Ids

One good solution is to hash our strings. As we’ve seen, a hash function maps
a string onto a semi-unique integer. String hash codes can be compared just
like any other integers, so comparisons are fast. If we store the actual strings
in a hash table, then the original string can always be recovered from the hash
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code. This is useful