
www.allitebooks.com

http://www.allitebooks.org

i

Getting StartED with

CSS

David Powers

www.allitebooks.com

http://www.allitebooks.org

ii

GETTING STARTED WITH CSS
Copyright © 2009 by David Powers

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval

system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-2543-0

ISBN-13 (electronic): 978-1-4302-2544-7

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark

owner, with no intention of infringement of the trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com,

or visit www.springeronline.com.

For information on translations, please e-mail info@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special

Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to

any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in this work.

The source code for this book is freely available to readers at www.friendsofed.com in the Downloads
section.

Credits
President and Publisher:

Paul Manning
Lead Editor:

Ben Renow-Clarke
Technical Reviewer:

Peter Elst
Editorial Board:

Clay Andres, Steve Anglin, Mark Beckner, Ewan
Buckingham, Tony Campbell, Gary Cornell, Jonathan
Gennick, Michelle Lowman, Matthew Moodie, Jeffrey

Pepper, Frank Pohlmann, Ben Renow-Clarke, Dominic
Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor:
Kelly Moritz
Copy Editor:
Heather Lang
Compositors:
MacPS, LLC
Indexers:
BIM Indexing and e-Services
Artist:
April Milne
Interior Designer:
Anna Ishchenko

www.allitebooks.com

http://www.allitebooks.org

iv

Contents at a Glance

Contents at a Glance .. iv

Contents ..v

About the Author.. xv

About the Technical Reviewer ...xvi

Acknowledgments..xvii

Introduction ... xix

Chapter 1: What Is CSS, and Why Should I Learn It?1

Chapter 2: How Do I Improve the Look of Text and Links? 39

Chapter 3: How Can I Improve the Layout of My Text?.......................... 85

Chapter 4: How Can I Flow Text Around Images?............................... 121

Chapter 5: How Do I Add Backgrounds and Borders to
 Improve the Look of My Page? 155

Chapter 6: How Do I Solve the Mysteries of Width and Height? 199

Chapter 7: How Do I Create Differently Styled Sections? 243

Chapter 8: How Do I Style Lists and Navigation Menus? 275

Chapter 9: How Do I Style Tables?... 325

Chapter 10: How Do I Position Elements Precisely on the Page?............ 363

Chapter 11: Are There Any Guidelines for Basic Page Layout? 403

Chapter 12: How Do I Create Styles for Printing? 453

Appendix: CSS Properties and Selectors.. 495

Index... 535

www.allitebooks.com

http://www.allitebooks.org

v

Contents

Contents at a Glance .. iv
Contents ..v
About the Author.. xv
About the Technical Reviewer ...xvi
Acknowledgments..xvii
Introduction ... xix

Chapter 1: What Is CSS, and Why Should I Learn It?1�

A short history of CSS..3�

Why CSS has taken so long to be embraced by designers4�

The time for CSS has finally come ...6�

What are the advantages of CSS? ..7�

Write simpler markup..7�

Turn into a quick change artist... 10�

Gain greater control over the look of page elements 14�

So, how do I use CSS? .. 16�

Why are they called “cascading” style sheets? 18�

How do I write a style rule?... 19�

Formatting CSS for ease of maintenance ... 21�

Adding comments to your CSS ... 22�

Where do I create my CSS?.. 23�

Using external style sheets ... 24�

Using a <style> block... 27�

Applying a style directly to an HTML element... 28�

Don’t forget the cascade... 28�

Using Internet Explorer conditional comments ... 30�

Limiting which devices use your styles.. 32�

Learning to write CSS well.. 35�

Avoiding common mistakes ... 35�

Test your CSS early in several browsers .. 36�

Building a useful toolset for working with CSS....................................... 36�

Chapter review ... 38�

Chapter 2:How Do I Improve the Look of Text and Links?...................... 39�

Exploring the CSS text properties ... 40�

Changing the default font and color of text 43�

Using font-family to choose a range of alternative fonts 44�

Setting color values in CSS .. 51�

Selectively applying a different font and color...................................... 53�

www.allitebooks.com

http://www.allitebooks.org

 Getting StartED with CSS

vi

Changing the size of fonts .. 56�

Setting length with pixels, ems, and other units
 of measurement... 57�

Using percentages... 60�

Changing the look of fonts.. 64�

Italicizing text ... 64�

Making text bolder or lighter.. 64�

Displaying text in small caps .. 65�

Switching between uppercase and lowercase 65�

Aligning and spacing text ... 68�

Aligning text horizontally .. 69�

Aligning text vertically ... 69�

Indenting the first line of text .. 70�

Adjusting the vertical space between lines of text........................ 71�

Adding or removing space between words 71�

Increasing or decreasing the space between letters 71�

Controlling whitespace and line wrapping 72�

Styling text links ... 77�

Just remember it’s a love-hate relationship................................ 78�

Controlling underlines .. 79�

Making full use of the cascade .. 81�

Using the font shorthand property .. 82�

Chapter review ... 84�

Chapter 3: How Can I Improve the Layout of My Text?.......................... 85�

Sliding boxes and blocks .. 86�

Two HTML tags that are the friends of CSS:
 <div> and .. 88�

How CSS controls margins... 89�

Understanding how vertical margins collapse 91�

Setting margin values... 93�

Using margins to improve page layout .. 94�

Removing the default margins from your pages............................ 94�

Centering page content .. 99�

Using margin-left to indent text ... 105�

Using negative margins.. 109�

Applying margins to inline elements .. 111�

Keeping your style sheet manageable ... 112�

Using the margin shorthand property 113�

Organizing your style rules for easier maintenance 116�

Chapter review .. 119�

www.allitebooks.com

http://www.allitebooks.org

Contents

vii

Chapter 4: How Can I Flow Text Around Images?............................... 121�

CSS classes 101 .. 123�

Creating and applying CSS classes ... 123�

Using float to flow text around images .. 125�

Creating generic classes to position images 127�

How do I center an image?.. 128�

What happens when the image is taller than the text? 132�

Using clear to force elements below a floated image.................... 134�

What if an element is too wide to sit alongside a float? 138�

What happens to margins alongside a float? 139�

Using ID selectors to style unique elements 144�

Deciding whether to use a class or an ID 145�

Adding a caption to an image ... 148�

Chapter review .. 152�

Chapter 5: How Do I Add Backgrounds and Borders to
Improve the Look of My Page?.. 155�

Controlling backgrounds with CSS .. 156�

Changing the background color of an element 157�

Adding a background image .. 163�

Controlling how background images repeat............................. 166�

Fixing a background image in relation to the
 browser viewport ... 168�

Adjusting the position of a background image.......................... 169�

Using the background shorthand property 176�

Controlling borders with CSS .. 179�

Setting a border color ... 181�

Setting a border style ... 181�

Setting a border width .. 183�

Using border shorthand properties .. 183�

Using borders to simulate embossing and indenting...................... 184�

Understanding how borders affect layout 186�

How do I get rid of the blue border around link images? 193�

How do I prevent backgrounds and borders from |
 displaying under floats? ... 194�

Chapter review .. 197�

Chapter 6: How Do I Solve the Mysteries of Width and Height? 199�

Padding—the final piece of the CSS box model............................... 200�

Choosing between margins and padding.................................... 202�

Using padding to add space around elements 203�

Controlling width and height .. 212�

www.allitebooks.com

http://www.allitebooks.org

 Getting StartED with CSS

viii

Using a fixed height.. 214�

Using minimum and maximum lengths to scale
 images and text .. 223�

How do I stop content spilling out of its container? 230�

Controlling overspill with the overflow property 231�

Using overflow as an alternative to clear with
 floated elements ... 234�

Understanding the difference between visibility
 and display .. 236�

Displaying a message to users of old browsers 238�

Chapter review .. 240�

Chapter 7: How Do I Create Differently Styled Sections? 243�

Adding a sidebar... 245�

Giving the sidebar different styles .. 250�

Adding an accessible page heading... 259�

Switching the sidebar to the other side 263�

Improving the image captions... 265�

How do I tell which styles will be applied?.................................... 267�

A review of selectors in CSS2.1 .. 268�

Using specificity to work out which rule wins 271�

Specificity the easy way ... 271�

Specificity the official way .. 273�

Chapter review .. 274�

Chapter 8: How Do I Style Lists and Navigation Menus? 275�

Styling unordered and ordered lists .. 277�

Changing the symbol or number ... 277�

Changing the position of the symbol .. 281�

Replacing the symbol with your own image................................ 282�

Using a background image for greater control 283�

Using the list-style shorthand property..................................... 285�

Changing layout with the display property.................................... 286�

Setting display to inline ... 288�

Setting display to inline-block ... 289�

Creating a navigation bar from a list... 291�

Creating a vertical text-based navigation bar 292�

Creating a horizontal text-based navigation bar 297�

Using CSS sprites in a navigation bar.. 305�

How do I continue a numbered list after a break? 310�

Using CSS to generate numbered sequences.................................. 311�

Adding content with :before and :after 312�

www.allitebooks.com

http://www.allitebooks.org

Contents

ix

Adding images with pseudo-elements....................................... 314�

Generating content from an HTML attribute 315�

Using the content property to generate numbered
 sequences ... 315�

Using generated content with numbered lists 321�

Generating subsection numbers with nested lists......................... 322�

Chapter review .. 323�

Chapter 9: How Do I Style Tables?... 325�

Understanding the anatomy of a table .. 326�

Basic table structure... 326�

Using HTML tags to define sections of a table............................. 328�

Defining table columns ... 328�

Defining table header and footer rows 330�

Grouping table rows into sections .. 330�

How browsers lay out tables ... 332�

Styling tables with CSS ... 334�

Using CSS for table borders... 335�

Adding borders to table cells... 336�

How do I stop border widths from being doubled? 337�

Adding borders to columns and rows.. 340�

Applying other styles to columns .. 341�

What’s the CSS equivalent of cellspacing? 342�

What’s the CSS equivalent of cellpadding?................................. 343�

Controlling the position of the table caption 344�

Handling empty cells .. 345�

How can I control the width of my table? 347�

How do I create scrolling table cells that work
 in all browsers? ... 350�

How do I control the position of content in table cells? 351�

Chapter review .. 362�

Chapter 10: How Do I Position Elements Precisely
 on the Page? ... 363�

How does CSS positioning work? .. 364�

Understanding the different types of positioning 366�

Fixing elements inside the browser window 367�

How do I keep my navigation onscreen all the time?..................... 367�

Understanding the limitations of fixed positioning 374�

Using relative positioning to nudge elements 377�

Using relative positioning to create a containing block.................. 379�

Moving elements precisely with absolute positioning 380�

www.allitebooks.com

http://www.allitebooks.org

 Getting StartED with CSS

x

Why do absolutely positioned elements move?............................ 383�

How do I center a page and use absolute positioning? 385�

What happens if I nest absolutely positioned elements?................. 386�

How do I control which element is on top when
 they overlap? ... 389�

What are the drawbacks of using absolute positioning?.................. 393�

Positioning elements against a background image........................ 395�

Cropping an image nondestructively with CSS................................ 399�

Chapter review .. 402�

Chapter 11: Are There Any Guidelines for Basic Page Layout? 403�

Getting the basics right .. 404�

Who is the target audience? .. 404�

What size browser window should I design for? 405�

What type of layout is best—fixed or flexible? 406�

Creating a single-column layout .. 409�

Keeping a liquid display centered ... 413�

Creating a two-column layout... 415�

Putting the sidebar first and floating it to one side 416�

Using a background image to simulate equal columns 419�

What happens if the sidebar is longer? 421�

Adding a “skip to main content” link for screen readers 423�

Putting the main content first ... 424�

Floating the main content ... 425�

Using absolute positioning for the sidebar 426�

Using a negative margin to float the sidebar into position 428�

How do I make a more flexible two-column layout?...................... 434�

Creating a three-column layout... 437�

Creating faux columns for a three-column layout 437�

Using a single image for a fixed-width layout 437�

Using multiple images for a hybrid layout............................... 439�

Putting the main content first in a three-column layout 440�

Creating subcolumns... 444�

Table-related display—the future of layout?.................................. 446�

Chapter review .. 451�

Chapter 12: How Do I Create Styles for Printing? 453�

What’s different about print CSS? .. 454�

What print style sheets cannot do... 455�

Setting page margins with the @page rule and
 pseudo-classes.. 456�

Controlling where to break content between pages...................... 458�

www.allitebooks.com

http://www.allitebooks.org

Contents

xi

Displaying the URL of links.. 460�

Creating styles for printing .. 462�

Using the media attribute to specify where styles are applied 463�

Using the cascade for print styles ... 464�

Attaching independent style sheets ... 465�

The ones that got away—UI properties and quotes 478�

Changing the cursor.. 479�

Adding an outline .. 481�

Removing a default outline without destroying accessibility 484�

Curly quotes, anyone? ... 485�

Chapter review .. 492�

Appendix: CSS Properties and Selectors.. 495�

Specifying property values... 495�

Specifying color values .. 495�

Specifying sizes ... 497�

Specifying URLs... 498�

CSS2.1 Properties ... 498�

Background properties .. 499�

background-attachment.. 499�

background-color.. 500�

background-image .. 500�

background-position .. 500�

background-repeat.. 501�

background... 501�

Border properties .. 501�

border-color.. 502�

border-style .. 502�

border-top, border-right, border-bottom, border-left 502�

border-top-color, border-right-color,
 border-bottom-color, border-left-color 503�

border-top-style, border-right-style,
 border-bottom-style, border-left-style.......................... 503�

border-top-width, border-right-width,
 border-bottom-width, border-left-width........................ 503�

border-width ... 503�

border... 504�

Box model properties.. 504�

height ... 504�

margin-right, margin-left, margin-top, margin-bottom............... 504�

margin .. 505�

 Getting StartED with CSS

xii

max-height ... 505�

max-width .. 506�

min-height.. 506�

min-width .. 506�

padding-top, padding-right, padding-bottom,
 padding-left.. 506�

padding ... 507�

width .. 507�

Display and visibility properties.. 507�

display .. 507�

overflow .. 508�

visibility... 508�

Float properties .. 509�

clear... 509�

float ... 509�

Generated content properties ... 509�

content ... 510�

counter-increment, counter-reset.. 510�

quotes... 510�

List properties .. 510�

list-style-image .. 510�

list-style-position.. 511�

list-style-type.. 511�

list-style .. 511�

Positioning properties ... 511�

bottom, left, right, top .. 512�

clip .. 512�

position ... 512�

z-index .. 513�

Print properties... 514�

orphans ... 514�

page-break-after .. 514�

page-break-before .. 514�

page-break-inside ... 514�

widows .. 515�

Table properties.. 515�

border-collapse.. 515�

border-spacing... 515�

caption-side.. 516�

empty-cells... 516�

Contents

xiii

table-layout .. 516�

text-align ... 516�

vertical-align... 517�

Text properties ... 517�

color... 517�

direction.. 517�

font-family ... 518�

font-size .. 518�

font-style ... 518�

font-variant .. 518�

font-weight... 519�

font.. 519�

letter-spacing.. 519�

line-height.. 519�

text-align ... 520�

text-decoration.. 520�

text-indent ... 520�

text-transform... 520�

unicode-bidi.. 521�

vertical-align... 521�

white-space .. 521�

word-spacing... 522�

User interface properties ... 522�

cursor ... 522�

outline-color ... 523�

outline-style ... 523�

outline-width .. 523�

outline .. 523�

Selectors.. 523�

CSS2.1 selectors .. 524�

Universal selector ... 524�

Type selectors ... 524�

Class selectors ... 524�

Pseudo-classes ... 526�

Pseudo-elements .. 527�

ID selectors... 527�

Descendant selectors ... 528�

Child selectors ... 528�

Adjacent sibling selectors ... 529�

Attribute selectors .. 530�

 Getting StartED with CSS

xiv

Grouping selectors .. 531�

Building complex selectors .. 532�

Widely-supported CSS3 selectors .. 532�

Matching an attribute that begins with a value 533�

Matching an attribute that contains a substring 533�

Matching an attribute that ends with a value 533�

General sibling combinator .. 534
Index... 535

xv

About the Author
David Powers is an Adobe Community Expert for Dreamweaver and author of a
series of highly successful books on web design and development, including The
Definitive Guide to Dreamweaver CS4 with CSS, Ajax, and PHP (friends of ED,
ISBN: 978-1-4302-1610-0) and PHP Solutions: Dynamic Web Design Made Easy
(friends of ED, ISBN: 978-1-5905-9731-1). He also served as the technical reviewer
on Cascading Style Sheets: SeparatingContent from Presentation, Second Edition
by Owen Briggs, Steven Champeon et al (friends of ED), and Head First HTML with
CSS & XHTML by Elisabeth Freeman and Eric Freeman (O’Reilly).

As a professional writer, he has been involved in electronic media for more than 30 years, first with BBC
radio and television and more recently with the Internet. What started as a mild interest in computing
was transformed almost overnight into a passion, when David was posted to Japan in 1987 as BBC
correspondent in Tokyo. With no corporate IT department just down the hallway, he was forced to learn
how to fix everything himself. When not tinkering with the innards of his computer, he was reporting for
BBC TV and radio on the rise and collapse of the Japanese bubble economy.

David has also translated several plays from Japanese. To relax, he enjoys nothing better than visiting
his favorite sushi restaurant.

xvi

About the Technical Reviewer
Peter Elst is a freelance web 2.0 consultant and Founding Partner of Project Cocoon — a collaborative
project of web designers and developers based in South India. As a respected member of the online
Flash platform community, Peter has spoken at various international industry events and published his
work in leading journals.

www.peterelst.com

xvii

Acknowledgments

Many people have helped and inspired me in my quest to learn CSS. The person who first opened my
eyes to its possibilities was Al Sparber of Project Seven (www.projectseven.com). He still amazes me
with his in-depth knowledge of the subject and the thoroughness of his cross-browser testing. Others
who have helped me directly or indirectly include Eric Meyer, Owen Briggs, Stephanie Sullivan, Thierry
Koblentz, and a secretive group that goes by the name of “No Nephews” (you know who you are). My
thanks go to them all.

I would also like to thank everyone at Apress/friends of ED who contributed to bringing this book to
fruition. Particular thanks go to my editor, Ben Renow-Clarke, and technical reviewer, Peter Elst. Both
made valuable suggestions that greatly improved this book.

xix

Introduction

Most people who build websites fall into one of two categories: geeks (like me) who take great pleasure
in working with code, and artistic types who think in terms of overall design. Of course, that’s a
sweeping generalization. To be successful in modern web design, you need an element of both. But
most people will be stronger in one field than the other.

If your main strength lies in visualizing an overall design and you find code a bit of a turn-off, learning
how to style websites with Cascading Style Sheets (CSS) might seem a daunting task. But it needn’t be.
. . . Think of CSS as the language of design. The code in a style sheet is simply telling the browser how
you want your pages to look. It defines the fonts, colors, and layout of the various elements on the
page. You might find yourself despairing at how long it takes to put together a style sheet to reflect
your visual design. Take heart; even if you’re an expert, it’s not something you can dash off in a few
minutes. Attention to detail is important—and, as always, it shows in the results. Moreover, once you
have created the style sheet, the visual design is automatically applied to every new page that you
build. That’s the magic of CSS.

Code warriors face a different challenge. The amount of code involved in CSS is quite small. There are
fewer than 100 properties to learn, and most of them are intuitively named. It doesn’t take a genius to
work out that the border-top property defines the top border of an element. The syntax is also very
simple. As a result, an experienced developer might expect to have the whole thing licked in a couple
of days. You won’t.

Regardless of your background, learning CSS takes time. It’s not because CSS is hard—far from it. What
takes time is understanding the infinite number of ways CSS properties can be combined with each
other, providing a stunning degree of control over the look and layout of web pages. The other
challenge—although it’s becoming less significant by the day—comes from the way different browsers
interpret CSS. Older browsers, particularly Internet Explorer 6 and 7, don’t understand all CSS
properties or have bugs. However, all other browsers in widespread use (including Internet Explorer 8)
have excellent support for CSS. As long as you build your style sheets to work in a modern browser, you
can usually fix any problems in older browsers at the end of the design process.

Although you won’t become a CSS master overnight, you can achieve impressive results quite quickly. I
have organized the chapters in this book in a logical sequence to lead you from simple beginnings to
progressively complex concepts. Even if you already have some experience of CSS, I recommend that
you read the chapters in the order they are presented. Each chapter contains a mixture of reference
material and hands-on exercises that build on what you have learned previously. The appendix at the
end of this book also serves as a quick reference to all the properties in the current version of CSS
(CSS2.1), as well as CSS selectors used in all mainstream browsers.

Take things gradually. You’ll get there in the end, and you’ll discover the time invested eventually
repaid in websites that not only look good, but are much easier to maintain.

xx

Who this book is for
This book is aimed at anyone involved in building websites using HTML (or XHTML). It assumes no prior
knowledge of CSS, but I do expect you to understand the basics of HTML and web page construction.
After the first couple of chapters, the book moves at a fairly rapid pace, so this book should also appeal
to readers who have dabbled with CSS, but still haven’t quite “got it.” If you already know some CSS, I
strongly urge you not to skip the early chapters, because I try to steer you away from overreliance on
CSS classes and other bad habits.

Although I show you a lot of cool tricks on the way, throughout this book I concentrate on teaching you
how CSS works. Cool tricks are fine, but if you don’t understand why something works a particular way,
you’ll find it difficult to adapt the CSS to achieve the particular effect that you want. As far as possible,
I steer away from hacks. The primary emphasis is always on how CSS should work in a standards-
compliant browser. But until Internet Explorer 6 and 7 finally disappear, you need to know how to deal
with the problems they cause. So, I include workarounds for all the major problems with those
browsers.

Using the files for this book
The files for all the exercises and examples in this book can be downloaded from the friends of ED
website at http://friendsofed.com/download.html?isbn=9781430225430. The files are organized into a
separate folder for each chapter, and all the internal links are document-relative. To ensure that the
internal links continue to work, I suggest that you create a new folder called workfiles at the same
level as the individual chapter folders, as shown in the following screenshot:

Copy each file as you need it into the workfiles folder. You should also create a css subfolder inside
workfiles, and build or copy the style sheets there. This will maintain the correct relationship between
the files and the images in all the pages.

1

 Chapter 1
What Is CSS, and Why Should
I Learn It?
In the beginning, the Web was simple. Figure 1-1 shows what the first-ever
public web page looked like. As you can see, it consisted of plain, unadorned
text. Headings were in large, bold type; links were blue and underlined—and
that was it.

Figure 1-1. The first-ever web page contained just text and links.

www.allitebooks.com

http://www.allitebooks.org

 Getting StartED with CSS

 2

LinkED
The original, which was created toward the end of 1990, no longer exists,
but you can see a copy at www.w3.org/History/19921103-hypertext/
hypertext/WWW/TheProject.html.

The lack of images and any attempt at styling the page seem odd to us now,
but the Web’s origins lie in the scientific community, not with artists or graphic
designers. The inventor of the World Wide Web (WWW), Tim Berners-Lee, was
working at the European Organization for Nuclear Research (CERN) in
Switzerland and was frustrated by the need to log onto different computers to
get information. So he devised a way of sharing information among computers.
Putting aside the technical details of how information is transferred from one
computer to another, the principle behind the Web is very simple. Documents
are marked up to indicate what’s a heading, paragraph, list, and so on; and
links (or hyperlinks, to give them their correct name) tell the web browser
where to find related documents. The tags used to mark up the text evolved
into what we now know as HyperText Markup Language (HTML).

It didn’t take long before people other than scientists realized the potential of
the Web and began to demand the ability to include images. Once images
began to brighten up web pages, designers wanted not only a way to make text
look more interesting but also to lay out the contents of a page in more
attractive ways than just headings and paragraphs. In addition to new tags
being added to HTML, designers began to use their imagination to invent new
uses for existing tags. Most notably, the <table> tag, which was intended to
display scientific data in tabular form, was adapted to provide a grid structure
for page layout.

The rapid growth of the Web was exciting, but it was also chaotic. HTML was being
stretched beyond its limits. Tags such as <h4> were no longer being used for low-
level subheadings, but to display small, bold text. The <blockquote> tag, often
nested several levels deep, became a way to indent objects, rather than to
highlight a quotation from another source. Document structure was thrown to the
wind, making it difficult and expensive to maintain web pages or adapt them for
other uses, such as printed materials.

The answer was to restore HTML to its original purpose—marking up the
structure of the document—and create a new markup language devoted to
styling the look of a web page. That new markup language was called
Cascading Style Sheets (CSS), and that’s what this book is about.

3

Chapter 1: What is CSS, and Why Should I Learn It?

ExplainED
CSS stands for Cascading Style Sheets, but most web designers say “CSS is
. . .” rather than “CSS are. . .” This is because they’re referring to CSS as
a technology and not to individual style sheets.

In this chapter, you’ll learn about the following:

� The advantages of CSS and why now is a good time to start learning

� How to write style rules and apply them to your web pages

� How to avoid common beginner mistakes

� Choosing the tools to help you work with CSS

A short history of CSS
Many designers think of CSS as the “new” way to style web pages, so it comes
as quite a surprise to discover that CSS has been with us for years. The original
specification (see Figure 1-2) was published by the World Wide Web Consortium
(W3C) at the end of 1996.

Figure 1-2. The original CSS specification used a very basic set of rules to style the
page.

 Getting StartED with CSS

 4

ExplainED
The W3C (www.w3.org) is the body responsible for drawing up agreed
standards for the Web. Its members include all the big software and
technology companies, as well as government and research institutions
from over 40 countries. This often leads to slow decisions. Strictly
speaking, W3C standards are only recommendations. That’s why they’re
not always fully supported by all browsers. Equally important, the
recommendations sometimes lag behind the pace of innovation on the
Web. For example, browsers began supporting CSS opacity long before its
incorporation into a W3C standard.

Why CSS has taken so long to be embraced by
designers
According to the W3C, the CSS specification was drawn up in response to
“pressure from authors for richer visual control.” The demand for better
control of web pages was certainly there, but browsers in the late 1990s just
weren’t up to the job. They implemented CSS very poorly or not at all. As a
result, only the very brave or foolhardy adopted CSS in the early stages.
Nevertheless, the W3C continued work on the specification and brought out a
new version, CSS2, in 1998. This retained all the features of CSS1 and added
some new ones.

Instead of designers leaping with joy, those brave enough to embrace CSS
ended up banging their heads on their keyboards in frustration. The
specification was a statement of what the W3C thought browsers ought to do.
The reality was completely different. The now-defunct Netscape Navigator 4
(usually referred to simply as Netscape 4) was the most popular browser at the
time, with an estimated 80 percent market share in 1997. It supported a lot of
CSS, but not very well. Its rival, Microsoft Internet Explorer (IE), also in version
4, was even worse. However, Microsoft put a huge effort into improving its
browser, and by the time IE6 was released in 2001, it supported most of CSS—
although it was far from perfect.

Microsoft’s battle with Netscape completely reversed the browser scene, with
IE taking about 90 percent of the market share by 2001–2002. With Netscape in
terminal decline, adventurous designers began to use CSS in earnest, but they
faced several problems:

5

Chapter 1: What is CSS, and Why Should I Learn It?

� Netscape’s original dominance of the browser market left a significant
user base resistant to change, particularly in schools and public
libraries in the United States. This meant finding ways to style web
pages that could still be rendered in Netscape 4 without causing it to
crash.

� CSS in IE6 was usable, but it had many bugs and didn’t support every
feature.

� Although IE was the dominant browser, new ones, such as Firefox,
Safari, and Opera, came on the scene aiming at full standards
compliance and with better support for CSS.

Even when designers felt they could reasonably stop supporting Netscape 4,
they faced a new dilemma with the emergence of the standards-compliant
browsers. They could either ignore the standards and design for IE6 or create
CSS that worked well in the new browsers and find ways to compensate for the
flaws in IE6.

For a long time, instead of fixing the CSS bugs in IE6, Microsoft issued only
security updates. However, a combination of security scares and demands for
better CSS support eventually resulted in Firefox making considerable inroads
into its market share. Firefox is managed by the Mozilla Corporation, an
organization that traces its origins to Netscape but is now controlled by the
nonprofit Mozilla Foundation. For legal reasons, Firefox underwent several
name changes, but within two years of its original release in February 2004, it
had taken an estimated 10 percent of the browser market share. Microsoft’s
response emerged in the form of IE7 in 2006. It still wasn’t perfect, but it was
followed in March 2009 by IE8, which finally supports the whole of CSS2.1.
Firefox, in the meantime, has continued its rise and currently represents nearly
one in four of all browsers in use.

ExplainED
The W3C doesn’t formally adopt a CSS specification until all parts of it are
implemented by two browsers or user agents, such as screen readers for
the visually impaired. Because no two browsers ever managed to
implement the full CSS2 specification, the W3C dropped some features,
added some new ones, and issued a revised specification called CSS2.1 in
2002. More than a decade after the original publication of the CSS2
specification, CSS2.1 still hadn’t received formal approval. No wonder web
designers have been frustrated with the glacial progress of CSS!

 Getting StartED with CSS

 6

The time for CSS has finally come
After such a dismal history, you might be wondering whether it’s worth the effort
of learning CSS. The answer is a resounding yes. Within seven months of its
release, IE8 represented 18 percent of browsers in use, reducing the combined
market share of IE6 and IE7 to roughly 40 percent. The bad news for web
designers is that, in the early months at least, IE8’s rise was due to people
switching from IE7; little dent was made in the market share for IE6, which has
annoying CSS bugs. It’s fair to say it will take several years before IE6 and IE7
disappear completely from the scene, but the arrival of IE8 and other modern
browsers, such as Firefox, Safari, and Opera, means you can now use CSS with far
greater confidence than ever before. As long as the website remains usable in
older browsers, you don’t need to worry if there are some minor differences in
display.

AdvancED
Before deploying a website on the Internet, check what it looks like in all
the main browsers and on different operating systems. If you don’t have
access to some browsers or operating systems, ask in an online forum
for others to check for you, or subscribe to a browser testing service, such
as Browsercam (www.browsercam.com). If you have Dreamweaver CS4 or
later, you can use Adobe BrowserLab (http://browserlab.adobe.com/).
On Windows, you can also use Expression Web SuperPreview
(http://expression.microsoft.com/en-us/dd565874.aspx) to compare how
your pages look in IE6 and IE7 or IE8. The version of Expression Web
SuperPreview released just as this book was about to go to press also
included support for Firefox 3.5, so more browsers might be added in
future.

 Some designers fret if their site doesn’t look exactly the same in each
browser. Don’t worry about the difference of an odd pixel or two. Most
visitors only see your site in one browser. What really matters is that it
works and looks acceptable to each visitor.

7

Chapter 1: What is CSS, and Why Should I Learn It?

What are the advantages of CSS?
CSS has three huge advantages, namely:

� Less-cluttered HTML code, making it easier to read and maintain

� The ability to change the look of a whole site by changing a single file

� Greater control over the way page elements look

Let’s take a look at each of these in detail.

Write simpler markup
Figure 1-3 shows a simple web page with a heading, three paragraphs, and a
link. The download files for this chapter contain two versions of the same page:
one styled the old way with presentational HTML (font_tags.html), and the
other styled using CSS (css.html). Both look exactly the same in a browser.

Figure 1-3. Both CSS and old-style presentational tags remain hidden from view in
the browser.

The difference between the two versions becomes obvious only when you
examine the underlying HTML. This is what the page that uses presentational
tags (highlighted in bold) looks like:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=utf-8" />
<title>Tag soup</title>
</head>

 Getting StartED with CSS

 8

<body bgcolor="#FFFFFF" text="#000000" link="#006600"
vlink="#009966" alink="#006600">
<h1><font color="#990000" size="6" face="Arial, Helvetica,
sans-serif">Styling Web Pages</h1>
<blockquote>
 <p>In the
bad, old days, pages used to be styled using font and other
presentational tags.</p>
 <p>If you
wanted to change the look of the page, you needed to make the
changes in many places.</p>
 <p>This
link is bold and green.
</p>
</blockquote>
</body>
</html>

The HTML for the version of the page that uses CSS looks like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=utf-8" />
<title>Styling with CSS</title>
<link href="css/simple.css" rel="stylesheet" type="text/css" />
</head>

<body>
<h1>Styling Web Pages</h1>
<p>In the bad, old days, pages used to be styled using font and
other presentational tags.</p>
<p>If you wanted to change the look of the page, you needed to
make the changes in many places.</p>
<p>This link is bold and green.</p>
</body>
</html>

9

Chapter 1: What is CSS, and Why Should I Learn It?

ExplainED
The examples in this book use Extensible HyperText Markup Language
(XHTML) 1.0, which is identical to HTML 4.01, except that it follows
slightly stricter rules. XHTML was originally intended to replace HTML, but
the W3C began work on HTML5 in 2007. Then in July 2009, it announced
that work would stop on XHTML 2. This threw the web development
community into confusion over which standard they should use, with some
people mistakenly believing that XHTML 1.0 was also being abandoned.
XHTML 1.0 remains an approved standard, and is still preferred by many
developers because of its stricter rules.

At the time of this writing, HTML5 is still only a draft, but the W3C has
stated that it will be compatible with both HTML 4.01 and XHTML 1.0. So,
it doesn’t matter which version you choose. I use “HTML” to refer to all
three flavors. The CSS taught in this book will work with all of them.

The markup is much simpler and easier to read. Even if you use an HTML editor
that generates the markup for you, there are times when it’s necessary to
examine the underlying code. The lightweight code used by a well-designed
CSS site makes this a pleasure, rather than a perilous journey hacking through
masses of tangled code. There’s also less of it, so the page loads more quickly
and uses less bandwidth.

AdvancED
Just because most people use broadband these days, it doesn’t mean that
page size is no longer important. Masses of code not only take longer to
display in a browser, but the bigger your pages, the more bandwidth you
consume. On a popular site, this can cost a lot of money in extra
bandwidth charges.

“So, where’s the CSS?” you might be asking. It’s not in the web page, but in a
separate file (called a style sheet), simple.css. The <link> tag highlighted in
bold in the <head> of the page tells the browser where to find the styles. The
code inside simple.css looks like this:

body {
 font-family: Arial, Helvetica, sans-serif;
 color: #000;

 Getting StartED with CSS

 10

 background-color: #FFF;
}
h1 { color: #900; }
p { margin-left: 40px; }
a:link {
 color: #060;
 font-weight: bold;
}
a:visited { color: #096; }
a:hover, a:active { color: #060; }

Don’t worry about the meaning of the CSS code yet. You’ll learn about the
structure of style rules in “How do I write a style rule?” later in this chapter,
and you’ll be writing your own rules to format text in Chapter 2.

Although it might seem strange to put instructions on how your page should
look in a separate file, there’s a very good reason for doing so. You can attach
the same set of instructions to every page in your website. Unlike
presentational HTML markup, which needs to be applied individually to each
element, CSS gives you central control over the look of the whole site. What’s
more, changes to your style sheet are automatically applied to all pages that
are linked to it.

AdvancED
When styles are defined in an external style sheet, the browser stores
them in the cache on the visitor’s computer, so they need to be
downloaded only once regardless of how many pages are viewed in your
site. This speeds up the display of subsequent pages and reduces
bandwidth usage

Turn into a quick change artist
The best way to see the power of CSS in action is to visit
www.csszengarden.com. Every page in the site looks completely different (see
Figure 1-4), but if you look at the underlying HTML, you’ll see that it’s actually
exactly the same page. What changes the look of the page is the style sheet
attached to it.

11

Chapter 1: What is CSS, and Why Should I Learn It?

Figure 1-4. The CSS Zen Garden demonstrates the power of CSS to change the look
of a website.

The CSS Zen Garden was launched in 2003 by a Canadian web designer named
Dave Shea. It was a call to arms to web designers to show what could be done
with CSS. He asked designers to submit original visions in the form of style
sheets and images. There was one basic rule: no changes could be made to the
underlying HTML. In fact, if you look at the site with CSS turned off, every
single page looks like Figure 1-5—plain, unadorned text. There are no images in
the page itself; they’re all added as background images through CSS.

www.allitebooks.com

http://www.allitebooks.org

 Getting StartED with CSS

 12

Figure 1-5. Without a style sheet, the CSS Zen Garden is just plain text.

AdvancED
All modern browsers let you view web pages without CSS. In Firefox, select
View ➤ Page Style ➤ No Style. In IE8, select Page ➤ Style ➤ No Style. In
Opera, select View ➤ Style ➤ User Mode. Safari also lets you disable
styles, but first you need to enable the Develop menu by opening the
Preferences panel (from the Safari menu on a Mac, or the Edit menu on
Windows). Select the Advanced tab, and enable the Develop menu.
Thereafter, you can turn off CSS in Safari by selecting Develop ➤ Disable
Styles.

The CSS Zen Garden shows how one page can be restyled in many different
ways. This is powerful stuff. It means that you can make a site look completely
different just by changing the style rules. But just imagine if, instead of one
page, you have a site with dozens or hundreds of pages. If the same style sheet
is attached to each page, you can change the look of the whole site just by
making changes to the style sheet. To take a very simple example, the
simple.css style sheet in the previous section contains this style rule:

13

Chapter 1: What is CSS, and Why Should I Learn It?

body {
 font-family: Arial, Helvetica, sans-serif;
 color: #000;
 background-color: #FFF;
}

This tells the browser to use Arial, Helvetica, or a sans-serif font, and to
display the text as black on a white background. In simple2.css, I have
changed it like this:

body {
 font-family: "Palatino Linotype", "Book Antiqua", Palatino, serif;
 color: #034B61;
 background-color: #EFECCA;
}

Changing just these three lines of code changes the entire look of the page.
You can see the result in css2.html and in Figure 1-6.

Figure 1-6. Using CSS makes it easier to make global changes to the way a website
looks.

Even in just one page, this involves much less work than it would with
tags and other presentational HTML markup. But the real difference becomes
apparent when the change to the style sheet affects a whole site.

 Getting StartED with CSS

 14

Gain greater control over the look of page
elements
The other huge advantage of CSS is that it gives you a finer level of control
over the look of different elements on your page. If you add a border to an
image or table with HTML markup, you get the same border on all sides. With
CSS, you can apply a different border to each side of an element. As shown in
Figure 1-7, this lets you create embossed and indented buttons without the
need to use images (you can test the page yourself in borders.html in the
download files for this chapter).

Figure 1-7. With CSS, you can use different borders to create the illusion of
embossed or indented buttons.

The technique is very simple: you add a darker border to the right and bottom,
and a lighter border to the other two edges to create an embossed effect.
Reversing the colors creates an indented effect.

Incidentally, the two buttons in borders.html are not in a table. Their positions
are controlled by adjusting their margins and using a CSS property called float.
You’ll learn about margins in Chapter 3, and Chapter 4 introduces you to the
concept of floating page elements to the left or right of other objects or text.
When used in combination with each other, you can flow text around images in
a much cleaner way than using the vspace and hspace HTML attributes. Figure
1-8 shows the difference (the original files are image_hspace.html and
image_float.html in the download files for this chapter).

15

Chapter 1: What is CSS, and Why Should I Learn It?

Figure 1-8. HTML presentational markup (left) applies horizontal and vertical space
to both sides of an image, whereas CSS (right) gives you individual control over each
margin.

In the screenshot on the left of Figure 1-8, the image is positioned the
traditional way, using the align, hspace, and vspace attributes of the
tag. Used on its own, the align attribute results in each line of the text being
jammed right up to the image, so it’s necessary to use hspace to give it a bit of
breathing space. Adding the vspace attribute is optional, but for this
demonstration, I have added 25 pixels of both horizontal and vertical space.
The problem is that HTML doesn’t let you control which side the space is
applied to. As a result, you get 25 pixels of space all around, destroying the
clean lines of the layout.

With CSS, though, the ability to control margins independently on each side of
an element produces the much smarter result in the screenshot on the right of
Figure 1-8. I have applied the same 25 pixels of space to the right and bottom
of the image, and just three pixels to the top to bring it into line with the top
of the text. There’s no extra space on the left of the image, leaving it flush
with the following text.

 Getting StartED with CSS

 16

This flexibility extends to background images, which can be positioned with a
great degree of accuracy, often producing stunning results, such as the designs
in the CSS Zen Garden (see Figure 1-4).

So, how do I use CSS?
Like HTML, CSS is written as plain text. So, you don’t need anything more
sophisticated than a text editor, such as Notepad or TextEdit, to start writing
CSS. However, if you’re using an HTML editor to build your web pages, you’ll
almost certainly find that it provides you with code hints or other features to
help create your style rules. Adobe Dreamweaver (www.adobe.com/products/
dreamweaver/), the leading professional tool for building websites, has a lot of
CSS features, including a dialog box that builds style rules for you. It groups the
main CSS properties in logical categories to make them easier for beginners
to find (see Figure 1-9). If you prefer to work directly in the code, most
HTML editors, including Dreamweaver and Microsoft Expression Web
(www.microsoft.com/expression/products/overview.aspx?key=web), offer pop-
up code hints similar to those in shown in Figure 1-10. The granddaddy of script
editors on the Mac, BBEdit (www.barebones.com/products/bbedit/) uses both
code hints and dialog boxes (see Figure 1-11).

Figure 1-9. Dreamweaver helps build style sheets through a dialog box that lists the
main CSS properties.

17

Chapter 1: What is CSS, and Why Should I Learn It?

Figure 1-10. Microsoft Expression Web offers CSS code hints.

Figure 1-11. BBEdit uses a mixture of code hints and dialog boxes for CSS.

There are also dedicated CSS editors. Among the most popular are Style Master
for Windows and Mac (www.westciv.com/style_master/), Top Style Pro for
Windows only (www.newsgator.com/individuals/topstyle/default.aspx), and
CSSEdit for Mac (http://macrabbit.com/cssedit/).

 Getting StartED with CSS

 18

ExplainED
Don’t worry if I’ve missed out your favorite HTML or CSS editor. This book
is strictly software and operating system neutral. What you use to build
your style sheets is unimportant. The emphasis here is on teaching you
how CSS works.

Before getting down to the detail of how to write CSS, it’s important to
understand the principle of the cascade, which we’ll look at next.

Why are they called “cascading” style sheets?
The cascade in CSS refers to the way that rules are added together and applied
cumulatively. Think of the cascade in the literal sense of a waterfall or a river.
As a river flows from the mountains to the sea, it starts off as a tiny trickle,
but as more water is added through tributaries, it becomes bigger and more
powerful. Yet the water in that original trickle is still part of the whole.

CSS works in a similar way. You can create a style rule that trickles down
through the whole page. For example, it’s common to set the background and
text colors in a rule for the body of the page. But lower down, new rules can
be added that affect the font or size of the text without changing the color.
And just like a river can break into a delta as it reaches the sea, you can break
the CSS cascade into different strands, so that a sidebar looks different from
the main content or footer of the page.

This might sound mysterious at the moment, but all should become clear by the
end of this book. The important things to remember are these:

� Styles trickle down: A style rule applied to the <body> affects
everything inside the page unless something else overrides it.

� Styles are cumulative: Most property values are inherited, so you
need apply only new ones.

� Inherited styles can be overridden: When you want to treat an
element or section of the page differently, you can create more
detailed style rules and apply them selectively.

In most cases, the order of your style rules doesn’t matter. However, the
cascade plays an important role when there’s a conflict between rules. As a
basic principle, style rules that appear lower down in a style sheet or <style>
block override any previous rules in the case of a direct conflict. You’ll see an

19

Chapter 1: What is CSS, and Why Should I Learn It?

example of this principle in action in “Don’t forget the cascade” later in this
chapter. But first, I need to show you how to write CSS.

AdvancED
I’m deliberately simplifying things to avoid overburdening you with too
much detail at this stage. Chapter 7 explains the rules that determine
which style wins in the case of a conflict. For the time being, just
remember that a rule that appears after another one can override it.

How do I write a style rule?
Creating a style rule is very simple. Figure 1-12 shows the different parts that
make up a style rule, using an example from simple.css earlier in the chapter.

Figure 1-12. The anatomy of a style rule

Let’s take a look at each part in turn:

� Selector: This tells the browser where you want to apply the rule.
Figure 1-12 uses the simplest type of selector, a type selector, which
redefines the default style of an HTML tag. You create a type selector
by using the name of an HTML tag without the surrounding angle
brackets. This example redefines the style of all <p> tags—in other
words, paragraphs. Because they redefine the style of HTML tags,
you’ll also see type selectors referred to as “tag selectors.” You’ll
learn about other types of selectors as you progress through this book.

� Declaration block: This begins with a left curly brace and ends with a
right curly brace. You put your style declarations between these
braces. Each declaration consists of a property followed by a colon (:)
and value, and ends with a semicolon (;).

 Getting StartED with CSS

 20

� Property: This is one of the properties defined in the CSS
specification. There are nearly 100 visual properties in the current
version, CSS2.1. Most have intuitive names. The property in Figure 1-
12 affects the left margin of the element being styled. Property names
are not case-sensitive, but they are normally written entirely in
lowercase. The CSS specification also defines aural properties for use
with screen readers for the disabled, but these are beyond the scope
of this book.

� Value: This is the value you want to apply to the property. Some
properties have a fixed list of values that you can choose from. Others
let you specify the value yourself, although the value must still adhere
to some simple rules. The example in Figure 1-12 sets the value of the
left margin to 40 pixels.

There’s a full list of all CSS2.1 visual properties and their permitted values in
this book’s appendix. Each chapter also has handy tables to remind you of the
properties used to style different parts of a web page.

Note that the property is separated from the value by a colon (:), and the
value is followed by a semicolon (;). Strictly speaking, you can leave out the
semicolon after the last declaration in a block or if the block contains only one
property/value pair.

AdvancED
Get into the habit of always using a semicolon after the value, even if
there’s only one declaration inside the declaration block. You might forget
to insert it when later adding extra declarations to the same block. A
missing semicolon in the middle of a declaration block is a common cause
of CSS failing to work as expected. Remember: colon between property
and value, semicolon after the value.

The declaration block in Figure 1-12 contains only one property/value pair, but
you can define any number of properties in the same declaration block.

21

Chapter 1: What is CSS, and Why Should I Learn It?

AdvancED
Technically speaking, a declaration block with no style declarations
between the curly braces is perfectly valid. An empty declaration block
does nothing, but you might want to put one in your style sheet to remind
you to fix the styles later. You might also want to remove existing styles
temporarily when troubleshooting a problem.

Formatting CSS for ease of maintenance
Browsers don’t care how you format your style rules. As long as you separate
each property from its value by a colon, put a semicolon after the value, and
surround declaration blocks with curly braces, the browser ignores any
whitespace in your style sheet. However, a consistent layout makes your CSS
easier to maintain.

The example in Figure 1-12 uses whitespace to make the rule easier to read,
but the following is just as valid:

p{margin-left:40px;}

Spreading everything out even more like this is also acceptable:

p {
 margin-left : 40px ;
}

However, the following will not work:

p {
 margin - left : 40 px;
}

Although CSS ignores whitespace in style declarations, you cannot put any
spaces in property names. Nor can there be any whitespace in the value
between a number and the unit of measurement. Accidentally putting a space
between 40 and px renders the rule invalid and prevents it from working.

In simple.css earlier in the chapter, I put rules with a single declaration all on
the same line but spaced out rules with multiple declarations like this:

body {
 font-family: Arial, Helvetica, sans-serif;
 color: #000;
 background-color: #FFF;
}

 Getting StartED with CSS

 22

h1 { color: #900; }
p { margin-left: 40px; }

Putting rules with a single declaration all on the same line saves space but is
probably not so easy to read. It also means that you need to reformat
everything if you decide to add another declaration inside a single-line
declaration block. Spacing out everything like this is probably easier on the
eye, and easier to maintain:

body {
 font-family: Arial, Helvetica, sans-serif;
 color: #000;
 background-color: #FFF;
}
h1 {
 color: #900;
}
p {
 margin-left: 40px;
}

Adding comments to your CSS
Style sheets can run to hundreds of lines, so it’s often a good idea to add
comments to your style sheets to remind you what a particular rule or set of
rules is for. Anything between /* and */ is treated as a comment in CSS and is
ignored by the browser. Comments can be spread over more than one line. You
could add comments to the previous example like this:

/* Sets the font, text color, and background color for the page.
 These values will be applied to all elements in the page
 unless overridden by subsequent style rules. */
body {
 font-family: Arial, Helvetica, sans-serif;
 color: #000;
 background-color: #FFF;
}
/* Overrides the body rule and colors level 1 headings red */
h1 {
 color: #900;
}
/* Puts a 40-pixel left margin on all paragraphs */
p {
 margin-left: 40px;
}

Adding comments to every rule like this is overkill. Too many comments can be
just as just as bad as no comments at all.

23

Chapter 1: What is CSS, and Why Should I Learn It?

Comment tags can also be used to disable part of your CSS temporarily. This is
a useful technique when experimenting with new ideas or troubleshooting
problems. Just put the opening /* and closing */ comment tags around the
section that you want to disable. You can disable a single declaration or a
whole section at a time. For example, this disables the color and background-
color properties in the following rule:

body {
 font-family: Arial, Helvetica, sans-serif;
 /* color: #000;
 background-color: #FFF; */
}

Just remove the comment tags to restore the rules.

AdvancED
Comments cannot be nested. As soon as the browser encounters the first
/ closing tag, it treats everything else as CSS until it finds another /
opening tag. When disabling rules temporarily, make sure you remove the
comment tags from any rules that have already been disabled within the
section you’re blocking off. The same applies to any comments within the
section. Alternatively, add a closing comment tag before each nested
opening tag.

Where do I create my CSS?
Style rules can be defined in three places, namely:

� External style sheets: This is the most common and effective way of
using CSS. The styles in external style sheets affect all pages to which
they’re linked. You can link more than one style sheet to a page.

� A <style> block: This must go in the <head> of the web page. The
style rules are applied only to that page. This can be useful if you
want to apply a different set of rules to one page, but as soon as you
want to apply the rules to more than one page, they should be moved
to an external style sheet.

 Getting StartED with CSS

 24

� A style attribute: This goes in the opening tag of an HTML element,
so it applies to that element alone. This is the least efficient way to
apply CSS and should be avoided. As with all rules, there is an
exception: some email programs, such as Outlook 2007, don’t
understand style rules unless they’re applied this way. At the time of
this writing, Microsoft says it has no plans to change the way it
handles CSS in Outlook 2010.

LinkED
See http://msdn.microsoft.com/en-us/library/aa338201.aspx for details
of how Outlook 2007 handles HTML and CSS.

There’s also a fourth way to add CSS to your page, although it’s not part of any
official standard: using an Internet Explorer conditional comment. I’ll explain
the purpose of conditional comments and how they work after describing the
standard ways of defining styles.

Using external style sheets
Create your style rules in a separate file, and save the file with .css as the file
name extension. An external style sheet can be anywhere within your website,
but the normal practice is to put all style sheets in a dedicated folder called
styles or css.

It’s important to note that an external style sheet must not contain anything
other than CSS style rules or CSS comments. You cannot mix HTML, JavaScript,
or anything else in a style sheet. If you do, your styles won’t work.

There are two ways to attach an external style sheet to a page: using a <link>
tag or a CSS @import rule.

Attaching a style sheet with a <link> tag This is the most common way to
attach an external style sheet. The <link> tag must go inside the <head> of the
web page. This is how simple.css is linked to css.html in the download files
for this chapter:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=utf-8" />
<title>Styling with CSS</title>

25

Chapter 1: What is CSS, and Why Should I Learn It?

<link href="css/simple.css" rel="stylesheet" type="text/css" />
</head>

If you’re using an HTML editor, such as Dreamweaver or Expression Web, the
<link> tag is created automatically when you select the option to attach a
style sheet. As you can see in the preceding example, it contains three
attributes: href, rel, and type. All of them must be included. However, even if
you’re hand-coding, the only one with a value you need to change is href,
which tells the browser where to find the style sheet.

AdvancED
The rel attribute accepts two values: stylesheet or alternate stylesheet
(in both cases, stylesheet is written as one word). In practice, stylesheet
is the only one you’re ever likely to use. It instructs the browser to load
the files in the external style sheet and apply them to the page.

Using rel="alternate stylesheet" prevents the browser from loading the
styles automatically. However, if you also add a title attribute to the
<link> tag, IE8 and most other modern browsers let users choose which set
of styles to load. In theory, this sounds a good idea but is of very little
practical value because there’s no obvious indication of a choice of styles,
except by selecting the appropriate browser menu (Page ➤ Style in IE8,
and View ➤ Page Style in Firefox). More important, the browser doesn’t
remember your choice. You can test this in css_alternate.html in the
download files. Change the style in your browser to Sandy, and then click
the link in the final paragraph. This loads css_alternate2.html, which also
has a choice of style sheets. When the new page loads, the original styles
are applied, not the ones you have just chosen.

Using an @import rule This technique was frequently used in the past
because it was not supported by Netscape 4, so it provided a convenient way to
hide styles that caused the browser to crash. Now that Netscape 4 has been
consigned to the dustbin of history, there’s no real advantage in using @import
to link a style sheet directly to a web page. However, I have included it here so
you know what it’s for if you come across it in an existing site.

The following code shows how simple.css is linked to css_import.html in the
download files using @import:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

 Getting StartED with CSS

 26

<head>
<meta http-equiv="Content-Type" content="text/html;
charset=utf-8" />
<title>Styling with CSS</title>
<style type="text/css">
@import url("css/simple.css");
</style>
</head>

As you can see, the @import rule goes inside an HTML <style> block in the
<head> of the page. The location of the style sheet is specified by putting it
between the parentheses of url(). The quotes around the path to the style
sheet are optional.

Again, if you’re using an HTML editor, it should create all this code for you
automatically.

You can also use @import in an external style sheet to import the styles from
another style sheet. This can be useful when you organize your rules in several
different style sheets. Instead of linking each style sheet separately to your
web pages, you can link just one, which then imports the rules from the other
style sheets.

If you do this, the @import rule must come before any other style rules in the
external style sheet. Also, because it’s in an external style sheet, you don’t
wrap it in an HTML <style> block. The following code shows how you might
import rules into one external style sheet from another:

@import url("another.css");
/* Other style rules */
body {
 font-family: Arial, Helvetica, sans-serif;
 color: #000;
 background-color: #FFF;
}

AdvancED
Using @import is the only way to import style rules from one style sheet to
another. The <link> tag can be used only inside the <head> of an HTML
page. It cannot be used inside another style sheet.

27

Chapter 1: What is CSS, and Why Should I Learn It?

Using a <style> block
Using an HTML <style> block in the <head> of a page limits the style rules to
the current page. Because they’re embedded in the page, these are known as
embedded styles. You should normally use this technique only for styles that
you want to limit to a single page. The following code shows how I embedded
the styles in image_float.html (see Figure 1-8):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html;
charset=utf-8" />
<title>Image with CSS float</title>
<style type="text/css">
p {
 font-family:"Trebuchet MS", Arial, Helvetica, sans-serif;
 font-size: 85%;
 line-height: 1.3;
}
.floatleft {
 float: left;
 margin-right: 20px;
 margin-bottom: 20px;
 margin-top: 3px;
}
</style>
</head>

As you can see, the style rules are written in exactly the same way as in an
external style sheet, but they are wrapped in a pair of HTML <style> tags. The
opening tag must contain type="text/css".

AdvancED
The @import rule is also wrapped in a <style> block when used to attach a
style sheet to a page. If you embed any other styles in the <head> of the
page, they must come after the @import rule. Otherwise, the external
style sheet will be ignored. Avoid using @import unless really necessary.

 Getting StartED with CSS

 28

Applying a style directly to an HTML element
The final way to apply CSS is by adding a style attribute to the opening tag of
an HTML element. This is known as creating an inline style and should be
avoided unless you need to create styles for an HTML newsletter.

Inline styles use the same properties and values as CSS rules that you put in an
external style sheet or embedded in the <head> of a page. The only differences
are that you don’t need a selector (because the HTML tag itself acts as the
selector), and the curly braces are replaced by quotes. For example, you might
create the following style rule for <h1> tags:

h1 {
 font-family: Arial, Helvetica, sans-serif;
 color: #900;
}

To create an inline style, add the style properties and values to the style
attribute of the opening tag like this:

<h1 style="font-family: Arial, Helvetica, sans-serif; color: #900;">
This Heading Uses an Inline Style</h1>

I have inserted spaces in the value of the style attribute for ease of reading,
but the following is just as valid:

<h1 style="font-family:Arial,Helvetica,sans-serif;color:#900;">
This Heading Uses an Inline Style</h1>

Don’t forget the cascade
You can attach as many external style sheets to a page as you like. On a
complex site, using multiple style sheets can be a good idea, allowing you to
organize your style rules into logical categories, such as typography, layout,
color, and so on. You can also use a combination of external styles and
embedded ones. However, it’s important to remember that CSS always applies
style rules according to the principles of the cascade. Even if rules are in
separate locations, their values are added together. So, if you have separate
style sheets for fonts and colors, the rules for <h1> tags will be added together;
and if there’s a conflict between rules, the value that comes lowest in the
cascade normally wins. This means the order in which you attach or embed
your styles affects which rule takes precedence in case of a conflict.

29

Chapter 1: What is CSS, and Why Should I Learn It?

AdvancED
If you decide to use @import, remember that the rules are included in the
cascade at the point they are imported. Since the @import rule must come
before any other rules in an external style sheet, the imported rules are
higher in the cascade. So, if you import styles2.css into styles1.css, the
rules in styles2.css are applied first. The rules in styles1.css come
further down the cascade and override the earlier rules in case of a
conflict.

Let’s use a simple example to make that clear. The file css_conflict1.html
attaches simple.css with a <link> tag and then defines an embedded style for
the color of <h1> tags like this:

<link href="css/simple.css" rel="stylesheet" type="text/css" />
<style type="text/css">
h1 { color: #006; }
</style>

Because the embedded style comes lower down in the cascade, the value of
color (#006) overrides the value in simple.css (#900). So, the heading in the
page is a deep blue instead of dark red. However, let’s move the <link> below
the <style> block in css_conflict2.html like this:

<style type="text/css">
h1 { color: #006; }
</style>
<link href="css/simple.css" rel="stylesheet" type="text/css" />

The result is that the heading is now dark red. The order (or cascade) affects
the way the styles are applied.

Inline styles are in the opening HTML tag of the element they apply to. So,
they’re always the lowest in the cascade and always take precedence.

AdvancED
Although the position of a style rule in the cascade is very important, the
type of selector used also plays a big role in determining which rule takes
precedence. You’ll learn more about this in Chapters 4 and 7.

 Getting StartED with CSS

 30

Using Internet Explorer conditional comments
Versions of Microsoft Internet Explorer prior to IE8 have serious CSS bugs that
can destroy your page layout. Of the versions still in common use, IE6 is the
worst offender; IE7 is considerably better but does have some problems. Over
the years, web designers have resorted to a number of ingenious techniques—or
hacks—to hide from Internet Explorer style rules that it doesn’t understand.
The problem with hacks is that they’re nonstandard, difficult to remember,
and could break in future browsers. Fortunately, there’s a simple solution:
using Internet Explorer conditional comments.

ExplainED
If you’re new to CSS, feel free to skip this section and come back later
when you encounter a bug in Internet Explorer. It’s best to get your pages
working first in a standards-compliant browser, such as IE8, Firefox 3.5, or
Safari 4, before worrying about bugs in older versions of Internet Explorer.

What’s great about conditional comments is that they’re wrapped in HTML
comment tags, so—although they use proprietary code—the markup in your web
page remains valid. What’s more, everything inside a conditional comment is
ignored by other browsers. Only Internet Explorer sees and acts on its contents.
The slight drawback with conditional comments is that you cannot put them
inside an external style sheet. When using them with CSS, you must put them in
the <head> of each web page.

The basic structure of a conditional comment looks like this:

<!--[if condition]>
Content that will be seen only by Internet Explorer
<![endif]-->

The condition that goes in the opening pair of square brackets determines
which version(s) of Internet Explorer use the code inside the conditional
comment. Table 1-1 lists the most important values used in building conditions.

31

Chapter 1: What is CSS, and Why Should I Learn It?

Table 1-1. Values used in building IE conditional comments

Value Meaning

lt Less than

lte Less than or equal to

gt Greater than

gte Greater than or equal to

IE 6 Internet Explorer 6 (note the space before the number)

IE 7 Internet Explorer 7 (note the space before the number)

If your styles trigger a bug in IE6 or IE7, you can use a conditional comment to
add an extra style to compensate for the bug and hide it from all other
browsers, including IE8. For example, in Chapter 5, I use the following
conditional comment to add an extra style rule that only IE6 or earlier versions
will see (don’t worry about the meaning of the rule at the moment—it’s
explained in Chapter 5):

<!--[if lte IE 6]>
<style type="text/css">
.highlight1, .highlight2 {
 zoom: 1;
}
</style>
<![endif]-->

Notice that the conditional comment contains a complete <style> block.
Because it uses HTML comment tags, you cannot put it inside an embedded
style block.

If you have several style rules that apply only to earlier versions of Internet
Explorer, you can put them in an external style sheet and use a conditional
comment to link the style sheet to your page like this:

<link href="css/normal_styles.css" rel="stylesheet" type="text/css" />
<!--[if lte IE 7]>
<link href="css/ie_styles.css" rel="stylesheet"
type="text/css" />
<![endif]-->

www.allitebooks.com

http://www.allitebooks.org

 Getting StartED with CSS

 32

All browsers see the styles in normal_styles.css, but only IE7 and earlier take
any notice of ie_styles.css. Most of the time, the way you overcome a bug in
IE6 or IE7 is by overriding the style seen by other browsers. Therefore, it’s
important to put the styles in the conditional comment after the normal styles.

Limiting which devices use your styles
By default, your style rules are used by all types of media that are capable of
displaying them. However, CSS lets you create separate sets of rules and target
them at different types of devices by specifying one or more media types.
Specifying media types is completely optional, so feel free to skip this section
and come back to it later when you’re ready.

These days, people don’t use just a browser in a desktop or laptop computer to
access the Web. They use all sorts of devices: mobile phones, TV, screen
readers for the visually impaired, and so on. If your design uses features that
aren’t supported by a particular type of device, you can restrict which devices
use external style sheets or embedded styles by specifying one or more of the
media types listed in Table 1-2. One of the most useful is print, which lets you
specify separate style rules for how you want your web pages to be printed out,
as described in Chapter 12.

Table 1-2. Media types supported by CSS

Type Use

all The default value if no media type is specified. Applies the

styles to all devices.

braille Specifies that the styles should be used for Braille tactile

feedback devices.

embossed Applies the styles to paged Braille printers.

handheld For handheld devices, such as mobile phones.

print Applies the styles to the pages when they are printed.

projection Indicates that the styles are for use with a projector.

screen Specifies that the styles should be used in a visual browser

on a desktop or laptop computer.

33

Chapter 1: What is CSS, and Why Should I Learn It?

Type Use

speech Intended for speech synthesizers for the visually impaired.

tty For teletypes, terminals, or portable devices with limited

display capabilities. Do not use pixels as a measurement

with this media type.

tv Intended for televisions and similar devices.

The most common way to specify the media type(s) you want to target is by
adding the media attribute to the <link> or <style> tag. This accepts a comma-
separated list of media types from Table 1-2 like this:

<link href="css/simple.css" rel="stylesheet" type="text/css"
media="screen, handheld, tv" />

For embedded styles, use this syntax:

<style type="text/css" media="screen, handheld, tv">
/* Embedded styles */
</style>

When using @import, the list of media types follows the url() property like
this:

@import url("css/simple.css") screen, handheld, tv;

Note that when used with @import, the media types are not enclosed in quotes.

The important thing to remember is that specifying media types like this
prevents the styles from being used by other media types. So, the preceding
examples limit the styles to screen, handheld, and tv. Unless you specify other
rules, no styles will be applied to other media types.

Using the media attribute affects all styles in the external style sheet or
<style> block. However, you can also use an @media rule to control which rules
are used by different media types within a style sheet or <style> block. To use
an @media rule, add the media type(s) after @media, and wrap the targeted
rules in a pair of curly braces. The following code shows separate rules for
screen and print media types (you can test the code in css_atmedia.html and
css_atmedia.css in the download files):

body {
 color: #000;
 background-color: #FFF;
}

 Getting StartED with CSS

 34

@media screen {
 body { font-family: Arial, Helvetica, sans-serif; }
 h1 { color: #900; }
 p { margin-left: 40px; }
 a:link {
 color: #060;
 font-weight: bold;
 }
 a:visited { color: #096; }
 a:hover, a:active { color: #060; }
}
@media print {
 body { font-family: Georgia, "Times New Roman", Times, serif; }
 p { margin-left: 0; }
 a { color: #000; }
}

When viewed onscreen, css_atmedia.html looks exactly the same as Figure 1-3,
but in Print Preview in Firefox, it looks like Figure 1-13.

Figure 1-13. CSS lets you define different styles for printing.

The @media rules for screen and print assign different fonts, and change the
styles applied to the paragraph margins and links.

All browsers since IE5.5 support @media rules. However, mixing rules for
different media types in the same style sheet can be confusing and difficult to
maintain. Creating separate style sheets using the media attribute is usually the
preferable option.

35

Chapter 1: What is CSS, and Why Should I Learn It?

AdvancED
Support for the various media types is patchy. The most reliable—and
useful—are screen and print. Create one style sheet to style the way your
pages look in a browser. Create a separate style sheet to control the same
pages when printed out.

Learning to write CSS well
CSS is amazingly simple, but it can also be phenomenally complex—at times
infuriatingly so. The simplicity of CSS lies in the limited number of properties
you need to remember. The complexity lies in the fact that you can combine
the properties in an infinite number of ways. This makes CSS extremely
powerful, but it also means there can be a long learning curve before you begin
to feel comfortable.

My advice is not to rush. The way I learned CSS was to add or change one
property at a time and view the results in a browser. It was a slow, tedious
process, but it helped me understand the interaction of the different
properties. Once you appreciate the trickle-down, cumulative effect of the
cascade, you’ll be amazed at the power of CSS. The time spent will be repaid
many times over in increased efficiency and easier maintenance of your
websites.

Avoiding common mistakes
CSS beginners are prone to two common diseases known as classitis and divitis.
You won’t find either of them in a medical dictionary, but they are widespread
among web developers. Once caught, they are notoriously difficult to cure. The
style rule in Figure 1-12 uses a type selector, which redefines the default look
of an HTML tag. It’s the simplest type of selector, yet is often overlooked by
beginners who become fixated with another type of selector known as a class.
A class can be used to apply the same styles to many different elements in a
page. You apply a class by adding the class name to the opening HTML tag of
the element. This has a comforting, familiar feeling, because you’re applying
the style directly. However, it’s little better than the old method of using
 tags and other presentational markup that needed to be added directly
to every element.

 Getting StartED with CSS

 36

The file css_classitis.html in the download files for this chapter shows the
type of problem caused by overuse of classes. Every paragraph has an opening
tag that looks like this: <p class="bodyText">. In Chapter 4, you’ll see the
important role classes have to play, but this is overkill. As css.html proves, you
can style paragraphs without the need for any extra markup in the HTML.

The other disease, divitis, tends to afflict designers who relied heavily on table
layout. A <div> is an HTML device designed to group elements together so they
can be styled in a unified way. Unfortunately, many people misinterpret the
role of a <div>, and wrap everything in a <div> before styling it. Again, this
usually results in redundant markup.

My aim in this book is to try to help you avoid catching either of these diseases.
I suffered from both of them at one stage and know how hard it is to undo bad
habits once learned. So, if you have previous experience of CSS, please try to
put out of your head all thoughts of using classes or wrapping elements in <div>
tags, at least for the time being. Classes and <div> tags have a vital role to
play in CSS, but I want you to learn first about using type selectors and
exploiting the cumulative effect of the cascade.

Test your CSS early in several browsers
The whole purpose of CSS is to control the way your web pages look in a
browser. Because Internet Explorer is the most widely used browser, over the
years many designers have made the mistake of using IE6 or IE7 to test their
web pages. After getting everything looking the way they wanted, they finally
tested in Firefox, Opera, or Safari, and discovered to their horror that the
pages didn’t display properly. Unfortunately, the CSS bugs in IE6 and IE7 meant
that fixing the problems in the other browsers was much more difficult than if
they had designed their styles to work in a more standards-compliant browser
to start with. The arrival of IE8 should make things easier for developers, but
the Web is constantly changing. The moral of this story is to test early and test
often in different browsers—and on different operating systems. Design for
browsers that you know to be standards-compliant (IE8 or the most recent
versions of Firefox, Safari, Google Chrome, and Opera).

Building a useful toolset for working with CSS
Understanding the effect of a style rule can sometimes be difficult, even for
experienced designers. Fortunately, there are some useful tools available that
let you inspect the styles not only of your own site but of any public website,
giving you a useful insight into how CSS works.

37

Chapter 1: What is CSS, and Why Should I Learn It?

I have already mentioned the Develop menu in Safari. You enable it by
selecting the check box labeled Show Develop menu in menu bar in the
Advanced tab of the Preferences panel. In Safari 4, this gives you access to the
Web Inspector (see Figure 1-15), a sophisticated panel that lets you analyze
how style rules are being applied. You can also use the panel to disable styles
temporarily to see what effect it has. The Web Inspector panel might look
baffling now, but as you come to understand CSS, you’ll appreciate just how
useful it is.

Figure 1-15. The Web Inspector in Safari 4 helps you analyze the effect of
style rules with a range of helpful tools.

Similar analysis tools are available in the most recent versions of other leading
browsers. You access the Developer Tools panel in IE8 through the Tools menu
or by pressing F12. In Opera 10, select Tools ➤ Advanced ➤ Developer Tools.
Firefox doesn’t have a built-in panel, but the Firebug and Web Developer
Toolbar add-ons are indispensible for working with CSS. Both are free, and can
be obtained by selecting Tools ➤ Add-ons from the Firefox menu. Use the
search field in the Get Add-ons tab to locate and download Firebug and the
Web Developer Toolbar.

 Getting StartED with CSS

 38

Of course, you also need a decent selection of modern browsers for testing:
IE8, Firefox, and Safari at the minimum. You can find them easily online using
your favorite search engine—and they’re all free, so there’s no excuse not to
use them.

Chapter review
This chapter has given you a brief overview of the reasons behind the
development of CSS and why it took so long to become widely adopted by the
web development community. Although it will take several years for older
browsers with substandard support for CSS to die out, the arguments in favor of
using CSS are now overwhelming. Learning how to create styles involves
patience and practice, but the effort is more than repaid by the efficiencies
offered by CSS. To take just a simple example, changing the color of links with
CSS involves a simple change to a single page that affects the whole website.

The most efficient way to use CSS is by creating style rules in one or more
external style sheets and attaching them to each page with the <link> tag. You
can also embed styles in the <head> of a page if you want to apply special
styles only to that page. The third way of applying styles is inline with the
style attribute in the opening HTML tag of the element you want to affect.
However, inline styles are the least efficient form of CSS and should normally
be used only when designing an HTML email.

In the next chapter, you’ll start creating your own CSS to style text. This is the
quickest way to make a dramatic difference to the look of your pages. It also
helps reinforce the basic concept of using the cascade, showing the cumulative
effect of styles as they trickle down the structure of a web page and how they
can be overridden by styles lower down in a style sheet.

39

 Chapter 2
How Do I Improve the Look
of Text and Links?
When designing a website, your first thoughts are usually of images, color
scheme, and other decorative elements. The text content probably comes low
down on your list of priorities. After all, getting many clients to provide the
actual text is like squeezing blood from a stone. Yet, in the vast majority of
sites, text is usually the most important element. Visitors are in search of
information, and that information is more often than not presented as text.

So, presenting text in a visually pleasing manner is an important part of your
design. Not only should the text look good, it must be easy to read—the font
needs to be large enough, but not too large, and the text shouldn’t look too
dense or bunched up. CSS has many properties that affect the appearance of
text. Most are very easy to use, and they have an immediate impact on the
overall design of a site. Using CSS to style text also introduces you to some
important CSS concepts, such as specifying size and applying the same style
rules to multiple elements.

As I said in the previous chapter, I don’t intend to use CSS classes until Chapter
4, although when styling links you need to use a feature known as pseudo-
classes. Don’t worry if that sounds like double Dutch; all will be revealed in
due course. For most of this chapter, you’ll use type selectors to change the
default look of HTML tags. This approach should help reinforce the principles of
the CSS cascade, as rules trickle down the hierarchy of the HTML structure and
are applied cumulatively.

 Getting StartED with CSS

 40

In this chapter, you’ll learn how to do the following:

� Define which fonts are used for text.

� Set color values and apply them to text.

� Specify size with pixels, ems, and other units of measurement.

� Automatically transform lowercase to uppercase and vice versa.

� Indent the first line of paragraphs and change the space between
lines.

� Target multiple elements and nested elements.

� Style links and change the way they look when moused over.

By the end of this chapter, you should have a good practical knowledge of the
basics of CSS, laying the foundation for the rest of the book. Before creating
any style rules, let’s take a quick look at the text properties available in
CSS2.1.

Exploring the CSS text properties
CSS gives you a lot more control over the appearance of text than HTML,
through 17 properties plus one shorthand property. Table 2-1 lists all the text
properties with a brief description of what each one is for.

ExplainED
A shorthand property lets you specify several properties all at once, rather
than individually. For example, instead of three separate rules to specify
Arial bold font at 12px, you can use the shorthand property to define them
all together. Unfortunately, some shorthand properties are difficult to
use. I’ll point out which are likely to save time, as well as those that are
best avoided.

41

Chapter 2: How Do I Improve the Look of Text and Links?

Table 2-1. Text properties in CSS2.1

Property

Initial
Value

Inherited

Description

color Yes Always refers to text color. The color of

other elements is controlled by

dedicated properties, such as border-
color and background-color.

direction ltr Yes Controls the layout for text blocks

depending on whether the text is read

from left to right (ltr) or right to left (rtl).

Since the default is left to right, this

property is of interest only if you are

working in a language written from right

to left, such as Hebrew, Arabic, or Urdu.

For details, see
www.w3.org/TR/CSS21/visuren.html#
propdef-direction.

font-family Yes Browsers use the fonts on the user’s

computer, so you should always specify

a choice of fonts in order of preference,

finishing with a generic font (see Table 2-

2).

font-size medium Yes Sizes can be set using a variety of

different methods, as described in

“Setting font-size” later in this chapter.

font-style normal Yes Determines whether the text should be

displayed as italics or regular text.

font-variant normal Yes Determines whether the text should be

displayed as small capitals (see Figure 2-

10 in “Displaying text in small caps” later

in this chapter) or regular text.

font-weight normal Yes The weight of a font describes the

thickness of the lines that make up the

characters (such as bold). The CSS2.1

specification offers a wide range of

values, but in practice, most browsers

display only bold or regular text.

font Yes Shorthand property that lets you

combine font-style, font-variant,

font-weight, font-size, line-height,

and font-family in a single declaration.

Best avoided except by advanced users,

as it can be difficult to get right.

 Getting StartED with CSS

 42

Property

Initial
Value

Inherited

Description

letter-
spacing

normal Yes Increases or decreases the horizontal

space between characters.

line-height normal Yes Increases or decreases the vertical

space between lines.

text-align Yes Controls whether text is aligned to the

left or right, centered, or justified. The

default in English and other Western

European languages is left-aligned. This

property is also used to align the content

of table cells.

text-
decoration

none No Draws a line under, over, or through text.

This property is also used to remove the

underline from links and can make text

flash on and off.

text-indent 0 Yes Sets the amount that the first line of text

should be indented. Applies to any block

of text, including text in a table cell.

Applying a negative value creates a

hanging indent (see Figure 2-12 in

“Indenting the first line of text” later in

this chapter).

text-
transform

none Yes Converts text to initial capitals, all

uppercase, or all lowercase.

unicode-bidi normal No Controls how text is displayed when left-

to-right and right-to-left languages are

displayed in the same document, e.g.,

English and Arabic or Hebrew. For

advanced users only. See
www.w3.org/TR/CSS21/visuren.html#
propdef-unicode-bidi for details.

vertical-
align

baseline No Controls the vertical alignment of inline

elements and table cells. Cannot be used

to control the vertical alignment of block

level elements, such as paragraphs.

white-space normal Yes Controls how spaces and word wrapping

are handled.

word-spacing normal Yes Computers have no concept of what

constitutes a word. This increases or

decreases the size of the space

character between strings of text.

43

Chapter 2: How Do I Improve the Look of Text and Links?

ExplainED
All properties can take inherit as their value. This sets the value of the
property to the same as the parent element. The only time you need to
use inherit is when a property is marked as not inherited. You can assume
that inheritance is automatic if I don’t list inherit among the permitted
values when describing a property in the text.

Looking at Table 2-1, it doesn’t take long to realize that a lot of the properties
do the same as their HTML equivalents: color, font-family, font-size, and
the shorthand font property work together to fulfill the same role as the
 tag. Similarly, font-style and font-weight are the equivalent of the
 and <i> tags, and text-align and vertical-align do the same as the
align and valign attributes in many HTML tags. However, CSS goes further by
letting you indent the first line of a block of text, control the spacing between
letters, words, and lines, as well as automatically transform the letter case.
Another point to notice in Table 2-1 is that most of the properties are listed as
inherited. This means that the value trickles down through the HTML hierarchy
of the page to affect all elements. You’ll see how this works when you change
the default font for a page in the next section.

Changing the default font and color of
text
Throughout most of this book, you’ll be working with the page shown in Figure
2-1, which you can find in the download files for this chapter as
journey_start.html. The page is totally unstyled, so it uses the browser’s
default font, and the links are underlined and blue for unvisited links, and
purple for visited ones. You’ll use this page to experiment with the CSS text
properties and begin to turn it into something more elegant.

 Getting StartED with CSS

 44

Figure 2-1. The starting point for your journey into CSS—a completely unstyled page
with no images

ExplainED
If you want a sneak peek at where this journey is heading, take a look at
Figure 12-1 in Chapter 12.

Unless you tell the browser which font to use, most browsers display text in
Times New Roman, Times, or a similar font. The actual font depends not only
on the browser but also on what’s available on the visitor’s computer.
Understanding this is vital when it comes to setting fonts for a web page.
Inexperienced designers frequently create the design of their dreams on their
own computer, get it looking just the way they want it, and then proudly
upload it to their website. When they see the site on somebody else’s
computer, they are devastated to find that the really cool font they used for
all the text is replaced by boring Times New Roman.

Using font-family to choose a range of
alternative fonts
As a designer, you’re likely to have lots of fonts on your computer, but visitors
to the sites you design probably won’t have half as many. If you choose an
unusual font for your page, in all likelihood, few of your visitors will ever see

45

Chapter 2: How Do I Improve the Look of Text and Links?

the page the way you envisaged. Consequently, you should always choose
several alternatives similar to your preferred choice. Sadly, from the designer’s
perspective, the range of fonts in common use on most computers is rather
limited, as Figure 2-2 shows.

Figure 2-2. Examples of the fonts currently most commonly in use on computers

LinkED
See www.codestyle.org/css/font-family/sampler-CombinedResults.shtml
for the most up-to-date list of fonts in common use on computers.

 Getting StartED with CSS

 46

Uninspiring though the range of fonts shown in Figure 2-2 may be, it’s
essentially what you need to resign yourself to. None of the fonts listed is
guaranteed to be available on every computer, so it’s important to specify
several alternatives in order of preference in a comma-separated list. Browsers
use the first available font listed.

In case none of the fonts in your list is available, you should also specify a
generic font family using one of the keywords in Table 2-2. This ensures that
visitors to your site see something similar to what you intend, even if they
don’t see it exactly how you designed it.

ExplainED
A generic font family describes the basic characteristics of a font, such as
whether it is decorative, plain, or has characters of identical width. The
examples shown in Figure 2-2 are grouped according to their generic font
families.

Table 2-2. Generic font families

Name Description

sans-serif In typography, serifs are little hooks at the end of strokes. A

sans-serif font has no such hooks. The lack of hooks tends

to produce a cleaner result on computer screens.

serif A serif font has little hooks at the end of strokes. The hooks

are said to make characters easier to recognize on the

printed page but are often indistinct on a computer monitor.

cursive Cursive fonts look handwritten or done with a calligraphic

pen. Although there are many attractive cursive fonts, the

only one widely available is Comic Sans MS, which has

become so closely associated with poorly designed websites

that most professional designers refuse to use it.

monospace Characters in monospace fonts are all the same width, so the

letter i occupies the same horizontal space as the letter m.

This type of font is typically used to display code snippets in

online tutorials.

fantasy This generic font family covers fonts that don’t fall into any

other category. Examples of fantasy fonts are Jokerman and

Ravie.

47

Chapter 2: How Do I Improve the Look of Text and Links?

ExplainED
If you’re wondering why CSS doesn’t have the ability to embed the fonts of
your choice, the original CSS2 specification did have an @font-face rule
designed to do just that. However, it was removed from CSS2.1 because of
lack of support. Apart from the technical difficulties, most fonts are
copyrighted, so embedding them in a web page presents legal difficulties.

The @font-face rule is now part of the CSS3 proposals and is supported by
Safari 4 and Firefox. Internet Explorer has supported @font-face since IE5.
Unfortunately, it uses a proprietary format for embedding fonts. Until
that incompatibility is sorted out, using @font-face remains something to
hope for, rather than a practical reality.

That’s enough theory for the moment. It’s time to roll up your sleeves and
begin styling the page in Figure 2-1.

If you are using an ordinary text editor to create your style sheets, make sure
the text editor doesn’t add an .rtf or .txt file name extension to your pages.
Turn on the display of file name extensions in your operating system if
necessary.

Setting the default fonts and colors for a page

In this brief exercise, you’ll specify the default fonts and colors for the page by
creating an external style sheet, defining a style rule for the <body> tag, and
attaching the style sheet to the page.

1. Launch the editing software of your choice, and open
journey_start.html in the ch02 folder. To enable you to check your
own code at different stages of the chapter, the same folder contains
copies of the same file numbered journey_01.html, journey_02.html,
and so on. These are linked to updated versions of the style sheet in
the ch02/css subfolder. How you organize your exercise files is up to
you, but I suggest that you create a new folder called workfiles and
save journey_start.html as journey.html in the new folder.

2. Test journey.html in a browser. It should look the same as Figure 2-1.

3. Examine the HTML code in journey.html. The main body of the text is
marked up using <p> tags. There are one <h1> and two <h2> headings,
the quotation and attribution to President Roosevelt are wrapped in a

 Getting StartED with CSS

 48

<blockquote>, and there’s a table containing some facts about the
Grand Canyon. All the markup is used to convey the structure of the
page. The <blockquote> is used to indicate a quotation, not simply
because it indents the text, and the table is used for data, not for
layout. Note that the text in the left table column is bold and
centered not through the use of HTML presentational markup, but
because this is how browsers display <th> tags.

4. Create a subfolder called css in your workfiles folder.

5. In the workfiles/css folder, create an empty style sheet, and save it
as journey.css. An external style sheet is simply a text file, so it
should contain no code at this stage.

6. Type the following code in journey.css:

body {
 background-color: #FFF;
 color: #000;
 font-family: "Trebuchet MS", Arial, Helvetica, sans-serif;
}

7. This uses a type selector to style the <body> of the page. As I
explained in the previous chapter, a type selector consists of the
name of an HTML tag without the angle brackets, and it changes the
default style for that tag.

8. The body rule contains the following three style declarations:

� background-color: This sets the background color of the
element. The value is set to #FFF, which is the shorthand
hexadecimal notation for white (the following section, “Setting
color values in CSS,” explains in detail how to specify colors,
including the use of shorthand hexadecimal values).

� color: This sets the color of text inside the element. The value
#000 is the shorthand hexadecimal for black.

� font-family: This tells the browser to use Trebuchet MS if it’s
available on the user’s computer. If not, it looks for Arial or
Helvetica in that order, and if neither is found, it uses a
generic sans-serif font.

49

Chapter 2: How Do I Improve the Look of Text and Links?

ExplainED
When a font name, such as Trebuchet MS, contains spaces, you must
enclose the name in quotes. American readers who are used to putting
commas inside quotes should note that the comma goes outside. The
generic font families listed in Table 2-2 are keywords and must never be in
quotes.

9. Save journey.css and switch to journey.html.

10. Attach journey.css to journey.html using a <link> tag. You should be
able to do this through your editing program, but if you’re hand-
coding, add the following line of code just before the closing </head>
tag in journey.html:

<link href="css/journey.css" rel="stylesheet"
type="text/css" />

11. Save journey.html, and view it in a browser. It should look like
Figure 2-3.

Figure 2-3. Just three lines of CSS have changed the look of all the text.

Check your code, if necessary, against journey_01.html and
css/journey_01.css in the ch02 folder of the download files.

 Getting StartED with CSS

 50

If you have used tags in the past or applied CSS classes to every
paragraph, I think you’ll agree that creating just one rule to style the <body>
of the page is a lot easier. Browsers regard the tags in a web page like a family
tree. Just like children inherit characteristics from their parents, everything
within the same branch of the family tree in a web page normally inherits the
style rules from higher up the family tree.

ExplainED
CSS and other web technologies use the analogy of the family tree when
referring to the relationship between page elements. In an HTML page, the
<html> tag is regarded as the root of the tree. Tags nested inside another
tag are called children. Tags nested at a deeper level are called
descendants; and tags that are at the same level as each other are called
siblings. As you go back up the family tree, tags one level up are called
parents, and those at higher levels are ancestors.

Figure 2-4 shows the first part of the page used in the preceding exercise
viewed as a family tree. The headings, paragraphs, and <blockquote> elements
are all children of the <body> tag. In relation to each other, they are siblings.
The two paragraphs inside the <blockquote> tag are its children, and in turn
they are descendants of the <body>. Visualizing this family-tree relationship is
key to understanding CSS inheritance and the cascade.

Figure 2-4. CSS treats a web page like a family tree, allowing style rules to cascade
down the hierarchy of tags.

51

Chapter 2: How Do I Improve the Look of Text and Links?

Because they’re contained inside the <body>, all the text elements inherit the
same font and text color. The only exception is the color of the links. Links
don’t inherit the color of their parent or ancestor element. As you’ll see later
in this chapter, you use special selectors to style links.

So, to summarize:

� To choose the font for any style rule, use the font-family property.
Because you don’t know which fonts will be available on the user’s
computer, set the value of font-family to a comma-separated list of
fonts in the order of precedence that you want the browser to use
them. Always finish the list with a generic font family from the list in
Table 2-2. If any font name contains spaces, surround the name in
quotes.

� To set the color of text, use the color property, and set its value to
the hexadecimal equivalent of the color. Alternatively, use one of the
color keywords in Table 2-3.

Setting color values in CSS
When setting colors in CSS, most of the time you use the hexadecimal notation
for the red, green, blue (RGB) values. This is the same as in HTML: the hash
character (#) followed by hexadecimal characters (the numbers 0–9 or the
letters A–F). Most HTML and graphics editing programs generate the
hexadecimal number for you automatically when you use a color picker or
eyedropper tool.

In a six-digit hexadecimal number, the first pair of digits represents the red
component of the color; the second pair represents the green component, and
the final pair the blue component. In CSS, if both digits are identical in all
three pairs, for example, #FFFF00 (yellow), you can shorten this to three digits
(#FF0). However, if any pair does not contain identical digits, you must use the
full six-digit version. So, #008080 (teal) cannot be shortened.

 Getting StartED with CSS

 52

ExplainED
Using hexadecimal notation lets you specify 256 shades each of red, green,
and blue, representing more than 16 million colors. In the early days of
the Web, monitors didn’t have the capability to display so many colors, so
it was recommended to use a restricted set of 216 colors that were known
as “web-safe.” Although old textbooks and online tutorials still refer to
web-safe colors, it’s no longer necessary to limit yourself to their use.

Hexadecimal is fine for computers, but it can be hard to remember the
numbers for common colors. So, the CSS specification defines 17 color
keywords, which are listed in Table 2-3 along with their hexadecimal
equivalents.

Table 2-3. Color keywords in CSS2.1

Keyword

Hexadecimal
Equivalent

Keyword

Hexadecimal
Equivalent

aqua #0FF olive #808000

black #000 orange #FFA500

blue #00F purple #800080

fuchsia #F0F red #F00

gray #808080 silver #C0C0C0

green #008000 teal #008080

lime #0F0 white #FFF

maroon #800000 yellow #FF0

navy #000080

There is another way to designate colors if you feel more at home with numeric
RGB values. Instead of using hexadecimal notation, you can use rgb(). Inside
the parentheses you place the red, green, and blue values as comma-separated
numbers in the range of 0–255 or percentages from 0% to 100%. So, for
example, red can be represented in all of the following ways:

� 6-digit hexadecimal: #FF0000

� 3-digit hexadecimal: #F00

� keyword: red

53

Chapter 2: How Do I Improve the Look of Text and Links?

� RGB numeric: rgb(255, 0, 0)

� RGB percentages: rgb(100%, 0%, 0%)

While we’re on the subject of color, let’s add a touch of color to the headings
and style them in a different font.

Selectively applying a different font and color
Black text on a white background is OK for the main body of text, but you
normally want to liven up your pages by making headings stand out with a
different color and maybe a different font. You can do this easily in CSS by
choosing a more specific selector. Up to now, everything inside the <body>
inherits the same style rules. But you can override those rules by creating type
selectors for individual HTML elements. A type selector redefines the HTML
element’s default look. So, if you create a style rule for <h1> elements, that’s
the way all <h1> elements will look. As you progress through this book, you’ll
learn that type selectors can be overridden by other selectors, but I want to
keep things simple for the moment.

Changing the color and font of the headings

In this exercise, you’ll see how to override inherited properties by using more
specific type selectors. You’ll also learn how to apply the same style rules to
more than one type of element by grouping selectors together.

1. Continue working with the files from the previous exercise.
Alternatively, use journey_01.html and css/journey_01.css from the
download files for this chapter.

2. Open the style sheet, and add the following style rule highlighted in
bold:

body {
 background-color: #FFF;
 color: #000;
 font-family: "Trebuchet MS", Arial, Helvetica, sans-serif;
}
h1 {
 color: #468966;
 font-family: Georgia, "Times New Roman", Times, serif;
}

3. This is a new type selector that changes the default look of <h1> tags,
setting the text color to green and using a serif font. Note that Times
New Roman has spaces in the font name, so it’s enclosed in quotes.

 Getting StartED with CSS

 54

4. Save the style sheet, and view journey.html in a browser. If you have
Georgia installed on your computer, the main heading of the page
should now look like Figure 2-5. Even if you don’t have Georgia, the
heading should be displayed in a serif font and its color should be
green. However, all the other text, including the <h2> headings,
remains unchanged. The more specific h1 selector has overridden the
body selector.

Figure 2-5. The color and font of the <h1> heading is changed by a more specific
selector.

5. Copy the h1 style rule that you created in step 2, and paste it below
the h1 rule. Change h1 in the rule you have just pasted to h2. The two
rules should now look like this:

h1 {
 color: #468966;
 font-family: Georgia, "Times New Roman", Times, serif;
}
h2 {
 color: #468966;
 font-family: Georgia, "Times New Roman", Times, serif;
}

6. Save the style sheet, and test the page again in a browser. It should
now look like Figure 2-6. The <h1> and <h2> headings now use the
same font and color.

55

Chapter 2: How Do I Improve the Look of Text and Links?

Figure 2-6. Both sets of headings are now styled the same way.

7. Copying and pasting a style rule like that is an easy way to apply the
same set of rules to another element, but it bloats your code
unnecessarily. There’s a more efficient way of doing it.

8. Delete the h2 rule you created in step 4. Just the body and h1 rules
should remain in the style sheet. Now amend the h1 selector by typing
a comma after it followed by h2. The edited rule should look like this:

h1, h2 {
 color: #468966;
 font-family: Georgia, "Times New Roman", Times, serif;
}

9. This is called grouping selectors. To group selectors, just separate
each selector by a comma. I have inserted a space after the comma
for readability, but the space is optional. The page you’re working on
contains only <h1> and <h2> tags, but if you wanted to make sure that
the same color and font is applied to all levels of headings, you simply
add the others to the selector. In fact, let’s do that now.

10. Change the selector to look like this:

h1, h2, h3, h4, h5, h6 {
 color: #468966;

 Getting StartED with CSS

 56

 font-family: Georgia, "Times New Roman", Times, serif;
}

11. Save the style sheet, and view journey.html in a browser. It should
still look the same as in Figure 2-6.

12. In journey.html, change the second <h2> heading to <h3>.

13. Save the page, and reload it in a browser. Scroll down to the heading
you just edited. As shown in Figure 2-7, it should now be smaller, but
still have the same color and font as the other two headings.

Figure 2-7. The same styles are applied to all levels of headings.

You can check your code, if necessary, against journey_02.html and
css/journey_02.css in the download files for this chapter.

Changing the size of fonts
Setting the size of fonts in CSS is easy. You give the font-size property a
value, and that’s it. Unfortunately, that’s only half the story.

The problem lies in number of different ways you can specify the value of
font-size. According to the CSS specification, apart from inheritance there are
four ways, as follows:

� Absolute size keywords

� Relative size keywords

� Length

� Percentage

In practice, it’s the last two methods that are normally used, but it’s important
to mention the other two briefly in case you ever encounter them. Table 2-4
lists the absolute size keywords and their recommended equivalents in the
HTML tag’s size attribute.

57

Chapter 2: How Do I Improve the Look of Text and Links?

Table 2-4. Absolute size keywords for font-size

Keyword HTML Size Equivalent

xx-small 1

x-small

small 2

medium 3

large 4

x-large 5

xx-large 6

Note that x-small doesn’t have a recommended HTML equivalent, and there’s
no keyword that equates to the HTML size 7.

Although these keywords are officially called absolute size, there’s nothing
absolute about them. How browsers interpret the keywords is entirely up to
them, and the HTML equivalent is only a recommendation, not a requirement.
In effect, they give you very little real control over the way your text is
rendered in different browsers.

There are only two relative size keywords: larger and smaller. The relative
size relates to the absolute size keywords in Table 2-4 and is one size larger or
smaller than the parent element. So, for example, if the font-size of a
paragraph is set to medium and the style rule for <a> tags uses font-size:
larger;, links within the paragraph should be rendered as large.

Quite honestly, I suggest you think about the absolute and relative keywords as
if they were a bad dream—something best forgotten.

For more precise control over the size of fonts, you need to specify the value
as a length or a percentage. These two concepts affect most other aspects of
CSS, so this is a good time to pause to explain how they work.

Setting length with pixels, ems, and other units
of measurement
Length is simply CSS-speak for “a size specified using a unit of measurement.”
It has nothing to do with the number of words in a paragraph. CSS recognizes
the eight units of measurement listed in Table 2-5 for specifying length, three
of them relative units and the rest absolute units.

 Getting StartED with CSS

 58

Table 2-5. CSS units of measurement for length (size)

Type Unit Description

Relative Units

 em A term borrowed from typography, it

means the height of the font, usually

including whitespace above and below.

So, with a 16px font, one em is 16px; with

a 24px font, one em is 24px, and so on.

Contrary to popular belief, it is not the

width of an uppercase M.

 ex Also borrowed from typography, and

defined as the height of a lowercase x. In

practice, most browsers treat ex as half

an em.

 px Pixel. Equivalent to one of the dots that

makes up the image on a computer

monitor. Pixels are considered relative

units because the actual size depends on

the monitor resolution.

Absolute units

 in Inch (2.54 centimeters).

 cm Centimeter (0.394 in).

 mm Millimeter (0.039 in).

 pt Point. A typographical unit equivalent to

1/72 of an inch (0.353 mm).

 pc Pica. A typographical unit equivalent to 12

points (4.233 mm).

The CSS specification says absolute units are useful only “when the physical
properties of the output medium are known.” Since web pages are viewed on a
wide range of devices, you have no way of knowing the physical properties of
the device an individual visitor is using. The resolution on my 24-inch monitor is
completely different from an iPhone. What this means in practice is that the
only time you should use absolute units in your CSS is when defining rules for a
print style sheet. Inches, millimeters, and points are meaningful to printers but
not to web browsers. So, unless you’re creating a print style sheet, you’re left
with just the three relative units to be concerned with.

59

Chapter 2: How Do I Improve the Look of Text and Links?

ExplainED
A lot of old books use points to define the size of fonts. This works,
because most browsers simply convert one point to one pixel. However,
points should not be used except in print style sheets.

Of the three relative units, ex is the least useful. So, you’re now down to just
two: em and px. Unfortunately, they have become the focus of endless
arguments in the web design community. The reason for all the hostility comes
down to—yes, you’ve guessed it—Internet Explorer. Until the release of IE7,
Internet Explorer didn’t allow users to resize text if the size was specified in
pixels. Well, there was a way, but it was buried so deep in the accessibility
preferences that most users would never find it.

This split the design community into two opposing camps: those who wanted
absolute control over the size of text from the aesthetic point of view, and
those who argued that text should be resizable for the benefit of people with
poor eyesight. The size control freaks advocated pixels, conveniently ignoring
the fact that Firefox and other browsers allowed text in pixels to be resized.
The others advocated ems, because Internet Explorer allowed users to resize
text if the size was specified in ems.

The release of IE7 brought an end for the need to argue over the resizing of
text, because IE7 incorporated a zoom feature that increases the size of the
whole page, so everything remains in proportion. Most modern browsers now
zoom by default, rather than increase only the size of text. Still, the legacy of
the flame wars has left the design community split in two camps: ems and
pixels. So, which should you use?

Both ems and pixels have their advantages and drawbacks, but if you’re new to
CSS, pixels are undoubtedly easier to understand. Images are measured in
pixels, and most designers know the width and height of their monitor in
pixels. Even though the pixels on one screen might be smaller than another, 14
pixels will always be 14 pixels on both screens.

Ems, on the other hand, are proportional to the height of the current font. So,
if the size of the current font is 14 pixels, one em will also be 14 pixels. But if
the font is changed to 20 pixels, one em also becomes 20 pixels. Although this
makes calculations more difficult (or even impossible), it does have the
advantage that measurements remain in proportion—and therefore in
harmony—with the size of your text. Most of the time, I’ll use pixels in this
book, but I’ll show you how to use ems where appropriate.

 Getting StartED with CSS

 60

Whichever unit of measurement you use, the rules are the same:

� There must be no space between the number and the unit of
measurement: 14px, not 14 px.

� When the value is zero, the unit of measurement is optional: 0em is
valid, but 0 is simpler.

Using percentages
Most sizes in CSS, including font-size, can also be expressed as a percentage.
The question is: a percentage of what?

In the case of fonts, a percentage indicates size relative to the parent element.
If no size for the font has been defined in the parent element, the percentage
represents size in proportion to the default. So, if the size of the font in the
parent element is 14px, setting font-size in a child element to 85% results in
text being displayed at 12px (11.9px rounded up). Similarly, the default size of
paragraph text in all browsers is 16px. So, setting font-size for paragraphs to
87% results in 14px text as long as no other style rule has changed the default
size.

For all other measurements, percentage is always taken in relation to the size
of the parent element.

AdvancED
Be careful when using ems or percentages for font sizes. Because nested
elements inherit their size from their parents, you might end up with ever
shrinking text. For example, if you set font-size for unordered lists to
70%, the size of text in a nested list becomes 49% (70% of 70%).

Let’s get back to styling journey.html.

Changing font sizes

This exercise continues styling the text in the same page as the previous two
exercises, and demonstrates how to change the size of fonts using different
units of measurement. Continue working with the same files as before.
Alternatively, use journey_02.html and css/journey_02.css from the
download files for this chapter.

61

Chapter 2: How Do I Improve the Look of Text and Links?

1. Open journey.css, and add a new h1 type selector to set the font-
size property for the <h1> heading like this:

h1, h2, h3, h4, h5, h6 {
 color: #468966;
 font-family: Georgia, "Times New Roman", Times, serif;
}
h1 {
 font-size: 220%;
}

You need to create a separate style block for the <h1> heading,
because you don’t want the font-size property to be applied to all
the other heading levels. This shows the cumulative aspect of the
cascade in action. The font-size property is added to the existing
styles defined for <h1> tags.

The value has been set to 220%. Browsers regard the default size of
<h1> tags as 200% (twice the size of ordinary text). So, this makes the
heading at the top of the page slightly larger than before. If using
percentages with fonts, you need to experiment to see which produces
the most pleasing effect.

Because nothing is nested inside the <h1> heading, there’s no danger
of a multiplier effect when using a percentage.

2. Save the change to the style sheet, and test journey.html in a
browser. You should see the heading at the top of the page is slightly
larger, but it’s still green and uses the same font.

3. Now, let’s change the size of the main text, which is contained in
paragraphs. The default size that all browsers use for body text is
16px, which many designers find a bit too large. Instead of using a
percentage this time, specify the font-size property in pixels by
adding the following style block at the bottom of journey.css:

p {
 font-size: 14px;
}

This targets all paragraphs, including those inside the <blockquote>,
and resets the size of the text to 14 pixels.

4. Save the style sheet, and test journey.html again. As Figure 2-8
shows, the text in the table is still the same size as before. It’s not
inside paragraphs, so the new style doesn’t affect it.

 Getting StartED with CSS

 62

Figure 2-8. The paragraph style rule doesn’t affect the text in the table.

5. How can we change the text in the table? First, let’s take a look at the
HTML code:

<table width="300" border="0">
 <caption>
 Grand Canyon facts
 </caption>
 <tr>
 <th scope="row">Length:</th>
 <td>277 miles (446 km)</td>
 </tr>
 <tr>
 <th scope="row">Widest point:</th>
 <td>18 miles (29 km)</td>
 </tr>
 <tr>
 <th scope="row">Depth:</th>
 <td>1 mile (1.6 km)</td>
 </tr>
</table>

One solution would be to use table as a type selector. That will affect
everything inside the table, but I would like to make the text in the
<caption> tag look more prominent.

The alternative would be to apply the same font-size to the <th> and
<td> tags, thereby leaving the <caption> tag unaffected. However, I’d
like to demonstrate the effect of inherited font-size, so let’s take
the first option and group table with the p selector like this:

p, table{
 font-size: 14px;
}

6. This makes all the text in the table the same size as in the paragraphs.
So the caption is also 14 pixels. Ideally, I want it several pixels larger.

63

Chapter 2: How Do I Improve the Look of Text and Links?

Of course, I could just create a new caption selector and choose a size
in pixels. But where’s the fun in that? Let’s experiment with ems.

Add the following style block at the bottom of the style sheet:

caption {
 font-size: 1.3em;
}

As I explained earlier, ems are proportional to the height of the
current font. Because the <caption> tag is inside the table, the
current font height is 14px. By specifying a font-size of 1.3em, this
style rule makes the font height 1.3 times bigger than 14px.

7. Save the style sheet, and view journey.html in a browser. The table
and caption should now look like Figure 2-9.

Figure 2-9. The table text is now the same size as in the paragraphs, but the caption
is bigger.

8. Let’s verify what has happened. If you multiply 14 by 1.3, the result is
18.2. Pixels can only be whole numbers, so the browser rounds this
down to 18px. Replace 1.3em in the caption style rule with 18px, and
change its color to match the other headings like this:

caption {
 font-size: 18px;
 color: #468966;
}

9. Save the style sheet, and test the page again. The caption should still
be the same size as in Figure 2-9. The only difference is the change of
color.

You can check your code, if necessary, against journey_03.html and
css/journey.css in the download files for this chapter.

 Getting StartED with CSS

 64

As I said earlier, you’ll probably find defining the size of text in pixels much
easier to start with. The purpose of this exercise has been to show you how
ems and percentages also work.

Changing the look of fonts
You’ll be relieved to hear that the remaining text properties are much more
straightforward. Setting aside the font shorthand property, which is covered at
the end of this chapter, three more properties begin with font:

� font-style: Control whether text is italicized.

� font-weight: Make text bolder or lighter.

� font-variant: Convert the text to small caps, if the font supports
them. Otherwise, convert the text to uppercase.

Closely related to these is the text-transform property, which changes the
letter case of text, converting it to uppercase, lowercase, or initial caps.

The following sections explain how to use each of these properties.

Italicizing text
The font-style property accepts the following three values:

� italic: Italicize the text.

� normal: Remove italics.

� oblique: Use an oblique version of the font, if one exists. Otherwise,
render the text as italics.

Since very few fonts used on the Web have oblique versions, italic and normal
are the only values you need. The main use for normal is to remove italics from
text that you want to emphasize inside a larger block of text that’s already
italicized.

Making text bolder or lighter
The font-weight property accepts the following values:

� bold: Make the text bold.

� bolder: Make the text bolder in relation to its parent.

� lighter: Make the text lighter in relation to its parent.

� normal: Render the text normally.

65

Chapter 2: How Do I Improve the Look of Text and Links?

� One of nine values increasing in steps of 100 from 100 to 900: 400
equals normal, and 700 equals bold.

In practice, the only values you are likely to use are bold and normal. Setting
font-weight to normal is useful when you want to display as normal text an
element, such as a <th> tag (table heading), that browsers normally render in a
bold font.

Displaying text in small caps
The font-variant property accepts the following values:

� normal: Render text using the same letter case as in the underlying
code.

� small-caps: Render the text in small caps if supported by the font.
Otherwise, transform the text to uppercase.

Small caps display lowercase letters as uppercase, but in a smaller size and
with slightly different proportions, as shown in Figure 2-10.

Figure 2-10. In a small caps font, uppercase letters are only slightly taller than
lowercase.

Switching between uppercase and lowercase
The text-transform property accepts the following values:

� capitalize: Convert the first letter of every word to uppercase.

� lowercase: Convert all characters to lowercase.

� uppercase: Convert all characters to uppercase.

� none: Render text in the same letter case as the underlying code.

Using capitalize converts to uppercase the first letter after every space. All
other characters are unaffected.

The text-transform property is inherited, so it affects all child elements. Set
the value to none in a child element to turn off an inherited text
transformation rule.

Now you’ve seen the properties and their values, let’s put them into action.

 Getting StartED with CSS

 66

Adding bold, italics, and small caps

This exercise continues styling journey.html from the previous exercise,
showing how to use the font-style, font-weight, font-variant, and text-
transform properties to change the look of selected parts of the text. Continue
using the same files as before, or use journey_03.html and css/journey.css
from the download files for this chapter.

1. Edit the h1 style rule in journey.css to add the font-variant
property, and set its value to small-caps like this:

h1 {
 font-size: 220%;
 font-variant: small-caps;
}

This converts the main heading of the page to look like Figure 2-10.

2. Edit the caption style rule to add the font-style property, and set its
value to bold like this:

caption {
 font-size: 18px;
 color: #468966;
 font-weight: bold;
}

This renders the table caption in a bold typeface.

3. Let’s use font-weight again, this time to reverse the way the browser
has automatically applied bold to the table headings. Create a new
style rule for the <th> tags like this at the bottom of the style sheet:

th {
 font-weight: normal;
}

AdvancED
You might wonder why I created the table with <th> tags if I was planning
to display the text in a normal font. The idea was not just to demonstrate
how to remove a bold typeface. The underlying HTML uses <th> tags with
the scope attribute making the table more accessible to blind people using
a screen reader. HTML defines the structure of your site. CSS is what
makes it look the way you want.

67

Chapter 2: How Do I Improve the Look of Text and Links?

4. When creating the caption for the table, I wrote “facts” all in
lowercase. On reflection, I think it would probably look better if I gave
it an initial capital. Of course, I could just change the text, but let’s
imagine that I have several tables in my site, and I want to make sure
the captions all use initial capitals. CSS to the rescue! Amend the
caption style rule like this:

caption {
 font-size: 18px;
 color: #468966;
 font-weight: bold;
 text-transform: capitalize;
}

5. Finally, I want to display the quotation from President Roosevelt in
italics. It’s in a paragraph, but I can’t add font-style: italic; to the
paragraph style rule, because that would make all paragraphs italic. If
you’ve done any CSS before, I expect you’re probably shouting “use a
class!” No, a class isn’t necessary. The quotation is in a <blockquote>
tag, so that’s what you need to style. Create a new style rule at the
bottom of the style sheet like this:

blockquote {
 font-style: italic;
}

6. Save the style sheet, and check journey.html in a browser. It should
now look like Figure 2-11. The top-level heading is in small caps, the
quotation is in italics, and the table caption and labels have been
transformed.

You can check your code, if necessary, against journey_04.html and
css/journey_04.css in the download files for this chapter.

 Getting StartED with CSS

 68

Figure 2-11. The text is being gradually transformed by the CSS.

Aligning and spacing text
Most of the remaining CSS text properties are concerned with the alignment of
text and how it’s spaced out. The following properties are available:

� text-align: Align text horizontally to the left, right, center, or
justified.

� vertical-align: Align text vertically in relation to an imaginary line
box. Also use to adjust the vertical alignment of content in table cells.

� text-indent: Indent the first line of a block of text.

� line-height: Adjust the vertical spacing between lines in the same
block of text.

� letter-spacing: Adjust the spacing between each character.

� word-spacing: Adjust the spacing between each word.

� white-space: Control how whitespace and word wrapping is handled.

The following sections explain how to use each of these properties.

69

Chapter 2: How Do I Improve the Look of Text and Links?

Aligning text horizontally
The text-align property accepts the following values:

� left: Align text to the left, and leave ragged ends on the right.

� right: Align text to the right, and leave ragged ends on the left.

� center: Center text, leaving ragged ends on both sides.

� justify: Align text on both sides.

Aligning text vertically
When used with text, the vertical-align property adjusts the position of text
vertically in relation to the text around it. The position is based on an
imaginary box representing the current line of text. It accepts the following
values:

� baseline: Align the text to the same baseline as text in the parent
element. This is the default value.

� middle: Align the vertical midpoint 0.25em above the baseline of the
parent.

� sub: Align text to the proper position for a subscript. This does not
alter the size of the font.

� super: Align text to the proper position for a superscript. This does not
alter the size of the font.

� text-top: Align the top of the imaginary text box with the top of the
text in the parent element.

� text-bottom: Align the bottom of the imaginary text box with the
bottom of the text in the parent element.

� top: Align the top of the imaginary text box in line with the top of the
parent’s text box.

� bottom: Align the bottom of the imaginary text box in line with the
bottom of the parent’s text box.

� inherit: Vertical alignment is not inherited by default, so use this to
apply the same value as the parent element.

The vertical-align property can also take a length (see “Setting length with
pixels, ems, and other units of measurement” earlier in this chapter) or a
percentage.

If your mind is boggling at this point, you’re not alone. The vertical-align
property is probably one of the least well understood aspects of CSS. The

 Getting StartED with CSS

 70

biggest misconception about vertical-align is that it can be used to adjust
the vertical position of block elements, such as paragraphs. It can’t. The only
time vertical-align can be used in that way is when controlling the vertical
alignment of the content in a table cell. Except in a table, vertical-align is
used only for inline elements, such as text and images.

Consequently, vertical-align is probably the least useful of the CSS text-
related properties. I have included it here mainly to warn you that it doesn’t
do what you might have expected. I’ll return to vertical-align in Chapter 9,
where it is much more useful in relation to tables.

Indenting the first line of text
The text-indent property takes a length or a percentage and indents the first
line of text in each block by the amount specified. When the value is a
percentage, the indentation is a percentage of the containing block’s width.

If you specify a negative value for text-indent, it creates a hanging indent
with the first line protruding to the left, as shown in Figure 2-12.

Figure 2-12. Hanging indent

You need to be careful when creating a hanging indent, because text-indent
shifts the beginning of the first line to the left. If you’re not careful, this can
result in part of your text being hidden. When taking the screenshot for Figure
2-12, I needed to add extra style rules to journey.css. Without them, the first
word of the paragraph was hidden beyond the left border of the browser
window.

ExplainED
Don’t be confused by the name of text-indent. You can’t use it to indent
an entire block of text. You do that by defining margins, which are
covered in Chapter 3.

71

Chapter 2: How Do I Improve the Look of Text and Links?

Adjusting the vertical space between lines of
text
If you have studied typography or printing, you’ll be familiar with the concept
of leading, which sets the amount of space between lines in a block of text,
such as a paragraph. Too little space and everything looks cramped and is hard
to read. Too much space and the reader’s eye wanders, making reading equally
difficult.

The CSS equivalent of leading is line-height. This property accepts a length,
percentage, or number. You can also use the keyword normal to reset line-
height to its default value.

Because of the way line-height is calculated and applied by browsers, the
most consistent results are achieved by using a number without a unit of
measurement like this:

line-height: 1.3;

The default value applied by browsers varies but is normally in the range of
1.0–1.2.

Negative values are not permitted. You can use positive values less than 1, but
anything smaller than about 0.6 results in lines overlapping each other.

Adding or removing space between words
The word-spacing property controls the amount of horizontal space between
words. It accepts a length. A positive value adds space by the specified
amount. A negative value reduces space by the specified amount. Because it’s
an inherited property, the same value is applied to all child elements. Set
word-spacing to normal to reset its value in a child element.

Increasing or decreasing the space between
letters
The letter-spacing property controls the amount of horizontal space between
letters. In print terminology, this is known as tracking. It works the same way
as word-spacing by adding or subtracting the specified amount from the default
value.

www.allitebooks.com

http://www.allitebooks.org

 Getting StartED with CSS

 72

AdvancED
If you have a background in typography, you might be wondering if CSS has
a property for kerning (adjusting the horizontal space between specific
pairs of characters, such as W and A). The answer is no. The draft CSS3
text module proposes kerning for full-width punctuation characters at the
beginning or end of a line, but not for normal text.

Controlling whitespace and line wrapping
Browsers automatically close up sequences of spaces, ignore new lines in HTML,
and wrap text at the right edge. The white-space property gives you control
over the handling of whitespace and new lines. It accepts the following values:

� normal: This is the default value and is used to cancel any inherited
value.

� pre: Preserve all spaces and new lines in the HTML.

� nowrap: Prevent the browser from automatically wrapping text.

� pre-wrap: Preserve sequences of whitespace and new lines, but
automatically wrap text when the border is reached (see Figure 2-15
in the following exercise).

� pre-line: Close up sequences of whitespace as in normal text, but
honor new lines (see Figure 2-16).

Using white-space: pre; has a similar effect to using <pre> tags in HTML, but
with the advantage of preserving the current font. It’s useful for displaying
poetry without the need to insert
 tags at the end of each line.

Using white-space: nowrap; is useful for preventing the text in table cells from
wrapping onto a new line.

The pre-wrap and pre-line values give a finer level of control over the
handling of whitespace and new lines.

Let’s see some of these properties in action by updating journey.html from the
previous exercises.

73

Chapter 2: How Do I Improve the Look of Text and Links?

Adjusting spacing and alignment of the text

This exercise builds on the previous exercises by using all the alignment and
spacing properties described in this section, with the exception of vertical-
align. You’ll also learn how to target nested elements. Continue using the
same files. Alternatively, use journey_04.html and css/journey.css from the
download files for this chapter.

1. Let’s begin by centering the main heading. Edit the h1 style rule like
this:

h1 {
 font-size: 220%;
 font-variant: small-caps;
 text-align: center;
}

2. Next, justify the main text in the paragraphs. So far, the only style
rule specifically for paragraphs is grouped with the table type
selector. So, you need to create a new style block at the bottom of
the style sheet like this:

p {
 text-align: justify;
}

3. Add the text-indent property to the same style block and set the
value to 30px. This will indent the first line of each paragraph by 30
pixels. Amend the p style rule like this:

p {
 text-align: justify;
 text-indent: 30px;
}

4. While you’re at it, give the paragraphs a bit more breathing space
between each line by adding line-height to the rule like this:

p {
 text-align: justify;
 text-indent: 30px;
 line-height: 1.4;
}

5. Before going any further, save the style sheet, and check your
handiwork in a browser. If you have a large monitor, I expect you
won’t notice anything particularly odd. But if you resize your browser
window to 800 pixels, you should see something like Figure 2-13.

 Getting StartED with CSS

 74

Figure 2-13. The text-indent property also affects the paragraphs inside the
<blockquote> element.

The text-indent property that you added in step 3 affects all
paragraphs including those inside the <blockquote> element. There’s
nothing particularly wrong with this, but the beauty of CSS is that you
can target your style rules precisely. Let’s eliminate the indent in the
<blockquote>.

I suspect that some of you with previous experience of CSS are
thinking “Now he’s going to use a class.” Wrong.

6. The way to target nested elements is to use what’s called a
descendant selector. Using the analogy of a family tree, an element
nested inside another is called a child element. The paragraphs inside
the <blockquote> element are children of the <blockquote>. In other
words, they are its descendants.

To create a descendant selector, simply add a space after the parent
selector, followed by the child selector. In this case, the parent is
blockquote and the child is p. So, the descendant selector becomes
blockquote p. You already have a blockquote style rule, which you
can edit to target accurately the paragraphs in the <blockquote>.
Change the blockquote style rule like this:

blockquote p {
 font-style: italic;
 text-indent: 0;
}

75

Chapter 2: How Do I Improve the Look of Text and Links?

This resets the value of text-indent to its default, which is 0. You
could add px after the 0, but it’s not necessary. Zero is zero. The unit
of measurement doesn’t matter.

If you test the page again, you’ll see that the Roosevelt quote has
moved 30 pixels to the left.

7. Time to tidy up the table. Amend the th style rule like this to align
the labels to the right:

th {
 font-weight: normal;
 text-align: right;
}

8. Adjusting the space between words and letters is a tricky business.
Getting just the right amount takes not only a good eye but a lot of
experimentation. It’s also worth remembering that the results will
look different if the user doesn’t have your main choice of font. After
several tries, I felt happy with the following settings for the main
heading of the page:

h1 {
 font-size: 220%;
 font-variant: small-caps;
 text-align: center;
 word-spacing: 0.2em;
 letter-spacing: 0.05em;
}

This is one of the cases where using ems usually gives more
satisfactory results than pixels, because an em is directly related to
the size of the font. As you can see, you can use decimal fractions of
an em. The leading zero before the decimal point is optional, but I
prefer to use it for ease of reading.

9. To wrap up this exercise, let’s experiment with the white-space
property. The HTML code for the Roosevelt quotation is split over two
lines like this:

<p>Leave it as it is. You cannot improve on it.
The ages have been at work on it, and only man can mar it.</p>

Amend the blockquote p style rule to use white-space: pre; like this:

blockquote p {
 font-style: italic;
 text-indent: 0;
 white-space: pre;
}

 Getting StartED with CSS

 76

10. Save the style sheet, and test the page in a browser. It should look
like Figure 2-14.

Figure 2-14. Both the new line and two spaces at the beginning of the second line
have been preserved.

As you can see, the new line and spaces in the underlying HTML have
been preserved. However, unlike the <pre> HTML tag, the font hasn’t
been converted to monospace.

11. Change pre to pre-wrap, save the style sheet, and test the page again.
The effect is the same. However, if you add a large amount of filler
text at the end of the quote and test the page, you’ll see that the
original line break and spaces are preserved, but the rest of the text is
wrapped normally, as shown in Figure 2-15.

Figure 2-15. The effect of pre-wrap is to preserve line breaks and spaces but wrap
text normally.

12. Change pre-wrap back to pre, and test again. This time the extra text
stays on the second line and spawns a long horizontal scrollbar.

13. Finally, change pre to pre-line, and test again. The two spaces at the
beginning of the second line should have been removed, and the text
should now look like Figure 2-16.

14. Delete the extra text at the end of the Roosevelt quote, and save the
page. You can check your code, if necessary, against journey_05.html
and css/journey_05.css in the download files for this chapter.

77

Chapter 2: How Do I Improve the Look of Text and Links?

Figure 2-16. Using pre-line removes extra whitespace and wraps text normally but
preserves new lines.

ExplainED
The pre-wrap and pre-line values for white-space are supported by the
most recent versions of browsers, such as IE8 and Firefox 3.5. Earlier
browsers that don’t recognize these values ignore the style rule and wrap
the text as normal without preserving whitespace or new lines.

Styling text links
Links are the driving force of the Web. The ability to jump from one page to
another, often located on a server on the opposite side of the world, is what
makes the Web such a powerful resource. Although they’re familiar to
everyone today, in the early days of the Web, they were a new idea. So, to
make them stand out, it was decided to underline links and color them a vivid
blue. You still need links to stand out—or at least be discoverable. Otherwise,
no one would realize they’re links. However, blue underlined text frequently
spoils the look of an otherwise harmonious color scheme. So, styling links is an
important aspect of CSS.

HTML allows you to change the color of links with the link, vlink, and alink
attributes of the <body> tag, but CSS goes much further. Not only can you
change the color of links, you can remove the underline and control how a link
looks when the mouse pointer passes over it. What’s more, you can also control
the look of links separately in different parts of the same page. So, you can
have links in a navigation menu styled completely differently from links in the
main body of the page, and yet another style in a sidebar or footer.

I’ll show you how to create different styles of links in the same page in
Chapter 7. In this chapter, I’ll concentrate on the basics of styling links.

 Getting StartED with CSS

 78

Just remember it’s a love-hate relationship
No, I haven’t gone mad. Love-hate—or LoVe-HAte if you prefer—is the
mnemonic most web designers use to remember the rules of styling links with
CSS. Links are created using the <a> tag in HTML, so you can use a type selector
to control the look of links. For example, the following rule makes links bold
and red:

a {
 font-weight: bold;
 color: red;
}

That’s fine as far as it goes, but it means that links will look the same,
regardless of whether they have been visited. It’s usual to give a visual clue
that a link has been visited; the browser default is purple. It’s now also
expected to give another visual clue when the mouse passes over a link, in
addition to the default behavior of the cursor turning into a hand. The problem
is that these different states are controlled by the browser; there’s nothing in
the HTML that indicates when the mouse is hovering over a link, or that the
link has been visited.

The answer is what CSS calls pseudo-classes. As I explained briefly in the last
chapter, a class can be used to apply a style to several elements in a page by
adding the class attribute and the name of the class to each element’s
opening tag. But you can’t change the class once the page has been loaded,
because it’s embedded in the HTML code. A pseudo-class defines how you
want an element to look dependent on its interactive state. So, if the mouse is
hovering over a link, the browser applies the appropriate pseudo-class, which is
called, aptly enough, :hover. As soon as the mouse is no longer over the link,
the browser removes the :hover pseudo-class and applies the appropriate
pseudo-class depending on whether the link has been visited or not. At the
point of being clicked, a link is considered to be active, so there’s also an
:active pseudo-class to represent this state. You don’t need to worry about
the technical details of how it works; all you need to do is create style rules for
the pseudo-classes.

The selector for a pseudo-class is made up of the ordinary type selector
followed by the name of the pseudo-class, which always begins with a colon
(:). The most important pseudo-classes for links are as follows:

� a:link: Unvisited link

� a:visited: Visited link

� a:hover: Link when the mouse is over it

� a:active: Link at the point of being clicked

79

Chapter 2: How Do I Improve the Look of Text and Links?

Love-hate refers to the first letter of each one—L for :link, V for :visited,
and so on. It’s not simply an easy way to remember the names of the pseudo-
classes; it also reminds you of the order they must appear in your style sheet.
The cascade depends on this order being preserved. So, if your links don’t
behave as expected, check the order of the pseudo-classes.

Before creating some link styles, there’s just one more thing you need to know:
how to control underlines.

Controlling underlines
The text-decoration property is the CSS way of adding or removing underlines
to text. In fact, it can do more than just that. It accepts the following values:

� none: Remove underlines or cancel any inherited text-decoration
rules.

� underline: Underline the text.

� overline: Add a line above the text.

� line-through: Add a line through the center of the text.

� blink: Blink the text on and off (browsers are not required to support
this).

� inherit: This property is not inherited, so use this to apply the same
value as the parent element.

Because underlined text has become so closely associated with links on the
Web, text-decoration is used mainly in connection with links. Many designers
remove the underline from unvisited and visited links but restore it as a visual
clue when the mouse passes over the link. However, you can sandwich the link
with lines above and below by using both underline and overline in the same
style declaration like this:

text-decoration: underline overline;

Using text-decoration: line-through; has the effect of striking out text.
It’s the recommended replacement for the deprecated <s> and <strike> HTML
tags.

Blinking text seemed cool when it was first introduced in the 1990s. Making
text blink once or twice to draw attention to it is fine, but there’s no way to
control the duration of blinking with text-decoration. Use it only if you want
to drive your visitors mad!

Now you know how to style links, let’s put that knowledge to practical use by
returning to journey.html.

 Getting StartED with CSS

 80

Making the links harmonize with the page

The following exercise continues working with the same pages as in the
previous exercises and demonstrates how to style the different states of links
using pseudo-classes. Continue working with the same files as before.
Alternatively, use journey_05.html and css/journey_05.css from the download
files for this chapter.

1. How you style links is a matter of taste, but I prefer to remove the
underline from links and make them stand out in a bold font and
distinctive color. The color will change according to the state of the
link, but the bold font will apply to all states. The underline will be
restored when the mouse hovers over the link, but the basic state
requires no underline. So, the basic rule needs to set font-weight and
text-decoration. Add a new type selector for the <a> tag at the
bottom of the style sheet like this:

a {
 font-weight: bold;
 text-decoration: none;
}

2. Next, set the colors for the unvisited and visited states. Add the
following rules below the rule you created in step 1:

a:link {
 color: #B64926;
}
a:visited {
 color: #FFB03B;
}

This colors unvisited links a rusty brown that’s typical of the Grand
Canyon, while visited links use a lighter color closer to orange.

3. For the hover state, I’m going to use a darker brown and sandwich the
link between lines above and below. Since the active state occurs only
when the link is being clicked, I’ll use the same style by grouping the
a:hover and a:active selectors like this:

a:hover, a:active {
 color: #8E2800;
 text-decoration: underline overline;
}

4. That’s all there is to it. Save the style sheet, and test the page in a
browser. The links now harmonize with the other styles, and when you

81

Chapter 2: How Do I Improve the Look of Text and Links?

mouse over one of the links, it should look like the first link in
Figure 2-17.

You can check your code, if necessary, against journey_06.html and
css/journey_06.css in the download files for this chapter.

Figure 2-17. You can use CSS to give a clear visual clue when a link is moused over.

Making full use of the cascade
Take a closer look at the code used in the previous exercise to style the links in
journey.html. It consists of the following dozen or so lines:

a {
 font-weight: bold;
 text-decoration: none;
}
a:link {
 color: #B64926;
}
a:visited {
 color: #FFB03B;
}
a:hover, a:active {
 color: #8E2800;
 text-decoration: underline overline;
}

 Getting StartED with CSS

 82

When I help people in online forums, I often come across style rules that are
much longer than this. Yet they achieve nothing more than these few lines.
Many beginners—and some who should know better—tend to put every property
in each rule. So, for example, their a:link rule would look like this:

a:link {
 font-family: "Trebuchet MS", Arial, Helvetica, sans-serif;
 font-size: 14px;
 color: #B64926;
 font-weight: bold;
 text-decoration: none;
}

The same pattern is repeated in the a:visited, a:hover, and a:active rules.
Not only is this totally unnecessary, it also makes style sheets more difficult to
maintain. The code becomes longer, making it difficult to locate the properties
you want to change. Say you decide to use a different set of fonts or change
the size of the font, this duplication of style declarations means that you need
to make the same change in every style block. There’s a danger you’ll miss
one, resulting in your styles not being applied the way you intended.

The key to writing efficient, easy-to-maintain CSS is to create rules only for
properties that change. Set the basic styles at the top of the HTML hierarchy,
and let them trickle down. In the style sheet that you have built through the
exercises in this chapter, the font-family for the links is set in the body rule;
the font-size in the p, table rule; and the font-weight and text-decoration
in the a rule. As a result, the only things that need to be set in the pseudo-class
rules are the color changes and the text-decoration for a:hover, a:active.

Using the font shorthand property
CSS shorthand properties let you combine several style declarations into one.
Often, this saves a lot of typing and the rules for creating the shorthand version
are generally quite simple. I have left this section to the last because, in my
opinion, the font shorthand property is the exception to the rule. It’s difficult
to use. If you’re a beginner, I suggest that you skip this section and just note
that it’s here for future reference. There’s nothing you can do with the font
shorthand property that you can’t do with the properties you have already
learned about.

The font shorthand property combines the following properties:

� font-style (optional)

� font-variant (optional)

83

Chapter 2: How Do I Improve the Look of Text and Links?

� font-weight (optional)

� font-size

� line-height (optional)

� font-family

What makes this shorthand property so difficult is that, not only are the first
three items optional, they can be presented in any order. However, the
remaining items must come in the prescribed order. If you declare line-
height, it must be separated from font-size by a forward slash. Take, for
example, the following style rule:

p {
 font-style: italic;
 font-weight: bold;
 font-size: 14px;
 line-height: 1.4;
 font-family:"Trebuchet MS", Arial, Helvetica, sans-serif;
}

You can convert that to shorthand like this:

p {
 font: bold italic 14px/1.4 "Trebuchet MS",Arial,Helvetica,sans-serif;
}

Notice that I reversed the order of font-style and font-weight, which is
perfectly valid. The shorthand version is shorter and relatively easy to read.
However, I find that the code completion features in most HTML editors make
it much quicker to use the more explicit declarations.

A common mistake is to leave out everything except the font-family. The
following example will not work:

/* BAD EXAMPLE */
p {
 font: "Trebuchet MS", Arial, Helvetica, sans-serif;
}
/* END BAD EXAMPLE */

Remember that font is not a synonym for font-family. It’s an easy mistake to
make, because of the association with the old tag.

 Getting StartED with CSS

 84

Chapter review
So, there you have it—a page that has been styled without using a single class
(well, apart from the pseudo-classes). Everything has been done by using type
selectors to change the default look of HTML elements. The only change to the
HTML code has been the <link> tag to attach the style sheet.

This chapter has covered a lot of ground, and you might find it difficult to
absorb everything at a single sitting, but the description of each text property
has been designed for you to refer to later. It has also covered some of the
most important features of CSS, such as how to apply the same rules to several
elements by grouping selectors together, and how to target nested elements
with descendant selectors. Finally, you were introduced to pseudo-classes,
specialist types of selectors that style links depending on their interactive
state. As you increase your knowledge of CSS, you’ll come to realize that one
of the most important skills lies in choosing the correct type of selector. The
other important skill is to make use of the cascade, setting properties as far up
the HTML hierarchy as possible, and letting them trickle down to child
elements, changing only those properties that you want to be styled differently
lower down in the chain.

The page looks a lot better, but if you have been working on a large monitor,
you’ll know that the text spreads right across the page. This not only looks bad,
it makes the text almost impossible to read, because the human eye cannot
scan text that spreads too far horizontally.

You’ll start to put that right in the next chapter, which deals with setting
widths and controlling margins. CSS gives you independent control over the
margin on each side of every page element, allowing you to lay out your pages
with considerable flexibility.

85

Chapter 3
How Can I Improve the
Layout of My Text?
Take a look at any page. It doesn’t matter whether it’s on the Web, in a
newspaper, or even in this book. Something that should become fairly obvious
is that all pages are laid out as a grid. Headings and paragraphs form blocks
that are always aligned in a regular pattern. The grid might not be visible on
the page, but the underlying structure is there all the same.

That’s why tables became so popular for page layout in the days before CSS
could be relied upon. The problem with tables is that, to get the degree of
control you want, it’s frequently necessary to merge cells and nest tables
inside other table cells. Designers who became experts at table layout created
some brilliant designs, but the underlying code was usually very complex. Make
a mistake, and everything falls down like a house of cards.

CSS takes a different approach, treating everything on the page as a box. The
box model, as it’s known, lies at the heart of CSS. The basic concept is simple
enough: each box is surrounded by space (margins); you can also have space
inside the box (padding); and you can put a border around the box, as well as
give it a background. However, the implementation can be tricky to
understand. So, instead of throwing everything at you in one go, I have decided
to break everything down into more digestible chunks. The focus of this
chapter is on adjusting the margins surrounding complete HTML elements, such
as headings, paragraphs, and so on. Then in the next chapter, I’ll show you how
to flow text around images, before moving on to describe the remaining
aspects of the box model in Chapters 5 and 6.

In this chapter, you’ll learn about the following:

� Using <div> and to group elements
� Zeroing the margins on the page body
� Inspecting margins with Firebug and other CSS developer tools

 Getting StartED with CSS

 86

� Understanding how vertical margins overlap or collapse
� Centering page content
� Applying a different style to the first paragraph after a heading
� Organizing style sheets for easier maintenance

Before diving into the details of working with margins, it’s important to
understand how a browser treats HTML markup.

Sliding boxes and blocks
As a child, you probably played with one of those maddening yet fascinating
sliding block puzzles. You know the type—all the blocks are interlocked inside a
tray (see Figure 3-1). There’s just one empty space, and you have to slide the
blocks around until they’re all in the right order. If you think of each of those
blocks as an HTML tag and its contents, it gives you a pretty good idea of how
CSS (and JavaScript) manipulate the elements on your page to produce the
layout you want. An important difference is that CSS lets you change the size
of the blocks, giving you much more freedom in your design.

Figure 3-1. Elements on a web page are blocks that can be moved around like a
sliding puzzle.

87

Chapter 3: How Can I Improve the Layout of My Text?

HTML defines most tags as either block-level or inline. A block-level element
begins on a new line, sits as far left as possible, and fills the available
horizontal space. It also forces the next element onto a new line of its own. An
inline element, on the other hand, doesn’t begin on a new line or force what
follows onto a new line. Inline elements sit alongside whatever precedes and
follows them, and the line wraps automatically when there’s no further space
on the right. The <a>, , and tags are examples of inline elements,
as is the text content of a block-level element, such as a paragraph. The
vertical distance between each line is determined by the line-height
property, which was covered in the last chapter. However, this is overridden if
any of the inline elements are too tall to fit.

Surprisingly, images are considered inline elements, which is why text is
aligned to the bottom of an image when you first insert it into a web page, as
shown in Figure 3-2. HTML uses the align, hspace, and vspace attributes to
flow text around images, but as you’ll learn in Chapter 4, CSS uses a
combination of the float and margin properties to achieve the same effect
with greater flexibility and elegance.

Figure 3-2. HTML treats images as inline elements, so you need special techniques to
flow the text around the edge.

 Getting StartED with CSS

 88

Even though inline elements don’t force a new line before or after themselves,
they still adhere to the CSS box model. That means you can apply margins,
padding, and borders to any block-level or inline element, altering both the
element’s position and look.

ExplainED
The main exceptions to the block-level and inline classification are table
rows and cells, which have rules of their own. Chapter 9 deals with these
issues in detail. However, as you’ll see later in this chapter, tables—as
opposed to their constituent parts—are treated as block-level.

The sliding block puzzle analogy is useful because the tray and interlocking
pieces constrain how you can move each block. What controls the position of
HTML elements within a web page is known as the flow of the document. The
flow of a web page is simply the order in which the HTML elements appear in
the source code. Browsers lay out each element in turn, applying your styles or
the default properties. This is why it’s so important to understand what the
underlying HTML of your pages looks like. The box model lets you change the
space around elements, but where that space is inserted and how it affects the
surrounding elements depends on where the element is within the flow of the
document. Some CSS properties, such as float (the main subject of the next
chapter), affect the normal flow, but how they do so depends on where the
element lies within the page. So, if you’re a designer who never looks at
the underlying markup of your pages, now is the time to start changing your
habits. Otherwise, you’ll find your efforts with CSS just as frustrating as the
child’s puzzle.

Two HTML tags that are the friends of CSS:
<div> and
The HTML specification contains two elements, <div> and , described as
grouping elements. Unlike <p>, <h1>, or <blockquote>, they don’t have a
clearly defined role in the structure of the document. They’re there for you to
do whatever you want with them in conjunction with CSS. Although this sounds
rather vague, the idea is that you can use them to group other elements
together and style them as a single unit. A <div> creates a new block-level
element that contains as many block-level and inline elements as you like,
while a can contain only inline elements.

89

Chapter 3: How Can I Improve the Layout of My Text?

The use of <div> and will become clearer when you start using classes
and ID selectors in the next chapter. However, the basic principle is that you
can use <div> tags to divide your page into distinct sections, such as the page
heading, sidebar, main content, and so on. You can use tags to group
several words to style them in a particular way. Later in this chapter, you’ll use
a <div> tag to group together all the page elements and center them in the
browser window.

ExplainED
There’s a common misconception that the <div> tag creates an absolutely
positioned “layer” on the page. The misunderstanding arose from a well-
intentioned but misguided attempt by Dreamweaver in the days before CSS
had gained widespread acceptance to make page layout easier through the
use of inline styles and absolute positioning. Dreamweaver has since
changed the way it applies absolute positioning, a subject I have left until
Chapter 10 because of its complexity. Nevertheless, the myth continues
that a <div> has some sort of magical properties. It doesn’t; a <div>
simply groups other elements into a single block.

How CSS controls margins
Margins are horizontal and vertical space around an element. CSS lets you
control the margin independently on each side, so there are four properties—
one for each side—and a shorthand property, as listed in Table 3-1.

The first things to note about Table 3-1 are that margins are never inherited
and the initial value of each property is 0. The lack of inheritance is a good
thing, because it means you can control margins independently without
worrying about affecting other elements on the page. However, the initial
value is potentially confusing. Although the default CSS value is 0, all browsers
add their own default margins to every page element. You can verify this by
launching a browser and comparing journey_06.html and no_margins.html in
the download files for this chapter. The first file is the page as it looked at the
end of the exercises in the previous chapter. As you can see in Figure 2-17,
there is space around each heading and paragraph. In no_margins.html, I have
explicitly set the margins of each element to 0. The result is shown in Figure
3-3—everything is bunched up unnaturally.

 Getting StartED with CSS

 90

Table 3-1. CSS margin properties

AdvancED
Some web developers use what is known as a reset style sheet to
eliminate not only default margins but also any other inconsistencies
introduced by different browser defaults. The idea is to create a level
playing field, but it has the disadvantage that you need to set all the rules
again explicitly. I find that many of the browser defaults have been
created for a reason and prefer to adjust only those values where I want
to achieve a special effect. To learn more about reset style sheets, see
http://meyerweb.com/eric/tools/css/reset/.

Property Initial Value Inherited Description

margin 0 No Shorthand property. Can

take between one and four

values, as described in

“Using the margin

shorthand property” later

in this chapter.

margin-bottom 0 No Sets the bottom margin.

Adjacent vertical margins

collapse, as described in

the text.

margin-left 0 No Sets the left margin.

Horizontal margins never

collapse.

margin-right 0 No Sets the right margin.

Horizontal margins never

collapse.

margin-top 0 No Sets the top margin.

Adjacent vertical margins

collapse, as described in

the text.

91

Chapter 3: How Can I Improve the Layout of My Text?

Figure 3-3. Without the default margins applied by browsers, page elements look
crowded too close together.

The other point to note is that adjacent vertical margins collapse. This is an
important concept to grasp.

Understanding how vertical margins collapse
Every element has a top margin and a bottom margin, even if it’s set to zero.
When block-level elements follow one another, adjacent vertical margins
collapse or overlap each other. What this means is quite simple. In the
download files for this chapter, you’ll find a page called margin_collapse.html.
In the external style sheet, I have set the margin-bottom property of all
headings to 50px and the margin-top property of all paragraphs to 25px.
Although this adds up to 75 pixels, the vertical margin between each heading
and the following paragraph is only 50 pixels. The smaller margin collapses,
leaving only the larger of the two. Figure 3-4 uses the Firebug extension for the
Firefox browser to demonstrate the way the margins are handled. On the left
of the figure, the 50-pixel bottom margin of the main heading is highlighted,
with the 25-pixel top margin of the first paragraph highlighted on the right.

 Getting StartED with CSS

 92

Figure 3-4. The Firebug extension for Firefox gives a visual demonstration of how
adjacent vertical margins collapse.

LinkED
Firebug is one of the most useful tools in a web developer’s armory. Not
only is it an invaluable aid to inspecting and testing CSS, but it also helps
with debugging JavaScript and network problems. If you don’t have
Firebug, get it from http://getfirebug.com/, where you’ll also find
details of how to use it.

Firebug works only in Firefox. You can also get a JavaScript file called
Firebug Lite from http://getfirebug.com/lite.html to simulate a subset
of Firebug features in other browsers. However, as mentioned in Chapter
1, IE8, Safari 4, and Opera have built-in developer tools that perform
similar tasks. Browsers differ in the way they render CSS, so you will
probably need all of them at one time or another.

Most of the time, it’s only two adjacent elements that you need to think about.
However, there are occasions when more than two margins come together and
collapse. One such scenario is with an unordered or ordered list. Both the list
and its elements can have separate rules for margins. So, if you have a list

93

Chapter 3: How Can I Improve the Layout of My Text?

followed by a paragraph, the vertical margin between the final list item and
the paragraph is determined by whichever element has the biggest margin. To
give a concrete example, if the list items have a bottom margin of 10px, the
list has bottom margin of 5px, and the paragraph has a top margin of 0, the
vertical margin between the list and the paragraph is not 5px, but 10px.

This behavior affects only top and bottom margins. Margins on the left or right
never collapse.

Setting margin values
Margins can be set using either a length (see “Setting length with pixels, ems,
and other units of measurement” in Chapter 2) or a percentage. For pages
displayed in a browser, this means pixels, ems, or a percentage. Most of the
time, you’ll find pixels the easiest to work with. Percentages are computed in
relation to the parent element. For example, if you have a paragraph inside a
<div> that’s 500px wide, and you set the paragraph’s left margin to 10%, it
creates a 50px margin. In other words, it offsets the paragraph 50 pixels from
the left of the <div>.

Margin properties also accept the keyword auto, which tells the browser to
calculate the margin automatically. However, for the browser to be able to do
so, the element must have a width. The width can be set either in the HTML
(for example, through the width attribute of an image or table) or in CSS. To
set the width of an element in CSS, you simply use the width property, which
accepts a length or a percentage.

ExplainED
Setting the width of an element in CSS is simple enough. However, the way
that CSS handles both width and height is a little more complicated. I’ll
return to this subject in Chapter 6.

Because margins are not inherited, you can also use inherit as the value.
However, it’s more usual to set an explicit value.

You can set values for all four margins in a single declaration with the margin
shorthand property. Before describing its use, let’s get some practice working
with the other margin properties.

 Getting StartED with CSS

 94

Using margins to improve page layout
Most of the rest of this chapter is devoted to hands-on exercises with
journey.html from the previous chapter. You can continue working with the
same files as before. Alternatively, use as your starting point journey_06.html
and css/journey_06.css in the download files for this chapter.

Removing the default margins from your pages
If you load journey.html into a browser, you’ll notice that there’s a slight gap
between the left side of the browser window and the text (see Figure 2-17 in
the previous chapter). Also, the main heading is set down from the top of the
page. This is because browsers automatically add an 8-pixel margin all round
the page. Most of the time, this default margin is unimportant, but it does
make a difference if you want to use as part of your design images that go right
to the edge of the page. So, it’s a good idea to eliminate this default margin.

Removing the default page margin

This exercise removes the default page margin and uses Firebug to examine the
effect of the default margins on the page’s main heading. If you don’t have
Firebug, you can use the Developer Tools in IE8 or Opera 10, or the Web
Inspector in Safari 4. However, I recommend that you download Firebug from
the URL I gave earlier and install it in Firefox. In my experience, it’s the most
useful of the CSS analysis tools currently available.

1. Because you want the same value applied to all four margins, this is a
good opportunity to use the margin shorthand property. Open the style
sheet, and amend the body style rule like this:

body {
 background-color: #FFF;
 color: #000;
 font-family: "Trebuchet MS", Arial, Helvetica, sans-serif;
 margin: 0;
}

The margin shorthand property is described in detail at the end of this
chapter, but when used with a single value like this, it applies the
same value to all sides. Since the value is 0, no unit of measurement is
needed.

2. In practice, that’s all you need. However, older versions of the Opera
browser used padding on the <body> tag. So, it’s common to set
padding to zero too. Amend the style rule like this:

95

Chapter 3: How Can I Improve the Layout of My Text?

body {
 background-color: #FFF;
 color: #000;
 font-family: "Trebuchet MS", Arial, Helvetica, sans-serif;
 margin: 0;
 padding: 0;
}

3. Save the style sheet, and load journey.html into Firefox. It should
look like Figure 3-5. The gap between the left and right sides of the
paragraphs and the browser window has clearly gone, but the heading
is still some way from the top.

Figure 3-5. Removing the default page margin removes the gap on the left and right,
but the heading is still offset from the top.

4. To find out why the gap at the top is so big, click the Firebug icon at
the bottom right of the browser window. Then select the HTML and
Layout tabs, as shown in Figure 3-6.

ExplainED
If you are using IE8, press F12 to launch the Developer Tools panel, and
select the HTML and Layout tabs the same as in Firebug.

If you are using Safari 4, select Develop ➤ Show Web Inspector. Then
select the Elements tab, and expand the Metrics section on the right of the
panel.

If you are using Opera 10, select Tools ➤ Advanced ➤ Developer Tools.
Then select the DOM and Layout tabs.

All work almost identically to Firebug and provide similar information.

 Getting StartED with CSS

 96

Figure 3-6. Firebug lets you examine the size of the default margins around the
<h1> tag.

5. Expand the HTML tree in the HTML tab, and select the <h1> tag. The
Layout tab displays a graphical representation of the box model of the
selected element as a series of nested boxes. The outmost box
represents the margins on each side, with numbers indicating the size
of the margin in pixels. As you might be able to see in Figure 3-6,
there’s a 23-pixel margin on both the top and bottom of the heading.
The left and right margins are zero.

ExplainED
The Developer Tools panel in IE8 displays the top and bottom margins as
0.67em. This is nowhere near as helpful as Firebug, the Safari 4 Web
Inspector, or the Opera 10 Developer Tools which all display the value in
pixels.

6. Firebug and the analysis tools in IE8 and Safari 4 (but not Opera 10) let
you temporarily disable style rules to see how they affect the layout.
Make sure the <h1> tag is still selected in the HTML or Elements tab.
This ensures that the appropriate style block is displayed. In Firebug
or the IE8 Developer Tools panel, select the Style tab (to the left of
Layout).

If you’re using the Safari 4 Web Inspector panel, expand the Styles
section on the right, and then expand the top section labeled h1.

7. In Firebug, position your mouse pointer to the left of the font-size
declaration, and click once. This inserts a red circle with an oblique
bar alongside the rule, and grays out the property and its value, as

97

Chapter 3: How Can I Improve the Layout of My Text?

shown in Figure 3-7. This indicates that it has been temporarily
disabled.

Figure 3-7. The Style tab in Firebug lets you disable style rules temporarily.

In the IE8 Developer Tools panel, you disable style rules temporarily by
deselecting the check box to the left of the property name.

The Safari 4 Web Inspector panel works slightly differently. Check
boxes appear to the right of style declarations only when your cursor
is over the relevant section on the right of the panel (see Figure 3-8).
When the check boxes appear, deselect the one alongside the rule(s)
you want to disable temporarily.

AdvancED
The Safari 4 Web Inspector panel also reveals the browser’s default styles.
The text might be too small to read in Figure 3-8, but the final h1 section
in the Styles section on the right is labeled user agent stylesheet. The
font-size property is struck out in this section because its value is
overridden by the h1 type selector in journey.css.

If you ever want to find out the default styles for an element, fire up the
Web Inspector panel in Safari 4. Of course, it won’t tell you the default
styles for other browsers, but knowing what one browser does by default
often provides the information you need.

 Getting StartED with CSS

 98

Figure 3-8. In the Safari 4 Web Inspector panel, check boxes to disable styles
temporarily appear when you mouse over the relevant section.

8. Switch back to the Layout tab or Metrics section. You should see that
the top and bottom margins are now 21 pixels. (The IE8 Developer
Tools panel still displays 0.67em, but you can see that the Offset has
changed from 24 to 21 pixels.) In other words, the default margins the
browser has applied to the <h1> element are directly proportional to
the size of the font.

9. Reenable the font-size rule by clicking the icon in Firebug or
reselecting the check box in the other analysis tools.

10. Close your CSS analysis tool, and return to the style sheet in your
editing program. Amend the style block that applies to all headings by
adding a 10-pixel top and bottom margin like this:

h1, h2, h3, h4, h5, h6 {
 color: #468966;
 font-family: Georgia, "Times New Roman", Times, serif;
 margin-top: 10px;
 margin-bottom: 10px;
}

99

Chapter 3: How Can I Improve the Layout of My Text?

11. Save the style sheet, and test journey.html again. The top-level
heading should now be closer to the top of the page, and the gap
between the heading and first paragraph should also have closed up a
little.

You can check your code, if necessary, against journey_07.html and
css/journey_07.css in the download files for this chapter.

ExplainED
To simplify the instructions in future exercises, I will give instructions for
only one of the CSS analysis tools. They all work in a very similar way, so
once you have become accustomed to using one, you should find no
difficult working with the others.

Don’t use an onscreen pixel ruler to measure the vertical difference
between the bottom of the heading and the top of the first paragraph. As I
explained in Chapter 2, the size of a font includes whitespace above and
below the characters. If it didn’t, lines of text would be too close together
to read. When applying top and bottom margins to blocks of text, there’s
always a small amount of extra whitespace. However, there’s no extra
whitespace around nontext items, such as images.

Centering page content
As you learned in the previous chapter, centering text involves using the text-
align property and setting its value to center. However, with block-level
elements, you use the left and right margins to control their horizontal
position. If you set both margins to the same value, the object is centered. At
first glance, this might seem like a lot more work than using HTML <center>
tags or align="center". You might need to center many items, all of different
widths. No problem—CSS does it all for you.

As long as the element you want to center has a declared width, you simply set
the values of margin-left and margin-right to auto. Mission accomplished.

You can also use this technique to center the content of your page. Simply
wrap everything inside the <body> tags in a <div>, and set its left and right
margins.

 Getting StartED with CSS

 100

Let’s put the theory into practice.

Using margins to center page content

This exercise continues from the previous one, showing how to center the
table, the block quotation, and the page itself using both automatic and
specific left and right margins. Continue working with the same files as before.
Alternatively, use journey_07.html and css/journey_07.css from the download
files for this chapter.

1. Technically speaking, tables aren’t block-level elements (they’re table
elements—surprise, surprise), but they are treated as such when
applying margins to their outer edges. The table in journey.html has a
width of 300 (pixels) declared in its opening HTML tag. Because it has
a declared width, you can use auto to calculate the left and right
margins automatically. Create the following new style block at the
bottom of journey.css:

table {
 margin-left: auto;
 margin-right: auto;
}

That’s all there is to it—the table is now centered.

2. Let’s do the same for the Roosevelt quotation. Add the following style
block at the foot of the style sheet:

blockquote {
 margin-left: auto;
 margin-right: auto;
}

3. Save the style sheet, and test journey.html in a browser. It should
look like Figure 3-9. The table is centered, but the Roosevelt quote is
still at the left side of the browser window.

101

Chapter 3: How Can I Improve the Layout of My Text?

Figure 3-9. Setting the left and right margins to auto works only if the element has a
declared width.

I did that deliberately to remind you that an element must have a
declared width for the browser to be able to calculate the left and
right margins automatically. Forgetting the width is a common mistake
that even experienced designers occasionally make.

4. Return to the style sheet, and add a width to the blockquote style rule
like this:

blockquote {
 margin-left: auto;
 margin-right: auto;
 width: 38%;
}

I have set the width property to 38%. When you use a percentage for
width, CSS calculates it relative to the parent element. The
<blockquote> is inside the <body> element, so the value is calculated
as 38% of the <body>—in other words, 38% of the full page.

5. Save the style sheet, and test the page again. The quote should now
be centered as shown in Figure 3-10.

 Getting StartED with CSS

 102

Figure 3-10. The quote is centered now it has a declared width.

6. The problem with the page is that the text still stretches right across
the browser window. One way you could fix that is to give the
paragraphs a width and center them, but that leaves the subheadings,
which you probably don’t want centered. The solution is to use a
<div> to group together all the elements inside the <body>, and use its
margins to center the page content.

Dive into the HTML code of journey.html, and add an opening <div>
tag immediately after the opening <body> tag like this:

<body>
<div>
 <h1>Journey to the Edge</h1>

7. Put the closing </div> tag immediately before the closing </body> tag
like this:

. . . responsible for their own safety.</p>
</div>
</body>

8. On its own, the <div> makes no difference to the way the page looks
in the browser. You need to create a style rule for it. Add the
following to the bottom of the style sheet:

div {
 margin-left: 15%;
 margin-right: 15%;
}

9. Save the style sheet, and test journey.html in a browser. The page
content should be nicely centered. Change the size of the browser
window. The page content remains centered, but the width changes in
relation to the size of the browser, as shown in Figure 3-11.

103

Chapter 3: How Can I Improve the Layout of My Text?

Figure 3-11. Setting the left and right margins to a percentage creates a liquid
layout that resizes with the browser window.

Although the <div> doesn’t have a declared width, the browser
calculates it from the left and right margins. Controlling the width of
content like this is known as a liquid layout.

Notice, too, how the <blockquote> expands and contracts as you
change the size of the window. Its parent element is no longer the
<body>, but the <div>. So, it takes its width as a proportion of the
horizontal space occupied by the <div>.

10. Liquid layouts were popular in the days of smaller monitors, but the
page still looks unacceptable in a fully expanded browser on a 24-inch
monitor. It’s better to give the <div> a fixed width. Amend its style
rule like this:

div {
 width: 720px;
 margin-left: auto;
 margin-right: auto;
}

 Getting StartED with CSS

 104

This sets the width property to 720px, which fits comfortably into a
browser on an 800 × 600 resolution monitor, leaving a small margin on
both sides, and is centered on a larger resolution monitor, as shown in
Figure 3-12.

Figure 3-12. A fixed-width layout keeps lines of text the same length regardless of
the size of the browser window.

11. Using div as a type selector works here because there’s only one <div>
on the page, but the same styles would apply to any other <div> tags
that you might want to add. Most of the time when using <div> tags to
group elements together, you need to give each <div> a unique
identity with the id attribute, and create a style rule that applies only
to that <div>.

105

Chapter 3: How Can I Improve the Layout of My Text?

Edit the opening <div> tag to give it an ID like this:

<div id="wrapper">

12. Change the div selector of the style rule to #wrapper like this:

#wrapper {
 width: 720px;
 margin-left: auto;
 margin-right: auto;
}

To style an element that has an ID, prefix the ID with the hash sign
(#), and use it as the selector. I’ll come back to ID selectors and their
use in detail in Chapter 4.

13. Save both pages, and test journey.html again. It should look exactly
the same as before.

You can check your code against journey_08.html and
css/journey_08.css in the download files for this chapter.

Using margin-left to indent text
In addition to centering block-level elements and tables, the horizontal margins
can be used to indent paragraphs or position elements just where you want
them to be in relation to their surroundings. In the past, the <blockquote> tag
was frequently used to indent text. Apart from using a tag for a purpose that
was never intended, the big limitation of <blockquote> is that it created a 40-
pixel margin on both sides of the text. If you nested <blockquote> tags, the
text in the center steadily became narrower and narrower. Using CSS margins
eliminates that problem, because you can use just margin-left and set its
value to the exact amount you want.

It’s also a good idea to set your own top and bottom margins for paragraphs to
give you better control over the way they stack on top of each other. Opinions
vary on the best way to do this, but my preference is to set margin-top to 0,
and then choose a value for margin-bottom that suits the overall look of the
page.

So, let’s continue our practical exploration of margins with journey.html.

Indenting paragraphs

This exercise shows how to adjust the margins around paragraphs to indent
them and control the amount of whitespace between consecutive paragraphs.
You’ll also learn how to style the first paragraph after a heading differently.

 Getting StartED with CSS

 106

Continue working with the files from the previous exercise. Alternatively, use
as your starting point journey_08.html and css/journey_08.css from the
download files for this chapter.

1. Let’s break free of the 40-pixel straightjacket imposed by using
<blockquote> for indented text. Set the value of margin-left for
paragraphs to 45px like this:

p {
 text-align: justify;
 text-indent: 30px;
 line-height: 1.4;
 margin-left: 45px;
}

2. Save the style sheet, and test journey.html in a browser. It should
look like Figure 3-13.

Figure 3-13. Indenting the paragraphs has also affected the text in the
<blockquote>.

As you can see from the position of the paragraphs in relation to the
subheadings, the paragraphs are now indented 45 pixels from the left.
The problem is that the same rule has been applied to the paragraphs
inside the <blockquote> element. That’s one thing that needs to be
fixed.

107

Chapter 3: How Can I Improve the Layout of My Text?

Another aesthetic problem is that the indentation of the first line of
each paragraph after a heading doesn’t look quite right. A common
typographical convention is to indent the first line only of subsequent
paragraphs. So that’s another issue that needs to be fixed.

3. Fixing the first item is easy. Reset the paragraphs’ left margin in the
blockquote p rule like this:

blockquote p {
 font-style: italic;
 text-indent: 0;
 white-space: pre-line;
 margin-left: 0;
}

4. Fixing the second item is also easy. There are two ways to do it. The
one that’s most likely to be chosen by people with previous
experience of CSS is a class, but I don’t want to do it that way. It’s not
that I’m class prejudiced—far from it. Classes are very useful, and
you’ll start using them in the next chapter. However, to use a class,
you need to add the class attribute to every HTML element that you
apply it to. Never add extra code to the HTML, if you can avoid it.

What I want to do is style every paragraph that immediately follows a
heading. CSS has the perfect selector for just such a situation. It has a
rather grand sounding name: adjacent sibling selector, but it’s just a
humble plus (+) sign. This is how you use it:

� Both elements must have the same parent.

� Separate the first element from the following one with a plus
sign.

So, to style the first paragraph after an <h1> heading, the selector
becomes h1 + p. To style the first paragraph after an <h2> heading,
you use h2 + p. The current page has paragraphs that you want to
style differently when they come immediately after <h1>, <h2>, and
<h3> headings. So, this is the style rule that you need to create:

h1 + p, h2 + p, h3 + p {
 text-indent: 0;
}

Remember that text-indent, which was covered in Chapter 2, indents
only the first line in a block of text. So, this rule removes only the first
line indent. It doesn’t affect the 45-pixel indent created in step 1.

 Getting StartED with CSS

 108

ExplainED
The adjacent sibling selector is not supported by IE6. I don’t think it
matters a great deal if visitors using this outdated browser see indented
text on the first line of each paragraph. However, if you still have a lot of
visitors using IE6, you can’t use the adjacent sibling selector for styles that
have a big impact on your design. For such cases, you will probably need to
use a class or an ID selector, both of which are described in detail in the
next chapter.

In CSS3, the adjacent sibling selector has been renamed adjacent sibling
combinator, so you might see it called that in some places. The only
difference is in the name.

5. Save the style sheet, and test journey.html again. As shown in Figure
3-14, the first line of the first paragraph after each heading is no
longer indented, but the second paragraph after the <h3> heading is
not affected.

Figure 3-14 The adjacent sibling selector makes it possible to style the first
paragraph after a heading differently.

6. All that remains to fix the look of the paragraphs is to change the top
and bottom margins to gain greater control over the way they stack on
top of each other. Since subsequent paragraphs have the first line
indented, the space between paragraphs looks too big. By default,
browsers leave a space equivalent to the height of one line of text—in
other words, one em. Roughly half that amount would be better, so
amend the paragraph rule like this:

p {
 text-align: justify;
 text-indent: 30px;

109

Chapter 3: How Can I Improve the Layout of My Text?

 line-height: 1.4;
 margin-left: 45px;
 margin-top: 0;
 margin-bottom: 0.4em;
}

7. Save the style sheet, and test journey.html again. The text should
now look much more elegantly laid out. Of course, you might not
agree with me. Experiment with your own margin values until you get
the page looking the way you think looks best.

If you want to compare your code with mine, check your pages against
journey_09.html and css/journey_09.css in the download files for this
chapter.

Using negative margins
CSS permits the use of negative values for margins. This means that you can
reduce the gap between elements, or move an element further to the left—the
opposite of indenting. When using negative margins, you need to be careful,
because doing so could result in elements overlapping as in
negative_overlap.html in the download files for this chapter. The top margin
of the table has been set to -55px. As Figure 3-15 shows, the table has moved
up to overlap the preceding paragraph.

Figure 3-15. Negative margins can cause elements to overlap.

ExplainED
In Firefox 3.0 and 3.5, applying the negative top margin to the table has
an unexpected side-effect. It moves the table, but not the caption, even
though the caption is an integral part of the table. Other modern browsers
treat the caption correctly. Always test your designs in a range of
browsers.

 Getting StartED with CSS

 110

Of course, getting elements to overlap might be exactly what you want. If so,
go for it. However, the normal way to overlap elements is to use CSS
positioning, a more advanced subject that I have left until Chapter 10.

Another common use for negative margins is to move items off the screen. This
can be useful when you want to hide from visual browsers an accessibility
feature designed for screen readers for the visually disabled. For example, it’s
common to add a link to the page’s main content just before a navigation
menu. This enables the user of a screen reader to skip the navigation, rather
than having to listen to the menu repeated ad nauseam on each page. It’s a
vital feature for disabled visitors to a site, but you don’t want it displayed to
everyone else. Giving the link a negative left margin of several thousand pixels
banishes it out of sight, but it’s still recognized by the screen reader. However,
again you need to be careful about how this affects the rest of your layout. In
hidden_heading.html, I have given the top heading a margin-left value of
-9000px. This hides the heading, but the rest of the text doesn’t move up to
take its place, as you can see in Figure 3-16.

Figure 3-16. The heading has been moved offscreen with a negative margin, but it
still occupies the vertical space.

This is because the default behavior of block-level elements is to occupy all
available horizontal space and force the next element onto a new line. You’ll
learn how to change this default behavior in the next chapter by using the
float property. However, one way to move the text up to the top of the page
is to give the h1 style rule a negative top margin of approximately 45 pixels.

111

Chapter 3: How Can I Improve the Layout of My Text?

ExplainED
If you remove the comments from the margin-top declaration in the h1
style rule in hidden_heading.css, the text will move to the top of the
page. Note that this is an occasion where the position of the style rule
plays a crucial role. The preceding h1, h2, h3, h4, h5, h6 style rule sets
margin-top to 10px for all headings. Because the h1 rule comes lower in
the cascade, it overrides the value for margin-top and resets it to -45px
for the <h1> tag only. If the order of the style blocks is reversed, the
negative value for the <h1> tag is overridden.

Also note that when setting margin-left to -9000px, there is no comma in
the number. You cannot use the thousands separator with numbers in CSS.

In Chapter 11, I demonstrate an alternative way of hiding a “skip to
navigation” link for screen readers that avoids the problem demonstrated
in Figure 3-16.

Applying margins to inline elements
Throughout this chapter, I have concentrated on working with block-level
elements, such as paragraphs and headings, because that’s where margins play
the most important role in page layout. However, inline elements can also have
margins, but they work slightly differently from how you might expect. Figure
3-17 shows the middle section of inline_margins.html from the download files
for this chapter. The style rules for the page have applied a 40-pixel margin to
all sides of the links. As you can see, the margin has been applied to the left
and right sides of each link, but this has no effect on the paragraph’s line-
height property.

Figure 3-17. Vertical margins on inline text elements are ignored.

 Getting StartED with CSS

 112

Figure 3-18 shows the margins being inspected in Firebug. You can see that the
40-pixel margin has actually been applied to each side of the link, but the
vertical margins are ignored by the browser. This is not a bug, but the
expected behavior.

Figure 3-18. Firebug confirms that the vertical margins have been applied to the
link.

It’s a different story with images, though. Images are also inline elements, but
top and bottom margins do affect the layout of surrounding elements, as you’ll
see in the next chapter.

AdvancED
Trying to remember all the rules and exceptions can be confusing. Keep it
simple, and just remember that top and bottom margins have no effect on
inline text.

Keeping your style sheet manageable
In the exercises up to now, I have told you to add new style blocks at the
bottom of the style sheet. In some respects, it’s a good strategy, because each
new style rule that you create comes further down the cascade. As a result,
the new rule takes precedence in the event of a conflict. However, as you
continue to add rules, there comes a time when chaos threatens to take over.
The style sheet that you have been working on in the exercises is nearly 80
lines long—more if you have been adding a space between each style block.
Style sheets often come to several hundred lines. On a really sophisticated site,

113

Chapter 3: How Can I Improve the Layout of My Text?

there might be considerably more. So, you need to develop a strategy to
organize your style rules. Otherwise, maintenance becomes a nightmare.

One common technique is to put all rules relating to typography together,
followed by separate sections that represent different parts of the layout. If
some rules are used only in one part of the site, you might create a separate
style sheet and link it only to those pages that actually need it.

Another strategy for keeping style sheets manageable is to use shorthand
properties wherever possible. In the previous chapter, I warned you that the
font shorthand property is difficult to use; but once you understand the margin
shorthand property, you’ll find it easy to read—and much quicker to type.

Before reorganizing the style sheet, let’s see how the margin shorthand
property works.

Using the margin shorthand property
As Table 3-1 says, the margin shorthand property takes between one and four
values. This is how it works:

� One value: Applies equally to all four sides.

� Two values: The first one applies to the top and bottom, and the
second one to the left and right.

� Three values: The first one applies to the top, the second one to the
left and right, and the third one to the bottom.

� Four values: The values are applied in clockwise order starting from
the top.

Confused? Don’t be. Take my advice, and forget about using three values.
Concentrate on one, two, and four. The way to remember the rest is simple:

� Always start at the top.

� Go clockwise.

If there’s only one value, it’s easy—it applies to the top and all other sides.

If there are two values, the first one applies to the top. Then, going clockwise,
the next one applies to the right side. The same two values are repeated in the
same order as you continue going round the clock. So, the first one is applied
to the bottom, and the second one to the right.

If there are four values, you start at the top, and go clockwise to the right,
bottom, and left. Some designers use the mnemonic TRouBLe to remember
this, but I think that clockwise is much simpler.

 Getting StartED with CSS

 114

So, let’s tidy up the style sheet for journey.html by converting the existing
single-side properties.

Converting margin properties to shorthand

Continue using the same files as in the preceding exercise. Alternatively, use
journey_09.html and css/journey_09.css in the download files for this
chapter.

1. The first style block, body, already uses the margin shorthand
property, so there’s nothing to do there. The next style rule applies to
all headings and looks like this:

h1, h2, h3, h4, h5, h6 {
 color: #468966;
 font-family: Georgia, "Times New Roman", Times, serif;
 margin-top: 10px;
 margin-bottom: 10px;
}

This applies a 10-pixel margin to both the top and bottom of each
heading. The shorthand version must always provide a value for each
side, so you need a value for left and right. But since you don’t want a
horizontal margin, set left and right to 0. Top and bottom are the
same, as are left and right, so you need just two values.

2. Amend the rule like this:

h1, h2, h3, h4, h5, h6 {
 color: #468966;
 font-family: Georgia, "Times New Roman", Times, serif;
 margin: 10px 0;
}

3. The next style block to use a margin property is this:

blockquote p {
 font-style: italic;
 text-indent :0;
 white-space: pre-line;
 margin-left: 0;
}

This sets only the left margin. Don’t even think about how you deal
with the other three sides. This is a case where you’re interested only
in the one margin, because it overrides the general rule for
paragraphs. Using the margin-left property is exactly what you want.
Leave it alone.

115

Chapter 3: How Can I Improve the Layout of My Text?

4. The next rule is, in fact, the general rule for paragraphs, which looks
like this:

p {
 text-align: justify;
 text-indent: 30px;
 line-height: 1.4;
 margin-left: 45px;
 margin-top: 0;
 margin-bottom :0.4em;
}

This sets specific values for all margins, except margin-right. When
you don’t know what value to apply, you can use the keyword auto.
However, there is no right margin on the paragraphs, so 0 is the
correct value. Change the rule like this:

p {
 text-align: justify;
 text-indent: 30px;
 line-height: 1.4;
 margin: 0 0 0.4em 45px;
}

Going clockwise, this sets the top and right margins to 0, the bottom
margin to 0.4em, and the left margin to 45px. If you replace the
second value with auto, the result is the same.

5. The last three style blocks that set margins are all used to center
elements by setting the left and right margins to auto.

table {
 margin-left:auto;
 margin-right:auto;
}
blockquote {
 margin-left:auto;
 margin-right:auto;
 width:38%;
}
#wrapper {
 width:720px;
 margin-left:auto;
 margin-right:auto;
}

In the case of the wrapper <div>, you definitely want the top and
bottom margins to be 0, but rather than agonizing over what to use for
the table and blockquote rules, set them to 0, too. If you don’t like

 Getting StartED with CSS

 116

the resulting vertical space between them and the adjacent elements,
you can adjust it later. Amend the three rules like this:

table {
 margin: 0 auto;
}
blockquote {
 margin: 0 auto;
 width:38%;
}
#wrapper {
 width:720px;
 margin: 0 auto;
}

6. Save the style sheet, and test journey.html in a browser. There is a
tiny reduction in the vertical space around the Roosevelt quote, but
everything else remains the same. This is the advantage of collapsing
vertical margins. Even though you didn’t check the top and bottom
margins on the <table> and <blockquote> elements, the vertical
margins of the adjacent elements filled in the gap. As long as the
adjacent elements have a suitable margin, the layout is often not
disturbed.

You can check your code, if necessary, against journey_10.html and
css/journey_10.css in the download files for this chapter.

AdvancED
Using shorthand properties reduces the amount of code in your style
sheets. So, in theory at least, websites that use CSS shorthand load more
quickly than ones that use the individual properties. In practice, the
difference is likely to be far too short to notice. Use the coding style that
makes you feel comfortable. If you have difficulty remembering the rules
for shorthand properties, use the individual properties until you gain more
experience with CSS.

Organizing your style rules for easier
maintenance
Designers adopt different strategies for organizing their style sheets. There’s
no “right way” to do it. However, there is a wrong way. . .

117

Chapter 3: How Can I Improve the Layout of My Text?

When reordering style blocks, you must remember the effect of the cascade.
Some people simply put all their style rules in alphabetical order, and
then wonder why their pages suddenly don’t work the way they intended. In
Chapter 2, I warned you about the need for the pseudo-classes for links to be in
the order :link, :visited, :hover, :active (LoVe-HAte). Put them in
alphabetical order, and your links will always look as though they have been
visited. They won’t change even when the mouse is hovered over them.

When reordering style blocks, you can go directly into the code to cut and
paste. Alternatively, some editing programs let you drag and drop your rules. In
Dreamweaver CS3 or above, open the CSS Styles panel and select All mode. In
Expression Web, use the Manage Styles task pane. In both programs, select the
style block that you want to move, and hold down the left mouse button. As
you drag the style block, a line appears, indicating where the rule will be
moved to. When you’re in the right position, release the mouse button to move
the rule (see Figure 3-19).

Figure 3-19. Both Dreamweaver (left) and Expression Web (right) let you reorganize
your styles through drag and drop.

 Getting StartED with CSS

 118

Rather than go through the style sheet step by step, I’ll leave you to decide
how to reorganize the style rules for easier maintenance. The following listing
shows how I reorganized journey.css (it’s css/journey_11.css in the download
files for this chapter). Notice how I have added CSS comments to identify
different sections of the style sheet indicating what the rules are for.

/* Page infrastructure */
body {
 background-color: #FFF;
 color: #000;
 font-family: "Trebuchet MS", Arial, Helvetica, sans-serif;
 margin: 0;
 padding: 0;
}
#wrapper {
 width: 720px;
 margin: 0 auto;
}
/* Headings */
h1, h2, h3, h4, h5, h6 {
 color: #468966;
 font-family: Georgia, "Times New Roman", Times, serif;
 margin: 10px 0;
}
h1 {
 font-size: 220%;
 font-variant: small-caps;
 text-align: center;
 word-spacing: 0.2em;
 letter-spacing: 0.05em;
}
h1 + p, h2 + p, h3 + p {
 text-indent: 0;
}
/* Main text */
p, table {
 font-size: 14px;
}
p {
 text-align: justify;
 text-indent: 30px;
 line-height: 1.4;
 margin: 0 0 0.4em 45px;
}
a {
 font-weight: bold;
 text-decoration: none;
}
a:link {
 color: #B64926;
}

119

Chapter 3: How Can I Improve the Layout of My Text?

a:visited {
 color: #FFB03B;
}
a:hover, a:active {
 color: #8E2800;
 text-decoration: underline overline;
}
blockquote {
 margin: 0 auto;
 width: 38%;
}
blockquote p {
 font-style: italic;
 text-indent: 0;
 white-space: pre-line;
 margin-left: 0;
}
table {
 margin: 0 auto;
}
caption {
 font-size: 18px;
 color: #468966;
 font-weight: bold;
 text-transform: capitalize;
}
th {
 font-weight: normal;
 text-align: right;
}

At the moment, I have put the rules for the <blockquote> and <table>
elements in the “Main text” section. If I start adding more rules for these
elements, I will probably create new sections for them. Most editing programs
highlight comments in a different color from the rest of the code, so adding
them makes it easier to find the section you’re looking for when you come back
to a style sheet in several months’ time.

Chapter review
This chapter has introduced you to margins, the first part of the CSS box model
that governs the layout of elements on a web page. Margins create the vertical
and horizontal space around an element. Since all block-level elements and
tables have a margin property that can be applied independently to each side,
you can do a great deal to influence the layout of your pages. The main thing
to remember is that vertical margins of adjacent elements collapse, whereas

 Getting StartED with CSS

 120

horizontal margins are always preserved. Inline elements can also have
margins, but top and bottom margins around inline text are ignored.

Negative margins are permitted. This can be useful for adjusting the position of
an element, or even removing it completely from the visual display. Negative
margins can be used in imaginative ways to lay out pages, as you’ll see in
Chapter 11.

This chapter showed you how to use Firebug and other CSS analysis tools to
examine margins and how they overlap. Once you start pushing elements
around by adjusting their margins, they are likely to affect the position of
other elements. So, it’s always a good idea to test your styles at frequent
intervals during development. If you change a rule or value and see that it’s
had an unexpected effect on your design, you know immediately what the
culprit is.

You also learned how to use the adjacent sibling selector (a + sign between two
selectors) to target the first paragraph after a heading. This can be used with
any two elements, where you want to treat the second element a special way
when it immediately follows the first one. Finally, the chapter discussed the
need to organize style sheets in a logical way for ease of maintenance. When
reordering style rules, remember to preserve the cascade by putting rules that
override others lower down in the style sheet.

In the next chapter, you’ll continue working with margins as you explore the
float property, which changes the behavior of images and block-level
elements, allowing you to move them to the left or right and position other
elements alongside. I’ll also introduce the concept of using classes and ID
selectors to apply styles.

121

 Chapter 4
How Can I Flow Text Around
Images?
It’s time to bring the sample page alive with some images. The reason I have
not used images so far is because HTML treats images as inline elements. As
you saw in the previous chapter, inserting an image in a block of text forces
the text to align with the bottom of the image. In order to get the text to flow
around the image, you need to use the CSS property called float. In principle,
using float is very simple, and it can be used on any HTML element, not just
images. You float the element to the left or right, and everything moves up to
fill the vacated space alongside, as illustrated in Figure 4-1.

Figure 4-1. The CSS float property is used, among other things, to wrap text around
images.

 Getting StartED with CSS

 122

This chapter will have you flowing text around images in next to no time.
That’s the good news. . .

As so often in life, things aren’t always as simple as they first seem. Although
it’s the text that has floated up to fill the space alongside the image, you apply
the float property to the image, and not the text. What happens is that the
floated object—in this case, the image—floats to one side to make room for
whatever follows. That’s how the text automatically resumes its normal width
when it comes to the bottom of the image. Floating elements can have
unexpected consequences for the unwary. So, after showing you the basic use
of the float property, I’ll go deeper into the effect that it has on the flow of
the document. Don’t let that put you off. Most of the time, using float is
very easy.

Because you frequently need to float more than one element, now is the time
for me to start using CSS classes. A class is simply a different type of CSS
selector. The main difference is that you need to add the class attribute to
the opening tag of the HTML element(s) that you want to use the styles defined
in the class. I’ll also show you how to use an ID selector to style unique
elements in a page.

In this chapter, you’ll learn how to do the following:

� Create a class and apply it to an HTML element.

� Float images to the left and right, and flow text around them.

� Prevent headings and other elements from moving up alongside
images.

� Correct problems caused by floating elements.

� Create ID selectors to style unique elements.

� Add a caption to a floated image.

As you’ll see in later chapters, you can use float with many different parts of a
web page, but I’m going to concentrate on images in this chapter, because
they demonstrate just about everything that you need to know about this
property. Because floating images is such a common task, it makes sense to
create two basic classes in your style sheet to move images to the left
and right. Before doing that, I need to explain what classes are and how you
create them.

123

Chapter 4: How Can I Flow Text Around Images?

CSS classes 101
Classes tend to be one of the first things that most people learn about CSS. As
a result, they start using them indiscriminately, and end up with complex code
that’s difficult to maintain. Wherever possible, you should use type selectors to
create your basic styles. Classes come into their own when you want to apply a
different style or set of styles to several elements on a page. Say, for example,
you have defined a basic style for all paragraphs using the p type selector, but
you want certain paragraphs to use a different font. A class selector lets you
define that different style and then apply it to the selected paragraphs. If that
sounds rather vague, all should become clear with a practical example.

Creating and applying CSS classes
A CSS class looks the same as all the style rules you have created so far. The
only difference is the selector. Instead of using the name of an HTML tag, you
choose your own names for classes. You can call a class anything you like, but
it’s recommended to use names that describe what the style is for. A good
example of a class name is warning. It tells you that anything styled with that
class is intended as a warning. A bad example is boldRed. Sure, it tells you that
anything styled with it is going to be in bold, red text. But what happens if you
decide that all warnings should be black on a yellow background? You either
end up with a class name that no longer describes its purpose, or you need to
change the class name in every single place you have used it.

When choosing a class name, you must follow the following rules:

� No spaces are permitted.

� The only punctuation characters permitted are the hyphen (-) and the
underscore (_).

� The name cannot begin with a number or a hyphen followed
immediately by a number.

AdvancED
If you’re using a language other than English, you’ll be delighted to know
that, as long as your pages are encoded as UTF-8, you can use accented
characters in your class names. In fact, you can also use Chinese characters
or other Asian scripts. When using characters other than A–Z, a–z, or 0–9 in
an external style sheet, put @charset "utf-8"; at the top of the style
sheet to indicate that it uses UTF-8 encoding.

 Getting StartED with CSS

 124

When you create a class in a style sheet or <style> block in the <head> of a
page, you precede the class name with a period or dot (.).

So, to create the style rules for the warning class with bold, red text, this is
what goes in your style sheet:

.warning {
 font-weight: bold;
 color: #F00;
}

To apply this rule to a paragraph, you add the class attribute to the opening
HTML tag with the name of the class as its value. However, you use the name
on its own, without the leading dot, like this:

<p class="warning">Please correct the highlighted errors.</p>

If you are hand-coding everything, this involves going into the HTML code and
adding the class attribute manually. However, most popular HTML editing
programs let you apply classes through the user interface. In Expression Web,
either select the object to which you want to apply the class or position your
cursor inside it. Then, select the class from the Apply Styles task pane, as
shown in Figure 4-2.

Figure 4-2. Use the Apply Styles task pane in Expression Web to apply a class.

The process is very similar in versions of Dreamweaver since MX 2004. Select
the element to which you want to apply the class, or position your cursor inside
it; and then select the class name from the Class menu in the Property
inspector. Both Dreamweaver and Expression Web display the names of classes
that affect fonts in a similar style to that applied by the class. This makes them
easier to recognize, particularly if you have a style sheet with a lot of styles.

125

Chapter 4: How Can I Flow Text Around Images?

That’s all there is to know about creating and applying a class. If you would
like to practice, the example file shown in Figure 4-2 is warning_start.html in
the download files for this chapter. The finished version is warning.html, which
has the warning class applied to two paragraphs. The following styles are
embedded in a <style> block in the <head> of both pages (there are other
styles, but these are the relevant ones):

body {
 font-family: "Trebuchet MS", Arial, Helvetica, sans-serif;
 font-size: 14px;
 color: #000;
 background-color: #FFF;
}
p {
 margin: 0 auto 0.75em 30px;
}
.warning {
 font-weight: bold;
 color: #F00;
}

In warning_start.html, all paragraphs are styled the same. However, in
warning.html, the two paragraphs are bold and red. As always, the cascade
adds the rules together, so the warning paragraphs still share the same styles
where there is no conflict, but the color property overrides the value inherited
from the body rule. The font-weight property doesn’t cause any conflict, but
its value is added to the style, rendering them in bold.

ExplainED
Class selectors are case-sensitive. If class styles don’t work, the first thing
to do is check that the spelling of the class attribute in the HTML tags
matches the class selector in your style sheet. For example, if your style
sheet uses .warning, putting class="Warning" in your HTML won’t work. As
far as browsers are concerned, “Warning” is not the same as “warning.”
Er, you have been warned.

Now you know how to make classes, it’s time to float.

Using float to flow text around images
Working with float doesn’t require you to commit lots of CSS properties to
memory. In fact, there are just two, as listed in Table 4-1.

 Getting StartED with CSS

 126

Table 4-1. CSS Float Properties

Property Initial value Inherited Description

float none No Floats an element to the left or

right of its parent element. Can be

used on all elements, except

absolutely positioned ones (see

Chapter 10). When applied to an

inline element, such as an image,

the element is treated as a block.

clear none No Prevents block-level elements

from flowing alongside a floated

element, and pushes them down

below the floated element.

The float property accepts the following values:

� left: Float the element to the left, and flow text and other elements
around its right side.

� right: Float the element to the right, and flow text and other
elements around its left side.

� none: Prevent the element from floating. This is the default value.

Since float is not inherited, you can also use inherit to force inheritance from
the parent element. For most practical purposes, the only values that need
concern you are left and right. The purpose of none is in case you need to
override the value of float. As you’ll see in later chapters, the float property
isn’t used only with images. You might have a situation where most
elements are floated left with the following rule:

li {
 float: left;
}

 For elements that you don’t want to float, you could create the
following class:

.dontFloat {
 float: none;
}

127

Chapter 4: How Can I Flow Text Around Images?

ExplainED
If you’re wondering whether this is a very likely scenario, the answer is
“no.” Floating elements is quite common—it’s how you create a
navigation bar (see Chapter 8). However, you would probably use a more
specific selector to target the elements you want to float, thereby
avoiding the need to create the dontFloat class.

Some of the permitted values for CSS properties are rather like fire
extinguishers. Most people will never use one in their whole lifetime, but
if the occasion ever arises where you need one, you’re sure glad it was
there. That’s why none is an acceptable value for float. You might just
need it one day, but in all probability, you won’t.

I’ll deal with clear later. First, let’s put float to work.

Creating generic classes to position images
The float property moves an element to the left or right and flows the
following content around the opposite side. It works in exactly the same way as
the HTML align property—in other words, there is no gap between the image
and the text flowing along its side. To give the image some breathing space,
you need to add a margin to the side that content is flowed around. So, if the
image is floated left, you need to add a right margin to the image; and if it’s
floated right, the margin needs to be on the left.

In my experiments, I have found an 8-pixel margin separates images and text
quite well. I also find it useful to add a small top and bottom margin to the
image, usually about 3 pixels. So, in my style sheets, I normally create the
following two classes to position images:

/* Image alignment */
.floatleft {
 float: left;
 margin: 3px 8px 3px 0;
}
.floatright {
 float: right;
 margin: 3px 0 3px 8px;
}

 Getting StartED with CSS

 128

Both classes use the margin shorthand property, which—as you learned in
Chapter 3—lists the values in clockwise order starting from the top. So, the 8px
in the floatleft class represents the right margin, and in the floatright class,
it’s the left margin.

How do I center an image?
The float property moves an element to the left or right. It cannot be used to
center an image. If you think about it for a moment, it actually makes sense.
The float property has two effects: it moves the element, and flows the
remaining content around its side. Imagine how difficult it would be to read
continuous text that flowed along both sides of an image.

Although you might not have realized it, you learned how to center an image in
the previous chapter. As long as it has a defined width, you can center any
block-level element by setting its left and right margins to auto. If you’re
creating well designed web pages, every image will have its width declared in
the tag. So, you can create another class to center images and other
objects like this:

.imgcentered {
 margin: 3px auto;
 display: block;
}

Images are inline elements, so setting the left and right margins to auto has no
effect on its own. You need to use the CSS display property to get the browser
to treat it as a block-level element by setting its value to block. You’ll learn
more about the display property in Chapter 8.

That had nothing to do with floating, but it’s a question that gets asked so
often, it was a worthwhile diversion. Now, back to floating images and flowing
text around them.

Aligning images with CSS classes

The exercises in this chapter continue using journey.html and css/journey.css
from the previous two chapters. If you have been doing the exercises in the
order they appear in this book, you can continue using the same files. If you
want to jump in at this point or start with fresh files, use as your starting point
journey_11.html and css/journey_11.css in the download files for this
chapter. The finished versions for each exercise are also in the download files
to enable you to check your progress.

129

Chapter 4: How Can I Flow Text Around Images?

This exercise shows how to position images to the left or right of text, as well
as in the center.

1. If you haven’t already done so, add the floatleft, floatright, and
imgcentered class definitions to the bottom of journey_css.

/* Image alignment */
.floatleft {
 float:left;
 margin:3px 8px 3px 0;
}
.floatright {
 float:right;
 margin:3px 0 3px 8px;
}
.imgcentered {
 margin:3px auto;
 display:block;
}

Don’t forget the dot (period) in front of each class name. There must
be no space between the dot and the name.

2. Insert forest_grassland.jpg from the images folder at the beginning
of the paragraph under the <h2> heading that reads From biting wind
to warm updraft.

3. Apply the floatleft class to the image either by inserting
class="floatleft" directly into the tag or by using your HTML
editor to do it for you. The HTML code should look similar to this:

<h2>From biting wind to warm updraft</h2>
 <p><img src="../images/forest_grassland.jpg" alt="Kaibab National �
Forest" width="325" height="208" class="floatleft" />Because of. . .

ExplainED
It doesn’t matter which order the attributes appear inside the tag.
The important thing to remember is that you don’t use the dot in front of
the class name when assigning it as the value of the class attribute inside
an HTML tag.

4. Save the page and style sheet, and test journey.html in a browser.
The image should be on the left with the text flowing around its right
side, as shown in Figure 4-3.

 Getting StartED with CSS

 130

Figure 4-3. The image is floated to the left, and the text that flows around the sides
is offset by the margins.

If you want a wider or narrower margin between the image and the
text, adjust the second value of the margin shorthand property in the
floatleft class definition. You can also adjust the first and third
values to change the vertical position of the image in relation to the
text. As long as the final value remains 0, the left side of the image
will remain flush with the main body of the paragraph.

5. Change the class applied to the image from floatleft to floatright.
Save and test the page again. This time the image should be on the
right, as shown in Figure 4-4.

Figure 4-4. Floating the image to the right flows the text around the left side.

131

Chapter 4: How Can I Flow Text Around Images?

Again, adjust the margins if you want to change the size of the gap
between the text and the image. This time, it’s the fourth value of
the margin shorthand property that controls the horizontal space
between the image and the text. Also note that the gap is evenly
spaced because the style rule for paragraphs justifies the text. If the
text is left-aligned, the gap between text and image will appear more
ragged.

6. The image doesn’t need to be at the beginning of the paragraph for
you to float it. Move the image to the start of the second sentence
(the one beginning “Even during the summer. . .”). Save the page, and
test it again. It should now look similar to Figure 4-5.

Figure 4-5. Browsers differ in the way they position images floated in the middle of
a block of text.

When the floated element is in the middle of inline content, such as
text, the browser positions the top of the floated element as high as
possible, but never higher than the point where it appears in the
underlying HTML. Browsers don’t always agree on where this should
be. The screenshot on the left of Figure 4-5 was taken in Firefox 3.0.
As you can see, the top of the image is on the line below the words
“Even during the summer. . .” In IE8, it’s aligned with the line in
which the image was inserted, as shown on the right of Figure 4-5.

7. Finally, change the class to imgcentered, and test the page again. This
time, the image should be centered, as shown in Figure 4-6.

www.allitebooks.com

http://www.allitebooks.org

 Getting StartED with CSS

 132

Figure 4-6. The float property cannot center elements, so the text is broken at the
point the image is inserted.

As you can see, the text is broken at the point the image was inserted
into the text, so you need to put the image at a place where it’s
convenient to break the text, such as at the end of a sentence.

You can check your code, if necessary, against journey_12.html and
css/journey_12.css in the download files for this chapter.

What happens when the image is taller than the
text?
When you center an image in the middle of text, you know exactly what’s going
to happen—the following text is pushed down below the image. But what about
a floated image that doesn’t have enough text to flow alongside? Most of the
time, it’s not a problem. When you float an image inside a paragraph, it’s not
only the text in the containing paragraph that’s flowed around the image.
Subsequent paragraphs are also moved upward to fill the space, as shown in
Figure 4-7.

133

Chapter 4: How Can I Flow Text Around Images?

Figure 4-7. The text in the following paragraph is also flowed around the side of the
floated image.

However, there are times when this automatic upward movement can play
havoc with your layout, as you can see in Figure 4-8.

Figure 4-8. A tall floated image affects all subsequent layout.

 Getting StartED with CSS

 134

Obviously, one solution is to make sure you have sufficient content to flow
alongside your images. However, you can’t always predict such things. So, you
need a way to prevent this type of layout disaster. The answer is the clear
property.

Using clear to force elements below a floated
image
The float property’s partner in crime, clear, takes the same values as float,
plus one more, namely:

� left: Force the element to a new line below any left-floated
elements.

� right: Force the element to a new line below any right-floated
elements.

� both: Force the element to a new line below any left- or right-floated
elements.

� none: Floats act normally. This is the default value but can also be
used to cancel the clear property when creating a rule that inherits
from another.

Since clear is not inherited, you can also use inherit to make a child element
act the same way as its parent, but most of the time, you are likely to use
left, right, or both.

The clear property is simple to use, as you’ll see in the following exercise.

Preventing headings from flowing alongside images

This exercise shows how to prevent the layout problems shown in Figure 4-8.
Continue using the same files as in the previous exercise. Alternatively, use
journey_12.html and css/journey_12.css in the download files for this
chapter.

1. Insert angels_window.jpg at the beginning of the first paragraph after
the heading that reads Head for heights required, and apply the
floatleft class to the image.

2. Save the page, and test it in a browser. It should look like Figure 4-7.

3. Replace forest_grassland.jpg with cape_royal.jpg, and set its class
to floatleft.

135

Chapter 4: How Can I Flow Text Around Images?

4. Save the page, and test it again in a browser. It should now look like
Figure 4-8. As you can see, the image is much taller. This results in
not only the table, but also the <h3> heading and the following
paragraph being flowed around the right side of the image. It also
demonstrates what happens when two elements floated the same way
come alongside each other.

ExplainED
When an element is floated, the float property prevents it from being
overlapped by other elements. So the image of Angel’s Window moves up
and as far left as it can go, but the presence of the tall image prevents it
from moving all the way across to the left side of the page.

Although Figure 4-8 looks a mess, this behavior is useful, because it means
that you can float several elements in the same direction, and get them to
line up in a row. This, in fact, is how you create a horizontal navigation
bar from an unordered list. As you’ll see in Chapter 8, each list item is
floated left, and styled to look like a button.

5. To fix the problem, edit the style sheet to add the clear property to
the selector that groups all the headings. Set its value to left, like
this:

h1, h2, h3, h4, h5, h6 {
 color: #468966;
 font-family: Georgia, "Times New Roman", Times, serif;
 margin: 10px 0;
 clear: left;
}

6. Save the page, and test it again, preferably in Firefox with Firebug
installed or in Safari 4. The heading, together with the following
paragraph and image, should now be below the tall image, and flush
with the left side of the page. However, you’ll probably notice that
the gap between the bottom of the image and the heading is rather
narrow.

7. Open Firebug or the Safari 4 Web Inspector panel, select the HTML
tab, and expand the page hierarchy to reveal the <h3> tag. When
you hover your mouse pointer over the heading, the margins should
be highlighted, as shown in Figure 4-9. Unfortunately, the IE8 and

 Getting StartED with CSS

 136

Opera 10 Developer Tools panels don’t highlight margins in the same
way, so they’re not quite so useful in this case.

Figure 4-9. Floated elements appear to ignore the top margin of cleared elements.

ExplainED
It comes as a surprise that the 10-pixel margin on the top of the heading
overlaps the bottom of the floated image. This isn’t a bug; it’s what the
CSS specification says should happen.

What you see highlighted in Figure 4-9 is the margin declared in the style
sheet. The browser actually applies a much bigger top margin to the
heading to push it down just past the floated image, but it doesn’t add the
declared margin as well. Consequently, the gap between the tall image
and the heading is not the 10 pixels you might have been expecting, but
the 3 pixels on the bottom of the floated image. In fact, if the image
didn’t have a bottom margin, there would be no gap at all.

What this means is that if you want a minimum gap between the bottom of
a floated element and the top of a cleared one, you must put that amount
of margin on the bottom of the floated element.

For the purposes of this exercise, I’m not going to change the bottom
margin of the floated image, because I’m using it only to demonstrate
how the clear property affects margins.

137

Chapter 4: How Can I Flow Text Around Images?

8. Change the class of the tall image to floatright, and test the page
again. This time, it should look like Figure 4-10.

Figure 4-10. Using clear: left doesn’t affect images floated to the right.

This demonstrates two points: using clear with a value of left has no
influence on anything that is floated to the right, and when elements
are floated to opposite sides, content rises to fill any gap between
them.

9. This layout doesn’t look too bad, but the purpose of this exercise is to
experiment with clear. So, change the value of clear from left to
both.

10. Test the page again. As you might expect, the top of the <h3> heading
is now in line with the bottom edge of the tall image. You would get
the same effect in this particular layout by using right as the value
for clear. However, using both ensures that headings are pushed down
below floated images regardless of which side they are floated to.

 Getting StartED with CSS

 138

You can check your code, if necessary, with journey_13.html and
css/journey_13.css in the download files for this chapter.

What if an element is too wide to sit alongside a
float?
As you can see in Figures 4-8 and 4-10, the Grand Canyon Facts table moved up
alongside the tall image. That’s because the table is only 300 pixels wide. So,
there’s plenty of room for it to sit alongside a 250-pixel wide image. However,
what happens if the table is too wide to fit in the space alongside the image?

As you might expect, it automatically drops below the floated element to the
first available space where it will fit. You can see this in wide_table.html in
the download files for this chapter (see Figure 4-11), where I have added a
border to the table and increased its width to 600 pixels.

Figure 4-11. When an element is too wide to fit alongside, it is automatically moved
down below the floated element.

It’s the width of the table, not clear, that has forced it down below the image.
While that seems fairly logical, what might come as a surprise is how CSS treats
the <blockquote> element when it’s alongside a floated element.

139

Chapter 4: How Can I Flow Text Around Images?

What happens to margins alongside a float?
Because of the way the 300-pixel table sat comfortably alongside the floated
image, and was centered in the available space, you would be tempted to think
that the margins of all block-level elements are treated that way.
Unfortunately, you would be wrong.

The reason the table was centered is because the CSS specification says that
when a table appears alongside a floated element, the table’s borders must not
overlap the floated element. In this sense, it’s treated the same way as
another floated element. As Figure 4-8 shows, when two images are floated in
the same direction, the second image doesn’t overlap the first one but sits
alongside if there’s sufficient space. Of course, if there isn’t enough room, it
drops below the first one and floats as far as it can in the designated direction.
So, tables and floats never overlap. It’s a different story with other block-level
elements.

This concept can be quite difficult to grasp when working purely with style
rules. Fortunately, Firebug and the Safari 4 Web Inspector panel give a visual
representation of how the browser handles block-level elements alongside
floats. So, roll up your sleeves. It’s time to start experimenting again.

Adjusting the margins of the quote alongside a floated
image

In this exercise, you’ll use Firebug or the Safari 4 Web Inspector panel to
examine how the width and margins of the Roosevelt quote are treated when
it’s alongside a floated image. Unfortunately, this exercise does not work with
the IE8 or Opera 10 Developer Tools panels. For the sake of brevity, the
instructions refer only to Firebug.

Continue working with the same files as the previous exercise. Alternatively,
use journey_13.html and css/journey_13.css in the download files for this
chapter.

1. Move the tall image, cape_royal.jpg, from the second paragraph to
the beginning of the first paragraph (alongside the words “The Grand
Canyon. . .”), and set its class to floatleft.

2. Save the page, and test it in Firefox or Safari 4. It should look like
Figure 4-12.

 Getting StartED with CSS

 140

Figure 4-12. Unlike the table, the quote hasn’t been centered.

Instead of being centered, the <blockquote> has been left-aligned,
just like the preceding paragraph. Why has this happened? You might
be tempted to think it’s because the width of the <blockquote> is
declared as a percentage, and the browser has failed to calculate the
automatic margins on the left and right. It’s a reasonable assumption,
but it’s wrong.

3. Before using Firebug to inspect what’s happening, change the width in
the blockquote style rule from 38% to 600px like this:

blockquote {
 margin: 0 auto;
 width: 600px;
}

4. Save the style sheet, and reload journey.html in the browser. Surely,
the <blockquote> element will have been forced below the image?
Wrong.

The text in the quote is wider, but it’s still up there alongside the
image. Time to open Firebug, and find out what’s going on.

5. Expand the code in the HTML tab of Firebug, and locate the
<blockquote> element. As you hover your mouse pointer over the
element, Firebug highlights its position in the top half of the browser

141

Chapter 4: How Can I Flow Text Around Images?

window. As Figure 4-13 shows, the 600-pixel width of the
<blockquote> overlaps the floated image. However, the text inside the
<blockquote> is pushed aside. You can also see that the element is, in
fact, centered. If you think it’s slightly off-center, don’t forget there’s
a 45-pixel offset on the paragraph containing the floated image.

Figure 4-13. Firebug reveals why the quote hasn’t been pushed below the image.

6. Although the treatment of the <blockquote> seems odd, it begins to
make more sense if you select the paragraph above, and see how it’s
highlighted by Firebug. As shown in Figure 4-14, Firebug highlights the
full width of the paragraph in one color (normally light blue) and its
margins are highlighted in a different color (normally yellow). The
only difference is that the margins of the <blockquote> element aren’t
highlighted because they’re calculated automatically by the browser,
rather than being defined in the style rule.

 Getting StartED with CSS

 142

Figure 4-14. Although the content is displaced by the float, the block-level element
still occupies its normal place.

What this means is that, with block-level elements, it’s only the
content that is shifted left or right, depending on the direction of the
float. The element itself remains unchanged.

AdvancED
This treatment of block-level elements alongside floated elements has
important consequences when the block-level element has a background or
border. The background and/or border are drawn underneath the floated
element unless you take appropriate steps to counter this behavior.
Backgrounds and borders are the subject of the next chapter, so I’ll leave
that issue until then.

7. To center the <blockquote> element, you need to do a little
calculation. The page content is enclosed in a wrapper <div> 720
pixels wide. You want to center the <blockquote> element in the

143

Chapter 4: How Can I Flow Text Around Images?

space to the right of the floated image. The image is 250 pixels wide,
but it’s inside a paragraph that has a 45-pixel left margin, and the
image itself has an 8-pixel right margin. That means the space
available to the right of the image can be calculated as follows:

720 – (45 + 250 + 8) = 417

The width property of the blockquote style rule is currently set at 38%
of the parent element—in other words, 38% of 720 pixels. That’s 723.6
pixels, which needs to be rounded up to 725px to create an even
margin of 71px on both sides.

So, the left margin of the <blockquote> element needs to be 71px plus
the left margin of the paragraph (45px), image width (250px), and
image right margin (8px):

71 + 45 + 250 + 8 = 374

8. Edit the blockquote style rule like this:

blockquote {
 margin: 0 71px 0 374px;
 width: 275px;
}

9. Save the style sheet, and reload the page in the browser. The
<blockquote> should now be nicely centered in the space alongside
the image. The only problem is that it’s too close up against the
preceding paragraph.

10. Fix the vertical position of the <blockquote> by setting its top margin
to 50px like this:

blockquote {
 margin: 50px 71px 0 374px;
 width: 275px;
}

The page should now look like Figure 4-15 (note that I have added
forest_grassland.jpg back into the second paragraph to add some
balance to the page).

 Getting StartED with CSS

 144

Figure 4-15. Calculating the size of the left margin results in the quote being
correctly positioned alongside the floated image.

You can check your code, if necessary, against journey_14.html and
css/journey_14.css in the download files for this chapter.

Phew! That involved a bit of working out, but as you’ll discover with CSS, there
are times when you need to sit down with pencil and paper to calculate the
necessary dimensions. Hopefully, though, this should also demonstrate the high
degree of control that CSS gives you over the layout of page elements.

In a real-world situation, you wouldn’t use the blockquote type selector to
position the Roosevelt quote like this, because the same properties would
apply to all <blockquote> elements in pages linked to the same style sheet.
This particular quote is a unique element that needs to be treated in a unique
way. That calls for a new type of selector: the ID selector.

Using ID selectors to style unique
elements
You briefly came across the use of ID selectors in the previous chapter when
you gave the <div> that wraps around the page content the ID, wrapper. Using
an ID selector is easy. The ID identifies the element that you want to style

145

Chapter 4: How Can I Flow Text Around Images?

differently from any other element. The ID must follow the same naming rules
as a class, namely:

� No spaces are permitted.

� The only punctuation characters permitted are the hyphen (-) and the
underscore (_).

� The ID cannot begin with a number or a hyphen followed immediately
by a number.

To distinguish ID selectors from classes, you precede the ID with the hash sign
(#) instead of a dot. You add the ID to the element’s opening tag using the id
attribute. As with a class, you use just the name inside the HTML tag (leaving
off the hash sign). So, to create an ID selector for the Roosevelt quote, you add
a style block to the style sheet like this:

#tr_quote {
 /* Style rules go here */
}

The ID goes in the opening <blockquote> tag like this:

<blockquote id="tr_quote">

So, what’s the difference between a class and an ID—apart from the dot and
hash?

Deciding whether to use a class or an ID
The whole point of CSS selectors is to identify the elements to which style rules
should be applied. You started off in Chapter 2 with type selectors, which
redefine the appearance of HTML tags. Then you targeted elements more
precisely with descendant selectors (e.g., blockquote p) and the adjacent
sibling selector (h1 + p). Class and ID selectors add to this arsenal.

The main use for ID selectors is to mark out specific areas of your page, for
example, the page header, main navigation, main content, sidebar, footer, and
so on. A class, on the other hand, is used to apply the same style to different
parts of the page that aren’t related to each other. The way to decide which to
use is simple:

� If you’re likely to use the same style on several unrelated elements,
use a class.

� If the element is unique within the context of a page or represents a
unified section of the page, use an ID.

 Getting StartED with CSS

 146

The floatleft, floatright, and imgcentered classes you created earlier in this
chapter are good examples of styles that are likely to be used on several
elements within the same page. However, the Roosevelt quote needs special
treatment. Its width and margins depend entirely on the size of the image
floating alongside. Technically speaking, you could use a class to style it, but
applying the same style rules to another element wouldn’t make much sense.
Using an ID selector tells you, “These are the styles for a specific element and
no other.”

Another advantage of ID selectors is that many page elements use IDs for other
purposes, such as working with JavaScript to hide or display page elements.
Because the id attribute is already inside the HTML tag, you don’t need to add
extra code to the page.

AdvancED
ID selectors take precedence over classes and type selectors when there’s a
conflict between style rules. Working out the exact order of precedence is
a subject that I’ll come back to in Chapter 7 when you have more
experience of selectors.

The golden rule with IDs is that you should never use the same ID more than
once on each page. So, you can have a header ID on every page, but only once
on each one.

Now that you know the basics of creating an ID selector, let’s update
journey.html.

Converting the blockquote styles

In this brief exercise, you’ll add an ID to the Roosevelt quote and change the
style rules, so that they target only a specific element. Continue working with
the files from the previous exercises. Alternatively, use journey_14.html and
css/journey_14.css from the download files for this chapter.

1. Add the ID, tr_quote, to the opening <blockquote> tag like this:

<blockquote id="tr_quote">
 <p>Leave it as it is. You cannot improve on it.

On its own, this makes no difference to the way the quote is
displayed.

147

Chapter 4: How Can I Flow Text Around Images?

2. Switch to the style sheet, and locate the style rules that affect the
<blockquote>. There are two of them like this:

blockquote {
 margin: 50px 71px 0 374px;
 width: 275px;
}
blockquote p {
 font-style: italic;
 text-indent: 0;
 white-space: pre-line;
 margin-left: 0;
}

The first one sets the margins and width for this particular quote, so
you definitely need to convert the first one to use the ID selector,
#tr_quote. However, the second one is much more generic. If you
convert that to use the ID selector, you would need to create the
same rule again for any other <blockquote> elements elsewhere in the
same site. So, we’ll leave that one alone.

3. Amend the selector for the first style block like this:

#tr_quote {
 margin: 50px 71px 0 374px;
 width: 275px;
}
blockquote p {
 font-style: italic;
 text-indent: 0;
 white-space: pre-line;
 margin-left: 0;
}

4. Save both pages, and view journey.html in a browser. It should look
exactly the same as before (see Figure 4-15).

You can check your code, if necessary, against journey_15.html and
css/journey_15.css in the download files for this chapter.

 Getting StartED with CSS

 148

ExplainED
The important lesson to take away from this exercise is that it’s not
necessary to put all the style rules for an element in a single selector.
Even though you have added an ID to the <blockquote>, it doesn’t prevent
it from using the styles defined by the generic blockquote p selector. As
long as there is no conflict between the properties, the cascade adds
everything together. Learning to combine rules like this is the key to
writing flexible CSS. Put the basic rules in type selectors, and use the
more specialized selectors to override them when necessary.

Adding a caption to an image
Moving images to the left or right and flowing text around the side is one of the
main uses of the float property; but it’s important to realize that you can use
float with other elements, too. You’ll see more examples of floating as you
progress through this book, but to round out this chapter, I want to show you
how you can easily adapt the floatleft, floatright, and imgcentered classes
to add a caption to an image—something that requires complex markup with
HTML.

As I explained in Chapter 3, HTML provides two tags, <div> and ,
designed to group elements together for styling. As you might remember, <div>
creates a block-level element, while is used for inline elements. To add
a caption to an image, all that’s necessary is to wrap the image and the
caption in one of these tags, and then float the <div> or . So, which
should you use? Either is technically correct, because images and text are
inline elements, but a floated element is treated as a block. However, I have
chosen to use . This has the advantage that you can use it to float an
image and its associated caption in the middle of a paragraph. You can’t put a
<div> inside a paragraph. So, using in this case gives you more
flexibility.

Let’s add some captions to the images in journey.html.

149

Chapter 4: How Can I Flow Text Around Images?

Captioning images

This exercise shows how to add captions to floated images and style them so
they stand out from the surrounding text. It also demonstrates how you can use
an inline style to control the width of a caption. Continue working with the
files from the previous exercise. Alternatively, use journey_15.html and
css/journey_15.css from the download files for this chapter.

1. The caption you’re going to add to the first image is Grand Canyon at
Cape Royal. To force the caption onto a new line underneath the
image, you need to add a line break (
), and then wrap both the
image and caption in a . Finally, you need to remove the
floatleft class from the image, and apply it to the . The
resulting HTML should look like this:

<p><img src="../images/cape_royal.jpg" alt= �
"Cape Royal" width="250" height="366" />
Grand Canyon at Cape �
Royal The Grand �
Canyon in northern Arizona. . .

2. If you test the page now, you’ll see the caption floated along with the
image. However, to make it stand out like a caption, it needs to be
bold and centered. Fixing that with the font-weight and text-align
properties is easy, but you’ll want to apply the same values to the
floatright and imgcentered classes as well. Instead of adding them to
each class separately, create a group selector for all three classes like
this:

.floatleft, .floatright, .imgcentered {
 font-weight:bold;
 text-align:center;
}

Grouping all three class selectors in a comma-separated list applies
the same properties to each of them, and the cascade takes care of
adding the values to the existing class style rules.

3. Save the page and its associated style sheet, and test journey.html in
a browser. The caption should now be properly styled under the first
image, as shown in Figure 4-16.

 Getting StartED with CSS

 150

Figure 4-16. You can easily add a caption by wrapping the image and text in a
 and floating them together.

4. Repeat step 1 to add captions to the other two images, using
floatleft and floatright as appropriate. Make the captions brief:
Kaibab National Forest for the second image, and Angel’s Window for
the third image.

5. Test journey.html again in a browser to make sure that all three
captions are displayed correctly.

6. Now change the second caption to read The approach to the North Rim
of the Grand Canyon through Kaibab National Forest.

7. Save and test the page again. The long caption spreads across the
page, destroying the position of both the image and the text flowed
around it (see Figure 4-17). The problem is that, while the image has a
declared width, there is nothing to control the width of the .

151

Chapter 4: How Can I Flow Text Around Images?

Figure 4-17. With nothing to control its width, the caption spreads across the page.

8. Unless all your images are the same width, you can’t add the width
property to the classes. This is one of the rare instances when I think
it is justified to use an inline style. The image, forest_grassland.jpg
is 325 pixels wide. Amend the opening tag to add the width
property as an inline style, and set its value to match that of the
image like this:

9. Save the page, and test it again in a browser. The caption should now
be wrapped neatly beneath the image, as shown in Figure 4-18.

Figure 4-18. Giving the a declared width brings the caption under control.

 Getting StartED with CSS

 152

You can check your code, if necessary, against journey_16.html and
css/journey_16.css in the download files for this chapter.

Using inline styles is generally considered bad practice, because it’s the least
flexible way of adding styles to a page, and it clutters the HTML markup with
presentational information. The alternative would be to give the an ID
and use an ID selector to set its width. So, the opening tag would look
like this:

And this would be added to the style sheet:

#forest_grassland {
 width: 325px;
}

However, this not only involves more code but makes maintenance much more
difficult, because the information about the width is removed from the markup
surrounding the image. If you change the image, you will probably need to
change the ID as well as its associated style block. On a single page, it might be
acceptable, but in a large site, it would rapidly become a nightmare.
Sometimes, it’s necessary to make compromises to achieve the most workable
result.

To avoid the need for an inline style like this, it’s a good idea to keep
your captions short. The caption shown in Figure 4-16 begins to affect the
layout in Firefox when the text size is increased more than three steps. If you
think that’s a problem, add an inline style to set the width, create a shorter
caption, or put a line break in the existing one. However, if you expect users to
increase the text size by more than three steps, your text is probably too small
to start with.

Chapter review
Floating elements to the left or right is an important CSS layout technique. The
basic principles are simple:

� The floated element moves as far left or right as permitted by its
containing element.

� Floated elements cannot overlap each other.

153

Chapter 4: How Can I Flow Text Around Images?

� Subsequent content moves up to fill the available space alongside the
floated element.

� The clear property prevents elements from moving up alongside a
float.

However, using the float property can also have unexpected consequences.
While the table was automatically centered alongside a floated element, the
Roosevelt quote was treated quite differently. This is because tables cannot
overlap floated elements. However, when other block-level elements move up
to fill the horizontal space alongside a floated element, the dimensions of the
block-level element remain unchanged. Only the content is shifted sideways to
prevent it from overlapping the float. As a result, you needed to calculate the
width of the horizontal space alongside the floated image and adjust the
margins of the Roosevelt quote to recenter it.

This chapter also introduced you to two important selectors: classes and IDs. A
class is a useful device for applying a style to multiple elements on a page,
whereas an ID is used to apply styles to unique elements. Although both classes
and IDs play important roles in CSS, you should resist the temptation to overuse
them. First, make full use of type selectors and other devices, such as the
adjacent sibling selector that you used in the previous chapter to style the first
paragraph after a heading (h1 + p, h2 + p, h3 + p). Classes and IDs rely on
the addition of the class or id attribute to the opening HTML tag, increasing
the amount of code you need to maintain. So, use them sparingly.

The next chapter looks at how to add backgrounds and borders to highlight
elements on your web pages and improve visual interest. You’ll also see what
happens when a floated element appears alongside an element that has a
background or border.

155

Chapter 5
How Do I Add Backgrounds
and Borders to Improve the
Look of My Page?
The secret of good web design is drawing the visitor’s eyes to important parts
of the page. Images, borders, and background colors all help to break up the
page and focus attention. The images you inserted in the exercises in the
previous chapter not only look attractive, they tell the visitor what the Grand
Canyon looks like. But images can also serve another purpose—decorative
touches that please the eye and give a unified look to the site. Rather than
littering the HTML markup with purely decorative images, it’s preferable to
add them as background. Although some HTML tags allow you to add
background images, the options are very limited. CSS, on the other hand, gives
you an amazing amount of control over the location and appearance of
background images.

Borders also provide visual guides, separating sections of a page or highlighting
important information. In HTML, borders are an all or nothing option—the same
border is applied to all four sides of an element. But CSS gives you full control,
allowing you to set a different color, style, and width for each side, should you
wish to do so. You can even add a border to just one side.

In this chapter, you’ll learn how to do the following:

� Apply individual background colors to different parts of a page.

� Add background images and control their position accurately.

� Control the look of borders around images and text.

� Get rid of blue borders around image links.

� Prevent borders and backgrounds from running under floated
elements.

 Getting StartED with CSS

 156

The basics of adding backgrounds and borders are simple—deceptively so.
These two aspects of CSS contain some surprises, so don’t be tempted to rush
this chapter.

Controlling backgrounds with CSS
CSS has six properties that handle backgrounds, as listed in Table 5-1. Five of
them deal with individual aspects of an element’s background, and the
remaining one is a shorthand property that lets you define all values in a single
declaration.

Table 5-1. CSS Background Properties

Property Initial Value Inherited Description

background-attachment scroll No Determines whether a

background image

remains in a fixed position

or scrolls with the page.

background-color transparent No Sets the background color

of an element. The default

value allows the

background color and

image of the parent

element to show through.

background-image none No Sets an image as the

element’s background. In

CSS2.1, only one image

can be attached to an

element.

background-position 0% 0% No Determines the horizontal

and vertical position of the

background image. The

default is at the top left of

the element.

background-repeat repeat No Determines whether the

background image should

tile if it’s smaller than the

element. Tiling can be

suppressed or limited to

either the horizontal or

vertical axis.
background See individual

properties
No Shorthand property.

157

Chapter 5: How Do I Add Backgrounds and Borders to Improve the Look of My Page?

Apart from background-color, all of the individual properties are concerned
with background images. Since color is the easiest to handle, let’s tackle
that first.

Changing the background color of an element
As you might expect, the background-color property takes as its value a color,
which can be expressed in any of the ways described in “Setting color values in
CSS” in Chapter 2, namely:

� A 3- or 6-digit hexadecimal number

� One of the 17 color keywords listed in Table 2-3

� An rgb() value specifying the red, green, and blue values as comma-
separated numbers in the range of 0–255 or percentages from 0% to
100%

Technically speaking, the background-color property is not inherited, so you
can use the inherit property to use the same color as the parent element.
However, the default value is transparent. As you’ll see when you start
experimenting with backgrounds, this means that the parent’s background
properties show through unless you specify a different value.

Seeing is believing. So, let’s get on right away with an exercise. As in previous
chapters, I’m going to continue working with journey.html. If you have
completed the exercises in the preceding chapter, you can continue working
with the same files. But if you want to jump in at this point, or just need fresh
files, use journey_16.html and css/journey_16.css in the download files for
this chapter.

Setting different background colors for page elements

This exercise demonstrates how the background of a parent element shows
through all child elements, except when the background-color property of a
child element is set independently. The exercise also shows the effect of
margins on backgrounds. To understand the effect of margins on backgrounds,
it’s a good idea to use a CSS analysis tool, such as Firebug or the Safari 4 Web
Inspector panel. The IE8 and Opera 10 Developer Tools panels don’t highlight
margins, so I suggest you use Firefox or Safari 4 for this exercise.

1. Browsers now use white as the default background for web pages
(ancient browsers used a dirty gray), but you should always set the
background-color property for the <body> explicitly, even if you want
to use white. In fact, this was the first style rule you created in

 Getting StartED with CSS

 158

Chapter 2. Change it now to an olive color by amending the body style
block like this:

body {
 background-color: #EFECCA;
 color: #000;
 font-family: "Trebuchet MS", Arial, Helvetica, sans-serif;
 margin: 0;
 padding: 0;
}

This changes the background of the entire page. Although background-
color is not inherited, its default value is transparent. So, the olive
color shows through everywhere.

2. Add the background-color property to the #wrapper style rule, and set
its value to white like this:

#wrapper {
 width: 720px;
 margin: 0 auto;
 background-color: #FFF;
}

3. Save the style sheet, and load journey.html into a browser. The page
should look like Figure 5-1.

Figure 5-1. The wrapper <div> now has a different background color from the body.

159

Chapter 5: How Do I Add Backgrounds and Borders to Improve the Look of My Page?

Giving the #wrapper style rule a different value for background-color
has overridden the olive color of the body rule. However, there are
several problems. There’s no breathing space between the left side of
the wrapper <div> and the <h2> and <h3> headings. Similarly, there’s
no breathing space between the paragraphs and the right side. But
worst of all, there’s about 10 pixels of olive background showing at
the top and bottom of the page.

4. Sorting out the left and right sides is easy. You just need to adjust the
margins of the headings and paragraphs. First, fix the headings.
Locate the rule that controls their margins. It looks like this:

h1, h2, h3, h4, h5, h6 {
 color: #468966;
 font-family: Georgia, "Times New Roman", Times, serif;
 margin: 10px 0;
 clear: both;
}

As you might remember from Chapter 3, when the margin shorthand
property is followed by two values, the first value applies to the top
and bottom, and the second value applies to the left and right sides.
So, this rule means there is a 10-pixel margin on the top and bottom
of each heading but no margin on either side.

5. Change the margin shorthand property to just a single value of 10px.
This applies the same value all the way round, ensuring a nice
breathing space on the left. Applying the same value to the right
doesn’t visibly affect the current page, but it also ensures a similar
amount of breathing space even if you have a long subheading that
wraps onto another line.

6. Now, fix the right margin of the paragraphs. The p style block uses the
margin shorthand property with four values. So, it’s the second value
that you need to change to affect the right margin (remember, margin
shorthand begins at the top and goes clockwise). Change the rule like
this:

p {
 text-align: justify;
 text-indent: 30px;
 line-height: 1.4;
 margin: 0 10px 0.4em 45px;
}

 Getting StartED with CSS

 160

7. Save the style sheet, and reload journey.html in the browser. The
breathing space on both sides looks OK, but what about that olive gap
at the top and bottom?

8. Open Firebug or the Safari 4 Web Inspector panel, and expand the
HTML structure to reveal the <h1> heading. When you hover the mouse
pointer over the heading in the CSS analysis tool, you can see the 10-
pixel margin highlighted all around it in the browser, as shown in
Figure 5-2.

Figure 5-2. Using a CSS analysis tool like Firebug reveals that the top margin of the
heading is causing the gap.

This is one of those strange mysteries of collapsing vertical margins.
The top margin of the wrapper <div> is 0, but the heading has a top
margin of 10px. Instead of the heading’s top margin pushing it 10
pixels inside the <div>, as you might expect, the two margins are
combined and push the <div> 10 pixels away from the top of the
<body>.

9. The <h1> heading already has a style block that sets properties that
don’t apply to the other headings. So, you can fix this problem by
adding the margin-top property with a value of 0 like this:

161

Chapter 5: How Do I Add Backgrounds and Borders to Improve the Look of My Page?

h1 {
 font-size: 220%;
 font-variant: small-caps;
 text-align: center;
 word-spacing: 0.2em;
 letter-spacing: 0.05em;
 margin-top: 0;
}

In this case, you use the property for a single side, and not the
shorthand version, because you want to override only one value, and
keep the rest.

10. Save the style sheet, and reload journey.html in the browser. The gap
should now have disappeared. The gap at the bottom of the page is
caused by the bottom margin of the final paragraph, but I’m not going
to bother fixing that, because I’ll be changing the bottom of the page
later in this chapter.

11. I want to the Roosevelt quote stand out a bit more. This will be
achieved gradually throughout the chapter, but the first step is to
change the #tr_quote style block like this, and give it a pale yellow
background:

#tr_quote {
 margin: 50px 71px 0 374px;
 width: 275px;
 background-color: #FFFEF1;
}

12. Save the style sheet, and reload journey.html in the browser. Look at
the quote very closely. The background color is flush with the left side
of the text, but there’s a slight gap on the right. You can verify this by
hovering your mouse pointer over the first paragraph of the quote in
the HTML structure of your CSS analysis tool to highlight its margins in
the browser window. As Figure 5-3 shows, the right side of the text is
offset from the right edge of the background color.

Figure 5-3. There’s a 10-pixel right margin on the paragraphs inside the
<blockquote>.

 Getting StartED with CSS

 162

One way to fix this is to increase the margins on the other sides. For
the time being, though, I want to get rid of the right margin on the
paragraphs inside the <blockquote>. It was added in step 6 when you
added breathing space between the main paragraphs and the right
side of the wrapper <div>. You can see the difference in Figures 5-1
and 5-2. In Figure 5-1, the first line ends with the word “it,” but it has
been moved to the beginning of the second line in Figure 5-2.

13. Fix the right margin by adding the margin-right property to the
blockquote p style block, and setting its value to 0 like this:

blockquote p {
 font-style: italic;
 text-indent: 0;
 white-space: pre-line;
 margin-left: 0;
 margin-right: 0;
}

The gap between the text and the background color should have
disappeared, and the layout of the text should look the same as in
Figure 5-1.

You can check your code, if necessary, against journey_17.html and
css/journey_17.css in the download files for this chapter.

As you have just seen, adding a background color is simple, but margins can
have unexpected effects on where the background is displayed. Let’s quickly
recap what this exercise has demonstrated.

� If an element has no background color of its own, the background of
its parent element shows through.

� Once you apply a different background color to a child element, the
new color becomes the background of any subsequent children.

� When you added a background color to the wrapper <div>, you needed
to add horizontal margins to the headings and paragraphs to move
them away from the sides of the <div>.

� The top margins of the <h1> heading and wrapper <div> combined,
pushing the <div> away from the top of the page and leaving an olive
strip.

163

Chapter 5: How Do I Add Backgrounds and Borders to Improve the Look of My Page?

ExplainED
Background colors and images fill only the element to which they are
applied. They do not stretch into the margins surrounding the element.
That’s why the olive background applied to the <body> remains visible on
either side of the wrapper <div>. It also explains why the top margin of
the <h1> heading produced an olive strip at the top of the page. The
heading’s margin was added to the top of the <div>, and because the
background doesn’t stretch into margins, the <body> background showed
through until you removed the margin.

Creating the breathing space between the sides of the <div> and the text
was achieved by adding horizontal margins to the headings and
paragraphs. This didn’t expand the background color of the <div>. Instead,
the headings and paragraphs moved inward to let the background color
show through their margins. That’s why the text in the Roosevelt quote
wrapped the words at the end of each line: there was less space for the
text until you removed the right margin.

If you already have experience of CSS, you’ll know the padding property offers
another way to adjust the space between content and the background color.
I’m deliberately leaving the padding property out of the equation at the
moment, because it has a counterintuitive effect on width and height. All will
be revealed in the next chapter.

Now let’s take a look at background images.

Adding a background image
At the moment, the file that you have been working with in the exercises,
journey.html, contains three images that have been added using the HTML
 tag. These are an integral part of the page, designed to illustrate the
accompanying text, and could be regarded as foreground images. However, a
lot of images used in websites are there for purely decorative purposes. When
using an image for decoration, it’s generally a good idea to use CSS. There are
several advantages to doing so, namely:

� Text or other content can appear in front of background images.

� Using CSS avoids cluttering your HTML code with purely decorative
elements.

 Getting StartED with CSS

 164

� With an external style sheet, the same decorative elements appear
automatically on all pages.

� To change the images, you simply change the style sheet, rather than
edit every page.

� CSS lets you control the position of background images accurately.

� All browsers in widespread use, except IE6, support background
images that remain in position when the rest of the page scrolls.

As the name suggests, background-image is the property that adds a background
image to an element. It accepts three possible values, namely:

� url(): The path to the image goes between the parentheses.

� none: Default value. No background image.

� inherit: Like background colors, background images show through,
but they are not inherited. Using inherit tells the browser to apply
the same image as an independent background. So, the result won’t
necessarily look the same as simply showing through.

When adding the path to the image between the parentheses of url(), you can
optionally surround it in single or double quotes. You can also leave whitespace
around the path name. The following are all valid:

background-image:url(../../images/flower1.png);
background-image:url('../../images/flower1.png');
background-image:url("../../images/flower1.png");
background-image:url(../../images/flower1.png);

The only time it’s mandatory to use quotes around the path name is if it
contains spaces. However, you should never use spaces in file or folder names
for a website.

ExplainED
Both Mac OS X and modern versions of Windows permit spaces in the names
of files and folders, making it easy to create user-friendly file structures.
This has resulted in many inexperienced web developers using spaces in
names on their websites, blissfully unaware of the fact that spaces are not
permitted in URLs. Also many websites are hosted on Linux or Unix servers
that don’t permit spaces in names. That’s why you see %20 in some URLs.
It’s the way HTML editors encode spaces to prevent the URL from
breaking, but it looks ugly and amateurish. If you want to use multiple
words in folder and file names, join them with a hyphen or underscore.
Better still, keep names short and easy to type.

165

Chapter 5: How Do I Add Backgrounds and Borders to Improve the Look of My Page?

When you add a background image to an element, by default, the browser
places the image at the top left of the element and automatically tiles
(repeats) the image both horizontally and vertically to fill all available
background space, as shown in Figure 5-4.

Figure 5-4. By default, browsers tile background images to fill all available space.

The background image of a single flower has been applied to the body style rule
like this:

body {
 background-color: #EFECCA;
 color: #000;
 font-family: "Trebuchet MS", Arial, Helvetica, sans-serif;
 margin: 0;
 padding: 0;
 background-image: url(../../images/flower1.png);
}

As you can see, the image is automatically repeated to fill the background of
the entire page. You can test it in image_repeat.html in the download files for
this chapter. If you expand the width of the browser, you’ll see the flower is
repeated under the wrapper <div> as the width of its left and right margins is
increased.

 Getting StartED with CSS

 166

Sometimes, this automatic tiling is what you want. However, in this case, I
think you’ll agree that it’s overkill. Fortunately, CSS gives you control over this
default behavior.

Controlling how background images repeat
The property that controls the way background images are repeated is called
background-repeat. It accepts the following values:

� repeat: This is the default value. Repeat the image both horizontally
and vertically to fill all available background space.

� repeat-x: Repeat the background image horizontally only.

� repeat-y: Repeat the background image vertically only.

� no-repeat: Display the image once only.

� inherit: The background-repeat property is not automatically
inherited, so this applies the same value as in the parent element.

The download files contain examples of background-repeat used with different
values. Since repeat is the default value, I haven’t used it in
image_repeat.html, but the result would be the same as Figure 5-4.

Figure 5-5 and image_repeat-x.html show what happens when repeat-x is
added to the body style rule like this:

body {
 background-color: #EFECCA;
 color: #000;
 font-family: "Trebuchet MS", Arial, Helvetica, sans-serif;
 margin: 0;
 padding: 0;
 background-image: url(../../images/flower1.png);
 background-repeat: repeat-x;
}

Figure 5-5. Setting background-repeat to repeat-x tiles the background image across
the horizontal axis only.

167

Chapter 5: How Do I Add Backgrounds and Borders to Improve the Look of My Page?

Figure 5-6 and image_repeat-y.html in the download files show what happens
when background-repeat is changed to repeat-y.

Figure 5-6. Setting background-repeat to repeat-y tiles the background image down
the vertical axis only.

Figure 5-7 and image_no-repeat.html in the download files show the effect of
changing background-repeat to no-repeat.

Figure 5-7. Using no-repeat displays the background image just once.

When you scroll image_no-repeat.html, the background image remains in its
current position relative to the rest of the content, and rapidly disappears out
of view. However, modern browsers let you fix the background image in
relation to the browser viewport.

 Getting StartED with CSS

 168

Fixing a background image in relation to the browser
viewport
To fix the background in position, use the background-attachment property,
which is supported by all browsers in widespread use, except IE6. The property
accepts the following values:

� fixed: Fix the background image in relation to the browser viewport.

� scroll: Fix the background image in relation to the page content. This
is the default value.

� inherit: The background-attachment property is not inherited, so this
tells the browser to use the same value as the parent element.

Because scroll is the default value, you need to use background-attachment
only when you want to fix the background image in relation to the browser
viewport. The body style rule in image_fixed.html in the download files sets
background-attachment to fixed like this:

body {
 background-color: #EFECCA;
 color: #000;
 font-family: "Trebuchet MS", Arial, Helvetica, sans-serif;
 margin: 0;
 padding: 0;
 background-image: url(../../images/flower1.png);
 background-repeat: no-repeat;
 background-attachment: fixed;
}

As Figure 5-8 shows, the image of the flower remains at the top left of the
browser window even when you scroll down the page.

Figure 5-8. The background image remains at the top left of the browser window
when the page is scrolled.

169

Chapter 5: How Do I Add Backgrounds and Borders to Improve the Look of My Page?

What if you don’t like the position of the background image? CSS has thought of
that, too.

Adjusting the position of a background image
The last of the background-related properties, background-position, gives you
precise control over the position of a background image. It accepts up to two
values expressed in any combination of the following ways:

� Lengths (pixels, ems, etc.)

� Keywords (see Table 5-2)

� Percentages

This can make background-position rather confusing at first, but the following
section should make things clear. Table 5-2 explains the keywords and their
equivalent values expressed as percentages.

Table 5-2. Keywords and Percentage Values for background-position

Axis Keyword Percentage Equivalent

Horizontal

 left 0%

 center 50%

 right 100%

Vertical

 top 0%

 center 50%

 bottom 100%

When defining background-position, you can use one or two values.

� If you use only one value, the other value is automatically set to
center or 50%.

� If you use two values, and both are keywords, they can be in either
order. Otherwise, the first value controls the horizontal position, and
the second controls the vertical position.

 Getting StartED with CSS

 170

Still confused? One of the joys of CSS is that it offers a lot of flexibility, but
that often comes at the expense of clarity. Let’s try a few examples, starting
with a single keyword like this:

background-position: left;

This puts the background image halfway down the left side.

The following rule centers the background image at the top:

background-position: top;

This centers the background image exactly within the element:

background-position: center;

ExplainED
It’s important to realize that background-position works independently of
background-repeat. Unless you also set background-repeat to no-repeat,
the image will still fill the entire background. The difference is that it will
start from the specified position, and tile in all directions. If you set
background-repeat to repeat-y, it will fill the entire vertical axis. Tiling
along an axis always goes in both directions. The purpose of using
background-position with an image that repeats is to control its balance,
instead of tiling it from the top left corner.

When using two keywords, they can be in either order, so the following
definitions are both valid ways of putting the bottom right of the background
image at the bottom right of the element:

background-position: bottom right;
background-position: right bottom;

When using two values, unless both are keywords, the horizontal value must
come first. For example, the following fails in most browsers:

background-position: bottom 25px; /* WRONG */

Although there’s no doubt that bottom indicates the vertical axis, the
horizontal value must precede the vertical one like this:

background-position: 25px bottom; /* CORRECT */

This puts the left of the background image 25px from the left side of the
element, with its bottom edge at the bottom of the element.

171

Chapter 5: How Do I Add Backgrounds and Borders to Improve the Look of My Page?

If you use a length on its own, the background image is placed that distance
from the left of the element and centered vertically. So, the following rule
places the left edge of the image 25 pixels from the left side of the element
and centers it vertically:

background-position: 25px;

Two lengths are calculated from the top-left corner of the background image.
So, take the following rule:

background-position: 20px 10px;

This puts the top left corner of the background image 20px from the left side of
the element and 10px from the top.

Percentages are calculated not only in relation to the background but also in
relation to the image itself, for example:

background-position: 50% 50%;

This centers the image exactly in the background, because a position 50%
across the image’s horizontal and vertical axes is placed 50% across the
horizontal and vertical axes of the background. So, using percentages gives you
very precise control over the position of a background image without the need
for complex calculations.

Hopefully, that has clarified some of the confusion. The best way to understand
this sort of thing is to experiment.

Now that you know all about background images, let’s add some to
journey.html.

Inserting background images

This exercise adds and positions background images on the main heading,
Roosevelt quote, and bottom of the wrapper <div> in the page used in the
previous exercises. Continue working with the same files. Alternatively, use as
your starting point journey_17.html and css/journey_17.css in the download
files for this chapter.

1. The images folder contains two versions of the flower used in Figures
5-4 to 5-8, one roughly twice the size of the other. I want to use the
larger image, flower1.png, to tuck under the first letter of the <h1>
heading. So amend the h1 style block like this:

h1 {
 font-size: 220%;

 Getting StartED with CSS

 172

 font-variant: small-caps;
 text-align: center;
 word-spacing: 0.2em;
 letter-spacing: 0.05em;
 margin-top: 0;
 background-image: url(../../images/flower1.png);
 background-repeat: no-repeat;
}

If necessary, amend the path to the image to match your site
structure. I have used a path relative to the style sheet, but you can
also use a path relative to your site root, like this:

 background-image:url(/images/flower1.png);

2. Save the style sheet, and load journey.html into a browser. As Figure
5-9 shows, the bottom of the flower is cut off. This is because the
background image is taller than the <h1> element.

Figure 5-9. The background image is cut off because it’s taller than the heading.

One solution would be to create a smaller image, but that would
defeat the purpose of the exercise. You need to make more room for
the background to fit in. Increasing the bottom margin of the heading
won’t work (try it), because—as I explained earlier—backgrounds don’t
stretch into an element’s margins.

3. The answer is to give the heading the same height as the background
image, which is 61px. Amend the h1 style block like this:

h1 {
 font-size: 220%;
 font-variant: small-caps;
 text-align: center;
 word-spacing: 0.2em;
 letter-spacing: 0.05em;
 margin-top: 0;
 background-image: url(../../images/flower1.png);
 background-repeat: no-repeat;
 height: 61px;
}

173

Chapter 5: How Do I Add Backgrounds and Borders to Improve the Look of My Page?

4. If you check the page now, you should see the background image is no
longer cut off. So, all that remains is to reposition it horizontally by
adding the background-position property to the style rule like this:

h1 {
 font-size: 220%;
 font-variant: small-caps;
 text-align: center;
 word-spacing: 0.2em;
 letter-spacing: 0.05em;
 margin-top: 0;
 background-image: url(../../images/flower1.png);
 background-repeat: no-repeat;
 background-position: 70px;
 height: 61px;
}

Because I have used only one value, this moves the background image
70px to the right. The vertical position is automatically set to center.

5. Before checking the page, let’s add the smaller flower to the bottom
right of the Roosevelt quote. Change the #tr_quote style block like
this:

#tr_quote {
 margin: 50px 71px 0 374px;
 width: 275px;
 background-color: #FFFEF1;
 background-image: url(../../images/flower2.png);
 background-repeat: no-repeat;
 background-position: 97% 95%;
}

This uses percentages to position the flower. Using 100% 100% would
put it as far as possible in the bottom right corner, but I think it looks
better slightly offset at 97% horizontal and 95% vertical.

6. Save the style sheet, and reload journey.html in the browser. It
should look like Figure 5-10.

The small flower looks great in the corner of the quote, but the
position of the heading needs to be slightly tweaked. However, I’m
going to leave that until the next chapter, when we delve into the
mysteries of the padding property.

 Getting StartED with CSS

 174

Figure 5-10. Background images add decorative interest to a page.

7. To round off this exploration of background images, let’s fix the
problem of the olive stripe at the bottom of the page, and give it a
dramatic touch by adding a background image of the Grand Canyon.

Insert an empty paragraph at the bottom of the page inside the
wrapper <div>, and give the paragraph an ID of footer.

8. Create a style block using the ID selector, #footer, and set the value
of margin-bottom to 0. It’s not important where you put the style
block inside the style sheet, but the footer will eventually become
part of the page structure, so I suggest putting after the #wrapper:

#wrapper {
 width: 720px;
 margin: 0 auto;
 background-color: #FFF;
}
#footer {
 margin-bottom: 0;
}

This eliminates the olive stripe at the bottom of the page by removing
the 0.4em bottom margin on the paragraph.

9. As you saw with the flower at the top of the page, the visibility of a
background image is constrained by the height of the element to
which it’s applied. The background image of the Grand Canyon is
251px high, so there’s no point adding it as the background of the

175

Chapter 5: How Do I Add Backgrounds and Borders to Improve the Look of My Page?

footer paragraph. The paragraph isn’t tall enough, so the background
will be cut off unless you put a lot of material in there.

However, as long as no other background is defined, the background of
a parent element shows through, thanks to the default transparent
value of background-color. So, that means you can apply the
background image to the wrapper <div>, and it will show through the
other elements inside the <div>.

Change the #wrapper style block like this:

#wrapper {
 width: 720px;
 margin: 0 auto;
 background-color: #FFF;
 background-image: url(../../images/grand_canyon.jpg);
 background-repeat: no-repeat;
 background-position: bottom;
}

I have made the background image of the Grand Canyon 1200px wide.
That’s much wider than the page currently needs, but it gives scope
for expanding the width of the wrapper <div> later. It needs to go at
the bottom of the <div>, so I have used the keyword, bottom. The
most interesting part of the image is the center, but you don’t need to
declare a horizontal position, as the browser automatically uses
center when you supply only a vertical keyword.

10. If you test the page now, you’ll see the text comes down too far over
the background image. So, add a height of 120px to the #footer style
block:

#footer {
 margin-bottom: 0;
 height: 120px;
}

This is a lot neater than the usual trick of adding a lot of empty
paragraphs. It’s also a temporary measure until you learn about the
padding property in the next chapter.

11. Save the style sheet, and reload journey.html in a browser. The
bottom of the page should now look like Figure 5-11. The background
image fades at the top so that it blends with the background of the
wrapper <div>, while the last couple of sentences remain readable
over the dramatic image.

 Getting StartED with CSS

 176

You can check your code, if necessary, against journey_18.html and
css/journey_18.css in the download files for this chapter.

Figure 5-11. A background image at the bottom of the page transforms a previously
bland design.

Using the background shorthand property
The background shorthand property lets you define all five background
properties in a single declaration. Any value that is omitted is automatically set
to its default value. The #wrapper style block currently looks like this:

#wrapper {
 width: 720px;
 margin: 0 auto;
 background-color: #FFF;
 background-image: url(../../images/grand_canyon.jpg);
 background-repeat: no-repeat;
 background-position: bottom;
}

To save space in your style sheet, you can rewrite it like this:

#wrapper {
 width:720px;

177

Chapter 5: How Do I Add Backgrounds and Borders to Improve the Look of My Page?

 margin:0 auto;
 background: #FFF url(../../images/grand_canyon.jpg) no-repeat bottom;
}

Separate the values with spaces. They can be in any order, apart from the
values that specify the position of the background image, which must follow
the same rules as the individual background-position property. In other words,
if you want to specify the horizontal and vertical position of the background
image, the horizontal value must come first unless you use two keywords.

My personal preference is to use the individual properties. Although it involves
more typing, I think the individual properties make the style sheet easier to
understand.

There is also a hidden danger lurking in the background shorthand property. As I
said earlier, any value that is omitted from the shorthand property declaration
is automatically set to its default value. It’s easy to slip into the habit of using
just background to define the background color.

Figure 5-12 and journey_bad_shorthand.html in the download files show what
happens when the #wrapper style block is rewritten using the background
shorthand property to set the color after the individual properties:

#wrapper {
 width: 720px;
 margin: 0 auto;
 background-image: url(../../images/grand_canyon.jpg);
 background-repeat: no-repeat;
 background-position: bottom;
 background: #FFF; /* This overrides the individual properties */
}

 Getting StartED with CSS

 178

Figure 5-12. Careless use of the background shorthand property results in the
background image not being displayed.

ExplainED
Although there aren’t many background properties to remember, there are
quite a lot of things to remember about using them. One of the main
things to watch out for when working with backgrounds is the effect of
vertical margins. As you saw in the exercises, margins on elements at the
top or bottom of a <div> can extend beyond the <div>, pushing it away
from its expected position and revealing a different background.
Fortunately, Firebug and the Safari 4 Web Inspector panel can highlight
margins, making it easier to debug such problems. Other things that can
catch you out are the way background images tile, and mastering the
complexities of background-position.

So much for backgrounds—let’s take a look at borders.

179

Chapter 5: How Do I Add Backgrounds and Borders to Improve the Look of My Page?

Controlling borders with CSS
CSS provides individual control over each border, allowing you to set its color,
style, and width. As a result, there are a lot of border-related properties, all of
which are listed in Table 5-3.

Table 5-3. CSS Border Properties

Property Initial Value Inherited Description

border-top-color Text color No Defines the color for the top

border. If no color is defined,

the border uses the same

color as would be used for

the element’s text.

border-right-color Text color No Same as the previous

property for the right border.

border-bottom-color Text color No Same as the previous

property for the bottom

border.

border-left-color Text color No Same as the previous

property for the left border.

border-top-style none No Defines the style for the top

border. A style must be set

for the border to appear.

border-right-style none No Same as the previous

property for the right border.

border-bottom-style none No Same as the previous

property for the bottom

border.

border-left-style none No Same as the previous

property for the left border.

border-top-width medium No Defines the width of the top

border.

border-right-width medium No Defines the width of the right

border.

border-bottom-width medium No Defines the width of the

bottom border.

 Getting StartED with CSS

 180

Property Initial Value Inherited Description

border-left-width medium No Defines the width of the left

border.

border-color No Shorthand property that

defines the color of all four

borders.

border-style No Shorthand property that

defines the style of all four

borders.

border-width No Shorthand property that

defines the width of all four

borders.

border-top No Shorthand property that

defines the top border.

border-right No Shorthand property that

defines the right border.

border-bottom No Shorthand property that

defines the bottom border.

border-left No Shorthand property that

defines the left border.

border No Shorthand property that

defines the color, style, and

width of all borders. When

used, the same values are

applied to all four borders.

As you can see, there are a lot of shorthand properties. They take a little
getting used to, but they work in a similar way to the margin shorthand
property and can save a lot of typing on a complex layout.

There are two other CSS properties that relate to borders: border-collapse
and border-spacing. They apply only to tables, which are a special case, and
we’ll cover them separately in Chapter 9.

181

Chapter 5: How Do I Add Backgrounds and Borders to Improve the Look of My Page?

Setting a border color
Setting a border color is very simple. You can use one of the individual
properties, such as border-top-color, to set the color of a specific side or the
shorthand border-color to set the colors for all four sides. If you don’t specify
a color, the browser should automatically use the same color as would be used
for text in the same element. However, some browsers don’t always do this, so
it’s better to specify the border color explicitly, even if you want to use the
same color as the text.

Color values can be expressed in any of the following ways:

� A 3- or 6-digit hexadecimal number

� One of the 17 color keywords listed in Table 2-3

� An rgb() value specifying the red, green, and blue values as comma-
separated numbers in the range of 0–255 or percentages from 0% to
100%

In addition to a color, you can also use transparent as the value. This preserves
the border width, but lets the underlying content show through.

When using the border-color shorthand, you can specify one, two, three, or
four values. These follow exactly the same rules as for the margin shorthand
property, namely:

� One value: Applies equally to all four sides.

� Two values: The first one applies to the top and bottom, and the
second one to the left and right.

� Three values: The first one applies to the top, the second one to the
left and right, and the third one to the bottom.

� Four values: The values are applied in clockwise order starting from
the top.

As with the margin shorthand property, I suggest you forget about using three
values. Just remember to start at the top and move in a clockwise direction.

Setting a border style
You can choose from eight border styles: dashed, dotted, double, groove,
inset, outset, ridge, and solid. Examples of how each style is displayed in
Firefox 3.0 are shown in Figure 5-13.

 Getting StartED with CSS

 182

Figure 5-13. Examples of different border styles as rendered in Firefox 3.0

You can also test border_styles.html in the download files for this chapter.
View the file in different browsers to see how they render the styles. Also
experiment by changing the value of the border-width property in the div style
block. You’ll notice that there are sometimes considerable differences in what
each browser displays. Borders need to be tested carefully if you want to avoid
disasters in your design, particularly when using wide borders.

In addition to the styles already listed, you can also specify none, hidden, or
inherited. The hidden value is used exclusively with tables and is discussed in
Chapter 9. Although none is the default value, it is also useful for suppressing
an unwanted border.

Specify the border style using one of the individual properties, such as border-
top-style, or the border-style shorthand property. Like border-color,
border-style takes one, two, three, or four values, and applies them in the
same way.

183

Chapter 5: How Do I Add Backgrounds and Borders to Improve the Look of My Page?

Setting a border width
You can define the width of a border using a length, such as pixels or ems, or
one of the following keywords: thin, medium, or thick. The CSS2.1 specification
doesn’t lay down an equivalent value for these keywords, so the result you get
is likely to differ from browser to browser.

Specify the width using one of the individual properties, such as border-top-
width, or the border-width shorthand property. The shorthand property
accepts up to four values, which are applied in the same way as described
earlier for border-color.

The important thing to realize about the width of borders is that they are
added outside the element to which they are applied. While this sounds logical
enough, it has a major impact on calculations concerning width and height.

ExplainED
Many a designer is caught out by forgetting—or not realizing—that the
width of any border is added to the size of the element. The Roosevelt
quote is currently 275 pixels wide, but if you add a 5-pixel border all
round, its total width increases to 285 pixels. This affects the calculations
you did in the last chapter to adjust its margins and center it alongside the
floated image.

Using border shorthand properties
Because every element has four sides, adding a border involves typing out up to
twelve properties if you use the individual ones. For example, to add a 5-pixel
solid, green border to every image requires this massive style block:

img {
 border-top-color: #468966;
 border-top-style: solid;
 border-top-width: 5px;
 border-right-color: #468966;
 border-right-style: solid;
 border-right-width: 5px;
 border-bottom-color: #468966;
 border-bottom-style: solid;
 border-bottom-width: 5px;
 border-left-color: #468966;
 border-left-style: solid;
 border-left-width: 5px;
}

 Getting StartED with CSS

 184

ExplainED
Just in case you’re wondering, the order of the properties in this example
isn’t important. I have simply followed the convention of starting at the
top and moving in the clockwise direction. Doing so helps reinforce the
rule used by the shorthand properties, where order does matter.

Obviously, typing out the individual properties all the time is a major chore, so
the shorthand properties are great time-savers. Using the border-color,
border-style, and border-width shorthand properties reduces the previous
style block to this:

img {
 border-color: #468966;
 border-style: solid;
 border-width: 5px;
}

In fact, because the same values are applied to all four sides, you can reduce it
even further by using the border shorthand property:

img {
 border: #468966 solid 5px;
}

When using the border shorthand property, it doesn’t matter which order you
place the values. Just separate them with at least one space. For a uniform
border around all sides of an element, using the border shorthand property is
best choice.

So why have all the individual properties and six other shorthand properties?
It’s because CSS recognizes that you don’t always want the same border on
every side. In fact, you might not even want a border on every side. CSS gives
you the freedom to put a border along just one side, for example, as a divider
between columns. In such cases, using the individual properties or the other
shorthand properties makes sense.

Using borders to simulate embossing and
indenting
The border styles include inset and outset, which give the impression of an
indented or embossed border. However, browsers tend to use quite different
colors to achieve these effects, so it’s usually better to create your own style

185

Chapter 5: How Do I Add Backgrounds and Borders to Improve the Look of My Page?

rules to get exactly the colors you want. Figure 5-14 shows this in action in
border_shorthand.html, which you can find in the download files for this
chapter.

Figure 5-14. The large range of border shorthand rules makes it easy to use different
styles and colors.

The embossed <div> on the left uses the following shorthand rules:

 #embossed {
 border-top: #5C9D9D solid 6px;
 border-right: #003636 solid 6px;
 border-bottom: #003636 solid 6px;
 border-left: #5C9D9D solid 6px;
}

This defines the color, style, and width for the border on each side. However,
the style and width is the same for each one. So, you can save yourself a bit of
typing by using the border shorthand property to declare them for all sides,
and then use the border-color shorthand property to define the color for each
side, which is how I did it for the indented <div>:

#indented {
 border: solid 6px;
 border-color: #003636 #5C9D9D #5C9D9D #003636;
}

In this example, the border-color shorthand property has four values. So,
starting at the top and going in a clockwise direction, they define the top,
right, bottom, and left colors. As you can see from both the code and Figure
5-14, the top and left colors are the same, as are the right and bottom ones.

 Getting StartED with CSS

 186

AdvancED
The order of the two shorthand properties in the indented <div> is
important. If you declare border-color first, the border shorthand
property overrides the values in border-color and uses the color of the
text. Because the text in the <div> is white, it looks as though no border is
added. However, you can see what is happening if you change the
background color of the page. You can check this by viewing
border_shorthand_bad.html in the download files for this chapter.

Don’t worry if you find the shorthand properties confusing. Just use the
individual properties until you feel more comfortable with CSS. You’ll find it
easier to make the transition from individual properties to the shorthand
versions if you follow the same order as the shorthand: top, right, bottom, left.
Another useful technique is to create the style you want with the individual
properties, and then convert it to shorthand. Comment out the longhand
version while you build the shorthand one. If anything goes wrong, you can
comment out the shorthand and revert to your original version. Experimenting
like this helps build your knowledge and confidence.

Understanding how borders affect layout
Adding borders to elements in your pages is easy. What’s not so easy is
remembering the impact that adding a border has on your layout. As mentioned
earlier, the width of borders is added to the width and height of an element.
So, if you have a 5px border all round, the element will be 10px wider and
taller than any declared width and height. This often means recalculating
existing margins once you add a border.

Let’s add a few borders to journey.html.

Adding borders

This exercise shows you how to add borders to individual sides of elements
as well as all around them. It also demonstrates the effect that adding borders
has on the layout of your page. Continue working with the files from
the preceding exercise. Alternatively, use journey_18.html and css/journey_
18.css from the download files for this chapter.

1. The transition between the page’s olive background and the white of
the center section looks somehow incomplete. Adding a border to the

187

Chapter 5: How Do I Add Backgrounds and Borders to Improve the Look of My Page?

left and right sides of the wrapper <div> should give it more
definition. However, a border on the top and bottom would look too
heavy. This is a case for the border-left and border-right shorthand
properties. Add them to the #wrapper style block like this:

#wrapper {
 width: 720px;
 margin: 0 auto;
 background-color: #FFF;
 background-image: url(../../images/grand_canyon.jpg);
 background-repeat: no-repeat;
 background-position: bottom;
 border-left: 2px solid #D8D0AC;
 border-right: 2px solid #D8D0AC;
}

2. Save the style sheet, and load journey.html into a browser. The new
style rules have added a narrow border along either side of the center
section in a slightly darker shade of olive. The effect is subtle, but I
think it improves the look of the page.

3. Experiment with other styles and widths, or choose a different color if
you prefer. You’ll notice that you need to set the width to at least 4
or 5 pixels for some of the styles to display correctly. Notice also how
the color changes when you choose groove, ridge, inset, or outset.

Because the wrapper <div> has a fixed width and its left and right
margins are set to auto, it doesn’t matter how wide a border you add,
the <div> remains centered—provided, of course, that the border is
the same width on both sides.

4. Let’s see what happens when you add a border to the images. Create
a new style rule at the bottom of the style sheet using img as a type
selector:

img {
 border: #468966 double 5px;
}

5. Save the style sheet, and reload the page in the browser. Look at the
two images that are floated left. The border has been added to them,
and the content flowing around them has been moved across to make
room. Everything looks just fine.

6. Now, take a close look at the image floated right. The border has been
added, but the image is jammed up against the right edge of the
wrapper <div>. Figure 5-15 shows a comparison of the position of the
image before and after the border was added.

 Getting StartED with CSS

 188

Figure 5-15. Adding the border has caused the image to shift.

What’s going on here? Cast your mind back to the first exercise in this
chapter, where you added a 10-pixel right margin to the paragraphs to
create some breathing space between the text and the right side of
the wrapper <div>. The image is now flush with the side of the <div>.
In other words, it has shifted 10 pixels to the right. The border that
you added to the images in step 4 is 5px all round. So, that amount on
each side accounts for the extra 10 pixels. What it doesn’t explain is
why this image hasn’t realigned itself with the rest of the paragraph.

The answer is that the image is wrapped in a to float it
together with the caption. This image has a particularly long caption,
so I gave the an inline style in the previous chapter to make it
the same width as the image (325px). However, with the border, the
image is now 335px wide. As a result, the is still floating only
the same distance as before, and the extra 10 pixels are protruding
from its right side.

7. Amend the inline style for the to set its width to 335px like
this:

<img �
src="../images/forest_grassland.jpg"

189

Chapter 5: How Do I Add Backgrounds and Borders to Improve the Look of My Page?

8. Save the page, and reload it in a browser. The right border of the
image should now be aligned with the right edge of the text.

9. However, let’s say you want the border to go round the caption as
well. Cut the border style definition from the img style block, and
paste it into the group selector that defines the text properties for the
captions. The styles should now look like this:

.floatleft, .floatright, .imgcentered {
 font-weight: bold;
 text-align: center;
 border: #468966 double 5px;
}
img {

}

This leaves the img style block with no rule definitions, but that’s
perfectly valid.

10. Save the style sheet, and reload journey.html in the browser. The
border fits snugly around the two images floated left, but there’s now
a 5px gap on either side of the image that’s floated right, as shown in
Figure 5-16.

Figure 5-16. The is now too wide for the image.

The reason for this is that the border is no longer around the image,
but around the . Since the is floated, the browser
automatically adjusts the surrounding text to take account of the
border. However, the internal width of the is now 10px too

 Getting StartED with CSS

 190

wide for the image. To get rid of the gap, you need to set the width of
the back to the same as that of the image, 325px.

11. To conclude this investigation of the effects of borders and margins,
add the following border styles to the Roosevelt quote:

#tr_quote {
 margin: 50px 71px 0 374px;
 width: 275px;
 background-color: #FFFEF1;
 background-image: url(../../images/flower2.png);
 background-repeat: no-repeat;
 background-position: 97% 95%;
 border: solid 30px;
 border-top-color: #CAC7B0;
 border-right-color: #606249;
 border-bottom-color: #606249;
 border-left-color: #CAC7B0;
}

This uses the border shorthand property to set the style and width for
all four sides. I have deliberately chosen a very wide border to
demonstrate how borders affect the calculations for margins. The
other four style rules define the color for each side: a lighter color for
the top and left, and a darker one for the right and bottom sides,
creating an embossed effect.

Figure 5-17. The exaggeratedly wide border demonstrates the impact borders have
on margins.

191

Chapter 5: How Do I Add Backgrounds and Borders to Improve the Look of My Page?

12. Save the style sheet, and reload journey.html in the browser. As
Figure 5-17 shows, adding a 30px border to the quote results in it
being no longer centered alongside the floated image.

The quote was centered alongside the image in the previous chapter
by calculating its left and right margins. However, the 30 pixels have
been added to the outside of the quote, pushing it down and to the
right. The interesting thing to note is that the explicit right and left
margins don’t result in the quote and its border being squashed. The
left margin is respected, and the right margin is ignored.

13. The current width is far too much, so reduce it to 3px. At the same
time you need to recalculate the margins. Because you’re adding a 3px
border to the quote, you need to reduce its top, right, and left
margins by the same amount. The bottom margin was already 0, so
you don’t need to change that. However, the quote is floated
alongside an image that has an extra 5px border on either side. So,
you need to take that into account, too.

The space inside the wrapper <div> is still 720px, because its borders
are added outside. So, to calculate the space available to the right of
the image, you need to subtract the following amounts from 720px:

� Left margin: 45px

� Left border on floated element: 5px

� Image: 250px

� Right border on floated element: 5px

� Right margin on floated element: 8px

That adds up to 313px. So, the space to the right of the floated
element is 407px. The <blockquote> is 275px wide, but it now has a
3px border on every side, so its overall width is 281px.

To keep the quote centered in that space, it needs a 63px margin on
both sides. But remember that the left margin of a block-level
element alongside an element that has been floated left stretches
under the floated element. So, you need to add the 313px to this
figure to get the correct left margin (376px). Figure 5-18 shows how I
arrived at this result.

 Getting StartED with CSS

 192

Figure 5-18. You need to add up all the dimensions to arrive at the correct value for
the margins around the quote.

The amended styles look like this:

#tr_quote {
 margin:47px 63px 0 376px;
 width: 275px;
 background-color: #FFFEF1;
 background-image: url(../../images/flower2.png);
 background-repeat: no-repeat;
 background-position: 97% 95%;
 border: solid 3px;
 border-top-color: #CAC7B0;
 border-right-color: #606249;
 border-bottom-color: #606249;
 border-left-color: #CAC7B0;
}

14. Save the style sheet, and reload the page in the browser. The quote
should now have a slimmer border and be correctly positioned.

There’s currently no breathing space between the text and the
border. You could fix that by adjusting the margins of the blockquote
p style rule, but I plan to use the padding property in the next
chapter. So, leave it for now.

You can check your code, if necessary, against journey_19.html and
css/journey_19.css in the download files for this chapter.

I suspect that some readers might be shaking their head in disbelief at this
stage. Controlling the layout of a page with CSS often involves fiddly
calculations, and it’s not always easy to see what causes a particular effect.
That’s why it’s important to understand the interaction between the different
aspects of the CSS box model. Up to now, you have dealt with margins and
borders. In the next chapter, the final piece of the jigsaw will fall into place:
padding. Once you understand how all three work together, much of the

193

Chapter 5: How Do I Add Backgrounds and Borders to Improve the Look of My Page?

confusion should fall away, and you’ll begin to appreciate how much real
control CSS gives you. Using a CSS analysis tool like the Safari 4 Web Inspector
panel or Firebug also helps visualize what the browser is doing behind
the scenes.

ExplainED
If you test journey_19.html in IE6, you’ll see that it adds the 45px left
margin inside the border around the images and captions floated left.
Older browsers often have CSS bugs that affect layout. The purpose of this
book is to teach you the basic principles of CSS as implemented by
standards-compliant browsers, rather than to engage battle with every
bug—and there are a lot of them—in IE6. However, this particular layout
problem will be solved by changes made to the image styles in Chapter 7.

Before moving onto the next chapter, I need to tidy up a few loose ends
regarding backgrounds and borders.

How do I get rid of the blue border around link
images?
When you use an image as a link, browsers automatically surround the image
with a blue border. In the early days of the Web, this was a useful visual device
indicating that the image was a link. However, using images as links is now
commonplace, and the blue border tends to destroy the visual harmony of a
page.

The traditional way of getting rid of the border was to add border="0" in the
 tag. CSS provides a much simpler method. Just add the following rule to
your style sheet:

a img {
 border: none;
}

This is another example of a descendant selector, which you first encountered
with blockquote p in Chapter 2. A descendant selector targets an element that
is nested inside another—in other words, a child element. The blockquote p
selector targets paragraphs inside a <blockquote>; a img targets images inside
an <a> tag.

 Getting StartED with CSS

 194

Adding this simple rule to your style sheet removes the blue border from every
link image in your site—provided, of course, the style sheet is attached to
every page that uses images as links.

AdvancED
Strictly speaking, to target a child element, you should use a child
selector, which uses a greater than symbol between the two basic
selectors like this: a > img. However, IE6 doesn’t understand child
selectors, so you need to use a descendant selector instead.

A child selector applies only to elements nested one level deep, whereas a
descendant selector targets elements nested at any level. When dealing
with elements nested only one level deep, child selectors are more
efficient, but lack of support in IE6 makes their use impractical in a public
website.

How do I prevent backgrounds and borders from
displaying under floats?
A rather surprising feature of backgrounds and borders is that, when they are
used on an element alongside a float, they stretch underneath the float. This
isn’t a bug, but as designed. In fact, it’s quite logical when you consider the
way margins are handled alongside floats. Logical or not, it can look quite
strange. So, you need a way of dealing with this behavior.

Figure 5-19 demonstrates the problem. The image in the first paragraph is
floated left. The second paragraph has a background color, and the third
paragraph has a border. To show what’s happening, I have put a 20px margin on
the left and right sides of the floated image. You can examine the code
yourself in floats.html in the download files for this chapter.

195

Chapter 5: How Do I Add Backgrounds and Borders to Improve the Look of My Page?

Figure 5-19. The default behavior of backgrounds and borders is to stretch behind
floated elements.

Fortunately, preventing the background and border from stretching underneath
the floated element is very easy. You just add the overflow property to the
styles that define the background and border and set its value to hidden like
this (the code is in floats_overflow.html):

.highlight1 {
 background-color: #FF3;
 overflow: hidden;
}
.highlight2 {
 border: #063 2px solid;
 overflow: hidden;
}

As Figure 5-20 shows, the background and border are now flowed alongside the
floated image, just like the text.

 Getting StartED with CSS

 196

Figure 5-20. Setting the overflow property to hidden stops the background and
border stretching under the floated image.

Setting the overflow property to hidden works in all modern browsers. As you
might have guessed, IE6 spoils the party. You can fix this problem by adding
the Microsoft proprietary property, zoom, to the style rule, and setting its value
to 1. Because it’s not standard CSS, you might want to put this in a Microsoft
conditional comment inside the <head> of your web page after any embedded
styles or links to external style sheets. As explained in Chapter 1, the
advantage of a conditional comment is that it’s inside HTML comment tags. So,
other browsers—and the W3C validator—ignore it. This is how I added the
proprietary style rule in floats_overflow.html:

<!--[if lte IE 6]>
<style type="text/css">
.highlight1, .highlight2 {
 zoom: 1;
}
</style>
<![endif]-->

OK, I know I said I wasn’t going to deal with every IE6 bug, but this one is so
simple to squash.

197

Chapter 5: How Do I Add Backgrounds and Borders to Improve the Look of My Page?

LinkED
Visit www.quirksmode.org/css/condcom.html to find out more about
Microsoft conditional comments.

Chapter review
CSS makes the addition and precise positioning of background images very
easy. Borders are also easy to style once you get used to the initially
bewildering number of border properties. What’s not so easy is understanding
how backgrounds and borders interact with margins. Adding a background or
border to an element usually impacts the rest of the page layout. Background
colors and images do not stretch into the margins surrounding an element,
allowing the surrounding background to show through. Most of the time, this is
what you want, but the overlapping margins at the top and bottom of the
wrapper <div> resulted in an unwanted stripe of the <body> background being
displayed.

You also saw how adding a border to an element often necessitates the
recalculation of margins or width. Understanding the rules governing width and
height is one of the trickiest aspects of CSS. By the time you reach the end of
the next chapter, you should be a master.

199

Chapter 6
How Do I Solve the Mysteries
of Width and Height?
By now, you should know that the addition of a border affects the margins
surrounding an element. Borders are added outside the element, increasing its
overall width and height. However, that’s not the only thing that goes outside
an element—so does padding. As the name suggests, padding is a sort of buffer
zone between the contents of an element and its surroundings. Figure 6-1
shows the Roosevelt quote from the exercise file from the preceding chapters
without padding and with it added.

Figure 6-1. Padding adds space between the content and border.

The screenshot on the left shows the quote as it looked at the end of
Chapter 5. There is no space between the text and the border, except at the
bottom. The gap between the final paragraph and the border is created by the
0.4em bottom margin on each paragraph. I could have increased the other
margins around the paragraphs to create the space in the screenshot on the
right, but I didn’t. The paragraphs don’t have a declared width, so increasing
their margins would have left less room for the text. Instead, I added padding
to the #tr_quote style rule for the <blockquote> element. As you can see, the
<blockquote> on the right is both wider and taller. However—and this is the
part that confuses most people—the width property of the <blockquote> in both
screenshots has the same value: 275px.

 Getting StartED with CSS

 200

There’s no trickery involved. Both screenshots were taken in the same browser
at the same time on the same monitor. The point is that width and height in
CSS refer to the content. Padding, borders, and margins are all added outside
the content. So, although the width property of both elements is set in the
style sheet at 275px, the overall size of the quote on the left is 281px (275px +
3px of border on each side), and the quote on the right is 301px (275px + 10px
of padding on each side + 3px of border on each side). Once you understand the
distinction between the declared width or height of an element and its overall
width or height including padding and borders, the mysteries of width and
height in CSS begin to fade.

This chapter brings together the four pieces of the CSS box model—content,
padding, borders, and margins—and their effect on width and height
calculations. In particular, you’ll learn about the following:

� How to control space between the content of an element and its
borders

� Deciding whether to choose padding or margins

� Controlling the minimum and maximum dimensions of an element

� Scaling images automatically depending on browser width

� Simulating min-width and max-width in IE6

� What to do when content spills out of its container

� Using the overflow property to keep a floated element inside a
background

� Displaying a message to warn users of older browsers about display
problems

First, let’s review the principles of the CSS box model.

Padding—the final piece of the CSS box
model
As I mentioned in Chapter 3, the box model lies at the heart of CSS. In theory,
the box model is very simple, but many people find it confusing. The purpose
of this section is to clarify how it works and remove any cause for confusion.
Figure 6-2 summarizes the CSS box model.

201

Chapter 6: How Do I Solve the Mysteries of Width and Height?

Figure 6-2. How the CSS box model works

What most people find difficult to understand is that, although padding goes
inside the border, it is added outside the element to which it applies. Since the
border is also added outside, the overall width and height of the element are
increased by the size of any padding and border. When you look at a diagram
like Figure 6-2, it seems obvious. However, when you’re staring at a style sheet
scratching your head, it’s easy to forget that adding 10px of padding around
300px-wide element has made it 320px wide. Add a 1px border and a 25px left
margin, and the space it occupies has suddenly grown to 346px.

ExplainED
If you think this way of calculating width and height is counterintuitive,
you’re not alone. In the early days of CSS, Microsoft thought that the
width and height of a box should be measured from the outside of one
border to the outside of the opposite border. So, it included the border
and padding properties inside the box. In the Microsoft box model, a
300px-wide element with 10px of padding and a 1px-border measured 300px
across, leaving 278px for the content. However, this was an incorrect
interpretation of the CSS specification, and Microsoft switched to the
correct box model in IE6.

width

height

padding

margin

border

 Getting StartED with CSS

 202

To prevent sites that used the old, incorrect interpretation from breaking,
browsers adopted the practice of rendering CSS in what’s known as quirks
mode when a web page lacks a complete DOCTYPE declaration. This treats
the padding and border properties as included in the width and height
values of elements. So, why not omit the DOCTYPE declaration and make
your life easier? Quirks mode is likely to cause other problems and might
not be supported by future browsers. You’ll soon get used to the box
model, and sticking to the official standards makes it easier for others to
help you if you run into problems.

LinkED
To learn more about quirks mode, web standards, and browser support for
CSS, visit Peter-Paul Koch’s excellent website at www.quirksmode.org/css/
quirksmode.html.

Choosing between margins and padding
Both margins and padding have the effect of creating space around an element.
So, which should you use? Sometimes, there appears to be no difference, but
when an element has a border, the choice is clear. If you want space between
the border and the element, you must use padding, because margins are always
outside the border. There are other important differences between margins
and padding, namely:

� Background: Margins are transparent, and show the background of the
parent element. Padding shares the same background as the element
itself.

� Adjacent elements: Adjacent vertical margins collapse, and only the
largest value is applied. Padding never collapses.

So, if you want the background to stretch beyond the element, padding is the
one to choose. Padding also preserves the distance between elements.

203

Chapter 6: How Do I Solve the Mysteries of Width and Height?

Using padding to add space around elements
You apply padding in very much the same way as margins and borders. Padding
can be added to almost any element. However, the only table elements that
can have padding are the table itself and individual table cells. Table 6-1 lists
the properties used for padding.

Table 6-1. CSS Padding Properties

Property Initial Value Inherited Description

padding-top 0 No Adds padding to the top of

an element

padding-right 0 No Adds padding to the right

side of an element

padding-bottom 0 No Adds padding to the

bottom of an element

padding-left 0 No Adds padding to the left

side of an element

padding 0 No Shorthand property that

accepts between one and

four values

All properties listed in Table 6-1 accept a length, such as pixels or ems; a
percentage; or the keyword inherit. The padding shorthand property works
exactly the same way as the margin shorthand property, namely:

� One value: This applies equally to all four sides.

� Two values: The first one applies to the top and bottom, and the
second one to the left and right.

� Three values: The first one applies to the top, the second one to the
left and right, and the third one to the bottom.

� Four values: The values are applied in clockwise order starting from
the top.

My advice, as before, is to forget about using three values. Just remember to
start at the top and move around the element in a clockwise direction: top,
right, bottom, left. With two values, the first applies to the top, and the

 Getting StartED with CSS

 204

second one to the right; then repeat the values continuing in a clockwise
direction, applying the first one to the bottom, and the second one to the left.

Although you can use a percentage value for padding, it works in a very unusual
way. It’s so unusual, I recommend you stick to pixels or ems for padding. For
the insatiably curious, the sidebar explains why.

ExplainED
If you create a paragraph, set its width to 400px, and give it 10% padding,
you probably expect the padding on the left and right to be 40px, and the
top and bottom padding to be based on the height of the paragraph. It’s a
reasonable assumption, but it’s wrong. When you use a percentage for
padding, the value is based on the width of the parent element—even for
top and bottom padding. If the paragraph is inside a <div> that has a
width of 600px, the 10% padding on all sides will be 60px.

If the paragraph doesn’t have an outer container (or parent), the padding
is calculated as a percentage of the page width. So, at 800 × 600
resolution, the padding is approximately 75px; and at 1280 × 800, it’s
approximately 124px. In both cases, browser chrome accounts for the value
being slightly less than 10%.

If you want to check this out, load padding_percentage.html in the
download files for this chapter into a browser. As you resize the browser
window, you will see the yellow background of the paragraph expand and
contract, indicating that the percentage is based on the window size, and
not on the width of the paragraph to which the padding has been applied.

Let’s update journey.html, the file that has been used in the exercises in the
previous chapters, to see how padding affects various elements.

Creating space around text with padding

This exercise demonstrates how to adjust the space around different text
elements using padding and illustrates the effect padding has on width and
height measurements. It also shows how the display property can be used to
create an inline block, thereby changing the way padding is handled. If you
have been working through all the exercises in order, continue working with
your existing files. Alternatively, use as your starting point journey_19.html
and css/journey_19.css in the download files for this chapter.

205

Chapter 6: How Do I Solve the Mysteries of Width and Height?

1. In Chapter 5, you saw that the 10-pixel margin on top of the <h1>
heading pushed the wrapper <div> away from the top of the page,
revealing a stripe of olive background color. Removing the margin got
rid of the olive stripe, but the heading is too high on the page. To
move it down, add padding-top with a value of 13px to the h1 style
block like this:

h1 {
 font-size: 220%;
 font-variant: small-caps;
 text-align: center;
 word-spacing: 0.2em;
 letter-spacing: 0.05em;
 margin-top: 0;
 background-image: url(../../images/flower1.png);
 background-repeat: no-repeat;
 background-position: 70px;
 height: 61px;
 padding-top: 13px;
}

2. Save the style sheet, and test journey.html in a browser. Figure 6-3
shows the heading before and after adding the padding. The addition
of padding moves the heading down not only in relation to the page
but also to the background image of the flower.

Figure 6-3. Adding padding improves the position of the heading, but it also
increases the overall height (below).

The only problem is that adding 13 pixels of padding has increased the
overall height of the heading by the same amount, pushing the
subsequent content lower. You’ll fix that in a moment, but first try a
little experiment to see the difference between margin and padding.

 Getting StartED with CSS

 206

3. Change the final property in the h1 style block from padding-top to
margin-top like this:

h1 {
 font-size: 220%;
 font-variant: small-caps;
 text-align: center;
 word-spacing: 0.2em;
 letter-spacing: 0.05em;
 margin-top: 0;
 background-image: url(../../images/flower1.png);
 background-repeat: no-repeat;
 background-position: 70px;
 height: 61px;
 margin-top: 13px;
}

This creates two conflicting values for margin-top, but the lower one
overrides the first one, so the value applied will be 13px.

4. Save the style sheet, and reload journey.html into the browser. The
top of the page should now look like Figure 6-4.

Figure 6-4. Using margin rather than padding lets the body background show
through.

The heading is still the same distance from the top of the page, but
using a top margin instead of padding results in the background of the
parent element—in other words, the <body>—showing through.

5. The obvious way to deal with the extra height is to deduct the 13px
padding from the 61px height of the <h1> heading. However, doing so
has a potential drawback, illustrated in Figure 6-5, which shows what
happens if someone uses the browser controls to increase the size of
the text.

207

Chapter 6: How Do I Solve the Mysteries of Width and Height?

Figure 6-5. Giving elements a fixed height can cause serious problems when text is
enlarged by the user.

Admittedly, the design is beginning to fall apart when text is enlarged
this much, but someone with really poor eyesight is far less interested
in how beautiful your page looks than in actually being able to read
the content. Giving the heading a fixed height—in fact, giving a fixed
height to any text element—reduces the accessibility of your site. The
answer is to remove the height and add some padding to the bottom
of the heading.

ExplainED
These days, most browsers have a zoom feature that increases everything
in proportion, making fixed heights for text less of a problem. However,
users have the option to turn off the zoom feature and increase only the
size of text, which is how I took the screenshot in Figure 6-5. Because you
have no control over how people will choose to view your sites, fixed
heights for text should be avoided.

Delete the height property from the h1 style block, and change the
final line like this:

h1 {
 font-size: 220%;
 font-variant: small-caps;
 text-align: center;
 word-spacing: 0.2em;
 letter-spacing: 0.05em;
 margin-top: 0;
 background-image: url(../../images/flower1.png);
 background-repeat: no-repeat;
 background-position: 70px;
 padding: 13px 0;
}

 Getting StartED with CSS

 208

This uses the padding shorthand property with two values to add 13
pixels of padding to the top and bottom of the heading, and no
padding on either side. If anyone increases the text size, the height of
the heading will now expand automatically, leaving the text perfectly
legible.

6. Next, let’s add 10 pixels of padding around the Roosevelt quote. You
can do this with the padding shorthand property and a single value.
However, since padding increases the overall width of the element,
you also need to adjust the margins around the quote. Otherwise, it
will no longer be centered and will appear lower down on the page.
Amend the #tr_quote style block like this:

#tr_quote {
 margin: 37px 58px 0 361px;
 width: 275px;
 background-color: #FFFEF1;
 background-image: url(../../images/flower2.png);
 background-repeat: no-repeat;
 background-position: 97% 95%;
 border: solid 3px;
 border-top-color: #CAC7B0;
 border-right-color: #606249;
 border-bottom-color: #606249;
 border-left-color: #CAC7B0;
 padding: 10px;
}

This is quite a simple change. You have added 10px padding to each
side, so it’s necessary to remove the same amount from each margin,
except the bottom one, which remains 0. If you test the page now, the
quote should look the same as the right screenshot in Figure 6-1 at the
beginning of this chapter.

7. Finally, let’s tackle the footer. At the moment, it simply has a fixed
height of 120px, designed to make room for the background image of
the Grand Canyon to show through. The background image is actually
applied to the wrapper <div>, but it will remain visible as long as you
don’t apply a different background to the footer or anything inside it.

Begin by adding a design credit inside the footer paragraph:

<p id="footer">Design: Getting StartED with CSS</p>

The bottom of the page now looks like Figure 6-6. The footer
paragraph is indented, and there’s nothing to set it off from the rest
of the text.

209

Chapter 6: How Do I Solve the Mysteries of Width and Height?

Figure 6-6. The footer paragraph needs to be distinguished from the preceding text.

8. If you apply a background color to the footer paragraph, it will cover
the entire width and height, obscuring the image of the Grand Canyon.
I want to move the design credit to the bottom right of the page, so
the text color will need to be reversed to make it legible against the
dark background. Wrap the design credit in a , and give it a
class called reversed (you’ll create the class style block shortly):

<p id="footer">Design: Getting StartED with �
CSS</p>

9. The footer paragraph is indented because all paragraphs that don’t
immediately follow a heading have text-indent set to 30px. So, reset
that to 0 in the #footer style block, and create the reversed class like
this:

#footer {
 margin-bottom: 0;
 height: 120px;
 text-indent: 0;
}
.reversed {
 color: #FFF0A5;
 background-color: #333;
 padding: 3px 5px;
}

This gives the design credit yellow text reversed out of a dark
background. The padding shorthand property adds 3px of padding to
the top and bottom, and 5px on the left and right, making sure there’s
a small amount of breathing space between the edge of the
background color and the text. The problem is that the text is still too
high on the page.

 Getting StartED with CSS

 210

10. The way to move the design credit to the bottom of the page while
keeping the background image of the Grand Canyon visible in its
current position is to add a large top margin to the #footer style
block. Margins are transparent, so the background of the parent
element shows through. However, adding a top margin means reducing
the height or eliminating it altogether. Delete the height property
from the #footer style block, and add a top margin of 110px. The style
block should look like this:

#footer {
 margin-top: 110px;
 margin-bottom: 0;
 text-indent: 0;
}

11. Save the style sheet, and reload journey.html in the browser. Take a
close look at the bottom of the page. As Figure 6-7 shows, the design
credit has not only been pushed to the bottom of the page, a tiny strip
of the olive background has reappeared.

Figure 6-7. The padding on the bottom of the pushes the wrapper <div> away
from the bottom of the page.

Time to start pulling your hair out? Not really. What has happened is
that the padding on the bottom of the has overlapped the
bottom of the wrapper <div>, and pushed it away from the bottom of
the page. This is one of those weird features of inline text elements.
Adding padding or margins to the top or bottom of an inline text
element doesn’t increase the line height; it just spills over to
whatever is above or below. Fortunately, there is a cure.

12. Add the display property to the reversed class style block, and set its
value to inline-block:

.reversed {
 color: #FFF0A5;
 background-color: #333;

3px gap

211

Chapter 6: How Do I Solve the Mysteries of Width and Height?

 padding: 3px 5px;
 display: inline-block;
}

The display property is described in detail in Chapter 8. All you need
to understand at this stage is that setting the display property to
inline-block changes the way the is displayed. Although it
remains inline, it’s treated like a block-level element. Unlike an inline
element, the top and bottom padding of an inline block are treated as
part of its overall height, so it no longer overlaps surrounding
elements. As a result, the 3-pixel gap at the bottom of the page is
removed.

13. Even better, you can now move the away from the bottom of
the page by giving it a bottom margin of its own. While you’re at it,
align the footer paragraph to the right, and give it a 10px right margin.
Change the style rules like this:

#footer {
 margin:110px 10px 0 auto;
 text-align:right;
 text-indent:0;
}
.reversed {
 color: #FFF0A5;
 background-color: #333;
 padding: 3px 5px;
 display: inline-block;
 margin-bottom: 10px;
}

The #footer style block now uses the margin shorthand property,
leaving the top and bottom values at 110px and 0 respectively, and
setting the right margin to 10px. The left margin is set to auto,
because you don’t know exactly how wide it needs to be.

14. Save the style sheet, and reload journey.html in the browser. The
bottom of the page should now look like Figure 6-8.

 Getting StartED with CSS

 212

Figure 6-8. The design credit sits close to the bottom right corner, with the
background image in its correct position.

You can check your code, if necessary, with journey_20.html and
css/journey_20.css in the download files for this chapter.

ExplainED
Changing the to an inline block has given you considerable freedom
over its look and position. The 10px margin on the bottom of the
has the effect of moving the design credit away from the bottom of the
page without triggering a strip of olive background as before. This is
because an inline block is normally placed on the text baseline of its
parent element—in this case the footer paragraph. Adding a bottom
margin to an inline block simply raises it from the text baseline and has no
effect on surrounding elements. Don’t worry if you find this confusing. I’ll
come back to the display property in detail in Chapter 8.

Hopefully, this exercise helped clarify the difference between margins and
padding. The principal advantage of padding is that it extends the background
beyond the edges of an element, whereas margins are always transparent,
letting the background of the parent element show through. You might also
have noticed that, once I brought padding into the mix, I got rid of the fixed
heights I used in the previous chapter. Browsers permit users to resize text, so
using a fixed height for any text content runs the risk of destroying your layout
and potentially making it unreadable.

Controlling width and height
In addition to the width and height properties you have already met, CSS has
four related properties, as described in Table 6-2.

213

Chapter 6: How Do I Solve the Mysteries of Width and Height?

Table 6-2. CSS Width and Height Properties

Property Initial Value Inherited Description

width auto No Sets the width for an element.

Can be applied to any

element, except inline text

elements, or table rows. If no

value is specified, the element

expands horizontally as far as

possible to accommodate the

element’s content.

max-width none No Sets a maximum width for an

element. Percentages are

calculated in relation to the

parent element.

min-width 0 No Sets a minimum width for an

element. Percentages are

calculated in relation to the

parent element.

height auto No Sets the height for an

element. Can be applied to

any element, except inline

text elements, or table

columns. If no value is

specified, the element

expands vertically as far as

possible to accommodate the

element’s content.

max-height none No Sets a maximum height for an

element. Percentages are

calculated in relation to the

parent element.

min-height 0 No Sets a minimum height for an

element. Percentages are

calculated in relation to the

parent element.

Most browsers in widespread use support all six properties, but IE6, which still
refuses to lie down and die, supports only width and height.

 Getting StartED with CSS

 214

The important thing to note is that the default value for both the width and
height properties is auto. In other words, the element expands and contracts
to make room for the content. The default for min-width and min-height is 0,
whereas the default for max-width and max-height is none. Although these
sound just two ways of saying the same thing, 0 means “there is no minimum,”
and none means “there is no maximum.” So, unless you specify a minimum, the
element will collapse to nothing if it has no content. If you specify no
maximum, the element will expand horizontally or vertically as far as it can to
accommodate its content.

All six properties accept values expressed as a length (for example, pixels or
ems) or as a percentage. When a percentage is used, the width or height is
calculated as a percentage of the parent element’s width or height.

Using the width property in combination with horizontal margins, borders, and
padding gives you considerable control over the layout of your web page.
However, the height property tends to create problems for layout unless you
use it very carefully.

Using a fixed height
The problem with setting a fixed height for an element is that browsers allow
users to change the size of text. Most modern browsers have a zoom feature
that scales everything in proportion, but users can override it and choose to
scale only text. Figure 6-5 earlier in this chapter shows what happens in a
modern browser when enlarged text spills out of a fixed-height element.
Consequently, you should exercise great care before using the height property.

ExplainED
Some older browsers ignore the height property when content becomes
too large to fit. However, this is incorrect behavior, and you cannot rely
on it happening in modern, standards-compliant browsers.

In my experience, the only time you should declare a specific height is when
the content of the element also has a fixed height, for example an image or
Flash movie. It’s also important to set the height of an element if you want to
use a nonrepeating background image, as in the following exercise.

215

Chapter 6: How Do I Solve the Mysteries of Width and Height?

Using a single background image with text

This exercise shows how to use a large image as the background for text. The
height property is needed to ensure that the whole image is displayed,
regardless of how much content is inside the element that uses the
background.

1. For a change, this exercise doesn’t use journey.html. So, close it if
necessary, and create a new file called height.html in your work
folder.

2. In the <body> of the page, create a pair of <div> elements, one nested
inside the other like this:

<body>
<div id="wrapper">
 <div id="header"></div>
</div>
</body>

3. Create some basic style rules to set the colors of the page background
and text. Also zero the page margins and padding, and make the
wrapper <div> 720px wide and centered. Since this is a one-off
exercise, you can embed the styles in a <style> block in the <head> of
the page like this:

<style type="text/css">
body {
 background-color: #FFF;
 color: #000;
 margin: 0;
 padding: 0;
}
#wrapper {
 width: 720px;
 margin: 0 auto;
}
</style>

4. Use tree_and_sky.jpg as the background image for the header <div>
by creating a new ID selector like this:

<style type="text/css">
body {
 background-color: #FFF;
 color: #000;
 margin: 0;
 padding: 0;
}
#wrapper {

 Getting StartED with CSS

 216

 width: 720px;
 margin: 0 auto;
}
#header {
 background-image: url(../images/tree_and_sky.jpg);
}
</style>

Adjust the path to the image to match your own site hierarchy.

5. Save the page, and test it in a browser. Don’t panic if you see a blank
page, because that’s exactly what you should see. The header <div>
has no content, so it collapses to nothing. The fact that it has a 720 ×
479 background image makes no difference. Without a defined height,
the background is invisible.

6. Add the height property to the #header style block, and set its value
to 479px:

#header {
 background-image: url(../images/tree_and_sky.jpg);
 height: 479px;
}

7. Reload the page into the browser. It should now look like Figure 6-9.

Figure 6-9. The full background image is displayed once you give the element a
height.

217

Chapter 6: How Do I Solve the Mysteries of Width and Height?

If the image is missing, make sure you have the correct file path to
the image. If necessary, check your code against height_01.html in
the download files for this chapter.

8. Of course, you could have put the image directly inside the header
<div> in the HTML markup, but using it as a background means that
you can put other content inside the <div>.

Add an <h1> heading inside the header <div>:

<div id="container">
 <div id="header">
 <h1>Our Climate

 is Changing</h1>
 </div>
</div>

9. Now, use some of the text properties you learned in Chapter 2 to give
the heading some punch. You also need to use the margin and
padding-top properties to move the heading into a better position.
Create a type selector for the <h1> tag like this:

h1 {
 color: #FFF;
 font-family:"Arial Black", Gadget, sans-serif;
 font-size:40px;
 text-indent: -60px;
 margin: 0 auto 0 80px;
 padding-top: 35px;
}

This sets the text color to white, and uses a large, bold font. I have
given the text-indent property a negative length to create a hanging
indent. As you might remember from Chapter 2, using a negative
length for text-indent can result in the text moving outside its parent
element. So, it’s necessary to compensate for this by adding a large
left margin. In this case, I have used 80px. However, the top margin of
the heading needs to be 0. Otherwise, it pushes the header <div>
away from the top of the page. So, to push the heading down, I have
set padding-top to 35px.

This set of style rules produces the effect shown in Figure 6-10.

 Getting StartED with CSS

 218

Figure 6-10. The heading is positioned over the image using a combination of
margin, padding, and text-indent.

10. Next, add a short paragraph of text after the <h1> heading, but still
inside the header <div>. You can type anything you like or use the
paragraph in height_01.txt in the download files for this chapter:

<div id="header">
 <h1>Our Climate

 is Changing</h1>
 <p>Although some people still dispute the causes of climate change,
there is no doubt that weather patterns have become more erratic.
Violent hurricanes have become a regular occurrence; crops are
vulnerable to drought; and floods threaten people's homes more
frequently than ever before.</p>
</div>

11. This needs to be positioned to fit inside the area of open sky at the
bottom left of the background image. This is easily done with the
margin property. The bottom margin on the <h1> heading has been set
to 0, so you can use a pixel ruler or guides in your editing software to
work out the approximate margins needed, and then fine tune them in
your CSS. To style this paragraph, I’m going to use an adjacent sibling
selector (see Chapter 3 and this book’s appendix) like this:

h1 + p {
 margin: 150px 275px auto 20px;

219

Chapter 6: How Do I Solve the Mysteries of Width and Height?

 color: #FFF;
 font-weight: bold;
}

This styles the first paragraph that comes immediately after an <h1>
heading. It should now look like Figure 6-11.

Figure 6-11. The position of the paragraph in relation to the image is controlled
entirely by setting its margins.

12. The page is beginning to look quite attractive. Add some more text to
the page after the header <div>, but still inside the wrapper <div>.
There’s some dummy text for you to use in height_02.txt in the
download files for this chapter:

frequently than ever before.</p>
 </div>
 <h2>What can we do about it?</h2>
 <p>Sed do eiusmod tempor. . .</p>
 <p>Excepteur sint occaecat. . .</p>
</div>

The page now looks like Figure 6-12.

 Getting StartED with CSS

 220

Figure 6-12. The background image with text overlaid makes a strong impact at the
top of the page.

13. In spite of the page’s good looks, there are a couple of problems. To
begin with, what happens if the image is missing or the user visits with
images disabled in the browser? Because the text is white, the heading
and the first paragraph disappear completely. The answer is to give
the header <div> a background color as well as the background image.
Amend the #header style block like this:

#header {
 background-image: url(../images/tree_and_sky.jpg);
 height: 479px;
 background-color: #719AD0;
}

This gives the <div> a sky blue background color. As long as the
background image is displayed, it covers the background color.
However, if the image is missing for any reason, the page remains
readable, as shown in Figure 6-13.

221

Chapter 6: How Do I Solve the Mysteries of Width and Height?

Figure 6-13. Using a background color ensures the text remains legible even if the
background image is missing.

14. The other main problem is what happens if a user enlarges the text. In
some older browsers, the header <div> will expand vertically to
accommodate the larger content. Although this keeps the text visible,
it results in the background image being repeated. To avoid this, it’s a
good idea to add the background-repeat property and set it to no-
repeat. The white text then displays over the background color. It’s
not ideal, but the content remains accessible. So, amend the #header
style rule like this:

#header {
 background-image: url(../images/tree_and_sky.jpg);
 background-repeat: no-repeat;
 height: 479px;
 background-color: #719AD0;
}

15. In modern, standards-compliant browsers, the text spills out of the
fixed-height <div> and becomes illegible against the white
background. The solution is to add the overflow property, and set its
value to auto like this:

 Getting StartED with CSS

 222

#header {
 background-image: url(../images/tree_and_sky.jpg);
 background-repeat: no-repeat;
 height: 479px;
 background-color: #719AD0;
 overflow: auto;
}

When the text is its normal size, the page displays normally, as shown
in Figure 6-12. However, if the user expands the text so that it no
longer fits in the header <div>, the browser automatically adds a
vertical scroll bar to the <div>, making the content accessible, as
shown in Figure 6-14.

Figure 6-14. The overflow property turns the <div> into a scrollable area if the
content is too large to fit.

Normally, I would not recommend putting text in scrollable areas, but
it’s certainly preferable to text that’s no longer accessible. In this
case, the only people likely to see a scroll bar are those who have
opted to enlarge the text.

You can check your code, if necessary, against height_02.html in the
download files for this chapter.

I’ll return to the overflow property later in this chapter. Before that, let’s take
a look at a practical use for the minimum and maximum width and height
properties.

223

Chapter 6: How Do I Solve the Mysteries of Width and Height?

Using minimum and maximum lengths to scale
images and text
Back in the days when most people were accessing the Web with small
monitors—640 × 480 resolution was very common in the early days—the
problem was trying to cram as much as possible in a tiny space. Things didn’t
change much when the average resolution increased to 800 × 600, but the
arrival of 1024 × 768 monitors signaled a moment of liberation. Designers
began to create layouts that expanded automatically on a bigger screen.
Instead of measuring widths in pixels, using percentages was all the rage. Fluid
layout was born. It worked well until liquid crystal displays and bigger
resolutions became the norm rather than the exception. My main monitor is
1920 × 1200—and they get much bigger than that. A fluid layout that looks
good at smaller resolutions often becomes unreadable on a bigger screen,
because the text spreads too far across for the eye to scan easily. As a result,
fixed-width layouts have come back into fashion—until everyone changes again.

One thing that could influence future fashions is the ability to set minimum and
maximum widths. When IE6 was the dominant browser, there was little point
using the min-width, max-width, min-height, and max-height properties,
because it didn’t support them. Now that IE6 is on its way out, these properties
are likely to attract greater attention.

AdvancED
Although IE6 doesn’t support the minimum and maximum properties in
CSS2.1, you can use a Microsoft proprietary solution to achieve a similar
effect. This involves using a JavaScript expression in a separate style rule
hidden in an Internet Explorer conditional comment. The technique is
demonstrated after the following exercise.

As their names suggest, these properties set a minimum or maximum value, so
min-width and max-width shouldn’t be used in the same style rule as width,
except when width is defined as a percentage. Similarly, min-height and max-
height should be used with height only when it’s specified as a percentage.

The minimum and maximum properties calculate the size of an element in the
same way as the width and height properties. In other words, they represent
the size of the content. Padding, borders, and margins are added to their
values. Because text can be enlarged, using max-height with elements that

 Getting StartED with CSS

 224

contain text is risky. However, min-height can be useful in ensuring that an
element doesn’t shrink beyond a specified size.

A rather neat technique is using min-width and max-width to scale images.

Scaling images and text

The following exercise uses min-width and max-width to scale an image in
proportion to its containing text block. If you just want to inspect the code, it’s
in scaling_image.html in the download files for this chapter.

1. Create a new file called scaling_image.html in your work folder, and
add some basic styles for the <body> in the <head> of the page. This is
what I used:

<style type="text/css">
body {
 background-color: #FFF;
 color: #000;
 margin: 0;
 padding: 0;
 font-family: "Trebuchet MS", Arial, Helvetica, sans-serif;
}
</style>

2. The traditional way to create a fluid layout is to create a wrapper for
the page content and give it a percentage width, such as 80%. This
means the page content expands and contracts to fill four-fifths of the
browser viewport. However, on a large monitor this results in a page
1500 pixels wide or even bigger if the browser is fully expanded. To
avoid this problem, set a minimum and maximum width for the
wrapper like this:

<style type="text/css">
body {
 background-color: #FFF;
 color: #000;
 margin: 0;
 padding: 0;
 font-family: "Trebuchet MS", Arial, Helvetica, sans-serif;
}
#wrapper {
 min-width: 600px;
 max-width: 960px;
}
</style>

225

Chapter 6: How Do I Solve the Mysteries of Width and Height?

3. Because the wrapper <div> doesn’t have a fixed width, you can’t use
auto for the left and right margins. The alternative is to use a
percentage. I’m going to use 15%. Since max-width is set to 960px, the
wrapper <div> will remain centered until the browser viewport
exceeds 1371px. Beyond that size, the browser will maintain the 15%
left margin, but the right margin will get progressively wider. If
keeping the page centered is vital, you should avoid setting max-width
on the wrapper <div>. However, for the purposes of this exercise, I’m
not going to worry about the page being slightly off-center on a large
monitor. Amend the #wrapper style block like this:

#wrapper {
 min-width: 600px;
 max-width: 960px;
 margin: 0 15%;
}

4. In the <body> of the page, create a <div> with the ID wrapper, and put
a heading and some text inside. You can use the dummy text in
scaling_image.txt in the download files for this chapter.

5. At the start of the first paragraph, insert lasvegas.jpg from the
images folder. The image is 600px wide and 374px high. If your editing
program inserts the width and height attributes automatically, delete
them from the tag, and give the image an ID of vegas. The code
should look similar to this:

<h1>Desert Theme Park for Adults</h1>
<p>
They say that what happens. . .

6. Create a style rule for the vegas ID to float the image left, and give it
some margins to separate it from the text like this:

#vegas {
 float: left;
 margin: 3px 2% 3px 0;
}

I have made the right margin of the image a percentage, so it will also
expand and contract automatically with the size of the wrapper <div>.

7. Because the image has no size specified in the tag, it will
automatically display at its full width of 600px. However, this is also
the minimum width of the wrapper <div>. To control the size of the
image, set its width property to 65%:

 Getting StartED with CSS

 226

#vegas {
 float: left;
 margin: 3px 2% 3px 0;
 width: 65%;
}

When using a percentage for width or height, the value is calculated
as a percentage of the width or height of the parent element. In this
case, the image’s parent—the paragraph—has no specified width, so it
automatically stretches across the full width of the wrapper <div>.
When the wrapper <div> is at its minimum width, the paragraph will
also be 600px wide. This means the image’s width will be 65% of
600px—in other words, 390px. However, the maximum width of the
wrapper <div> is 960px, which will result in the image being displayed
624px wide. This is bigger than the image’s natural size, so could
result in distortion. To prevent this from happening, add the max-
width property to the #vegas style block, and set its value to 600px:

#vegas {
 float: left;
 margin: 3px 2% 3px 0;
 width: 65%;
 max-width: 600px;
}

You could also add the min-width property, but there’s not much
point, because the image should stop scaling when the wrapper <div>
reaches its minimum width.

8. Save the page, and test it in a browser. As shown in Figure 6-15, the
size of the image scales in relation to the overall width of the page.
The finished file is scaling_image.html in the download files for this
chapter.

AdvancED
In the preceding exercise, I used an ID selector for the image. This involves
adding extra HTML markup. All browsers in widespread use, except
IE6, support attribute selectors, which identify elements by examining
the value of an HTML attribute. In this case, you can use
img[src$="vegas.jpg"] to identify the image by the last part of its src
attribute. The $= operator means “ending with.” You can examine the
code in scaling_image_adv.html in the download files for this chapter. See
this book’s appendix for more information about attribute selectors.

227

Chapter 6: How Do I Solve the Mysteries of Width and Height?

Figure 6-15. Using a percentage width in conjunction with max-width makes it
possible to scale images without distortion.

As you can see, using min-width and max-width is easy. You use min-height and
max-height in the same way.

ExplainED
Although using a percentage width in combination with the max-width
property produces scalable images, the image needs to be larger than
normal. This increases file size and bandwidth usage. If you want to
display a higher resolution image, it might be preferable to put the larger
image in a separate page, or use one of the many JavaScript lightbox
techniques to load it on demand.

 Getting StartED with CSS

 228

The problem with these properties is the lack of support in IE6. However, you
can achieve almost the same result with the help of a Microsoft dynamic
property—or CSS expression. This uses a JavaScript conditional statement to
calculate the value of a property dynamically. Although conditional CSS sounds
an attractive idea, Microsoft has already abandoned its use in IE8. So, the
technique described in the following exercise is of limited value, since it works
only in IE6. If you don’t need to support min-width and max-width or their
height equivalents in IE6, skip straight to the next section.

Fixing the minimum and maximum widths for IE6

This brief exercise adapts scaling_image.html from the preceding exercise and
shows how to simulate the min-width and max-width properties in IE6 using a
CSS expression wrapped in a conditional comment to hide it from other
browsers.

1. Continue working with scaling_image.html from the preceding
exercise. Alternatively, use the version in the download files for this
chapter.

2. A CSS expression uses a Microsoft proprietary JavaScript function
called expression() to calculate the value of a property. Its basic
syntax looks like this:

property: expression(condition ? value if true : value if false);

If you’re familiar with JavaScript, you’ll recognize this as the
conditional (or ternary) operator. To set minimum and maximum
values, set two conditions. The first condition goes before the
question mark, and tests whether the browser window is narrower
than the minimum. The second condition for the maximum goes after
the colon, and is tested only if the first one equates to false. So, you
end up with two conditional operators like this:

property: expression(condition ? value if true : condition ? �
value if true : value if false);

If you’re not a JavaScript geek, this can be difficult to understand.
Just copy the code that follows, and substitute your own values.

Because IE6 doesn’t support min-width and max-width, you need to
find out how wide the browser window is, and use that value to
set the width property of the element you want to control. In IE,
the width of the browser window is accessed with
document.body.clientWidth.

229

Chapter 6: How Do I Solve the Mysteries of Width and Height?

Add the following <style> block wrapped in an IE conditional comment
between the existing style block and the closing </head> tag:

</style>
<!--[if IE 6]>
<style type="text/css">
#wrapper {
 width: expression(document.body.clientWidth < 780 ? "600px" : �
document.body.clientWidth > 1370 ? "960px" : "auto");
}
</style>
<![endif]-->
</head>

The first line of the conditional comment targets this style block at IE6
only. Other browsers, including IE7 and IE8 will ignore everything
inside.

The style rule sets the width property of the wrapper <div> using the
expression() function. The JavaScript code between the parentheses
performs the following calculation:

� If the browser window is less than 780px wide, set width to
600px.

� If the browser window is wider than 1370px, set width to 960px.

� In all other cases, set width to auto.

3. If you test this page in IE6, you’ll see that it simulates max-width
perfectly. Where it fails is when the browser window is opened at 800
× 600. The 15% margins override the computed value. You can deal
with this by setting narrower margins in the same conditional
comment. It then applies the minimum width correctly.

You can check your code against scaling_image_ie6.html in the
download files for this chapter.

So, as you see, with a bit of effort, it’s possible to get IE6 to use minimum and
maximum widths. However, it’s questionable how far you would want to go in
fixing problems in a browser that is declining in importance.

To end this chapter, let’s take a quick look at what to do when the content is
too wide or too high for its container.

 Getting StartED with CSS

 230

ExplainED
The important thing to note about using expression() is that JavaScript
returns the width of the browser window in document.body.clientWidth as
a number only; it does not include px. Consequently, when setting the
minimum and maximum conditions for the browser window, the number is
used on its own, and is not enclosed in quotes. All other values must
include a unit of measurement, such as px, or use a keyword, such as auto,
and be enclosed in quotes.

The margins on the left and right of the wrapper <div> are 15% each, so
the condition for the minimum width of the browser window is 780 (600px
× 130%), and the condition for the maximum has been set at 1370 (960px ×
130%).

If you just want to copy the code, replace 780 and 1370 with minimum and
maximum widths for the browser window. The min-width and max-width
values for the HTML element are in quotes and followed by the unit of
measurement ("600px" and "960px"). Leave "auto" unchanged.

How do I stop content spilling out of its
container?
CSS offers several methods of controlling the visibility of content. You have
already met one of them—the overflow property. I used it in the second
exercise in this chapter (“Using a single background image with text”), to
spawn a vertical scrollbar on the header <div> when the text is enlarged and
no longer fits within the fixed height. Table 6-3 lists the CSS properties used to
control the visibility of content.

The clip and overflow properties perform similar functions in that they
determine what should be displayed when an element is too big for its
container. However, the clip property applies only to absolutely positioned
elements, an advanced CSS subject that I’ll deal with in Chapter 10.

231

Chapter 6: How Do I Solve the Mysteries of Width and Height?

Table 6-3. CSS Properties that Control Visibility of Content

Property Initial Value Inherited Description

clip auto No Clips the overflow of an

absolutely positioned element

(see Chapter 10).

display inline No Changes the default display of

an element, for example, turns

an inline element, such as an

image, into a block-level one. It

can also prevent an element

from being displayed and

remove it from the flow of the

document. See Chapter 8 for a

full description.

overflow visible No Controls the display of content

that is too big for its containing

element. Applies to block-level

elements, table cells, and inline

blocks.

visibility visible Yes Controls visibility without

affecting the flow of the

document.

I plan to deal with the display property in detail in Chapter 8, but I have
included it here because one of its functions is to control visibility, but in a
very different way from the visibility property. All should become clear
shortly. First, let’s deal with overflow.

Controlling overspill with the overflow property
As its name suggests, the overflow property instructs browsers how to handle
content that’s too big for its container. It accepts one of the following values:

� auto: Tells the browser to add scrollbars to the element only if the
content is too large

� hidden: Hides all content that spills out of the container

 Getting StartED with CSS

 232

� scroll: Tells the browser to add scrollbars even if the content fits the
container

� visible: Default value that lets the extra content spill out of the
container

By default, browsers let content spill out of their containing element, so it’s
not necessary to set overflow to visible unless you want to override a previous
style rule. Since overflow is not inherited, you can also use the inherit
keyword to force inheritance.

Figure 6-16 shows how each of the overflow values are rendered by a browser.
The files used to generate the screenshots are available in the download files
for this chapter: overflow_default.html, overflow_hidden.html, overflow_
scroll.html, overflow_auto1.html, and overflow_auto2.html.

The top screenshot in Figure 6-16 illustrates the danger of using a fixed height
for a text container. Although IE6 ignores the fixed height and pushes
everything further down the page, in all other modern browsers the overspill
overlaps any subsequent content.

Note also the difference between scroll and auto. If you set overflow to
scroll, the browser generates scrollbars even if the content fits easily inside
the container, as shown in the screenshot on the right in the second row of
Figure 6-16. On the other hand, auto generates scrollbars only when needed, as
shown in the bottom row of Figure 6-16.

Setting overflow to auto is the most versatile option. However, the beauty of
CSS is that it gives you a variety of options, allowing you to choose the one that
most fits your needs. The overflow property also has a useful side-effect with
floated elements.

233

Chapter 6: How Do I Solve the Mysteries of Width and Height?

Figure 6-16. The overflow property can handle oversized material in several
different ways.

overflow: auto; overflow: auto;

overflow: scroll;overflow: hidden;

overflow: visible;

 Getting StartED with CSS

 234

AdvancED
Modern browsers offer even more options. All browsers currently in
widespread use, with the exception of IE6, support the proposed CSS3
properties, overflow-x and overflow-y, which respectively control the
horizontal and vertical axes separately. The CSS3 proposal hasn’t been
finalized, but the current implementations accept the same values as the
CSS2.1 overflow property.

Using overflow as an alternative to clear with
floated elements
A problem with floated elements is that they are removed from the normal
flow of the document. As a result, they protrude from a containing element
that uses a background, as shown in Figure 6-17 (you can find the code in
float_bg.html in the download files for this chapter). How do you get the
background to stretch so it includes the whole of the floated element?

Figure 6-17. If there isn’t sufficient content, floated elements protrude from their
containing element.

235

Chapter 6: How Do I Solve the Mysteries of Width and Height?

The normal way to get around this problem is to add an empty element, such
as a <div> at the end of the content, and apply the clear property to it. You
can see how this is done in clear_float_bg.html in the download files for this
chapter. However, this has the disadvantage of adding unnecessary HTML
markup to your page.

The alternative is to add the overflow property to the style rule that sets the
background color and set its value to auto or hidden. The style rule for the
container <div> in overflow_float.html has been amended like this:

#container {
 width: 720px;
 margin: 0 auto;
 padding: 10px 10px 10px 0;
 background-color: #CCC;
 overflow: auto;
}

This produces the result shown in Figure 6-18.

Figure 6-18. Adding the overflow property and setting its value to auto or hidden
stretches the background to enclose the floated element.

 Getting StartED with CSS

 236

AdvancED
This example uses an image, but the same technique applies to the parent
of any floated element. As you’ll see in the next chapter and Chapter 11,
the float property is used extensively to create sidebars. You can use this
technique to ensure that both elements share the same background.
However, it’s important not to give the parent element a declared height.
If you do so, setting overflow to auto or hidden works in the normal way,
generating scrollbars or hiding content that’s too big to fit its container.

Understanding the difference between visibility
and display
The visibility property accepts the following three values:

� collapse: Use only with tables (see Chapter 9).

� hidden: Hide the content, but leave it in the document flow.

� visible: Display the content.

The visibility property is used mainly with JavaScript to show and hide page
elements. The important thing to understand about it is that the visibility
property doesn’t affect the flow of the document. If you set visibility to
hidden, the element is not displayed, but the browser still leaves space for it.
Figure 6-19 and visibility.html in the download files for this chapter
illustrate the effect.

The code in visibility.html is the same as in overflow_float.html, but with
the addition of a class called hideMe, which has been applied to the image.

The class looks like this:

.hideMe {
 visibility: hidden;
}

237

Chapter 6: How Do I Solve the Mysteries of Width and Height?

Figure 6-19. Setting visibility to hidden leaves the space normally occupied by the
element.

ExplainED
You can apply more than one class to an element. Just separate the class
names by a space in the class attribute like this: class="floatleft
hideMe". This applies both the floatleft and hideMe classes to the same
element.

The normal rules of precedence apply if there’s a conflict between
multiple classes applied this way. The basic rule is that the style lower
down the style sheet takes precedence. The next chapter explains in detail
why this simple rule doesn’t always apply and how to work out precedence
in such cases.

The visibility property is inherited, so any nested elements are treated the
same way.

You can also affect the visibility of an element with the display property, but
the effect is completely different. One of the many values accepted by the
display property is none—and when it says “none,” it really means it. When

 Getting StartED with CSS

 238

you use display: none; the element is removed completely from the flow of
the document. The browser treats it as though it doesn’t exist—although it
remains visible in the page’s source code.

In display_none.html in the download files for this chapter, the hideMe class
has been changed like this:

.hideMe {
 display: none;
}

This has the effect shown in Figure 6-20.

Figure 6-20. Setting the display property to none removes the element completely
from the display.

“What’s the point of not displaying something?” you might ask. The main use of
display: none; is to hide content until the user triggers a JavaScript event,
such as selecting a radio button in an online form, or clicking a button or link.

ExplainED
Controlling CSS with JavaScript is beyond the scope of this book.

You can also use display: none; to display a message to users of old browsers
encouraging them to upgrade. No, that’s not a misprint. This is how it works. . .

Displaying a message to users of old browsers
Old browsers like IE6 don’t support everything in the CSS2.1 specification. This
can be a pain, as you saw with min-width and max-width earlier in this chapter.
Until this old browser finally fades from the scene, you need to jump through
hoops to make your pages work in IE6. Alternatively, you can accept the fact

239

Chapter 6: How Do I Solve the Mysteries of Width and Height?

that your pages won’t look quite the same. Many designers take the attitude
that it’s reasonable to provide a two-tier service, dealing only with major
display problems in IE6 and ignoring ones that don’t affect the usability of the
site.

You can take advantage of IE6’s incomplete support for CSS2.1 to create a
message that will be hidden from everyone using a more modern browser. The
technique is to use a selector that IE6 doesn’t recognize to apply the display
property with a value of none to the message. Because IE6 and other old
browsers don’t recognize the selector, they ignore it, and display the message.
Modern browsers understand what’s going on and hide the message.

The file old_browser.html in the download files for this chapter is the same as
height_02.html from one of the exercises earlier in this chapter. It has a <div>
with the ID, oldBrowser, at the top of the page. The <style> block contains the
following rule:

div[id="oldBrowser"] {
 display: none;
}

The selector div[id="oldBrowser"] is simply an alternative way of writing
#oldBrowser, but IE6 isn’t in on the secret, so it displays the message as shown
in Figure 6-21. Modern browsers, including IE7, hide the message.

Figure 6-21. IE6 doesn’t understand the selector, so it displays the upgrade
message.

 Getting StartED with CSS

 240

ExplainED
As Figure 6-21 shows, the div[id="oldBrowser"] selector isn’t the only
thing IE6 doesn’t recognize. The first paragraph isn’t properly styled
because IE6 doesn’t support the adjacent sibling selector (h1 + p) that was
used in the exercise earlier in this chapter. How much support you want to
devote to IE6 is entirely up to you. However, if you do want to improve
this page for IE6 users, you can take advantage of the fact that there’s
only one paragraph in the header <div> and use an ID descendant selector
(#header p). Using IDs to apply styles to different sections of a page is the
main subject of the next chapter.

Chapter review
This chapter put the final piece in the jigsaw of the CSS box model: padding.
Once you understand the CSS box model, you have basically cracked CSS. The
counterintuitive aspect of the box model is the way width and height are
calculated. The width and height properties refer to the size of an element’s
content. Everything else—padding, borders, and margins—are added outside.
The only exception is when you use an incomplete DOCTYPE declaration at the
beginning of the page or leave it out altogether. This switches most browsers
into quirks mode. Even if you find using the box model difficult, resist the
temptation to use quirks mode. It’s a hack, and like most hacks, it could easily
backfire on you one day.

Padding and margins frequently have a similar effect on the space between
elements, but they differ in two important respects. The background of the
element extends into padding, but not into its margins. Also, padding is always
rendered, whereas the vertical margins of adjacent elements collapse to the
height of the largest margin.

You also learned what happens when content is too large for its containing
element. By default, modern browsers let the content spill out, but it overlaps
subsequent elements. Setting a fixed height on elements that contain text is
particularly risky, because text can be resized by the user. In most
circumstances it is preferable to avoid setting the height property, but you can
use the overflow property to hide overspill or generate scrollbars. Width and
height can also be controlled by using the min-width, max-width, min-height,

241

Chapter 6: How Do I Solve the Mysteries of Width and Height?

and max-height properties to prevent an element from going below a minimum
size or exceeding a maximum one.

Finally, you learned the difference between setting the visibility property to
hidden and the display property to none. Both techniques hide content, but
the former leaves an empty space in place of the hidden content, whereas the
latter removes the content entirely from the document display.

You’re now halfway through this book, but you have already covered the vast
majority of CSS2.1 properties. Apart from properties that style lists (covered in
Chapter 8), the only ones that remain deal with advanced or little used aspects
of CSS. Much of the rest of this book builds on what you have already learned
and increases your knowledge of CSS selectors. In the next chapter, you’ll take
a more in-depth look at descendant selectors as a means to give distinct styles
to different sections of a page.

243

Chapter 7
How Do I Create Differently
Styled Sections?
Way back in Chapter 1, I warned you that it’s easy to slip into the habit of
overusing CSS classes. If you examine the style sheet used in this book’s main
case study (you can find it in css/journey_20.css in the download files for this
chapter), you’ll see that it uses classes very sparingly. Instead, I have relied on
using type selectors to redefine the default look of HTML tags. I have also used
the adjacent sibling selector—such as h1 + p, which styles a paragraph only if it
comes immediately after an <h1> heading—to target certain elements without
the need to add class attributes to the HTML markup. Other selectors used so
far include ID selectors, descendant selectors, and pseudo-classes.

Learning which selectors to use takes time and experience, but it helps keep
your HTML code clean and much easier to maintain. In this chapter, I plan to
explore the use of descendant selectors further, particularly in combination
with ID selectors. Using IDs to identify different sections of your page gives you
great control over the way they are styled. Up to now, the case study page,
journey.html has consisted of a single column. In this chapter, I’ll show you
how to transform the page by dividing it into four sections so that it looks like
Figure 7-1.

In this chapter, you will learn how to

� Create a sidebar that can easily be switched from left to right.

� Style links and other elements differently in one section of a page.

� Avoid problems with floated elements in older browsers.

� Understand which style rules take precedence in case of a conflict.

 Getting StartED with CSS

 244

Figure 7-1. How the page looks with the addition of a new heading and sidebar.

245

Chapter 7: How Do I Create Differently Styled Sections?

This will be very much a hands-on chapter, putting into practice many of the
techniques you have learned in previous chapters. It should also help you
understand the process of adjusting an existing page to accommodate a change
in design.

Adding a sidebar
Adding a sidebar to a single-column layout is a fairly simple process, but it can
have some unexpected effects, particularly in older versions of Internet
Explorer. If the problems were confined to IE6, I might be tempted to gloss
over them, but they also affect IE7, which is likely to retain a significant
proportion of the browser market share for several years after the publication
of this book. Fortunately, the techniques required for dealing with the
problems in IE6 and IE7 don’t require any hacks, and the pages render correctly
in standards-compliant browsers, including IE8 and other browsers in
widespread use.

Creating a sidebar is very similar to positioning an image—you float it to the
left or the right. The main difference is that you add a wide margin to the side
of the main column to create a space for the sidebar. As you saw in “What
happens to margins alongside a float?” in Chapter 4, the margin on the same
side as a floated image goes under the image. In Chapters 4 and 5, this
behavior caused a bit of a headache, because of the need to recalculate the
margins for the Roosevelt quote. However, when it comes to creating sidebars,
it’s a great asset. By making the margin at least as wide as the sidebar, you
effectively create two columns. The sidebar floats to one side, and sits in the
margin, while the margin keeps the main content in its own column. As you can
see in Figure 7-1, the main column is a constant width. Without the margin, the
final section would spread right across the page because the floated sidebar is
considerably shorter.

You’ll soon see how it works. It’s time to roll up your sleeves and start flexing
your CSS muscles.

Creating a two-column layout with the float property

This exercise continues working with journey.html, the main case study file
from previous chapters. If you have completed each exercise in turn, you can
continue working with your existing files. Alternatively, use as your starting
point journey_20.html and css/journey_20.css in the download files for this
chapter.

 Getting StartED with CSS

 246

1. To make room for the sidebar, widen the wrapper <div> from 720px to
940px by amending the width property in the #wrapper style rule:

#wrapper {
 width: 940px;
 margin: 0 auto;
 background-color: #FFF;
 background-image: url(../../images/grand_canyon.jpg);
 background-repeat: no-repeat;
 background-position: bottom;
 border-left: 2px solid #D8D0AC;
 border-right: 2px solid #D8D0AC;
}

This changes the position of the <h1> background image, but that’s not
important, because you’ll replace the heading later. The background
image at the bottom of the wrapper <div> is 1200px wide, so the extra
width simply reveals more of the image at the foot of the page. When
creating background images, it’s often a good idea to make them
wider than necessary in case you decide to change the design later.

2. To create the sidebar, you need to add a new <div> immediately after
the <h1> heading in the HTML code. Give the new <div> the ID,
sidebar, and insert some placeholder text:

<h1>Journey to the Edge</h1>
<div id="sidebar">
 Sidebar goes here
</div>

3. Also wrap all the remaining content, except the footer paragraph,
inside another <div>, and give it the ID, mainContent. Both new <div>
elements are nested inside the wrapper <div> like this:

<div id="wrapper">
 <h1>Journey to the Edge</h1>
 <div id="sidebar">
 Sidebar goes here
 </div>
 <div id="mainContent">
 <p><img src="../images/cape_royal.jpg". . .
 . . . responsible for their own safety.</p>
 </div>
 <p id="footer">Design: Getting StartED with �
CSS</p>
</div>

This effectively divides your page into four sections: the <h1> heading
at the top, the sidebar, a <div> for the main content, and the footer
paragraph. Each of these can now be styled independently, as well as

247

Chapter 7: How Do I Create Differently Styled Sections?

using the generic styles already defined in the style sheet. Although
it’s common practice to wrap each section in a <div>, it’s not
essential if the section is self-contained, as are the <h1> heading and
footer paragraph.

4. In step 1, you widened the wrapper <div> by 220px, so to keep the
rest of the layout unchanged, that’s how wide the sidebar should be.
However, I want to add a 1px border between the sidebar and the
main content. Since CSS adds borders outside the declared width of an
element, you’re left with just 219px. You also need to float the
sidebar <div> to the left. Create an ID selector for the sidebar <div>
like this (in the download files, I put it immediately after the #wrapper
style block):

#sidebar {
 width: 219px;
 float: left;
}

5. The next decision is where to put the border. The border running
down one side of an element will stretch only as far as the element
itself. So, if the sidebar content is much shorter than the main
content, a border on the right of the sidebar will stretch only part of
the way down the page. If you want it to go all the way down, you
need to put it on the left of the main content. Both are perfectly
acceptable design solutions. Which you choose depends on what you
think looks better. I’m going to put it along the side of the main
content. That means the <div> that holds the main content needs a
left margin the same width as the sidebar: 219px. Add the following
style block immediately after the one you created in the previous
step:

#mainContent {
 width: 720px;
 border-left: #D8D0AC solid 1px;
 margin: 0 0 0 219px;
}

If you were to put the border on the right of the sidebar, the left
margin of the <div> that holds the main content would need to be
220px (219px for the sidebar, plus 1px for the border).

6. Save the page and the style sheet, and load journey.html into a
standards-compliant browser. It should look similar to Figure 7-2.

 Getting StartED with CSS

 248

Figure 7-2. The left margin on the main content makes room for the floated sidebar.

A gap has appeared between the first image and its border. That’s
because the first paragraph no longer follows immediately after the
<h1> heading, so the adjacent sibling selector (h1 + p) no longer
works. Let’s fix that.

7. There are several ways to handle this problem. The one I’m going to
use involves a pseudo-class called :first-child, which is supported by
all browsers in widespread use except IE6. You were introduced to the
concept of pseudo-classes when styling links in Chapter 2. With links,
a pseudo-class determines how the link looks depending on its
interactive state—whether the mouse is hovering over it or whether it
has been visited. The :first-child pseudo class applies the style to
an element only if it is the first child of its parent. The paragraph that
you want to style is the first child of the <div>, so this pseudo-class
fits perfectly.

Amend the style rule that suppresses the text-indent property on
paragraphs that follow headings like this:

h1 + p, h2 + p, h3 + p, #mainContent p:first-child {
 text-indent:0;
}

249

Chapter 7: How Do I Create Differently Styled Sections?

The #mainContent p:first-child selector applies the style to a
paragraph only if it’s the first child of the element that has the
mainContent ID. In other words, if the paragraph is the very first thing
inside the main content <div>, it takes this style. However, if anything
else precedes the paragraph inside the <div>, the style doesn’t apply.

Using a pseudo-class avoids the necessity for adding to the HTML the
extra markup associated with an ordinary class. The disadvantage of
the :first-child pseudo-class is that the style is no longer applied if
the element ceases to be the first child of its parent.

ExplainED
Take a moment to let the concept of the :first-child pseudo-class sink
in. Although it’s being used here to apply to the first paragraph inside the
main content <div>, the :first-child pseudo-class doesn’t mean “the first
of its kind.” It means “the first element nested inside another.” CSS3, the
next version of CSS, has a new pseudo-class called :nth-of-type() that
permits you to select the first, second, or third paragraph and so on, but
it’s currently not widely supported.

8. If you test the page after adding this pseudo-class, the gap shown in
Figure 7-2 disappears in all current browsers except IE6. One way to
fix this for IE6 would be to replace the group selector in step 7 with an
ordinary class and apply the class to each paragraph that contains a
floated image. However, I’m going to make some improvements to the
image styles later in this chapter that render this unnecessary.

You can check your code, if necessary, against journey_21.html and
css/journey_21.css in the download files for this chapter.

Now that you have created the space and container for the sidebar, you need
to add some content to it and give it some styles. Although the styles in a
sidebar should harmonize with the rest of the page, it’s common to add some
different touches.

 Getting StartED with CSS

 250

Giving the sidebar different styles
The purpose of creating a <div> for the sidebar is not only to create a block-
level element that can be floated but also to give it an ID, which allows you to
control the styles of everything within the <div> independently from the rest of
the page. In Chapter 2, I introduced you to the concept of descendant selectors
when creating a different style for the paragraphs inside the <blockquote>. The
selector looked like this:

blockquote p

A descendant selector consists of two or more selectors separated by a space,
and targets elements nested inside one another. The selector for the nested
element(s) is on the right, while the selector for the parent element is on the
left. So, in this case, the descendant selector, blockquote p, targets all
paragraphs nested at any level inside a <blockquote> element. This combines
two type selectors (ones that redefine the default look of HTML tags).

However, descendant selectors are used more frequently in combination with
ID selectors. You saw an example of this in the previous exercise with
#mainContent p:first-child. Adding the :first-child pseudo-class makes this
a very specific selector, but if you remove the pseudo-class, you’re left with
#mainContent p, which is a descendant selector that targets all paragraphs
nested inside an element that has the ID mainContent.

ExplainED
Even though the original content of journey.html is now inside a <div>
with an ID, you don’t need to change the existing style rules. The p type
selector still governs the way the paragraphs look. However, a new style
rule that uses the descendant selector #mainContent p affects only
paragraphs nested inside that <div>. It has no effect on paragraphs inside
the sidebar or footer. In fact, after the main content has been styled using
type selectors, the usual approach is to target other areas using
descendant selectors that incorporate their IDs. So, in this case study,
you’ll start by creating descendant selectors for the sidebar.

As always, the best way to understand is to try things out in practice. Let’s
continue working with journey.html. Unfortunately, before you can start
styling the sidebar, you need to deal with some bugs in Internet Explorer.

251

Chapter 7: How Do I Create Differently Styled Sections?

Dealing with IE float bugs

Older versions of Internet Explorer, including IE7, have a number of bugs
related to the float property. This exercise demonstrates what happens when
you put a fixed-width element alongside a floated element in IE6 and shows
how to deal with the problem. Continue working with the files from the
preceding exercise. Alternatively, use journey_21.html and
css/journey_21.css in the download files for this chapter.

1. In the HTML markup, wrap the placeholder text in the sidebar in a pair
of <h1> tags like this:

<div id="sidebar">
 <h1>Sidebar goes here</h1>
</div>

Later, you’ll change this to an <h2> heading, because a page should
normally have only one <h1> heading. However, the larger heading
makes it easier to see the problems that Internet Explorer has with
floats.

2. Save the page, and test it in a modern, standards-compliant browser,
such as Firefox, Safari 3 or 4, or IE8. It should look similar to Figure
7-3.

Figure 7-3. Without creating separate styles for the sidebar, the heading picks up
the same style as the main page heading.

Not surprisingly, the heading takes on the same style as at the top of
the page. The only difference is that the text goes completely over
the background image because of the sidebar’s limited width.

3. If you have access to IE6 or Expression Web SuperPreview, test the
page in that browser or IE6 mode. Oh dear, it looks like Figure 7-4.

 Getting StartED with CSS

 252

Figure 7-4. Bugs in IE6 expand the content of the sidebar, forcing the main content
below it.

IE6 has several complex bugs that affect the width of floated elements
when other elements appear alongside. The simplest solution, which
works across all browsers without the need to resort to complex
calculations or hacks, is to remove the fixed width from the
#mainContent style rule.

4. Delete the width property from the #mainContent style block. If you
test the page in IE6, you’ll see the content in the first paragraph
moves back up in line with the sidebar heading. However, the
Roosevelt quote is forced down below the image of Cape Royal in IE6.
This is again because of float problems. The solution is to change the
right margin in the #tr_quote style block from a fixed size to auto like
this:

#tr_quote {
 margin: 37px auto 0 361px;
 width: 275px;
 background-color: #FFFEF1;
 background-image: url(../../images/flower2.png);
 background-repeat: no-repeat;
 background-position: 97% 95%;
 border: solid 3px;
 border-top-color: #CAC7B0;
 border-right-color: #606249;
 border-bottom-color: #606249;
 border-left-color: #CAC7B0;
 padding: 10px;
}

Removing the fixed right margin solves the problem in IE6. Strictly
speaking, it doesn’t eliminate the bug. The bug results in the quote
being slightly to the right of its correct position, but the difference is

253

Chapter 7: How Do I Create Differently Styled Sections?

too small to be noticed. Removing the width property from the
#mainContent style block and the fixed value of the right margin on
the Roosevelt quote make no difference to how standards-compliant
browsers handle the page, so it’s a win-win situation.

You can check your code, if necessary, against journey_22.html and
css/journey_22.css in the download files for this chapter.

Although it’s important to understand the CSS box model and know how to
calculate the overall width of elements, you can avoid a lot of layout problems
by using margins and padding without declaring a specific width. Block-level
elements not only automatically expand to fill the available horizontal space,
they also contract if the space is, for some reason (such as a bug), smaller than
expected.

LinkED
If you’re interested in the details of the many bugs that
affect older versions of Internet Explorer and floats, visit
www.positioniseverything.net/explorer.html. The two most serious
problems with floats are called the doubled float-margin bug and the
three-pixel text jog. Other IE float bugs include the peekaboo and
guillotine bugs.

Now that all main browsers are lining up the sidebar and main content
correctly, it’s time to create some different styles for the sidebar.

Creating different heading and link styles

This exercise shows how to style the headings and links differently in the
sidebar, using descendant selectors. Continue working with the files from the
previous exercise. Alternatively, use journey_22.html and css/journey_22.css
in the download files for this chapter.

1. Change the <h1> heading in the sidebar to an <h2> heading, and add
some dummy links in a series of paragraphs. The HTML code should
look something like this:

<div id="sidebar">
 <h2>Visiting the Grand Canyon</h2>
 <p>Home</p>
 <p>How to get there</p>
 <p>Where to stay</p>

 Getting StartED with CSS

 254

 <p>What to see</p>
 <p>Plants & animal life</p>
 <p>Climate</p>
</div>

2. Save the page, and test it in a browser. It should look similar to Figure
7-5.

Figure 7-5. The sidebar heading, paragraphs, and links all share the same styles as
the rest of the page.

The heading doesn’t look out of place, but the paragraph styles result
in all except the first one being indented. To distinguish the sidebar
from the rest of the page, you need to create some new styles.
However, as you can see, everything in the sidebar shares the styles of
the rest of the page, so the only styles you need to define are for
those properties you want to change. Otherwise, you can let
inheritance do its work.

3. Let’s start by giving the <h2> heading a distinctive style. This is the
style block that’s currently styling the heading:

h1, h2, h3, h4, h5, h6 {
 color: #468966;
 font-family: Georgia, "Times New Roman", Times, serif;
 margin: 10px;
 clear: both;
}

The margins are fine, but change the text color and font by creating a
new descendant selector called #sidebar h2 with the following
properties and values:

/* Sidebar styles */
#sidebar h2 {
 color: #AA8346;
 font-family: Verdana, Geneva, sans-serif;
}

255

Chapter 7: How Do I Create Differently Styled Sections?

Where you put the new style block is a matter of personal preference.
Some designers like to keep all related styles together. My preference
is to keep the page infrastructure styles together, so the #wrapper,
#sidebar, #mainContent, and #footer rules are in one section at the
top of the style sheet, but the descendant selectors for each section
are separate lower down. In the download files, I have created a new
section at the bottom of the style sheet.

4. The different color and font look OK, but the size of the font is rather
overpowering for the sidebar. I’m going to add <h3> headings later on,
so convert the #sidebar h2 selector into a group selector for <h3>
headings, too; and add a separate style block to set the size of the
<h2> heading. The styles at the foot of the style sheet should now look
like this:

/* Sidebar styles */
#sidebar h2, #sidebar h3 {
 color: #AA8346;
 font-family: Verdana, Geneva, sans-serif;
}
#sidebar h2 {
 font-size: 20px;
}

I’ll come back to the headings later. Next, let’s fix the links.

5. All the links are in paragraphs and currently follow the original style
rules. The first paragraph after the heading is not indented, but all
the subsequent ones are. Not only does this make the links look odd
but the width of the sidebar makes the indenting wasteful. So, let’s
redefine the margins and indentation for all paragraphs in the sidebar.
Create the following new style block at the bottom of the style sheet:

#sidebar p {
 margin: 0 10px 0.75em 25px;
 text-indent: 0;
}

This puts a 10px margin on the right of each paragraph, and a 25px
margin on the left. The distance between each paragraph is increased
from 0.4em to 0.75em. This is necessary to separate the paragraphs
more clearly once the indentation is removed.

6. To make the links in the sidebar completely different from those in
the rest of the page, add the following rules to the bottom of the style
sheet:

#sidebar a:link {

 Getting StartED with CSS

 256

 color: #466A89;
}
#sidebar a:visited {
 color: #82B0D5;
}
#sidebar a:hover, #sidebar a:active {
 color: #FFF;
 background-color: #466A89;
}

This colors the sidebar links deep blue. A lighter blue is used for
visited links, and the text changes to white reversed out of dark blue
when you hover the mouse over a link.

7. Save the style sheet, and test journey.html in a browser. When you
hover over one of the links, you can see there’s a white line
underneath the text, as shown in Figure 7-6.

Figure 7-6. The links still inherit the text-decoration property from the main styles.

The white line is inherited from the style rules that control the main
links. It’s important to realize that using descendant selectors to apply
different styles doesn’t wipe the slate clean. Any properties that are
not explicitly overridden by the descendant selector are inherited
from the more general rule.

8. To get rid of the white line, set text-decoration to none in the :hover
and :active pseudo-classes like this:

#sidebar a:hover, #sidebar a:active {
 color: #FFF;
 background-color: #466A89;
 text-decoration: none;
}

9. To make the sidebar headings more distinctive, add a 2px solid border
to the bottom. To create a little space between the border and the

257

Chapter 7: How Do I Create Differently Styled Sections?

text, also add 2px of padding to the bottom. Amend the group selector
for the <h2> and <h3> headings like this:

#sidebar h2, #sidebar h3 {
 color: #AA8346;
 font-family: Verdana, Geneva, sans-serif;
 padding-bottom: 2px;
 border-bottom: 2px solid;
}

I haven’t given the border a color, so it automatically uses the same
color as the text.

10. The sidebar doesn’t have any other content at the moment, but let’s
create the styles for <h3> headings. I’m going to use the same
background image of the flower as in the Roosevelt quote. Add the
following style block to your style sheet:

#sidebar h3 {
 font-size: 16px;
 background-image: url(../../images/flower2.png);
 background-repeat: no-repeat;
 background-position: left;
 padding: 20px 0 4px 40px;
}

If necessary, adjust the path to flower2.png.

11. Add at least one <h3> heading and a paragraph after the links in the
sidebar. You can use the dummy text in sidebar_text.txt in the
download files for this chapter. Save the page and the style sheet,
and reload journey.html into a browser. It should look similar to
Figure 7-7.

Oops! Another problem caused by floating the sidebar. In Chapter 4,
you added the clear property to the group selector for all headings,
and set its value to both. This prevented the headings riding up
alongside the floated images. However, it’s now preventing the
heading in the main column from sitting alongside the content in the
floated sidebar. The more content you put in the sidebar, the further
down the page the heading will go.

If this happens only occasionally, you could create a class that sets the
clear property to none, and apply it to affected elements. In this case
study, though, you need to delete the clear property from the h1,
h2, h3, h4, h5, h6 style block.

 Getting StartED with CSS

 258

Figure 7-7. The sidebar is floated, so the heading in the main content has been
pushed down by the clear property.

12. After removing the clear property, save the style sheet, and reload
journey.html in the browser. As you can see in Figure 7-8, you have
exchanged one problem for another.

Figure 7-8. The heading is now too far up the page.

259

Chapter 7: How Do I Create Differently Styled Sections?

Removing the clear property results in the heading riding up alongside
the image of Cape Royal. Never fear, the solution is simple.

13. The Roosevelt quote currently has a bottom margin of 0, so the
heading has nothing to prevent it from rising as high as it can go. To
push the heading back into place, just change the bottom margin in
the #tr_quote style block to 70px like this:

#tr_quote {
 margin: 37px auto 70px 361px;
 width: 275px;
 background-color: #FFFEF1;
 background-image: url(../../images/flower2.png);
 background-repeat: no-repeat;
 background-position: 97% 95%;
 border: solid 3px;
 border-top-color: #CAC7B0;
 border-right-color: #606249;
 border-bottom-color: #606249;
 border-left-color: #CAC7B0;
 padding: 10px;
}

14. When you test the page, everything should now be back in its proper
place. You can check your code, if necessary, against journey_23.html
and css/journey_23.css in the download files for this chapter.

ExplainED
When I showed this case study to a colleague with an expert eye for
design, his immediate reaction was that the page did not have enough text
to flow around the images. Of course, he was right. However, the purpose
of this case study is not to create the perfect design but to explore the
problems you are likely to encounter when using CSS for layout. By keeping
the text short, I have deliberately exaggerated the issues with floating so
that you know how to cope with them when they arise in your own designs.

Adding an accessible page heading
The page that you have been working on has a simple text heading in an <h1>
tag. It serves its purpose and has a small background image to add some visual
interest. However, visual designers are often unhappy with not being able to
specify exactly which font is used. Until a reliable method of embedding fonts

 Getting StartED with CSS

 260

in web pages becomes available, the most common technique for creating
visually attractive page headings is to use an image editor, such as Adobe
Photoshop or Adobe Fireworks, to add text directly to a header image.

The problem with doing this is that the text becomes part of the image and
cannot be read by search engines or assistive technology for the visually
impaired. With CSS, however, it’s easy to combine a header image with an <h1>
heading and move the heading off screen. By doing so, you provide a top-level
heading for search engines to index and assistive technology to read, while at
the same time offering a visually pleasing header to most users.

Adding a header image

The following exercise shows you how to add a banner heading to the page and
move the text heading off screen. Continue working with the files from the
preceding exercise. Alternatively, use journey_23.html and
css/journey_23.css in the download files for this chapter.

1. Wrap the existing <h1> heading in journey.html in a <div> and give it
the ID, header:

<div id="header">
 <h1>Journey to the Edge</h1>
</div>

2. The header image, journey_header.jpg is 176px high. Create an ID
selector for the header <div>, set the height property to the same as
the height of the image, and set the image as its background like this:

#header {
 height: 176px;
 background-image: url(../../images/journey_header.jpg);
 background-repeat: no-repeat;
}

This results in the existing heading being superimposed on the new
header.

3. The current h1 style block looks like this:

h1 {
 font-size: 220%;
 font-variant: small-caps;
 text-align: center;
 word-spacing: 0.2em;
 letter-spacing: 0.05em;
 margin-top: 0;
 background-image: url(../../images/flower1.png);
 background-repeat: no-repeat;

261

Chapter 7: How Do I Create Differently Styled Sections?

 background-position: 70px;
 padding: 13px 0;
}

The styles are no longer necessary, so replace them with a single rule
setting the left margin of the heading to -9000px:

h1 {
 margin-left: -9000px;
}

4. Save the page and the style sheet, and test them in a browser. As
Figure 7-9 shows, there’s an olive strip at the top of the page.

Figure 7-9. Even though the <h1> heading is off screen, the browser renders its top
margin.

Hopefully, by now you won’t need me to tell you where the gap has
come from. By default, browsers add margins to text elements, such
as headings and paragraphs. Even though the <h1> heading has been
banished thousands of pixels off screen, its top margin stretches
across the whole of the header <div>.

5. To get rid of the gap, set the <h1> tag’s top margin to 0:

h1 {
 margin-left: -9000px;
 margin-top: 0;
}

Alternatively, use the margin shorthand property like this:

h1 {
 margin: 0 0 0 -9000px;
}

6. That solves the problem of the gap at the top of the page, but the
clear edge of the new header image reveals an imbalance between the

 Getting StartED with CSS

 262

top of the sidebar and the main content. The <h2> heading in the
sidebar has a 10px margin all round. You need to add the same margin
to the top of the first paragraph in the main content. The rule that
you created at the beginning of this chapter to control the text-indent
on the first paragraph in the main content looks like this:

h1 + p, h2 + p, h3 + p, #mainContent p:first-child {
 text-indent:0;
}

Adding the 10px top margin to this style block could have an adverse
impact on the other paragraphs, so create a separate style block using
the #mainContent p:first-child selector:

h1 + p, h2 + p, h3 + p, #mainContent p:first-child {
 text-indent:0;
}
#mainContent p:first-child {
 margin-top: 10px;
}

7. If you test the page now, everything should be correctly lined up as
shown in Figure 7-10.

Figure 7-10. The accessible heading and the top of the page are now correctly
aligned.

You can check your code, if necessary, against journey_24.html and
css/journey_24.css in the download files for this chapter.

263

Chapter 7: How Do I Create Differently Styled Sections?

AdvancED
I used the banner heading as a background image, but many designers
insert this sort of image directly in the HTML. Either is perfectly
acceptable, although it’s arguable that decorative images shouldn’t be
inside the page markup. The advantage of putting a banner image in the
HTML markup is that browsers will display any alternate text (as long as
you put some in the alt attribute) if the image is missing for any reason.
The banner heading will also normally be printed out, as it’s an integral
part of the page. Browsers don’t print out background images unless the
user explicitly selects that option.

So far, so good. You’re beginning to feel pleased with having created a sidebar.
What happens when your boss or client comes along and says, “I like it, but I
think the sidebar would look better on the right”?

Switching the sidebar to the other side
Laying out a page with CSS can be time-consuming and even frustrating, but
some things are incredibly easy. Switching a sidebar to the other side of the
page is just one of those. All that’s necessary is to switch the direction of the
float, change the margin on the static column, and switch the side of any
border.

Here’s how it’s done.

Moving the sidebar to the right

This exercise moves the sidebar from the left of the page to the right. Continue
working with the files from the previous exercise. Alternatively, use
journey_24.html and css/journey_24.css in the download files for this
chapter.

1. Change the value of the float property in the #sidebar style rule from
left to right:

#sidebar {
 width: 219px;
 float: right;
}

 Getting StartED with CSS

 264

2. Change the border in the #mainContent rule from border-left to
border-right, and switch the 219px margin from left to right like this:

#mainContent {
 border-right: #D8D0AC solid 1px;
 margin: 0 219px 0 0;
}

When editing the margin shorthand property, don’t forget to set the
value for the left margin to 0.

3. Save the style sheet, and test the page in a browser. Voilà! The
sidebar is on the right, as shown in Figure 7-11.

Figure 7-11. Switching the sidebar to the other side is done by changing a few
properties.

You can check your code, if necessary, against journey_25.html and
css/journey_25.css in the download files for this chapter.

It’s at times like this that you realize how your efforts learning CSS have paid
off. Switching the sidebar from left to right was accomplished without the need
to make any changes to the HTML markup. Everything was done by changing
the values of just a handful of properties in the style sheet.

265

Chapter 7: How Do I Create Differently Styled Sections?

As the final design touch for this chapter, I want to use another descendant
selector to improve the way the picture captions are created. This not only
makes the HTML markup cleaner, but also solves a problem in IE6.

Improving the image captions
You added captions to the images in Chapter 4 by wrapping each image in a
 tag. However, to force the caption onto a new line underneath the
image, it was necessary to use a line break (
) tag like this:

<p><img src="../images/cape_royal.jpg" alt= �
"Cape Royal" width="250" height="366" />
Grand Canyon at Cape �
Royal The Grand �
Canyon in northern Arizona. . .

This works, but the left margin on the paragraphs has the unfortunate effect of
creating a gap of the same size between the image and its left border in IE6
(see Figure 7-12).

Figure 7-12. IE6 adds the paragraph’s left margin to the image, destroying the effect
of the border.

At the same time as correcting that problem, it would be nice to get rid of the
line break tag. Both can be achieved very easily by using a descendant selector
to target images inside an element styled with either the floatleft or
floatright class. The selector looks like this:

.floatleft img, .floatright img

 Getting StartED with CSS

 266

Don’t get confused by the comma and the periods (dots). A class selector
always begins with a dot, so .floatleft is the selector for the floatleft class.
Adding a space followed by img targets any tag inside a floatleft class.
The comma simply groups the two descendant selectors: .floatleft img and
.floatright img.

The other part of this solution is to use the display property to change the way
the image is handled, turning it into a block, thereby automatically forcing the
caption onto the next line without the need for a line break tag. The next
chapter discusses the display property in detail.

Using a descendant selector for captioned images

The following exercise updates the styles and HTML for the captioned images.
You can continue working with the files from the preceding exercise. However,
I prefer the sidebar on the left, so the completed download files for this
exercise are based on journey_24.html and css/journey_24.css.

1. Add the following group descendant selector and style rule to the style
sheet:

.floatleft img, .floatright img {
 display: block;
}

In the download files, I placed it with the other image alignment
rules, just above the sidebar styles.

2. In the HTML code, remove the
 tag immediately after the
tag for the three floated images. The code for the first one should
look like this:

<img src="../images/cape_royal.jpg" alt="Cape �
Royal" width="250" height="366" />Grand Canyon at Cape Royal

3. If you save both pages and test journey.html in a browser, it should
look the same as before. However, if you test it in IE6, converting the
image to display as a block removes the gap previously incorrectly
inherited from the paragraph’s left margin.

4. Just one final tweak. . . Now there’s a lot more going on in the page,
the border around the images looks a bit too heavy. Add a small
amount of padding, and change the color and width of the border like
this:

.floatleft, .floatright, .imgcentered {
 font-weight: bold;
 text-align: center;

267

Chapter 7: How Do I Create Differently Styled Sections?

 padding: 2px;
 border: #66A986 double 4px;
}

5. To compensate for this change, you need to adjust the value for the
left margin in the #tr_quote style block from 361px to 363px. The
padding adds a total of 4 pixels to the overall width, but the border
has been reduced by 1px on each side, resulting in the need to
increase the left margin of the Roosevelt quote by 2px.

6. Save the style sheet, and test journey.html in a browser again. The
change is subtle (see Figure 7-13), but I think it improves the look. You
can check your code, if necessary, against journey_26.html and
css/journey_26.css in the download files for this chapter.

Figure 7-13. A lighter, narrower border with padding improves the look of the
images.

How do I tell which styles will be
applied?
Most of the emphasis in previous chapters has been on choosing which CSS
properties to use for a particular effect. Understanding how the properties
work is an important skill, but it’s only half the story. The other half is
choosing the right selector—and it’s arguably a more difficult skill to acquire
than understanding the properties.

 Getting StartED with CSS

 268

A review of selectors in CSS2.1
Let’s take a quick look at the selectors you have used so far:

� Type selectors: A type selector uses the name of an HTML tag without
the angle brackets, and redefines the default look of the tag. For this
reason, type selectors are sometimes called “tag selectors.” For
example, p defines the style of <p> tags.

� Class selectors: A class selector applies style rules to elements that
have the equivalent class attribute in their opening HTML tag. The
same class can be applied to multiple elements in the same web page.
The selector is created by prefixing the class name by a period. For
example, the .floatleft class selector applies to all elements that
have class="floatleft" in the opening tag.

Multiple classes can be applied to the same element by separating the
class names by a space in the class attribute, for example,
class="floatleft hideMe".

� Pseudo-classes: A pseudo-class doesn’t rely on a class attribute in
the HTML markup but is applied automatically by the browser
depending on the position of the element or its interactive state.
Examples include a:visited, which applies to visited links; a:hover,
which applies to links when the mouse pointer is over them; and
:first-child, which applies to an element that is the first child of its
parent. (See Chapter 2 for a detailed explanation of the link pseudo-
classes; the :first-child pseudo-class is covered earlier in this
chapter.)

� ID selectors: An ID selector applies style rules to elements that have
the equivalent id attribute in their opening HTML tag. IDs must be
unique, so you should never apply the same id attribute to more than
one element on the same page. It’s OK to apply the same ID on
different pages, as long as it’s used only once on each page. The
selector is created by prefixing the ID with the hash sign. For example,
#tr_quote applies to the element that has id="tr_quote" in its
opening tag.

� Descendant selectors: A descendant selector targets elements nested
inside another. The selector that identifies the parent (or containing)
element(s) is followed by a space and the selector that identifies the
nested element(s). For example, #sidebar p targets paragraphs
nested inside the element that has the ID, sidebar.

269

Chapter 7: How Do I Create Differently Styled Sections?

� Adjacent sibling selectors: An adjacent sibling selector uses the plus
(+) sign to target elements that follow immediately after a specific
type of element. Both elements must be siblings—in other words, at
the same level of the HTML hierarchy. For example, h1 + p applies
styles to a paragraph that immediately follows an <h1> heading with
no other tags or text in between. In the draft CSS3 specification, this
has been renamed the adjacent sibling combinator, but its function
remains unchanged.

� Attribute selectors: An attribute selector uses the value of an existing
attribute within an element’s opening HTML tag to apply a style rule.
For example, input[type="submit"] looks for an <input> tag that
contains type="submit" in its opening tag—in other words, a submit
button.

You have also seen how to group selectors as a comma-separated list to apply
the same rules to different elements. For example, the following style block
applies the same rules to all headings from <h1> through <h6>:

h1, h2, h3, h4, h5, h6 {
 color: #468966;
 font-family: Georgia, "Times New Roman", Times, serif;
 margin: 10px;
}

This is simply a convenient way to avoid the need to create the same style
block with individual selectors.

With the exception of IE6, all browsers currently in widespread use support the
selectors covered so far in this book. Unfortunately, IE6 doesn’t support the
adjacent sibling and attribute selectors, considerably reducing their usefulness
for the foreseeable future.

The remaining selectors in CSS2.1 that I haven’t yet covered are as follows:

� Universal selector: This is represented by an asterisk (*). It selects
any element. I haven’t covered it, because it’s normally omitted. For
example, *.floatleft selects any type of element that uses the class
floatleft. However, it has the same meaning as .floatleft on its
own, so there is no advantage in using it. The universal selector is
often used to create hacks to hide styles from older browsers. For
example, IE6 doesn’t recognize child selectors (covered next), so a
child selector using * will be ignored by IE6 but recognized by more
standards-compliant browsers. The universal selector is also useful in
conjunction with attribute selectors (see this book’s appendix for
examples).

 Getting StartED with CSS

 270

� Child selectors: A child selector is similar to a descendant selector,
except that the nested element must be a direct child of the parent.
If the element is nested at a deeper level, the selector no longer
applies. The relationship is indicated by a greater-than sign (>). For
example, blockquote > em applies to all elements directly nested
in a <blockquote>, but not to elements inside <p> tags within a
<blockquote>.

� Pseudo-elements: There are four pseudo-elements, namely:

� :first-letter: This applies a style to the first letter of the
first line inside a block-level element, as long as nothing else
precedes it. For example, p:first-letter can be used to style
the first letter of each paragraph. It’s supported by all
browsers in widespread use, including IE6.

� :first-line: This applies a style to the first line of text in a
block-level element. For example, p:first-line styles the first
line of each paragraph. The length of the line is entirely
dependent on the browser display. If the text is resized by the
user, causing it to rewrap, the style applies only to the text
that forms the new first line. It cannot be used to select
specific words (use a instead). It’s supported by all
browsers in widespread use, including IE6.

� :before: This is used in conjunction with the content property
to generate content before an element (see Chapters 8 and
12). It’s not supported by IE6 or IE7.

� :after: This is used in conjunction with the content property
to generate content after an element (see Chapters 8 and 12).
It’s not supported by IE6 or IE7.

AdvancED
I have used HTML terminology to describe the various selectors, because
this book concentrates on CSS in web design. However, CSS can be used
with any structured markup language, such as XML.

The general principle of the CSS cascade is that rules are applied cumulatively.
So, what you have seen in this chapter is the way that the p style block affects
all paragraphs, but the descendant selector, #sidebar p, adds extra rules that
affect only paragraphs inside the sidebar, and in some cases overrides the
original p style.

271

Chapter 7: How Do I Create Differently Styled Sections?

In Chapter 1, I explained that the cascade gives priority to style definitions that
are declared lower down in the style sheet. So, you would be justified in
thinking that #sidebar p overrides the p style block because it comes after it in
journey.css. It’s a reasonable assumption on the basis of the information I
have given you so far, but in this case, the position of the style rule has nothing
to do with it. In CSS, not all rules are equal. Fortunately, it’s easy to work out
which rules are more powerful than others.

Using specificity to work out which rule wins
Specificity is one of those technical words that tend to set the eyes of many
designers rolling. It sounds daunting, and the official way of calculating
specificity is admittedly odd; but in reality, it’s quite easy.

To borrow an expression from the betting community, specificity is how you
work out which style rule is a “dead cert” to win the race. The difference is
that this method really works. You’ll never lose your shirt backing a winner
identified through specificity.

Specificity is quite simply a way of adding up a score to work out which style
rule wins in the case of a conflict. The highest score wins. There are two ways
of calculating specificity: the easy way and the official way.

Specificity the easy way
The easy way of calculating specificity is to use the following scoring system:

� Inline style: 1000

� ID selector: 100

� Class, pseudo-class, or attribute selector: 10

� Type selector or pseudo-element: 1

You simply assign a score to each part of the selector and add them up—the
highest total wins in the case of a conflict of rules.

Table 7-1 lists some examples from css/journey_26.css in the download files
for this chapter. The third column (Score) shows the specificity of each
selector calculated the easy way. The final column shows the official method
of calculation, which is explained in the following section.

 Getting StartED with CSS

 272

Table 7-1. Calculating Specificity

Selector Components Score Specificity

a:link Type selector and pseudo-class 11 0,0,1,1

#sidebar a:link ID, type selector, and pseudo-class 111 0,1,1,1

p Type selector 1 0,0,0,1

blockquote p Two type selectors 2 0,0,0,2

#mainContent
p:first-child

ID, type selector, and pseudo-class 111 0,1,1,1

h1, h2, h3, h4,
h5, h6

Six type selectors grouped together 1 0,0,0,1

Note that the score of the final example in Table 7-1 is 1, not 6. Grouping
selectors as a comma-separated string is simply a shorthand way of declaring a
separate style block for each selector. If you group different types of selectors,
you need to calculate the specificity for each one separately. For example, in
one of the exercises in this chapter, you grouped #mainContent p:first-child
with three adjacent sibling selectors like this:

h1 + p, h2 + p, h3 + p, #mainContent p:first-child

Each of the adjacent sibling selectors has a score of 2, but #mainContent
p:first-child has a score of 111. Grouping them together has no effect on
their specificity.

As you should be able to see from Table 7-1, blockquote p is more specific than
the p type selector on its own. It also has a higher score. Consequently, it
doesn’t matter which comes first in the style sheet; the higher specificity of
blockquote p means that it will override any properties in the p style block.
However, it’s important to remember that a rule with a higher specificity score
does not wipe the slate clean. In the case study, paragraphs nested inside the
<blockquote> share the same text-align and line-height values as all other
paragraphs, because the blockquote p style block does not override them.

An inline style has a value of 1000, so it always wins in the case of a conflict.
Again, this affects only any properties that are being overridden.

273

Chapter 7: How Do I Create Differently Styled Sections?

For most practical purposes, this is all you need to calculate specificity.
However, it’s worth mentioning the official way, because it’s used by some
popular editing programs, such as Dreamweaver, as shown in Figure 7-14.

Figure 7-14. The CSS Styles panel in Dreamweaver displays specificity using the
official format.

Specificity the official way
The official way of calculating specificity in CSS2.1 is to use a series of comma-
separated numbers like this:

� Inline style: 1,0,0,0

� ID selector 0,1,0,0

� Class, pseudo-class, or attribute selector: 0,0,1,0

� Type selector or pseudo-element: 0,0,0,1

Each set of numbers is added up separately. As you can see in Table 7-1, this
makes no practical difference to the result. The selector #sidebar a:link adds
up to either 111 or 0,1,1,1. What’s the point with the commas? In theory at
least, you could have a selector that made up from eleven type selectors and
pseudo-elements, and another selector that uses a single class and nothing
else.

 Getting StartED with CSS

 274

Using the easy method, the first selector has a score of 11, and the second has
only a score of 10. So, the first selector wins. Wrong.

Using the official method, the first selector has a specificity of 0,0,0,11, and
the second one has a specificity of 0,0,1,0. What determines specificity is not
only a higher value, but where it appears in the comma-separated series. The
third number from the left in the first example is 0, whereas in the second
example it’s 1, which is greater than 0. So, the second example has higher
specificity. The fourth number would be taken into account only if both had
the same value for the third number.

If that makes your brain hurt, don’t worry. The likelihood of creating a selector
that has more than nine elements with the same score is remote. If you do
start creating such monsters, you need to reconsider your design strategy. CSS
tends to go wrong when you overcomplicate things. It’s complex enough
without deeply nested selectors. Keep your selectors as simple as possible.

Chapter review
I hope you have found this a useful chapter. Dividing a page into sections and
assigning an ID to each section gives you the freedom to apply different styles
through the use of descendant selectors. Also, combining the float property
with a deep margin makes it possible to create columns. Modern browsers
handle floats in their stride, but older versions of Internet Explorer have
considerable problems. Fortunately, they can usually be overcome by removing
the fixed width on the static column alongside the floated one. The addition of
the sidebar to the case study makes the page look more like a regular website.

Finally, you learned how to calculate specificity, which determines the
precedence of style rules. In general terms, ID selectors are more powerful
than classes, and type selectors are the weakest of all. However, more
powerful selectors override only those properties that are explicitly declared.
If a style with higher specificity doesn’t work the way you expected, it
probably means it’s inheriting a property from another style, as happened with
text-decoration when styling the links for the sidebar.

In the next chapter, I’ll show you how to style lists and implement one of the
most popular uses for unordered lists—creating a navigation bar. A key
component of this technique is using the display property to change the
fundamental way HTML elements are handled by the browser.

275

Chapter 8
How Do I Style Lists and
Navigation Menus?
HTML provides tags for three different types of lists: unordered (), ordered
(), and definition (<dl>). Unordered lists are normally displayed as a series
of bullet points; ordered lists are numbered; and definition lists are presented
as a word or phrase followed its definition, indented on the following line.
Figure 8-1 shows examples of all three (the code is in lists_01.html in the
download files for this chapter).

Figure 8-1. The three types of lists supported in HTML

 Getting StartED with CSS

 276

CSS regards the components of definition lists simply as block-level elements,
so it has no special properties to deal with them. You style definition lists with
text properties, padding, margins, borders, and backgrounds as required.
Unordered and ordered lists use the same properties, but CSS provides extra
ones to control the bullets or numbers alongside each list item.

Using these extra properties in combination with the CSS display property, it’s
easy to convert an unordered list into a navigation menu, as you’ll learn how to
do later in this chapter. Many designers now regard this as the preferred way to
build navigation for their sites. However, unlike using tables for layout, this
isn’t simply a design trick. Even without any styling, a bulleted list is a logical
and visually acceptable way of presenting a series of links to other parts of a
website. A series of nested lists provides a structured outline of a website’s
hierarchy, with the top level indicating the site’s main sections, and the nested
lists acting as submenus.

In this chapter, you’ll look first at the properties used for styling unordered and
ordered lists, and then at creating a navigation bar. In particular, you’ll learn
how to

� Control the type of bullets and numbers used for a list.

� Decide whether the bullet or number is displayed as a hanging indent.

� Replace standard bullets with your own images.

� Change the default display type of an HTML element.

� Create a navigation bar from an unordered list.

� Use the !important keyword to ensure a style is applied.

� Automatically generate number sequences on other HTML elements.

The final section of this chapter tackles an advanced aspect of CSS—generated
content—which is not supported by IE6 or IE7. However, everything else is
supported by all browsers and is essential reading.

First, let’s take a look at the properties that control the look of the bullets and
numbers

277

Chapter 8: How Do I Style Lists and Navigation Menus?

Styling unordered and ordered lists
CSS has three individual properties and a shorthand property designed to style
bulleted and numbered lists. They are listed in Table 8-1.

Table 8-1. List Properties in CSS

Property Initial Value Inherited Description

list-style-image none Yes Allows you to use your own

image in place of an

automatically generated bullet.

CSS gives you no control over

its position.

list-style-
position

outside Yes Controls whether the bullet or

number is displayed as a

hanging indent (default), or

nested inside the list item (see

Figure 8-5).

list-style-type disc Yes Determines the symbol used

as a bullet or number. By

default, unordered lists use a

solid disc, and ordered lists

use 1, 2, 3 followed by a

period (dot).

list-style See individual

properties
Yes Shorthand property.

Because list-style-image gives you no control over the image’s position, it’s
often preferable to use a background image instead, as I’ll show you shortly.
Let’s start with list-style-type and list-style-position.

Changing the symbol or number
The list-style-type property accepts a large number of keywords as its value.
Three of them—disc, circle, and square—are intended for unordered lists. The
remaining 11 keywords—decimal, decimal-leading-zero, lower-roman, upper-
roman, lower-greek, lower-latin, upper-latin, armenian, georgian, lower-
alpha, and upper-alpha—are intended for ordered lists. Figure 8-2 and
lists_02.html in the download files for this chapter show the output of each
keyword.

 Getting StartED with CSS

 278

Figure 8-2. Examples of the output of the list-style-type keywords

As you can see in Figure 8-2, lower-alpha and lower-latin are synonymous, as
are upper-alpha and upper-latin. Modern browsers, including IE8, now support
all keywords for ordered lists. Older browsers display the default decimal style
(1, 2, 3) for keywords they don’t recognize.

ExplainED
The symbols displayed by ordered lists are determined solely by the value
of list-style-type. Page encoding has no effect. The screenshot in Figure
8-2 was taken using UTF-8 encoding, but the page looked identical when
tested with a variety of encodings. For example, lower-alpha and upper-
alpha always displayed the letters a, b, c and A, B, C; and armenian and
georgian displayed traditional Armenian and Georgian numbering even
with page encoding that doesn’t support either of those alphabets. The
ability to display the full range of symbols depends on the fonts installed,
but most modern computers have at least one Unicode font, which should
be capable of doing so.

279

Chapter 8: How Do I Style Lists and Navigation Menus?

If you use disc, circle, or square with an ordered list, the symbol is displayed
instead of the number or letter. However, it doesn’t work the other way round.
Using one of the keywords for an ordered list with an unordered list results in
the default disc (solid circle) being displayed.

If you think there are a lot of keywords, you might be surprised to know that
there were six more in the original CSS2 specification: cjk-ideographic,
hebrew, hiragana, hiragana-iroha, katakana, and katakana-iroha. The first of
these displays numbers as Chinese characters used in Chinese, Japanese, and
Korean, while the last four are traditional Japanese counting systems. These
six keywords were removed from CSS2.1 because of lack of support in browsers
and were moved to the CSS3 proposal. Ironically, the W3C’s rather unusual
approval process has resulted in most browsers now supporting them. This is
because at least two browsers must implement the whole of the specification
before it can finally be approved. Since the keywords have been moved to the
CSS3 proposal, it simply means that some browsers are already advancing with
support for the next version of CSS. Figure 8-3 and lists_03.html in the
download files for this chapter show the output in Firefox 3.5 of the six
keywords plus another one from the CSS3 proposal, upper-greek.

Figure 8-3. Some of the counting systems proposed for CSS3 are already supported.

IE8 doesn’t support the six Asian and Hebrew counting systems moved from
CSS2.1 to CSS3, but it does support upper-greek (see the inset at the bottom
right of Figure 8-3).

 Getting StartED with CSS

 280

LinkED
If and when CSS3 is finally approved, browsers will be expected to support
a bewildering number of keywords for list-style-type. The latest
proposals are at www.w3.org/TR/css3-lists/#list-content.

In addition to all these keywords is perhaps the most important one: none. This
enables you to suppress the symbol or number, which opens up the way to
convert a list into a navigation bar. For advanced users, you can also use it
to display sophisticated nested numbering systems, as described later in
this chapter.

The left column in Figure 8-4 and lists_04.html show the default behavior of
browsers when lists are nested. With unordered lists, browsers automatically
change the symbol for each new level of nesting. However, ordered lists keep
track of the current number, starting again at 1 when moving to a deeper level,
and resuming the sequence when backing out of a nested list. Although this is
convenient, the numbers are difficult to follow because each level of nesting
uses the default decimal value for list-style-type. The list on the right of
Figure 8-4 uses descendant selectors to apply different values to the list-
style-type property, resulting in something much more readable.

Figure 8-4. Using different values for list-style-type makes nested ordered lists more
readable.

281

Chapter 8: How Do I Style Lists and Navigation Menus?

To style the series of nested lists on the right of Figure 8-4, I assigned the ID,
styled, to the top level list and created the following rules:

#styled ol {
 list-style-type: lower-alpha;
}
#styled ol ol {
 list-style-type: lower-roman;
}

I used an ID because I wanted to show the difference between the browser
default and a styled list. However, in normal circumstances, you would almost
certainly want all nested lists to be styled the same way, so you would use an
ordinary type selector for the top-level ordered list instead of #styled like this:

ol ol {
 list-style-type: lower-alpha;
}
ol ol ol {
 list-style-type: lower-roman;
}

The top-level ordered list takes the default decimal value, so it does not need
to be declared. The first descendant selector, ol ol, targets ordered lists
nested one level deep; and the second one, ol ol ol, targets ordered lists
nested at the next level.

Changing the position of the symbol
The list-style-position property accepts just two values, namely:

� inside: This tucks the bullet or number inside the list item, so that it
is flush with the left edge in left-to-right languages.

� outside: This is the default position, which positions the bullet or
number outside the list item like a hanging indent.

Figure 8-5 and lists_05.html in the download files for this chapter
demonstrate the difference between the values, which is self-explanatory.

 Getting StartED with CSS

 282

Figure 8-5. The list-style-position property determines whether the bullet or number
is inside or outside the list item.

Replacing the symbol with your own image
The list-style-image property allows you to replace the symbol with an image
of your own. It works with both unordered and ordered lists, but the same
image is used for every list item.

Using this property is very simple. It takes one value: url(), with the path to
the image between the parentheses.

In lists_06.html in the download files for this chapter, the small image of a
flower has been used as the image by creating the following style rule:

ul {
 list-style-image: url(../images/flower2.png);
}

As Figure 8-6 shows, the bottom of the image has been aligned with the
baseline in the first line of text in each list item. The list-style-image
property provides no way to control the position of the image. A better solution
is to suppress the automatic symbol, and use a background image instead.

283

Chapter 8: How Do I Style Lists and Navigation Menus?

Figure 8-6. You can use an image of your own as the symbol for an unordered list.

When using list-style-image, it’s recommended that you leave list-style-
type at its default value (or choose another one), rather than setting it to none.
This ensures that a symbol is still displayed even if the image is missing or the
user is browsing with images turned off.

Using a background image for greater control
The inability to control the position of an image displayed using list-style-
image means that you need to design your own symbols for unordered lists with
considerable care and test them in a range of browsers to make sure they look
acceptable. The alternative is to suppress the default symbol by setting list-
style-type to none, and use a background image (backgrounds were covered in
detail in Chapter 5).

This is demonstrated in lists_07.html, which styles each list item using a
descendant selector like this:

ul li {
 list-style-type: none;
 background-image: url(../images/flower2.png);
 background-repeat: no-repeat;
 background-position: left 8px;
 padding-left: 70px;

 Getting StartED with CSS

 284

 padding-bottom: 0.75em;
}

To ensure that the background image appears to the left of each list item, it’s
necessary to add a large amount of padding on the left. The advantage of using
this technique is that you can use the background-position property to position
the symbol exactly where you want it. Figure 8-7 shows the result.

Figure 8-7. Using background images for list items gives you much greater control
over the position of the image.

However, you need to be careful when using this technique, because the
background image is likely to be cut off if it’s too big for some list items, as
shown in Figure 8-8 (the code is in lists_08.html).

Figure 8-8. Watch your style rule doesn’t result in the background image being cut
off.

I got around this problem in lists_09.html by adding the min-height property
(see Chapter 6) to the style rule like this:

ul li {
 list-style-type: none;

285

Chapter 8: How Do I Style Lists and Navigation Menus?

 background-image: url(../images/flower2.png);
 background-repeat: no-repeat;
 background-position: left 8px;
 padding-left: 70px;
 padding-bottom: 0.75em;
 min-height: 45px;
}

As you can see in Figure 8-9, the result is not ideal, because the text remains
aligned with the top of the flower. However, it’s certainly preferable to having
the flower cut off. If you’re likely to use short items in this sort of list, you
need to choose the size of the image carefully.

Figure 8-9. Using min-height prevents the image from being cut off.

AdvancED
Instead of using min-height, which is not supported by IE6, you could
adjust the top and bottom padding of each list item. This is more difficult,
because the padding would be added to all items. Of course, you could
create a class to add extra padding to affected items. There are many
ways to solve problems. Choosing the most appropriate one depends on
your design.

Using the list-style shorthand property
The list-style shorthand property is easy to use. It accepts the same values as
the individual list-style-type, list-style-position, and list-style-image
properties. You can define all three values, separated by a space, or just one

 Getting StartED with CSS

 286

or two. Any value that is omitted uses the default value for its equivalent
individual property as listed in Table 8-1. In other words: no image, the symbol
or number outside the list item, and a disc (solid circle) for unordered lists and
decimal (1, 2, 3) for ordered lists.

For example, the following style rule uses the list-style shorthand property
to display unordered lists using a square symbol inside the list item:

ul {
 list-style: square inside;
}

The following rule tells the browser to use an image called green_dot.png
outside the list item, and substitute it with a square if the image is not
available or images are turned off:

ul {
 list-style: url(../images/green_dot.png) square;
}

I’ll come back later in this chapter to more advanced topics with styling the
numbering of ordered lists, but let’s now turn to the use of the display
property as a prelude to converting an unordered list into a navigation bar.

Changing layout with the display
property
As I explained in Chapter 3, HTML defines most elements as being inline or
block-level. The other main types are table and list elements. These default
types determine how an element is displayed and which CSS properties can be
applied to it. However, the display property lets you throw the rule book out
of the window and redefine how an element is handled. You have seen this at
work occasionally in previous chapters when I used the display property to
convert images—normally inline elements—into block-level ones and when I
converted the design credit in the footer paragraph into an inline block.

The display property accepts any of the values listed in Table 8-2. The
property is not inherited, so you can also use the inherit keyword to inherit
the value used by the parent element. Note, however, that when display is set
to none, it affects the entire contents of the element, including all children.

287

Chapter 8: How Do I Style Lists and Navigation Menus?

Table 8-2. Values Supported by the Display Property

Value Level of Support Description

block All Treats the element as block-level.

inline All Treats the element as inline.

inline-block Fair Treats the element as a single

block, but displays it inline in a

similar way to the default handling

of an image. Unlike inline text

elements, the block’s height and

vertical padding and margins

affect the line-height of the line in

which it is displayed. IE6 and IE7

support this value only on

elements that HTML defines as

inline. Not supported in Firefox 2.

list-item All No practical value to web

designers. It simply defines the

default way of displaying

items. Although you can apply it

to other elements, they still need

to be wrapped in or

tags. However, using anything

other than elements directly

inside or tags produces

invalid HTML. If you want to use

paragraphs in a list, put them

inside tags.

none All Removes the element and all its

contents completely from the

display and flow of the document

(see “Understanding the

difference between visibility and

display” in Chapter 6). Although

the display property is not

inherited, everything inside the

element is removed. You cannot
override none by setting a different

value in a child element.

 Getting StartED with CSS

 288

Value Level of Support Description

run-in Poor Treats a block-level element as a

run-in headline. In other words,

the element begins on a new line

of its own, but the first line of a

following block-level element runs

straight on. Currently supported

only by IE8 and Opera.

table, inline-table,

table-row, table-cell,
table-caption,
table-column,

table-column-group,

table-row-group,

table-header-group,
table-footer-group

Poor Causes the element to behave like

the equivalent table element. Not

supported in IE6 or IE7.

Supported in all other browsers in

widespread use, although with

some minor problems in Safari 3

and Chrome 1. “Table-related

display—the future of layout?” in

Chapter 11 demonstrates how

these values can be used to

create a multicolumn page layout.

All browsers currently in widespread use, including IE6 and IE7, support block,
inline, and none. There is also reasonably good support for inline-block, but
the other values are currently not supported widely enough to be usable in a
public website.

The use of none was described in Chapter 6. You saw in Chapter 7 how setting
the display property for an image to block forces the text for its caption onto
the next line. You’ll see another practical use for block later in this chapter—
turning a link into a button. So, let’s take a quick look at the other main values
for the display property: inline and inline-block.

Setting display to inline
Figure 8-10 shows what happens when the display property is set to inline for
headings and paragraphs like this (the code is in display_01.html in the
download files for this chapter):

h1, h2, p {
 display: inline;
}

289

Chapter 8: How Do I Style Lists and Navigation Menus?

Figure 8-10. Headings and paragraphs, which are normally displayed as blocks, run
together when display is set to inline.

Setting display to inline-block
Setting the display property to inline-block results in the element being
displayed inline, but sharing the characteristics of a block-level element.
Although this sounds like a contradiction in terms, the meaning should become
clear from Figure 8-11, which shows two <spans> with identical properties. The
only difference between them is that the second has its display
property set to inline-block.

The code for Figure 8-11 is in display_02.html in the download files for this
chapter. The style rules affecting the two elements look like this:

span {
 font-weight: bold;
 background-color: #6CF;
 padding: 12px;
 border: #000 solid 2px;
 margin: 20px;
 width: 100px;
 vertical-align: super;
}
#block {
 display: inline-block;
}

 Getting StartED with CSS

 290

Figure 8-11. An inline-block is displayed inline but shares the characteristics of a
block-level element.

Note how the first is split across two lines. Although the padding and
border properties are applied to it, the values of margin and width are ignored,
because they do not affect inline text elements. However, by setting the
display property of the second to inline-block, the margin and width
properties are applied in the same way as to any other block-level element.
Displaying the second element as an inline block also affects the line
height of the surrounding text to make room for the block. No adjustment is
made for the first , which results in the background color and border
overlapping the text on the surrounding lines. The text on the preceding line is
partially obscured by the background and border, but the background and
border go beneath text on the subsequent line.

291

Chapter 8: How Do I Style Lists and Navigation Menus?

ExplainED
As explained in Chapter 2, the vertical-align property applies only to
inline elements—such as text and images—or the content of table cells.
The vertical position is based on an imaginary box surrounding the text in
both the element to which the style is applied and its parent. Because the
text in both elements is the same size as the surrounding text, the
only values that make any difference to the vertical position of the first
 in display_02.html are super and sub, which align the text in the
correct position for a superscript or subscript respectively. This also
explains why the background color and border of the second extend
below the surrounding text. The bottom line of text in the inline block is
in the correct position for a superscript. The padding, border, and margin
are added after the text is positioned. If you change the value of
vertical-align to middle, the inline block will be centered vertically in
relation to the surrounding text.

Creating a navigation bar from a list
Several years ago, the only way to create an attractive navigation bar was to
design everything in a graphics editor. If you wanted a rollover effect, you
needed to create at least two images for each menu button. I always seemed
to nudge something accidentally, and ended up with text out of alignment,
meaning I had to start all over again. It was back to the drawing board each
time you wanted to make a change to the menu.

The snazziest menus still use images, but CSS has made life a lot easier,
because you can often use the image elements as backgrounds and handle all
the text with HTML and CSS. Thanks to the display property, you can change
the way links are displayed, turning them into large, clickable blocks. Add
some different color borders, and before you know it, a humble link looks like
an embossed button.

Unordered lists are the ideal container for navigation links, because they can
be nested, allowing you to create a hierarchy of top-level items with individual
submenus. To animate submenus as flyouts, you currently need to use
JavaScript, which is beyond the scope of this book. So, in this chapter, I’m
going to deal only with single-level navigation bars. However, the CSS
techniques involved are the same for any level of navigation system.

 Getting StartED with CSS

 292

Creating a vertical text-based navigation bar
Converting an unordered list into a vertical navigation bar is easy, because you
don’t need to worry about long menu items. As long as the horizontal space
allocated to the navigation bar is wide enough to accommodate two words of
average length, long text simply wraps onto another line, and the style rules
create a taller button. Assuming you want the navigation bar to fill the entire
width of its container element, the process involves the following steps:

1. Remove the bullet symbol and all margins and padding from the
unordered list.

2. Remove all margins from the list items.

3. Set the display property of the links to block.

4. Style the links with padding, background color, and borders.

That’s all there is to it. So, let’s put the theory into practice.

Converting the links in journey.html into a vertical
navigation bar

This exercise takes journey.html, the file that has been used as the main case
study in previous chapters, and converts the links at the top of the sidebar into
a vertical navigation bar. If you have been doing all the exercises in the order
they appear in this book, you can continue working with your existing files.
Alternatively, use as your starting point journey_26.html and
css/journey_26.css in the download files for this chapter. As you proceed
through this exercise, it’s a good idea to save your files frequently and view
the results in a browser to see the changes as they happen.

1. Save your files as journey_vert.html and css/journey_vert.css. Also
make sure that the new style sheet is attached to the HTML page you
have just saved by changing the <link> tag in the <head> of the page
like this:

<link href="css/journey_vert.css" rel="stylesheet" type="text/css" />

2. Close the original page to make sure you don’t alter it by mistake. You
will need to use it as the starting point for the next exercise, which
shows how to create a horizontal navigation bar.

3. With journey_vert.html open in your editing program, convert the
series of links in paragraphs at the top of the sidebar into an

293

Chapter 8: How Do I Style Lists and Navigation Menus?

unordered list. Give the unordered list the ID, nav. The HTML code
should look like this:

<h2>Visiting the Grand Canyon</h2>
 <ul id="nav">
 Home
 How to get there
 Where to stay
 What to see
 Plants & animal life
 Climate

<h3>Sidebar subhead</h3>

AdvancED
A lot of designers feel they need to wrap their navigation menu in a <div>,
but it’s not necessary. An unordered list is a block-level element. All it
needs for styling is an ID.

4. At the bottom of the journey_vert.css style sheet, create a new
section for the navigation styles. Add an ID selector for the nav
unordered list, and set list-style-type to none. Also zero all margins
and padding like this:

/* Vertical navigation bar */
#nav {
 list-style-type: none;
 margin: 0;
 padding: 0;
}

5. Make sure the individual list items don’t have any margins by adding
the following rule:

#nav li {
 margin: 0;
}

6. Next comes the style rule that makes this technique work so well. Add
a rule to set the display property of links inside the nav unordered list
to block. The rule looks like this:

#nav a {
 display: block;
}

 Getting StartED with CSS

 294

Figure 8-12 demonstrates the effect. The screenshot on the left shows
a link before adding this style rule; the screenshot on the right shows
the same link afterward. The entire width of the link is clickable and
adopts its background attributes.

Figure 8-12. Setting a link’s display property to block makes the whole element
clickable.

7. The navigation bar now works, but needs styling. Begin by adding
some padding to the link like this:

#nav a {
 display: block;
 padding: 0.5em 10px 0.5em 20px;
}

This adds 0.5em padding at the top and bottom, 10px on the right, and
20px on the left.

8. To make the links look like buttons, you need to add background
colors for the normal and hover states like this:

#nav a:link, #nav a:visited {
 color: #FFF;
 background-color: #AA8346;
}
#nav a:hover, #nav a:active {
 background-color: #CDB187;
}

This turns the links into solid blocks of color, as shown in Figure 8-13.

295

Chapter 8: How Do I Style Lists and Navigation Menus?

Figure 8-13. The links are now displayed as solid blocks of color.

9. To make the links look like embossed buttons, you need to add a light
color as the top and left borders, and a darker color as the bottom and
right borders.

AdvancED
The easiest way to choose the most appropriate colors for the borders of
links you want to make look like embossed buttons is to use a graphics
editor. Create a rectangle of the same color as the links, and apply an
embossed effect. Then use the graphics editor’s eyedropper tool to get the
hexadecimal numbers for the border colors. Make a note of them, and use
them in your style sheet for a perfectly harmonized effect.

Add the main border colors to the #nav a style rule like this:

#nav a {
 display: block;
 padding: 0.5em 10px 0.5em 20px;
 border-top: #C9B089 2px solid;
 border-left: #C9B089 2px solid;
 border-right: #5B4625 2px solid;
 border-bottom: #5B4625 2px solid;
}

10. To give the links an inverted embossed look when the mouse is
hovering over them, reverse the colors for the top-left and bottom-
right borders in the #nav a:hover, #nav a:active rule:

#nav a:hover, #nav a:active {
 background-color: #CDB187;
 border-top-color: #5B4625;

 Getting StartED with CSS

 296

 border-left-color: #5B4625;
 border-right-color: #C9B089;
 border-bottom-color: #C9B089;
}

As Figure 8-14 shows, this gives the links an embossed look.

Figure 8-14. Adding harmonized color borders gives the links an embossed look

11. The navigation bar looks very smart—unless you view it in IE6, that is.
IE6 opens up a wide gap between each menu item, as shown in Figure
8-15.

Figure 8-15. IE6 adds spaces between the menu items.

297

Chapter 8: How Do I Style Lists and Navigation Menus?

The reason for this behavior is that each tag in the underlying
HTML is on a separate line, which IE6 incorrectly interprets as creating
new block-level elements. One way to counter this incorrect behavior
is to edit the HTML so that all tags are on a single line. However,
CSS offers a much simpler and more elegant solution: just set the
display property of the tags to inline like this:

#nav li {
 margin: 0;
 display: inline;
}

This closes up the gaps in IE6 and has no effect on other browsers.

That’s all there is to it. You can check your code, if necessary, against
journey_vert.html and css/journey_vert.css in the download files
for this chapter.

ExplainED
The preceding exercise assumes you want to put the vertical navigation
bar inside a container, such as the sidebar, which already has a declared
width, and that you want it to fill the entire width of the container. If you
want the navigation bar to be narrower than its containing element, add
the width property to the style rule that controls the unordered list, or
adjust its left and right margins. In the case of this exercise, make the
changes in the #nav style block.

Creating a horizontal text-based navigation bar
The basic principles behind creating a horizontal navigation bar are the same as
for a vertical one. However, you need to give the menu items a fixed width and
float them left. Unfortunately, this poses problems with long menu items. If
one or more items are too long to fit in the fixed width, the buttons end up
different heights. There are also problems if the available width divided by the
number of menu items doesn’t result in a whole number.

 Getting StartED with CSS

 298

Converting the links in journey.html into a horizontal
navigation bar

The following exercise shows you how to convert the links at the top of the
sidebar in journey.html into a horizontal navigation bar. Some of the items are
too long, and the 940px width of the wrapper <div> doesn’t divide evenly by
six. So, the exercise proposes possible ways around these issues. Use as your
starting point journey.html as it was at the end of the last exercise in Chapter
7. Alternatively, use journey_26.html and css/journey_26.css in the download
files for this chapter.

1. Save your HTML file as journey_horiz.html and the style sheet as
css/journey_horiz.css. Make sure the renamed style sheet is linked
to the new file. The <link> tag in the <head> of the page should look
like this:

<link href="css/journey_horiz.css" rel="stylesheet" type="text/css" />

2. Convert the series of paragraphs that contain the navigation links at
the top of the sidebar into an unordered list, and give the list the ID
nav.

3. Cut the unordered list to your clipboard, and paste it between the
header and sidebar <div> tags. The HTML code should look like this:

<div id="header">
 <h1>Journey to the Edge</h1>
</div>
<ul id="nav">
 Home
 How to get there
 Where to stay
 What to see
 Plants & animal life
 Climate

<div id="sidebar">

If you check the page in a browser now, it should look like Figure 8-16.
The links are now above both the sidebar and main content, and
they’re no longer styled the same color as they were in the sidebar.

299

Chapter 8: How Do I Style Lists and Navigation Menus?

Figure 8-16. The links have been moved to an unordered list just below the header
banner.

4. The conversion process starts the same way as for the vertical
navigation bar. Remove the bullets from the list by setting list-
style-type to none, and remove all margins and padding. Add the
following style block at the bottom of the style sheet:

/* Horizontal navigation bar */
#nav {
 list-style-type: none;
 margin: 0;
 padding: 0;
}

5. Now, remove the margins from the tags. Also, give them a fixed
width, and float them left. Unfortunately, 940 ÷ 6 = 156.66.
Rounding this up to 157px will result in a menu that is 2px too wide,
forcing the final item onto a new line. Rounding it down to 156px will
leave a 4px gap at the end. You might think that adding a background
color to the #nav style rule will hide the gap, but all the
elements are floated, so the element has no height, and the
background color won’t be visible unless you add a height.

There are several ways you could solve this dilemma. The one I have
chosen is to make the menu items even wider: 165px. I’ll then create
a special rule for the Home link, which can be much narrower. First,
create the rule that affects all tags inside the list:

 Getting StartED with CSS

 300

#nav li {
 margin: 0;
 width: 165px;
 float: left;
}

6. In the HTML, add the ID, home, to the tag that encloses the Home
link:

<li id="home">Home

7. Create the following style rule for the home ID:

#home {
 width: 115px;
}

8. Save the HTML page and style sheet, and test journey_horiz.html in a
browser. It should look like Figure 8-17. It’s a mess; the #home style
rule hasn’t worked.

Figure 8-17. The style rule controlling the width of the Home link is ignored.

Although the rule you inserted in step 7 is below the one inserted in
step 6, it has been ignored by the browser. If you read the final
section of Chapter 7, you should know why. Specificity, that’s why.

Rather than using a different selector to ensure this rule is given
precedence, let’s use the keyword, !important, which is a convenient
way to enforce a specific rule and is supported by all browsers. You
add this just before the semicolon of the property definition like this:

#home {
 width: 115px !important;
}

301

Chapter 8: How Do I Style Lists and Navigation Menus?

ExplainED
Using the easy method of calculation, the specificity score of #home is 100,
whereas the score for #nav li is 101. So, it doesn’t matter which order
these style rules are in, #nav li will always win. There are several ways to
solve this problem.

The first solution is to change the selector from #home to li#home, without
a space between li and #home. This is not a descendant selector, but a way
of saying “apply this rule to the tag that has the ID, home.” When
using classes or ID selectors, it’s normal to leave the type selector out, but
you can be very specific by appending the class or ID selector in this way.
The specificity of li#home now adds up to 101, so it is of equal weight to
#nav li and takes precedence because it comes lower in the cascade.

Another way of handling this is to use the descendant selector, #nav
#home. This has a specificity score of 200, so takes precedence over #nav li
regardless of the order they appear in the style sheet.

There should be no space between the exclamation mark and
important, but browsers normally accept a space.

AdvancED
Resist the temptation to use !important everywhere. It cannot be applied
to a whole style block, but needs to be added to each property/value pair
that you want to prioritize. If you find yourself resorting frequently to
!important, it’s a sign that you probably need to brush up your knowledge
of the cascade, selectors, and specificity.

9. That fixes the width problem. To convert the links to look like
embossed buttons, you need to apply the same rules as for a vertical
navigation bar like this:

#nav a {
 display: block;
 padding: 0.5em 10px 0.5em 20px;
 border-top: #C9B089 2px solid;
 border-left: #C9B089 2px solid;
 border-right: #5B4625 2px solid;
 border-bottom: #5B4625 2px solid;

 Getting StartED with CSS

 302

}
#nav a:link, #nav a:visited {
 color: #FFF;
 background-color: #AA8346;
}
#nav a:hover, #nav a:active {
 background-color: #CDB187;
 border-top: #5B4625 2px solid;
 border-left: #5B4625 2px solid;
 border-right: #C9B089 2px solid;
 border-bottom: #C9B089 2px solid;
}

I explained these rules in the preceding exercise, so I won’t go over
the details again.

ExplainED
One thing that might have slipped your notice is that I didn’t make any
allowance for the padding and borders around the menu items when
calculating the widths for the elements. This is because the padding
and borders are applied to the links, and not to the elements
themselves. The links have no fixed width, so they just expand and
contract to fill the available space inside each list item. When working
with fixed-width elements, always try to take advantage of the automatic
resizing of elements inside them, rather than struggling with complex
calculations.

10. If you save the style sheet, and test journey_horiz.html in a browser,
you’ll see there are two problems, as shown in Figure 8-18.

Figure 8-18. The hover styles and long items need fixing.

303

Chapter 8: How Do I Style Lists and Navigation Menus?

11. When you mouse over one of the links, it’s picking up the text-
decoration property that styles all links, except in the sidebar. You
need to set the value to none like this:

#nav a:hover, #nav a:active {
 background-color: #CDB187;
 border-top: #5B4625 2px solid;
 border-left: #5B4625 2px solid;
 border-right: #C9B089 2px solid;
 border-bottom: #C9B089 2px solid;
 text-decoration: none;
}

12. Dealing with menu items that are too long is trickier. Rather than
doing complex calculations to equalize the height of long and short
items, the most practical approach is to shorten the text as I have
done in Figure 8-19.

Figure 8-19. Shorter menu items allow visitors to increase the text size several times
without affecting the layout.

13. If you look closely at Figure 8-19, you’ll see that the gap between the
navigation bar and the first paragraph in the main content has closed
up. This isn’t because the p:first-child pseudo-class you added in
Chapter 7 no longer works; it does. This is another effect of floating
elements.

All the elements in the navigation bar are floated left. As a
result, the item no longer has any height, because floated
elements are removed from the normal flow of the document. Matters
are complicated by the fact that the sidebar is also floated, but the
<div> that holds the main content isn’t. To understand what’s going

 Getting StartED with CSS

 304

on, you need to examine the page by selecting the <div> in Firebug or
Safari 4’s Web Inspector panel, as shown in Figure 8-20.

Figure 8-20. The Web Inspector panel in Safari 4 shows what’s happened to the
margin at the top of the main content.

When elements are floated, subsequent elements move up to fill the
available space. The elements fill the width of the wrapper, and
the next floated element, the sidebar, tucks in underneath. However,
the 10px margin at the top of the first paragraph in the main content
interacts with the previous nonfloated element, the tag. The
margin is there, but it’s hidden underneath the floated menu items, as
shown by the highlighting in Firebug or the Safari 4 Web Inspector
panel. Unfortunately, the Developer Tools panels in IE8 and Opera 10
don’t display the issue as clearly as either of the other two analysis
tools.

14. To restore the gap at the top of the main content, you need to add a
height to the element. After some trial and error, I found 2.5em
to be a suitable amount. Add the height to the #nav style block like
this:

#nav {
 list-style-type: none;

305

Chapter 8: How Do I Style Lists and Navigation Menus?

 margin: 0;
 padding: 0;
 height: 2.5em;
}

15. One final thing: change the margin on the top of the first paragraph to
padding by amending the p:first-child style rule like this:

#mainContent p:first-child {
 padding-top: 10px;
}

The gap at the top of the main content is now restored. You can check
your code, if necessary, against journey_horiz.html and
css/journey_horiz.css in the download files for this chapter.

ExplainED
Phew! If you found the explanation about the margin at the top of the
first paragraph tough going, don’t worry. Even with my experience, it took
me quite a while to understand exactly what was happening. Fortunately,
tools like Firebug and the Web Inspector panel in Safari 4 make it a lot
easier to visualize the interaction of style rules. The important thing to
remember is that you need to give the unordered list a height when you
create a horizontal navigation bar like this. The height should be applied
to the tag and not to the elements or links. This is because the
 elements are floated, in effect leaving the without a height.

Using CSS sprites in a navigation bar
One of the problems with traditional rollover images for navigation bars is that
they rely on JavaScript being enabled in the browser. You also need to use
JavaScript to preload the rollover images to avoid a delay in their being
displayed when the mouse passes over a link. However, you can now create a
similar effect with CSS background images. This has the advantage that no
JavaScript is required. Also the text of the link is in the HTML, rather than in
an image. Best of all, you don’t need to preload the rollover images, because
you can use a technique known as a CSS sprite.

A CSS sprite is a single file that contains multiple images, only one of which is
displayed at any given time. This technique takes advantage of the fact that
background images are displayed only behind an element’s content and
padding, plus the ability to define precisely the position of a background image

 Getting StartED with CSS

 306

in CSS. You can achieve very sophisticated effects with sprites, but for the
purposes of this chapter, I’m going to use a simple example just to
demonstrate the basics of the technique.

LinkED
Visit www.smashingmagazine.com/2009/04/27/the-mystery-of-css-sprites-
techniques-tools-and-tutorials/ for inspiration on what you can do with
CSS sprites.

The images folder of the download files contains a file called sprite.png.
Figure 8-21 shows how I created the file in Adobe Fireworks. It’s two identical
copies of a tab with a cut-off top right corner against a transparent
background. The only difference is in the color of the highlighted ball on the
left. In the top version, it’s red. In the bottom one, it’s green. The individual
tabs are 220px × 80px, and the top-left corner of the second tab is exactly
90px from the top of sprite.png. Normally, only the top 40px or so of the tab
will be visible. The tabs have been deliberately made bigger so that more of
the background will be revealed if the text is enlarged in the browser.

Figure 8-21. The CSS sprite contains two images in the same file.

Building a tabbed menu with CSS sprites

This exercise shows how to build a simple tabbed navigation bar with CSS
sprites. It uses sprite.png in the images folder and sprite_start.html in the
download files for this chapter. If you just want to study the finished code, it’s
in sprite_finished.html.

1. Open sprite_start.html, and save it as sprite.html. The file contains
a heading, an unordered list with four dummy links, and a couple of
filler paragraphs (see Figure 8-22).

307

Chapter 8: How Do I Style Lists and Navigation Menus?

Figure 8-22. The unordered list of links before it is transformed into a navigation bar
with CSS sprites

2. The unordered list already has the ID nav, so you can prepare it for
conversion into a navigation bar in the same way as in the previous
two exercises by removing the bullets and setting margins and padding
to zero like this:

#nav {
 list-style-type: none;
 margin: 0;
 padding: 0;
}

Since this is a single-page exercise, I suggest that you embed the style
rules in the <head> of the document along with the basic rules that I
have already created.

3. Because all the list items are going to be floated, the unordered list
needs a height. After some experimentation, I decided to set the
height property of the #nav style block value to 2.3em. The tabs have
a border all around them, but the bottom border will be hidden, so
add it to this style rule. To give it more emphasis, I have made it 3px
wide.

#nav {
 list-style-type: none;
 margin: 0;
 padding: 0;
 height: 2.3em;
 border-bottom: #5B4625 3px solid;
}

 Getting StartED with CSS

 308

4. You want each list item to be the same width as the tab that will be
displayed as its background image (220px). The height needs to be the
same as in the #nav style rule. Also remove all margins from the list
items and float them to the left with the following style rule:

#nav li {
 width: 220px;
 height: 2.3em;
 margin: 0;
 float: left;
}

5. The default background image is applied to the list item. You don’t
want the image to repeat, and you want to display it from the top left
corner. Amend the #nav li style rule like this:

#nav li {
 width: 220px;
 height: 2.3em;
 margin: 0;
 float: left;
 background-image: url(../images/sprite.png);
 background-repeat: no-repeat;
 background-position: top left;
}

6. If you look at the page now, the tabs are there, but the links are in
the wrong place and need to be styled so they look more in harmony
with the tabs. Add the following rule to style the links:

#nav a {
 display: block;
 text-decoration: none;
 font-family: "Arial Black", Gadget, sans-serif;
 font-size: 18px;
 font-weight: bold;
 padding: 5px 5px 6px 35px;
 color: #900;
}

There’s nothing here that you haven’t seen before. The display
property is set to block to make the whole tab clickable. It’s also
essential for moving the text into position using padding. Most
important of all, the links need to be converted to block-level
elements in order for the rollover image to display in full. Links are
normally inline elements, so the rollover background would appear
only behind the link text, rather than filling the whole element.

The color of the text is made to match the red ball on the left of the
tab.

309

Chapter 8: How Do I Style Lists and Navigation Menus?

7. The next stage is to define what happens when the mouse passes over
a link. You want to use the same sprite.png as the background image,
but this time, instead of showing the top left corner, you want to
show the tab that’s 90px further down. Add the following rule:

#nav a:hover {
 background-image: url(../images/sprite.png);
 background-repeat: no-repeat;
 background-position: 0 -90px;
 color: #060;
}

The background-position property is set to 0 -90px. When two lengths
are specified like this, the first one represents the horizontal position,
and the second represents the vertical position. Both values are
measured from the top left of the image, so -90px moves the image up
90 pixels, revealing the second tab on the sprite. (Refer to Chapter 5
if you need to refresh your memory about the positioning of
background images.)

The :hover pseudo-class also changes the color of the text to match
the green ball on the second tab.

8. Save the page, and test it in a browser. The rollover images should
work like traditional JavaScript rollovers—only without the JavaScript
(see Figure 8-23).

Figure 8-23. Using the background-position property makes rollover images easy.

You can check your code, if necessary, with sprite_finished.html in
the download files for this chapter.

 Getting StartED with CSS

 310

After that exploration of ways to use unordered lists as navigation bars, I want
to finish this chapter by discussing briefly a common problem concerning
numbered lists. This will lead into a more advanced discussion of generating
numbered sequences.

How do I continue a numbered list after
a break?
Let’s say you have a numbered list followed by a paragraph or two of text, and
you want to resume the numbered sequence. As sequence_01.html in the
download files for this chapter and Figure 8-24 demonstrate, starting a new
ordered list after a break resets the counter to 1.

Figure 8-24. Ordered lists always start at 1.

There needs to be a way to resume the sequence. There are, in fact, two ways
of doing it: one involves using HTML; the other uses CSS.

If you have studied HTML, you probably know there’s a very simple answer to
this problem: add the start attribute to the opening tag of the resumed
list, and set its value to the first number like this:

<ol start="4">
 Item four
 Item five

This fixes the problem, as you can see in Figure 8-25 (the code is in
sequence_02.html).

311

Chapter 8: How Do I Style Lists and Navigation Menus?

Figure 8-25. Problem solved

This is such a simple and easy solution that you might be surprised to find out
that the start attribute is deprecated in HTML 4.01 and XHTML 1.0. If you use
it, your code won’t validate against a Strict DOCTYPE. Most of the features
deprecated by the W3C were scheduled for removal from future versions of the
standard, usually because CSS was considered the better way of doing the same
thing.

You can use CSS to resume the numbering sequence, but I wouldn’t recommend
it—not if you want to retain your sanity. The CSS method is very powerful, but
it’s also quite complex. For the sake of completeness, the next section
describes how it works; but even the W3C has changed its mind about the fate
of the start attribute and given it a reprieve in the draft version of HTML5. If
you’re curious as to how to do it with CSS, the answer is in the section titled
“Using generated content with numbered lists” toward the end of this chapter.

Using CSS to generate numbered
sequences
The advanced techniques described in this section are supported by most
modern browsers but fail completely in IE6 and IE7. Feel free to skip the rest of
this chapter unless you need to generate sophisticated number sequences that
cannot be handled by the start attribute.

The numbers displayed by ordered lists aren’t part of the HTML markup.
They’re generated automatically by the browser. So, if you add or remove an
item in the middle of a list, all subsequent numbers are regenerated. CSS also

 Getting StartED with CSS

 312

has the concept of generated content, which can be used to alter the
numbering sequence not only of ordered lists, but of any HTML element. Table
8-3 lists the properties that control numbering.

Table 8-3. Generated Content Numbering Properties

Property Initial Value Inherited Description

content normal No Generates content to be

displayed by the :before

and :after pseudo-

elements.

counter-increment none No Works in conjunction with

counter-reset to determine

by how much a counter is

incremented each time. A

negative number can be

used to create a back-

counting sequence.

counter-reset none No Defines one or more

counters for use with

counter-increment. By

default, counters are

initialized at 0. Other values

can be specified by

declaring a number after the

counter name.

Of these three properties, content is the only one that can be used on its own.
It is responsible for defining the content displayed by the :before and :after
pseudo-elements. It can be used to generate several different types of content,
but the easiest way to understand both the content property and the pseudo-
elements is with a simple text example.

Adding content with :before and :after
As their names suggest, the :before and :after pseudo-elements add
something before or after the element with which they are associated. So, for
example, p:before creates a pseudo-element selector that applies to all
paragraphs and adds generated content before each paragraph.

313

Chapter 8: How Do I Style Lists and Navigation Menus?

The file content_01.html in the download files for this chapter contains two
paragraphs of filler text like this:

<p>This is the first paragraph. Blah, blah, blah. . .</p>
<p>The second paragraph isn't very interesting, either.</p>

In addition to a few basic rules to style the text, I have added the following
two style rules:

p:before {
 content: 'Start of paragraph: ';
 font-weight: bold;
 color: #060;
}
p:after {
 content: ' End';
 font-weight: bold;
 color: #F00;
}

The value of the content property defines what the browser should insert in
each pseudo-element. In this example, I have used ordinary text surrounded in
quotes (it doesn’t matter whether you use single or double). Because the
generated content is placed immediately before or after the HTML content, I
have added a space at the end of the :before text and a space at the beginning
of the :after text. If you test content_01.html in a browser that supports
generated content (not IE6 or IE7), you should see the text added in bold green
at the start and bold red at the end of each paragraph, as shown in Figure 8-
26.

Figure 8-26. The :before and :after pseudo-elements automatically add generated
content to selected elements.

 Getting StartED with CSS

 314

Admittedly, this is a rather meaningless example, but it helps explain how
generated content is added to elements on a web page. As you’ll see shortly,
text can be combined with automatically generated numbers in a much more
meaningful way.

Adding images with pseudo-elements
The content property can also handle images. You define which image to
display by passing the image file path to url() in exactly the same way as for
background-image and list-style-image.

In content_02.html, the p:before and p:after pseudo-elements have been
changed like this:

p:before {
 content: url(../images/green_dot.png);
}
p:after {
 content: url(../images/red_dot.png);
}

This automatically adds images of a green dot at the beginning and a red dot at
the end of each paragraph, as shown in Figure 8-27.

Figure 8-27. Images can also be used as automatically generated content.

As with list-style-image, there is no way to alter the position of the image,
so you need to design your images carefully if you want to use this technique.

315

Chapter 8: How Do I Style Lists and Navigation Menus?

Generating content from an HTML attribute
The content property can also inspect HTML tags, search for an attribute, and
use the text value of the attribute. If the attribute doesn’t exist, the browser
simply ignores it. To access the attribute, you insert the attribute name
(without quotes) between the parentheses of attr().

In the download files for this chapter, content_03.html has two paragraphs,
the second of which contains the title attribute in its opening tag like this:

<p>Ut labore et dolore magna aliqua. . .</p>
<p title="Second paragraph">Consectetur adipisicing elit. . .</p>

In the styles, the p:before pseudo-class is defined like this:

p:before {
 content: attr(title);
 display: block;
 font-weight: bold;
}

As you can see in Figure 8-28, this displays the value of the title attribute as a
block-level element in bold text.

Figure 8-28. Content can be automatically extracted from an HTML attribute.

Using the content property to generate
numbered sequences
It’s when you start working with numbered sequences that the content
property really comes into its own. Moreover, you can combine different types
of content in the same declaration, so you can display an image, text, and an
automatically generated number all together. However, let’s take things one

 Getting StartED with CSS

 316

step at a time, because the way generated numbers work can be confusing to
start with.

Before you can use a numbered sequence, you need to initialize the sequence
by creating a counter and setting its value with counter-reset. You can call the
counter anything you like, except the keywords, none, inherit, or initial.

The HTML code in content_04.html in the download files for this chapter
contains the titles of the first three chapters of this book, all styled as <h2>
headings. I have also added some <h3> headings with the titles of some
subsections I would have liked to have written. The code looks like this:

 <h1>Getting StartED with CSS</h1>
 <h2>What is CSS and Why Should I Learn It?</h2>
 <h3>Because David says so</h3>
 <h3>Because it's cool</h3>
 <h2>How Can I Improve the Look of Text and Links?</h2>
 <h3>Read the chapter, dude</h3>
 <h2>How Can I Improve the Layout of my Web Pages?</h2>

In order to generate a sequence to number the chapters, you need to create a
counter and give it a name—chapter sounds as good as anything. So far, so
good, but where do you initialize it? Because the only <h2> headings in the page
are chapter titles, the most logical place is in the style block for <body> like
this:

body {
 color: #000;
 background-color: #FFF;
 font-family: Arial, Helvetica, sans-serif;
 counter-reset: chapter;
}

It doesn’t matter where you initialize the counter, as long as it’s before you
first use it. By default, counter-reset initializes the sequence at 0, but the
first number displayed is 1. So, if you want the first number to be different,
you need to set the value to one less than the number you want. For example,
if you want the first number to be 4, you define counter-reset like this:

counter-reset: chapter 3; /* first number will be 4 */

To display the number, you need to use both the counter-increment and
content properties with the :before or :after pseudo-element. Using counter-
increment is easy; its value is the name of the counter you want to increment.
So this is how you increment the number sequence for the chapter headings in
the <h2> elements:

317

Chapter 8: How Do I Style Lists and Navigation Menus?

h2:before {
 counter-increment: chapter;
}

By default, counter-increment adds 1 to the number each time. If you want to
use greater steps, or go in reverse, add the number after the counter name like
this:

counter-increment: chapter 2; /* increases in steps of 2 */
counter-increment: chapter -1; /* decreases one at a time */

To display the number, pass the name of the counter to the content property’s
counter() function like this:

h2:before {
 counter-increment: chapter;
 content: counter(chapter);
}

As I said earlier, the content property can display a mixture of generated
content. The style rule, as it stands, will display the number immediately
before the text, with no space. So, to make the generated content look more
readable, the code in content_04.html has been amended like this:

h2:before {
 counter-increment: chapter;
 content: 'Chapter ' counter(chapter) ': ';
}

In other words, I have preceded the counter by Chapter followed by a space,
and followed it with a colon, also followed by a space. You can see the result
in Figure 8-29.

 Getting StartED with CSS

 318

Figure 8-29. The chapter numbers and surrounding text are generated
automatically.

But what about the subheadings in the <h3> tags? If you initialize the counter
for them in the same way as for the <h2> headings, the subheading for Chapter
2 will have the wrong number. The answer is that you need to reset the
sequence for the subheadings each time there’s a new chapter—in other words,
in a style rule for the <h2> headings.

In content_05.html, I have added the following style rules to generate the
content for the subheadings, naming the counter subhead:

h2:before {
 counter-increment: chapter;
 content: 'Chapter ' counter(chapter) ': ';
}
h2 {
 margin-left: 25px;
 counter-reset: subhead;
}
h3:before {
 counter-increment: subhead;
 content: counter(chapter) '.' counter(subhead) ' ';
}

The h2 style block initializes the second counter, subhead, and resets its value
to 0 each time an <h2> heading is displayed. The subhead counter is displayed
in front of each <h3> heading by the h3:before pseudo-element, which
increments its value. The content property uses the counter() function twice:

319

Chapter 8: How Do I Style Lists and Navigation Menus?

first to display the value of the chapter counter, and then to display the value
of subhead. The two values are separated by a period and followed by a space.
This produces the output shown in Figure 8-30.

Figure 8-30. Resetting the second counter makes it possible to produce section
numbering.

By default, the counter() function displays the number as 1, 2, 3, and so on.
However, you can change the style of the number by using any of the values
accepted by list-style-type (see Figure 8-2 at the beginning of this chapter).
To do so, add a comma after the counter name, followed by the list-style-
type value like this:

h3:before {
 counter-increment: subhead;
 content: counter(chapter) '.' counter(subhead, lower-alpha) ' ';
}

This displays the subhead counter as a lowercase letter of the alphabet, as
shown in Figure 8-31 (the code is in content_06.html).

If you want to go the whole hog, you can add an image to the generated
content like this (the code is in content_07.html):

h2:before {
 counter-increment:chapter;
 content: url(../images/green_dot.png) ' Chapter ' counter(chapter) �
': ';
}

 Getting StartED with CSS

 320

Figure 8-31. Generated number sequences can use any of the styles supported by
list-style-type.

This produces the output shown in Figure 8-32.

Figure 8-32. Generated content can be a combination of images, text, and
automatically incremented number sequences.

321

Chapter 8: How Do I Style Lists and Navigation Menus?

It’s important to note that all these examples have used ordinary HTML tags,
and not numbered lists. CSS generated content extends HTML in a far more
sophisticated way than can be achieved with lists. That’s not to say you can’t
use the same techniques with numbered lists, but it does require a little
adaptation.

Using generated content with numbered lists
Numbered lists automatically generate their own numbers. So, if you want to
use the content, counter-reset, and counter-increment properties with a
numbered list, you need to suppress the default numbers by setting the list-
style-type property to none.

Earlier in this chapter, I showed how to use the HTML start attribute to
resume a numbered sequence from one ordered list to another. To achieve the
same effect with CSS involves a lot more work. You need to do the following:

1. Initialize a counter for numbered lists.

2. Set the list-style-type for numbered lists to none.

3. Create an li:before pseudo element to increment and display the
generated numbers.

4. Reset the counter for the resumed list.

The file content_08.html produces exactly the same result as
sequence_02.html. However instead of using start="4" in the opening tag
of the second ordered list, it adds the ID, more. It then uses the following style
rules to achieve the renumbering:

body {
 color: #000;
 background-color: #FFF;
 font-family: Arial, Helvetica, sans-serif;
 counter-reset: continue;
}
ol {
 list-style-type: none;
}
li:before {
 counter-increment: continue;
 content: counter(continue) '. ';
}
#more {
 counter-reset: continue 3;
}

 Getting StartED with CSS

 322

For this type of situation, using the HTML start attribute wins hands down.
However, CSS-generated content offers a very neat solution for numbering
nested lists.

Generating subsection numbers with nested lists
By default, ordered lists start renumbering at 1 when nested at a deeper level
inside another list, and they resume the sequence when moving back out to the
higher level. To make the numbering of nested lists easier to follow, you can
use different values for list-style-type, as shown in lists_04.html and Figure
8-4 earlier in this chapter. However, with CSS-generated content, you can
automatically create subsection numbers like those shown in Figure 8-33.

Figure 8-33. Subsection numbers can be automatically generated with CSS.

The CSS for this is incredibly simple. It consists of the following two rules (the
code is in content_09.html):

ol {
 list-style-type: none;
 counter-reset: nested;
}
li:before {
 counter-increment: nested;
 content: counters(nested, '.') '. ';
}

The first rule suppresses the normal list numbers, and resets a counter called
nested. The counter-reset property is used on the ol style rule in order to
reset the sequence each time a more deeply nested list is encountered.

323

Chapter 8: How Do I Style Lists and Navigation Menus?

The second rule uses the li:before pseudo-element to increment the nested
counter with each new list item. It also uses the counters() function of the
content property to generate the subsection numbers. This is not a misprint.
All previous examples have used the counter() function, which keeps track of
the counter only in its current scope (or level of nesting). However, the
counters() function keeps track of the counters at higher levels of nesting and
takes as its second argument the text that you want to display between each
number. So, the period in quotes inside the counters() function puts a dot
between each number. The period and space after the counters() function
adds the final dot and a space before the list item.

The counters() function takes an optional third argument, which is one of the
list-style-type values. The same style is applied to all nesting levels. You
cannot specify different values for list-style-type at each level.

Chapter review
This has been a packed chapter. The CSS style rules for lists are easy to use,
but in combination with the display property, they open up a wide range of
possibilities for creating attractive navigation bars. This chapter has shown just
a few examples of what can be achieved. The possibilities are even greater
when JavaScript is used to control nested lists as flyout submenus.

The last section of the chapter explored the advanced, but fascinating,
concept of generated content. It’s an area that most designers have ignored,
because of lack of support in Internet Explorer. However, IE8 supports all
aspects of generated content, so this is a feature that is likely to attract more
attention as the market share of IE6 and IE7 continues to decline. Don’t worry
if you found the section about generated content difficult to follow. It is an
advanced subject and definitely not something you’ll need every day, but it
does demonstrate just how powerful CSS can be.

In the next chapter, we’ll take a look at how to style tables in CSS. This is
another area where the arrival of IE8 is likely to make a difference, because it
finally supports all aspects of the CSS2.1 specification.

325

 Chapter 9
How Do I Style Tables?
Tables seem to be the most divisive of all HTML elements—you either love ’em
or hate ’em. For years, they were the only way to build a grid structure to lay
out web pages. But tables work in a unique way. The height of each row is
determined by the tallest object in the row, and the width of each column is
determined by the widest object in the column. Just when you think you have
everything nicely aligned, you add something slightly bigger in a table cell, and
the whole table structure shifts.

Thankfully, tables are no longer necessary—or indeed recommended—for page
layout. Normally, they should be used only for the display of data that needs to
be presented in a grid format—timetables, price lists, sports results, and so on.
That’s the focus of this chapter: styling tables that contain data.

In this chapter, you’ll learn about the following:

� Styling borders around tables and individual cells

� Moving the position of the table caption

� Suppressing the display of empty cells

� Adjusting the space between table cells and inside them

� Preventing columns from exceeding a fixed width

� Styling table columns

Most of this chapter is descriptive, but there are numerous examples in the
download files demonstrating the effect of different style rules. The chapter
concludes with an exercise that puts all the information to practical use styling
a table of weather data.

Before diving into the details of styling tables with CSS, it’s important to
understand the basic structure of tables and how browsers lay out the various
components.

 Getting StartED with CSS

 326

Understanding the anatomy of a table
Assuming you’re not a complete beginner at web design who happens to have
opened this page at random, you should be familiar with the structure of an
HTML table. The first section covers very basic knowledge, so you might want
to skim through it very quickly. However, I also describe the role of less
frequently used table elements—including <colgroup> and <tbody>—that play
an important role in styling tables with CSS.

Basic table structure
In an HTML table, everything is wrapped in a pair of <table> tags; each row is
contained in <tr> tags; and individual cells are created using <td> tags. The
following code produces the table shown in Figure 9-1 (the code is in
table_01.html in the download files for this chapter):

<table width="200" border="1" cellpadding="5">
 <tr>
 <td>Row one - cell 1</td>
 <td>Cell 2</td>
 </tr>
 <tr>
 <td>Row two - cell 1</td>
 <td>Cell 2</td>
 </tr>
</table>

Figure 9-1. A simple table

Notice that the opening <table> tag has the border attribute set to 1. This puts
a 1px border around the whole table and each individual cell, producing the
effect of a raised double border around each table element. The other
attribute in the opening tag, cellpadding, is set to 5, adding 5px of padding
around the content of each cell.

If you increase the value of border to 10, you get the result shown in Figure 9-2
(the code is in table_02.html):

327

Chapter 9: How Do I Style Tables?

Figure 9-2. HTML draws the wider border only around the table.

The border around the table is increased, but the border around the table cells
remains unchanged.

Changing the value of cellpadding adds the same amount of space around each
side of the content in each cell. All cells are treated exactly the same, and
there is no way to add different amounts of padding to each side of the
content. With cellpadding, it’s a case of “one size fits all.” However, as you’ll
see later, CSS gives you control not only over padding on each side but also
over the amount used in individual table cells.

The other main control that HTML offers over tables is the cellspacing
attribute, which controls the amount of space between each table cell. Like
cellpadding, the same value is applied around all sides of every cell. If you set
cellspacing to 0, the space between cells is eliminated. However, each cell
and the table still retain their own borders. Consequently, even when border is
set to 1, the actual border is 2px (see Figure 9-3 and table_03.html).

Figure 9-3. Setting cellspacing to 0 eliminates the space between cells.

In addition to <td> tags, you can use <th> tags to indicate that a cell should be
regarded as a row or column heading. The code for the table in table_04.html
looks like this:

<table width="200" border="1" cellpadding="5" cellspacing="0">
 <tr>
 <th>Header 1</th>
 <th>Header 2</th>
 </tr>
 <tr>
 <td>Cell 1</td>
 <td>Cell 2</td>
 </tr>
</table>

 Getting StartED with CSS

 328

By default, browsers display text in <th> tags centered and in a bold font, as
shown in Figure 9-4.

Figure 9-4. Text in header cells is normally bold and centered.

Using HTML tags to define sections of a table
Because tables have been so widely used for layout, many web developers are
unaware that tables have several other tags, all of which are optional but
which can enhance the look of a table used for data.

The <caption> tag displays a caption for the table. By default, it’s displayed
above the table (see Figure 9-5), but the tag itself must come immediately
after the opening <table> tag like this (the code is in table_05.html):

<table width="200" border="1" cellpadding="5" cellspacing="0">
 <caption>This is a caption for the table</caption>
 <tr>

Figure 9-5. Table captions are normally displayed above the table.

Between the caption and the first table row, you can add several tags to define
columns and special header and footer rows.

Defining table columns
The ability to define table columns in HTML appears to be one of the Web’s
best-kept secrets, probably because columns are formed automatically by
adding cells to table rows. However, if you take the trouble to define columns,
you can use CSS to apply borders, backgrounds, and width to them. You should
also be able to use CSS to control the visibility of columns, but at the time of
this writing, IE8 is the only browser that does this correctly.

To define table columns, add one or more <colgroup> tags immediately after
the table caption. If the table doesn’t have a caption, the <colgroup> tags
come immediately after the opening <table> tag. As the name suggests, a

329

Chapter 9: How Do I Style Tables?

<colgroup> tag creates a column group. The <colgroup> tag optionally takes an
attribute called span, which specifies the number of columns in the group. So,
let’s say you have a five-column table, and you use the first column for labels
and the remaining columns for data, you could define the column groups like
this:

<colgroup span="1" class="labelcol" />
<colgroup span="4" class="datacol" />

Alternatively, if you want to apply different styles to columns within a group,
you can list individual columns by creating <col> tags inside a pair of
<colgroup> tags like this:

<colgroup>
 <col class="labelcol" />
 <col class="oddcol" />
 <col class="evencol" />
 <col class="oddcol" />
 <col class="evencol" />
</colgroup>

The <col> tag also accepts the span attribute, so you can apply the same class
to multiple columns like this:

<colgroup>
 <col class="labelcol" />
 <col span="3" class="datacol" />
 <col class="lastcol" />
</colgroup>

Obviously, the number of columns in the table must equal the number of
columns specified in the <colgroup> and <col> tags.

ExplainED
Although few web designers seem to use <colgroup> and <col> tags, they
have been around for a long time and are supported by all current
browsers. In fact, Internet Explorer has supported them since version 4
was released way back in 1997. So, you can use <colgroup> and <col> tags
to style table columns in all browsers—yes, even IE6—as you’ll see in the
exercise at the end of this chapter.

 Getting StartED with CSS

 330

Defining table header and footer rows
Immediately after the column definitions, you can define table header and
footer rows. The table header comes first and consists of one or more table
rows enclosed in a pair of <thead> tags. The table footer comes immediately
after the table header and consists of one or more table rows inside a pair of
<tfoot> tags.

The principal advantage of using <thead> and <tfoot> is that browsers should
add the header and footer rows at the top and bottom of each page when
printing a long table. Although it seems counterintuitive, the <tfoot> section
must come before the main body of the table. You’ll see how this works in the
next section.

Grouping table rows into sections
If you want to divide your table into horizontal sections, you can wrap one or
more rows in pairs of <tbody> tags. For example, a company results table might
be divided into sections for each quarter using <tbody> tags. Together with
header and footer sections, the code looks like this (the code is in
table_sections.html in the download files):

<table>
 <thead>
 <tr>
 <th>Period</th>
 <th>Results</th>
 <th>Amount</th>
 </tr>
 </thead>
 <tfoot>
 <tr>
 <th>Period</th>
 <th>Results</th>
 <th>Amount</th>
 </tr>
 </tfoot>
 <tbody id="q1">
 <tr>
 <td>Q1</td>
 <td>Sales</td>
 <td>$4.5m</td>
 </tr>
 <tr>
 <td> </td>
 <td>Expenditure</td>
 <td>$4.1m</td>

331

Chapter 9: How Do I Style Tables?

 </tr>
 </tbody>
 <tbody id="q2">
 <tr>
 <td>Q2</td>
 <td>Sales</td>
 <td>$4.9m</td>
 </tr>
 <tr>
 <td> </td>
 <td>Expenditure</td>
 <td>$4.7m</td>
 </tr>
 </tbody>
</table>

Without any styling, the <tbody> tags don’t make any difference to the way the
table is displayed, but they perform a similar function to <div> tags by dividing
the table into sections that can be styled independently. The screenshot on the
left of Figure 9-6 shows the table with some simple styles added. Note how the
<tfoot> section is displayed at the bottom of the table, even though it comes
before either of the <tbody> sections. This is not the result of the CSS styles.
It’s the way the HTML works. You can verify this by turning off all the styles in
the browser (in Firefox, select View ➤ Page Style ➤ No Style). The <tfoot>
section is still at the bottom of the table, as shown in the screenshot on the
right of Figure 9-6.

Figure 9-6. The position of the table footer remains the same even when CSS is
disabled (right).

 Getting StartED with CSS

 332

How browsers lay out tables
That excursion into the lesser known table tags was necessary for two reasons:
as a prelude to the exercise at the end of the chapter, and more importantly,
to help you understand how browsers lay out tables and the effect this has on
the rendering of CSS. Browsers assemble tables in six stages, as follows:

1. Table

2. Column groups

3. Individual columns

4. Row groups

5. Individual rows

6. Individual cells

To see how styles are applied on top of each other in this six-stage process,
load table_06.html into a browser. All browsers, including IE6, implement the
same process, so you should see the same results as in Figure 9-7 whichever
browser you use.

Figure 9-7. Browsers build tables in stages, starting with the whole table, followed
by columns, rows, and cells.

333

Chapter 9: How Do I Style Tables?

The basic structure of all six tables in table_06.html looks like this (the same
structure is used for many of the subsequent examples in this chapter):

<table width="300">
 <colgroup span="1" />
 <colgroup>
 <col />
 <col />
 </colgroup>
 <caption>Description of table</caption>
 <tbody>
 <tr>
 <td>One</td>
 <td>Two</td>
 <td>Three</td>
 </tr>
 <tr>
 <td>Four</td>
 <td>Five</td>
 <td>Six</td>
 </tr>
 </tbody>
 <tbody>
 <tr>
 <td>Seven</td>
 <td>Eight</td>
 <td>Nine</td>
 </tr>
 <tr>
 <td>Ten</td>
 <td>Eleven</td>
 <td>Twelve</td>
 </tr>
 </tbody>
</table>

All six tables have a red background color. The first table has no other styles,
but in each successive table, a class has been added to one of the table
elements in the same order as the stages browsers use to build a table. So,
table 2 applies an orange background to the second column group, and table 3
applies a blue background to one column within that group. Because of the way
browsers apply styles, the orange background is painted over the red
background, and the blue background is painted over the orange.

In table 4, the green background applied to the second row group overwrites
the color of all columns in the bottom two rows. Table 5 shows how a style
applied to an individual row takes precedence over the row group.

Finally, in table 6, a class is applied to table cells 8 and 11 to restore the blue
background to the center column.

 Getting StartED with CSS

 334

AdvancED
If you keep this six-stage process in mind, it will help you understand why
a background or style is being applied in a particular way—or more often,
why a style isn’t working as expected. Even IE6 works this way, so you can
use this approach with confidence.

Styling tables with CSS
Styling the content that you put into table cells works exactly like everything
you have studied in previous chapters, but the CSS2.1 specification also has
five properties dedicated to controlling the structure of tables. These are listed
in Table 9-1. Also listed are three properties you have already met—overflow,
text-align, and vertical-align—which are frequently used with tables.

Table 9-1. CSS Table Properties

Property Initial Value Inherited Description

border-collapse separate Yes Controls the way borders are

handled. By default, the

table and each cell have

independent borders.

Borders are merged by

setting the value of this

property to collapse.

border-spacing 0 Yes Controls the spacing

between table cells in a

similar way to the HTML

cellspacing attribute.

Horizontal and vertical

spacing can be controlled

independently.

caption-side top Yes Determines whether the

table caption is displayed

above or below the table.

335

Chapter 9: How Do I Style Tables?

Property Initial Value Inherited Description

empty-cells show Yes If set to hide, turns off the

display of borders and

backgrounds associated

with empty table cells. If all

cells in a row are empty, the

entire row is removed from

the display when border-
collapse is set to collapse.

overflow visible No Controls what happens to

content that is too big to fit

into a table cell.

table-layout auto No Determines whether a table

automatically expands to

accommodate oversized

content. If set to fixed, the

width of each column is set

in the column definitions or

the first row.

text-align See description Yes Controls the horizontal

alignment of content in table

cells. In languages that are

written from left to right, the

default value is left.

vertical-align middle No Controls the vertical

alignment of content in table

cells.

The following sections describe how to use each of these properties.

Using CSS for table borders
The big difference between using CSS and the HTML border attribute to create
table borders is the much finer control offered by CSS. As explained at the
beginning of this chapter, the HTML border attribute adds borders to the table
itself and to the cells it contains. With CSS, you can control each border
independently, using the same border properties described in Chapter 5.

 Getting StartED with CSS

 336

The first implication of this is that applying a border to a table with CSS applies
it only to the table, and not to the table cells. It also means that you can use
any of the border styles supported by CSS2.1. The table style block in
table_07.html defines the border like this:

border: #000 double 10px;

This produces the result shown in Figure 9-8.

Figure 9-8. With CSS, you can use any border style for a table; the cells are not
affected.

In fact, you don’t need to declare a border or use the same style on every side,
as you can see in Figure 9-9.

Figure 9-9. Tables can have different style borders or none at all on each side.

The table in Figure 9-9 uses the following style rules (the code is in
table_08.html):

border-top: #000 double 10px;
border-bottom: #999 solid 5px;

Adding borders to table cells
Because adding a table border with CSS has no effect on the table cells, you
need to create a separate style for the cells. This also gives you the freedom to
choose a different color and/or style for the cell borders. The style rules in
table_09.html add a 1px solid red border to all table cells like this:

td {
 border: #F00 solid 1px;
}

337

Chapter 9: How Do I Style Tables?

As you can see in Figure 9-10, the border around each cell is separate from the
table border, and there is a small gap between each cell.

Figure 9-10. By default, there is a space between each cell border.

As you will see later in this chapter, this separation of borders can be used to
good effect. However, in most cases, you will want to eliminate it by using the
CSS equivalent of cellspacing. Doing so also opens up the possibility of
creating borders on columns and rows.

How do I stop border widths from being doubled?
By default, browsers insert a gap of about 2px between table cells. The normal
way to eliminate this gap in HTML is to set the table’s cellspacing attribute to
0. You can still use cellspacing with CSS, but it has a potentially undesirable
effect. To demonstrate what happens, table_10.html sets cellspacing to 0 and
adds a 5px red border to each table cell with the following style rule:

td {
 border: #F00 solid 5px;
}

Setting cellspacing to 0 removes the gap between the cells but leaves the
separate borders intact. As a result, you end up with borders twice as thick as
you probably intended.

To avoid this problem, use the CSS border-collapse property, and set its value
to collapse.

In table_11.html, I have removed cellspacing="0" from the opening <table>
tag and added border-collapse to the table style block like this:

table {
 margin: 20px auto;
 border: #000 solid 5px;
 border-collapse: collapse;
}

Figure 9-11 shows the difference between cellspacing and border-collapse.
The screenshot on the left shows table_10.html with cellspacing set to 0; the

 Getting StartED with CSS

 338

borders are doubled to 10px. The screenshot on the right shows table_11.html,
which uses border-collapse; the borders are merged to produce a 5px border
all round.

Figure 9-11. Even with cellspacing set to 0, the borders are doubled (left), whereas
border-collapse (right) produces the desired size.

Using border-collapse has another effect that you might not notice
immediately in Figure 9-11, because this book is printed in glorious black and
white. The black border around the table has disappeared, and has been
replaced by the 5px red border of the outer cells.

ExplainED
The order-collapse property follows strict rules to decide how to merge
adjacent borders. Most of the time, you don’t need to worry about the
details, because the basic principle is that only the wider border is
displayed. It’s when both borders are the same width that the rules come
into play. Both have the same style, so it boils down to a question of
deciding which color should prevail. As explained earlier in this chapter,
browsers lay out tables in six steps. The cells are laid out last, so that’s
the color used.

If you make the cell borders narrower than the table border, only the table
border shows. Try it out for yourself in table_11.html. Change the style rules
for the table cells to give them a 1px border like this (if you’re feeling lazy,
you can use table_12.html instead):

td {
 border:#F00 solid 1px;
}

339

Chapter 9: How Do I Style Tables?

The 5px black border around the table is restored, and the cells have a 1px red
border between them. However, there is no red border sandwiched between
the outer cells and table border. The outer edge of the outer cell borders has
merged with the table border, as shown in Figure 9-12.

Figure 9-12. The table border is wider, so it hides the outer borders of adjacent
cells.

LinkED
See www.w3.org/TR/CSS21/tables.html#border-conflict-resolution for
the full rules governing how borders are merged.

The border-collapse property accepts just two values, namely:

� collapse: This merges adjacent borders, as just demonstrated.

� separate: This is the default setting, which leaves a small gap
between table cells. To create a gap larger than the default, you need
to use another property: border-spacing, which is described shortly.

When used with cell borders, border-collapse is supported by IE6, so you can
safely use this technique on any table. All other modern browsers, including
IE8, offer full support for border-collapse, allowing you to set borders on
columns and rows.

 Getting StartED with CSS

 340

ExplainED
Don’t confuse border-collapse with the HTML rowspan and colspan
attributes that merge table cells. The border-collapse property affects
only the way borders are drawn around table elements. To merge table
cells, use the rowspan and colspan attributes in the normal way in your
HTML markup.

Adding borders to columns and rows
As long as border-collapse is set to collapse, you can define borders for table
columns and rows. There are three tables in table_13.html. The following style
rule creates a 1px red border on the columns in table1, on the table rows in
table2, and on the table row groups (<tbody>) in table3:

#table1 col, #table1 colgroup, #table2 tr, #table3 tbody {
 border: #F00 solid 1px;
}

The results are shown in Figure 9-13.

Figure 9-13. With border-collapse set to collapse, you can add borders to columns
and rows.

341

Chapter 9: How Do I Style Tables?

AdvancED
IE6 and IE7 don’t support borders on columns, column groups, rows, or row
groups. However, you can create borders on columns by adding a left
border to each table cell. Similarly, you can create borders on rows by
adding a bottom border to each table cell. In both cases, border-collapse
must be set to collapse.

Applying other styles to columns
As you have just seen, you can style columns if the border-collapse property
of the table is set to collapse. Columns are unusual in that they accept only
four styles, namely:

� background

� border

� width

� visibility

The only legal value for visibility is collapse. When visibility is set to
collapse, the browser should hide the column and reduce the width of the
table by the column’s width. However, at the time of this writing, IE8 is the
only browser that handles this correctly (see the notes after the exercise at the
end of this chapter).

ExplainED
This limited toolset for styling columns isn’t due to a lack of browser
support. It’s the way the CSS2.1 specification was drawn up. Many’s the
time I’ve cursed browsers for not rendering the padding or text-align
properties on columns until I realized they’re not meant to. Tables are
listed as low priority for CSS3, so the situation is unlikely to improve in
the foreseeable future.

It’s also important to remember that border-collapse must be set to
collapse for styles to be rendered on columns and column groups.

 Getting StartED with CSS

 342

What’s the CSS equivalent of cellspacing?
Although setting border-collapse to collapse removes the gap between table
cells, the CSS equivalent of cellspacing is a different property called border-
spacing. These two properties are mutually exclusive. If you want to control
the spacing between cells, border-collapse must be set to separate or omitted
altogether (it’s the default way of displaying tables).

ExplainED
When you think about it for a moment, it makes sense that you can’t use
border-collapse at the same time as border-spacing. You can’t add space
between cells and merge their borders at the same time.

If you set border-spacing to 0, you get the same effect as shown in the
screenshot on the left of Figure 9-11. The spacing between the cells is
eliminated, but the borders don’t merge.

Unlike cellspacing, which adds the same amount of space around all sides of
each cell, border-spacing lets you specify different values for horizontal and
vertical spacing. If you supply one value, it applies to both axes. However, if
you supply two values, the first is applied to horizontal spacing, and the second
to vertical spacing.

The table style rule in table_14.html looks like this:

table {
 margin: 20px auto;
 border: #000 solid 5px;
 border-spacing: 10px 20px;
}

In most browsers, this produces the result shown in Figure 9-14. The exceptions
are IE6 and IE7, which don’t support border-spacing at all. Also, Safari 4.0 and
Chrome 2.0 incorrectly add extra vertical spacing between the two <tbody>
sections.

343

Chapter 9: How Do I Style Tables?

Figure 9-14. With border-spacing, you can add different amounts of vertical and
horizontal space between cells.

Now you know how CSS deals with cellspacing, what about cellpadding?

What’s the CSS equivalent of cellpadding?
Er, there isn’t one. . .

Well, actually there is: it’s the padding property you have been using since
Chapter 6. Unlike cellpadding, this gives you complete control over the
amount of padding in every table cell, and you can have different amounts of
padding on each side of the content. You can create a single rule that applies
to all cells in the table, or separate rules using classes or ID selectors.
However, it’s important to remember that table rows are always as high as the
tallest cell; and columns normally expand to accommodate the widest cell. I
say “normally” because CSS lets you control column width, as you’ll see
shortly.

To demonstrate how padding works in table cells, the td style rule in
table_15.html applies a different amount of padding to each side like this:

padding: 2px 0 15px 20px;

However, the middle cell in the third row uses the following ID selector:

#eight {
 padding: 20px;
}

This adds 18px more padding to the top of the cell and 5px more at the bottom.
As Figure 9-15 shows, this increases the height of the entire row. The extra
height also affects the top padding in the cells on either side but does not
apply the same value as in the center cell.

 Getting StartED with CSS

 344

Figure 9-15. Different amounts of padding can be added to each side of a cell.

ExplainED
Controlling the height of table elements continues to be the holy grail of
many web developers. The simple fact of the matter is that it can’t be
done, at least not in a standards-compliant browser. Heights are always
calculated automatically and are controlled by the tallest element in a
table row.

Controlling the position of the table caption
To add a caption to a table, you place the caption text in a pair of <caption>
tags immediately after the opening <table> tag. By default, the caption
appears above the table, but you can move it underneath the table by setting
the caption-side property to bottom. Since the caption is an integral part of
the table, you can define the caption-side property in the style rule for the
table or in a separate rule for the caption itself.

According to the CSS2.1 specification, there are only two possible values for
caption-side, namely:

� bottom: Put the caption under the table.

� top: Put the caption above the table. This is the default value.

In CSS2, there were two other values: left and right. However, Firefox was
the only browser to offer support, so they were removed from the official
specification.

345

Chapter 9: How Do I Style Tables?

Support for caption-side was added to Internet Explorer in IE8. It’s not
supported in IE6 or IE7.

Since the caption is part of the table, it inherits its text color and width from
the table. You can style a caption like any other text element, giving it a color
and font properties of its own. Most browsers support giving a caption a margin
to distance it from the table. However, Safari and Chrome ignore margins on
captions, so the only reliable method is to use padding.

There are examples of caption-side in table_06.html and table_13.html (see
Figures 9-6 and 9-13).

Handling empty cells
The empty-cells property is supported by all browsers currently in widespread
use, except IE6 and IE7. It accepts the following values:

� hide: Prevent the display of an empty cell’s borders and backgrounds.

� show: Draw borders and backgrounds on every cell, even if it contains
no content. This is the default setting.

An empty cell is defined as a cell that contains absolutely nothing or one that
has the visibility property set to hidden. However, setting the visibility
property of a cell to hidden also prevents the display of its borders and
background, even when the empty-cells property is set to show.

ExplainED
Many HTML editors, such as Dreamweaver, automatically insert the HTML
entity for a nonbreaking space () into empty table cells. CSS regards
this as content, even though nothing appears in the cell when viewed in a
browser. For a cell to be treated as empty it must not contain anything
other than new lines and whitespace between the opening and closing <td>
or <th> tags.

The empty-cells property is inherited, so you can apply it to the whole table.
However, if you want to affect only a certain part of a table, you can apply it
to table row groups, table rows, or individual cells.

Figure 9-16 and table_16.html show how the empty-cells property works. In all
four tables, the second row contains only empty cells, while the visibility
property of the middle cell in the third row has been set to hidden.

 Getting StartED with CSS

 346

Figure 9-16. The use of cell borders affects the way browsers treat empty cells.

Although browsers should hide a complete row of empty cells, at the time of
this writing, all browsers that support the empty-cells property leave a small
gap for the empty row, except when border-collapse is set to collapse and
the cells have no borders (see the bottom-right table in Figure 9-16).

Figure 9-17 shows a practical example of using empty-cells and border-spacing
to display the color keywords supported by CSS. Only 17 keywords are officially
supported, so it’s necessary to hide the last three cells of the bottom row—a
trivial task with empty-cells set to hide. You can examine the code in
color_names.html in the download files for this chapter.

Figure 9-17. Imaginative use of a table and CSS styles produce a clean-looking chart.

347

Chapter 9: How Do I Style Tables?

How can I control the width of my table?
At times, I get the feeling that whoever drew up the HTML specification for
tables must have had a cruel sense of humor. HTML allows you to specify the
width attribute on tables, columns, and individual table cells. At the beginning,
it seems to work, but as soon as you insert oversized content, the browser
obligingly makes room and ignores the specified width. It makes herding cats
seem like child’s play.

CSS rides to the rescue with the table-layout property, which is supported by
all current browsers, including IE6. The property accepts the following values:

� auto: This is the default way tables behave, expanding columns and
the overall table width to accommodate the widest element in each
column.

� fixed: The width of each column is fixed by the width attribute
specified in its <col> tag. If no width is specified there, the width is
taken from the size of each column in the first table row.

The table-layout property is not inherited, so you can also use the inherit
keyword for nested tables. However, nested tables are rarely used when
displaying data.

To demonstrate how table-layout works, the download files for this chapter
contain a series of four pages that display two oversized images in a 300-pixel-
wide table. The basic HTML structure in each page looks like this:

<table>
 <colgroup>
 <col width="25%" />
 <col width="75%" />
 </colgroup>
 <tr>
 <td width="50%">Angel's Window</td>
 <td width="50%"><img src="../images/angels_window.jpg"
 width="350" height="249" alt="Angel's window" /></td>
 </tr>
 <tr>
 <td>Kaibab National Forest</td>
 <td><img src="../images/forest_grassland.jpg" width="325"
 height="208" alt="Kaibab National Forest" /></td>
 </tr>
</table>

The first page, table-layout_01.html, uses the default value for table-layout,
auto. The style rules in the page look like this:

 Getting StartED with CSS

 348

table {
 table-layout: auto;
 border: solid #000 5px;
 border-spacing: 0;
 width: 300px;
}
td {
 padding: 5px;
}

As you can see in Figure 9-18, the table ignores all the width specifications and
expands to accommodate the content. The table ends up about 425px wide,
and the border is drawn around the outside edge.

Figure 9-18. By default, tables ignore declared widths and adjust to fit the content.

Figure 9-19 shows what happens when you change the value of table-layout to
fixed (the code is in table-layout_02.html). The table is drawn to the correct
width (300px), and the two columns are correctly proportioned (25%:75%), as
specified in the <col> tags. The 50% widths in the <td> tags are ignored—as they
should be, because only the first declared widths are valid with a fixed table
layout. What might come as a surprise is that the oversized content spills out
of the table.

349

Chapter 9: How Do I Style Tables?

Figure 9-19. With a fixed layout, the table widths are honored, but oversized
content spills out.

To prevent the overspill, you need to add the overflow property. If you set
overflow to hidden, you can add it either to the table style block or to the td
one. This cuts off any oversized content, as shown on the left of Figure 9-20
and in table-layout_03.html. In theory, to generate a scrollbar for oversized
content, add the overflow property to the td style block and set its value to
auto, as in table-layout_04.html. However, at the time of this writing, the
only browser that produces the result shown on the right in Figure 9-20 is IE8.
Some browsers let the content spill out in the same way as in Figure 9-19,
while others put both horizontal and vertical scrollbars on the images.

 Getting StartED with CSS

 350

Figure 9-20. You can hide the overflow (left) or add scrollbars to make it accessible
(right).

How do I create scrolling table cells that work in
all browsers?
If you test table-layout_04.html in a variety of browsers, you’ll soon discover
that setting the value of overflow to auto usually doesn’t have the desired
effect on table cells. Even in IE8, it affects only content that is too wide.
Setting a height on a table cell or table row is meaningless if the content is too
big to fit. So, what’s the secret of creating a scrollable table cell?

The answer is to use a <div> inside the cell, give it a fixed width (and height, if
desired), and set the overflow property of the <div> to auto. In other words,
it’s the content of the table cell that needs to be scrollable, rather than the
table cell itself.

351

Chapter 9: How Do I Style Tables?

ExplainED
Tables don’t conform to the CSS box model: the border is always added
inside the table, and not outside. When table-layout is set to the default
auto or omitted, this doesn’t really matter, because the table
automatically expands to accommodate the content. However, it makes a
big difference when table-layout is set to fixed. The overall width of a
300px wide table with a 5px border all round remains 300px, and not 310px.
This affects the calculation of the size of the <div> required for a scrolling
table cell.

The images in table-layout_05.html have each been wrapped in a <div>, to
which the following class has been assigned:

.scrollable {
 width: 203px;
 overflow: auto;
}

The width of the <div> was calculated by deducting 30px from the overall
width of 300px and multiplying the remainder by 75%. The 30px consists of the
left and right borders (5px each) and the 5px padding on each side of each
table cell. If you test table-layout_05.html in a range of browsers, you’ll see
that it works reliably, even in IE6 and IE7. The only problem with the older
versions of Internet Explorer is that they spawn both vertical and horizontal
scrollbars. Everyone else gets just horizontal scrollbars.

How do I control the position of content in table
cells?
The CSS equivalents of the HTML align and valign attributes are properties
that you first met in Chapter 2. To control the horizontal position of content in
a table cell, use text-align. Vertical alignment is controlled by the vertical-
align property.

When used with table cells, the text-align property takes the same values as
with text, namely: left, center, right, and justify. The values work exactly
the same way, so no further explanation is necessary.

 Getting StartED with CSS

 352

The vertical-align property has many values, but only the following four work
with tables:

� top: Align the content with the top of the cell.

� middle: Center the content vertically within the cell. This is the
default value.

� bottom: Align the bottom of the content with the bottom of the cell.

� baseline: Align the first line of content with the baseline of the tallest
similarly aligned content in the same row.

The meaning of baseline should become clear from Figure 9-21 (the code is in
table_17.html). The fourth and fifth columns both have vertical-align set to
baseline. Since the text in the fifth column is taller, the baseline of the first
line of text in the fourth column is aligned with the baseline of the first line of
text in the fifth column. The baseline value affects only the first line of
content in a cell, and is determined independently for each row.

Figure 9-21. Table cells can be vertically aligned at the top, middle, bottom, and
baseline of the current row.

That covers the theoretical side of styling tables with CSS. To end this chapter,
let’s put that knowledge to practical use by styling a data table.

Styling a weather chart

This exercise uses most of the CSS table properties described in this chapter to
convert an uninspiring weather chart into something much more attractive. The
start and finish versions are in the download files.

1. Copy weather_start.html from the download files for this chapter to
your work folder, and rename it as weather.html.

353

Chapter 9: How Do I Style Tables?

2. Load weather.html into a browser to assess the task ahead. The page
should look like Figure 9-22. It’s a monthly summary of the average
weather in London and South East England, and as drab as the weather
itself.

Figure 9-22. This unstyled table of weather data is desperately in need of a touch of
style.

3. Let’s start the transformation by giving the table a width and center
it. Also give it a 1px border, a smart font, and move the caption to the
bottom of the table. Create the following style block in the <head> of
the page:

<style type="text/css">
table {
 width: 600px;
 margin: 0 auto;
 border: #002F2F 1px solid;
 font-family: Tahoma, Geneva, sans-serif;
 caption-side: bottom;
}
</style>

 Getting StartED with CSS

 354

4. Next, smarten up the caption by creating a new style rule immediately
after the one you added in the previous step:

caption {
 font-size: 18px;
 font-weight: bold;
 font-variant: small-caps;
 padding: 10px;
}

I have added 10px of padding all around the caption to move it away
from the bottom edge of the table. I chose padding because Safari and
Chrome ignore margins on captions.

5. With data tables, it’s usual to center the data in each column by
setting the text-align property to center. However, the numbers in
each column are of varying lengths, so centering gives them a ragged
appearance. Instead, I’m going to align the columns to the right, and
use padding to reposition the figures. Add the following style rule to
the page:

td {
 text-align: right;
 padding: 3px 30px 3px 3px;
 border-bottom: 1px solid #002F2F;
}

This adds 3px of padding to all sides of each table cell, except the
right, which gets 30px. I have also added a 1px border to the bottom
of each cell.

6. Save weather.html, and check it in a browser. It should look similar to
Figure 9-23.

355

Chapter 9: How Do I Style Tables?

Figure 9-23. The table is beginning to take shape.

There are several points to note:

� There are gaps between the columns in the bottom borders.
There’s also a double border at the bottom. This can be fixed
by setting border-collapse to collapse.

� There are no borders under the headings in the top row or
under the months. This is because they use <th> tags, rather
than <td>. If you wanted to add borders, you would need to
create a group selector for both tags (td, th). However, on
this occasion, I don’t want a border, because I’m going to style
the headings differently. Choosing different tags not only
makes more structural sense; it makes styling easier.

� The columns are of varying widths. You can fix that by using
the table-layout property.

7. Amend the table style block like this:

table {
 width: 600px;
 margin: 0 auto;

 Getting StartED with CSS

 356

 border: #002F2F 1px solid;
 font-family: Tahoma, Geneva, sans-serif;
 caption-side: bottom;
 border-collapse: collapse;
 table-layout: fixed;
}

8. Although you could set the size of the columns by adding the width
property to the <th> tags in the first row, defining the columns with
<colgroup> and <col> tags opens up the possibility of styling the
columns with a background color. So, add the following column
definitions at the top of the table between the <caption> and the first
table row:

<caption>Average weather in London and South East England</caption>
<colgroup>
 <col class="labelcol" />
 <col class="oddcol" />
 <col class="evencol" />
 <col class="oddcol" />
 <col class="evencol" />
</colgroup>
<tr>

This defines the five columns, assigning a class to each one. The first
one will be used to style the month labels, and the others will set
alternating background colors for odd and even columns.

9. To identify the table row that contains the top row of headings, you
need to assign it a class. Amend the opening tag of the first table row
like this:

</colgroup>
<tr class="headrow">
 <th> </th>

I used a class rather than an ID in case you want to put more than one
table on the same page.

10. Now, create the three classes for the columns by adding the following
style rules to the <head> of the page:

.labelcol {
 background-color: #046380;
}
.oddcol {
 background-color: #E6E2AF;
 width: 23%;
}
.evencol {

357

Chapter 9: How Do I Style Tables?

 background-color: #EFECCA;
 width: 23%;
}

This adds a deep teal background color to the label column, and two
shades of beige to the other columns. The oddcol and evencol classes
also set the width of the columns to 23%. This leaves 8% for the
labelcol class. However, there’s no need to add a width for the first
column, because the browser will work it out automatically.

AdvancED
I’m not being lazy by not defining the width as 8%. Rounding errors with
percentage values make it unwise to specify widths that add up to exactly
100%. I have mentioned this before, but it’s worth repeating, because it’s
such an easy trap to fall into. The fact that the numbers all add up makes
it difficult to identify the problem if your design doesn’t work as
expected.

11. The top row of headings needs the same background color as the
month labels. They also needed centering and aligning to the top of
each cell. Add the following style block:

.headrow th {
 background-color: #046380;
 text-align: center;
 vertical-align: top;
 font-variant: small-caps;
}

This uses a descendant selector, so the styles affect only the <th>
cells in the row with the headrow class. The other <th> cells in the
month of column labels are not affected.

12. To complete the styling of the <th> tags, add the following style rule:

th {
 color: #EFECCA;
 padding: 3px 10px;
 text-align: right;
}

This sets the text color of all <th> tags to the same light beige as the
background of the evencol class. It also sets the padding for all
headings. But what about that text-align? This affects only the <th>

 Getting StartED with CSS

 358

tags in the month labels, because the .headrow th descendant
selector created in the previous step has higher specificity. So, the
headings in the top row remain centered, while the remaining <th>
tags are aligned right.

13. Save the page, and view it in a browser. The uninspiring table you
started with should now look much smarter, as shown in Figure 9-24.

Figure 9-24. The table now looks much more visually attractive.

14. To make the table more attractive and user friendly, let’s highlight
each row as the cursor passes over it. The :hover pseudo-class can be
applied to any element, not just a link. Well, as you might expect, IE6
won’t play ball, but it has been perfectly well behaved in styling this
table up to now, so I’m not going to worry about it. Add the following
styles:

tr:hover {
 background-color: #FFF;
}
tr:hover th {
 background-color: #008080;
}

359

Chapter 9: How Do I Style Tables?

The first of these rules sets the background color to white on the
whole row, while the second rule affects only the <th> cell of the
current row, setting its background color to teal.

15. Save the page, and test it again in any modern browser. As you move
your cursor over the table, the current row should be highlighted, as
shown in Figure 9-25.

Figure 9-25. The :hover pseudo-class highlights the table row when the cursor passes
over it.

IE6 supports :hover only on links. Since highlighting the current row is
merely an enhancement, you can ignore IE6. The table remains
perfectly usable without the highlighting.

16. There’s just one minor problem: the top row of <th> tags is also
highlighted when the cursor passes over it. You can fix this by
grouping a new descendant selector with the .headrow th style rule
like this:

.headrow th, .headrow:hover th {
 background-color: #046380;
 text-align: center;
 vertical-align: top;
 font-variant: small-caps;
}

This makes sure the same style rules are always applied to the <th>
tags in the top row.

You can check your code, if necessary, against weather_finish.html in
the download files for this chapter.

As you can see in Figure 9-24, the padding on the right of the <td> cells centers
the minimum and maximum temperature columns, but the data in the sun and
rain columns is further to the right. One way of dealing with this would be to
make the last two columns narrower. You could also increase the right padding
in these two columns. However, remember that you can apply only four
properties to columns: background, border, width, and visibility. So, the only
way to change the padding on the columns would be to apply a class to each
individual cell. My personal feeling is that centering the data is less important
than aligning the decimal points. However, the choice is yours.

 Getting StartED with CSS

 360

ExplainED
The new selector added in the final step of the preceding exercise applies
the :hover pseudo-class to the headrow class, and not to the descendant th
selector. This is because the style rules in step 14 apply the highlighting
not just to the cell the cursor is currently over, but to the whole table
row. Only one cell is affected if you apply :hover to the th selector like
this: .headrow th:hover.

It might seem strange combining a class with a pseudo-class like this.
However, it should be easier to understand if you prefix the headrow class
with the table row selector like this: tr.headrow:hover th. This applies to
<th> tags in a table row styled with the headrow class when the cursor is
over the row.

One final test that you might like to make with this table is to set the
visibility of some columns to collapse. According to the CSS2.1
specification, browsers should hide the affected columns and reduce the
overall width of the table by the same amount. In
weather_col_visibility.html, the evencol class has been amended like this:

.evencol {
 background-color: #EFECCA;
 width: 23%;
 visibility: collapse;
}

At the time of this writing, IE8 is the only major browser that gets it right, as
shown in Figure 9-26.

361

Chapter 9: How Do I Style Tables?

Figure 9-26. IE8 correctly hides columns when visibility is set to collapse.

Firefox 3.5 manages to hide the columns but fails to reduce the width of the
table, leaving the borders, as shown in Figure 9-27.

Figure 9-27. Firefox 3.5 hides the columns but doesn’t reduce the width of the
table.

 Getting StartED with CSS

 362

Safari 4.0, Opera 10, and Chrome 2.0 fail to hide the collapsed columns and
display the page exactly the same as Figure 9-24.

Chapter review
CSS offers many advantages when it comes to styling tables. The border-
collapse and border-spacing properties are a great improvement on
cellspacing, not only giving you control over the horizontal and vertical
spacing between table cells but also improving the look of adjacent borders.
Although there isn’t a direct equivalent of cellpadding, table cells handle
padding in the same way as the CSS box model, giving you the freedom to
adjust it independently on each side of a cell and even use different settings in
selected cells. Other advantages include the freedom to style all of a table’s
internal and external borders independently using any of the border styles
supported by CSS2.1, and to hide empty cells.

By using advanced HTML elements, such as <colgroup>, <col>, and <tbody>,
you can style tables efficiently without the need to apply classes to individual
cells. Setting table-layout to fixed also gives you precise control over the
width of columns. However, it’s important to remember that tables do not
conform to the CSS box model: borders and padding are not added to the
overall width of a table, so this needs to be taken into account when
calculating how wide each column should be when using a fixed table layout.
Although IE8 handles the overflow property on table cells successfully, in order
to create a scrollable table cell you need to use a fixed-width <div> inside
table cells and apply the overflow property to the <div> for cross-browser
compatibility.

What’s disappointing about CSS support for tables is the fact that columns
support only four properties: background, border, width, and visibility. It
would make life a lot easier if all properties could be applied to columns.
However, tables are a low priority for the W3C, so such support is unlikely in
the near future.

In the next chapter, I’ll delve into the mysteries of CSS positioning. In the early
days of CSS, many developers thought it was the answer to all their problems
and would replace tables for layout. That enthusiasm quickly evaporated once
they realized that positioning often creates more problems than it solves. The
next chapter will try to help you avoid those problems.

363

Chapter 10
How Do I Position Elements
Precisely on the Page?
If you have just picked up this book and come straight to this chapter to learn
how to position elements on a page, I urge you to stop right now. Go back and
learn first about margins, padding, and floats. They’re the really useful tools
for CSS layout. This chapter is devoted to CSS positioning (sometimes referred
to as CSS-P) using the position property. The basic concept is fairly simple—it
allows you to specify the position of an element with great precision. It’s such
an attractive proposition that many beginners are seduced by the idea and use
it to build complex layouts, only to discover that things aren’t quite as
straightforward as they originally seemed.

CSS positioning became all the rage because it was one aspect of CSS that most
browsers handled predictably almost from the start. Its popularity was boosted
by Dreamweaver, which made it possible to draw positioned elements on a
page, reposition, and resize them in much the same way as in a desktop
publishing program. Unfortunately, designs built this way have a tendency to
fall apart when text size is increased or positioned elements are mixed with
nonpositioned ones. Centering content is also more difficult.

Don’t let these issues put you off. Understanding CSS positioning is an
important part of your CSS toolbox, and it allows you to create sophisticated
effects, such as text disappearing behind a static image as you scroll the page,
and elements that overlap one another.

 Getting StartED with CSS

 364

In this chapter, you’ll learn how to do the following:

� Fix the position of a navigation menu so that it stays onscreen all the
time

� Position elements accurately against a background image

� Overlap elements and change their stacking order

� Crop an image nondestructively

Before diving into the details, it’s important to understand the different types
of positioning defined in CSS.

How does CSS positioning work?
Normally, browsers display HTML elements in the same order as they appear in
a page’s underlying markup, using margins, padding, and the float property to
adjust the position of each element in relation to its neighbors. Although the
float property takes the floated element out of the normal flow of the
document, its position is still controlled by where it appears in the markup.
The floated element moves to one side or the other, and the immediately
following elements move up to fill the vacated space. You can’t arbitrarily
float an image alongside text that’s in a completely different part of the page.

CSS positioning takes a different approach by allowing you to remove an
element from the flow of the document and place it wherever you want on the
page. Before you get too excited by this prospect, there’s a catch—and a pretty
serious one at that. Once an element has been removed from the flow, it
ceases to interact with other elements on the page. So, you can’t use CSS
positioning to move an image to a different part of the page and then flow the
text in that part of the page around it. Positioning is best used sparingly for
special effects.

Another feature of CSS positioning is that it introduces a third dimension.
Unfortunately, this doesn’t mean that you can create 3D effects with CSS, but
you can make elements overlap and control the order in which they appear on
top of each other. This can be useful when you want an image to overlap text,
appear in a margin, or overlap a border, something that’s impossible with a
background image. You can also overlap images without needing to create a
composite image in a graphics program. Table 10-1 lists the CSS properties that
make all this possible.

365

Chapter 10: How Do I Position Elements Precisely on the Page?

Table 10-1. Properties Used for CSS Positioning

Property

Initial
Value

Inherited

Description

position static No Controls how an element is positioned.

When the value of this property is set to

absolute or fixed, the element is removed

completely from the normal flow of the

document. When set to relative, the

element is moved relative to its position in

the normal flow, but a space is left where it

would normally have been. The default

value, static, means the element remains in

the normal flow and is not positioned.

bottom auto No Specifies the offset of the bottom margin

edge of a positioned element from the

bottom of its containing block. A positive

value moves the positioned element up; a

negative value moves it down.

left auto No Specifies the offset of the left margin edge

of a positioned element from the left of its

containing block. A positive value moves the

positioned element to the right; a negative

value moves it to the left.

right auto No Specifies the offset of the right margin edge

of a positioned element from the right of its

containing block. A positive value moves the

positioned element to the left; a negative

value moves it to the right.

top auto No Specifies the offset of the top margin edge

of a positioned element from the top of its

containing block. A positive value moves the

positioned element down; a negative value

moves it up.

z-index auto No Specifies an integer to indicate the stacking

level of a positioned element. Elements with

a higher z-index number can overlap other

elements in the same stacking context.

clip auto No Defines the area of an absolutely positioned

element that remains visible. Performs a

similar function to the crop tool in a

graphical editor, but in a nondestructive

way.

 Getting StartED with CSS

 366

To use any of the properties in Table 10-1, the style rule must include the
position property, which determines how the element is to be treated.

Understanding the different types of positioning
The position property requires one of the following values:

� absolute: Remove the element, including any child elements,
completely from the flow of the document, and position it at the
offsets defined in the same style rule. If the element is nested inside
another positioned element, the offsets are calculated with reference
to the positioned parent. Otherwise, the offsets are calculated with
reference to the page.

� fixed: This works similar to absolute, but the offsets are always
calculated with reference to the browser viewport.

� relative: Move the element relative to its normal position in the
document flow, but without affecting the position of other elements.

� static: Leave the element in the normal document flow.

The position property is not inherited, so you can use the inherit keyword if
you want a child element to inherit the same type of positioning as its parent.

Most of the time, you can forget about static. This is the default way that
browsers display HTML. The only time you might need it is if you want to
override another style rule to make an element act like normal HTML. For
example, in a print style sheet that inherits styles from a screen style sheet,
it’s normal to reset position to static for positioned elements to ensure they
print out correctly (print style sheets are covered in Chapter 12).

ExplainED
For an element to be considered positioned, its position property must be
set to absolute, fixed, or relative. An element that has its position
property set to static is not considered to be positioned.

The best way to understand how the different types of positioning work is to
see them in action. The following sections describe each type of positioning in
more detail, together with examples.

367

Chapter 10: How Do I Position Elements Precisely on the Page?

Fixing elements inside the browser
window
Most discussions of CSS positioning begin with absolute positioning. However,
I’m going to start with fixed positioning, mainly because it’s easier to
understand.

How do I keep my navigation onscreen all the
time?
In the late 1990s, frames became a very popular way to build website. As you
probably know, frames let you display multiple web pages simultaneously in
the same browser window. One of the great attractions of doing so is the
ability to keep a navigation menu on the page all the time, even when you
scroll through the main content. However, frames have fallen out of favor for a
number of reasons, including problems of accessibility, the inability to
bookmark pages, and the fact that flyout menus cannot be displayed outside
their containing frame.

CSS fixed positioning simulates frames, while avoiding most of the associated
problems. Although fixed positioning presents problems of its own, what has
really held back its widespread use is lack of support in IE6. Now that IE6 is no
longer the dominant browser, fixed positioning is likely to find its way
increasingly into website design. With a little planning, you can also ensure
designs that use fixed positioning look acceptable in IE6.

When you add the position property to an element’s style rules and set it to
fixed, the browser floats the element on an independent layer in front of the
static content. The top, right, bottom, and left offsets tell the browser where
to position the floating layer in relation to the browser window. Any offset that
isn’t explicitly declared is set to auto. What this means is that, if you don’t set
a right or left offset, the element remains in the same position horizontally as
it would be normally. How this works in practice is best seen through an
example. So, roll up your sleeves and start experimenting with CSS positioning.

Creating a fixed header and menu

This exercise adapts the page used as a case study in earlier chapters, and
makes the banner heading and horizontal navigation menu remain onscreen
while the rest of the page is scrolled. The page and style sheet are in the
download files for this chapter.

 Getting StartED with CSS

 368

1. Open journey_fixed_start.html in the download files for this
chapter, and save it in your work files as journey_fixed.html.

2. Open journey_fixed_start.css in the css subfolder of the download
files for this chapter, and save it in your work files as
journey_fixed.css.

3. Change the <link> in the <head> of journey_fixed.html so it points to
the style sheet you have just saved. It should look like this:

<link href="css/journey_fixed.css" rel="stylesheet" type="text/css" />

4. Load journey_fixed.html into a browser, and check that the page
displays correctly. It should look like Figure 10-1.

Figure 10-1. The banner heading and navigation menu are ideal candidates for fixed
positioning.

If the images fail to appear, check that the path names are correct.
Everything should look fine as long as your work files are at the same
level in the site as the ch10 folder.

5. Converting the banner heading and the navigation menu to fixed-
position elements is simple. The first stage is to add the position
property to their style rules, and set the value to fixed. Change the

369

Chapter 10: How Do I Position Elements Precisely on the Page?

#header style block like this (it’s around line 19 of journey_
fixed.css):

#header {
 height: 176px;
 background-image: url(../../images/journey_header.jpg);
 background-repeat: no-repeat;
 position: fixed;
}

6. Do the same to the #nav style block (it’s much further down, around
line 174):

#nav {
 list-style-type: none;
 margin: 0;
 padding: 0;
 height: 2.5em;
 position: fixed;
}

7. Save the style sheet, and reload journey_fixed.html in the browser.
Don’t panic if the top of the page looks like Figure 10-2. That’s how it
should be.

Figure 10-2. The banner heading has disappeared, and the top of the sidebar and
main content is hidden behind the menu.

ExplainED
The screenshot in Figure 10-2 was taken in a browser window 1024px wide.
If the window size is narrower, the last item(s) in the navigation menu will
drop below the first row. The reason is explained in “Understanding the
limitations of fixed positioning” later in this chapter. If possible, view the
page at 1024px or wider for the time being.

 Getting StartED with CSS

 370

As I explained earlier, absolutely positioned and fixed elements are
removed from the normal flow of the document and have no
interaction with nonpositioned elements. The banner heading has
disappeared because it’s a background image, and the <div> has no
width. Consequently, the <div> collapses to nothing. The top of the
sidebar and main content have disappeared behind the navigation
menu because the menu now floats on an independent layer above the
nonpositioned content.

8. To ensure the banner heading is displayed, you need to give the
#header style block the same width as the wrapper <div>. Change the
#header style block like this:

#header {
 height: 176px;
 width: 940px;
 background-image: url(../../images/journey_header.jpg);
 background-repeat: no-repeat;
 position: fixed;
}

This brings the banner heading back into view, but you need to adjust
the top offset of the navigation menu so that it is positioned below
the header. The header image is 176px high, so that’s the offset you
need. Amend the #nav style block like this:

#nav {
 list-style-type: none;
 margin: 0;
 padding: 0;
 height: 2.5em;
 position: fixed;
 top: 176px;
}

The header and navigation menu are now in the right positions, but
the nonpositioned content is still hidden.

9. You need to push the remaining content down the page, so that it’s
visible. As you should know from earlier chapters, you move block-
level elements by adjusting their margins and/or padding. So, which
should you use? Padding is the safer choice; but to understand why,
try adding a top margin to the #mainContent style block like this:

#mainContent {
 border-left: #D8D0AC solid 1px;
 margin: 215px 0 0 220px;
}

371

Chapter 10: How Do I Position Elements Precisely on the Page?

10. Save the style sheet, and reload the page in a browser. It should now
look like Figure 10-3.

Figure 10-3. Adding a top margin to the nonpositioned content affects the position
of the header.

ExplainED
What has happened is that the top margin on the main content has pushed
the nonpositioned content down by the desired amount, but as you learned
in earlier chapters, adjacent vertical margins collapse. Because both the
header and the navigation menu use fixed positioning, they have been
removed from the normal flow of the document, leaving nothing between
the main content and the wrapper. So, both the wrapper and the main
content are moved down by 215px. Margins are transparent, so the
background color of the body shows through.

But why has the header moved? Surely it’s meant to be in a fixed position?
It is, but no offsets have been defined in the #header style block. When no
offset is specified, the element appears where it normally would. Earlier,
it appeared at the top of the page because it’s the first item in the
wrapper, and there was no gap between the wrapper and the top of the
page. However, now that the wrapper has been pushed down 215px, the
header goes too.

 Getting StartED with CSS

 372

11. To make sure the header stays where you want it at the top of the
page, add a top offset to the #header style block, and set its value to
0 like this:

#header {
 height: 176px;
 width: 940px;
 background-image: url(../../images/journey_header.jpg);
 background-repeat: no-repeat;
 position: fixed;
 top: 0;
}

This fixes the problem. However, browsers can be unpredictable in the
way they display things, particularly when measured in ems. The
height of the header image is 176px, but the navigation menu is 2.5em.
Because ems are proportional to the font size, the 215px added to the
top margin of the main content in step 9 is only a guesstimate of how
far it needs to be moved down. If it turns out to be too much, you’ll
see a strip of the olive background between the bottom of the
navigation menu and the top of the main content. However, padding
preserves backgrounds, so it’s safer to use padding when moving
content that you want to appear alongside a fixed position element.

12. Change the top margin in the #mainContent style block to 0, and add
215px of top padding like this:

#mainContent {
 border-left: #D8D0AC solid 1px;
 margin: 0 0 0 220px;
 padding-top: 215px;
}

13. You need to add the same amount of padding to the top of the
sidebar, too. It wasn’t necessary when you used a top margin on the
main content, because the whole wrapper moved down; but padding
leaves the wrapper at the top of the page. Amend the #sidebar rule
like this:

#sidebar {
 width: 219px;
 float: left;
 padding-top: 215px;
}

14. Save the style sheet, and reload the page in a browser. It should now
look the same as it did at the beginning of this exercise. However,
you’ll notice a big difference when you scroll the main content. As

373

Chapter 10: How Do I Position Elements Precisely on the Page?

long as you’re not using IE6, the header and navigation menu should
stay put while the rest of the page scrolls, as shown in Figure 10-4.

Figure 10-4. The header banner and navigation menu now remain onscreen while the
rest of the page scrolls.

You can check your code, if necessary, with journey_fixed_
finished.html and css/journey_fixed_finished.css in the download
files for this chapter.

AdvancED
IE6 doesn’t support fixed positioning, but it does support absolute
positioning, which is described shortly. To ensure your pages display
correctly in IE6, create separate style rules in an Internet Explorer
conditional comment to override any fixed position styles, and set them to
absolute. The elements will be displayed correctly but scroll with the rest
of the page. Elements intended to be displayed at the bottom of the
browser window will normally be displayed at the bottom of the page.

Hopefully, that hands-on experience has shown you how easy it is to create a
page heading and navigation bar that remain onscreen while the rest of the

 Getting StartED with CSS

 374

page is being scrolled. If you found the explanation of the padding and margin
difficult to understand, review the explanations in Chapters 6 through 8.
Getting your head around the complexities of collapsing margins takes some
time, but it’s crucial to working successfully with CSS.

Fixed positioning is relatively easy to implement, and one of its advantages
over frames is that flyout menus don’t disappear behind another page.
However, fixed positioning is not without its drawbacks. So, before you start
using it in all your pages, you need to assess how well it will work.

Understanding the limitations of fixed
positioning
The most serious limitation of CSS positioning is also one of its greatest
strengths: positioned elements exist on independent layers in front of
nonpositioned content. That’s why the main content in the page you have just
been working with in the previous exercise scrolls up behind the header image
and navigation menu. However, try resizing the browser window. At 800 × 600,
the page looks like Figure 10-5.

Figure 10-5. The navigation menu breaks up when the browser window is made
smaller.

375

Chapter 10: How Do I Position Elements Precisely on the Page?

If you try the same with journey_fixed_start.html, you’ll see that the
navigation menu doesn’t break up. This is because the menu is inside the
wrapper <div>, which is 940px wide. The width of the <div> forces the browser
to generate a horizontal scrollbar, leaving sufficient room for the navigation
menu to display. However, once you give the navigation menu a fixed position,
it’s no longer inside the wrapper <div>, so the floated elements in the menu
are forced down the page.

ExplainED
Using CSS positioning doesn’t affect the underlying HTML markup. The
actual HTML tags for the navigation bar remain inside the wrapper <div>,
but the browser treats them as though they are completely separate.

So, what happens if you give the #nav style block a fixed width like this?

#nav {
 list-style-type: none;
 margin: 0;
 padding: 0;
 height: 2.5em;
 position: fixed;
 top: 176px;
 width: 940px;
}

You can see for yourself by testing journey_fixed_width.html. As Figure 10-6
shows, the fixed position elements remain in their fixed position, even when
you move the horizontal scrollbar as far right as possible. The final menu item
remains totally inaccessible until you widen the browser window. Fixed really
does mean fixed.

 Getting StartED with CSS

 376

Figure 10-6. The fixed items do not move in the browser window, even when you
scroll to the right.

The same problem arises if you put a vertical menu—or, indeed, any other
content—in a fixed position. If the item is too tall for a visitor’s browser,
vertical scrolling will do nothing to reveal the hidden material. The situation is
compounded if the visitor increases the text size. The bigger the text, the
more of it is hidden.

Another important consideration is the amount of screen real estate being
taken up by fixed elements. As you can see in Figure 10-6, the fixed elements
take up the top 40% of the browser window. Even at 1024 × 768 (see Figure 10-
4), the header and navigation menu hog a lot of space. For a website to be
deployed on the Web, it might be better to use a less chunky navigation bar,
place it above the banner image, and make only the navigation bar fixed.
Alternatively, you could put a vertical navigation bar in the sidebar, and make
it fixed. Either way, you would still need to ensure the navigation remains
accessible in a small browser window.

To fix an element at the bottom of the browser window, set the bottom offset
to 0. Nonpositioned content will scroll behind it in exactly the same way as in

377

Chapter 10: How Do I Position Elements Precisely on the Page?

the preceding exercise. However, you need to ensure there’s sufficient padding
on the bottom of the nonpositioned content for all of it to scroll into view.

The key is to test, test, and test again. Cool effects, such as fixed navigation
bars, are great, but they’re no good if they impede access to your site’s
content.

Using relative positioning to nudge
elements
Relative positioning moves an element and leaves a hole where it would
normally have been, without affecting any nonpositioned elements. Figure 10-7
illustrates the basic principle.

Figure 10-7. Relative positioning moves an element without affecting the position of
surrounding elements.

The code for the page shown in Figure 10-7 is in relative_01.html in the
download files for this chapter. The second paragraph has an ID called rel, and
is styled using the following rules:

#rel {
 border: 1px #000 solid;
 background-color: #CCC;
 position: relative;
 left: 50px;
 top: 50px;
}

 Getting StartED with CSS

 378

This example is deliberately impractical to demonstrate the potential hazards
of using relative positioning. A more practical use is where you want to put
something else in the place vacated by the relatively positioned element. You
also need to make sure that other nonpositioned elements aren’t
unintentionally overlapped.

If you completed the previous exercise, change the value of position in the
#nav style block from fixed to relative like this:

#nav {
 list-style-type: none;
 margin: 0;
 padding: 0;
 height: 2.5em;
 position: relative;
 top: 176px;
}

Save the style sheet, and load the page into a browser. Alternatively, use
journey_relative.html in the download files. When you load the page, it
should look identical to Figure 10-1. The top offset of 176px positions the
navigation menu that distance from the top of the page and leaves a space for
the banner heading to be displayed. The difference between fixed and
relative becomes apparent only when you start to scroll the page. As you can
see in Figure 10-8, the navigation menu is no longer in a fixed position, and it
starts moving up in tandem with the main content. However, the menu scrolls
in front of the banner heading, while the content goes behind. You’ll see how
to change the stacking order of positioned elements with the z-index property
later in this chapter.

Figure 10-8. By making the navigation menu relatively positioned, it scrolls with the
rest of the content.

379

Chapter 10: How Do I Position Elements Precisely on the Page?

Although this demonstrates a possible way to use relative positioning, it’s still
not very practical. If I wanted to scroll the navigation menu with the rest of
the content, there’s no need to make it a positioned element at all. Instead of
adding 215px of padding to the top of the sidebar and main content, all that is
necessary is to add 176px of padding (the height of the banner heading) to the
top of the unordered list.

So, what’s the point of relative positioning?

Using relative positioning to create a containing
block
Strange though it may sound, one of the most common uses of relative
positioning is to leave the element exactly where it was in the first place. To
understand the logic behind this, you need to understand what positioned
elements regard as their containing block. With nonpositioned elements, the
containing block controls the element’s width and inherited styles and is a
tag’s immediate block-level parent. With CSS positioning, however, the
containing block controls the position of the element, using the top, right,
bottom, and left offsets, and is determined by the type of positioning used, as
follows:

� absolute: The containing block must be another positioned element. If
no such element exists, the page itself is considered the containing
block.

� fixed: The containing block is always the browser window. So, a fixed-
position element with a bottom offset of 0 sits at the bottom of the
browser window and stays there regardless of how big or small the
window is.

� relative: The offsets of a relatively positioned element are calculated
in relation to the element’s position in the normal flow of the
document.

The reason for making an element relatively positioned without moving it is to
provide the context for absolute positioning. When you do this, the offsets for
the absolutely positioned element are calculated from the edges of the
relatively positioned element, rather than from the whole page.

So, without further ado, let’s take a look at absolute positioning.

 Getting StartED with CSS

 380

Moving elements precisely with absolute
positioning
There are two important differences between absolute positioning and fixed
positioning, namely:

� The offsets in fixed positioning are always calculated with reference
to the browser window. With absolute positioning, the offsets are
calculated with reference to the element’s containing block, as
described in the preceding section.

� With fixed positioning, the element never moves. An absolutely
positioned element scrolls with the rest of the page. Its position is
fixed only in relation to its containing block.

Let’s start with a simple example. In the download files for this chapter,
absolute_01.html contains a single <div> styled with the following rules:

#absolute1 {
 position: absolute;
 left: 75px;
 top: 100px;
 height: 150px;
 width: 300px;
 padding: 20px;
 background-color: orange;
 font-weight: bold;
}

The left property is set to 75px, and top is set to 100px. Since the <div> is not
nested inside another positioned element, its containing block is the page
itself, so the top left corner is positioned 75px from the left side of the page,
and 100px from the top. This position remains constant, regardless of the size
of the browser window, as shown in Figure 10-9.

381

Chapter 10: How Do I Position Elements Precisely on the Page?

Figure 10-9. An absolutely positioned element stays where you put it, regardless of
the size of the browser window.

While that seems fairly unremarkable, look what happens when the left offset
is replaced by a right offset like this (the code is in absolute_02.html):

#absolute1 {
 position: absolute;
 right: 75px;
 top: 100px;
 height: 150px;
 width: 300px;
 padding: 20px;
 background-color: orange;
 font-weight: bold;
}

As Figure 10-10 shows, the absolutely positioned <div> remains 75px from the
right edge of the browser window, regardless of the window’s size.

 Getting StartED with CSS

 382

Figure 10-10. You can also anchor an absolutely positioned element to the right of
the page.

The offset takes into account any border applied to the absolutely positioned
element. In absolute_03.html, I have added a 10px border to the <div> like
this:

#absolute1 {
 position: absolute;
 right: 75px;
 top: 100px;
 height: 150px;
 width: 300px;
 padding: 20px;
 background-color: orange;
 font-weight: bold;
 border: #000 solid 10px;
}

As Figure 10-11 shows, the content of the <div> moves down and to the left,
placing the outer edge of the border at the top right corner.

383

Chapter 10: How Do I Position Elements Precisely on the Page?

Figure 10-11. The position is calculated from the outer edge of the border.

If you add a margin to the absolutely positioned element, the anchor point is
calculated from the outer edge of the margin. However, since the margins of
absolutely positioned elements don’t interact with other elements, there is
little point in doing so. What’s more, margins are transparent, so it makes
more sense to adjust the offsets, rather than try to combine an offset with a
margin.

Viewed in isolation like this, an absolutely positioned element seems quite
useful. It’s when you start mixing absolutely positioned elements with ordinary
content that the fun—or misery—starts.

Why do absolutely positioned elements move?
It should be clear from the preceding discussion that absolutely positioned
elements don’t move. As Figures 10-9 and 10-10 show, the absolutely
positioned <div> remains at the offsets defined in the style rule, no matter
how much you resize the browser window. The only time an absolutely
positioned element moves is when the page is scrolled. Even then, the position
remains fixed in relation to the containing block.

 Getting StartED with CSS

 384

In spite of this, many people are convinced that absolutely positioned elements
move when the browser window is resized. Figure 10-12 illustrates the
problem.

Figure 10-12. When the browser window is resized, the absolutely positioned image
stays put and overlaps the heading.

The file absolute_04.html is a copy of journey.html as it looked at the end of
Chapter 6. Instead of inserting the flower as a background image to the page’s
main heading, I have put it in a <div> just before the closing </body> tag like
this:

 <p id="footer">Design: Getting StartED with
 CSS</p>
</div>
<div id="flower"><img src="../images/flower1.png" width="80"
height="61" alt="Flower" /></div>
</body>

In the style sheet, I used absolute positioning to move the flower up to the top
of page like this:

#flower {
 position: absolute;
 top: 8px;
 left: 195px;
}

When viewed at 1024 × 768, the flower is positioned perfectly, as shown in the
top screenshot in Figure 10-12. However, if you resize the browser to 800 ×
600, the ordinary content repositions itself, but the flower stays exactly where
I put it, 195px from the left side of the browser. As a result, it overlaps the

385

Chapter 10: How Do I Position Elements Precisely on the Page?

heading, creating the false impression that it has moved. It hasn’t. It’s the rest
of the page that has moved.

AdvancED
This should serve as yet another warning—should you still need one—of the
danger of designing a page without testing to see what it looks like at
various browser sizes. Barely a day goes by without someone posting a
request for help in an online forum saying, “I designed my page to look
great at 1024 × 768. Now my boss tells me it looks terrible at 1280 × 800.”
Web pages are not fixed like print.

How do I center a page and use absolute
positioning?
This is where the concept of the absolutely positioned element’s containing
block comes into play. By using relative positioning on a parent element, the
offsets of the absolutely positioned element are calculated with reference to
the containing block, rather than the whole page.

In absolute_05.html, I have moved the <div> that contains the flower inside
the wrapper <div> like this:

 <p id="footer">Design: Getting StartED with
 CSS</p>
<div id="flower"><img src="../images/flower1.png" width="80"
height="61" alt="Flower" /></div>
</div>
</body>

In the style sheet, css/absolute_05.css, I have added the position property to
the #wrapper style rule and set its value to relative like this:

#wrapper {
 width: 720px;
 margin: 0 auto;
 background-color: #FFF;
 background-image: url(../../images/grand_canyon.jpg);
 background-repeat: no-repeat;
 background-position: bottom;
 border-left: 2px solid #D8D0AC;
 border-right: 2px solid #D8D0AC;
 position: relative;
}

 Getting StartED with CSS

 386

The flower <div> is still absolutely positioned, but the left offset is now
measured from the left side of the wrapper <div> and not from the left side of
the page. The #flower style rule has been changed to this:

#flower {
 position: absolute;
 top: 8px;
 left: 55px;
}

As Figure 10-13 shows, changing the containing block results in the flower
staying in the desired position, regardless of the size of the browser window.

Figure 10-13. The flower is now absolutely positioned relative to the wrapper <div>.

Nesting an absolutely positioned element inside a <div> like this, and making
the outer <div> relatively positioned with no offsets, is a useful technique.
However, you still need to be careful about overlapping elements. Because the
flower is absolutely positioned in absolute_05.html, the start of the heading
will disappear underneath the image if the text is enlarged in the browser. You
also get an overlap with a background image, but the text remains on top, so
should still be readable.

You can also nest absolutely positioned elements inside one another.

What happens if I nest absolutely positioned
elements?
Not surprisingly, when you nest absolutely positioned elements, the parent
element becomes the nested element’s containing block. However, that
doesn’t necessarily mean that the nested element remains inside its parent.

387

Chapter 10: How Do I Position Elements Precisely on the Page?

The containing block is simply the reference point from which the offsets are
calculated.

The code in absolute_06.html contains one <div> nested inside another like
this:

<div id="absolute1">
 Content of absolute1
 <div id="nested">
 Content of nested
 </div>
</div>

The style rules look like this:

#absolute1, #nested {
 position: absolute;
 width: 300px;
 padding: 20px;
 font-weight: bold;
 border: #000 solid 10px;
}
#absolute1 {
 right: 75px;
 top: 100px;
 height: 150px;
 background-color: orange;
}
#nested {
 top: -100px;
 left: -450px;
 height: 85px;
 background-color: teal;
}

Notice that #nested has negative values for the top and left offsets. These
move the nested <div> up 100px and left 450px from the top left of its
containing block. When viewed in a browser, the page looks like Figure 10-14.

 Getting StartED with CSS

 388

Figure 10-14. Even though the smaller <div> is nested inside the larger one, absolute
positioning displays it outside.

However, take a closer look at the measurements. The larger <div> is 100px
from the top of the page. The smaller <div> has a negative top offset of 100px,
but there’s a gap between its border and the top of the page. What’s going on?
You might think it’s because browsers add a 10px margin on web pages; but
that’s not the cause. Absolutely positioned elements are not affected by the
margins of other nonpositioned elements.

The answer is that the offset from a containing block is measured from the
edge of the padding, and not from the outer edge of the border. If you remove
the border from both elements in absolute_06.html, the smaller <div> is flush
with the top of the page.

Look what happens if you view absolute_06.html at 800 × 600. As you can see
in Figure 10-15, the smaller <div> disappears beyond the left edge of the
browser. What’s more, the browser doesn’t generate a horizontal scrollbar, so
there’s no way anyone can see the rest of the content of the <div> without
making the browser window larger. As with fixed positioning, you need to test
everything carefully when using absolute positioning.

389

Chapter 10: How Do I Position Elements Precisely on the Page?

Figure 10-15. With absolute positioning, content might be cut off on a small
monitor.

AdvancED
Having content disappear off screen is not necessarily a bad thing. You can
use absolute positioning with a large negative top offset to hide elements.
In Chapter 7, I showed you how to use a negative left margin to hide the
text content of the <h1> heading from visual browsers. An alternative
would be to make it absolutely positioned and set the top offset to a
similarly large negative value.

How do I control which element is on top when
they overlap?
One of the advantages of absolute positioning is that elements can be made to
overlap each other. Of course, it’s an advantage only if that’s what you intend.
As you saw in Figure 10-12, overlapping can be a major headache if you’re not
careful.

 Getting StartED with CSS

 390

Figure 10-16 shows a simple example of images overlapping each other using
absolute positioning.

Figure 10-16. Absolutely positioned elements overlap each other in the same order
as they appear in the code.

The code for this screenshot is in absolute_07.html. The HTML looks like this:

<div id="images">
 <img src="../images/flower1.png" alt="Flower" width="80" height="61"
 id="flower1" />
 <img src="../images/angels_window.jpg" alt="Angel's Window"
 width="350" height="249" id="angel" />
 <img src="../images/flower1.png" alt="Flower" width="80" height="61"
 id="flower2" />
</div>

The style rules look like this:

#images {
 position: relative;
 width: 350px;
 margin: 40px auto;
}
#images img{
 position: absolute;
}
#flower1 {
 left: -30px;
 top: -30px;
}
#angel {
 top: 0;

391

Chapter 10: How Do I Position Elements Precisely on the Page?

 left: 0;
}
#flower2 {
 right: -30px;
 top: 220px;
}

The <div> is relatively positioned to provide a containing block for the three
images, all of which are absolutely positioned by the descendant selector
#images img. The main image has its top and left offsets set to 0, which places
it at the top left of the <div>. The top and left offsets of flower1 are set to
-30px. This moves the image upward and to the left of the containing block.
The right and top offsets of flower2 are set to -30px and 220px respectively.
This moves the second flower 30px to the right and 220px down from the top of
its containing block.

The flowers have been positioned so they overlap the main image. As you can
see in Figure 10-16, the first flower is behind, and the second one is in front.
The browser has displayed each image in the same order as it appears in the
HTML code, placing each image in front of its predecessor where they overlap.

ExplainED
Since the main image hasn’t been moved, you might wonder why I have
made it absolutely positioned. It’s because nonpositioned content always
appears behind absolutely positioned elements. If the main image is not
absolutely positioned, both flowers appear in front of it.

One way to change how the images overlap is to change their order in the
underlying HTML. In absolute_08.html, I have moved the tag for
angels_window.jpg below the two flowers like this:

<div id="images">
 <img src="../images/flower1.png" alt="Flower" width="80" height="61"
 id="flower1" />
 <img src="../images/flower1.png" alt="Flower" width="80" height="61"
 id="flower2" />
 <img src="../images/angels_window.jpg" alt="Angel's Window"
 width="350" height="249" id="angel" />
</div>

 Getting StartED with CSS

 392

As a result, the main image is rendered last by the browser, and appears in
front of the flowers, as shown in Figure 10-17.

Figure 10-17. The order of the underlying HTML changes the way in which the
images overlap.

However, it’s much more convenient to change how elements overlap with CSS,
using the z-index property. This controls the stacking order of overlapping
elements. Higher numbers appear in front of lower ones.

The stacking order of the images has been changed in absolute_09.html by
adding the z-index property to each image’s style rules like this:

#flower1 {
 left: -30px;
 top: -30px;
 z-index: 3;
}
#angel {
 top: 0;
 left: 0;
 z-index: 2;
}
#flower2 {
 right: -30px;
 top: 220px;
 z-index: 1;
}

As you can see in Figure 10-18, the first flower now appears in front of the
main image, and the second one is tucked behind.

393

Chapter 10: How Do I Position Elements Precisely on the Page?

Figure 10-18. The stacking order of the images has been changed by using z-index.

AdvancED
Each containing block sets its own stacking context for z-index. If you find
that giving a higher z-index to a positioned element still leaves it stacked
behind one with a lower z-index, check the z-index of the element’s
containing block. It must be higher than the z-index of the other
element’s containing block.

What are the drawbacks of using absolute
positioning?
Many designers, particularly those from a print background, initially regard
absolute positioning as the answer to their prayers, because it lets you specify
precisely where you want elements to appear on a page. It certainly does, but
a major problem with absolute positioning is the way positioned elements float
above nonpositioned content without any interaction between them, as shown
in Figure 10-19 (the code is in absolute_10.html).

 Getting StartED with CSS

 394

Figure 10-19. Nonpositioned content cannot flow around an absolutely positioned
element.

Admittedly, this is a trivial example, but the problem is far from trivial. Once
you start using absolutely positioned elements for page layout, everything
needs to be absolutely positioned. Even if you manage to get a page to look the
way you want by using absolute positioning for every element, you need to
remember that users can change the size of text in their browsers. If they use
the zoom feature that resizes everything proportionately, your design will
probably hold together. However, you cannot rely on everyone using that
setting. If the browser is set to resize text only, the text in absolutely
positioned elements at the top of the page will begin to overflow the text in
elements lower down.

You also need to take into consideration that the content of each page in a
website tends to be of different lengths. Unless you are creating something like
a photo gallery, where all content is of a fixed size, you would need to create a
separate style sheet for each page, losing one of the principal benefits of CSS.
Even if you’re prepared to do that, it still doesn’t solve the problem of text
being enlarged.

This doesn’t mean that absolute positioning is useless—far from it.

Absolute positioning comes into its own when used to position elements where
you know they won’t come into conflict with other content. As you’ll see in the
next chapter, you can use absolute positioning for sidebars instead of floating
them. You make room for the sidebars in the same way by adding a wide
margin to the content you want to appear alongside. However, you need to be
sure that the content in the sidebar will always be shorter than the
nonpositioned content alongside. Otherwise, you end up with the same

395

Chapter 10: How Do I Position Elements Precisely on the Page?

problem as with the fixed position menu earlier in this chapter (see Figure 10-6
and “Understanding the limitations of fixed positioning”).

Positioning elements against a background image
Perhaps the best use of absolute positioning is to superimpose HTML elements
accurately on top of a background image, as shown in the following exercise.

Adding a search field in a precise position

The following exercise adds an HTML form to the page used in the exercise at
the beginning of this chapter. The form is nested inside the banner heading,
which uses fixed positioning. The form is then moved into position inside the
heading with absolute positioning. Because it’s nested inside a fixed position
element, the search form remains onscreen when the rest of the page is
scrolled. If you completed the previous exercise, continue working with the
same files. Alternatively, use journey_absolute_start.html and
css/journey_absolute_start.css in the download files for this chapter.

1. If you are using journey_absolute_start.html and its associated style
sheet, copy them to your work folder, and rename them
journey_absolute.html and css/journey_absolute.css respectively.
Make sure that the renamed style sheet is linked to the renamed file
like this:

<link href="css/journey_absolute.css" rel="stylesheet"
type="text/css" />

2. Test the page in a browser to make sure it displays correctly. It should
look like Figure 10-1 at the beginning of this chapter.

3. In the HTML code, add a search form inside the header <div> like this:

<div id="header">
 <h1>Journey to the Edge</h1>
 <form id="search" method="get" action="">
 <input type="text" name="searchterm" id="searchterm" />
 <input type="submit" name="find" id="find" value="Search" />
 </form>
</div>

This is a simple HTML search form with a text field and submit button.
The form won’t do anything, because the action attribute is empty.
The purpose of this exercise is to position the form with CSS, not to
create a search system.

 Getting StartED with CSS

 396

4. Save the page, and view it in a browser. The search form should be on
top of the banner heading on the left of the page, as shown in Figure
10-20.

Figure 10-20. The form obscures part of the text in the banner heading.

The banner heading is a background image, so the form is displayed in
front of it. The form has been pushed away from the top of the page
because the <h1> heading still occupies the vertical space, even
though it has been pushed off screen by a large negative margin.
Otherwise, the form is as far left and as high up as it can go.

Because the form is nested inside a fixed position element, it stays put
when the main content of the page is scrolled. However, its current
position is unsatisfactory, so you need to move it with absolute
positioning.

5. The heading <div> is positioned, so it acts as the form’s containing
block. Consequently, the bottom offset relates to the <div>, and not to
the page or browser window. Try repositioning the search form by
adding the following style block at the bottom of the style sheet:

/* Search form */
#search {
 position: absolute;
 left: 20px;
 bottom: 20px;
}

6. Save the style sheet, and reload the page in the browser. The search
form should now be positioned 20px from the bottom left corner of the
banner heading, as shown in Figure 10-21.

397

Chapter 10: How Do I Position Elements Precisely on the Page?

Figure 10-21. The search form has been repositioned relative to its containing block.

7. That’s a lot better than before, but I think the best position for the
search form is between the two branches of the tree. Change the
offsets like this:

#search {
 position: absolute;
 top: 10px;
 right: 50px;
}

This repositions the search form 10px from the top of the banner
heading and 50px from its right side.

8. To make the submit button blend better with the design, add the
following to the style sheet:

#find {
 background-color: #AA8346;
 color: #FFF;
 font-weight: bold;
 border-top: #C9B089 2px solid;
 border-left: #C9B089 2px solid;
 border-right: #5B4625 2px solid;
 border-bottom: #5B4625 2px solid;
}

The submit button has the ID find, so this styles it with the same
colors as the navigation menu.

9. Save the style sheet, and reload the page in a browser. The search
form should have been repositioned and styled as shown in Figure
10-22.

 Getting StartED with CSS

 398

Figure 10-22. The search form now blends in well with the rest of the design.

You can check your code, if necessary, against journey_absolute_
finish.html and css/journey_absolute_finish.css in the download
files for this chapter.

ExplainED
The submit button in the search form will remain unstyled in older
versions of Safari. Prior to version 4.0, Safari did not support the styling of
form elements.

Hopefully, this has shown you a practical use of absolute positioning. It’s
rarely, if ever, suited for use in laying out a complete page. But it’s extremely
useful in positioning small elements accurately within a containing block, which
must also have its position property set to absolute, fixed, or relative.

An important thing to realize about this example is why the search form
remains onscreen when the page is scrolled. It’s not because the form is
absolutely positioned, but because its containing block used fixed positioning.
The terminology is potentially confusing, so it’s worth repeating the
difference.

� When position is set to absolute, the element is positioned relative
to its containing block or, in the absence of a containing block, the
page. An absolutely positioned element scrolls with the rest of the
page. The only exception is when the containing block is fixed.

� When position is set to fixed, the containing block is the browser
viewport. Elements that use fixed positioning never scroll, but they
always retain the same offsets from the edge of the browser window
whenever the viewport is resized.

399

Chapter 10: How Do I Position Elements Precisely on the Page?

To demonstrate the difference between the two, I have changed the value of
the position property from fixed to absolute in the #header and #nav style
blocks in the style sheet for journey_all_absolute.html in the download files
for this chapter. When you load the page into a browser, it should look the
same as Figure 10-22. However, when you scroll the page, everything moves
together. This is because the containing block for the header and the
navigation menu is no longer the browser viewport, but the wrapper <div>,
which is relatively positioned. The absolute positioning fixes each element
precisely within the wrapper, but the wrapper itself is scrollable.

LinkED
You can combine absolute positioning with the display property set to
none to create disjointed rollover effects. For examples of how to do this,
visit http://meyerweb.com/eric/css/edge/popups/demo.html. Roll over the
dummy menu on the left of the page to see the effect with text. Eric
Meyer also demonstrates how to do it with images at
http://meyerweb.com/eric/css/edge/popups/demo2.html.

Cropping an image nondestructively
with CSS
The clip property is similar to a mask or cropping tool in that it creates a
window through which part of an element is displayed. The best way to
understand it is to compare Figures 10-23 and 10-24. Figure 10-23 shows a
photo of the Strip in Las Vegas with just the Statue of Liberty highlighted.
Figure 10-24 shows the same image, lasvegas.jpg, displayed in clipping.html.
If you check the download files, you’ll see that lasvegas.jpg hasn’t been
cropped. It’s the same image as in the scaling image exercise in Chapter 6. The
clip property simply masks the sections of the image dimmed in Figure 10-23.

 Getting StartED with CSS

 400

Figure 10-23. The clip property lets you select a rectangular area to be displayed
while the rest is hidden.

Figure 10-24. Only the selected area of the image is displayed, even though it hasn’t
been physically cropped.

The clip property works only with absolutely positioned elements, and the
only shape you can use is a rectangle. You define the area that you want
displayed by supplying four offsets in clockwise order starting from the top like
this:

clip: rect(top, right, bottom, left);

401

Chapter 10: How Do I Position Elements Precisely on the Page?

However, all the offsets are calculated from the top-left corner of the
element you want to mask, and each must be defined as a length. You cannot
use percentages.

The top edge of the highlighted section is 146px from the top of lasvegas.jpg;
the right side is 140px from the left; the bottom is 336px from the top; and the
left side is 45px from the left. So, to clip the image, this is the style rule I
created:

#clipped_image {
 position: absolute;
 clip: rect(146px, 140px, 336px, 45px);
}

Just to make life even more difficult, the clipped element doesn’t move—it is,
after all, absolutely positioned. So, in clipped.html, the Statue of Liberty was
146px too far down the page and 45px too far right. To compensate for that, I
needed to use negative top and left offsets like this:

#clipped_image {
 position: absolute;
 clip: rect(146px, 140px, 336px, 45px);
 top: -146px;
 left: -45px;
}

Oh yes, another snafu—IE6 and IE7 won’t play ball if you separate the offsets
with commas, which is the correct way of doing things. Fortunately, other
browsers accept leaving the commas out like this:

 clip: rect(146px 140px 336px 45px);

With all these problems, it’s small wonder that clip is one of the least used
CSS properties. However, it can be combined with JavaScript to create
animated effects, revealing and concealing images.

LinkED
For an example of how to combine the clip property with a JavaScript
animated effect, see www.overset.com/2008/08/07/jquery-css-clip-
animation-plugin/.

 Getting StartED with CSS

 402

Chapter review
CSS positioning gives you control over the placement of an element by setting
the position property and specifying how far the sides should be offset from
the element’s containing block by using the top, right, bottom, and left
properties. It’s rarely, if ever, suitable for laying out complete pages but is
very useful in controlling the location of page elements, such as search forms
or navigation menus.

Fixed positioning, which is supported by all current browsers except IE6, uses
the browser window as its containing block. Once an element is fixed, it
remains in the same position in the browser window, even when the rest of the
page is scrolled. In this sense, fixed positioning is similar to frames and is
useful for keeping navigation menus on the page at all times. A major
drawback of fixed positioning is that elements are cut off if they’re too wide or
too tall to fit into the browser window. The only way to access their content is
to increase the size of the browser window, something that visitors to the site
might not realize or be able to do.

Absolute positioning uses as its containing block the closest element higher up
the page’s HTML structure that has its position property set to absolute,
fixed, or relative. If no such element exists, the containing block is the page
itself. Relative positioning, on the other hand, simply moves elements relative
to their normal position in the flow of the document, leaving a space where the
element would normally have been. Used in this way, relative positioning is of
limited value. However, it plays a very important role when used with no
offsets, creating the containing block for absolutely positioned elements.

The most important aspect of CSS positioning is that it removes elements from
the normal flow of the document, and floats them on independent layers in
front of nonpositioned content. You can change the stacking order of
positioned elements by setting the z-index property; elements with a higher z-
index appear in front of those with a lower one. Because positioned elements
float in front of nonpositioned ones, you should normally use them in places
where they won’t obscure other content or to position elements precisely
against a background image.

The clip property is arguably the least useful part of the CSS positioning
toolkit. It masks an absolutely positioned element, displaying only one
rectangular section.

You have now studied all visual properties in the CSS2.1 specification, apart
from a small number of rarely used ones, which are covered in Chapter 12. So,
in the next chapter, I’ll provide an overview of CSS page layout strategies.

403

Chapter 11
Are There Any Guidelines
for Basic Page Layout?
Designing a web page that works well in all the main browsers requires a
combination of inspiration and technical knowhow. It’s impossible in a book of
this nature to cover every type of page layout, but there are some basic
principles that should help guide you. Once you have mastered the technical
details of margins, borders, padding, and CSS positioning, you can begin to let
your creative juices flow. But until you master that technical knowledge, page
layout will remain an exercise in frustration.

The purpose of most websites is to provide information of some sort. It might
be purely visual, as in a photo gallery, or it could be entertainment, as in a
game or music site, but it’s information all the same. For visitors to be able to
find the information they want, it needs to be laid out in a logical way. That’s
why most websites use some sort of grid pattern for layout. In the early days of
the Web, tables provided the basic grid structure. Now, with CSS, the grid is
formed through the use of blocks, floats, and positioning.

The most commonly used grid structures for websites consist of one, two, or
three columns. Within a wide column, you might also find mini-columns, but
the basic techniques remain the same. So, in this chapter, I’ll discuss the
various ways you can create multicolumn layouts. Most of the time, I’ll use
floats and margins to control the layout, but I’ll also show how you can use
absolute positioning for sidebars.

And at the end of the chapter, I’ll take a peek into the future using the table-
related values of the display property, which make ordinary HTML elements
act like table elements—table layout without tables. It’s a useful technique,
but unfortunately not ready for prime time, because it’s not supported by IE6
or IE7.

 Getting StartED with CSS

 404

In this chapter, you’ll learn about the following:

� What factors to take into account before embarking on a design

� How to build one-, two-, and three-column layouts

� How to make backgrounds fill uneven columns

� Eliminating the double-margin bug in IE6

� Creating subcolumns

Let’s start with the basic decisions that affect which layout to choose.

ExplainED
If you come from a traditional print background, you might think of
columns as being of equal width with text flowing from one column to the
next. That’s not the way that web pages are normally designed. Neither
HTML nor CSS2.1 supports continuous columns, and even if they did,
reading from one column to the next would be difficult because of the
landscape orientation of most computer screens. Columns used for web
page layout tend to be self-contained, with one wide column for the main
content, and one or more narrower columns for subsidiary material.

Getting the basics right
Before you start laying out a website, you need to consider a few basic
questions, such as the target audience, the optimal width, and whether to use
a fixed width or go for a more flexible design.

Who is the target audience?
The target audience makes a big difference to the appropriate design and
layout. This is not simply a question of aesthetics, such as bright colors for
children or sober colors for a law firm. A site aimed at children will need text
that’s clear and easy to read. Sections of text should be short, with plenty of
space around them. The site will also need lots of images or illustrations.

A site for elderly people, on the other hand, can have larger blocks of text. But
older people are likely to have less than perfect eyesight, so there’s a strong
chance they’ll increase the text size. You need to make sure your design won’t
fall apart if that happens.

405

Chapter 11: Are There Any Guidelines for Basic Page Layout?

Whoever your audience is, you need to remember that scanning long lines of
text is tiring, and it’s easy to lose your place. Text areas need to be a
comfortable width for reading.

What size browser window should I design for?
This is a perennial question in online forums. Desktop and laptop monitors are
getting bigger, so you can usually count on more horizontal space than in the
days when 640 × 480 was the norm. At the time of this writing, the market
share of monitors with a resolution of 1024 × 768 or higher was estimated to
be 80 percent.

LinkED
Visit http://marketshare.hitslink.com/report.aspx?qprid=17 for the
most recent statistics on monitor resolutions.

Monitor resolution isn’t necessarily an accurate guide to how your website will
be viewed. People with large monitors don’t always maximize their browsers.
And the trend isn’t always for bigger and bigger monitors. Many people now use
netbooks, which tend to have small screens but often with high resolution.
Small screen + high resolution = small text. Increasing numbers are also viewing
the Web on mobile devices like the iPhone and BlackBerry.

AdvancED
Mobile device browsers usually have considerably fewer features than
those designed for desktops. To learn more about designing web pages for
mobile devices, see AdvancED CSS by Joseph R. Lewis and Meitar Moscovitz
(friends of ED, ISBN: 978-1-4302-1932-3).

Nevertheless, the vast majority of people still use desktops or laptops. Table
11-1 lists the approximate usable width of most browsers when displayed full
screen at a range of common monitor resolutions. The figures take into account
the need to leave space for a vertical scrollbar.

 Getting StartED with CSS

 406

Table 11-1. Usable Width of Browsers at Various Common Resolutions

 800�600 1024�768 1280�800 1280�1024 1440�900 1680�1050

Market

share

(July

2009)

3.8% 32% 20% 11.8% 9% 5.8%

Usable

width in

pixels

762 990 1245 1245 1404 1645

To allow for differences in browsers, it’s a good idea to deduct a few pixels. If
you’re going for a fixed-width design, 960–980px now seems the optimal size.
This fits comfortably in any monitor with a resolution of 1024 × 768 or larger.

What type of layout is best—fixed or flexible?
There’s no simple answer to this question. In the early days of the Web,
everyone had small monitors, so it didn’t matter that everything stretched the
full width of the page. The problem was trying to cram everything into such a
small space. As monitors started to get bigger, some designers took advantage
by using percentages for widths, letting their pages occupy as much of the
screen as available; but when screens got bigger still, many opted for fixed-
width designs. Unfortunately, a design that looked brilliant when 800 × 600
was the most common monitor resolution often looks rather lost in today’s
larger monitors.

The main types of layout can be categorized as follows:

� Fixed-width: This is the most comfortable type of layout to work
with, and generally looks best when centered in a page. When working
with a fixed-width layout, it’s important to plan ahead with regard to
the size of page elements. Although images don’t need to be a fixed
size, you need to make sure your layout is wide enough to
accommodate the largest image you’re likely to use. Alternatively,
you need to resize the images to fit your design. To prevent fixed-
width layouts from looking lost on a large monitor, it’s a good idea to
use different backgrounds for the body and center section to focus the
visitor’s attention on the main content. Figures 11-1 and 11-2 show
the case study on a 24-inch monitor. In Figure 11-1, the background
color of the body has been turned off. Admittedly, the page looks

407

Chapter 11: Are There Any Guidelines for Basic Page Layout?

swamped in both screenshots, but the contrasting backgrounds in
Figure 11-2 help draw the eye to the center of the page.

Figure 11-1. The vast expanse of white makes the attention wander on a large
monitor

Figure 11-2. The contrast in colors helps focus attention on content in the center of
the page.

 Getting StartED with CSS

 408

� Liquid: Dimensions in a liquid layout are specified as percentages,
allowing the content to behave in a fluid way, expanding and
contracting as the browser window is resized. The principal
disadvantage is that, on a large monitor, lines of text stretch too wide
to be read easily. Equally, on a small monitor, everything risks being
scrunched up. You can overcome these problems to some extent by
setting the max-width and min-width properties. However, this makes
it difficult to center content. Moreover, IE6 ignores maximum and
minimum widths, although you can simulate them with CSS
expressions, as described in Chapter 6.

� Elastic: Dimensions in an elastic layout are set using ems. This has the
advantage of keeping everything in proportion with the text size,
thereby overcoming the problem of lines of text becoming too long—
unless the text is greatly resized, that is. The downside is that the
page gets wider as the text is increased in size, potentially spawning a
horizontal scrollbar when it exceeds the width of the browser.

� Hybrid: You can compromise by combining one or more fixed-width
sidebars with a liquid or elastic main content area. This has the
advantage that the sidebars remain a constant size. Use the min-width
property on the main content area to prevent it from being squeezed
on a small monitor. It is probably also a good idea to use the max-
width property as well, to avoid impractical widths on bigger
monitors.

As the preceding descriptions indicate, there is no perfect solution. The key to
successful layout is to test, test, and test again, preferably in a range of
browsers at different monitor resolutions.

You’ll notice that I have focused exclusively on width. As a general principle,
don’t specify the height of web page elements unless they are fixed, such as an
image or video. Even if visitors never resize your text, the amount of text on
each page is likely to vary. The default value of the height and width
properties is auto, so they automatically expand and contract to accommodate
the content. Visitors to websites are accustomed to scrolling up and down a
page, so let the height adjust itself. Horizontal scrolling tends to be less well
tolerated by users, hence the emphasis on deciding how to control the width of
your pages.

409

Chapter 11: Are There Any Guidelines for Basic Page Layout?

AdvancED
If you have a large monitor, you can simulate the experience that a visitor
would get at a lower resolution by resizing the browser window. IE8 has a
built-in resizing feature. Press F12 or select Tools ➤ Developer Tools to
launch the Developer Tools window. In the new window, select Tools ➤
Resize, and choose one of the preset sizes. It’s rather counterintuitive, but
this resizes the main browser window, not the Developer Tools window.
You can also define custom sizes.

For Firefox, use the Resize button on the Web Developer Toolbar by Chris
Pederick. You can get the toolbar as a free plugin from
https://addons.mozilla.org/en-US/firefox/addon/60.

The most common layouts for web pages consist of a header, the main page
navigation, the main content, and a footer section. The header and footer
typically stretch the full width of the active section of the page, while the
remaining content is displayed in one, two, or three columns. Of course, that’s
not the only way a page can be constructed, but the purpose of this chapter is
to offer a few basic structures. Once you have mastered them, you can strike
out in more adventurous directions on your own.

Creating a single-column layout
There’s very little to say about creating a single-column layout. All the HTML
elements are displayed in the order they appear in the underlying code, so the
only real considerations with regard to the basic layout are the width of the
column, and whether you want it centered. To restrict the width, wrap
everything between the <body> tags in a <div>, give the <div> an ID, and
create a style rule using an ID selector. To center the content, give the <div> a
width, and set the left and right margins to auto.

The download files for this chapter contain the following three examples of a
single-column layout:

� Fixed-width: onecol_fixed.html sets the width of the column to
760px.

� Elastic: onecol_elastic sets the width to 47.5em.

 Getting StartED with CSS

 410

� Liquid: onecol_liquid.html sets the left and right margins to 12% and
uses max-width to prevent the column from exceeding 760px in most
modern browsers. An Internet Explorer conditional comment overrides
these settings for IE6 and uses a fixed width instead.

When loaded into a browser sized 800 × 600, the first two files look like Figure
11-3. This is because 47.5em is equivalent to 760px when the browser’s default
text size (16px) is used (760 ÷ 16 = 47.5).

Figure 11-3. A simple single-column layout with header, main content, and footer

The style rule that controls the width of the column and centers it looks like
this in onecol_fixed.html:

#wrapper {
 width: 760px;
 margin: 0 auto;
 background-color: #FFF;
 border-left: #252017 solid 1px;
 border-right: #252017 solid 1px;
}

411

Chapter 11: Are There Any Guidelines for Basic Page Layout?

In onecol_elastic.html, it looks like this:

#wrapper {
 width: 47.5em;
 margin: 0 auto;
 background-color: #FFF;
 border-left: #252017 solid 1px;
 border-right: #252017 solid 1px;
}

The only difference in the way the pages are displayed is when you increase
the size of the text in the browser. In the fixed-width version, the text is
reflowed to fit inside the column, whereas in the elastic version, the text isn’t
reflowed, and the page generates a horizontal scrollbar.

The liquid layout in onecol_liquid.html doesn’t specify a width for the column
but uses the left and right margins to control its width and position. However,
to prevent the text from becoming unreadable when the browser window is
opened very wide, the max-width property is set to 760px like this:

#wrapper {
 margin: 0 12%;
 max-width: 760px;
 background-color: #FFF;
 border-left: #252017 solid 1px;
 border-right: #252017 solid 1px;
}

Why choose 12% as the width for the left and right columns? I based this on the
most common monitor resolution being 1024 × 768. As Table 11-1 shows, this
gives a usable width of approximately 990px. A 12% margin on either side
results in the column being about 752px wide. So, all three pages look almost
identical at 1024 × 768. However, at 800 × 600, the 12% margin squeezes the
central column, considerably reducing the text area, as shown in Figure 11-4.
With text, this isn’t serious, but it could cause problems with images.

 Getting StartED with CSS

 412

Figure 11-4. Using a liquid layout squeezes the column when the browser window is
reduced in width.

Because IE6 and older versions of Internet Explorer don’t understand max-
width, I have added the following IE conditional comment after the main style
rules:

<!--[if lte IE 6]>
<style type="text/css">
#wrapper {
 width: 760px;
 margin: 0 auto;
}
</style>
<![endif]-->

Only IE6 and earlier versions of Internet Explorer will see this style rule, which
overrides both the margin and width properties, making the page behave the
same as the fixed-width version.

413

Chapter 11: Are There Any Guidelines for Basic Page Layout?

ExplainED
I could have used a CSS expression in the same way as in Chapter 6.
However, as I explained there, IE6 gives precedence to the margins when
the browser window is narrower than the minimum width. Using a
conditional comment to make the page a fixed width in IE6 is much simpler
and easier to maintain.

Keeping a liquid display centered
The problem with setting the max-width property on the <div> that centers the
column is that the percentage margins cease to work once the browser window
exceeds a certain width. In the case of onecol_liquid.html, the tipping point
is 1000px. At this width, 12% equates to 120px, so two margins of this size plus
the 760px column fit the browser window exactly. Once the window is made
any wider, you need a bigger margin on both sides to keep the column
centered. What happens is that the browser applies the left margin of 12%, and
ignores the right margin, as you can see in Figure 11-5, which shows
onecol_liquid.html displayed in a browser at 1440 × 900.

Figure 11-5. The browser can’t center a a liquid layout on a large monitor if you
restrict the containing <div> with max-width.

 Getting StartED with CSS

 414

ExplainED
If you’re wondering how I arrived at 170px as 12%, I got the answer from
Firebug. This measurement implies that the usable space in Firefox 3.5 is
1417px when the browser is displayed at 1440 × 900, 13px more than the
figure given in Table 11-1. The discrepancy is explained in part by the fact
that Firefox leaves no room for a vertical scrollbar if one isn’t needed.

The other thing to bear in mind is that browsers need to round
percentages up or down to the nearest whole pixel. Rounding errors make
working with percentages difficult, so you should never create a layout
where the percentages add up to exactly 100. Always leave about 2%
leeway to account for such errors. Also remember that borders measured
in pixels are added to your percentages, again potentially throwing out
your calculations. Since there is a 1px border on either side of the column,
its overall width is actually 762px, not 760px. In this case, the extra two
pixels don’t affect the layout, so I chose to ignore them. But, even a single
pixel can destroy a layout that relies on floats.

In order to keep a liquid layout centered, remove any restriction on the width
of the <div> that centers the column, and control the width of individual text
areas inside the column instead. You can find an example of this approach in
onecol_liquid_enhanced.html in the download files for this chapter. The style
rule that centers the column looks like this:

#wrapper {
 margin: 0 12%;
 background-color: #FFF;
 border-left: #252017 solid 1px;
 border-right: #252017 solid 1px;
}

Control of the text area is handled by the following style rule:

#mainContent {
 padding: 10px 20px;
 max-width: 720px;
 margin: 0 auto;
}

In browsers that understand the max-width property, the main content area is
never greater than 720px wide, and it remains centered within the column. The
maximum width has been reduced from 760px to 720px because of the 20px

415

Chapter 11: Are There Any Guidelines for Basic Page Layout?

padding on the left and right sides. Figure 11-6 shows how this looks
in a browser at the following sizes: 800 × 600, 1024 × 768, 1280 × 800, and
1440 × 900.

Figure 11-6. The main column and text remain centered, but the margins on either
side of the text increase in size.

As you can see from Figure 11-6, the main problem with this approach is the
increasingly wide margins on either side of the text inside the column.
However, by adding a separate background to the main content, you might turn
this into a positive, rather than a negative feature.

Creating a two-column layout
When it comes to using two columns, you are faced with considerably more
choices than a single-column layout. For a start, you have to decide how the
columns are to be used. Normally, one column is much wider than the other
and contains the most important content. The narrower column often contains
the site navigation followed by subsidiary material. Depending on what you
plan to put in the narrower column, or sidebar, you need to decide whether it

 Getting StartED with CSS

 416

goes on the left or the right. Fortunately, as you saw in Chapter 7, there’s no
need to change the underlying HTML structure to switch the sidebar from one
side of the page to the other. It’s easily done with CSS.

The technique used for a two-column layout in Chapter 7 was to float the
sidebar to one side and put a wide margin on the wider column to make room
for the sidebar. For this technique to work, the sidebar must come before the
main content in the HTML markup. So, for a simple two-column layout that
floats the sidebar, the underlying order of the HTML looks like this:

1. Header

2. Sidebar

3. Main content

4. Footer

The disadvantage is that your sidebar, which usually contains subsidiary
information, precedes the main content of the page. Some people argue that
this is bad for search engine optimization. In any event, it certainly affects
people with visual disabilities, who are using a screen reader to access your
site. Another problem with two-column layout is getting the background on
both columns to be the same height.

Fortunately, there are ways of getting around all of these problems. However,
to start with, I’ll briefly outline the basic technique you used in Chapter 7,
which involves putting the sidebar content first in the HTML markup.

Putting the sidebar first and floating it to one
side
The basic technique for creating a two-column layout with a header and footer
is to divide the page into four sections using <div> tags, and then wrap the
whole page in an outer <div>, which is used to control the overall width and
center the layout. In skeleton form, the HTML markup looks like this:

<body>
<div id="wrapper">
 <div id="header">
 Header content
 </div>
 <div id="sidebar">
 Sidebar content
 </div>
 <div id="mainContent">
 Main content

417

Chapter 11: Are There Any Guidelines for Basic Page Layout?

 </div>
 <div id="footer">
 Footer content
 </div>
</div>
</body>

To display the sidebar on the left, float the sidebar to the left, and set a wide
left margin on the <div> that contains the main content. The purpose of the
wide margin is to prevent the main content from filling the full width of the
outer <div> when the sidebar comes to an end. The basic style rules for a
fixed-width two-column layout look like this:

#wrapper {
 width: 760px;
 margin: 0 auto;
}
#sidebar {
 width: 220px;
 padding: 10px;
 float: left;
}
#mainContent {
 margin-left: 240px;
}

To display the sidebar on the right, change the value of float to right, and
switch the margin in the #mainContent style block to the opposite side like this:

#wrapper {
 width: 760px;
 margin: 0 auto;
}
#sidebar {
 width: 220px;
 padding: 10px;
 float: right;
}
#mainContent {
 margin-right: 240px;
}

In the download files for this chapter, left2col_basic.html uses these basic
style rules, plus some extra properties to give each section of the page a
different background color. As you can see in Figure 11-7, the background of
the sidebar stretches only as far as the content.

 Getting StartED with CSS

 418

Figure 11-7. Getting columns of even height presents a challenge.

Some designers try to trick the browser into stretching the background color of
the sidebar by adding empty paragraphs. This is not only tedious; it frequently
doesn’t work, because the user might resize the text in the page, throwing out
your calculations of the number of extra lines needed.

If you’re going to cheat, you might as well do it elegantly with faux columns
(faux is French for “false”).

LinkED
The faux column technique was popularized by Dan Cederholm in the
following article: www.alistapart.com/articles/fauxcolumns/. Dan is also
the author of Web Standards Solutions: The Markup and Style Handbook,
Special Edition published by friends of ED (ISBN: 978-1-4302-1920-0).

419

Chapter 11: Are There Any Guidelines for Basic Page Layout?

Using a background image to simulate equal
columns
The problem with a floated sidebar is that you have no idea how long it will be.
However, you can use CSS to tile background images vertically by setting the
background-repeat property to repeat-y. So, the simple trick is to create a
background image the same width as the sidebar, and apply it as the
background of its parent element.

In left2col_basic.html, the overall width of the sidebar is 240px (220px, plus
10px on either side). So, I created an image 240px wide and 20px high, using the
same background color as the sidebar. To give it an extra lift, I added a bevel
effect on the right. I then used my graphics editor to flip the image
horizontally to put the bevel on the left, as shown in Figure 11-8. This gave me
two images that can be used to simulate a column for a left sidebar or one on
the right.

Figure 11-8. Two background images—one for a left sidebar, and the other for a
right sidebar

Because the background image needs to be applied to the parent element, I
amended the #wrapper style block in left2col.html like this:

#wrapper {
 width: 760px;
 margin: 0 auto;
 background-color: #FFF;
 background-image: url(../images/sidebar_left.jpg);
 background-repeat: repeat-y;
 border-left: #252017 solid 1px;
 border-right: #252017 solid 1px;
}

This tiles sidebar_left.jpg vertically down the left side of the outer <div>,
producing the effect of a column that stretches the full height of the sidebar,
as shown in Figure 11-9.

 Getting StartED with CSS

 420

Figure 11-9. Tiling a background image vertically on the parent element creates the
illusion of a full-height column.

ExplainED
As explained in Chapter 5, background images are placed by default at the
top-left of an element. So, setting the background-repeat property to
repeat-y, tiles the image nicely down the left of the wrapper <div>. This
works fine because the header and footer have backgrounds of their own,
so they conceal the faux column. If the header and footer didn’t have
their own backgrounds, you would need to wrap the sidebar and main
content in a separate <div> and apply the background image to that.

Moving the sidebar and its faux column to the right simply involves changing
the background image and controlling its position by setting background-
position to right like this:

#wrapper {
 width: 760px;
 margin: 0 auto;
 background-color: #FFF;
 background-image: url(../images/sidebar_right.jpg);
 background-position: right;

421

Chapter 11: Are There Any Guidelines for Basic Page Layout?

 background-repeat: repeat-y;
 border-left: #252017 solid 1px;
 border-right: #252017 solid 1px;
}

Of course, you also need to switch the value of float to right in the #sidebar
style block and change the wide margin in the #mainContent block from margin-
left to margin-right. This switches the sidebar and its faux column to the
right, as shown in Figure 11-10, without the need for any changes to the HTML.
You can examine the full CSS code in right2col.html in the download files.

Figure 11-10. It’s just as easy to create a faux column on the right of the page.

What happens if the sidebar is longer?
Most of the time, the sidebar is likely to be shorter than the main content.
However, when elements are floated, all subsequent content moves up to fill
the vacated space. Consequently, if the main content is shorter than the
sidebar, the footer also moves up, and the sidebar protrudes beneath it, as
shown in Figure 11-11 (the code is in left2col_longsidebar.html).

 Getting StartED with CSS

 422

Figure 11-11. The design falls apart if the sidebar is longer than the main content.

The solution is simple: just add the clear property to the #footer style block
like this:

#footer {
 background-color: #252017;
 color: #DB9924;
 padding: 10px;
 clear: both;
}

This ensures that the footer remains beneath both columns, as shown in Figure
11-12 (the code is in left2col_clear.html).

423

Chapter 11: Are There Any Guidelines for Basic Page Layout?

Figure 11-12. The clear property moves the footer back into position.

Adding a “skip to main content” link for screen
readers
Blind and partially sighted people frequently access the Web using screen
readers, assistive technology that reads the content of a web page aloud.
Listening to the same content, such as a navigation menu, over and over again
becomes tedious, making your site less user-friendly to disabled people. So, it’s
a good idea to create a “skip to main content” link to allow them to get to the
meat of the page.

Creating the link is very simple. Assuming that your main content is in a <div>
with an ID, you just link to the <div> by prefixing the ID with a hash sign like
this:

Skip to main content

The link should go after the page heading, but before the navigation menu. The
Royal National Institute of Blind People (RNIB) in the United Kingdom
recommends leaving the skip link visible, but if this destroys your design, you
can hide it using absolute positioning. In left2col_skiplink.html, the skip link
has been added at the top of the sidebar and has been given an ID like this:

<div id="sidebar">

 Getting StartED with CSS

 424

 Skip to main content
 <h3>Sidebar heading</h3>

The link is hidden using the following style block:

#skiplink {
 position:absolute;
 top: -200px;
}

The negative top position moves the link above the top of the page, so it’s
hidden from visual browsers but remains accessible to screen readers. It’s also
a good idea to provide another link at the top of the main content for screen
readers to skip back to the main navigation. You can hide it in the same way,
using absolute positioning.

LinkED
For information and advice on how to make your website accessible, visit
the RNIB Web Access Centre at www.rnib.org.uk/xpedio/groups/public/
documents/code/public_rnib008789.hcsp. The advice covers all types of
disability, not just sight problems.

In the United States, websites developed or purchased by federal agencies
must be compliant with Section 508 accessibility guidelines. Jim Thatcher,
one of the authors of Web Accessibility: Web Standards and Regulatory
Compliance (friends of ED, ISBN: 978-1-59059-638-8), has created an online
tutorial for Section 508 compliance at http://jimthatcher.com/
webcourse1.htm.

Even if you’re not obliged to be compliant with Section 508 or legislation
in your own country, making your sites accessible to people with
disabilities is a good idea. Most of the time, it’s not difficult, particularly
if you design your sites to be accessible from the outset.

Putting the main content first
If you have a lot of material in your sidebar, or are paranoid that search
engines will penalize you if your main content doesn’t come first, there are a
number of ways to create a two-column layout with the HTML in the following
order:

<body>
<div id="wrapper">

425

Chapter 11: Are There Any Guidelines for Basic Page Layout?

 <div id="header">
 Header content
 </div>
 <div id="mainContent">
 Main content
 </div>
 <div id="sidebar">
 Sidebar content
 </div>
 <div id="footer">
 Footer content
 </div>
</div>
</body>

The most obvious solution is to float the <div> that contains the main content.

Floating the main content
When you float the main content, the roles are reversed. A floated element
must have a defined width, so you apply the width to the main content and a
wide margin to the sidebar. Otherwise, everything else is exactly the same as
floating the sidebar.

In left2col_mainfloat.html, the main style rules are as follows:

#sidebar {
 margin-right: 520px;
 padding: 10px;
}
#mainContent {
 width: 480px;
 padding: 10px 20px;
 float: right;
}

This puts a wide right margin on the sidebar, making room for the main content
to float to the right. The margin is calculated by subtracting the width of the
sidebar from the width of the wrapper <div>. It’s also equivalent to the width
of the main content <div>, plus the padding on either side of the <div>.

To put the sidebar on the right, just reverse the side of the margin and float
like this (the code is in right2col_mainfloat.html):

#sidebar {
 margin-left: 520px;
 padding: 10px;
}
#mainContent {
 width: 480px;

 Getting StartED with CSS

 426

 padding: 10px 20px;
 float: left;
}

Using absolute positioning for the sidebar
Instead of floating either the main content or the sidebar, you can use absolute
positioning to move the sidebar alongside the main content. The technique is
very similar to floating the sidebar. You put a wide margin on one side of the
main content to make room for the sidebar and then move it into place. To
ensure that the sidebar moves with the rest of the layout when the browser
window is resized, you need to establish a containing block for it by setting the
position property of the wrapper <div> to relative.

The relevant style rules in left2col_absolute.html look like this:

#wrapper {
 width: 760px;
 margin: 0 auto;
 background-color: #FFF;
 background-image: url(../images/sidebar_left.jpg);
 background-repeat: repeat-y;
 border-left: #252017 solid 1px;
 border-right: #252017 solid 1px;
 position: relative;
}
#sidebar {
 position: absolute;
 top: 63px;
 width: 220px;
 padding:10px;
}
#mainContent {
 margin-left: 240px;
 padding: 10px 20px;
}

To position the sidebar on the right, you need one extra property: the
left offset for the sidebar. The following styles are used in
right2col_absolute.html:

#wrapper {
 width: 760px;
 margin: 0 auto;
 background-color: #FFF;
 background-image: url(../images/sidebar_right.jpg);
 background-position: right;
 background-repeat: repeat-y;
 border-left: #252017 solid 1px;
 border-right: #252017 solid 1px;

427

Chapter 11: Are There Any Guidelines for Basic Page Layout?

 position: relative;
}
#sidebar {
 position: absolute;
 top: 63px;
 left: 520px;
 width: 220px;
 padding: 10px;
}
#mainContent {
 margin-right: 240px;
 padding: 10px 20px;
}

This technique works very well when the sidebar content is shorter than the
main content. However, there is no way of controlling the sidebar’s overspill if
the main content is shorter. As Figure 11-13 shows, the extra content goes over
the footer and continues down the page (the code is in left2col_
absolute_long.html).

Figure 11-13. Absolute positioning is suitable only when the sidebar will always be
shorter than the main content.

 Getting StartED with CSS

 428

ExplainED
If you compare this with Figure 11-11, you’ll see an important difference
between floating the sidebar and using absolute positioning. When the
sidebar was floated in left2col_longsidebar.html, the footer content was
pushed to the right. In other words, the footer interacted with the floated
element. However, when you use absolute positioning, there is no
interaction.

In Figure 11-13, the sidebar overspill lies on top of the footer. Even though
the clear property has been declared in the #footer style block in
left2col_absolute_long.html, it has no effect. The clear property works
only with floats, not with absolutely positioned elements.

This is a major drawback of using absolute positioning for a sidebar. However,
it’s worth considering if you know the sidebar content will always be shorter
than the main content. It can also be useful if you want to align the sidebar
content with a background image.

Using a negative margin to float the sidebar into position
Yet another way of moving the sidebar into position when it comes after the
main content in the HTML markup involves floating both columns in the same
direction, and then adjusting their relative positions by applying a negative
margin to the sidebar. The concept is a little difficult to understand just by
looking at the code, so the following exercise takes you through the process
step by step.

Using a negative margin for a left sidebar

The download files for this chapter contain a file called
left_negative_start.html, which you can copy to your work files to follow this
exercise. If you just want to study the finished code, it’s in
left_negative_finish.html.

1. Save left_negative_start.html in your work folder as
left_negative.html, and load it into a browser. It should look like
Figure 11-14. The page contains only basic styling, and the sidebar
content appears after the main content.

429

Chapter 11: Are There Any Guidelines for Basic Page Layout?

Figure 11-14. The sidebar content comes after the main content before styling.

2. Add the background image to create the faux column for the sidebar
by amending the #wrapper style block like this:

#wrapper {
 width: 760px;
 margin: 0 auto;
 background-color: #FFF;
 border-left: #252017 solid 1px;
 border-right: #252017 solid 1px;
 background-image: url(../images/sidebar_left.jpg);
 background-repeat: repeat-y;
}

If necessary, adjust the file path to sidebar_left.jpg to match your
site setup. This tiles the background image down the left side of the
wrapper <div> to simulate a full-height column.

3. Both the sidebar and the main content need to be given a width and
floated left. The faux column is 240px wide, so that’s how wide the
sidebar should be. However, the #sidebar style block has already
applied 10px of padding all around, so the width property needs to be
set to 220px. Amend the style block like this:

#sidebar {

 Getting StartED with CSS

 430

 padding: 10px;
 width: 220px;
 float: left;
}

4. The width of the wrapper is 760px, so that leaves 520px for the main
content. However, the #mainContent style block has already applied
10px of top and bottom padding, and 20px of padding on the left and
right. As a result the width property needs to be set to 480px (520px –
20px – 20px = 480px). You also need to give the <div> a 240px left
margin to make room for the sidebar and float the <div> to the left.
Change the #mainContent style block as follows:

#mainContent {
 padding: 10px 20px;
 width: 480px;
 margin-left: 240px;
 float: left;
}

5. Save the page, and view it in a browser. It should now look like Figure
11-15.

Figure 11-15. The trick of a negative margin is to get the sidebar to move up into
the space created for it.

431

Chapter 11: Are There Any Guidelines for Basic Page Layout?

6. The large left margin leaves room for the sidebar, but it can’t occupy
that space because it comes after the main content in the HTML
markup. However, CSS lets you use negative values for margins. To see
how negative margins affect a float, try a little experiment by
amending the #sidebar style block like this:

#sidebar {
 padding: 10px;
 width:2 20px;
 float: left;
 margin-left: -50px;
}

The result is shown in Figure 11-16.

Figure 11-16. Adding a small negative left margin to the sidebar moves it to the left
and out of the wrapper <div>.
7. That’s probably not surprising. But what happens if the negative

margin is the same size as the width of the sidebar? Change the value
of the negative margin like this:

#sidebar {
 padding: 10px;
 width: 220px;
 float: left;
 margin-left: -240px;
}

Figure 11-17 shows the result.

 Getting StartED with CSS

 432

Figure 11-17. Applying a negative left margin the same size as the width of the
sidebar allows it to float over the main content.

ExplainED
You’re probably wondering why the sidebar has moved to the right after
applying a negative left margin. It’s because both the main content and
the sidebar are floated left in that order. If there were sufficient space
for both of them, they would be alongside each other, with the sidebar on
the right. Adding the 240px positive left margin to the main content <div>
resulted in all horizontal space being taken up inside the wrapper, forcing
the sidebar down below the main content, as shown in Figure 11-15.

Applying a negative left margin of -50px to the sidebar didn’t create
sufficient space for it to move back up to the same level as the main
content. So, the sidebar simply moved further left (see Figure 11-16).
However, making the negative margin as wide as the sidebar created
enough space for the sidebar to move back up to the same level as the
main content. The fact that they now overlap is irrelevant. The bigger the
negative margin, the further left the sidebar will go. The plan is to move
it far enough so that it sits in the empty space to the left of the main
content.

433

Chapter 11: Are There Any Guidelines for Basic Page Layout?

8. To maneuver the sidebar into place, you need to move it further to
the left by the same width as the main content <div>—in other words,
520px including padding. In fact, the negative margin needs to be the
same as the overall widths of the sidebar and main content combined:
760px. Amend the #sidebar style block as follows, and the sidebar
moves exactly into place:

#sidebar {
 padding: 10px;
 width: 220px;
 float: left;
 margin-left: -760px;
}

9. There’s just one fly in the ointment. Yes, you’ve guessed it—IE6. This
technique triggers the IE double-margin bug. When you add a margin
to an element and float it to the same side, IE6 doubles the margin. In
addition, IE6 has problems with the clear property in the #footer style
block. The result is the mess you see in Figure 11-18.

Figure 11-18. The double-margin bug and problems with the footer destroy the
layout in IE6.

Fortunately, both problems are fixed simply—and in ways that don’t
cause problems in other browsers.

10. To get rid of the double-margin bug, all that’s necessary is to set the
display property to inline on the element that has a margin on the
same side as it has been floated. Amend #mainContent style block like
this:

#mainContent {
 padding: 10px 20px;
 width: 480px;
 margin-left: 240px;

 Getting StartED with CSS

 434

 float: left;
 display: inline;
}

11. To solve the problem with the footer, add an empty <div> above the
footer, with an inline style like this:

<div style="clear:both"></div>
<div id="footer">Footer content</div>

Because the <div> is empty, it adds no height, but the inline style
makes sure that IE6 clears the floats correctly. You could use a class
or ID selector instead of the inline style, but using an inline style is a
quick and simple fix for this problem.

You can check your code, if necessary, against left_negative_
finish.html in the download files for this chapter.

If you want to use this technique to locate the sidebar on the right, you still
float both the main content and the sidebar to the left. However, you give the
main content a positive right margin and the sidebar a negative left one. The
size of both margins should be the same—in other words, the width of the
sidebar. You can study the code in right_negative.html in the download files.
The relevant style rules look like this:

#sidebar {
 width:220px;
 padding:10px;
 float: left;
 margin-left: -240px;
}
#mainContent {
 padding:10px 20px;
 width:480px;
 float: left;
 margin-right: 240px;
 display:inline;
}

How do I make a more flexible two-column
layout?
All the two-column examples so far have used a fixed width for the outer
wrapper. But what if you want a liquid or elastic design? The underlying
principles are the same. All you need to do is to replace the pixel
measurements with percentages or ems. However, there is a problem: the faux
column technique used in the preceding examples won’t work with a variable-
width sidebar, because the background image is tiled vertically in the wrapper

435

Chapter 11: Are There Any Guidelines for Basic Page Layout?

<div>. The image that creates the illusion of a column remains the same size
regardless of the width of the sidebar.

If you’re happy for the sidebar to remain a fixed width, you can create a hybrid
two-column layout by allowing the <div> that contains the main content to
expand and contract when the browser window is resized. In
left2col_hybrid.html, the #wrapper style block uses the min-width and max-
width properties for a more flexible two-column layout like this:

#wrapper {
 min-width: 760px;
 max-width: 980px;
 margin: 0 auto;
 background-color: #FFF;
 background-image: url(../images/sidebar_left.jpg);
 background-repeat: repeat-y;
 border-left: #252017 solid 1px;
 border-right: #252017 solid 1px;
}

If you want a genuinely liquid two-column layout based on percentage widths,
you need to use a technique developed by web standards activist Zoe
Gillenwater (http://zomigi.com/). It involves creating a background image at
least 2000 pixels wide. The technique relies on the way the background-
position property handles percentage values. As explained in Chapter 5,
percentages are calculated not only in relation to the background but also in
relation to the image itself. So, if you set the horizontal position of a
background image to 25%, the point at 25% of the image’s width is placed at
25% of the way across the element’s background. So, if you want to create a
liquid layout that has a sidebar occupying 25% of the horizontal width, you
need to create a background image for both columns like sidebar_liquid.jpg
in the download files for this chapter. This image is 2000px × 10px. The left
side acts as the sidebar background and is 500 pixels wide. The rest is white
and acts as the background to the main content.

Because backgrounds are visible only within the element to which they are
applied, and not through the element’s border or margins, any excess is hidden
from view. For example, if the overall width of the element containing the two
columns is 800px wide, the 25% point of the background image is displayed at
200px from the left, and the remaining 300 pixels on the left are hidden from
view. But if the element is expanded to 1200 pixels, the 25% point is displayed
at 300px, revealing 100 pixels of the image that was previously hidden. This is
shown diagrammatically in Figure 11-19. When the element is 800 pixels wide,
everything outside the solid box is hidden, but when the element is expanded

 Getting StartED with CSS

 436

to 1200 pixels, the parts of the background image within the dotted lines are
revealed.

Figure 11-19. Using an extra wide background image makes it possible to create faux
columns for a liquid layout

You can see this technique in action in left2col_liquid.html in the download
files. The style rules that control the outer wrapper and the two columns look
like this:

#wrapper {
 margin: 0 10%;
 background-color: #FFF;
 background-image: url(../images/sidebar_liquid.jpg);
 background-position: 25% 0;
 background-repeat: repeat-y;
 border-left: #252017 solid 1px;
 border-right: #252017 solid 1px;
}
#sidebar {
 width: 21%;
 float: left;
 padding: 2%;
}
#mainContent {
 margin-left: 25%;
 padding: 10px 20px;
}

The width of the sidebar is 21%, but the 2% padding on either side makes 25%
overall. The main content column is kept in position by its 25% left margin.

LinkED
This technique is described in detail by Zoe Gillenwater in “Creating
Liquid Faux Columns” at www.communitymx.com/content/article.cfm?
cid=afc58. Zoe’s article also describes how to apply a similar technique to
a three-column layout.

437

Chapter 11: Are There Any Guidelines for Basic Page Layout?

Creating a three-column layout
Once you understand how to create a two-column layout, there isn’t a great
deal of difference in creating three or more columns. Most of the work is done
with floating and margins. You can also use absolute positioning for the outside
columns if you constrain the center one with margins on both sides. When using
absolute positioning for the column on the right, use the right offset instead of
the left one. Another technique is to wrap two elements within an outer <div>
and float them into position. You can then treat the outer <div> as a single
element, and if necessary, float it, too.

Let’s take a look at some of the options.

Creating faux columns for a three-column layout
In CSS2.1, you can apply only one background image to an element. So, to
create faux columns for a three-column layout, you cannot add different
background images for each column. Creating faux columns for a fixed-width
layout is the simplest option.

Using a single image for a fixed-width layout
If you have a fixed-width layout, the answer is simple: create a single image
that acts as the background for all three columns. In threecol_fixed.html (see
Figure 11-20), the background to the three columns is created by
sidebar_both.jpg, which is 960px × 20px. The sidebar backgrounds are 220px
wide, separated by 520px of white background.

 Getting StartED with CSS

 438

Figure 11-20. A single image creates the backgrounds for all three columns in a
fixed-width layout.

As in the two-column layouts, the background image is tiled vertically down the
wrapper <div>. The style rules that control the three-column fixed-width
layout in threecol_fixed.html look like this:

#wrapper {
 width: 960px;
 margin: 0 auto;
 background-color: #FFF;
 background-image: url(../images/sidebar_both.jpg);
 background-position: center;
 background-repeat: repeat-y;
 border-left: #252017 solid 1px;
 border-right: #252017 solid 1px;
}
#sidebar1, #sidebar2 {
 width: 200px;
 padding: 10px;
}
#sidebar1 {
 float: left;
}
#sidebar2 {
 float: right;
}
#mainContent {
 margin: 0 220px;

439

Chapter 11: Are There Any Guidelines for Basic Page Layout?

 padding: 10px 20px;
}

Using multiple images for a hybrid layout
Creating a hybrid three-column layout, in which the sidebars have a fixed
width, but the center column is liquid, involves adding an extra wrapper <div>.
The <div> serves no other purpose than to provide an element to which the
second background image can be applied. The basic HTML structure of
threecol_hybrid.html looks like this:

<body>
<div id="wrapper">
 <div id="innerwrapper">
 <div id="header">
 Heading content
 </div>
 <div id="sidebar1">
 Left sidebar content
 </div>
 <div id="sidebar2">
 Right sidebar content
 </div>
 <div id="mainContent">
 Main content
 </div>
 <div id="footer">
 Footer content
 </div>
 </div>
</div>
</body>

The style rules that control the two wrappers look like this:

#wrapper {
 margin: 0 10%;
 background-color: #FFF;
 background-image: url(../images/sidebar_left.jpg);
 background-repeat: repeat-y;
 border-left: #252017 solid 1px;
 border-right: #252017 solid 1px;
}
#innerwrapper {
 width: 100%;
 background-image: url(../images/sidebar_right.jpg);
 background-position: right;
 background-repeat: repeat-y;
}

 Getting StartED with CSS

 440

The outer <div> has no fixed width, but the inner one is set to 100%. Since it’s
nested inside the outer one, both are always the same width. The background
image for the right sidebar is then applied to the inner <div> in the same way
as before.

AdvancED
To create faux columns for a fully liquid three-column layout, follow the
instructions in Zoe Gillenwater’s article that I referred to earlier in this
chapter: www.communitymx.com/content/article.cfm?cid=afc58.

Both threecol_fixed.html and threecol_hybrid.html put the sidebar content
before the main content in the HTML markup. What if you want to put the main
content first?

Putting the main content first in a three-column
layout
You can either use the negative margin technique described earlier in the
chapter or create a column container to float two columns together. Both
techniques work best with fixed-width layouts. The following exercises take
you through each technique step by step.

Using a negative margin for the left sidebar

To follow this exercise, use threecol_negative_start.html in the download
files for this chapter. If you just want to study the finished code, it’s in
threecol_negative_finished.html.

1. Copy threecol_negative_start.html to your work folder, and save it
as threecol_negative.html. If you test it in a browser, it should look
like Figure 11-21.

441

Chapter 11: Are There Any Guidelines for Basic Page Layout?

Figure 11-21. To start with, the content for both sidebars is after the main content.

2. The sidebar backgrounds in sidebar_both.jpg are 220px wide. The
existing style rule adds 10px of padding to the sidebars, so you need to
set the width property to 200px. Also create style rules to float the
sidebars in opposite directions like this:

#sidebar1, #sidebar2 {
 padding: 10px;
 width: 200px;
}
#sidebar1 {
 float: left;
}
#sidebar2 {
 float: right;
}

3. The overall width of the wrapper is 960px, leaving 520px for the main
content. However, the main content has 20px on either side, so its
width property needs to be set to 480px. Also float the main content
to the left. Amend the #mainContent style block like this:

#mainContent {
 padding: 10px 20px;
 width: 480px;
 float: left;
}

 Getting StartED with CSS

 442

4. If you save and test the page now, it should look like Figure 11-22.

Figure 11-22. The main content and left side bar are in the wrong places.

5. Apply a left margin to the main content to make room for the sidebar
like this:

#mainContent {
 padding: 10px 20px;
 width: 480px;
 float: left;
 margin-left: 220px;
}

6. To move the left sidebar into place, give it a negative left margin
equal to its own width plus that of the main content. Don’t forget that
you need to add any padding and borders in the calculation. There are
no borders on either element in this case, so the calculation is 200px +
10px + 10px + 480px + 20px + 20px = 740px. Amend the #sidebar1
style block like this:

#sidebar1 {
 float: left;
 margin-left: -740px;
}

443

Chapter 11: Are There Any Guidelines for Basic Page Layout?

7. Save the page, and test it in a browser. All columns should now be in
the right place. You need to make just two small amendments to
prevent the layout from falling apart in IE6. The main content <div>
has a margin on the same side as it is floated, so you need to set its
display property to inline to prevent the IE6 double-margin bug like
this:

#mainContent {
 padding: 10px 20px;
 width: 480px;
 float: left;
 margin-left: 220px;
 display: inline;
}

8. Also, to constrain the footer in IE6, add an empty <div> just above the
footer with an inline style to clear the floats:

<div style="clear:both"></div>
<div id="footer">Footer content</div>

You can compare your code, if necessary, with threecol_
negative_finish.html in the download files for this chapter.

Another technique for creating a three-column layout is to wrap two of the
columns in a container <div>, give the container a width, and float the columns
inside it. You can then treat the container as a single element, and float it to
one side, as shown in the following exercise.

Using a column container

To follow this exercise, use threecol_wrapfloat_start.html in the download
files for this chapter. If you just want to look at the finished code, it’s in
threecol_wrapfloat_finish.html.

1. Copy threecol_wrapfloat_start.html to your work folder, and save it
as threecol_wrapfloat.html. If you load the file into a browser, it
should look similar to Figure 11-21. The only significant difference is
that I have already assigned widths to the main content and sidebars
to save time. Both sidebars come after the main content in the HTML
markup.

2. Wrap the main content and left sidebar in a <div>, and assign it the
ID, inner, like this (the line with three dots indicates HTML code
omitted for reasons of space):

<div id="inner">
 <div id="mainContent">

 Getting StartED with CSS

 444

 . . .
 <p>This side bar is floated left inside the inner wrapper.</p>
 </div>
</div>

3. Create a style rule for the new <div>. It needs to be the same width
as its content. The main content <div> is 480px, plus 20px padding on
either side (520px), and the left sidebar is 200px, plus 10px of padding
on either side (220px), making a total of 740px. Also float the new
<div> left. The style block should look like this:

#inner {
 width: 740px;
 float: left;
}

4. Float the main content and left sidebar in opposite directions inside
the new <div>:

#sidebar1 {
 float: left;
}
#mainContent {
 width: 480px;
 padding: 10px 20px;
 float: right;
}

5. Float the second sidebar right by creating the following style rule:

#sidebar2 {
 float: right;
}

6. Keep IE6 happy by adding an empty <div> with an inline style just
before the footer to clear the floats like this:

<div style="clear:both"></div>
<div id="footer">Footer content</div>

That’s all there is to it. You can check your code, if necessary, against
threecol_wrapfloat._finish.html in the download files for this
chapter.

Creating subcolumns
Creating a column container, as in the preceding exercise, is a convenient way
to add further columns to your layout. Figure 11-23 shows a highlighted two-
column subsection embedded in the center column.

445

Chapter 11: Are There Any Guidelines for Basic Page Layout?

Figure 11-23. Using a combination of floats and the overflow property, it’s easy to
create columns within columns.

The highlighted section in the center column in Figure 11-23 is created by
floating two elements in opposite directions inside a <div>, which has its
overflow property set to auto. As explained in Chapter 6, you can use this
technique to maintain a background behind floated elements.

You can examine the full code in threecol_subcols.html, but the basic HTML
markup for the highlighted section looks like this:

<div id="subcol_wrapper">
 <h3>Points to note</h3>
 <div id="subcol1">
 <p>These sub-columns are floated. . .</p>
 </div>
 <div id="subcol2">
 <p>Using the overflow property. . .</p>
 </div>
</div>

The following styles control the highlighted section and subcolumns:

#subcol_wrapper {
 background-color: #EAE5CE;
 overflow: auto;
}

 Getting StartED with CSS

 446

#subcol1 {
 width: 220px;
 padding:0 10px;
 float: left;
}
#subcol2 {
 width: 220px;
 padding: 0 10px;
 float: right;
}

Unfortunately, IE6 doesn’t respect the overflow property, so you need to add
the following IE conditional comment after the main styles:

<!--[if lte IE 6]>
<style type="text/css">
#subcol_wrapper {
 zoom: 1;
}
</style>
<![endif]-->

This proprietary property fixes the problem in IE6. Since it’s in an IE
conditional comment, it’s ignored by other browsers and the W3C validator.

AdvancED
I have used ID selectors for the highlighted section and subcolumns, but
you could use classes instead if you want to have several sections like this
on a page.

Table-related display—the future of
layout?
HTML tables were the mainstay of web page layout for a long time. In fact,
many people still haven’t made the transition to CSS layouts. So, does this
section suggest we’re about to come full circle? The answer’s a mixture of no
and maybe.

The table-related display that I’m referring to are the values of the display
property listed in Table 11-2.

447

Chapter 11: Are There Any Guidelines for Basic Page Layout?

Table 11-2. Table-Related Values of the Display Property

Table inline-table table-caption

table-header-group table-footer-group table-column-group

table-column table-row-group table-row

table-cell

As you have seen in previous chapters, you can use the display property to
change the way browsers treat elements, for example, turning inline elements
into block-level ones and vice versa. The implication of the list of values in
Table 11-2 is that you can get a paragraph, <div>, or indeed any element to act
like a table cell. You can also get elements to act like table rows. The great
advantage of this is that the height of all the cells in a table row is
automatically the same as the tallest element. So, if you can get elements to
act like table cells, you solve at a stroke the problem of equal height columns,
without the need for faux columns.

The good news is that you can—all modern browsers support these table-
related values. The bad news is that the term “modern browser” doesn’t
include IE6 or IE7. At the time of this writing, IE6 and IE7 account for roughly
40 percent of all browsers in current use, so this isn’t yet a realistic method of
layout.

In all modern browsers, including IE8, threecol_table.html looks the same as
the other three-column layouts described in this chapter (see Figure 11-20).
However, when viewed in IE6 or IE7, the columns are not rendered, and you
get the result shown in Figure 11-24 (the screenshot was taken in IE7
compatibility mode in IE8).

 Getting StartED with CSS

 448

Figure 11-24. IE6 and IE7 ignore the table-related values of the display property,
displaying each <div> as a separate block.

Although these table-related values force elements to act like parts of a table,
you don’t need to create the same type of structure as an HTML table. So, to
create a three-column layout that looks the same as Figure 11-10, all that’s
necessary is to put the columns in the same order as you want them to appear
and set their display property to table-cell. There’s no need for a table
element or for a table row. The CSS specification says that browsers should
create “anonymous” table elements if they are missing.

The HTML markup in threecol_table.html looks like this:

<body>
<div id="wrapper">
 <div id="header">
 Header content
 </div>
 <div id="sidebar1">
 Left sidebar
 </div>
 <div id="mainContent">
 Main content
 </div>
 <div id="sidebar2">
 Right sidebar

449

Chapter 11: Are There Any Guidelines for Basic Page Layout?

 </div>
 <div id="footer">
 Footer content
 </div>
</div>
</body>

The style rules for the three columns look like this:

#sidebar1, #sidebar2 {
 width: 180px;
 padding: 10px;
 display: table-cell;
 background-repeat: repeat-y;
}
#sidebar1 {
 background-image: url(../images/sidebar_left.jpg);
 background-position: right;
}
#sidebar2 {
 background-image: url(../images/sidebar_right.jpg);
 background-position: left;
}
#mainContent {
 padding: 10px 20px;
 display: table-cell;
 width: 520px;
}

Simply setting the display property of each <div> to table-cell is all that it
takes! Because the header and footer are block-level elements, the browser
automatically assumes that the three elements in between are to be treated as
a single-row table. There is no need to create artificial elements to simulate
the table or table row.

After seeing this simple example, you’re probably hoping for the instant demise
of IE6 and IE7, so that you can dispense with all the floats and faux columns. It
certainly works well for a basic column layout, but things begin to get more
complicated once you attempt anything more ambitious. As with HTML tables,
you can nest a CSS table inside an element that has its display property set to
table-cell. However, there is no equivalent of the HTML rowspan and colspan
attributes.

Another drawback is that using the table-related values restricts the properties
you can apply to an element. For example, you can’t apply margins or padding
to an element that simulates a table row; you can apply padding, but not
margins, to an element that simulates a table cell; and so on.

 Getting StartED with CSS

 450

Figure 11-25 shows threecol_table_subcols.html, which contains a highlighted
section with subcolumns similar to the one in Figure 11-23. The highlighted
section is a <div> with its display property set to table. Each column inside
the highlighted section is a <div> with its display property set to table-cell.
However, the lack of equivalent for the colspan attribute presented problems
for creating the top row. To get it to span across the whole section, I
eventually wrapped the <h3> heading in a <div> with its display property set to
table-header-group. Although this worked, adding a bottom border to the
heading resulted in it going only halfway across the row, because the browser
automatically created an anonymous empty cell alongside. To get the border, I
applied it to the <div> simulating the table row, but it goes all the way across,
rather than having the elegant 10px margin on either side that you can see in
Figure 11-25.

Figure 11-25. You can use the table-related display values to nest a table-like
structure inside a table cell.

I’m sure designers will come up with attractive and inventive uses of the table-
related values of the display property, but I think the ecstatic welcome that
some people have given to them finally being supported in IE8 is premature.
Using these techniques will become a practical reality only when IE6 and IE7
finally disappear from the scene. Then they will become another useful tool in
the web designer’s toolbox, but they’re not a magic wand that solves all the
problems of CSS layout.

451

Chapter 11: Are There Any Guidelines for Basic Page Layout?

Chapter review
This has been a long chapter, with a lot of information to absorb, yet it has
merely scratched the surface of page layout with CSS. All the layouts covered
here have a distinctly boxy look, but don’t let that put you off. The purpose
has been to provide a series of techniques to create a solid framework upon
which to build your designs. What you put in the one-, two-, or three-column
layouts is up to you. Once you have the columns, you can put other elements
inside them, and position them using margins and padding, without the need to
worry about nesting tables or the effect of one element on the rest of a row or
column.

In the next, and final, chapter, I’ll show you how to create a style sheet that
controls how your web pages look when printed out. I’ll also tidy up a few
loose ends by describing a handful of lesser-used CSS2.1 properties that didn’t
fit conveniently into earlier chapters.

453

453

Chapter 12
How Do I Create Styles for
Printing?
Web designers put a lot of effort into creating pages that look great onscreen
but rarely give a thought to what they look like when printed out. How often
have you bought something online and wanted to print out the invoice? Instead
of a professional-looking document, you get all the website navigation down
the side, leaving not enough room for the figures that indicate how much you
paid. If you’re lucky, they come out on a second sheet. It’s not at all
necessary. CSS gives you considerable control over the way your web pages
print out. There’s no need to create a separate page for printing. It can all be
done with a style sheet.

In this chapter, I’ll show you how to create a print style sheet and use some of
the special properties for printed output. After that, I’ll take a look at the
remaining three CSS2.1 visual properties that have not been covered elsewhere
in the book: cursor, outline, and quotes.

In this chapter, you’ll learn about the following:

� What considerations should go into planning a print style sheet

� How to set the margins for a printed page

� How to avoid page breaks at inconvenient points

� Using the content property to display the URL of links

� Changing the look of the cursor

� Improving accessibility with outlines

� Automatically generating curly quotes and nesting them in correct
sequence

Let’s start by looking at the main differences between using CSS for viewing
web pages onscreen and printing.

 Getting StartED with CSS

 454

What’s different about print CSS?
In many respects, creating a style sheet for printing is no different from the
type of style sheet discussed so far. Margins and padding work the same way.
So do things like font definitions and line height. However, the crucial
difference is that printing is a static medium. The width of a printed page is
fixed, but you have no idea what size paper will be used, so the content of a
wide onscreen layout is likely to be truncated.

By default, most browsers don’t print background colors and images. This can
have disastrous consequences if your web page uses a light color on a dark
background: you risk having text that’s virtually illegible when printed. The
only exception appears to be white text on black. Most browsers automatically
reverse the colors and print the text in black. Another consideration is that
links cannot be followed, and the URL is hidden unless you use the URL as the
link text.

Other things that need to be taken into consideration are fonts and font sizes.
Most typographical experts recommend serif fonts for print and sans-serif fonts
for web pages. The thinking behind this is that serifs (the hooks on the ends of
letters) often don’t display clearly on a computer screen, particularly at small
font sizes. It’s also widely believed that serifs make it easier to read text on a
printed page. However, there appears to be little scientific evidence for this—
which is, perhaps, a good thing since friends of ED books are printed in sans-
serif fonts!

LinkED
For a succinct analysis of the evidence regarding the relative legibility of
sans-serif and serif fonts, see www.alexpoole.info/academic/
literaturereview.html.

Users can increase the font size in a browser but not on a printed page. So, it’s
important to make sure all your text prints at a size that is comfortable for the
average person to read.

Perhaps the biggest consideration with a print style sheet is deciding which
parts of your web page are unnecessary. Before insisting that everything is
necessary and in the right place, think again. Do you really want your
navigation menu printed out? What about the search form? Neither is going to
be any use on the printed page, so they’re good candidates for exclusion by

455

Chapter 12: How Do I Create Styles for Printing?

setting their display property to none. You also need to exclude parts of the
page that consist solely of background images, because they won’t normally be
printed out and will leave unsightly gaps in the page. If an image is important,
and you want it included in printouts, it should be embedded in the HTML with
the tag. It’s only background images that printers ignore.

ExplainED
Printing out background colors and images is controlled by the browser,
and it’s up to the individual user to decide whether to turn on the option
to print them. By default, most browsers turn off this option to speed up
printing and avoid wasting ink. There is no way to override the user’s
setting with CSS or any other web technology.

While I’m on the subject of restrictions, let’s look at what else you can’t do
with a print style sheet.

What print style sheets cannot do
Print style sheets can do a lot of things, but several potentially useful features
are not supported, namely:

� You cannot specify the size of the printed page.

� You cannot change the orientation of the page.

� As mentioned in the previous section, you have no control over the
printing of background colors and images.

Controlling the size and orientation of the page were originally part of CSS2,
but browsers were unable to implement these two features, so they were
dropped from CSS2.1. The size property, which is not part of CSS2.1, was
intended to have controlled these features. You might see references to it in
older books or online tutorials. Changing the orientation to landscape would be
particularly useful when information needs to spread across the page.
Unfortunately, Opera is the only major browser that supports the size
property. So don’t waste time trying to fathom why it doesn’t work.

 Getting StartED with CSS

 456

LinkED
The size property has been moved to the Paged Media module of CSS3.
When eventually implemented by browsers, it will allow you to specify
both the size and orientation of the page. For details of what’s proposed,
see www.w3.org/TR/css3-page/#page-size-prop.

Setting page margins with the @page rule and
pseudo-classes
Although you can’t yet set the size of the printed page, you can—and should—
set the page’s margins. You do this with the @page rule. The @page rule accepts
only the margin shorthand property or the individual margin properties, such as
margin-left. Moreover, you cannot use em or ex as units of measurement with
the @page rule.

Technically speaking, you can use pixels to specify the margins of the printed
page, but it’s not a good idea. When creating a print style sheet, you’re no
longer working in a fluid medium, so you should use the absolute units of
measurement listed in Table 12-1.

Table 12-1. Absolute Units of Measurement for Use in Print Style Sheets

Unit Description

in Inch (2.54 centimeters)

cm Centimeter (0.394 in)

mm Millimeter (0.039 in)

pt Point, a typographical unit equivalent to 1/72 of an inch (0.353 mm)

pc Pica, a typographical unit equivalent to 12 points (4.233 mm).

So, to add a one-inch margin all around a page (the same as a default
document in Microsoft Word), put the following rule in your print style sheet:

@page {
 margin: 1in;
}

457

Chapter 12: How Do I Create Styles for Printing?

The following does the same using metric measurements:

@page {
 margin: 2.54cm;
}

Or, if you come from a traditional print background, you might prefer this:

@page {
 margin: 6pc;
}

As with styles that are rendered in a browser, there must be no space between
the number and the unit of measurement.

In addition to absolute units of measurement, you can also use percentages.
Percentage values for the left and right margins are relative to the width of the
printed page; those for the top and bottom margins are relative to the page’s
height.

The @page rule supports three pseudo-classes, namely:

� :left

� :right

� :first

As their names suggest, the :left and :right pseudo-classes define the
margins for multiple pages as if they were bound in a book. So, odd numbered
pages use the margins defined for the :right pseudo-class, and even numbered
pages use those defined for the :left pseudo-class. The :first pseudo-class
defines the margins for the first page. For the sake of clarity, the page
numbers refer to the number of pages printed out by a single web page. A web
page is a single, continuous entity, but when printed out, it often covers
several pages of print.

So, for example, if you expect pages to be printed out double-sided and want
to leave a wider margin for binding, you could use the following rules:

@page {
 margin: 2cm;
}
@page :left {
 margin-right: 3cm;
}
@page :right {
 margin-left: 3cm;
}

 Getting StartED with CSS

 458

AdvancED
At the time of this writing, IE8 and Opera are the only mainstream
browsers that support setting page margins with the @page rule. In fact,
Opera has supported all aspects of print CSS since version 6. Other
browsers default to a margin of approximately 1 inch (2.54 cm) all around
the page.

IE8 and Opera disagree on how to handle the :left and :right pseudo-
classes In languages that are written from right to left, such as Arabic,
Hebrew, and Urdu. Opera gets it wrong by treating odd numbered pages as
being on the right, whereas in right-to-left languages, they are normally
on the left.

Controlling where to break content between
pages
It can be infuriating when printing out a web page to discover that a heading is
printed at the bottom of a page, and all the information relating to that
heading is on the next page without anything to identify it. To avoid such
situations, CSS provides the five properties listed in Table 12-2.

Table 12-2. Page Properties used for Print Style Sheets

Property Initial Value Inherited Description

page-break-after auto No Lets you specify how to handle

page breaks after a particular

element. For example, you can

tell the browser to start a new

page immediately after a table.

page-break-before auto No Lets you specify whether a

new page should be started

before a particular element.

page-break-inside auto No Lets you specify whether a

new page can be started in the

middle of an element.

459

Chapter 12: How Do I Create Styles for Printing?

Property Initial Value Inherited Description

orphans 2 Yes Specifies the minimum number

of lines of an element that

must be displayed at the

bottom of the page. If fewer

lines would be displayed, the

whole item is moved to the

next page.

widows 2 Yes Specifies the minimum number

of lines of an element that

must be displayed at the top of

a page. If fewer lines would be

displayed, the whole item is

moved from the previous page.

The page-break-after and page-break-before properties accept one of the
following values:

� auto: Leave it up to the browser to decide where to put the page
break. This is the default.

� always: Force a page break before or after the specified element.

� avoid: Avoid a page break, if possible.

� left: Force one or two page breaks before or after the specified
element, so the next page is formatted as a left page.

� right: Force one or two page breaks before or after the specified
element, so the next page is formatted as a right page.

� inherit: These properties are not inherited by default, so this value
can be used to force the element to take the same value as its parent.

The page-break-inside property accepts only auto, avoid, or inherit.

The orphans and widows properties should be familiar to anyone with a print
background. It’s generally considered bad practice in printing to leave only a
single line of a paragraph at the top or bottom of a page. By default, browsers
are expected to print at least two lines of a block-level element before and
after a page break. So if, for example, a three-line paragraph appears at the
bottom of a page, but there is room for only two lines, the whole paragraph
will be moved to the next page. You can use these properties to change the
minimum number of lines that should be kept together. It goes without saying,
the value should be a positive integer; negative numbers and decimals would

 Getting StartED with CSS

 460

make no sense. The bigger the number you use, the more uneven your printed
pages are likely to look. For example, if you set both orphans and widows to 4,
the whole of any paragraph with fewer than eight lines will be moved to the
next page if there isn’t sufficient room for it at the bottom of the current
page.

AdvancED
Normally, you would use the same value for orphans and widows; but if
you do want different values, the easy way to remember which is which is
that orphans are the little ones at the bottom, and widows are the lonely
ones at the top.

The five properties in Table 12-2 apply to block-level elements, but the CSS2.1
specification says that browsers are free to apply them to other elements, such
as table rows. Unfortunately, like the @page rule, this aspect of CSS2.1 is still
poorly supported by browsers. At the time of this writing, only IE8 and Opera
implement any of the properties listed in Table 12-2.

ExplainED
Setting page breaks in a print style sheet should be regarded as indicating
a desirable outcome, rather than something that can be relied up. You
have no way of predicting the size of paper that will be used. Also, there
might be conflicting demands of where the page should be broken. It’s left
up to the browser to decide what is possible in any given set of
circumstances.

Displaying the URL of links
There’s better news about a really useful feature for print CSS. Most websites
use ordinary text to link to other pages and external websites; the URL is
buried in the HTML code. Unfortunately, the URL is lost when the page is
printed out. However, all current browsers except IE6 and IE7 support
generated content. As explained in Chapter 8, the content property in
combination with the :after pseudo-element can display the value of an HTML
attribute. This means you can extract the URL of a link from its href attribute,
and print it out after the link.

461

Chapter 12: How Do I Create Styles for Printing?

The basic rule for printing out the URL in parentheses after a link looks like
this:

a:after {
 content: " (" attr(href) ") ";
}

This adds a space after the link text, followed by an opening parenthesis. The
attr() function extracts the value of the href attribute, and displays it
followed by a closing parenthesis and space.

There’s one small problem with this in that it displays all URLs. Assuming that
you don’t use fully qualified URLs for internal links, you can display only
external URLs with an advanced selector like this:

a[href^="http://"]:after {
 content: " (" attr(href) ") ";
}

This adds the URL after a link only if the href attribute begins with http://. If
you want to include the URLs for secure pages that begin with https://, use
the following:

a[href^="http"]:after {
 content: " (" attr(href) ") ";
}

What if you want to display the URLs for your internal links, too? Internal links
don’t normally use a full URL, so using a:after on its own isn’t really suitable.
However, as long as you make all your internal links relative to the site root,
the content property can handle the situation beautifully with the following
advanced selector:

a[href^="/"]:after {
 content: " (http://www.example.com" attr(href) ") ";
}

This adds http://www.example.com in front of the site-root-relative link,
automatically producing the full URL when the page is printed out.

 Getting StartED with CSS

 462

ExplainED
Most HTML editors create internal links relative to the current document.
In fact, all the links in the download files for this book are document-
relative. You can identify them because they begin with a file or folder
name, or a pair of dots. However, you can also create internal links that
are relative to the site root. This type of link always begins with a forward
slash like this: href="/images/lasvegas.jpg". You must use this type of
link to display the URLs of internal links with the content property.

The advanced selector used in this technique is part of the proposals for
CSS3, but it is already supported by all modern browsers (but not IE6). The
selector tells the browser to look for links with an href attribute that
begins with the character(s) inside the quotes. So, the first example looks
for links where the href attribute begins with http://, the second one
looks for links that begin with http (so it gets both http and https), and
the third one for links that begin with a leading forward slash. This and
other advanced selectors are described in this book’s appendix. Although
IE7 supports the selector used here, it doesn’t support generated content.

Creating styles for printing
There are two basic approaches you can take to creating special style rules for
printing. One is to start from scratch with a completely separate set of print
style rules. The other approach is to use the CSS cascade to override specific
rules.

Neither approach is inherently better than the other. Which you choose
depends on the nature of the site and the amount of changes that are
necessary for the printed version. For example, a site that predominantly
consists of text might need only a few changes, so using the cascade to
override the choice of fonts and color is all you need. On the other hand, a site
that uses a lot of background images, floats, and positioned elements
is probably much easier to handle by creating a dedicated print style sheet
from scratch.

463

Chapter 12: How Do I Create Styles for Printing?

Using the media attribute to specify where styles
are applied
The optional media attribute (see Table 1-2 in Chapter 1) tells the browser the
types of devices to which you want to apply specific rules or style sheets. The
values supported by CSS2.1 are all, braille, embossed, handheld, print,
projection, screen, speech, tty, and tv.

For a small amount of changes, you can use the @media rule with one or more
of these values to specify how to handle the same styles for different devices.
The advantage of the @media rule is that both screen and print rules can be
defined in the same style sheet like this:

@media screen {
 body {
 font-family: Arial, Helvetica, sans-serif;
 color: #C00;
 background-color: #CCC;
 }
}
@media print {
 body {
 font-family: "Palatino Linotype", "Book Antiqua", Palatino, serif;
 color: #000;
 background-color: #FFF;
 }
}

This sets different fonts and colors for display onscreen and in printouts and is
an efficient solution for a basic site. However, mixing styles like this is likely to
become confusing on a more sophisticated site.

For more extensive changes, it’s better to split your style rules into separate
external style sheets for onscreen and print display. If you omit the media
attribute from the <link> tag or @import when linking a style sheet, the styles
apply to all devices, including printers. However, once you include any of the
media values (except all), the browser applies those styles only to the
specified devices. For example, the following <link> tag applies the styles in
basic.css only when the page is viewed on a computer screen:

<link href="css/basic.css" rel="stylesheet" type="text/css" �
media="screen" />

Similarly, this @import rule also hides the styles from all devices except
computer screens:

 Getting StartED with CSS

 464

<style type="text/css">
@import url("css/basic.css") screen;
</style>

When attaching an external print style sheet, you must set the media attribute
to print like this:

<link href="css/print.css" rel="stylesheet" type="text/css" �
media="print" />

If you prefer to use @import, attach the style sheet like this:

<style type="text/css">
@import url("css/print.css") print;
</style>

Using the cascade for print styles
If you want to make a relatively small number of changes to the way a page is
styled when printed out, you can apply your styles to all media devices and
then use a specialized style sheet to override selected styles for printing.
Because of the way the cascade works, the print style sheet must be attached
after the main style sheet. Otherwise, the main style sheet will take
precedence, and your print styles will be ignored. Omit the media attribute
from the main style sheet, but specify it for the print one like this:

<link href="css/main.css" rel="stylesheet" type="text/css" />
<link href="css/print.css" rel="stylesheet" type="text/css" �
media="print" />

With @import, attach the style sheets like this:

<style type="text/css">
@import url("css/main.css");
@import url("css/print.css") print;
</style>

The disadvantage with this approach is that it can be difficult to keep track of
which rules you are overriding in the print style sheet. There’s also a danger
that you might add a new style to the main style sheet and not realize that it
affects the way the page is printed. To avoid these problems, create
completely independent style sheets.

465

Chapter 12: How Do I Create Styles for Printing?

AdvancED
If you decide to use the cascade for your print styles, make sure you set
the position property of any positioned elements to static. This returns
them to the normal flow of the document and ensures they will print out
correctly. If you don’t want an element to be printed, set its display
property to none.

Attaching independent style sheets
By specifying the media attribute for each style sheet, you ensure that the
styles are applied only by the targeted devices. This allows you to create a
completely independent print style sheet. Attach the style sheets like this:

<link href="css/main.css" rel="stylesheet" type="text/css" �
media="screen" />
<link href="css/print.css" rel="stylesheet" type="text/css" �
media="print" />

With @import, attach the style sheets like this:

<style type="text/css">
@import url("css/main.css") screen;
@import url("css/print.css") print;
</style>

This gives you a completely blank canvas on which to create your print styles.

AdvancED
More and more people are using handheld devices to browse the Web. In
my limited experiments, handheld devices preserve text and link colors
when the media attribute is set to screen, but they ignore all other style
rules, such as floats, margins, and widths. If you add handheld to the media
attribute, the browser will attempt to display the page as it appears on a
computer screen, forcing the visitor to scroll horizontally as well as
vertically. If your target audience is likely to include a lot of users of
handheld devices, you might want to consider creating a separate style
sheet for them. Otherwise, setting the media attribute to screen and
omitting handheld is likely to be more user-friendly.

 Getting StartED with CSS

 466

To learn more about using CSS for handheld devices, see AdvancED CSS by
Joseph R. Lewis and Meitar Moscovitz (friends of ED, ISBN: 978-1-4302-
1932-3).

So much for all the theory, let’s create a print style sheet for
journey_horiz.html, the case study page from the earlier part of this book as
it looked at the end of Chapter 8.

Creating a print style sheet

This exercise takes you through the basic process of creating and testing a print
style sheet. The HTML page and main style sheet are in the download files for
this chapter.

1. Copy journey_print_start.html and css/journey_horiz.css from the
ch12 folder to your working folder, and save the HTML file as
journey_print.html.

2. Test the page in a browser. It should look like Figure 12-1.

Figure 12-1. The case study from earlier in the book as it looks in a browser.

If the images or styles don’t display correctly, check the file paths.

467

Chapter 12: How Do I Create Styles for Printing?

3. Select your browser’s Print Preview option. Most browsers have the
option to shrink the web page to fit. Reset that option to display the
print preview at 100%, its normal size. In Firefox 3.5, it looks like
Figure 12-2.

Figure 12-2. The onscreen styles are not suitable for printing the page.

As you can see, the background images and colors are not rendered.
More important, the right side of the page is cut off. To get the full
width of the page to display, I needed to change the Scale option in
Firefox to 70%. This means that the text and images will be
proportionately smaller. Printers normally convert pixels to points, so
the 14px text would be converted to approximately 9.5pt—OK for
someone with good eyesight but not ideal.

4. Close Print Preview, and open journey_print.html. Amend the <link>
tag that attaches the style sheet to include the media attribute for
screen like this:

<link href="css/journey_horiz.css" rel="stylesheet" type="text/css" �
media="screen" />

 Getting StartED with CSS

 468

5. Save journey_print.html, and reload it in the browser. It should look
exactly the same as before. Select the browser’s Print Preview again.
This time, the page should look completely unstyled, as shown in
Figure 12-3.

Figure 12-3. Setting the media attribute to screen prevents the styles from being
applied to the printout.

If you don’t have the time to create a dedicated print style sheet, this
is an effective way of ensuring that everything in your page is printed
out. However, it looks rather bland, particularly with the text not
being wrapped around the images. So, let’s get to work on creating
the print style sheet.

6. The simplest way to create a print style sheet is to copy the existing
style sheet and work your way through the rules, eliminating those you
don’t need and amending those that need to be handled differently.

Make a copy of css/journey_horiz.css, and save it in the css folder as
journey_print.css.

469

Chapter 12: How Do I Create Styles for Printing?

7. Attach the new style sheet to journey_print.html, and set the media
attribute to print like this:

<link href="css/journey_horiz.css" rel="stylesheet" type="text/css" �
 media="screen" />
<link href="css/journey_print.css" rel="stylesheet" type="text/css" �
media="print" />

ExplainED
Because you have set the media attribute in both <link> tags, it doesn’t
matter which order they are in, but it’s common practice to put the print
style sheet last.

8. The first thing you need to do for the print style sheet is to set the
page margins. Even though not all browsers support setting margins
with the @page rule, it’s a good idea to include it in your print style
sheet. Browsers that support it will create the correct margins, and
the rule will be in place when other browsers finally catch up with the
standard.

Open journey_print.css, and add the following code at the top of the
page:

/* Print styles */
@page {
 margin: 1in;
}

I have used inches as the measurement, since most readers are likely
to be in the United States. If you prefer metric, change 1in to 2.54cm
or the size of your choice.

9. It’s a reasonable assumption that most people will print on white
paper, so the background color of the page needs to be changed. You
might also want to change the fonts. The margin and padding
properties are no longer needed in the body style block, because
they’re handled by the @page rule. Amend the body style block like
this:

body {
 background-color: #FFF;
 color: #000;

 Getting StartED with CSS

 470

 font-family: "Minion Pro", Garamond, "Times New Roman", Times, serif;
}

10. The #wrapper, #header, #sidebar, and #mainContent style blocks
provide structure and decorative elements for the onscreen version
but are not needed for printing. Delete them.

11. The only part of the #footer style block that you need is the text-
align property. Delete the margin and text-indent properties. Also
delete the .reversed style block. That completes the page
infrastructure section of the style sheet.

12. In the headings section, you can get rid of the rule that hides the <h1>
heading, as well as the one that puts 10px of padding on top of the
first paragraph in the main content <div>.

You don’t want page breaks immediately after any headings, so add
the page-break-after property, adjust the margins, and change the
fonts. The headings section should now look like this:

/* Headings */
h1, h2, h3, h4, h5, h6 {
 font-family: "Myriad Pro", "Gill Sans", "Lucida Sans", Verdana, �
 Geneva, sans-serif;
 margin: 6pt 0;
 page-break-after: avoid;
}
h1 + p, h2 + p, h3 + p, #mainContent p:first-child {
 text-indent: 0;
}

13. Next come the styles for the main text. The onscreen version uses
14px for the size of the font in the paragraphs and table. Most
browsers and printers will convert this to 14pt, which is rather large
for a printout. So, change this to 12pt. Also adjust the text-indent
property to use a print measure. I have chosen 2pc, which is one-third
of an inch (0.85cm). Also reduce the vertical distance between lines,
and adjust the margins on the paragraphs. Change the rules for
paragraphs and tables like this:

/* Main text */
p, table {
 font-size: 12pt;
}
p {
 text-align: justify;
 text-indent: 2pc;
 line-height: 1.2;
 margin: 0 0 3pt 0;
}

471

Chapter 12: How Do I Create Styles for Printing?

14. In the printed version, it’s a good idea to underline links. And in case
people are printing in color, there’s no need to distinguish between
links that have and have not been visited. Replace the existing link
styles with the following:

a[href^="http://"]:after {
 content: " (" attr(href) ") ";
}
a:link, a:visited {
 color: #00C;
}

15. The styles for the Roosevelt quote are mainly decorative. None of the
background elements will be printed out, so you can slim the style
blocks to the bare bones like this:

#tr_quote {
 margin: 2pc 2.5pc 1pc auto;
 width: 40%;
}
blockquote p {
 font-style: italic;
 text-indent: 0;
}

As explained in Chapter 4, setting the margins of an element alongside
a floated element presents considerable problems. With the onscreen
version, it was possible to calculate the correct margins for the quote.
However, with a print style sheet you have no idea what size of paper
will be used. So, I have set the width of the quote to 40%, and used
picas (1 pica equals 12 points) for the margins. After some
experimentation, 2.5pc seemed to work well for the right margin. This
offsets it about 0.4in (1cm) from the right edge. The left margin is set
to auto.

 Getting StartED with CSS

 472

AdvancED
I have used points and picas for margins and padding, because they make it
easy to calculate sizes in proportion to the 12pt main text. A quick rule of
thumb is that 1 pixel is equivalent to 1 point, and 12 pixels are equal to 1
pica.

If you don’t feel comfortable with traditional print measurements, use
inches, centimeters, or millimeters instead. However, you should always
specify the size of fonts in points or picas unless you know the exact
metric size.

16. The remaining style rules in this section apply to the table and
caption. You don’t want the table to be broken when printing, so add
the page-break-inside property. Also change the size of the caption
font to 14pt. This section of rules should now look like this:

table {
 margin: 0 auto;
 page-break-inside: avoid;
}
caption {
 font-size: 14pt;
 font-weight: bold;
 text-transform: capitalize;
}
th {
 font-weight: normal;
 text-align: right;
}

17. You don’t need to make many changes to the image alignment rules
apart from changing the pixel values to points. Also remove the
padding and border from the images, and set a rule to prevent them
from being split over a page break. The image alignment section
should be amended like this:

/* Image alignment */
.floatleft {
 float: left;
 margin: 3pt 8pt 3pt 0;
}
.floatright {
 float: right;
 margin: 3pt 0 3pt 8pt;

473

Chapter 12: How Do I Create Styles for Printing?

}
.imgcentered {
 margin: 3pt auto;
 display: block;
}
.floatleft, .floatright, .imgcentered {
 font-weight: bold;
 text-align: center;
}
.floatleft img, .floatright img {
 display: block;
 page-break-inside: avoid;
}

18. Delete all the sidebar and navigation styles and prevent the navigation
menu from being displayed like this:

/* Horizontal navigation bar */
#nav {
 display: none;
}

19. Save the style sheet, reload the page in a browser, and test Print
Preview. Then try Print Preview in at least one other browser. This is
one area where modern browsers still display considerable
inconsistency. Compare Figures 12-4 and 12-5, which show the first
page as rendered in Firefox 3.5 and IE8 respectively.

 Getting StartED with CSS

 474

Figure 12-4. The print styles as rendered by Firefox 3.5

475

Chapter 12: How Do I Create Styles for Printing?

Figure 12-5. IE8 handles the same page differently.

 Getting StartED with CSS

 476

20. One thing noticeable about the way Firefox 3.5 handles the print
styles is that the heading after the Roosevelt quote doesn’t clear the
floated image. So, add the clear property to the rule that styles the
headings like this:

h1, h2, h3, h4, h5, h6 {
 font-family: "Myriad Pro", "Gill Sans", "Lucida Sans", Verdana, �
 Geneva, sans-serif;
 margin: 6pt 0;
 page-break-after: avoid;
 clear: both;
}

21. The other problem is that there is no clear delineation between the
sidebar and the main content. You can rectify this by adding a border
and margin to the bottom of the sidebar like this:

/* Sidebar styles */
#sidebar {
 border-bottom: 2pt solid;
 margin-bottom: 0.25in;
}

22. If you save the style sheet and test the page again, you’ll see that all
browsers handle the border and margin at the bottom of the sidebar
nicely, but Firefox 3.5 cuts the second image in two, as shown in
Figure 12-6.

477

Chapter 12: How Do I Create Styles for Printing?

Figure 12-6. Firefox 3.5 ignores the rule about page breaks, and slices the image in
two.

Compare your style sheet, if necessary, with css/journey_print.css in
the download files for this chapter.

ExplainED
I tested the same print styles in several browsers, and each one produced
significantly different results. This is both ironic and frustrating, because
print is a fixed medium, where sizes and layout should be predictable for a
specific paper size. The discrepancies are partly due to incomplete support
for print styles in some browsers, but they also reflect the fact that
browsers have been designed for a flexible medium. They are not desktop
publishing programs.

 Getting StartED with CSS

 478

When designing a print style sheet, you need to accept that different
browsers and paper sizes will result in highly unpredictable results. For
the foreseeable future, at least, it’s best to go for simple styles.

In spite of the inconsistencies, creating a print style sheet for your pages is
worthwhile. The results in Figures 12-4 and 12-5 are a considerable
improvement on Figures 12-2 and 12-3. If nothing else, it’s a good idea to get
rid of unnecessary elements, such as navigation bars and advertising, to
provide a clean printout.

To round out this chapter, I want to take a brief look at a handful of CSS2.1
properties that haven’t been covered elsewhere in this book.

The ones that got away—UI properties
and quotes
This book has covered all the visual and paged properties defined in CSS2.1
with the exception of the user interface (UI) properties and quotes. The
following sections fill that final gap in your knowledge of CSS.

Table 12-3 lists the properties that affect the UI. One controls the look of the
cursor; the rest are related to outlines, which are similar to borders but
normally used to aid accessibility by indicating that an element has focus. The
quotes property lets you specify which types of quotation marks to use in
certain locations.

Table 12-3. UI Properties in CSS2.1

Property Initial Value Inherited Description

cursor auto Yes Changes the shape of the

cursor from the browser default

outline-color invert No Controls the color of an outline

outline-style none No Controls the style of an outline

outline-width medium No Controls the width of an outline

outline See individual

properties
No Shorthand property that

combines the individual outline

properties into a single

declaration

479

Chapter 12: How Do I Create Styles for Printing?

Changing the cursor
The cursor property accepts any of the values listed in Table 12-4.

Table 12-4. Values Accepted by the Cursor Property

Value Description

auto Use the browser default cursor for the current

context.

crosshair Display two thin intersecting lines.

default Use the browser default, regardless of context.

Usually an arrow.

help Display a symbol indicating help is available.

Usually a question mark.

move Indicate that something is to be moved.

pointer Indicate a link. Usually a hand.

progress Indicate that something is happening, but that

the user can still interact with the program.

e-resize, ne-resize,

nw-resize, n-resize,

se-resize, sw-resize,

s-resize, w-resize

Indicate the direction in which the current object

can be resized.

text Indicate that text can be selected. Usually an I-

beam.

wait Indicate that the user must wait.

The shape displayed by each value in Table 12-4 is dependent on the browser
and operating system. Figure 12-7 shows how each value is rendered in Firefox
3.5 on Windows Vista.

 Getting StartED with CSS

 480

Figure 12-7. The different types of cursor rendered by Firefox 3.5 in Windows Vista

You can also create your own cursor and apply it using url() in the same way
as a background image. The cursor property is similar to font-family in that it
accepts a comma-separated list of values to be used in order of precedence.
So, if the browser or operating system can’t handle the first value, it tries each
one in turn. You should always end the list with one of the keywords in Table
12-4 as a fallback like this:

cursor: url(assets/mycursor.ani), url(assets/mycursor.cur), progress;

LinkED
Static cursors use a .cur file name extension. Animated ones use .ani. For
more information, visit www.evotech.net/blog/2007/04/controlling-
cursors-with-css-and-creating-cur-files/.

AdvancED
An imaginative, custom-built cursor could be just the thing that gives your
website that extra wow factor. It could also confuse a lot of people if its
purpose isn’t obvious to visitors. Most people are creatures of habit, and
expect their cursor to look, well . . . like a cursor. Don’t sacrifice your
site’s usability merely for the sake of looking different.

481

Chapter 12: How Do I Create Styles for Printing?

Adding an outline
“What’s an outline?” you may well ask. Well, an outline is like a border, except
it’s different in the following ways:

� Outlines are not part of the CSS box model, so they do not take up
horizontal or vertical space, but are drawn on top of other styles.

� An outline can be added in addition to a border and normally goes
outside it (see Figure 12-8 and outline_plus_border.html in the
download files).

� Each side of an outline is the same as all the others. Sides cannot be
styled independently.

� The outline of an inline element surrounds the whole element, even
when the element wraps onto another line. It doesn’t break like a
border (see Figure 12-9 and outline_inline.html in the download
files).

Figure 12-8. An element can have both a border and an outline.

All browsers don’t handle the outlines of inline elements the same way. Most
browsers draw an irregular line surrounding the element, as shown in the
screenshot on the left of Figure 12-9. However, Firefox 3.5 draws separate
boxes around each line, as shown in the screenshot on the right. However, all
browsers treat borders on inline elements in the same way, breaking the border
at the end of each line.

Figure 12-9. Most browsers draw an outline as an irregular box around inline
elements, but Firefox 3.5 (right) draws a separate box on each line.

 Getting StartED with CSS

 482

As you can see from Figure 12-9, neither borders nor outlines are very
attractive on inline elements. Although they look the same as the equivalent
style of border on a block-level element, they are less versatile. Even the fact
that an outline doesn’t add to the width or height of an elements can be a
disadvantage, because a wide outline overlaps adjacent elements.

So, you might still be wondering why CSS has the outline property. The
answer, quite simply, is that outlines are normally used to improve
accessibility. If you load outline_form.html into a JavaScript-enabled browser,
the focus goes immediately to the Name field in the form, and the element is
surrounded with a 4px double, red outline, as shown in Figure 12-10.

Figure 12-10. The outline indicates which form field has focus.

Even if JavaScript is disabled in the browser, the red outline appears as soon as
you click inside the text field. Press tab to move to the next field (or click
inside), and the outline shifts to the new field to indicate it has focus. The key
point about using the outline property is that it doesn’t affect the box model,
so the form isn’t redrawn each time you move the focus to a new field. The
style rule that adds the outline looks like this:

input:focus, textarea:focus, select:focus {
 outline: #F00 double 4px;
}

483

Chapter 12: How Do I Create Styles for Printing?

Change the outline property to border like this:

input:focus, textarea:focus, select:focus {
 border: #F00 double 4px;
}

Save the page, and reload it in a browser. As you tab through each field, you
should be able to see the labels and fields shifting slightly as the border is
removed from one field and redrawn on the next. Using outline to provide this
accessibility feature avoids this unsightly movement.

You use the outline properties in a similar way to the equivalent border ones,
which were described in Chapter 5. However, outlines are always the same on
all four sides, so the individual properties—outline-color, outline-style, and
outline-width—each take only one value.

The outline-color property takes any color value or the keyword invert,
which is also its default value. The purpose of invert is to ensure that the
outline remains visible regardless of the background color. You can test how
different browsers treat invert by loading outline_invert.html into them. The
page has a black background with an <h1> heading in a light brown. The
heading has a 20px solid outline with outline-color set to invert. Figure 12-11
shows the result in IE8.

Figure 12-11. IE8 uses a white outline to distinguish it from the black background.

IE8 and Opera 9 both render the outline in white. Safari 4 and Chrome 2 use
the same color as the heading. Firefox 3.5, however, fails miserably by
rendering black on black.

The outline-style property accepts the same keywords as border-style, with
the exception of hidden, namely: dashed, dotted, double, groove, inset, none,
outset, ridge, and solid.

 Getting StartED with CSS

 484

The outline-width property is self-explanatory.

The outline shorthand property allows you to specify the color, style, and
width in a single declaration. If you omit any value, it takes the initial value
listed in Table 12-3.

Removing a default outline without destroying
accessibility
Designers often ask how to get rid of the dotted lines that appear around links.
They hate them, because they destroy the harmony of their designs. You can
get rid of them, but before rushing to find the solution, pause to think why
browsers put them there.

ExplainED
The dotted outline that browsers put around links is known as a focus
rectangle. It’s put there for the benefit of people who can’t use a mouse,
usually as a result of disability. Typically, such people navigate web pages
using their keyboard. Pressing the tab key moves from one link or form
field to the next. The dotted outline serves as an important visual clue,
telling the user “You are here.” Pressing Enter/Return follows the link or
submits the form. If you remove the dotted outline without compensating
for it by adding a visual clue to the current focus, your website becomes
inaccessible to keyboard surfers.

Design isn’t simply about what something looks like. It’s also about usability,
and in many countries, building a website that discriminates against disabled
people is against the law. So, don’t just zap the dotted outline. Use your
design skills and knowledge of CSS to come up with a good alternative.

The focus rectangle is normally generated by the browser’s default styles,
which use the outline property to add a dotted line around the element that
currently has focus. Getting rid of the dotted outline is simply a matter of
setting the outline property to none like this:

a {
 outline: none;
}

However, depending on your design, a better solution might be to change the
color of the outline with the outline-color property. You can do this by adding

485

Chapter 12: How Do I Create Styles for Printing?

a style rule that uses the :focus pseudo-class. Like the :link, :visited,
:hover, and :active pseudo-classes that you learned about in Chapter 2, the
:focus pseudo-class styles an element in response to it receiving the current
focus in the browser. So, to change the color of a link when it has focus, you
can create a style rule like this:

a:focus {
 outline-color: #008080;
}

 Choose a color that stands out sufficiently but still blends in with your design.

If you still don’t like the focus rectangle, an alternative visual clue is to use the
same style as the :hover pseudo-class. All it involves is adding the :focus
pseudo-class to the selector like this:

a:hover, a:active, a:focus {
 color: #8E2800;
 text-decoration: underline overline;
}

A little extra attention to detail ensures your site remains accessible.

Curly quotes, anyone?
I started my writing career hammering out scripts on a typewriter long before
the days of word processors and “smart quotes.” So, straight quotes on
websites don’t particularly offend my sensibilities. Other people are driven to
distraction by what they regard as a typographical abomination.

If you’re willing to do a bit of work—and accept the fact that not all browsers
yet support it—the quotes property can automatically generate the right sort of
quotation marks for you. Not only that, it’s smart enough to nest quotes
correctly, so you can follow the American typographic convention of double
quotes first, followed by single quotes for nested quotations, or the British
convention of single quotes first, followed by double ones. In fact, you can
choose any characters you like for your quotation marks.

 Getting StartED with CSS

 486

ExplainED
The quotes property automatically generates opening and closing
quotation marks. It does not convert straight quotes or apostrophes that
are in your underlying HTML.

At the time of this writing, the quotes property is supported by IE8,
Firefox (since version 1.8), and Opera (since version 6).

The quotes property works in conjunction with the content property and the
:before and :after pseudo-elements that you learned about in Chapter 8. It
takes as its value one or more pairs of quotes (or hexadecimal codes that
represent quotation marks), each of which must be enclosed in quotes. If that
sounds confusing, all should become clear in a moment.

To generate curly quotes or other types of quotation marks, use the
hexadecimal codes listed in Table 12-5.

Table 12-5. Hexadecimal Codes for Generating Quotation Marks

Hexadecimal code Mark Description

\2018 ‘ Left single quotation mark

\2019 ’ Right single quotation mark

\201C “ Left double quotation mark

\201D ” Right double quotation mark

\201E „ Double low-9 quotation mark

\00AB « Left double-angle quotation mark

\00BB » Right double-angle quotation mark

You define the sequence of quotes in the quotes property. Each pair specifies
the type of opening and closing quotes you want. So, this is how you specify
using double quotes with a class called quoted:

.quoted {
 quotes: '\201C' '\201D';
}

487

Chapter 12: How Do I Create Styles for Printing?

However, it’s quite common to nest quotes inside a quoted passage, so it’s a
good idea to specify the type of nested quotes you want to use. To do so, just
add a second pair. The following definition uses double quotes for outer pairs,
and single quotes for nested pairs:

.quoted {
 quotes: '\201C' '\201D' '\2018' '\2019';
}

In the event that quotes are nested deeper, and you haven’t defined more than
two pairs, the styles alternate.

After defining the type of quotes you want, you use the content property with
the :before and :after pseudo-elements to generate the quotes using the
following values:

� open-quote: Use the correct opening quote for the current level of
nesting.

� close-quote: Use the correct closing quote for the current level of
nesting.

� no-open-quote: Suppress the opening quote, but move to the next
level of nesting.

� no-close-quote: Suppress the closing quote, but move to the next
level of nesting.

Although it sounds complicated, it’s quite simple once you have seen it in
action. So, sound a fanfare for the final exercise in this book.

Generating quotes automatically

This exercise demonstrates how to use the quotes property to generate curly
quotes in the correct sequence with nested quotes. The download files for this
chapter contain a file with some dummy text to work with.

1. Copy quotes_start.html from the ch12 folder to your work files, and
save it as quotes.html.

2. Inspect the HTML markup inside the wrapper <div>. It consists of four
paragraphs. The middle two are wrapped in a <blockquote> like this:

<blockquote>
 <p>Alice replied eagerly, for she was always ready to talk about
her pet: <q>Dinah's our cat. And she's such a capital one for catching
mice you can't think! And oh, I wish you could see her after the birds!
Why, she'll eat a little bird as soon as look at it!</q></p>
 <p>This speech caused a remarkable sensation among the party. Some
of the birds hurried off at once: one old Magpie began wrapping itself

 Getting StartED with CSS

 488

up very carefully, remarking, <q>I really must be getting home; the
night-air doesn't suit my throat!</q> and a Canary called out in a
trembling voice to its children, <q>Come away, my dears! It's high time
you were all in bed!</q> On various pretexts they all moved off, and
Alice was soon left alone.</p>
</blockquote>

The markup uses the <q> tag, which is greatly underused—and
probably unknown to most web developers. It’s for an inline quote,
and browsers are meant to wrap the contents of the tag in quotes.
Internet Explorer always ignored this tag, but it’s now supported in
IE8, so it might eventually find its way into wider use.

3. Load quotes.html in to Firefox, IE8, and Opera to see how they handle
the <q> tag. Figure 12-12 shows the first paragraph inside the
<blockquote> as rendered by each browser.

Figure 12-12. The three browsers all render quotes for the <q> tag, but use different
styles.

Opera 9.6 surrounds the content of the <q> tags in double quotes, but
they’re straight. Firefox 3.5 also uses double quotes, but adds a touch
of style by making them curly. IE8 is also stylish, but it opts for single
quotes.

4. Let’s bring a bit of order into this chaos by using the quotes property.
Add the following style rules to the <head> of the page:

q {
 quotes: '\201C' '\201D';
}
q:before {
 content: open-quote;
}
q:after {

489

Chapter 12: How Do I Create Styles for Printing?

 content: close-quote;
}

This uses a type selector to specify double curly quotes for the <q>
tag. The :before and :after pseudo-elements set the content
property to open-quote and close-quote respectively.

5. Save the page, and test it again in each browser. This time, they all
display double curly quotes. That’s much smarter. However, you can
generate quotes on any element, not just convert the existing quotes
on <q> tags.

ExplainED
Opera 9.6 seems to get confused with the way it handles quotes if you
simply click the reload button. Click inside the address bar, and press
Enter if the quotes look wrong. The other browsers are not affected.

6. Amend the style rules you created in step 4 so that they use a
descendant selector to target the paragraphs inside the <blockquote>
instead of the q type selector. Also add another pair of definitions to
the quotes property in the first style block to use single quotation
marks for nested quotes. The amended rules look like this:

blockquote p {
 quotes: '\201C' '\201D' '\2018' '\2019';
}
blockquote p:before {
 content: open-quote;
}
blockquote p:after {
 content: close-quote;
}

7. Save and test the page again. The paragraphs outside the
<blockquote> are not affected, but those inside should be opened and
closed with double quotes. This time, the nested quotes should be
enclosed in single quotes, as shown in Figure 12-13.

 Getting StartED with CSS

 490

Figure 12-13. The outer and inner quotes are now being generated dynamically.

8. This looks good, but when a quotation continues over more than
paragraph, the closing quotes should be omitted from each paragraph
until you reach the end of the quotation. Change the :after pseudo-
element like this to remove the closing quotes:

blockquote p:after {
 content: no-close-quote;
}

9. The problem with this is that it suppresses the closing quotes on every
paragraph. So you need to create a new class to apply to the final
paragraph. Add this new style rule:

blockquote p.last:after {
 content: close-quote;
}

This tells the browser to apply the closing quote after any paragraph
the last class inside a <blockquote>.

10. Add the last class to the class definition in the opening <p> tag of the
final paragraph like this:

<p class="last">This speech caused. . .

491

Chapter 12: How Do I Create Styles for Printing?

11. Save the page, and test it again. The closing double quotes from the
first paragraph should have been suppressed, but the opening quotes
of the following paragraph and the nested quotes still use the correct
sequence of quotes, as shown in Figure 12-14.

Figure 12-14. The correct sequence of opening and closing quotes is preserved when
the quotation spans several paragraphs.

Check your code, if necessary, against quotes_finish.html in the
download files for this chapter.

The formatting of a <blockquote> usually gives a visual clue that you are
quoting something, so it doesn’t matter if some browsers don’t yet support the
quotes property. They simply ignore the style rules for the generated quotes,
while browsers that do understand them display your quotations as intended.

In this exercise, I have used the blockquote p descendant selector with the
:before and :after pseudo-elements to generate the quotes. However, you can
use the quotes property with any element. For example, you could create a
class called quoted, and apply it to any paragraph or to selected text with a
.

 Getting StartED with CSS

 492

AdvancED
To get the result I wanted in all browsers that currently support the
quotes property, I used a class to identify the final paragraph in the
<blockquote>. However, the CSS3 proposals include a :last-child pseudo-
class that avoids the need to add a class in the HTML markup. Firefox and
Opera already support this pseudo-class, but IE8 doesn’t. So, for the
foreseeable future, an ordinary class is needed.

Chapter review
So, here we are at the end of what I hope has been an enjoyable and
instructive journey through CSS2.1. Over the past 12 chapters, I have covered
all the visual and paged media (printing) properties in the CSS2.1 specification.
Admittedly, some of them are not as useful as the others, but knowing of their
existence might just solve a tricky problem that you encounter in future.

What I have tried to do is to give you a solid understanding of the basics of CSS
without relying on hacks or concentrating on the oddities of older browsers. If
you know how CSS is meant to work, and how it’s rendered in modern,
standards-compliant browsers, you can style your websites with confidence.
The mistake that many people have made in the past is to test their pages only
in IE6, on the assumption that they should design for the most prevalent
browser. However, pages designed specifically for IE6 not only break in Firefox
and Safari, but also in IE8. At the time this book went to press, IE8, Firefox,
Safari, Opera, and other standards-compliant browsers already represented
more than 50 percent of the market share, and that will continue to grow. CSS
has finally come of age.

Of course, it’s essential to check how your pages look in older versions of
Internet Explorer. If there’s a serious problem, you can usually fix it with rules
hidden from other browsers in an IE conditional comment. If the difference is
relatively minor, you can probably ignore it. Solving problems for older
browsers won’t necessarily always be easy, but your deeper knowledge of CSS
should make it easier to understand the solutions that others have developed.

493

Chapter 12: How Do I Create Styles for Printing?

LinkED
You’ll find a lot of helpful articles on Internet Explorer problems and
other CSS issues on www.positioniseverything.net run by “Big John”
Gallant.

Another excellent resource is http://css-discuss.incutio.com/. It not
only has a lot of articles about CSS bugs but is also the home of the css-
discuss mailing list administered by two leading experts on the subject,
Eric Meyer and John Allsopp.

The appendix that follows contains a handy reference for all CSS2.1 properties,
as well as a full list of selectors, including those in the CSS3 proposal that are
already supported in IE7, IE8, Firefox, Safari, and Opera.

495

Appendix
CSS Properties and Selectors
The following pages list all visual and paged media (printing) properties and
selectors in the CSS2.1 specification, together with a brief description and a
list of accepted values. Currently, IE8 is the only browser that supports the
CSS2.1 specification in its entirety. However, the most recent versions of
Firefox, Safari, Opera, and Chrome support the specification with only a few
minor exceptions. Of browsers in widespread current use, IE6 and IE7 are the
most likely to cause problems. The descriptions indicate the main difficulties
you are likely to encounter with specific properties. However, this section is
intended only as a quick reference, so it does not claim to be exhaustive.

Recent versions of browsers, including IE7 and IE8, already support some
selectors in the proposed CSS3 specification, so I have included those with the
most widespread support.

This appendix covers the following topics:

� Specifying values for colors, sizes, and URLs

� All CSS2.1 properties for onscreen display and printing, grouped by
type

� All CSS2.1 selectors

� Widely supported CSS3 selectors

Specifying property values
Most CSS properties use predefined keywords, which are listed individually for
each property. However colors, sizes, and URLs have their own syntax.

Specifying color values
Colors can be specified using hexadecimal notation, RGB (red, green, blue)
values, or one of the 17 keywords listed in Table A-1.

 Getting StartED with CSS

 496

Table A-1. Color keywords in CSS2.1

Keyword

Hexadecimal
equivalent

Keyword

Hexadecimal
equivalent

aqua #0FF olive #808000

black #000 orange #FFA500

blue #00F purple #800080

fuchsia #F0F red #F00

gray #808080 silver #C0C0C0

green #008000 teal #008080

lime #0F0 white #FFF

maroon #800000 yellow #FF0

navy #000080

When using hexadecimal notation, remember the following:

� The color value must begin with a hash sign (#).

� You can use the full six-digit version or the three-digit shorthand (see
Chapter 2 for an explanation of hexadecimal shorthand values).

� Do not mix up the letter O with 0 (zero) or lowercase L with 1. The
only letters permitted in a hexadecimal value are A–F.

� The letters A–F in the hexadecimal value are case-insensitive. It
doesn’t matter whether you use uppercase or lowercase.

To specify colors using RGB values, enter the red, green, and blue values as a
comma-separated list between the parentheses of rgb(). The values can be
numbers in the range of 0–255 or percentages from 0% to 100%.

For example, red can be specified in any of the following ways:

� red

� #FF0000

� #f00

� rgb(255, 0, 0)

� rgb(100%, 0%, 0%)

497

Appendix : CSS Properties an Selectors

Specifying sizes
The CSS2.1 specification uses the term “length” to describe a value that uses a
unit of measurement. The only units permitted are those listed in Table A-2.

Table A-2. CSS units of measurement for length (size)

Type Unit Description

Relative units

 em The height of the current
font (with a 16px font,
1em = 16px; with a 24px
font, 1em = 24px)

 ex Half an em in most
browsers

 px Pixel

Absolute units

 in Inch (2.54 centimeters)

 cm Centimeter (0.394 in)

 mm Millimeter (0.039 in)

 pt Point (1/72 of an inch or
0.353 mm)

 pc Pica (12 points or 4.233
mm)

For onscreen measurements, use em or px. Absolute units should be used only
for print style sheets.

Most sizes can also be specified as a percentage. This normally refers to a
percentage of the size of the parent element or containing block.

When a zero value is used, the unit of measurement or percentage is optional:
0px and 0 are both equally valid.

 Getting StartED with CSS

 498

When using a unit of measurement or percentage, there must be no space
between the number and unit or percentage sign. For example, 1px and 10% are
correct; 1 px and 10 % will not work.

AdvancED
Always use whole numbers with px. All other units of measurement can be
used with decimal fractions. For values smaller than 1, the leading 0 of
the decimal fraction is optional (0.5 and .5 are both OK).

When using percentages to specify sizes, never use values that add up to
exactly 100%. This is because the browser needs to convert the percentage
values to pixels, which must be whole numbers. Use 98% to allow for
rounding errors.

Specifying URLs
Properties such as background-image and list-style-image require the URL of
the file you want to use. To specify the location of a file, enter its file path
between the parentheses of url(). You can use either an absolute file path or
a relative one. The file path can be optionally enclosed in single or double
quotes. Whitespace between the parentheses and the file path is also
permitted.

The following examples are all valid:

url(../../images/grand_canyon.jpg)
url(/images/grand_canyon.jpg)
url('http://www.example.com/images/grand_canyon.jpg')
url('../../images/grand_canyon.jpg')
url("/images/grand_canyon.jpg")
url("../../images/grand_canyon.jpg")

If using a relative file path, the location should be relative to the style sheet.

CSS2.1 Properties
Each CSS2.1 property is listed according to its function, as follows:

� Background

� Border

499

Appendix : CSS Properties an Selectors

� Box model, including properties related to width, height, margins, and
padding

� Display and visibility

� Floating

� Generated content

� Lists

� Positioning

� Printing

� Tables

� User interface (cursor and outline)

In addition to a brief description, each property lists the values it accepts. All
properties accept the keyword inherit. Refer to the preceding sections for the
correct way to specify colors, sizes, and URLs.

ExplainED
The default value for each property is shown. When this is listed as none,
it refers to the keyword none. It does not mean the property has no
default.

Background properties
These properties control the background color and images of individual HTML
elements. Backgrounds apply only to the content and padding. They do not
stretch into the margins of an element. If no background is specified, the
background of the parent element shows through. See Chapter 5 for a detailed
description.

background-attachment
Accepted values: scroll, fixed

Default: scroll

Inherited: No

Determines whether a background image scrolls in relation to the rest of the
document or remains in a fixed position within the browser viewport. Not
supported by IE6.

 Getting StartED with CSS

 500

background-color
Accepted values: A color value or the keyword transparent

Default: transparent

Inherited: No

Determines the color of an element’s background. If a background image is also
specified, the image appears in front of the color.

background-image
Accepted values: A URL or the keyword none

Default: none

Inherited: No

Only one background image can be applied to an element. By default,
background images are tiled (repeated) both horizontally and vertically so they
fill the entire background area. If the image is larger than the element’s
content and padding, it is positioned at the top left of the padding, and cut off
at the bottom and right edges. By default, background images scroll together
with the element.

Use background-attachment to control scrolling, background-position to
change the position of the image, and background-repeat to control tiling.

background-position
Accepted values: Percentages, values with units of measurement, or keywords
(see description)

Default: 0% 0%

Inherited: No

This enables you to control the position of a background image both
horizontally and vertically. In addition to inherit, the keywords left, center,
and right control the horizontal position; top, center, and bottom control the
vertical position. The property accepts one or two values, and applies them as
follows:

� If you use only one value, the other value is automatically set to
center or 50%.

� If you use two values, and both are keywords, they can be in either
order.

501

Appendix : CSS Properties an Selectors

� If you use two values, and at least one of them is not a keyword, the
first value controls the horizontal position, and the second controls
the vertical position.

Percentages are calculated not only in relation to the background, but also in
relation to the image itself. So, 50% aligns the center of the background image
with the center of the element.

background-repeat
Accepted values: repeat, repeat-x, repeat-y, no-repeat

Default: repeat

Inherited: No

The keywords control the tiling of a background image as follows:

� repeat: Tiles the image horizontally and vertically to fill the entire
background area.

� repeat-x: Tiles the image across the horizontal axis.

� repeat-y: Tiles the image along the vertical axis.

� no-repeat: Prevents the image from tiling.

The keywords repeat-x and repeat-y fill the horizontal and vertical axes
respectively in both directions. For example, if you set background-position to
center and background-repeat to repeat-x, the background image fills the
entire horizontal axis. However, its starting point is the center of the element,
rather than the top left.

background
Default: see individual properties

Inherited: No

Shorthand property. Allows you to specify all background properties in a single
declaration. Accepts the same values as the individual properties. Values can
be listed in any order with the exception of those controlling the position of a
background image. They follow the same rules as background-position.

Border properties
These properties control the color, style, and width of an element’s borders.
Each side can be styled independently. Because there are so many options, the
border properties have a large number of shorthand versions. For a border to

 Getting StartED with CSS

 502

display, you must specify at least the border-style property, or its equivalent
in one of the shorthand properties. See Chapter 5 for a detailed description.

border-color
Accepted values: One, two, three, or four color values or the keyword
transparent

Default: The color of the text in the current element

Inherited: No

Shorthand property that lets you specify the color of all four borders in a single
declaration. Accepts a space-separated list of one, two, three, or four values,
which are applied as follows:

� One value: Applies equally to all four sides.

� Two values: The first one applies to the top and bottom, and the
second one to the left and right.

� Three values: The first one applies to the top, the second one to the
left and right, and the third one to the bottom.

� Four values: The values are applied in clockwise order starting from
the top.

border-style
Accepted values: Up to four of the following keywords: dashed, dotted,
double, groove, hidden, inset, none, outset, ridge, solid

Default: none

Inherited: No

Shorthand property that lets you specify the style of all four borders in a single
declaration. Accepts a space-separated list of one, two, three, or four values.
See border-color for an explanation of how the values are applied. The hidden
keyword applies only to table borders.

border-top, border-right, border-bottom, border-left
Default: See individual properties

Inherited: No

Shorthand properties that let you specify the color, style, and width of the
selected border in a single declaration. The values can be specified in any

503

Appendix : CSS Properties an Selectors

order. If color and width are omitted, a medium border using the same color as
the current element’s text is used. For the border to display, a style must be
specified.

border-top-color, border-right-color,
border-bottom-color, border-left-color
Accepted values: A color value or the keyword transparent

Default: The color of the text in the current element

Inherited: No

Individual property that specifies the color of the selected border.

border-top-style, border-right-style,
border-bottom-style, border-left-style
Accepted values: dashed, dotted, double, groove, hidden, inset, none, outset,
ridge, solid

Default: none

Inherited: No

Individual property that specifies the style of the selected border. The hidden
keyword applies only to table borders.

border-top-width, border-right-width,
border-bottom-width, border-left-width
Accepted values: A percentage or size with a unit of measurement

Default: medium

Inherited: No

Individual property that sets the width of the selected border. Border width is
added to the overall width of an element. Negative values are not permitted.

border-width
Accepted values: Percentages or values with a unit of measurement

Default: medium

Inherited: No

 Getting StartED with CSS

 504

Shorthand property that specifies the width of all four borders in a single
declaration. Accepts a space-separated list of one, two, three, or four values.
See border-color for an explanation of how the values are applied.

border
Default: See individual properties

Inherited: No

Shorthand property that lets you set the color, style, and width of all four
borders in a single declaration. All sides must have the same values, which can
be in any order. For the borders to display, you must specify at least one of the
styles accepted by border-style.

To style borders individually, use the individual border properties or the
border-color, border-style, and border-width shorthand properties.

Box model properties
These properties control the height and width of elements, as well as the
vertical and horizontal space around them. Although the default value for
margin-related properties is 0, browsers often add a value of their own.
Vertical margins of adjacent elements collapse or overlap, so that only the
largest value is applied. Horizontal margins never collapse, nor does vertical or
horizontal padding. See Chapter 6 for a detailed description of the CSS box
model. Margins are covered in Chapter 3.

height
Accepted values: A percentage, size using a unit of measurement, or the
keyword auto

Default: auto

Inherited: No

Specifies the height of an element’s content. Padding and borders are added
outside this value, and increase the element’s overall height. The height
property cannot be applied to inline text, table columns, or column groups.
Although 0 is valid, negative values are not permitted.

margin-right, margin-left, margin-top, margin-bottom
Accepted values: A percentage, size using a unit of measurement, or the
keyword auto

505

Appendix : CSS Properties an Selectors

Default: 0

Inherited: No

Specifies the size of the margin on the selected side. Cannot be used on table
cells, rows, or columns. If the element does not have a declared width, auto is
treated as 0. A negative value can be used to reduce the margin and move the
element closer to its neighbor(s).

margin
Accepted values: Up to four values, consisting of percentages, sizes with a unit
of measurement, or the keyword auto

Default: 0

Inherited: No

Shorthand property that lets you specify margins for all four sides in a single
declaration. Accepts a space-separated list of one, two, three, or four values,
which are applied as follows:

� One value: Applies equally to all four sides.

� Two values: The first one applies to the top and bottom, and the
second one to the left and right.

� Three values: The first one applies to the top, the second one to the
left and right, and the third one to the bottom.

� Four values: The values are applied in clockwise order starting from
the top.

Negative values are permitted.

max-height
Accepted values: A percentage, size with a unit of measurement, or the
keyword none

Default: none

Inherited: No

Specifies the maximum height of an element. Cannot be applied to inline text,
table columns, or column groups. Negative values are not permitted. Not
supported by IE6.

 Getting StartED with CSS

 506

max-width
Accepted values: A percentage, size with a unit of measurement, or the
keyword none

Default: none

Inherited: No

Specifies the maximum width of an element. Cannot be applied to inline text,
table columns, or column groups. Negative values are not permitted. Not
supported by IE6.

min-height
Accepted values: A percentage, or size with a unit of measurement

Default: 0

Inherited: No

Specifies the minimum height of an element. Cannot be applied to inline text,
table columns, or column groups. Negative values are not permitted. Not
supported by IE6.

min-width
Accepted values: A percentage, or size with a unit of measurement

Default: 0

Inherited: No

Specifies the minimum width of an element. Cannot be applied to inline text,
table columns, or column groups. Negative values are not permitted. Not
supported by IE6.

padding-top, padding-right, padding-bottom, padding-left
Accepted values: A percentage, or size with a unit of measurement

Default: 0

Inherited: No

Specifies the amount of padding to be added to the content’s width or height
on the selected side. Background color and/or image show through padding.
Padding can be added to table cells and captions, but not to other table
elements. Negative values are not permitted.

507

Appendix : CSS Properties an Selectors

padding
Accepted values: Up to four values, consisting of percentages, or sizes with a
unit of measurement

Default: 0

Inherited: No

Shorthand property that allows you to specify padding for all four sides in a
single declaration. Refer to margin for details of how the values are applied.

width
Accepted values: A percentage, size using a unit of measurement, or the
keyword auto

Default: auto

Inherited: No

Specifies the width of an element. Padding and borders are added to this
value, increasing the element’s overall width. Cannot be applied to inline text,
table columns, or column groups. Although 0 is valid, negative values are not
permitted.

Display and visibility properties
These properties change the way elements are displayed. See Chapter 8 for the
main description of how they work. The table-related display properties are
discussed in Chapter 11 (see also Chapter 9 for detailed coverage of CSS and
tables).

display
Accepted values: inline, block, list-item, run-in, inline-block, table,
inline-table, table-row-group, table-header-group, table-footer-group,
table-row, table-column-group, table-column, table-cell, table-caption,
none

Default: inline

Inherited: No

Changes the default display of an element, e.g., turns an inline element into a
block-level one and vice versa.

 Getting StartED with CSS

 508

The only values fully supported by all browsers in current widespread use are
block, inline, and none. Most browesers support inline-block, but IE6 and IE7
support inline-block only when applied to elements that are normally
displayed inline.

IE8 and Opera are the only mainstream browsers that support run-in correctly.

The table-related values are not supported by IE6 and IE7. All other browsers in
widespread use support them, but with some minor inconsistencies in Safari 3.

overflow
Accepted values: visible, hidden, scroll, auto

Default: visible

Inherited: No

Controls the display of content that is too big to fit into a fixed-size container
in the following ways:

� visible: Content is permitted to spill out of its container, but the
container’s background and borders are not resized.

� hidden: Excess content is hidden and cannot be accessed by the user.

� scroll: Vertical and horizontal scrollbars are added to the container,
even if there is no overspill.

� auto: Scrollbars are added to the container only if the content is too
big to fit.

Setting overflow to hidden or auto can also be used to extend the background
of an element to clear any floated elements nested inside, as described in
Chapter 6.

visibility
Accepted values: visible, hidden, collapse

Default: visible

Inherited: Yes

Controls the visibility of an element, but does not remove it from the flow of
the document. Used mainly in conjunction with JavaScript dynamic effects.

If visibility is set to hidden, the browser leaves a space where the element
would normally have been. To remove an element entirely from the page
layout, use display and set its value to none.

509

Appendix : CSS Properties an Selectors

The collapse value is used only with table columns. When the visibility of a
table column is set to collapse, the browser should hide it, and reduce the
width of the table by the same width. At the time of this writing, IE8 is the
only browser that supports this correctly.

Float properties
There are just two properties connected with floating, the process whereby an
element is moved to the left or right, and all subsequent content moves up to
fill the horizontal space alongside. Typical uses are flowing text around images
(see Chapter 4), creating sidebars (see Chapter 7), and creating a horizontal
row of elements that would normally sit one on top of the other, such as
converting an unordered list into a navigation bar (see Chapter 8). The float
property is also used extensively in page layout, as described in Chapter 11.

clear
Accepted values: none, left, right, both

Default: none

Inherited: No

Prevents an element from moving up alongside a previously floated element.
The property’s value determines whether this applies to all floated elements
(both) or to those floated to a particular side.

float
Accepted values: left, right, none

Default: none

Inherited: No

Moves an element to the specified side, and allows following elements to move
up to fill the horizontal space vacated alongside it. When applied to inline
elements, such as images, the inline element is treated as a block.

Generated content properties
These properties automatically generate content in conjunction with the
:before and :after pseudo-elements. They are used mainly to generate
sequences of numbers or letters, and quotation marks. See Chapters 8 and 12

 Getting StartED with CSS

 510

for a detailed description of how to use these properties. Not supported by IE6
or IE7.

content
Accepted values: The keywords normal or none, or a combination of any of the
following: text in quotes, a URL value, a counter value, attr(), open-quote,
close-quote, no-open-quote, no-close-quote

Default: normal

Inherited: No

Defines the content the browser should insert in the :before and :after
pseudo-elements. The keywords normal and none suppress the generation of the
pseudo-element.

The attr() function extracts the value of an HTML attribute as text.

The open-quote, close-quote, no-open-quote, and no-close-quote keywords
specify how to display quotation marks defined by the quotes property.

counter-increment, counter-reset
These properties control the numbering of sequences displayed by a counter
value defined in the content property. See “Using CSS to generate numbered
sequences” in Chapter 8.

quotes
Defines pairs of quotation marks to be used as opening and closing quotes by
the content property. See “Curly quotes, anyone?” in Chapter 12. Currently
supported only by IE8, Firefox (since v1.8), and Opera (since v6).

List properties
These properties control the appearance of unordered (bulleted) and ordered
(numbered) lists, giving control over the position and type of symbol displayed
alongside each item. See Chapter 8 for a detailed description.

list-style-image
Accepted values: A URL value or the keyword none

Default: none

Inherited: Yes

511

Appendix : CSS Properties an Selectors

Specifies an image to be used as the symbol alongside each list item. It is
recommended to specify a fallback symbol with list-style-type in case the
image is not available.

list-style-position
Accepted values: inside, outside

Default: outside

Inherited: Yes

Specifies whether the symbol should be displayed in the margin alongside each
list item, or whether it should be indented in the first line.

list-style-type
Accepted values: disc, circle, square, decimal, decimal-leading-zero,
lower-roman, upper-roman, lower-greek, lower-latin, upper-latin, armenian,
georgian, lower-alpha, upper-alpha, none

Default: disc

Inherited: Yes

Specifies the symbol that appears alongside each list item. Use none to
suppress the symbol.

The only values that work with unordered lists () are disc, circle, and
square. The remaining values are for ordered lists ().

The following values are not supported by IE6 or IE7: decimal-leading-zero,
georgian, lower-greek, lower-latin, upper-latin.

list-style
Default: See individual properties

Inherited: Yes

Shorthand property that lets you specify the individual properties in a single
declaration. The values can appear in any order. If a value is omitted, the
default for the individual property is used.

Positioning properties
These properties permit elements to be removed from the normal flow of the
document and positioned as though floating on separate layers in front of other

 Getting StartED with CSS

 512

content. CSS positioning is an advanced subject, covered in detail in Chapter
10.

bottom, left, right, top
Accepted values: A percentage, size with a unit of measurement, or the
keyword auto

Default: auto

Inherited: No

Offsets that determine the position of the element in relation to the sides of its
containing block. They apply only to elements that are positioned using
absolute, fixed, or relative positioning.

The containing block of a fixed-position element is the browser viewport. For
other positioned elements, it is the element’s first ancestor that has the
position property set to absolute, fixed, or relative. In the absence of such
an element, the document becomes the containing block.

The keyword auto sets the offset to the position the element would have had in
the normal flow of the document.

clip
Accepted values: rect(), auto

Default: auto

Inherited: No

Defines the area of an absolutely positioned element that remains visible.
Performs a similar function to the crop tool in a graphical editor, but in a non-
destructive way. The area to be displayed is defined by entering four sizes with
a unit of measurement between the parentheses of rect(). The values passed
to rect() should be offsets measured from the top-left corner of the absolutely
positioned element that you want to clip, and should be in clockwise order
starting from the top.

According to the specification, the values passed to rect() should be separated
by commas. However, this is not supported by IE6 and IE7. Fortunately, other
browsers support leaving out the commas.

position
Accepted values: absolute, fixed, relative, static

513

Appendix : CSS Properties an Selectors

Default: static

Inherited: No

Defines how an element should be positioned. The default value, static,
displays the element in the normal way. Because the position property is not
inherited by default, the only time you need to specify its value as static is if
you need to override an existing value. For example, when creating a print
style sheet that inherits styles from another style sheet, it’s a good idea to set
position to static for absolutely-, fixed-, and relatively-positioned elements
to make sure they print out correctly.

The other values have the following effects:

� absolute: Removes the element, including any child elements,
completely from the flow of the document, and positions it at the
offsets defined in the same style rule. If the element is nested inside
another positioned element, the offsets are calculated with reference
to the positioned parent. Otherwise, the offsets are calculated with
reference to the page.

� fixed: Similar to absolute, but the offsets are always calculated with
reference to the browser viewport.

� relative: Moves the element relative to its normal position in the
document flow, but without affecting the position of other elements.

z-index
Accepted values: An integer (whole number) or the keyword auto

Default: auto

Inherited: No

Sets the stacking order of absolutely-, fixed-, and relatively-positioned
elements. When such elements overlap, those with a higher z-index value
appear in front of those with a lower one. If no z-index is specified, positioned
elements are stacked in the same order as they appear in the underlying HTML,
with those appearing first at the bottom of the stack.

Each containing block sets its own stacking context. When positioned elements
from different stacking contexts overlap, the z-index of the containing block
determines which appears on top. This can lead to a situation where an
element with a z-index of 2 will appear in front of one with a z-index of 2000,
if the z-index of the first element’s containing block is higher than the z-index
of the second element’s containing block.

 Getting StartED with CSS

 514

Print properties
These properties control page breaks when the media value is set to print. See
Chapter 12 for a detailed description. At the time of this writing, IE8 and Opera
are the only browsers that support these properties.

orphans
Accepted values: An integer (whole number)

Default: 2

Inherited: Yes

Specifies the minimum number of lines of a block-level element that should be
printed at the bottom of a page. If fewer lines would be printed, the browser
should force a page break, and move the whole element to the next page.

page-break-after
Accepted values: auto, always, avoid, left, right

Default: auto

Inherited: No

Specifies whether to force or avoid a page break after a particular block-level
element. The left and right values refer to the :left and :right pseudo-
classes defined by an @page rule, as described in Chapter 12.

page-break-before
Accepted values: auto, always, avoid, left, right

Default: auto

Inherited: No

Specifies whether to force or avoid a page break before a particular block-level
element. The left and right values refer to the :left and :right pseudo-
classes defined by an @page rule, as described in Chapter 12.

page-break-inside
Accepted values: avoid, auto

Default: auto

Inherited: No

515

Appendix : CSS Properties an Selectors

Specifies whether to permit a page break inside a particular block-level
element.

widows
Accepted values: An integer (whole number)

Default: 2

Inherited: Yes

Specifies the minimum number of lines of a block-level element that should be
printed at the top of a page. If fewer lines would be printed, the browser
should move the whole element to the current page.

Table properties
These properties control the appearance of tables. They provide a more
sophisticated way to control table borders and spacing than the HTML border
and cellspacing attributes. Using the padding property (see “Box model
properties” earlier in this appendix) within table cells also offers much greater
flexibility than the HTML cellpadding attribute. The table-layout property
makes it possible to fix the width of a table, overriding the default behavior of
automatically expanding the table to accommodate the widest content. See
Chapter 9 for a detailed description.

border-collapse
Accepted values: collapse, separate

Default: separate

Inherited: Yes

Controls the way table and cell borders are handled. By default, the table and
each cell have independent borders. Adjacent borders are merged by setting
the value of this property to collapse. If the borders are of different widths,
the wider one is applied. If both are the same width, the single width is used.
For example, if a 2px border is adjacent to a 5px one, the resulting width is
5px; but if both borders are 2px wide, the resulting width is 2px.

border-spacing
Accepted values: One or two sizes with a unit of measurement

Default: 0

 Getting StartED with CSS

 516

Inherited: Yes

Controls the spacing between table cells. A single value is applied to both
horizontal and vertical spacing. If two values are supplied, the first one is
applied to horizontal spacing, and the second to vertical spacing. Not
supported by IE6 or IE7.

caption-side
Accepted values: top, bottom

Default: top

Inherited: Yes

Controls whether the table caption is placed above or below the table. Not
supported by IE6 or IE7.

empty-cells
Accepted values: show, hide

Default: show

Inherited: Yes

If set to hide, turns off the display of borders and backgrounds associated with
empty table cells. If all cells in a row are empty, the entire row is removed
from the display when border-collapse is set to collapse. Not supported by
IE6 or IE7.

table-layout
Accepted values: auto, fixed

Default: auto

Inherited: No

Determines whether a table automatically expands to accommodate oversized
content. If set to fixed, the width of each column is set in the column
definitions or the first row.

text-align
Accepted values: left, right, center, justify

Default: left for languages written left to right

517

Appendix : CSS Properties an Selectors

Inherited: Yes

Although this is principally a text property, it also controls the horizontal
alignment of content in table cells.

vertical-align
Accepted values: top, middle, bottom, baseline

Default: middle

Inherited: No

Controls the vertical alignment of content in table cells. See Chapter 9 for a
definition of baseline as applied to tables.

Text properties
These properties are used to control the appearance of text. See Chapter 2 for
a detailed description.

color
Accepted values: A color value

Default: Officially depends on user agent, but is usually black

Inherited: Yes

Sets the color of text. Borders and outlines inherit this color if not defined
separately.

direction
Accepted values: ltr, rtl

Default: ltr

Inherited: Yes

Controls the display of text according to whether it should be read left to right
(ltr) or right to left (rtl). If direction is set to rtl on the page body, the
vertical scrollbar moves to the left side of the browser window. Setting
direction to rtl with a language normally read from left to right, such as
English, does not reverse the order of characters in the text.

 Getting StartED with CSS

 518

font-family
Accepted values: A comma-separated list of font names

Default: Depends on user agent

Inherited: Yes

Sets the font used for text. Browsers use the fonts available on the user’s
computer, so a selection of fonts should be specified in order of preference.
Font names that include spaces should be enclosed in quotes. The final value in
the list should be one of the following keywords indicating the type of font to
be used if none of the others is available: serif, sans-serif, monospace,
cursive, fantasy.

font-size
Accepted values: A percentage, size with a unit of measurement, or one of the
following keywords: xx-small, x-small, small, medium, large, x-large, xx-
large, larger, smaller

Default: medium

Inherited: Yes

Sets the size of the font. See Table 2-4 in Chapter 2 for definition of the
keywords.

font-style
Accepted values: normal, italic, oblique

Default: normal

Inherited: Yes

Changes the font between italic and regular text. If the font has an oblique
version, it is used when this property is set to oblique. Otherwise, the text is
italicized.

font-variant
Accepted values: normal, small-caps

Default: normal

Inherited: Yes

519

Appendix : CSS Properties an Selectors

Setting this property to small-caps displays the text as small capitals. If the
font does not support them, the text is rendered in uppercase.

font-weight
Accepted values: normal, bold, bolder, lighter, 100, 200, 300, 400, 500, 600,
700, 800, 900

Default: normal

Inherited: Yes

Displays the text in a bold or regular font. The comparative and numerical
keywords are of little practical value. Use normal or bold.

font
Default: See individual properties

Inherited: Yes

Shorthand property that permits you to combine into a single declaration the
values for font-style, font-variant, font-weight, font-size, line-height,
and font-family. Difficult to use.

The first three values are optional, and can be in any order. The remaining
values must be in the order listed, but line-height is optional. If both font-
size and line-height are specified, they must be separated by a forward slash.

When using the font shorthand property, values for font-size and font-family
are mandatory. A common mistake is to use font as a synonym for font-family.
Browsers ignore the entire rule if font-size is omitted.

letter-spacing
Accepted values: A size with a unit of measurement, or the keyword normal

Default: normal

Inherited: Yes

Increases the horizontal spacing between characters—the equivalent of tracking
in typography. Decreases horizontal spacing if used with a negative value.

line-height
Accepted values: A positive number, percentage, size with a unit of
measurement, or the keyword normal

 Getting StartED with CSS

 520

Default: normal

Inherited: Yes

Increases or decreases the vertical spacing between lines of text—the
equivalent of leading in typography. Decimal fractions, and values less than 1
are permitted, but not negative values. The most reliable way of specifying
line-height is with a number, such as 1.4, which ensures that the vertical
space remains proportional to the current font.

text-align
Accepted values: left, right, center, justify

Default: left for languages written left to right

Inherited: Yes

Controls the horizontal alignment of text.

text-decoration
Accepted values: The keyword none, or any combination of underline,
overline, line-through, blink

Default: none

Inherited: No

Underlines, overlines, and strikes through text. Setting the value to blink
causes the text to flash on and off continuously. These four effects can be
applied in any combination by specifying the values as a space-separated list.
Setting the value to none removes all effects.

text-indent
Accepted values: A percentage, or a size with a unit of measurement

Default: 0

Inherited: Yes

Indents the first line in a block of text by the specified amount. Cannot be used
to indent the whole block of text (use margin and/or padding for this purpose).

text-transform
Accepted values: capitalize, uppercase, lowercase, none

521

Appendix : CSS Properties an Selectors

Default: none

Inherited: Yes

Converts text to uppercase, lowercase, or initial capitals. Setting the value to
none renders the text in the original letter case.

unicode-bidi
Accepted values: normal, embed, bidi-override

Default: normal

Inherited: No

Controls how text is displayed when left-to-right and right-to-left languages are
displayed in the same document, e.g., English and Arabic or Hebrew. See
www.w3.org/TR/CSS21/visuren.html#propdef-unicode-bidi for details.

vertical-align
Accepted values: A percentage, size with a unit of measurement, or one of the
following keywords: baseline, sub, super, top, text-top, middle, bottom, text-
bottom

Default: baseline

Inherited: No

Controls the vertical alignment of text, images, and other inline content. It
cannot be used to control block-level elements, except inside a table cell or
when the element’s display property has been set to one of the table-related
values or inline-block. See Chapter 2 for a description of the values.

white-space
Accepted values: normal, pre, nowrap, pre-wrap, pre-line

Default: normal

Inherited: Yes

Controls the treatment of spaces in the underlying HTML code. The keywords
have the following effect:

� pre: Preserves spaces and new lines in a similar way to the HTML
<pre> tag, but without changing the font.

� nowrap: Prevents text from wrapping

 Getting StartED with CSS

 522

� pre-wrap: Preserves spaces and new lines, but wraps the text at the
right boundary of the page or containing element

� pre-line: Closes up sequences of whitespace as in normal text, but
honors new lines.

word-spacing
Accepted values: A size with a unit of measurement, or the keyword normal

Default: normal

Inherited: Yes

Increases or decreases the width of spaces in text.

User interface properties
These properties affect the display of the cursor and outlines. An outline is
similar to a border in that it surrounds an element. However, outlines do not
add to the overall width or height of an element, and all four sides must be the
same color, style and width. The main purpose of outlines is to improve
accessibility through a visual indication of the element that currently has
focus. Neither IE6 nor IE7 supports outlines. See Chapter 12 for details.

cursor
Accepted values: A comma-separated list of URL values, or one of the
following keywords: auto, crosshair, default, help, pointer, move, progress,
text, wait, e-resize, ne-resize, nw-resize, n-resize, se-resize, sw-resize,
s-resize, w-resize

Default: auto

Inherited: Yes

Changes the appearance of the cursor. The shape depends on the individual
browser. The difference between auto and default is that auto leaves the
choice of cursor up to the browser dependent on context, whereas default
forces the browser to display the default cursor (usually an arrow) regardless of
context.

Prior to IE6, Internet Explorer used the non-standard value hand instead of
pointer to display the hand-shaped cursor normally used for links. Although all
versions of Internet Explorer still support hand, you should now use pointer.

523

Appendix : CSS Properties an Selectors

outline-color
Accepted values: A color value or the keyword invert

Default: invert

Inherited: No

Sets the color of all four sides of an outline. The invert keyword instructs the
browser to choose a color that ensures the outline remains visible against the
background. Firefox 3.5 does not support invert.

outline-style
Accepted values: dashed, dotted, double, groove, inset, none, outset, ridge,
solid

Default: none

Inherited: No

Sets the style for all four sides of an outline.

outline-width
Accepted values: A percentage, or size with a unit of measurement

Default: medium

Inherited: No

Sets the width for all four sides of an outline.

outline
Default: See individual properties

Inherited: No

Shorthand property that allows you to set the color, style, and width of an
outline in a single declaration.

Selectors
Choosing the right selector is the key to working successfully with CSS. Many
browsers now support at least part of the much wider range of selectors
proposed for CSS3. The following sections list separately all selectors in the

 Getting StartED with CSS

 524

CSS2.1 specification, plus the more advanced selectors from the CSS3 proposal
that already have wide support.

CSS2.1 selectors
Most browsers currently in widespread use support the full range of CSS2.1
selectors. The exceptions are IE6 and IE7, which have problems with some
pseudo-classes and pseudo-elements. In addition, IE6 does not support child
selectors, adjacent sibling selectors, or any of the attribute selectors.

Universal selector
The universal selector is an asterisk (*). It matches any element.

Type selectors
A type selector redefines the default style of an HTML tag. It consists of the
name of the tag, without the angle brackets. For example, h1 redefines the
default style of <h1> tags.

Because they affect HTML tags, type selectors are sometimes called “tag
selectors.”

Class selectors
A class lets you apply styles to any HTML element, regardless of which tag it
uses. Properties inherited by default are also applied to the element’s
children. The class name can be anything of your choice, as long as it follows
these rules:

� It cannot contain any spaces.

� The only punctuation characters permitted are the hyphen (-) and
underscore (_).

� The name cannot begin with a number, or a hyphen immediately
followed by a number.

You create a class selector by prefixing the class name with a period (dot). For
example, this creates a class called warning:

.warning {
 font-weight: bold;
 color: #F00;
}

525

Appendix : CSS Properties an Selectors

The class is applied by adding the adding the class name with the class
attribute to the opening tags of the elements you want to style like this:

<h1 class="warning">A bold, red heading</h1>
<p class="warning">Please fill in the missing items.</p>

You can apply more than one class to the same element by assigning a space-
separated list of values to the class attribute like this:

<h1 class="warning reallyBig">A really big, bold, red heading</h1>

This applies the style rules in both the warning and reallyBig classes to the
same element. For example, if the reallyBig class assigns a font-size of 72px,
the heading in the preceding example will be bold, red, and 72px. However,
the font-size of the paragraph in the earlier example will be unaffected,
because it uses only the warning class.

AdvancED
Because class selectors can be applied to any element, it’s common
practice to use the selector on its own. In the preceding examples, the
selector has been left as .warning, so it could be applied to both a heading
and a paragraph. However, if you want a class selector to apply to only
one type of element, you can prefix it with another selector, e.g.,
p.warning applies the styles only to paragraphs that use the warning class.
There should be no space surrounding the period (dot).

Adding a space between the first selector and the dot of a class selector
creates a descendant selector (described later). So, instead of applying to
a paragraph that uses the warning class, p .warning targets elements that
use the warning class and are also nested inside a paragraph, e.g., a
or tag that uses the warning class.

To create a selector that targets a subset of classes, join two or more class
selectors together in the style sheet without any spaces like this:

warning.reallyBig {
 color: orange;
}

This targets only elements that have class="warning reallyBig" in their
opening tags. The heading in the previous example will now be in a bold 72px
font, but colored orange. However, elements that use only one of the classes
will be unaffected.

 Getting StartED with CSS

 526

ExplainED
Support for more than one class on an element is unreliable in IE6.

Pseudo-classes
A pseudo-class does not require the class attribute in the element’s opening
tag. Instead, it applies styles to an element automatically when it meets
certain conditions, such as its position in the HTML hierarchy, or the cursor
passing over a link. The CSS2.1 specification defines following pseudo-classes:

� :first-child: Styles an element that is the first child of its parent.
For example, li:first-child applies a style to the first list item in an
ordered or unordered list. It also applies the same style to the first
item in each nested list, because it will be the first child of the nested
parent. However p:first-child would apply only to the first
paragraph in a page or <div> if nothing else precedes it. If it is
preceded by a heading, it is no longer the first child of its parent, so
the style would not apply. Not supported by IE6.

� :link: Styles unvisited links.

� :visited: Styles visited links.

� :hover: Styles an element when the cursor is hovering over it. IE6
supports this only on links. Other browsers in widespread use support
it on all elements.

� :active: Styles an element at the moment it is being clicked. IE6 and
IE7 support this only on links.

� :focus: Styles an element if it has the current focus. Not supported by
IE6 or IE7.

� :lang(): Styles an element based on its language (if identified in the
HTML markup). See www.w3.org/TR/CSS21/selector.html#lang for
details.

When used with links, the pseudo-classes should be used in the same order as
presented here. Otherwise, they will fail to work.

There are also three pseudo-classes for print styles: :left, :right, and :first.
They are currently supported only by IE8 and Opera. See “Setting page margins
with the @page rule and pseudo-classes” in Chapter 12 for a detailed
description.

527

Appendix : CSS Properties an Selectors

Pseudo-elements
Like a pseudo-class, a pseudo-element is not identified as such by HTML
markup. It is used to apply styles to content based on its position in the HTML
hierarchy. The CSS2.1 specification defines the following pseudo-elements:

� :first-letter: Styles the first letter of an element, e.g., p:first-
letter defines a style for the first letter of every paragraph.

� :first-line: Styles the first line of an element, e.g., p:first-line
defines a style for the first line of every paragraph. The length of the
line is determined by where the browser wraps the text onto the next
line.

� :before: Used in conjunction with the content property, this adds
generated content before an element. See Chapters 8 and 12 for a
detailed description. Not supported by IE6 or IE7.

� :after: Same as :before, but adds generated content after an
element. Not supported by IE6 or IE7.

ID selectors
An ID selector applies styles to an element in the same way as a class. The
main difference between an ID selector and a class is that an ID can be used
only once on each page, whereas a class can be used many times. Properties
inherited by default are also applied to the element’s children, so this is a
powerful way to style whole sections of a page by wrapping the section in a
<div>, assigning it a unique identity through the id attribute in the opening
tag, and creating an ID selector.

The naming rules are the same as for a class, namely:

� It cannot contain any spaces.

� The only punctuation characters permitted are the hyphen (-) and
underscore (_).

� The name cannot begin with a number, or a hyphen immediately
followed by a number.

To create an ID selector, prefix the ID name with a hash sign (#). For example,
the following style rule applies to an element with the ID container:

#container {
 width: 960px;
 margin: 0 auto;
}

 Getting StartED with CSS

 528

Some developers prefix the ID selector with the element’s type selector, e.g.,
div#container. However, this is normally unnecessary, because an ID should be
unique within the page, so the ID selector should be sufficient to identify
where the style is to be applied.

AdvancED
JavaScript dynamic effects, such as flyout menus, make extensive use of
IDs, so ID selectors are frequently a convenient way of adding styles to
specific page elements without the need to add extra HTML markup.

Descendant selectors
A descendant selector matches any element that is a descendant of another.
To create a descendant selector, separate the two selectors by a space,
putting the ancestor first. For example, the following rule is applied to all
paragraphs inside a <blockquote> element:

blockquote p {
 font-style: italic;
}

The preceding example uses two type selectors, but you can create a
descendant selector from any other types of selectors. For example, the
following descendant selector targets unvisited links that are descendants of an
element with the ID sidebar:

#sidebar a:link {
 color: #008080;
}

The descendant can be at any level of the HTML hierarchy, as long as it is in
the same branch of the family tree.

Child selectors
A child selector matches an element that is a child of another—in other words,
it must be at the next level of the HTML hierarchy, and no deeper. Take the
following example:

<blockquote>
 <p>To be, or not to be. . .</p>
</blockquote>

529

Appendix : CSS Properties an Selectors

In this example, the tag is a child of <p>, but not of <blockquote>. The
 tag is a descendant of the <blockquote> tag, but not one of its children.

To create a child selector, add a greater than sign (>) after the parent
selector, and follow it with the selector for the child element. For example,
the following child selector targets all paragraphs that are direct children of a
<blockquote> element:

blockquote > p {
 font-style: italic;
}

ExplainED
When elements are nested only one level deep, it is marginally more
efficient to use a child selector, because the browser doesn’t need to
check any further down the hierarchy. The reason I have avoided using
child selectors throughout this book is because they’re not supported by
IE6.

Until IE6 disappears from the scene, it is more practical to use descendant
selectors.

The space on either side of the greater than sign is optional, but is normally
included for readability. However, the following is equally valid:

blockquote>p {
 font-style: italic;
}

To target the tag in this example, you can chain child selectors like this:

blockquote > p > em {
 font-style: normal;
}

Adjacent sibling selectors
An adjacent sibling selector matches an element immediately preceded by a
sibling of the specified type. To create an adjacent sibling selector, add a plus
sign (+) between the two selectors like this:

h1 + p {
 text-indent: 0;
 font-weight: bold;
}

 Getting StartED with CSS

 530

This targets a paragraph that immediately follows an <h1> heading. Both
elements must have the same parent in the HTML hierarchy, and no other
elements must come between them. Not supported by IE6.

In CSS3, this selector is called the adjacent sibling combinator. It works exactly
the same way.

AdvancED
The specification does not say the spaces surrounding the plus sign are
optional, but all browsers that currently support the adjacent sibling
selector support it with or without spaces.

Attribute selectors
Attribute selectors target elements based on attributes defined in their
opening HTML tags. CSS2.1 specifies four types of attribute selectors, none of
which is supported by IE6. The attribute selectors use the following syntax, in
which E represents a selector, and foo represents the name of the attribute:

� E[foo]: Matches any E element with the foo attribute set (whatever
the value).

� E[foo="warning"]: Matches any E element where the foo attribute
value is exactly equal to warning.

� E[foo~="warning"]: Matches any E element where the foo attribute
value is a list of space-separated values, one of which is exactly equal
to warning.

� E[lang|="en"]: Matches any E element where the lang attribute has a
hyphen-separated list of values beginning (from the left) with en.

Several examples should help clarify how these selectors are used. The
following style rule uses the universal selector in combination with an attribute
selector to add a 2px blue border to every item that has a title attribute:

*[title] {
 border: solid 2px blue;
}

The following style rule selects all elements that use only the warning class:

*[class="warning"] {
 font-weight:bold;
 color:#F00;
}

531

Appendix : CSS Properties an Selectors

The following rule selects all elements that use at least the warning class:

*[class~="warning"] {
 font-weight:bold;
 color:#F00;
}

ExplainED
There is an important difference between the two preceding examples. If
you have a page where some elements have class="warning" in their
opening HTML tags, and others have class="warning reallyBig", all of
them will be selected by *[class~="warning"]. However,
*[class="warning"] selects only those that have class="warning"; it does
not select elements with class="warning reallyBig".

The equal sign on its own means “exact match.” The equal sign preceded
by a tilde (~=) expands the search to a space-separated list. However, the
value must still be an exact match for one of the values in the list.
*[class~="warn"] does not match class="warning". For that, you need to
use the CSS3 selector *[class*="warn"] described later.

The following rule targets all paragraphs that have the lang attribute set to fr
(French) or fr-ca (Canadian French):

p[lang|=fr] {
 font-style: italic;
}

Note that quotes around the value following the equal sign are optional, except
when the value contains spaces.

You can also chain attribute values like this:

h1[class~=reallyBig][title="main heading"] {
 background-color:#00F;
}

This targets an <h1> heading that uses the reallyBig class, and has the title
attribute set to main heading.

Grouping selectors
To avoid repetition when applying the same styles to several elements, you can
group selectors as a comma-separated list. For example:

h1, h2, h3, h4, h5, h6 {

 Getting StartED with CSS

 532

 color: #468966;
 font-family: Georgia, "Times New Roman", Times, serif;
 margin: 10px 0;
}

This has the same effect as creating six identical style rules for each level of
heading.

ExplainED
Do not confuse grouping selectors with descendant selectors. The
descendant selector blockquote p targets paragraphs inside <blockquote>
elements. Adding a comma after blockquote (blockquote, p) changes the
meaning completely, to target both <blockquote> elements and
paragraphs.

Building complex selectors
Once you understand each type of selector, you can combine them in virtually
endless ways to target specific elements. However, you should avoid the
temptation to try to be too clever. The more complexity you introduce, the
more fragile your design is likely to be. If you create a complex descendant or
child selector, the style will cease to be applied if you move a key element out
of the document’s hierarchy. Keeping selectors simple makes for easier
maintenance.

Widely-supported CSS3 selectors
Unlike the CSS2.1 specification, which is a single document covering
everything, CSS3 is being created in modules, with each module concentrating
on a specific area. The idea is to speed up the process, moving ahead with
parts that are ready for adoption without being held back by areas that are
more controversial or technically difficult. That’s the theory, anyway. The CSS3
process has been glacial, but the Selectors module is one of the most
advanced, and it has been embraced enthusiastically by some browsers even
before its official approval.

CSS3 supports all the selectors in CSS2.1, and adds a large number of more
advanced ones. Since IE7, Internet Explorer has adopted a small subset of the
CSS3 selectors, which means that at the time of this writing, they are now
supported by about 70 percent of all browsers in current use. So, you might like

533

Appendix : CSS Properties an Selectors

to experiment with some of the new selectors to offer an enhanced experience
to visitors whose browsers recognize them.

LinkED
I have included only those CSS3 selectors supported by a wide range of
modern browsers in widespread use, including IE7 and IE8. They are not
supported by IE6. For a full list and description of the CSS3 Selectors
module, visit www.w3.org/TR/css3-selectors/.

Matching an attribute that begins with a value
The syntax for this selector is E[foo^="bar"]. It matches any E element where
the value of the foo attribute begins with bar.

A particularly useful example of this is using the following selector to target
links to external sites (assuming you don’t use fully qualified URLs for internal
links):

a[href^="http://"]

Matching an attribute that contains a substring
The syntax for this selector is E[foo*="bar"]. It matches any E element where
the value of the foo attribute contains the substring bar.

The following selector matches all images that contain “Paris” in the alternate
text:

img[alt*="Paris"]

Matching an attribute that ends with a value
The syntax for this selector is E[foo$="bar"]. It matches any E element where
the value of the foo attribute ends with bar.

You could use the following selector to apply a special style to all links to PDF
files:

a[href$=".pdf"]

 Getting StartED with CSS

 534

General sibling combinator
The general sibling combinator matches elements that are preceded by another
element at the same level of the HTML hierarchy. You create it by adding a
tilde (~) between two selectors.

Understanding how this selector works is relatively straightforward, but it
requires a little thought in practice. The following rule changes the color of the
text in paragraphs that follow an <h1> heading:

h1 ~ p {
 color: red;
}

However, this rule affects all paragraphs that are siblings of the <h1> heading.
So, paragraphs after an <h2> heading will also be affected as long as there is an
<h1> heading at the same level of the family tree. To style paragraphs
differently after each type of heading, you need separate rules like this:

h1 ~ p {
 color: red;
}
h2 ~ p {
 color: blue;
}
h3 ~ p {
 color: green;
}

535

Index
(hash sign), 145, 496, 527
* (universal selector), 269, 524
~ (tilde), 534
+ (adjacent sibling

selector/combinator), 107–
108, 269, 529–530

. (dot or period), 124

A
absolute file path, 498
absolute positioning, 380–399

against background images, 395–
399

centering pages, 385–386
clip property, 400
drawbacks of, 393–395
movement, 383–385
nesting elements, 386–389
overlapping elements, 389–393
for sidebars, 426–428

absolute units, 497
absolute value, position property,

366, 513
accented characters, 123
accessible page headings, 259–263
:active pseudo-class, 526
adjacent sibling selector/combinator

(+), 107–108, 269, 529–530
Adobe Dreamweaver

absolute positioning, 89
class names, 124
dragging and dropping rules, 117

:after pseudo-element, 270, 311–314,
316, 509, 527

alignment of text, 68–70
always value, page-break properties,

459
aqua keyword, 496

armenian keyword, 278
attr() function, 315, 461, 510
attribute selectors, 269, 271–273,

524, 530–531
auto content, 508
auto cursor, 522
auto keyword

centering page content, 99
setting margins, 93

auto value
cursor property, 479
height property, 213
overflow property, 221, 231–232
page-break properties, 459
table-layout property, 347

avoid value, page-break properties,
459

B
background images, 163–176

absolute positioning of elements
against, 395–399

adding to create faux columns,
429

adjusting position of, 169–176
controlling repeats, 166–167
in relation to browser viewport,

168–169
simulating equal columns with,

419–421
tiling vertically, 420

background property, 501
background shorthand property, 156,

176–178
background-attachment property,

156, 168, 499–500
background-color property, 156–157,

500

 Getting StartED with CSS

 536

background-image property, 156,
164, 500

background-position property, 156,
169–171, 173, 284, 435,
500–501

background-repeat property, 156,
166–167, 170, 221, 419–420,
501

backgrounds, 156–178
adding images to, 163–176

adjusting position, 169–176
controlling repeats, 166–167
in relation to browser

viewport, 168–169
background shorthand property,

176–178
color of, 157–163
preventing from displaying under

floated images, 194–196
banner headings, 368
baseline value, vertical-align

property, 352
:before pseudo-element, 270, 312–

314, 316, 509, 527
black keyword, 496
block value, display property, 287
block-level elements, 87–88, 514–515
<blockquote> element

child selectors, 529
indenting text, 105
margins along floating images,

141–143
blocks, in page layout, 86–89
blue borders, around link images,

193–194
blue keyword, 496
<body> tags, 409
bold fonts, 64–65
border attribute, 335, 504, 515
border properties, order of, 184, 186
border shorthand properties, 180,

183–184, 190
border-bottom property, 502–503
border-bottom shorthand property,

180
border-bottom-color property, 179,

503

border-bottom-style property, 179,
503

border-bottom-width property, 179,
503

border-collapse property, 180, 334,
337–342, 515

border-color property, 502
border-color shorthand property,

180–181
border-left property, 502–503
border-left shorthand property, 180,

187
border-left-color property, 179, 503
border-left-style property, 179, 503
border-left-width property, 180, 503
border-right property, 502–503
border-right shorthand property,

180, 187
border-right-color property, 179, 503
border-right-style property, 179, 503
border-right-width property, 179,

503
borders, 179–196

blue, around link images, 193–194
border shorthand properties, 183–

184
color of, 181
effect on layout, 186–193
preventing from displaying under

floated images, 194–196
simulating embossing and

indenting, 184–186
style of, 181–182
in tables

adding to cells, 336–337
adding to columns and rows,

340–341
border-spacing property, 342–

343
overview, 335–336
widths of, preventing

doubling of, 337–339
width of, 183

border-spacing property, 180, 334,
342–343, 515–516

border-style property, 502
border-style shorthand property, 180

537

Index

border-top property, 502–503
border-top shorthand property, 180
border-top-color property, 179, 503
border-top-style property, 179, 503
border-top-width property, 179, 503
border-width property, 182, 503–504
border-width shorthand property,

180
both value, clear property, 134
bottom keyword, background-

position property, 169
bottom property, 365, 512
bottom value

caption-side property, 344
vertical-align property, 352

box model, 85, 88, 200, 507
boxes, in page layout, 86–89
breaks

breaking content between pages,
458–460

continuing numbered lists after,
310–311

browsers
older, displaying message to

users of, 238–240
table layout by, 332–333
testing CSS in, 36
usable width of at common

resolutions, 406
viewport of, 168–169, 512
window size, 374, 405–406

C
capitalization, 65
<caption> tag, 328
captions

for images, 148–152, 265–267
in tables, 344–345

caption-side property, 334, 344, 516
Cascading Style Sheets. See CSS
case-sensitivity, class selectors, 125
Cederholm, Dan, 418
cellpadding attribute, 326–327, 343,

515
cells

adding borders to, 336–337

empty, 345–346
position of content in, 351–362
scrolling, 350

cellspacing attribute, 337, 515
center keyword, background-position

property, 169
center value, align property, 99
centering

absolute positioning, 385–386
images, 128–132
page content, 99–105

child selectors, 194, 270, 528–529
circle keyword, 279
cjk-ideographic keyword, 279
class attribute, 107
class selectors, 125, 268, 524–525
class="warning" element, 531
classes

creating and applying, 123–125
generic, to position images, 127–

128
ID selectors versus, 145–147
specificity, 271–273

clear property
floats and, 428
long sidebars, 422
overflow property versus, 234–

236
overview, 126, 509
using to force elements below

floated image, 134–138
clip property, 230–231, 365, 399, 512
cm unit, 456
<col> tag, 329
<colgroup> tag, 328–329
collapse property, 515
collapse value

border-collapse property, 339–
342

visibility property, 236, 341, 360,
509

collapsed vertical margins, 91–93
color

of backgrounds, 157–163
of borders of links, 295
of fonts, changing

 Getting StartED with CSS

 538

applying different color, 53–
56

setting color values, 51–53
color property, 517
color values, specifying, 495–496
column container, 443–444
columns. See also faux columns;

page layout
adding borders to, 340–341
defining using HTML tags, 328–

329
comments, adding to CSS, 22–23
comparative keywords, 519
conditional comments, IE, 30–32,

412, 446
containers, preventing content from

spilling out of, 230–240
containing block

creating with relative
positioning, 379

nesting elements, 387
content, disappearing, 389
content property

adding content with, 312–317
:after pseudo-element, 460, 487
:before pseudo-element, 487
overview, 510
using to generate lists, 315–321

continuous columns, 404
counter() function, 317–319
counter-increment property, 312,

316, 510
counter-reset property, 312, 316,

322, 510
counters() function, 323
cropping images nondestructively,

399–401
crosshair value, cursor property, 479
CSS (Cascading Style Sheets), 1–38

advantages of, 7–16
control of appearance, 14–16
fast changes, 10–13
simpler markup, 7–10

history of, 3–6
keeping manageable, 112–119

by organizing style rules, 116–
119

using margin shorthand
property, 113–116

limiting devices using styles, 32–
34

location of, 23–32
applying style directly to

HTML element, 28
external style sheets, 24–26
IE conditional comments, 30–

32
<style> block, 27

meaning of term, 18–19
writing style rules, 19–23

adding comments, 22–23
formatting for ease of

maintenance, 21–22
writing well

avoiding common mistakes,
35–36

building toolset, 36–38
testing in browsers, 36

CSS2.1 selectors, 524–532
adjacent sibling selectors, 529–

530
attribute selectors, 530–531
child selectors, 528–529
class selectors, 524–525
complex, building, 532
descendant selectors, 528
grouping, 531–532
ID selectors, 527–528
pseudo-classes, 526
pseudo-elements, 527
type selectors, 524
universal selector, 524

CSS3 selectors, 532–534
curly quotes, 485–491
cursive keyword, 518
cursor property, 478–480, 522

D
decimal style for keywords, 278
default cursor, 522
default margins, removing, 94–99
default styles, browser, 97
default value, cursor property, 479

539

Index

definition lists, 275–276
descendant selectors

creating, 525
grouping selectors versus, 532
overview, 193, 268, 528
using for captioned images, 266–

267
Developer Tools, Opera, 95
Developer Tools panel, IE, 95–96
direction property, 517
disabled, making site user friendly

for, 423
disabling style rules, 96–97
disc value, list-style-type property,

277, 279
display property, 286–290

centering images, 128
combining absolute positioning

with, 399
double-margin bug, 433, 443
none value, 237–239
overview, 211, 231, 507–508
setting to inline, 288
setting to inline-block, 289–290
table-related values, 446
visibility property versus, 236–238

div[id="oldBrowser"] selector, 239–
240

<div> element
absolute positioning, 89
captions, 148
declaring width, 102–104
fixed positioning, 370, 375
hybrid layout, 439
nesting absolutely positioned

element inside, 386
two-column layout, 416

DOCTYPE declaration, 202
document-relative links, 462
dot (.), 124
double curly quotes, 489
double-column layout. See two-

column layout
double-margin bug, IE, 433, 443
Dreamweaver

absolute positioning, 89
class names, 124

dragging and dropping rules, 117
dynamic effects, 528

E
E element, 533
E[foo] syntax, 530
E[foo~="warning"] syntax, 530
E[foo="warning"] syntax, 530
E[lang|="en"] syntax, 530
elastic layout, 408–409
 tag, 529
embossing, simulating, 184–186
empty table cells, 516
empty-cells property, 335, 345–346,

516
ems, setting font length using, 57–60
e-resize value, cursor property, 479
expression() function, 228, 230
Expression Web

class names, 124
dragging and dropping rules, 117

external style sheets, 24–26

F
fantasy keyword, 518
faux columns, 437–440

adding background image to
create, 429

for fixed-width layout, 437–438
for hybrid layout, 439–440
for liquid layout, 436, 440
overview, 418
with variable-width sidebars, 434

Firebug, 92
Firebug Lite, 92
Firefox, 109, 409
:first pseudo-class, 457, 526
:first-child pseudo-class, 248–250,

526
:first-letter pseudo-element, 270,

527
:first-line pseudo-element, 270, 527
fixed page layout

faux columns, 437–438
versus flexible, 406–409

fixed positioning, 367–377

 Getting StartED with CSS

 540

containing block, 379
limitations of, 374–377
navigation menu, keeping

onscreen, 367–374
overview, 512

fixed value
background-attachment

property, 168
position property, 366, 513
table-layout property, 347

fixed-width single-column layout,
409

fixed-width two-column layout, 417
flexible layout, 406–409, 434–436
float property, 125–144

centering images, 128–132
creating generic classes to

position images, 127–128
creating two-column layout with,

245–246, 248–249
CSS positioning, 364
flow and, 88
forcing elements below floated

image, 134–138
IE bugs, 251–253
margins alongside floated image,

139–144
overview, 121–122, 509
sidebars, 236
when element too wide to sit

alongside image, 138
when image is taller than text,

132–134
floated element, 364
floating sidebars, 416–418
floatleft class, 265
floatright class, 265
flow, web page, 88
:focus pseudo-class, 485, 526
focus rectangle, 484
font families, 44–51
font property, 519
font shorthand property, 82–83, 519
font-family property, 518–519
fonts

alignment of, 68–70
bolder or lighter, 64–65

changing, 43–56
color of

applying different color, 53–
56

setting color values, 51–53
indentation of first line, 70
italicized, 64
line wrapping, 72–77
printing web pages, 454
size of, 56–64
small caps, 65
spacing

between letters, 71
between lines of text, 71
overview, 68
whitespace, 72–77
between words, 71

uppercase and lowercase, 65–67
font-size property, 518–519
font-style property, 518–519
font-variant property, 519
font-weight property, 519
footer rows, 330
#footer style block, 470
frames, 367
fuchsia keyword, 496

G
generated content properties, 509–

510
georgian keyword, 278
Gillenwater, Zoe, 435–436
gray keyword, 496
green keyword, 496
grid structures, 403
grouping selectors, 531–532

H
<h1> heading, 534
<h2> heading, 534
handheld devices, creating separate

style sheet for, 465
hash sign (#), 145, 496, 527
header rows, 330
#header style block, 370, 470

541

Index

headers
adding images to, 260–262
creating fixed, 367, 370, 372–373

headings
accessible, 259–263
styling differently from links,

253, 255, 257, 259
headrow class, 360
height, fixed, 214–222
height property, 213–214, 408, 504
help value, cursor property, 479
hexadecimal notation, 486, 495
hexadecimal shorthand values, 496
hidden content, 508
hidden value

overflow property, 196, 231
visibility property, 236

hide value, empty-cells property, 345
hiragana keyword, 279
hiragana-iroha keyword, 279
history of CSS, 3–6
horizontal text alignment, 69
horizontal margins, 504
horizontal scrolling, 408
horizontal spacing, 516
horizontal text-based navigation bar,

297–305
:hover pseudo-class, 485, 526
href attribute, 461–462
HTML attributes, generating content

from, 315
HTML tags

applying style directly to, 28
defining sections of tables using,

328–331
defining table columns, 329
grouping table rows into

sections, 330–331
table columns, 328
table header and footer rows,

330
hybrid layout, 408, 439–440
hyperlinks. See links

I
ID selectors

classes versus, 145–147
overview, 268, 527–528
specificity, 271, 273

IE. See Internet Explorer
image alignment section, 472
images

adding to backgrounds, 163–176
adjusting position of image,

169–176
controlling image repeats,

166–167
fixing image in relation to

browser viewport, 168–169
adding to headers, 260–262
adding with pseudo-elements,

314
blue borders around, 193–194
captions for, 148–152, 265–267
flowing text around, 121–153

centering images, 128–132
classes, 123–125
creating generic classes to

position images, 127–128
forcing elements below

floated image, 134–138
margins alongside floated

image, 139–144
using ID selectors to style

unique elements, 144–147
when element too wide to sit

alongside image, 138
when image is taller than

text, 132–134
#images img descendant selector,

391
 tag, 455
!important keyword, 300–301
in unit, 456
indentation

simulating, with borders, 184–186
of text

first line, 70
with margin-left property,

105–109
individual property, 503
inherit keyword, display property,

286

 Getting StartED with CSS

 542

inherit value
background-attachment

property, 168
background-image property, 164
background-repeat property, 166
float property, 126
overflow property, 232
page-break properties, 459
setting margins, 93

inline elements
applying margins to, 111–112
defined, 87–88

inline style, 271, 273
inline value

display property, 287–288
setting display property to, 288

inline-block value, display property,
287, 289–290

inset border style, 184
inside value, list-style-position

property, 281
internal links, displaying, 462
Internet Explorer (IE)

conditional comments, 30–32,
412, 446

Developer Tools panel, 95–96
double-margin bug, 433, 443
fixed positioning, 373
float bugs, 251–253
offsets, 401
@page rule, 458
resizing browser window, 409
sidebars, 245

invert keyword, 523
italics, 64

J
JavaScript, 528

K
katakana keyword, 279
katakana-iroha keyword, 279

L
landscape orientation, 404

lang attribute, 531
:lang()pseudo-class, 526
:last-child pseudo-class, 492
layout. See page layout
left keyword, background-position

property, 169
left offset, 381
left property, 365, 512
:left pseudo-class, 457, 514, 526
left value

clear property, 134
float property, 126
page-break properties, 459

letter-spacing property, 71, 519
 element, 127
light fonts, 64–65
lime keyword, 496
line-height property, 87, 111, 519–

520
lines of text

indentation of, 70
spacing between, 71
wrapping of, 72–77

:link pseudo-class, 526
<link> tag, 463
links, 77–82

blue borders around link images,
193–194

converting to horizontal
navigation bar, 298, 300,
302, 305

converting to vertical navigation
bar, 292, 294, 297

displaying URL, 460–461
pseudo-classes, 78–79
styling differently from headings,

253, 255, 257, 259
underlining, 79–81

liquid layout, 103, 408, 410, 413–415
list-item value, display property, 287
lists

creating navigation bars from,
291–310

horizontal text-based
navigation bar, 297–305

using CSS sprites in navigation
bar, 305–310

543

Index

vertical text-based navigation
bar, 292–297

numbered
changing number, 277–281
continuing after breaks, 310–

311
generating subsection

numbers with nested lists,
322–323

using content property to
generate, 315–321

using generated content with,
321–322

unordered and ordered
changing position of symbol,

281
changing symbol or number,

277–281
list-style shorthand property,

285–286
replacing symbol with own

image, 282–285
list-style property, 511
list-style shorthand property, 277,

285–286
list-style-image property, 277, 282–

283, 285, 510–511
list-style-position property, 277, 281,

511
list-style-type property, 277–278,

280, 321–323, 511
location of CSS, 23–32

<style> block, 27
applying style directly to HTML

element, 28
external style sheets, 24–26
IE conditional comments, 30–32

lower-alpha keyword, 278
lowercase text, 65–67
lower-latin keyword, 278

M
main content

floating, 425
placing first

three-column layout, 440–444
two-column layout, 424–434

main style sheet, 464
#mainContent style block, 433, 441,

470
margin property, 412, 505
margin shorthand property, 90, 93–

94, 113–116, 128, 159
margin-bottom property, 90–91, 504–

505
margin-left property, 90, 99, 105–

109, 504–505
margin-right property, 90, 99, 504–

505
margins, 89–93, 105–111

alongside floated image, 139–144
applying to inline elements, 111–

112
box, 85
centering page content, 99–105
default, removing, 94–99
indenting text with margin-left,

105–109
negative, 109–111
setting values of, 93
setting with @page rule and

pseudo-classes, 456–457
vertical, collapse of, 91–93

margin-top property, 90–91, 504–505
maroon keyword, 496
max-height property, 213, 223, 228–

229, 505
max-width property, 213, 223–224,

226–227, 408, 413–414, 506
media attribute, 463–464
menus

fixed, 367, 370, 372–373
tabbed, 306, 308–309
vertical, 376

Microsoft Expression Web
class names, 124
dragging and dropping rules, 117

Microsoft Internet Explorer. See
Internet Explorer

middle value, vertical-align property,
352

min-height property, 213, 223, 228–
229, 285, 506

 Getting StartED with CSS

 544

min-width property, 213, 223–224,
226, 408, 506

mistakes, avoiding, 35–36
mm unit, 456
mobile device browsers, 405
monitor resolution, 405
monospace keyword, 518
move value, cursor property, 479
Mozilla Firefox, 109, 409

N
naming classes, 123
#nav style block, 375, 378
navigation bars, 291–310

horizontal text-based, 297–305
using CSS sprites in, 305–310
vertical text-based, 292–297

navigation menu, keeping onscreen,
367–374

navy keyword, 496
negative margins

changing value of, 431
floating sidebar using, 428–434
overview, 109–111
using for left sidebar, 440, 443

negative value, margin property, 505
ne-resize value, cursor property, 479
nested lists, 322–323
nesting elements, 386–389
nesting quotes, 487
none value

display property, 287
list-style-type property, 280, 321
overview, 499

nonpositioned content, 391, 394
no-repeat value, background-repeat

property, 166, 501
nowrap property, 521
numbered lists

changing number, 277–281
continuing after breaks, 310–311
generating subsection numbers

with, 322–323
using content property to

generate, 315–321

using generated content with,
321–322

numerical keywords, 519

O
oblique property, 518
offsets, calculating in fixed

positioning, 380
olive keyword, 496
onscreen measurements, 497
onscreen pixel rulers, 99
Opera browser

Developer Tools, 95
@page rule, 458
size property, 455

orange keyword, 496
ordered lists

changing position of symbol, 281
changing symbol or number, 277–

281
defined, 275
list-style shorthand property,

285–286
replacing symbol with own

image, 282–285
orphans property, 459, 514
outline property, 478, 481–485, 523
outline shorthand property, 484
outline-color property, 478, 484, 523
outline-style property, 478, 483, 523
outline-width property, 478, 484, 523
outset border style, 184
outside value, list-style-position

property, 277, 281
overflow property

background images for text, 221
clear property versus, 234–236
creating columns with columns,

445
overview, 508
preventing backgrounds and

borders from displaying
under floats, 195–196

preventing content from spilling
out of containers using,
230–232

overflow-x property, 234

545

Index

overflow-y property, 234
overlapping elements, 110, 389–393
overlapping images, 364, 389

P
<p> tag, 529
padding, 200–212

defined, 85
margins versus, 202
using to add space around

elements, 203–212
padding property, 94, 163, 343, 507,

515
padding shorthand property, 203
padding-bottom property, 203, 506
padding-left property, 203, 506
padding-right property, 203, 506
padding-top property, 203, 506
page layout, 85–120, 403–451

accessible page heading, 259–263
boxes and blocks, 86–89
captions for images, 265–267
changing with display property,

286–290
inline value, 288
inline-block value, 289–290

considerations
browser window size, 405–406
fixed versus flexible, 406–409
target audience, 404–405

effect of borders on, 186–193
margins, 89–93, 105–111

applying to inline elements,
111–112

centering page content, 99–
105

default, removing, 94–99
indenting text with margin-

left, 105–109
negative, 109–111
setting values of, 93
vertical, collapsed, 91–93

sidebars
adding, 245
giving different styles, 250–

259

switching to other side, 263–
265

single-column, 409–415
table-related display, 446–450
three-column

faux columns, 437–440
putting main content first,

440–444
subcolumns, 444–446

two-column, 415–436
absolute positioning for

sidebar, 426–428
flexible layout, 434–436
floating main content, 425
floating sidebar, 416–418,

428–434
placing main content first,

424–434
sidebar longer than content,

421–422
simulating equal columns

with background image,
419–421

"skip to main content" link,
423–424

@page rule, setting margins with,
456–457

page-break-after property, 458, 514
page-break-before property, 458,

514
page-break-inside property, 458,

472, 515
parent element, 386
pc unit, 456
percentages

background-position property,
501

padding, 204
setting margins, 93
width property, 101

period (.), 129
picas measurement, 472
pixels

setting font length using, 57–60
setting margins, 93

plus sign (+), 529
pointer value, cursor property, 479

 Getting StartED with CSS

 546

points measurement, 472
position property

absolute value, 398
adding to #wrapper style rule,

385
CSS positioning, 363
fixed value, 398
overview, 513
setting containing block for

resized browser window,
426

static value, 365
using cascade for print styles,

465
values, 366

positioning elements, 363–402
absolute positioning, 380–399

against background image,
395–399

centering pages, 385–386
drawbacks of, 393–395
movement, 383–385
nesting elements, 386–389
overlapping elements, 389–

393
cropping images

nondestructively, 399–401
fixed positioning

limitations of, 374–377
navigation menu, keeping

onscreen, 367–374
relative positioning, 377–379
types of, 366

positioning properties, 511–513
pre property, 521
pre-line property, 522
pre-wrap property, 522
Print Preview option, 467, 473
print properties, 514–515
print style sheets, 453–493

breaking content between pages,
458–460

creating, 462–478
attaching independent style

sheets, 465–478
cascading, 464
media attribute, 463–464

cursor property, 479–480
limitations of, 455
links, displaying URL of, 460–461
outline property

adding outlines, 481–484
removing default outline

without destroying
accessibility, 484–485

quotes property, 485–491
setting margins, 456–457

progress value, cursor property, 479
properties, specifying values of, 495–

498
pseudo-classes

order of, 117
overview, 78–79, 268, 526
setting margins with, 456–457
specificity, 271, 273

pseudo-elements
adding images with, 314
overview, 270, 527
specificity, 271, 273

pt unit, 456
purple keyword, 496
px property, 498

Q
<q> tag, 488
quirks mode, 202
quotes property, 485–491, 510

R
reallyBig class, 525, 531
rect() property, 512
red, green, blue (RGB) values, 495
red keyword, 496
relative file path, 498
relative positioning, 377–379, 512
relative units, 497
relative value, position property,

366, 513
removing default margins, 94–99
repeat value, background-repeat

property, 166, 501
repeat-x value, background-repeat

property, 166, 501

547

Index

repeat-y value, background-repeat
property, 166, 501

resolution, monitor, 405
RGB (red, green, blue) values, 495
rgb() value

background-color property, 157
border properties, 181

right offset, 381
right property, 365, 512
:right pseudo-class, 457, 514, 526
right value

clear property, 134
float property, 126
page-break properties, 459

right value, background-position
property, 169

RNIB (Royal National Institute of
Blind People), 423

rounding errors, 414
rows

adding borders to, 340–341
grouping into sections, 330–331
header and footer rows, 330

Royal National Institute of Blind
People (RNIB), 423

rules for styles. See style rules
run-in value, display property, 263,

288

S
Safari browser

form element styling, 398
Web Inspector, 95, 139

sans-serif keyword, 518
screen readers

negative margins, 110
"skip to main content" link for,

423–424
scroll value

background-attachment
property, 156, 168

overflow property, 232, 508
scrolling cells, 350
search field, adding in precise

position, 395–397

Section 508 accessibility guidelines,
424

selectors, 523–534
CSS2.1, 524–532

adjacent sibling selectors,
529–530

attribute selectors, 530–531
child selectors, 528–529
class selectors, 524–525
complex, building, 532
descendant selectors, 528
grouping selectors, 531–532
ID selectors, 527–528
pseudo-classes, 526
pseudo-elements, 527
type selectors, 524
universal selector, 524

CSS3, 532–534
types of, 268–271

Selectors module, 532
self-contained columns, 404
separate value, border-collapse

property, 339, 342
serif keyword, 518
serifs, 454
show value, empty-cells property,

345
#sidebar p descendant selector, 268,

270–271
#sidebar rule, 372
#sidebar style block, 433, 442, 470
sidebars

absolute positioning for, 394,
426–428

adding, 245
floating, 416–418, 428–434
giving different styles, 250–259
placing first, 416–418
switching to other side, 263–265
two-column layout, 416
when longer than content, 421–

422
silver keyword, 496
single-column layout, 409–415
size, font, 56–64, 497–498
"skip to main content" link, 423–424
small-caps property, 519

 Getting StartED with CSS

 548

spaces, in file and folder names, 164
spacing, 68

between letters, 71
between lines of text, 71
whitespace, 72–77, 99
between words, 71

 element, 148
specificity

horizontal navigation bar, 301
solving style rules conflicts with,

271–274
sprites, 305–310
square keyword, 279
stacking order, 392–393
static cursors, 480
static default value, 513
static value, position property, 366
stretching backgrounds, 163
style rules

conflicts of, solving with
specificity, 271–274

disabling, 96–97
order of, 111–112
organizing, 113, 116–119
writing, 19–23

<style> block, 27
subcolumns, 444–446
submit button, 397
subsection numbers, 322–323
superimposing HTML elements, 395

T
tabbed menus, 306, 308–309
table properties, 515–517
<table> tag, 326
table-layout property, 335, 347, 349,

351, 515–516
table-related display, 446–450
tables, 325, 362

in borders, 335–336
adding to cells, 336–337
adding to columns and rows,

340–341
widths of, preventing

doubling of, 337–339
borders in, 335–336

adding to cells, 336–337
adding to columns and rows,

340–341
border-spacing property, 342–

343
widths of, preventing

doubling of, 337–339
caption of, 344–345
cells in

adding borders to, 336–337
empty, 345–346
position of content in, 351,

362
scrolling, 350

columns in
adding borders to, 340–341
defining using HTML tags,

328–329
how browsers lay out, 332–333
padding property, 343
rows in

adding borders to, 340–341
grouping into sections, 330–

331
header and footer rows, 330

sections in, defining using HTML
tags, 328–331

structure of, 326–328
width of, 347–349

tag selectors, 524
target audience, 404–405
<tbody> tag, 330–331
<td> tag, 326
teal keyword, 496
testing CSS in browsers, 36
text, 39–84. See also fonts; page

layout
flowing around images, 121–153

centering images, 128–132
classes, 123–125
creating generic classes to

position images, 127–128
forcing elements below

floated image, 134–138
margins alongside floated

image, 139–144
overview, 87

549

Index

using ID selectors to style
unique elements, 144–147

when element too wide to sit
alongside image, 138

when image is taller than
text, 132–134

for links, 77–82
pseudo-classes, 78–79
underlining, 79–81

properties, 40–43
selecting, 405

text value, cursor property, 479
text-align property, 99, 335, 351,

516–520
text-decoration property, 520
text-indent property, 107, 470, 520
text-transform property, 521
<tfoot> tag, 330–331
<th> tag, 327
Thatcher, Jim, 424
<thead> tag, 330
three-column layout

faux columns, 437–440
putting main content first, 440–

444
subcolumns, 444–446

tilde (~), 534
title attribute, 530–531
toolset, building, 36–38
top property, 365, 512
top value

background-position property,
169

caption-side property, 344
vertical-align property, 352

<tr> tag, 326
transparent value

background-color property, 156
border properties, 181

triple-column layout. See three-
column layout

two-column layout
creating, 415–436

absolute positioning for
sidebar, 426–428

flexible layout, 434–436

with float property, 245–246,
248–249

floating main content, 425
floating sidebar, 416–418,

428–434
sidebar longer than content,

421–422
simulating equal columns

with background image,
419–421

"skip to main content" link,
423–424

placing main content first, 424–
434

type selectors, 268, 271, 273, 524,
528

U
underlining links, 79–81
unicode-bidi property, 521
Uniform Resource Locators (URLs)

of links, displaying, 460–461
specifying, 498

units of measurement, 456
universal selector (*), 269, 524
unordered lists

changing position of symbol, 281
changing symbol or number, 277–

281
defined, 275
list-style shorthand property,

285–286
replacing symbol with own

image, 282–285
upper-alpha keyword, 278
uppercase text, 65–67
upper-greek keyword, 279
upper-latin keyword, 278
url() value

background-image property, 164
content property, 314
list-style-image property, 282

URLs (Uniform Resource Locators)
of links, displaying, 460–461
specifying, 498

user interface properties, 522–523
UTF-8 encoding, 123

 Getting StartED with CSS

 550

V
values, specifying, 495–498
vertical alignment, 69–70, 517
vertical margins, 178, 504
vertical menus, 376
vertical spacing, 516
vertical text-based navigation bar,

292–297
vertical-align property, 291, 335,

351–352, 517–521
visibility property, 231, 236–238,

341, 360, 508–509
visible content, 508
visible value

overflow property, 232
visibility property, 236

:visited pseudo-class, 526

W
wait value, cursor property, 479
warning class, 524–525, 530
weather chart, 352, 354, 356–357,

359
web browsers. See browsers
Web Inspector, Safari, 95, 139
white keyword, 496
whitespace, 72–77, 99

white-space property, 521–522
widows property, 459, 515
width

of borders, 183, 337–339
minimum and maximum, 223–229
in tables, 347–349

width property
centering page content, 101
default value, 408
overriding, 412
overview, 507

words. See fonts; text
word-spacing property, 522
#wrapper selector, 105
#wrapper style block, 435, 470
#wrapper style rule, 385
wrapping lines of text, 72–77

Y
yellow keyword, 496

Z
zero value, 497
z-index, 393, 513
z-index property, 365, 378, 392, 513
zoom feature, 207, 394

	1430225432
	Title page
	Copyright page
	Table of contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1 What Is CSS, and Why Should I Learn It?
	A short history of CSS
	Why CSS has taken so long to be embraced by designers
	The time for CSS has finally come

	What are the advantages of CSS?
	Write simpler markup
	Turn into a quick change artist
	Gain greater control over the look of page elements

	So, how do I use CSS?
	Why are they called “cascading” style sheets?
	How do I write a style rule?
	Formatting CSS for ease of maintenance
	Adding comments to your CSS
	Where do I create my CSS?
	Using external style sheets
	Using a <style> block
	Applying a style directly to an HTML element
	Don’t forget the cascade
	Using Internet Explorer conditional comments
	Limiting which devices use your styles

	Learning to write CSS well
	Avoiding common mistakes
	Test your CSS early in several browsers
	Building a useful toolset for working with CSS

	Chapter review

	Chapter 2 How Do I Improve the Look of Text and Links?
	Exploring the CSS text properties
	Changing the default font and color of text
	Using font-family to choose a range of alternative fonts
	Setting color values in CSS
	Selectively applying a different font and color

	Changing the size of fonts
	Setting length with pixels, ems, and other units of measurement
	Using percentages

	Changing the look of fonts
	Italicizing text
	Making text bolder or lighter
	Displaying text in small caps
	Switching between uppercase and lowercase

	Aligning and spacing text
	Aligning text horizontally
	Aligning text vertically
	Indenting the first line of text
	Adjusting the vertical space between lines oftext
	Adding or removing space between words
	Increasing or decreasing the space betweenletters
	Controlling whitespace and line wrapping

	Styling text links
	Just remember it’s a love-hate relationship
	Controlling underlines
	Making full use of the cascade

	Using the font shorthand property
	Chapter review

	Chapter 3 How Can I Improve the Layout of My Text?
	Sliding boxes and blocks
	Two HTML tags that are the friends of CSS:<div> and

	How CSS controls margins
	Understanding how vertical margins collapse
	Setting margin values

	Using margins to improve page layout
	Removing the default margins from your pages
	Centering page content
	Using margin-left to indent text
	Using negative margins
	Applying margins to inline elements

	Keeping your style sheet manageable
	Using the margin shorthand property
	Organizing your style rules for easier maintenance

	Chapter review

	Chapter 4 How Can I Flow Text Around Images?
	CSS classes 101
	Creating and applying CSS classes

	Using float to flow text around images
	Creating generic classes to position images
	How do I center an image?
	What happens when the image is taller than the text?
	Using clear to force elements below a floated image
	What if an element is too wide to sit alongside a float?
	What happens to margins alongside a float?

	Using ID selectors to style unique elements
	Deciding whether to use a class or an ID

	Adding a caption to an image
	Chapter review

	Chapter 5 How Do I Add Backgrounds and Borders to Improve the Look of My Page?
	Controlling backgrounds with CSS
	Changing the background color of an element
	Adding a background image
	Controlling how background images repeat
	Fixing a background image in relation to the browser viewport
	Adjusting the position of a background image
	Using the background shorthand property

	Controlling borders with CSS
	Setting a border color
	Setting a border style
	Setting a border width
	Using border shorthand properties
	Using borders to simulate embossing and indenting
	Understanding how borders affect layout
	How do I get rid of the blue border around link images?
	How do I prevent backgrounds and borders from displaying under floats?

	Chapter review

	Chapter 6 How Do I Solve the Mysteries of Width and Height?
	Padding—the final piece of the CSS boxmodel
	Choosing between margins and padding
	Using padding to add space around elements

	Controlling width and height
	Using a fixed height
	Using minimum and maximum lengths to scale images and text

	How do I stop content spilling out of its container?
	Controlling overspill with the overflow property
	Using overflow as an alternative to clear with floated elements
	Understanding the difference between visibility and display
	Displaying a message to users of old browsers

	Chapter review

	Chapter 7 How Do I Create Differently Styled Sections?
	Adding a sidebar
	Giving the sidebar different styles

	Adding an accessible page heading
	Switching the sidebar to the other side
	Improving the image captions
	How do I tell which styles will be applied?
	A review of selectors in CSS2.1
	Using specificity to work out which rule wins
	Specificity the easy way
	Specificity the official way

	Chapter review

	Chapter 8 How Do I Style Lists and Navigation Menus?
	Styling unordered and ordered lists
	Changing the symbol or number
	Changing the position of the symbol
	Replacing the symbol with your own image
	Using a background image for greater control
	Using the list-style shorthand property

	Changing layout with the displayproperty
	Setting display to inline
	Setting display to inline-block

	Creating a navigation bar from a list
	Creating a vertical text-based navigation bar
	Creating a horizontal text-based navigation bar
	Using CSS sprites in a navigation bar

	How do I continue a numbered list after a break?
	Using CSS to generate numbered sequences
	Adding content with :before and :after
	Adding images with pseudo-elements
	Generating content from an HTML attribute
	Using the content property to generate numbered sequences
	Using generated content with numbered lists
	Generating subsection numbers with nested lists

	Chapter review

	Chapter 9 How Do I Style Tables?
	Understanding the anatomy of a table
	Basic table structure
	Using HTML tags to define sections of a table
	Defining table columns
	Defining table header and footer rows
	Grouping table rows into sections

	How browsers lay out tables

	Styling tables with CSS
	Using CSS for table borders
	Adding borders to table cells
	How do I stop border widths from being doubled?
	Adding borders to columns and rows
	Applying other styles to columns
	What’s the CSS equivalent of cellspacing?
	What’s the CSS equivalent of cellpadding?
	Controlling the position of the table caption
	Handling empty cells
	How can I control the width of my table?
	How do I create scrolling table cells that work in all browsers?
	How do I control the position of content in table cells?

	Chapter review

	Chapter 10 How Do I Position Elements Precisely on the Page?
	How does CSS positioning work?
	Understanding the different types of positioning

	Fixing elements inside the browser window
	How do I keep my navigation onscreen all the time?
	Understanding the limitations of fixed positioning

	Using relative positioning to nudge elements
	Using relative positioning to create a containing block

	Moving elements precisely with absolute positioning
	Why do absolutely positioned elements move?
	How do I center a page and use absolute positioning?
	What happens if I nest absolutely positioned elements?
	How do I control which element is on top when they overlap?
	What are the drawbacks of using absolute positioning?
	Positioning elements against a background image

	Cropping an image nondestructively with CSS
	Chapter review

	Chapter 11 Are There Any Guidelines for Basic Page Layout?
	Getting the basics right
	Who is the target audience?
	What size browser window should I design for?
	What type of layout is best—fixed or flexible?

	Creating a single-column layout
	Keeping a liquid display centered

	Creating a two-column layout
	Putting the sidebar first and floating it to one side
	Using a background image to simulate equal columns
	What happens if the sidebar is longer?
	Adding a “skip to main content” link for screen readers
	Putting the main content first
	Floating the main content
	Using absolute positioning for the sidebar
	Using a negative margin to float the sidebar into position
	How do I make a more flexible two-column layout?

	Creating a three-column layout
	Creating faux columns for a three-column layout
	Using a single image for a fixed-width layout
	Using multiple images for a hybrid layout

	Putting the main content first in a three-columnlayout
	Creating subcolumns

	Table-related display—the future oflayout?
	Chapter review

	Chapter 12 How Do I Create Styles for Printing?
	What’s different about print CSS?
	What print style sheets cannot do
	Setting page margins with the @page rule and pseudo-classes
	Controlling where to break content between pages
	Displaying the URL of links

	Creating styles for printing
	Using the media attribute to specify where styles are applied
	Using the cascade for print styles
	Attaching independent style sheets

	The ones that got away—UI properties and quotes
	Changing the cursor
	Adding an outline
	Removing a default outline without destroying accessibility
	Curly quotes, anyone?

	Chapter review

	Appendix
	CSS Properties and Selectors
	Specifying property values
	Specifying color values
	Specifying sizes
	Specifying URLs

	CSS2.1 Properties
	Background properties
	background-attachment
	background-color
	background-image
	background-position
	background-repeat
	background

	Border properties
	border-color
	border-style
	border-top, border-right, border-bottom, border-left
	border-top-color, border-right-color, border-bottom-color, border-left-color
	border-top-style, border-right-style, border-bottom-style, border-left-style
	border-top-width, border-right-width, border-bottom-width, border-left-width
	border-width
	border

	Box model properties
	height
	margin-right, margin-left, margin-top, margin-bottom
	margin
	max-height
	max-width
	min-height
	min-width
	padding-top, padding-right, padding-bottom, padding-left
	padding
	width

	Display and visibility properties
	display
	overflow
	visibility

	Float properties
	clear
	float

	Generated content properties
	content
	counter-increment, counter-reset
	quotes

	List properties
	list-style-image
	list-style-position
	list-style-type
	list-style

	Positioning properties
	bottom, left, right, top
	clip
	position
	z-index
	Print properties
	orphans
	page-break-after
	page-break-before
	page-break-inside
	widows

	Table properties
	border-collapse
	border-spacing
	caption-side
	empty-cells
	table-layout
	text-align
	vertical-align

	Text properties
	color
	direction
	font-family
	font-size
	font-style
	font-variant
	font-weight
	font
	letter-spacing
	line-height
	text-align
	text-decoration
	text-indent
	text-transform
	unicode-bidi
	vertical-align
	white-space
	word-spacing

	User interface properties
	cursor
	outline-color
	outline-style
	outline-width
	outline

	Selectors
	CSS2.1 selectors
	Universal selector
	Type selectors
	Class selectors
	Pseudo-classes
	Pseudo-elements
	ID selectors
	Descendant selectors
	Child selectors
	Adjacent sibling selectors
	Attribute selectors
	Grouping selectors
	Building complex selectors

	Widely-supported CSS3 selectors
	Matching an attribute that begins with a value
	Matching an attribute that contains a substring
	Matching an attribute that ends with a value
	General sibling combinator

	Index

