

Getting	Started	with	Kubernetes

Table	of	Contents

Getting	Started	with	Kubernetes

Credits

About	the	Author

Acknowledgments

About	the	Reviewer

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Kubernetes	and	Container	Operations

A	brief	overview	of	containers

What	is	a	container?

Why	are	containers	so	cool?

Advantages	to	Continuous	Integration/Continuous	Deployment

Resource	utilization

Microservices	and	orchestration

Future	challenges

Advantages	of	Kubernetes

Our	first	cluster

Kubernetes	UI

Grafana

Swagger

Command	line

Services	running	on	the	master

Services	running	on	the	minions

Tear	down	cluster

Working	with	other	providers

Resetting	the	cluster

Summary

Footnotes

References

2.	Kubernetes	–	Core	Concepts	and	Constructs

The	architecture

Master

Node	(formerly	minions)

Core	constructs

Pods

Pod	example

Labels

The	container’s	afterlife

Services

Replication	controllers

Our	first	Kubernetes	application

More	on	labels

Health	checks

TCP	checks

Life	cycle	hooks	or	graceful	shutdown

Application	scheduling

Scheduling	example

Summary

Footnotes

3.	Core	Concepts	–	Networking,	Storage,	and	Advanced	Services

Kubernetes	networking

Networking	comparisons

Docker

Docker	plugins	(libnetwork)

Weave

Flannel

Project	Calico

Balanced	design

Advanced	services

External	services

Internal	services

Custom	load	balancing

Cross-node	proxy

Custom	ports

Multiple	ports

Migrations,	multicluster,	and	more

Custom	addressing

Service	discovery

DNS

Persistent	storage

Temporary	disks

Cloud	volumes

GCE	persistent	disks

AWS	Elastic	Block	Store

Other	PD	options

Multitenancy

Limits

Summary

Footnotes

4.	Updates	and	Gradual	Rollouts

Example	set	up

Scaling	up

Smooth	updates

Testing,	releases,	and	cutovers

Growing	your	cluster

Scaling	up	the	cluster	on	GCE

Autoscaling	and	scaling	down

Scaling	up	the	cluster	on	AWS

Scaling	manually

Summary

5.	Continuous	Delivery

Integration	with	continuous	delivery

Gulp.js

Prerequisites

Gulp	build	example

Kubernetes	plugin	for	Jenkins

Prerequisites

Installing	plugins

Configuring	the	Kubernetes	plugin

Bonus	fun

Summary

6.	Monitoring	and	Logging

Monitoring	operations

Built-in	monitoring

Exploring	Heapster

Customizing	our	dashboards

FluentD	and	Google	Cloud	Logging

FluentD

Maturing	our	monitoring	operations

GCE	(StackDriver)

Sign-up	for	GCE	monitoring

Configure	detailed	monitoring

Alerts

Beyond	system	monitoring	with	Sysdig

Sysdig	Cloud

Detailed	views

Topology	views

Metrics

Alerting

Kubernetes	support

The	Sysdig	command	line

The	csysdig	command-line	UI

Summary

Footnotes

7.	OCI,	CNCF,	CoreOS,	and	Tectonic

The	importance	of	standards

Open	Container	Initiative

Cloud	Native	Computing	Foundation

Standard	container	specification

CoreOS

rkt

etcd

Kubernetes	with	CoreOS

Tectonic

Dashboard	highlights

Summary

Footnotes

8.	Towards	Production-Ready

Ready	for	production

Security

Ready,	set,	go

Third-party	companies

Private	registries

Google	Container	Engine

Twistlock

Kismatic

Mesosphere	(Kubernetes	on	Mesos)

Deis

OpenShift

Where	to	learn	more

Summary

Index

Getting	Started	with	Kubernetes

Getting	Started	with	Kubernetes
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	December	2015

Production	reference:	1151215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78439-403-5

www.packtpub.com

http://www.packtpub.com

Credits
Author

Jonathan	Baier

Reviewer

Giragadurai	Vallirajan

Commissioning	Editor

Dipika	Gaonkar

Acquisition	Editor

Indrajit	A.	Das

Content	Development	Editor

Pooja	Mhapsekar

Technical	Editor

Gaurav	Suri

Copy	Editor

Dipti	Mankame

Project	Coordinator

Francina	Pinto

Proofreader

Safis	Editing

Indexer

Priya	Sane

Graphics

Kirk	D’Penha

Production	Coordinator

Shantanu	N.	Zagade

Cover	Work

Shantanu	N.	Zagade

About	the	Author
Jonathan	Baier	is	a	senior	cloud	architect	living	in	Brooklyn,	NY.	He	has	had	a	passion
for	technology	since	an	early	age.	When	he	was	14	years	old,	he	was	so	interested	in	the
family	computer	(an	IBM	PCjr)	that	he	poured	through	the	several	hundred	pages	of
BASIC	and	DOS	manuals.	Then,	he	taught	himself	to	code	a	very	poorly-written	version
of	Tic-Tac-Toe.	During	his	teen	years,	he	started	a	computer	support	business.	Since	then,
he	has	dabbled	in	entrepreneurship	several	times	throughout	his	life.	He	now	enjoys
working	for	Cloud	Technology	Partners,	a	cloud-focused	professional	service	and
application	development	firm	headquartered	in	Boston.

He	has	over	a	decade	of	experience	delivering	technology	strategies	and	solutions	for	both
public	and	private	sector	businesses	of	all	sizes.	He	has	a	breadth	of	experience	working
with	a	wide	variety	of	technologies	and	with	stakeholders	from	all	levels	of	management.

Working	in	the	areas	of	architecture,	containerization,	and	cloud	security,	he	has	created
strategic	roadmaps	to	guide	and	help	mature	the	overall	IT	capabilities	of	various
enterprises.	Furthermore,	he	has	helped	organizations	of	various	sizes	build	and
implement	their	cloud	strategy	and	solve	the	many	challenges	that	arise	when	“designs	on
paper”	meet	reality.

Acknowledgments
A	tremendous	thank	you	to	my	wonderful	wife,	Tomoko,	and	my	playful	son,	Nikko.	You
both	gave	me	incredible	support	and	motivation	during	the	writing	process.	There	were
many	early	morning,	long	weekend,	and	late	night	writing	sessions	that	I	could	not	have
done	without	you	both.	Your	smiles	move	mountains	I	could	not	on	my	own.	You	are	my
true	north	stars	and	my	guiding	light	in	the	storm.

I’d	also	like	to	extend	special	thanks	to	all	my	colleagues	and	friends	at	Cloud	Technology
Partners,	many	of	whom	provided	encouragement	and	support	throughout	the	process.	I’d
especially	like	to	thank	Mike	Kavis,	David	Linthicum,	Alan	Zall,	Lisa	Noon,	and	Charles
Radi,	who	helped	me	make	the	book	so	much	better	with	their	efforts.	I’d	also	like	to
thank	the	amazing	CTP	marketing	team	(Brad	Young,	Shannon	Croy,	and	Nicole	Givin)
for	making	my	work	look	great	on	the	Web	and	in	front	of	the	camera.

About	the	Reviewer
Giragadurai	Vallirajan	is	a	seasoned	technologist	and	entrepreneur.	Currently,	he	is	the
CTO	of	Bluemeric	Technologies	Pvt	Ltd,	Bangalore.	He	has	more	than	12	years	of
experience	in	the	IT	industry	and	has	worked	for	Fortune	100	companies,	including
Lehman	Brothers	(Tokyo)	and	Hewlett-Packard	(Bangalore).	Giragadurai	has	considerable
expertise	in	big	data	analytics,	predictive	analytics,	complex	event	processing,	and
performance	tuning	in	distributed	and	cloud	environments.	He	is	an	entrepreneur	at	heart;
he	started	an	analytics	start-up,	Vorthy	Softwares	(Singapore/India),	before	joining
Bluemeric.

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
This	book	is	a	guide	to	getting	started	with	Kubernetes	and	overall	container	management.
We	will	walk	you	through	the	features	and	functions	of	Kubernetes	and	show	how	it	fits
into	an	overall	operations	strategy.	You’ll	learn	what	hurdles	lurk	in	moving	container	off
the	developer’s	laptop	and	managing	them	at	a	larger	scale.	You’ll	also	see	how
Kubernetes	is	the	perfect	tool	to	help	you	face	these	challenges	with	confidence.

What	this	book	covers
Chapter	1,	Kubernetes	and	Container	Operations,	provides	a	brief	overview	of	containers
and	the	how,	what,	and	why	of	Kubernetes	orchestration.	It	explores	how	it	impacts	your
business	goals	and	everyday	operations.

Chapter	2,	Kubernetes	–	Core	Concepts	and	Constructs,	will	explore	core	Kubernetes
constructs,	such	as	pods,	services,	replication	controllers,	and	labels	using	a	few	simple
examples.	Basic	operations,	including	health	checks	and	scheduling,	will	also	be	covered.

Chapter	3,	Core	Concepts	–	Networking,	Storage,	and	Advanced	Services,	covers	cluster
networking	for	Kubernetes	and	the	Kubernetes	proxy,	a	deeper	dive	into	services,	storage
concerns,	persistent	data	across	pods,	and	the	container	lifecycles.	Finishing	up,	we	will
see	a	brief	overview	of	some	higher	level	isolation	features	for	mutlitenancy.

Chapter	4,	Updates	and	Gradual	Rollouts,	takes	a	quick	look	at	how	to	roll	out	updates
and	new	features	with	minimal	disruption	to	uptime.	We	will	also	look	at	scaling	the
Kubernetes	cluster.

Chapter	5,	Continuous	Delivery,	will	cover	integration	of	Kubernetes	into	your	continuous
delivery	pipeline.	We	will	see	how	to	use	a	K8s	cluster	with	Gulp.js	and	Jenkins	as	well.

Chapter	6,	Monitoring	and	Logging,	teaches	you	how	to	use	and	customize	built-in	and
third-party	monitoring	tools	on	your	Kubernetes	cluster.	We	will	look	at	built-in	logging
and	monitoring,	the	Google	Cloud	Logging	service,	and	Sysdig.

Chapter	7,	OCI,	CNCF,	CoreOS,	and	Tectonic,	discovers	how	open	standards	benefit	the
entire	container	ecosystem.	We’ll	look	at	a	few	of	the	prominent	standards	organizations
and	cover	CoreOS	and	Tectonic.	Also,	we	will	explore	their	advantages	as	a	host	OS	and
enterprise	platform.

Chapter	8,	Towards	Production-Ready,	shows	some	of	the	helpful	tools	and	third-party
projects	available	and	where	you	can	go	to	get	more	help.

What	you	need	for	this	book
This	book	will	cover	downloading	and	running	the	Kubernetes	project.	You’ll	need	access
to	a	Linux	system	(VirtualBox	will	work	if	you	are	on	windows)	and	some	familiarity	with
the	command	shell.

In	addition,	you	should	have	at	least	a	Google	Cloud	Platform	account.	You	can	sign	up
for	a	free	trial	here:

https://cloud.google.com/

Also,	an	AWS	account	is	necessary	for	a	few	sections	of	the	book.	You	can	also	sign	up
for	a	free	trial	here:

https://aws.amazon.com/

https://cloud.google.com/
https://aws.amazon.com/

Who	this	book	is	for
Although	you’re	in	heads	down	in	development,	neck	deep	in	operations,	or	looking
forward	as	an	executive,	Kubernetes	and	this	book	are	for	you.	Getting	Started	with
Kubernetes	will	help	you	understand	how	to	move	your	container	applications	into
production	with	best	practices	and	step-by-step	walk-throughs	tied	to	a	real-world
operational	strategy.	You’ll	learn	how	Kubernetes	fits	into	your	everyday	operations	and
can	help	you	prepare	for	production-ready	container	application	stacks.

It	will	be	helpful	to	have	some	familiarity	with	Docker	containers,	general	software
developments,	and	operations	at	a	high	level.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	folder	names,	filenames,	file	extensions,	and	pathnames	are	shown	as
follows:	“You	can	also	use	the	scale	command	to	reduce	the	number	of	replicas.”

URLs	are	shown	as	follows:
https://docs.docker.com/installation/

If	we	wish	you	to	use	a	URL	after	replacing	a	portion	of	it	with	your	own	values,	it	will	be
shown	like	this:
https://<your	master	ip>/swagger-ui/

Resource	definition	files	and	other	code	blocks	are	set	as	follows:

apiVersion:	v1

kind:	Pod

metadata:

		name:	node-js-pod

spec:

		containers:

		-	name:	node-js-pod

				image:	bitnami/apache:latest

				ports:

				-	containerPort:	80

When	we	wish	you	to	replace	a	portion	of	the	listing	with	your	own	value,	the	relevant
lines	or	items	are	set	in	bold	between	less	than	and	greater	than	symbols:

subsets:

-	addresses:

		-	IP:	<X.X.X.X>

		ports:

				-	name:	http

						port:	80

						protocol:	TCP

Any	command-line	input	or	output	is	written	as	follows:

$	kubectl	get	pods

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“We	can	modify	this
group	by	clicking	the	Edit	group	button	at	the	top	of	the	page.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Kubernetes	and	Container
Operations
This	chapter	will	give	a	brief	overview	of	containers	and	how	they	work	as	well	as	why
management	and	orchestration	is	important	to	your	business	and/or	project	team.	The
chapter	will	also	give	a	brief	overview	of	how	Kubernetes	orchestration	can	enhance	our
container	management	strategy	and	how	we	can	get	a	basic	Kubernetes	cluster	up,
running,	and	ready	for	container	deployments.

This	chapter	will	include	the	following	topics:

Introducing	container	operations	and	management
Why	container	management	is	important
Advantages	of	Kubernetes
Downloading	the	latest	Kubernetes
Installing	and	starting	up	a	new	Kubernetes	cluster

A	brief	overview	of	containers
Over	the	past	two	years,	containers	have	grown	in	popularity	like	wildfire.	You	would	be
hard-pressed	to	attend	an	IT	conference	without	finding	popular	sessions	on	Docker	or
containers	in	general.

Docker	lies	at	the	heart	of	the	mass	adoption	and	the	excitement	in	the	container	space.	As
Malcom	Mclean	revolutionized	the	physical	shipping	world	in	1957	by	creating	a
standardized	shipping	container,	which	is	used	today	for	everything	from	ice	cube	trays	to
automobiles1,	Linux	containers	are	revolutionizing	the	software	development	world	by
making	application	environments	portable	and	consistent	across	the	infrastructure
landscape.	As	an	organization,	Docker	has	taken	the	existing	container	technology	to	a
new	level	by	making	it	easy	to	implement	and	replicate	across	environments	and
providers.

What	is	a	container?
At	the	core	of	container	technology	are	cGroups	and	namespaces.	Additionally,	Docker
uses	union	file	systems	for	added	benefits	to	the	container	development	process.

Control	groups	(cGroups)	work	by	allowing	the	host	to	share	and	also	limit	the	resources
each	process	or	container	can	consume.	This	is	important	for	both,	resource	utilization	and
security,	as	it	prevents	denial-of-service	attacks	on	the	host’s	hardware	resources.	Several
containers	can	share	CPU	and	memory	while	staying	within	the	predefined	constraints.

Namespaces	offer	another	form	of	isolation	in	the	way	of	processes.	Processes	are	limited
to	see	only	the	process	ID	in	the	same	namespace.	Namespaces	from	other	system
processes	would	not	be	accessible	from	a	container	process.	For	example,	a	network
namespace	would	isolate	access	to	the	network	interfaces	and	configuration,	which	allows
the	separation	of	network	interfaces,	routes,	and	firewall	rules.

Figure	1.1.	Composition	of	a	container

Union	file	systems	are	also	a	key	advantage	to	using	Docker	containers.	The	easiest	way
to	understand	union	file	systems	is	to	think	of	them	like	a	layer	cake	with	each	layer	baked
independently.	The	Linux	kernel	is	our	base	layer;	then,	we	might	add	an	OS	like	Red	Hat
Linux	or	Ubuntu.	Next,	we	might	add	an	application	like	Nginx	or	Apache.	Every
change	creates	a	new	layer.	Finally,	as	you	make	changes	and	new	layers	are	added,	you’ll
always	have	a	top	layer	(think	frosting)	that	is	a	writable	layer.

Figure	1.2.	Layered	file	system

What	makes	this	truly	efficient	is	that	Docker	caches	the	layers	the	first	time	we	build
them.	So,	let’s	say	that	we	have	an	image	with	Ubuntu	and	then	add	Apache	and	build	the
image.	Next,	we	build	MySQL	with	Ubuntu	as	the	base.	The	second	build	will	be	much
faster	because	the	Ubuntu	layer	is	already	cached.	Essentially,	our	chocolate	and	vanilla
layers,	from	Figure	1.2,	are	already	baked.	We	simply	need	to	bake	the	pistachio	(MySQL)
layer,	assemble,	and	add	the	icing	(writable	layer).

Why	are	containers	so	cool?
Containers	on	their	own	are	not	a	new	technology	and	have	in	fact	been	around	for	many
years.	What	truly	sets	Docker	apart	is	the	tooling	and	ease	of	use	they	have	brought	to
community.

Advantages	to	Continuous	Integration/Continuous
Deployment
Wikipedia	defines	Continuous	Integration	as	“the	practice,	in	software	engineering,	of
merging	all	developer	working	copies	to	a	shared	mainline	several	times	a	day.”	By
having	a	continuous	process	of	building	and	deploying	code	organizations	are	able	to
instill	quality	control	and	testing	as	part	of	the	everyday	work	cycle.	The	result	is	that
updates	and	bug	fixes	happen	much	faster	and	overall	quality	improves.

However,	there	has	always	been	a	challenge	in	setting	development	environments	to
match	that	of	testing	and	production.	Often	inconsistencies	in	these	environments	make	it
difficult	to	gain	the	full	advantage	of	continuous	delivery.

Using	Docker,	developers	are	now	able	to	have	truly	portable	deployments.	Containers
that	are	deployed	on	a	developer’s	laptop	are	easily	deployed	on	an	in-house	staging
server.	They	are	then	easily	transferred	to	the	production	server	running	in	the	cloud.	This
is	because	Docker	builds	containers	up	with	build	files	that	specify	parent	layers.	One
advantage	of	this	is	that	it	becomes	very	easy	to	ensure	OS,	package,	and	application
versions	are	the	same	across	development,	staging,	and	production	environments.

Because	all	the	dependencies	are	packaged	into	the	layer,	the	same	host	server	can	have
multiple	containers	running	a	variety	of	OS	or	package	versions.	Further,	we	can	have
various	languages	and	frameworks	on	the	same	host	server	without	the	typical	dependency
clashes	we	would	get	in	a	Virtual	Machine	(VM)	with	a	single	operating	system.

Resource	utilization
The	well-defined	isolation	and	layer	filesystem	also	make	containers	ideal	for	running
systems	with	a	very	small	footprint	and	domain-specific	purposes.	A	streamlined
deployment	and	release	process	means	we	can	deploy	quickly	and	often.	As	such,	many
companies	have	reduced	their	deployment	time	from	weeks	or	months	to	days	and	hours
in	some	cases.	This	development	life	cycle	lends	itself	extremely	well	to	small,	targeted
teams	working	on	small	chunks	of	a	larger	application.

Microservices	and	orchestration
As	we	break	down	an	application	into	very	specific	domains,	we	need	a	uniform	way	to
communicate	between	all	the	various	pieces	and	domains.	Web	services	have	served	this
purpose	for	years,	but	the	added	isolation	and	granular	focus	that	containers	bring	have
paved	a	way	for	what	is	being	named	microservices.

The	definition	for	microservices	can	be	a	bit	nebulous,	but	a	definition	from	Martin
Fowler,	a	respected	author	and	speaker	on	software	development,	says2:

“In	short,	the	microservice	architectural	style	is	an	approach	to	developing	a	single
application	as	a	suite	of	small	services,	each	running	in	its	own	process	and
communicating	with	lightweight	mechanisms,	often	an	HTTP	resource	API.	These
services	are	built	around	business	capabilities	and	independently	deployable	by	fully
automated	deployment	machinery.	There	is	a	bare	minimum	of	centralized
management	of	these	services,	which	may	be	written	in	different	programming
languages	and	use	different	data	storage	technologies.”

As	the	pivot	to	containerization	and	microservices	evolves	in	an	organization,	they	will
soon	need	a	strategy	to	maintain	many	containers	and	microservices.	Some	organizations
will	have	hundreds	or	even	thousands	of	containers	running	in	the	years	ahead.

Future	challenges
Life	cycle	processes	alone	are	an	important	piece	of	operations	and	management.	How
will	we	automatically	recover	when	a	container	fails?	Which	upstream	services	are
affected	by	such	an	outage?	How	will	we	patch	our	applications	with	minimal	downtime?
How	will	we	scale	up	our	containers	and	services	as	our	traffic	grows?

Networking	and	processing	are	also	important	concerns.	Some	processes	are	part	of	the
same	service	and	may	benefit	from	proximity	on	the	network.	Databases,	for	example,
may	send	large	amounts	of	data	to	a	particular	microservice	for	processing.	How	will	we
place	containers	near	each	other	in	our	cluster?	Is	there	common	data	that	needs	to	be
accessed?	How	will	new	services	be	discovered	and	made	available	to	other	systems?

Resource	utilization	is	also	a	key.	The	small	footprint	of	containers	means	that	we	can
optimize	our	infrastructure	for	greater	utilization.	Extending	the	savings	started	in	the
elastic	cloud	world	even	further	towards	minimizing	wasted	hardware.	How	will	we
schedule	workloads	most	efficiently?	How	will	we	ensure	that	our	important	applications
always	have	the	resources?	How	can	we	run	less	important	workloads	on	spare	capacity?

Finally,	portability	is	a	key	factor	in	moving	many	organizations	to	containerization.
Docker	makes	it	very	easy	to	deploy	a	standard	container	across	various	operating
systems,	cloud	providers,	and	on-premise	hardware,	or	even	developer	laptops.	However,
we	still	need	tooling	to	move	containers	around.	How	will	we	move	containers	between
different	nodes	on	our	cluster?	How	will	we	roll	out	updates	with	minimal	disruption?
What	process	do	we	use	to	perform	blue-green	deployments	or	canary	releases?

Whether	you	are	starting	to	build	out	individual	microservices	and	separating	concerns
into	isolated	containers	or	if	you	simply	want	to	take	full	advantage	of	the	portability	and
immutability	in	your	application	development,	the	need	for	management	and	orchestration
becomes	clear.

Advantages	of	Kubernetes
This	is	where	orchestration	tools	such	as	Kubernetes	offer	the	biggest	value.	Kubernetes
(K8s)	is	an	open	source	project	that	was	released	by	Google	in	June,	2014.	Google
released	the	project	as	part	of	an	effort	to	share	their	own	infrastructure	and	technology
advantage	with	the	community	at	large.

Google	launches	2	billion	containers	a	week	in	their	infrastructure	and	has	been	using
container	technology	for	over	a	decade.	Originally	they	were	building	a	system	named
Borg,	and	now	Omega,	to	schedule	their	vast	quantities	of	workloads	across	their	ever-
expanding	data	center	footprint.	They	took	many	of	the	lessons	they	learned	over	the	years
and	rewrote	their	existing	data	center	management	tool	for	wide	adoption	by	the	rest	of	the
world.	The	result	was	the	Kubernetes	open	source	project3.

Since	its	initial	release	in	2014,	K8s	has	undergone	rapid	development	with	contributions
all	across	the	open	source	community,	including	Red	Hat,	VMware,	and	Canonical.	The
1.0	release	of	Kubernetes	went	live	in	July,	2015.	We’ll	be	covering	version	1.0
throughout	the	book.	K8s	gives	organizations	a	tool	to	deal	with	some	of	the	major
operations	and	management	concerns.	We	will	explore	how	Kubernetes	helps	deal	with
resource	utilization,	high	availability,	updates,	patching,	networking,	service	discovery,
monitoring,	and	logging.

Our	first	cluster
Kubernetes	is	supported	on	a	variety	of	platforms	and	OSes.	For	the	examples	in	this
book,	I	used	an	Ubuntu	14.04	Linux	VirtualBox	for	my	client	and	Google	Compute
Engine	(GCE)	with	Debian	for	the	cluster	itself.	We	will	also	take	a	brief	look	at	a	cluster
running	on	Amazon	Web	Services	(AWS)	with	Ubuntu.

Tip
Most	of	the	concepts	and	examples	in	this	book	should	work	on	any	installation	of	a
Kubernetes	cluster.	To	get	more	information	on	other	platform	setups,	check	the
Kubernetes	getting	started	page	on	the	following	GitHub	link:

https://github.com/GoogleCloudPlatform/kubernetes/blob/v1.0.0/docs/getting-started-
guides/README.md

First,	let’s	make	sure	that	our	environment	is	properly	set	up	before	we	install	Kubernetes.

Start	by	updating	packages:

$	sudo	apt-get	update

Install	Python	and	curl	if	they	are	not	present:

$	sudo	apt-get	install	python

$	sudo	apt-get	install	curl

Install	the	gcloud	SDK:

$	curl	https://sdk.cloud.google.com	|	bash

Tip
We	will	need	to	start	a	new	shell	before	gcloud	is	on	our	path.

Configure	your	Google	Cloud	Platform	(GCP)	account	information.	This	should
automatically	open	a	browser	where	we	can	log	in	to	our	Google	Cloud	account	and
authorize	the	SDK:

$	gcloud	auth	login

Tip
If	you	have	problems	with	login	or	want	to	use	another	browser,	you	can	optionally	use
the	--no-launch-browser	command.	Copy	and	paste	the	URL	to	the	machine	and/or
browser	of	your	choice.	Log	in	with	your	Google	Cloud	credentials	and	click	on	Allow	on
the	permissions	page.	Finally,	you	should	receive	an	authorization	code	that	you	can	copy
and	paste	back	into	the	shell	where	the	prompt	is	waiting.

A	default	project	should	be	set,	but	we	can	check	this	with	the	following:

$	gcloud	config	list	project

We	can	modify	this	and	set	a	new	default	project	with	this	command.	Make	sure	to	use

https://github.com/GoogleCloudPlatform/kubernetes/blob/v1.0.0/docs/getting-started-guides/README.md

project	ID	and	not	project	name,	as	follows:

$	gcloud	config	set	project	<PROJECT	ID>

Tip
We	can	find	our	project	ID	in	the	console	at:

https://console.developers.google.com/project

Alternatively,	we	can	list	active	projects:

$	gcloud	alpha	projects	list

Now	that	we	have	our	environment	set	up,	installing	the	latest	Kubernetes	version	is	done
in	a	single	step	as	follows:

$	curl	-sS	https://get.k8s.io	|	bash

It	may	take	a	minute	or	two	to	download	Kubernetes	depending	on	your	connection	speed.
After	this,	it	will	automatically	call	the	kube-up.sh	script	and	start	building	our	cluster.
By	default,	it	will	use	the	Google	Cloud	and	GCE.

Tip
If	something	fails	during	the	cluster	setup	and	you	need	to	start	again,	you	can	simply	run
the	kube-up.sh	script.	Go	to	the	folder	where	you	ran	the	previous	curl	command.	Then,
you	can	kick	off	the	cluster	build	with	the	following	command:

$	kubernetes/cluster/kube-up.sh

After	Kubernetes	is	downloaded	and	the	kube-up.sh	script	has	started,	we	will	see	quite	a
few	lines	roll	past.	Let’s	take	a	look	at	them	one	section	at	a	time.

Figure	1.3.	GCE	prerequisite	check

Tip
If	your	gcloud	components	are	not	up	to	date,	you	may	be	prompted	to	update.

The	preceding	section	(Figure	1.3)	shows	the	checks	for	prerequisites	as	well	as	makes
sure	that	all	components	are	up	to	date.	This	is	specific	to	each	provider.	In	the	case	of
GCE,	it	will	check	that	the	SDK	is	installed	and	that	all	components	are	up	to	date.	If	not,
you	will	see	a	prompt	at	this	point	to	install	or	update.

https://console.developers.google.com/project

Figure	1.4.	Upload	cluster	packages

Now	the	script	is	turning	up	the	cluster.	Again,	this	is	specific	to	the	provider.	For	GCE,	it
first	checks	to	make	sure	that	the	SDK	is	configured	for	a	default	project	and	zone.	If	they
are	set,	you’ll	see	those	in	the	output.

Next,	it	uploads	the	server	binaries	to	Google	Cloud	storage,	as	seen	in	the	Creating	gs:\
…	lines.

Figure	1.5.	Master	creation

It	then	checks	for	any	pieces	of	a	cluster	already	running.	Then,	we	finally	start	creating
the	cluster.	In	the	output	in	Figure	1.5,	we	see	it	creating	the	master	server,	IP	address,
and	appropriate	firewall	configurations	for	the	cluster.

Figure	1.6.	Minion	creation

Finally,	it	creates	the	minions	or	nodes	for	our	cluster.	This	is	where	our	container
workloads	will	actually	run.	It	will	continually	loop	and	wait	while	all	the	minions	start
up.	By	default,	the	cluster	will	have	four	node	(minions),	but	K8s	supports	having
upwards	of	100	(and	soon	beyond	1000).	We	will	come	back	to	scaling	the	nodes	later	on
in	the	book.

Figure	1.7.	Cluster	completion

Now	that	everything	is	created,	the	cluster	is	initialized	and	started.	Assuming	that
everything	goes	well,	we	will	get	an	IP	address	for	the	master.	Also,	note	that
configuration	along	with	the	cluster	management	credentials	are	stored	in
home/<Username>/.kube/config.

Figure	1.8.	Cluster	validation

Then,	the	script	will	validate	the	cluster.	At	this	point,	we	are	no	longer	running	provider-
specific	code.	The	validation	script	will	query	the	cluster	via	the	kubectl.sh	script.	This
is	the	central	script	for	managing	our	cluster.	In	this	case,	it	checks	the	number	of	minions
found,	registered,	and	in	a	ready	state.	It	loops	through	giving	the	cluster	up	to	10	minutes
to	finish	initialization.

After	a	successful	startup,	a	summary	of	the	minions	and	the	cluster	component	health	is
printed	to	the	screen:

Figure	1.9.	Cluster	summary

Finally,	a	kubectl	cluster-info	command	is	run,	which	outputs	the	URL	for	the	master
services	as	well	as	DNS,	UI,	and	monitoring.	Let’s	take	a	look	at	some	of	these
components.

Kubernetes	UI
Open	a	browser	and	try	the	following	code:
https://<your	master	ip>/api/v1/proxy/namespaces/kube-system/services/kube-

ui

The	certificate	is	self-signed	by	default,	so	you’ll	need	to	ignore	the	warnings	in	your
browser	before	proceeding.	After	this,	we	will	see	a	login	dialog.	This	is	where	we	use	the
credentials	listed	during	the	K8s	installation.	We	can	find	them	at	any	time	by	simply
using	the	config	command:

$	kubectl	config	view

Now	that	we	have	credentials	for	login,	use	those,	and	we	should	see	a	dashboard	like	the
following	image:

Figure	1.10.	Kubernetes	UI	dashboard

The	main	dashboard	page	gives	us	a	summary	of	the	minions	(or	slave	nodes).	We	can
also	see	the	CPU,	memory,	and	used	disk	space	on	each	minion	as	well	the	IP	address.

The	UI	has	a	number	of	built-in	views	listed	under	the	Views	dropdown	menu	on	the	top
right	of	the	screen.	However,	most	of	them	will	be	empty	by	default.	Once	workloads	and
services	are	spun	up,	these	views	will	become	a	lot	more	interesting.

Grafana
Another	service	installed	by	default	is	Grafana.	This	tool	will	give	us	a	dashboard	to	view
metrics	on	the	cluster	nodes.	We	can	access	it	by	using	the	following	syntax	in	a	browser:
https://<your	master	ip>/api/v1/proxy/namespaces/kube-

system/services/monitoring-grafana

Figure	1.11.	Kubernetes	Grafana	dashboard

Here,	Kubernetes	is	actually	running	a	number	of	services.	Heapster	is	used	to	collect
resource	usage	on	the	pods	and	nodes	and	stores	the	information	in	InfluxDB.	The

results,	like	CPU	and	memory	usage,	are	what	we	see	in	the	Grafana	UI.	We	will	explore
this	in	depth	in	Chapter	6,	Monitoring	and	Logging.

Swagger
Swagger	(http://swagger.io/)	is	a	tool	to	add	a	higher	level	of	interaction	and	easy
discovery	to	an	API.

Kubernetes	has	built	a	Swagger-enabled	API,	which	can	be	accessed	by	using
https://<your	master	ip>/swagger-ui/.

Figure	1.12.	Kubernetes	Swagger	dashboard

Through	this	interface,	you	can	learn	a	lot	about	the	Kubernetes	RESTful	API.	The	bulk	of
the	interesting	endpoints	are	listed	under	v1.	If	we	look	at	/api/v1/nodes,	we	can	see	the
structure	of	the	JSON	response	as	well	as	details	of	possible	parameters	for	the	request.	In
this	case,	we	see	that	the	first	parameter	is	pretty,	which	toggles	whether	the	JSON	is
returned	with	pretty	indentation	for	easier	reading.

We	can	try	this	out	by	using	https://<your	master	ip>/api/v1/nodes/.

By	default,	we’ll	see	a	JSON	response	with	pretty	indentation	enabled.	The	response
should	have	a	list	of	all	the	nodes	currently	in	our	cluster.

Now,	let’s	try	tweaking	the	pretty	request	parameter	you	just	learned	about.	Use
https://<your	master	ip>/api/v1/nodes/?pretty=false.

Now	we	have	the	same	response	output,	but	with	no	indentation.	This	is	a	great	resource
for	exploring	the	API	and	learning	how	to	use	various	function	calls	to	get	more
information	and	interact	with	your	cluster	programmatically.

http://swagger.io/

Command	line
The	kubectl.sh	script	has	commands	to	explore	our	cluster	and	the	workloads	running	on
it.	We	will	be	using	this	command	throughout	the	book,	so	let’s	take	a	second	to	set	up	our
environment.	We	can	do	so	by	making	the	script	executable	and	putting	it	on	our	PATH,	in
the	following	manner:

$	cd	/home/<Username>/kubernetes/cluster

$	chmod	+x	kubectl.sh

$	export	PATH=$PATH:/home/<Username>/kubernetes/cluster

$	ln	-s	kubectl.sh	kubectl

Tip
You	may	choose	to	download	the	kubernetes	folder	outside	your	home	folder,	so	modify
the	preceding	commands	as	appropriate.

It	is	also	a	good	idea	to	make	the	changes	permanent	by	adding	the	export	command	to
the	end	of	your	.bashrc	file	in	your	home	directory.

Now	that	we	have	kubectl	on	our	path,	we	can	start	working	with	it.	It	has	quite	a	few
commands.	Since	we	have	not	spun	up	any	applications	yet,	most	of	these	commands	will
not	be	very	interesting.	However,	we	can	explore	with	two	commands	right	away.

First,	we	have	already	seen	the	cluster-info	command	during	initialization,	but	we	can
run	it	again	at	any	time	with	the	following:

$	kubectl	cluster-info

Another	useful	command	is	get.	The	get	command	can	be	used	to	see	currently	running
services,	pods,	replication	controllers,	and	a	lot	more.	Here	are	the	three	examples	that
are	useful	right	out	of	the	gate:

Listing	the	nodes	in	our	cluster:

$	kubectl	get	nodes

List	cluster	events:

$	kubectl	get	events

Finally,	we	can	see	any	services	that	are	running	in	the	cluster	as	follows:

$	kubectl	get	services

To	start	with,	we	will	only	see	one	service,	named	kubernetes.	This	service	is	the	core
API	server,	monitoring	and	logging	services	for	the	pods	and	cluster.

Services	running	on	the	master
Let’s	dig	a	little	bit	deeper	into	our	new	cluster	and	its	core	services.	By	default,	machines
are	named	with	the	kubernetes-	prefix.	We	can	modify	this	using
$KUBE_GCE_INSTANCE_PREFIX	before	a	cluster	is	spun	up.	For	the	cluster	we	just	started,
the	master	should	be	named	kubernetes-master.	We	can	use	the	gcloud	command-line
utility	to	SSH	into	the	machine.	The	following	command	will	start	an	SSH	session	with
the	master	node.	Be	sure	to	substitute	your	project	ID	and	zone	to	match	your
environment.	Also,	note	that	you	can	launch	SSH	from	the	Google	Cloud	console	using
the	following	syntax:

$	gcloud	compute	--project	"<Your	project	ID>"	ssh	--zone	"<your	gce	zone>"	

"kubernetes-master"

Once	we	are	logged	in,	we	should	get	a	standard	shell	prompt.	Let’s	run	the	familiar	sudo
docker	ps	command.

Figure	1.13.	Master	container	listing

Even	though	we	have	not	deployed	any	applications	on	Kubernetes	yet,	we	note	that	there
are	several	containers	already	running.	The	following	is	a	brief	description	of	each
container:

fluentd-gcp:	This	container	collects	and	sends	the	cluster	logs	file	to	the	Google
Cloud	Logging	service.
kube-ui:	This	is	the	UI	that	we	saw	earlier.
kube-controller-manager:	The	controller	manager	controls	a	variety	of	cluster
functions.	Ensuring	accurate	and	up-to-date	replication	is	one	of	its	vital	roles.
Additionally,	it	monitors,	manages,	and	discovers	new	nodes.	Finally,	it	manages	and
updates	service	endpoints.

kube-apiserver:	This	container	runs	the	API	server.	As	we	explored	in	the	Swagger
interface,	this	RESTful	API	allows	us	to	create,	query,	update,	and	remove	various
components	of	our	Kubernetes	cluster.
kube-scheduler:	The	scheduler	takes	unscheduled	pods	and	binds	them	to	nodes
based	on	the	current	scheduling	algorithm.
etcd:	This	runs	the	etcd	software	built	by	CoreOS.	etcd	is	a	distributed	and
consistent	key-value	store.	This	is	where	the	Kubernetes	cluster	state	is	stored,
updated,	and	retrieved	by	various	components	of	K8s.
pause:	The	Pause	container	is	often	referred	to	as	the	pod	infrastructure	container
and	is	used	to	set	up	and	hold	the	networking	namespace	and	resource	limits	for	each
pod.

Note
Figure	2.1	in	the	next	chapter	will	also	show	how	a	few	of	these	services	work	together.

To	exit	the	SSH	session,	simply	type	exit	at	the	prompt.

Services	running	on	the	minions
We	could	SSH	to	one	of	the	minions,	but	since	Kubernetes	schedules	workloads	across	the
cluster,	we	would	not	see	all	the	containers	on	a	single	minion.	However,	we	can	look	at
the	pods	running	on	all	the	minions	using	the	kubectl	command:

$	kubectl	get	pods

Since	we	have	not	started	any	applications	on	the	cluster	yet,	we	don’t	see	any	pods.
However,	there	are	actually	several	system	pods	running	pieces	of	the	Kubernetes
infrastructure.	We	can	see	these	pods	by	specifying	the	kube-system	namespace.	We	will
explore	namespaces	and	their	significance	later,	but	for	now,	the	--namespace=kube-
system	command	can	be	used	to	look	at	these	K8s	system	resources	as	follows:

$	kubectl	get	pods	--namespace=kube-system

We	should	see	something	similar	to	the	following:

etcd-server

fluentd-cloud-logging

kube-apiserver

kube-controller-manager

kube-scheduler

kube-ui

kube-dns

monitoring-heapster

monitoring-influx-grafana

The	first	six	should	look	familiar.	These	are	additional	pieces	of	the	services	we	saw
running	on	the	master.	The	final	three	are	services	we	have	not	seen	yet.	kube-dns
provides	the	DNS	and	service	discovery	plumbing.	monitoring-heapster	is	the	system
used	to	monitor	resource	usage	across	the	cluster.	monitoring-influx-grafana	provides
the	database	and	user	interface	we	saw	earlier	for	monitoring	the	infrastructure.

If	we	did	SSH	into	a	random	minion,	we	would	see	several	containers	that	run	across	a
few	of	these	pods.	A	sample	might	look	like	the	image	here:

Figure	1.14.	Minion	container	listing

Again,	we	saw	a	similar	line	up	of	services	on	the	master.	The	services	we	did	not	see	on
the	master	include	the	following:

skydns:	This	uses	DNS	to	provide	a	distributed	service	discovery	utility	that	works
with	etcd.
kube2Sky:	This	is	the	connector	between	skydns	and	kubernetes.	Services	in	the
API	are	monitored	for	changes	and	updated	in	skydns	appropriately.
heapster:	This	does	resource	usage	and	monitoring.
exechealthz:	This	performs	health	checks	on	the	pods.

Tear	down	cluster
OK,	this	is	our	first	cluster	on	GCE,	but	let’s	explore	some	other	providers.	To	keep	things
simple,	we	need	to	remove	the	one	we	just	created	on	GCE.	We	can	tear	down	the	cluster
with	one	simple	command:

$	kube-down.sh

Working	with	other	providers
By	default,	Kubernetes	uses	the	GCE	provider	for	Google	Cloud.	We	can	override	this
default	by	setting	the	KUBERNETES_PROVIDER	environment	variable.	The	following
providers	are	supported	with	values	listed	in	Table	1.1:

Provider KUBERNETES_PROVIDER
value Type

Google	Compute	Engine gce Public	cloud

Google	Container	Engine gke Public	cloud

Amazon	Web	Services aws Public	cloud

Microsoft	Azure azure Public	cloud

Hashicorp	Vagrant vagrant Virtual	development	environment

VMware	vSphere vsphere Private	cloud	/	on-premise
virtualization

Libvirt	running	CoreOS libvirt-coreos Virtualization	management	tool

Canonical	Juju	(folks	behind
Ubuntu) juju OS	service	orchestration	tool

Table	1.1.	Kubernetes	providers

Let’s	try	setting	up	the	cluster	on	AWS.	As	a	prerequisite,	we	need	to	have	the	AWS
Command	Line	Interface	(CLI)	installed	and	configured	for	our	account.	AWS	CLI
Installation	and	configuration	documentation	can	be	found	here:

Installation	documentation:
http://docs.aws.amazon.com/cli/latest/userguide/installing.html#install-bundle-other-
os
Configuration	documentation:	http://docs.aws.amazon.com/cli/latest/userguide/cli-
chap-getting-started.html

Then,	it	is	a	simple	environment	variable	setting	as	follows:

$	export	KUBERNETES_PROVIDER=aws

Again,	we	can	use	the	kube-up.sh	command	to	spin	up	the	cluster	as	follows:

$	kube-up.sh

As	with	GCE,	the	setup	activity	will	take	a	few	minutes.	It	will	stage	files	in	S3,	create	the
appropriate	instances,	Virtual	Private	Cloud	(VPC),	security	groups,	and	so	on	in	our
AWS	account.	Then,	the	Kubernetes	cluster	will	be	set	up	and	started.	Once	everything	is
finished	and	started,	we	should	see	the	cluster	validation	at	the	end	of	the	output.

http://docs.aws.amazon.com/cli/latest/userguide/installing.html#install-bundle-other-os
http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

Figure	1.15.	AWS	cluster	validation

Once	again,	we	will	SSH	into	master.	This	time,	we	can	use	the	native	SSH	client.	We’ll
find	the	key	files	in	/home/<username>/.ssh:

$	ssh	-v	-i	/home/<username>/.ssh/kube_aws_rsa	ubuntu@<Your	master	IP>

We’ll	use	sudo	docker	ps	to	explore	the	running	containers.	We	should	see	something
like	the	following:

Figure	1.16.	Master	container	listing	(AWS)

For	the	most	part,	we	see	the	same	containers	as	our	GCE	cluster	had.	However,	instead	of
fluentd-gcp	service,	we	see	fluentd-elasticsearch.

On	the	AWS	provider,	Elasticsearch	and	Kibana	are	set	up	for	us.	We	can	find	the
Kibana	UI	by	using	the	following	syntax	as	URL:
https://<your	master	ip>/api/v1/proxy/namespaces/kube-

system/services/kibana-logging/#/discover

Figure	1.17.	Kubernetes	Kibana	dashboard

Resetting	the	cluster
That	is	a	little	taste	of	running	the	cluster	on	AWS.	For	the	remainder	of	the	book,	I	will
be	basing	my	examples	on	a	GCE	cluster.	For	the	best	experience	following	along,	you
can	get	back	to	a	GCE	cluster	easily.

Simply	tear	down	the	AWS	cluster	as	follows:

$	kube-down.sh

Then,	create	a	GCE	cluster	again	using	following:

$	export	KUBERNETES_PROVIDER=gce

$	kube-up.sh

Summary
We	took	a	very	brief	look	at	how	containers	work	and	how	they	lend	themselves	to	the
new	architecture	patterns	in	microservices.	You	should	now	have	a	better	understanding	of
how	these	two	forces	will	require	a	variety	of	operations	and	management	tasks	and	how
Kubernetes	offers	strong	features	to	address	these	challenges.	Finally,	we	created	two
different	clusters	on	both	GCE	and	AWS	and	explored	the	startup	script	as	well	as	some	of
the	built-in	features	of	Kubernetes.

In	the	next	chapter,	we	will	explore	the	core	concept	and	abstractions	K8s	provides	to
manage	containers	and	full	application	stacks.	We	will	also	look	at	basic	scheduling,
service	discovery,	and	health	checking.

Footnotes
1Malcom	McLean	entry	on	Wikipedia:	https://en.wikipedia.org/wiki/Malcom_McLean

2Martin	Fowler	on	microservices:	http://martinfowler.com/articles/microservices.html

3Kubernetes	GitHub	project	page:	https://github.com/kubernetes/kubernetes

https://en.wikipedia.org/wiki/Malcom_McLean
http://martinfowler.com/articles/microservices.html
https://github.com/kubernetes/kubernetes

References
https://en.wikipedia.org/wiki/Continuous_integration
https://docs.docker.com/
https://github.com/GoogleCloudPlatform/kubernetes/

https://en.wikipedia.org/wiki/Continuous_integration
https://docs.docker.com/
https://github.com/GoogleCloudPlatform/kubernetes/

Chapter	2.	Kubernetes	–	Core	Concepts
and	Constructs
This	chapter	will	cover	the	core	Kubernetes	constructs,	such	as	pods,	services,
replication	controllers,	and	labels.	A	few	simple	application	examples	will	be	included	to
demonstrate	each	construct.	The	chapter	will	also	cover	basic	operations	for	your	cluster.
Finally,	health	checks	and	scheduling	will	be	introduced	with	a	few	examples.

This	chapter	will	discuss	the	following	topics:

Kubernetes’	overall	architecture
Introduction	to	core	Kubernetes	constructs,	such	as	pods,	services,	replication
controllers,	and	labels
Understand	how	labels	can	ease	management	of	a	Kubernetes	cluster
Understand	how	to	monitor	services	and	container	health
Understand	how	to	set	up	scheduling	constraints	based	on	available	cluster	resources

The	architecture
Although	Docker	brings	a	helpful	layer	of	abstraction	and	tooling	around	container
management,	Kubernetes	brings	similar	assistance	to	orchestrating	containers	at	scale	as
well	as	managing	full	application	stacks.

K8s	moves	up	the	stack	giving	us	constructs	to	deal	with	management	at	the	application	or
service	level.	This	gives	us	automation	and	tooling	to	ensure	high	availability,	application
stack,	and	service-wide	portability.	K8s	also	allows	finer	control	of	resource	usage,	such
as	CPU,	memory,	and	disk	space	across	our	infrastructure.

Kubernetes	provides	this	higher	level	of	orchestration	management	by	giving	us	key
constructs	to	combine	multiple	containers,	endpoints,	and	data	into	full	application	stacks
and	services.	K8s	then	provides	the	tooling	to	manage	the	when,	where,	and	how	many	of
the	stack	and	its	components.

Figure	2.1.	Kubernetes	core	architecture

In	the	preceding	figure	(Figure	2.1),	we	see	the	core	architecture	for	Kubernetes.	Most
administrative	interactions	are	done	via	the	kubectl	script	and/or	RESTful	service	calls	to
the	API.

Note	the	ideas	of	the	desired	state	and	actual	state	carefully.	This	is	key	to	how
Kubernetes	manages	the	cluster	and	its	workloads.	All	the	pieces	of	K8s	are	constantly
working	to	monitor	the	current	actual	state	and	synchronize	it	with	the	desired	state
defined	by	the	administrators	via	the	API	server	or	kubectl	script.	There	will	be	times

when	these	states	do	not	match	up,	but	the	system	is	always	working	to	reconcile	the	two.

Master
Essentially,	master	is	the	brain	of	our	cluster.	Here,	we	have	the	core	API	server,	which
maintains	RESTful	web	services	for	querying	and	defining	our	desired	cluster	and
workload	state.	It’s	important	to	note	that	the	control	pane	only	accesses	the	master	to
initiate	changes	and	not	the	nodes	directly.

Additionally,	the	master	includes	the	scheduler,	which	works	with	the	API	server	to
schedule	workloads	in	the	form	of	pods	on	the	actual	minion	nodes.	These	pods	include
the	various	containers	that	make	up	our	application	stacks.	By	default,	the	basic
Kubernetes	scheduler	spreads	pods	across	the	cluster	and	uses	different	nodes	for
matching	pod	replicas.	Kubernetes	also	allows	specifying	necessary	resources	for	each
container,	so	scheduling	can	be	altered	by	these	additional	factors.

The	replication	controller	works	with	the	API	server	to	ensure	that	the	correct	number	of
pod	replicas	are	running	at	any	given	time.	This	is	exemplary	of	the	desired	state	concept.
If	our	replication	controller	is	defining	three	replicas	and	our	actual	state	is	two	copies	of
the	pod	running,	then	the	scheduler	will	be	invoked	to	add	a	third	pod	somewhere	on	our
cluster.	The	same	is	true	if	there	are	too	many	pods	running	in	the	cluster	at	any	given
time.	In	this	way,	K8s	is	always	pushing	towards	that	desired	state.

Finally,	we	have	etcd	running	as	a	distributed	configuration	store.	The	Kubernetes	state	is
stored	here	and	etcd	allows	values	to	be	watched	for	changes.	Think	of	this	as	the	brain’s
shared	memory.

Node	(formerly	minions)
In	each	node,	we	have	a	couple	of	components.	The	kublet	interacts	with	the	API	server
to	update	state	and	to	start	new	workloads	that	have	been	invoked	by	the	scheduler.

Kube-proxy	provides	basic	load	balancing	and	directs	traffic	destined	for	specific
services	to	the	proper	pod	on	the	backend.	See	the	Services	section	later	in	this	chapter.

Finally,	we	have	some	default	pods,	which	run	various	infrastructure	services	for	the	node.
As	we	explored	briefly	in	the	previous	chapter,	the	pods	include	services	for	Domain
Name	System	(DNS),	logging,	and	pod	health	checks.	The	default	pod	will	run	alongside
our	scheduled	pods	on	every	node.

Note
Note	that	in	v1.0,	minion	was	renamed	to	node,	but	there	are	still	remnants	of	the	term
minion	in	some	of	the	machine	naming	scripts	and	documentation	that	exists	on	the	Web.
For	clarity,	I’ve	added	the	term	minion	in	addition	to	node	in	a	few	places	throughout	the
book.

Core	constructs
Now,	let’s	dive	a	little	deeper	and	explore	some	of	the	core	abstractions	Kubernetes
provides.	These	abstractions	will	make	it	easier	to	think	about	our	applications	and	ease
the	burden	of	life	cycle	management,	high	availability,	and	scheduling.

Pods
Pods	allow	you	to	keep	related	containers	close	in	terms	of	the	network	and	hardware
infrastructure.	Data	can	live	near	the	application,	so	processing	can	be	done	without
incurring	a	high	latency	from	network	traversal.	Similarly,	common	data	can	be	stored	on
volumes	that	are	shared	between	a	number	of	containers.	Pods	essentially	allow	you	to
logically	group	containers	and	pieces	of	our	application	stacks	together.

While	pods	may	run	one	or	more	containers	inside,	the	pod	itself	may	be	one	of	many	that
is	running	on	a	Kubernetes	(minion)	node.	As	we’ll	see,	pods	give	us	a	logical	group	of
containers	that	we	can	then	replicate,	schedule,	and	balance	service	endpoints	across.

Pod	example
Let’s	take	a	quick	look	at	a	pod	in	action.	We	will	spin	up	a	Node.js	application	on	the
cluster.	You’ll	need	a	GCE	cluster	running	for	this,	so	see	Chapter	1,	Kubernetes	and
Container	Operations,	under	the	Our	first	cluster	section,	if	you	don’t	already	have	one
started.

Now,	let’s	make	a	directory	for	our	definitions.	In	this	example,	I	will	create	a	folder	in	the
/book-examples	subfolder	under	our	home	directory.

$	mkdir	book-examples

$	cd	book-examples

$	mkdir	02_example

$	cd	02_example

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

Use	your	favorite	editor	to	create	the	following	file:

apiVersion:	v1

kind:	Pod

metadata:

		name:	node-js-pod

spec:

		containers:

		-	name:	node-js-pod

				image:	bitnami/apache:latest

				ports:

				-	containerPort:	80

Listing	2-1:	nodejs-pod.yaml

This	file	creates	a	pod	name	node-js-pod	with	the	latest	bitnami/apache	container
running	on	port	80.	We	can	check	this	using	the	following	command:

http://www.packtpub.com
http://www.packtpub.com/support

$	kubectl	create	-f	nodejs-pod.yaml

The	output	is	as	follows:

pods/node-js-pod

This	gives	us	a	pod	running	the	specified	container.	We	can	see	more	information	on	the
pod	by	running	the	following	command:

$	kubectl	describe	pods/node-js-pod

You’ll	see	a	good	deal	of	information,	such	as	the	pod’s	status,	IP	address,	and	even
relevant	log	events.	You’ll	note	the	pod	IP	address	is	a	private	10.x.x.x	address,	so	we
cannot	access	it	directly	from	our	local	machine.	Not	to	worry	as	the	kubectl	exec
command	mirrors	Docker’s	exec	functionality.	Using	this	feature,	we	can	run	a	command
inside	a	pod:

$	kubectl	exec	node-js-pod—curl	<private	ip	address>

Tip
By	default,	this	runs	a	command	in	the	first	container	it	finds,	but	you	can	select	a	specific
one	using	the	-c	argument.

After	running,	the	command	you	should	see	some	HTML	code.	We’ll	have	a	prettier	view
later	in	the	chapter,	but	for	now,	we	can	see	that	our	pod	is	indeed	running	as	expected.

Labels
Labels	give	us	another	level	of	categorization,	which	becomes	very	helpful	in	terms	of
everyday	operations	and	management.	Similar	to	tags,	labels	can	be	used	as	the	basis	of
service	discovery	as	well	as	a	useful	grouping	tool	for	day-to-day	operations	and
management	tasks.

Labels	are	just	simple	key-value	pairs.	You	will	see	them	on	pods,	replication	controllers,
services,	and	so	on.	The	label	acts	as	a	selector	and	tells	Kubernetes	which	resources	to
work	with	for	a	variety	of	operations.	Think	of	it	as	a	filtering	option.

We	will	take	a	look	at	labels	more	in	depth	later	in	this	chapter,	but	first,	we	will	explore
the	remaining	two	constructs,	services,	and	replication	controllers.

The	container’s	afterlife
As	anyone	in	operations	can	attest,	failures	happen	all	the	time.	Containers	and	pods	can
and	will	crash,	become	corrupted,	or	maybe	even	just	get	accidentally	shut	off	by	a	clumsy
admin	poking	around	on	one	of	the	nodes.	Strong	policy	and	security	practices	like
enforcing	least	privilege	curtail	some	of	these	incidents,	but	“involuntary	workload
slaughter	happens”	and	is	simply	a	fact	of	operations.

Luckily,	Kubernetes	provides	two	very	valuable	constructs	to	keep	this	somber	affair	all
tidied	up	behind	the	curtains.	Services	and	replication	controllers	give	us	the	ability	to
keep	our	applications	running	with	little	interruption	and	graceful	recovery.

Services
Services	allow	us	to	abstract	access	away	from	the	consumers	of	our	applications.	Using	a
reliable	endpoint,	users	and	other	programs	can	access	pods	running	on	your	cluster
seamlessly.

K8s	achieves	this	by	making	sure	that	every	node	in	the	cluster	runs	a	proxy	named	kube-
proxy.	As	the	name	suggests,	kube-proxy’s	job	is	to	proxy	communication	from	a	service
endpoint	back	to	the	corresponding	pod	that	is	running	the	actual	application.

Figure	2.2.	The	kube-proxy	architecture

Membership	in	the	service	load	balancing	pool	is	determined	by	the	use	of	selectors	and
labels.	Pods	with	matching	labels	are	added	to	the	list	of	candidates	where	the	service
forwards	traffic.	A	virtual	IP	address	and	port	are	used	as	the	entry	point	for	the	service,
and	traffic	is	then	forwarded	to	a	random	pod	on	a	target	port	defined	by	either	K8s	or
your	definition	file.

Updates	to	service	definitions	are	monitored	and	coordinated	from	the	K8s	cluster	master
and	propagated	to	the	kube-proxy	daemons	running	on	each	node.

Tip

At	the	moment,	kube-proxy	is	running	on	the	node	host	itself.	There	are	plans	to
containerize	this	and	the	kubelet	by	default	in	the	future.

Replication	controllers
Replication	controllers	(RCs),	as	the	name	suggests,	manage	the	number	of	nodes	that	a
pod	and	included	container	images	run	on.	They	ensure	that	an	instance	of	an	image	is
being	run	with	the	specific	number	of	copies.

As	you	start	to	operationalize	your	containers	and	pods,	you’ll	need	a	way	to	roll	out
updates,	scale	the	number	of	copies	running	(both	up	and	down),	or	simply	ensure	that	at
least	one	instance	of	your	stack	is	always	running.	RCs	create	a	high-level	mechanism	to
make	sure	that	things	are	operating	correctly	across	the	entire	application	and	cluster.

RCs	are	simply	charged	with	ensuring	that	you	have	the	desired	scale	for	your	application.
You	define	the	number	of	pod	replicas	you	want	running	and	give	it	a	template	for	how	to
create	new	pods.	Just	like	services,	we	will	use	selectors	and	labels	to	define	a	pod’s
membership	in	a	replication	controller.

Tip
Kubernetes	doesn’t	require	the	strict	behavior	of	the	replication	controller.	In	fact,	version
1.1	has	a	job	controller	in	beta	that	can	be	used	for	short	lived	workloads	which	allow
jobs	to	be	run	to	a	completion	state.

Our	first	Kubernetes	application
Before	we	move	on,	let’s	take	a	look	at	these	three	concepts	in	action.	Kubernetes	ships
with	a	number	of	examples	installed,	but	we	will	create	a	new	example	from	scratch	to
illustrate	some	of	the	concepts.

We’ve	already	created	a	pod	definition	file,	but	as	we	learned,	there	are	many	advantages
to	running	our	pods	via	replication	controllers.	Again,	using	the	book-
examples/02_example	folder	we	made	earlier,	we	will	create	some	definition	files	and
start	a	cluster	of	Node.js	servers	using	a	replication	controller	approach.	Additionally,
we’ll	add	a	public	face	to	it	with	a	load-balanced	service.

Use	your	favorite	editor	to	create	the	following	file:

apiVersion:	v1

kind:	ReplicationController

metadata:

		name:	node-js

		labels:

				name:	node-js

deployment:	demo

spec:

		replicas:	3

		selector:

				name:	node-js

				deployment:	demo

		template:

				metadata:

						labels:

								name:	node-js

				spec:

						containers:

						-	name:	node-js

								image:	jonbaier/node-express-info:latest

								ports:

								-	containerPort:	80

Listing	2-2:	nodejs-controller.yaml

This	is	the	first	resource	definition	file	for	our	cluster,	so	let’s	take	a	closer	look.	You’ll
note	that	it	has	four	first-level	elements	(kind,	apiVersion,	metadata,	and	spec).	These
are	common	among	all	top-level	Kubernetes	resource	definitions:

Kind	tells	K8s	what	type	of	resource	we	are	creating.	In	this	case,	the	type	is
ReplicationController.	The	kubectl	script	uses	a	single	create	command	for	all
types	of	resources.	The	benefit	here	is	that	you	can	easily	create	a	number	of
resources	of	various	types	without	needing	to	specify	individual	parameters	for	each
type.	However,	it	requires	that	the	definition	files	can	identify	what	it	is	they	are
specifying.
ApiVersion	simply	tells	Kubernetes	which	version	of	the	schema	we	are	using.	All
examples	in	this	book	will	be	on	v1.
Metadata	is	where	we	will	give	the	resource	a	name	and	also	specify	labels	that	will

be	used	to	search	and	select	resources	for	a	given	operation.	The	metadata	element
also	allows	you	to	create	annotations,	which	are	for	nonidentifying	information	that
might	be	useful	for	client	tools	and	libraries.
Finally,	we	have	spec,	which	will	vary	based	on	the	kind	or	type	of	resource	we	are
creating.	In	this	case,	it’s	ReplicationController,	which	ensures	the	desired
number	of	pods	are	running.	The	replicas	element	defines	the	desired	number	of
pods,	the	selector	tells	the	controller	which	pods	to	watch,	and	finally,	the	template
element	defines	a	template	to	launch	a	new	pod.	The	template	section	contains	the
same	pieces	we	saw	in	our	pod	definition	earlier.	An	important	thing	to	note	is	that
the	selector	values	need	to	match	the	labels	values	specified	in	the	pod	template.
Remember	that	this	matching	is	used	to	select	the	pods	being	managed.

Now,	let’s	take	a	look	at	the	service	definition:

apiVersion:	v1

kind:	Service

metadata:

		name:	node-js

		labels:

				name:	node-js

spec:

		type:	LoadBalancer

		ports:

		-	port:	80

		selector:

				name:	node-js

Listing	2-3:	nodejs-rc-service.yaml

The	YAML	here	is	similar	to	the	ReplicationController.	The	main	difference	is	seen	in
the	service	spec	element.	Here,	we	define	the	Service	type,	listening	port,	and	selector,
which	tells	the	Service	proxy	which	pods	can	answer	the	service.

Tip
Kubernetes	supports	both	YAML	and	JSON	formats	for	definition	files.

Create	the	Node.js	express	replication	controller:

$	kubectl	create	-f	nodejs-controller.yaml

The	output	is	as	follows:

replicationcontrollers/node-js

This	gives	us	a	replication	controller	that	ensures	that	three	copies	of	the	container	are
always	running:

$	kubectl	create	-f	nodejs-rc-service.yaml

The	output	is	as	follows:

services/node-js

On	GCE,	this	will	create	an	external	load	balancer	and	forwarding	rules,	but	you	may	need

to	add	additional	firewall	rules.	In	my	case,	the	firewall	was	already	open	for	port	80.
However,	you	may	need	to	open	this	port,	especially	if	you	deploy	a	service	with	ports
other	than	80	and	443.

OK,	now	we	have	a	running	service,	which	means	that	we	can	access	the	Node.js	servers
from	a	reliable	URL.	Let’s	take	a	look	at	our	running	services:

$	kubectl	get	services

The	following	screenshot	is	the	result	of	the	preceding	command:

Figure	2.3.	Services	listing

In	the	preceding	figure	(Figure	2.3),	you	should	note	that	the	node-js	service	running	and,
in	the	IP(S)	column,	you	should	have	both	a	private	and	a	public	(130.211.186.84	in	the
screenshot)	IP	address.	Let’s	see	if	we	can	connect	by	opening	up	the	public	address	in	a
browser:

Figure	2.4.	Container	info	application

You	should	see	something	like	Figure	2.4.	If	we	visit	multiple	times,	you	should	note	that
the	container	name	changes.	Essentially,	the	service	load	balancer	is	rotating	between
available	pods	on	the	backend.

Note
Browsers	usually	cache	web	pages,	so	to	really	see	the	container	name	change	you	may
need	to	clear	your	cache	or	use	a	proxy	like	this	one:

https://hide.me/en/proxy

Let’s	try	playing	chaos	monkey	a	bit	and	kill	off	a	few	containers	to	see	what	Kubernetes
does.	In	order	to	do	this,	we	need	to	see	where	the	pods	are	actually	running.	First,	let’s
list	our	pods:

https://hide.me/en/proxy

$	kubectl	get	pods

The	following	screenshot	is	the	result	of	the	preceding	command:

Figure	2.5.	Currently	running	pods

Now,	let’s	get	some	more	details	on	one	of	the	pods	running	a	node-js	container.	You	can
do	this	with	the	describe	command	with	one	of	the	pod	names	listed	in	the	last	command:

$	kubectl	describe	pod/node-js-sjc03

The	following	screenshot	is	the	result	of	the	preceding	command:

Figure	2.6.	Pod	description

You	should	see	the	preceding	output.	The	information	we	need	is	the	Node:	section.	Let’s
use	the	node	name	to	SSH	(short	for	Secure	Shell)	into	the	(minion)	node	running	this
workload:

$	gcloud	compute	--project	"<Your	project	ID>"	ssh	--zone	"<your	gce	zone>"	

"<Node	from	pod	describe>"

Once	SSHed	into	the	node,	if	we	run	a	sudo	docker	ps	command,	we	should	see	at	least
two	containers:	one	running	the	pause	image	and	one	running	the	actual	node-express-

info	image.	You	may	see	more	if	the	K8s	scheduled	more	than	one	replica	on	this	node.
Let’s	grab	the	container	ID	of	the	jonbaier/node-express-info	image	(not
gcr.io/google_containers/pause)	and	kill	it	off	to	see	what	happens.	Save	this
container	ID	somewhere	for	later:

$	sudo	docker	ps	--filter="name=node-js"

$	sudo	docker	stop	<node-express	container	id>

$	sudo	docker	rm	<container	id>

$	sudo	docker	ps	--filter="name=node-js"

Unless	you	are	really	quick	you’ll	probably	note	that	there	is	still	a	node-express-info
container	running,	but	look	closely	and	you’ll	note	that	the	container	id	is	different	and
the	creation	time	stamp	shows	only	a	few	seconds	ago.	If	you	go	back	to	the	service	URL,
it	is	functioning	like	normal.	Go	ahead	and	exit	the	SSH	session	for	now.

Here,	we	are	already	seeing	Kubernetes	playing	the	role	of	on-call	operations	ensuring
that	our	application	is	always	running.

Let’s	see	if	we	can	find	any	evidence	of	the	outage.	Go	to	the	Events	page	in	the
Kubernetes	UI.	You	can	find	it	on	the	main	K8s	dashboard	under	Events	in	the	Views
menu.	Alternatively,	you	can	just	use	the	following	URL,	adding	your	master	ip:
https://<your	master	ip>/api/v1/proxy/namespaces/kube-system/services/kube-

ui/#/dashboard/events

You	will	see	a	screen	similar	to	the	following	screenshot:

Figure	2.7.	Kubernetes	UI	event	page

You	should	see	three	recent	events.	First,	Kubernetes	pulls	the	image.	Second,	it	creates	a
new	container	with	the	pulled	image.	Finally,	it	starts	that	container	again.	You’ll	note
that,	from	the	time	stamps,	this	all	happens	in	less	than	a	second.	Time	taken	may	vary
based	on	cluster	size	and	image	pulls,	but	the	recovery	is	very	quick.

More	on	labels
As	mentioned	previously,	labels	are	just	simple	key-value	pairs.	They	are	available	on
pods,	replication	controllers,	services,	and	more.	If	you	recall	our	service	YAML,	in
Listing	2-3:	nodejs-rc-service.yaml,	there	was	a	selector	attribute.	The	selector	tells
Kubernetes	which	labels	to	use	in	finding	pods	to	forward	traffic	for	that	service.

K8s	allows	users	to	work	with	labels	directly	on	replication	controllers	and	services.	Let’s
modify	our	replicas	and	services	to	include	a	few	more	labels.	Once	again,	use	your
favorite	editor	and	create	these	two	files	as	follows:

apiVersion:	v1

kind:	ReplicationController

metadata:

		name:	node-js-labels

		labels:

				name:	node-js-labels

				app:	node-js-express

				deployment:	test

spec:

		replicas:	3

		selector:

				name:	node-js-labels

				app:	node-js-express

				deployment:	test

		template:

				metadata:

						labels:

								name:	node-js-labels

								app:	node-js-express

								deployment:	test

				spec:

						containers:

						-	name:	node-js-labels

								image:	jonbaier/node-express-info:latest

								ports:

								-	containerPort:	80

Listing	2-4:	nodejs-labels-controller.yaml

apiVersion:	v1

kind:	Service

metadata:

		name:	node-js-labels

		labels:

				name:	node-js-labels

				app:	node-js-express

				deployment:	test

spec:

		type:	LoadBalancer

		ports:

		-	port:	80

		selector:

				name:	node-js-labels

				app:	node-js-express

				deployment:	test

Listing	2-5:	nodejs-labels-service.yaml

Create	the	replication	controller	and	service	as	follows:

$	kubectl	create	-f	nodejs-labels-controller.yaml

$	kubectl	create	-f	nodejs-labels-service.yaml

Let’s	take	a	look	at	how	we	can	use	labels	in	everyday	management.	The	following	table
shows	us	the	options	to	select	labels:

Operators Description Example

=	or	==
You	can	use	either	style	to	select	keys	with	values	equal	to	the	string	on	the
right

name	=	apache

!= Select	keys	with	values	that	do	not	equal	the	string	on	the	right Environment	!=	test

In Select	resources	whose	labels	have	keys	with	values	in	this	set tier	in	(web,	app)

Notin Select	resources	whose	labels	have	keys	with	values	not	in	this	set tier	not	in	(lb,	app)

<Key

name>
Use	a	key	name	only	to	select	resources	whose	labels	contain	this	key tier

Table	1:	Label	selectors

Let’s	try	looking	for	replicas	with	test	deployments:

$	kubectl	get	rc-l	deployment=test

The	following	screenshot	is	the	result	of	the	preceding	command:

Figure	2.8.	Replication	controller	listing

You’ll	notice	that	it	only	returns	the	replication	controller	we	just	started.	How	about
services	with	a	label	named	component?	Use	the	following	command:

$	kubectl	get	services	-l	component

The	following	screenshot	is	the	result	of	the	preceding	command:

Figure	2.9.	Listing	of	services	with	a	label	named	“component”

Here,	we	see	the	core	Kubernetes	service	only.	Finally,	let’s	just	get	the	node-js	servers
we	started	in	this	chapter.	See	the	following	command:

$	kubectl	get	services	-l	"name	in	(node-js,node-js-labels)"

The	following	screenshot	is	the	result	of	the	preceding	command:

Figure	2.10.	Listing	of	services	with	a	label	name	and	a	value	of	“node-js”	or	“nodejs-
labels”

Additionally,	we	can	perform	management	tasks	across	a	number	of	pods	and	services.
For	example,	we	can	kill	all	replication	controllers	that	are	part	of	the	demo	deployment	(if
we	had	any	running)	as	follows:

$	kubectl	delete	rc	-l	deployment=demo

Otherwise,	kill	all	services	that	are	not	part	of	a	production	or	test	deployment	(again,	if
we	had	any	running),	as	follows:

$	kubectl	delete	service	-l	"deployment	notin	(test,	production)"

It’s	important	to	note	that	while	label	selection	is	quite	helpful	in	day-to-day	management
tasks	it	does	require	proper	deployment	hygiene	on	our	part.	We	need	to	make	sure	that	we
have	a	tagging	standard	and	that	it	is	actively	followed	in	the	resource	definition	files	for
everything	we	run	on	Kubernetes.

Tip
While	we	used	service	definition	YAML	files	to	create	our	services	thus	far,	you	can
actually	create	them	using	a	kubectl	command	only.	To	try	this	out,	first	run	the	get	pods
command	and	get	one	of	the	node-js	pod	names.	Next,	use	the	following	expose
command	to	create	a	service	endpoint	for	just	that	pod:

$	kubectl	expose	pods/node-js-gxkix	--port=80	--name=testing-vip	--create-

external-load-balancer=true

This	will	create	a	service	named	testing-vip	and	also	a	public	vip	(load	balancer	IP)	that
can	be	used	to	access	this	pod	over	port	80.	There’s	a	number	of	other	optional	parameters
that	can	be	used.	These	can	be	found	with	the	following:

kubectl	expose	--help

Health	checks
Kubernetes	provides	two	layers	of	health	checking.	First,	in	the	form	of	HTTP	or	TCP
checks,	K8s	can	attempt	to	connect	to	a	particular	endpoint	and	give	a	status	of	healthy	on
a	successful	connection.	Second,	application-specific	health	checks	can	be	performed
using	command	line	scripts.

Let’s	take	a	look	at	a	few	health	checks	in	action.	First,	we’ll	create	a	new	controller	with
a	health	check:

apiVersion:	v1

kind:	ReplicationController

metadata:

		name:	node-js

		labels:

				name:	node-js

spec:

		replicas:	3

		selector:

				name:	node-js

		template:

				metadata:

						labels:

								name:	node-js

				spec:

						containers:

						-	name:	node-js

								image:	jonbaier/node-express-info:latest

								ports:

								-	containerPort:	80

								livenessProbe:

										#	An	HTTP	health	check	

										httpGet:

												path:	/status/

												port:	80

										initialDelaySeconds:	30

										timeoutSeconds:	1

Listing	2-6:	nodejs-health-controller.yaml

Note	the	addition	of	the	livenessprobe	element.	This	is	our	core	health	check	element.
From	there,	we	can	specify	httpGet,	tcpScoket,	or	exec.	In	this	example,	we	use	httpGet
to	perform	a	simple	check	for	a	URI	on	our	container.	The	probe	will	check	the	path	and
port	specified	and	restart	the	pod	if	it	doesn’t	successfully	return.

Tip
Status	codes	between	200	and	399	are	all	considered	healthy	by	the	probe.

Finally,	initialDelaySeconds	gives	us	the	flexibility	to	delay	health	checks	until	the	pod
has	finished	initializing.	timeoutSeconds	is	simply	the	timeout	value	for	the	probe.

Let’s	use	our	new	health	check-enabled	controller	to	replace	the	old	node-js	RC.	We	can
do	this	using	the	replace	command,	which	will	replace	the	replication	controller

definition:

$	kubectl	replace	-f	nodejs-health-controller.yaml

Replacing	the	RC	on	it’s	own	won’t	replace	our	containers	because	it	still	has	three
healthy	pods	from	our	first	run.	Let’s	kill	off	those	pods	and	let	the	updated
ReplicationController	replace	them	with	containers	that	have	health	checks.

$	kubectl	delete	pods	-l	name=node-js

Now,	after	waiting	a	minute	or	two,	we	can	list	the	pods	in	an	RC	and	grab	one	of	the	pod
IDs	to	inspect	a	bit	deeper	with	the	describe	command:

$	kubectl	describe	rc/node-js

The	following	screenshot	is	the	result	of	the	preceding	command:

Figure	2.11.	Description	of	“node-js”	replication	controller

Then,	using	the	following	command	for	one	of	the	pods:

$	kubectl	describe	pods/node-js-1m3cs

The	following	screenshot	is	the	result	of	the	preceding	command:

Figure	2.12.	Description	of	“node-js-1m3cs”	pod

Depending	on	your	timing,	you	will	likely	have	a	number	of	events	for	the	pod.	Within	a
minute	or	two,	you’ll	note	a	pattern	of	killing,	started,	and	created	events	repeating	over
and	over	again.	You	should	also	see	an	unhealthy	event	described	as	Liveness	probe
failed:	Cannot	GET	/status/.	This	is	our	health	check	failing	because	we	don’t	have	a
page	responding	at	/status.

You	may	note	that	if	you	open	a	browser	to	the	service	load	balancer	address,	it	still
responds	with	a	page.	You	can	find	the	load	balancer	IP	with	a	kubectl	get	services
command.

This	is	happening	for	a	number	of	reasons.	First,	the	health	check	is	simply	failing	because
/status	doesn’t	exist,	but	the	page	where	the	service	is	pointed	is	still	functioning
normally.	Second,	the	livenessProbe	is	only	charged	with	restarting	the	container	on	a
health	check	fail.	There	is	a	separate	readinessProbe	that	will	remove	a	container	from
the	pool	of	pods	answering	service	endpoints.

Let’s	modify	the	health	check	for	a	page	that	does	exist	in	our	container,	so	we	have	a
proper	health	check.	We’ll	also	add	a	readiness	check	and	point	it	to	the	nonexistent	status
page.	Open	the	nodejs-health-controller.yaml	file	and	modify	the	spec	section	to
match	Listing	2-7	and	save	it	as	nodejs-health-controller-2.yaml.

apiVersion:	v1

kind:	ReplicationController

metadata:

		name:	node-js

		labels:

				name:	node-js

spec:

		replicas:	3

		selector:

				name:	node-js

		template:

				metadata:

						labels:

								name:	node-js

				spec:

						containers:

						-	name:	node-js

								image:	jonbaier/node-express-info:latest

								ports:

								-	containerPort:	80

								livenessProbe:

										#	An	HTTP	health	check	

										httpGet:

												path:	/status/

												port:	80

										initialDelaySeconds:	30

										timeoutSeconds:	1

								readinessProbe:

										#	An	HTTP	health	check	

										httpGet:

												path:	/status/

												port:	80

										initialDelaySeconds:	30

										timeoutSeconds:	1

Listing	2-7:	nodejs-health-controller-2.yaml

This	time,	we	will	delete	the	old	RC,	which	will	kill	the	pods	with	it,	and	create	a	new	RC
with	our	updated	YAML	file.

$	kubectl	delete	rc	-l	name=node-js

$	kubectl	create	-f	nodejs-health-controller-2.yaml

Now	when	we	describe	one	of	the	pods,	we	only	see	the	creation	of	the	pod	and	the
container.	However,	you‘ll	note	that	the	service	load	balancer	IP	no	longer	works.	If	we
run	the	describe	command	on	one	of	the	new	nodes	we’ll	note	a	Readiness	probe	failed
error	message,	but	the	pod	itself	continues	running.	If	we	change	the	readiness	probe	path
to	path:	/,	we	will	again	be	able	to	fulfill	requests	from	the	main	service.	Open	up
nodejs-health-controller-2.yaml	in	an	editor	and	make	that	update	now.	Then,	once
again	remove	and	recreate	the	replication	controller:

$	kubectl	delete	rc	-l	name=node-js

$	kubectl	create	-f	nodejs-health-controller-2.yaml

Now	the	load	balancer	IP	should	work	once	again.	Keep	these	pods	around	as	we	will	use
them	again	in	Chapter	3,	Core	Concepts	–	Networking,	Storage,	and	Advanced	Services.

TCP	checks
Kubernetes	also	supports	health	checks	via	simple	TCP	socket	checks	and	also	with
custom	command-line	scripts.	The	following	snippets	are	examples	of	what	both	use	cases
look	like	in	the	YAML	file:

livenessProbe:

		exec:

				command:

				-/usr/bin/health/checkHttpServce.sh

		initialDelaySeconds:90

		timeoutSeconds:	1

Listing	2-8:	Health	check	using	command-line	script

livenessProbe:

		tcpSocket:

				port:	80

		initialDelaySeconds:	15

		timeoutSeconds:	1

Listing	2-9:	Health	check	using	simple	TCP	Socket	connection

Life	cycle	hooks	or	graceful	shutdown
As	you	run	into	failures	in	real-life	scenarios,	you	may	find	that	you	want	to	take
additional	action	before	containers	are	shutdown	or	right	after	they	are	started.	Kubernetes
actually	provides	life	cycle	hooks	for	just	this	kind	of	use	case.

The	following	example	controller	definition	defines	both	a	postStart	and	a	preStop
action	to	take	place	before	Kubernetes	moves	the	container	into	the	next	stage	of	its	life
cycle1:

apiVersion:	v1

kind:	ReplicationController

metadata:

		name:	apache-hook

		labels:

				name:	apache-hook

spec:

		replicas:	3

		selector:

				name:	apache-hook

		template:

				metadata:

						labels:

								name:	apache-hook

				spec:

						containers:

						-	name:	apache-hook

								image:	bitnami/apache:latest

								ports:

								-	containerPort:	80

								lifecycle:

										postStart:

												httpGet:

														path:	http://my.registration-server.com/register/

														port:	80

										preStop:

												exec:

														command:	["/usr/local/bin/apachectl","-k","graceful-	stop"]

Listing	2-10:	apache-hooks-controller.yaml

You’ll	note	for	the	postStart	hook	we	define	an	httpGet	action,	but	for	the	preStop
hook,	I	define	an	exec	action.	Just	as	with	our	health	checks,	the	httpGet	action	attempts
to	make	an	HTTP	call	to	the	specific	endpoint	and	port	combination	while	the	exec	action
runs	a	local	command	in	the	container.

The	httpGet	and	exec	action	are	both	supported	for	the	postStart	and	preStop	hooks.	In
the	case	of	preStop,	a	parameter	named	reason	will	be	sent	to	the	handler	as	a	parameter.
See	the	following	table	(Table	2.1)	for	valid	values:

Reason	parameter Failure	Description

Delete Delete	command	issued	via	kubectl	or	the	API

Health Health	check	fails

Dependency Dependency	failure	such	as	a	disk	mount	failure	or	a	default	infrastructure	pod	crash

Table	2.1.	Valid	preStop	reasons1

It’s	important	to	note	that	hook	calls	are	delivered	at	least	once.	Therefore,	any	logic	in
the	action	should	gracefully	handles	multiple	calls.	Another	important	note	is	that
postStart	runs	before	a	pod	enters	its	ready	state.	If	the	hook	itself	fails,	the	pod	will	be
considered	unhealthy.

Application	scheduling
Now	that	we	understand	how	to	run	containers	in	pods	and	even	recover	from	failure,	it
may	be	useful	to	understand	how	new	containers	are	scheduled	on	our	cluster	nodes.

As	mentioned	earlier,	the	default	behavior	for	the	Kubernetes	scheduler	is	to	spread
container	replicas	across	the	nodes	in	our	cluster.	In	the	absence	of	all	other	constraints,
the	scheduler	will	place	new	pods	on	nodes	with	the	least	number	of	other	pods	belonging
to	matching	services	or	replication	controllers.

Additionally,	the	scheduler	provides	the	ability	to	add	constraints	based	on	resources
available	to	the	node.	Today,	that	includes	minimum	CPU	and	memory	allocations.	In
terms	of	Docker,	these	use	the	cpu-shares	and	memory	limit	flags	under	the	covers.

When	additional	constraints	are	defined,	Kubernetes	will	check	a	node	for	available
resources.	If	a	node	does	not	meet	all	the	constraints,	it	will	move	to	the	next.	If	no	nodes
can	be	found	that	meet	the	criteria,	then	we	will	see	a	scheduling	error	in	the	logs.

The	Kubernetes	roadmap	also	has	plans	to	support	networking	and	storage.	Because
scheduling	is	such	an	important	piece	of	overall	operations	and	management	for
containers,	we	should	expect	to	see	many	additions	in	this	area	as	the	project	grows.

Scheduling	example
Let’s	take	a	look	at	a	quick	example	of	setting	some	resource	limits.	If	we	look	at	our	K8s
dashboard,	we	can	get	a	quick	snapshot	of	the	current	state	of	resource	usage	on	our
cluster	using	https://<your	master	ip>/api/v1/proxy/namespaces/kube-
system/services/kube-ui,	as	shown	in	the	following	screenshot:

Figure	2.13.	Kube	UI	dashboard

In	this	case,	we	have	fairly	low	CPU	utilization,	but	a	decent	chunk	of	memory	in	use.

Let’s	see	what	happens	when	I	try	to	spin	up	a	few	more	pods,	but	this	time,	we	will
request	512	Mi	for	memory	and	1500	m	for	the	CPU.	We’ll	use	1500	m	to	specify	1.5
CPUs,	since	each	node	only	has	1	CPU,	this	should	result	in	failure.	Here’s	an	example	of
RC	definition:

apiVersion:	v1

kind:	ReplicationController

metadata:

		name:	node-js-constraints

		labels:

				name:	node-js-constraints

spec:

		replicas:	3

		selector:

				name:	node-js-constraints

		template:

				metadata:

						labels:

								name:	node-js-constraints

				spec:

						containers:

						-	name:	node-js-constraints

								image:	jonbaier/node-express-info:latest

								ports:

								-	containerPort:	80

								resources:

								limits:

										memory:	"512Mi"

										cpu:	"1500m"

Listing	2-11:	nodejs-constraints-controller.yaml

To	open	the	preceding	file,	use	the	following	command:

$	kubectl	create	-f	nodejs-constraints-controller.yaml

The	replication	controller	completes	successfully,	but	if	we	run	a	get	pods	command,
we’ll	note	the	node-js-constraints	pods	are	stuck	in	a	pending	state.	If	we	look	a	little
closer	with	the	describe	pods/<pod-id>	command,	we’ll	note	a	scheduling	error:

$	kubectl	get	pods

$	kubectl	describe	pods/<pod-id>

The	following	screenshot	is	the	result	of	the	preceding	command:

Figure	2.14.	Pod	description

Note	that	the	failedScheduling	error	listed	in	events	is	accompanied	by	Failed	for	reason
PodFitsResources	and	possibly	others	on	our	screen.	As	you	can	see,	Kubernetes	could
not	find	a	fit	in	the	cluster	that	met	all	the	constraints	we	defined.

If	we	now	modify	our	CPU	constraint	down	to	500	m,	and	then	recreate	our	replication
controller,	we	should	have	all	three	pods	running	within	a	few	moments.

Summary
We’ve	taken	a	look	at	the	overall	architecture	for	Kubernetes	as	well	as	the	core	constructs
provided	to	build	your	services	and	application	stacks.	You	should	have	a	better
understanding	of	how	these	abstractions	make	it	easier	to	manage	the	life	cycle	of	your
stack	and/or	services	as	a	whole	and	not	just	the	individual	components.	Additionally,	we
took	a	first-hand	look	at	how	to	manage	some	simple	day-to-day	tasks	using	pods,
services,	and	replication	controllers.	We	also	looked	at	how	to	use	Kubernetes	to
automatically	respond	to	outages	via	health	checks.	Finally,	we	explored	the	Kubernetes
scheduler	and	some	of	the	constraints	users	can	specify	to	influence	scheduling	placement.

Footnotes
1https://github.com/GoogleCloudPlatform/kubernetes/blob/release-1.0/docs/user-
guide/container-environment.md#container-hooks

https://github.com/GoogleCloudPlatform/kubernetes/blob/release-1.0/docs/user-guide/container-environment.md#container-hooks

Chapter	3.	Core	Concepts	–	Networking,
Storage,	and	Advanced	Services
In	this	chapter,	we	will	be	covering	how	the	Kubernetes	cluster	handles	networking	and
how	it	differs	from	other	approaches.	We	will	be	describing	the	three	requirements	for
Kubernetes	networking	solutions	and	exploring	why	these	are	key	to	ease	of	operations.
Further,	we	will	take	a	deeper	dive	into	services	and	how	the	Kubernetes	proxy	works	on
each	node.	Towards	the	end,	we	will	take	a	look	at	storage	concerns	and	how	we	can
persist	data	across	pods	and	the	container	life	cycle.	Finishing	up,	we	will	see	a	brief
overview	of	some	higher	level	isolation	features	for	multitenancy.

This	chapter	will	discuss	the	following:

Kubernetes	networking
Advanced	services	concepts
Service	discovery
DNS
Persistent	storage
Namespace	limits	and	quotas

Kubernetes	networking
Networking	is	a	vital	concern	for	production-level	operations.	At	a	service	level,	we	need
a	reliable	way	for	our	application	components	to	find	and	communicate	with	each	other.
Introduce	containers	and	clustering	into	the	mix	and	things	get	more	complex	as	we	now
have	multiple	networking	namespaces	to	bear	in	mind.	Communication	and	discovery
now	becomes	a	feat	that	must	traverse	container	IP	space,	host	networking,	and	sometimes
even	multiple	data	center	network	topologies.

Kubernetes	benefits	here	from	getting	its	ancestry	from	the	clustering	tools	used	by
Google	for	the	past	decade.	Networking	is	one	area	where	Google	has	outpaced	the
competition	with	one	of	the	largest	networks	on	the	planet.	Early	on,	Google	built	its	own
hardware	switches	and	Software-defined	Networking	(SDN)	to	give	them	more	control,
redundancy,	and	efficiency	in	their	day-to-day	network	operations1.	Many	of	the	lessons
learned	from	running	and	networking	two	billion	containers	per	week	have	been	distilled
into	Kubernetes	and	informed	how	K8s	networking	is	done.

Networking	in	Kubernetes	requires	that	each	pod	have	its	own	IP	address.	Implementation
details	may	vary	based	on	the	underlying	infrastructure	provider.	However,	all
implementations	must	adhere	to	some	basic	rules.	First	and	second,	Kubernetes	does	not
allow	the	use	of	Network	Address	Translation	(NAT)	for	container-to-container	or	for
container-to-node	(minion)	traffic.	Further,	the	internal	container	IP	address	must	match
the	IP	address	that	is	used	to	communicate	with	it.

These	rules	keep	much	of	the	complexity	out	of	our	networking	stack	and	ease	the	design
of	the	applications.	Further,	it	eliminates	the	need	to	redesign	network	communication	in
legacy	applications	that	are	migrated	from	existing	infrastructure.	Finally,	in	greenfield
applications,	it	allows	for	greater	scale	in	handling	hundreds,	or	even	thousands,	of
services	and	application	communication.

K8s	achieves	this	pod-wide	IP	magic	by	using	a	placeholder.	Remember	that	pause
container	we	saw	in	Chapter	1,	Kubernetes	and	Container	Operations,	under	the	Services
running	on	the	master	section.	That	is	often	referred	to	as	a	pod	infrastructure
container,	and	it	has	the	important	job	of	reserving	the	network	resources	for	our
application	containers	that	will	be	started	later	on.	Essentially,	the	pause	container	holds
the	networking	namespace	and	IP	address	for	the	entire	pod	and	can	be	used	by	all	the
containers	running	within.

Networking	comparisons
In	getting	a	better	understanding	of	networking	in	containers,	it	can	be	instructive	to	look
at	other	approaches	to	container	networking.

Docker
The	Docker	Engine	by	default	uses	a	bridged	networking	mode.	In	this	mode,	the
container	has	its	own	networking	namespace	and	is	then	bridged	via	virtual	interfaces	to
the	host	(or	node	in	the	case	of	K8s)	network.

In	the	bridged	mode,	two	containers	can	use	the	same	IP	range	because	they	are
completely	isolated.	Therefore,	service	communication	requires	some	additional	port
mapping	through	the	host	side	of	network	interfaces.

Docker	also	supports	a	host	mode,	which	allows	the	containers	to	use	the	host	network
stack.	Performance	is	greatly	benefited	since	it	removes	a	level	of	network	virtualization;
however,	you	lose	the	security	of	having	an	isolated	network	namespace.

Finally,	Docker	supports	a	container	mode,	which	shares	a	network	namespace	between
two	containers.	The	containers	will	share	the	namespace	and	IP	address,	so	containers
cannot	use	the	same	ports.

In	all	these	scenarios,	we	are	still	on	a	single	machine,	and	outside	of	a	host	mode,	the
container	IP	space	is	not	available	outside	that	machine.	Connecting	containers	across	two
machines	then	requires	Network	Address	Translation	(NAT)	and	port	mapping	for
communication.

Docker	plugins	(libnetwork)
In	order	to	address	the	cross-machine	communication	issue,	Docker	has	released	new
network	plugins,	which	just	moved	out	of	experimental	support	as	we	went	to	press.	This
plugin	allows	networks	to	be	created	independent	of	the	containers	themselves.	In	this
way,	containers	can	join	the	same	existing	networks.	Through	the	new	plugin	architecture,
various	drivers	can	be	provided	for	different	network	use	cases.

The	first	of	these	is	the	overlay	driver.	In	order	to	coordinate	across	multiple	hosts,	they
must	all	agree	on	the	available	networks	and	their	topologies.	The	overlay	driver	uses	a
distributed	key-value	store	to	synchronize	the	network	creation	across	multiple	hosts.

It’s	important	to	note	that	the	plugin	mechanism	will	allow	a	wide	range	of	networking
possibilities	in	Docker.	In	fact,	many	of	the	third-party	options	such	as	Weave	are	already
creating	their	own	Docker	network	plugins.

Weave
Weave	provides	an	overlay	network	for	Docker	containers.	It	can	be	used	as	a	plugin	with
the	new	Docker	network	plugin	interface,	and	it	is	also	compatible	with	Kubernetes.	Like
many	overlay	networks,	many	criticize	the	performance	impact	of	the	encapsulation
overhead.	Note	that	they	have	recently	added	a	preview	release	with	Virtual	Extensible
LAN	(VXLAN)	encapsulation	support,	which	greatly	improves	performance.	For	more

information,	visit:

http://blog.weave.works/2015/06/12/weave-fast-datapath/

Flannel
Flannel	comes	from	CoreOS	and	is	an	etcd-backed	overlay.	Flannel	gives	a	full	subnet	to
each	host/node	enabling	a	similar	pattern	to	the	Kubernetes	practice	of	a	routable	IP	per
pod	or	group	of	containers.	Flannel	includes	an	in-kernel	VXLAN	encapsulation	mode	for
better	performance	and	has	an	experimental	multinetwork	mode	similar	to	the	overlay
Docker	plugin.	For	more	information,	visit:

https://github.com/coreos/flannel

Project	Calico
Project	Calico	is	a	layer	3-based	networking	model	that	uses	the	built-in	routing	functions
of	the	Linux	kernel.	Routes	are	propagated	to	virtual	routers	on	each	host	via	Border
Gateway	Protocol	(BGP).	Calico	can	be	used	for	anything	from	small-scale	deploys	to
large	Internet-scale	installations.	Because	it	works	at	a	lower	level	on	the	network	stack,
there	is	no	need	for	additional	NAT,	tunneling,	or	overlays.	It	can	interact	directly	with	the
underlying	network	infrastructure.	Additionally,	it	has	a	support	for	network-level	ACLs
to	provide	additional	isolation	and	security.	For	more	information	visit:

http://www.projectcalico.org/

http://blog.weave.works/2015/06/12/weave-fast-datapath/
https://github.com/coreos/flannel
http://www.projectcalico.org/

Balanced	design
It’s	important	to	point	out	the	balance	Kubernetes	is	trying	to	achieve	by	placing	the	IP	at
the	pod	level.	Using	unique	IP	addresses	at	the	host	level	is	problematic	as	the	number	of
containers	grow.	Ports	must	be	used	to	expose	services	on	specific	containers	and	allow
external	communication.	In	addition	to	this,	the	complexity	of	running	multiple	services
that	may	or	may	not	know	about	each	other	(and	their	custom	ports),	and	managing	the
port	space	becomes	a	big	issue.

However,	assigning	an	IP	address	to	each	container	can	be	overkill.	In	cases	of	sizable
scale,	overlay	networks	and	NATs	are	needed	in	order	to	address	each	container.	Overlay
networks	add	latency,	and	IP	addresses	would	be	taken	up	by	backend	services	as	well
since	they	need	to	communicate	with	their	frontend	counterparts.

Here,	we	really	see	an	advantage	in	the	abstractions	that	Kubernetes	provides	at	the
application	and	service	level.	If	I	have	a	web	server	and	a	database,	we	can	keep	them	on
the	same	pod	and	use	a	single	IP	address.	The	web	server	and	database	can	use	the	local
interface	and	standard	ports	to	communicate,	and	no	custom	setup	is	required.	Further,
services	on	the	backend	are	not	needlessly	exposed	to	other	application	stacks	running
elsewhere	in	the	cluster	(but	possibly	on	the	same	host).	Since	the	pod	sees	the	same	IP
address	that	the	applications	running	within	it	see,	service	discovery	does	not	require	any
additional	translation.

If	you	need	the	flexibility	of	an	overlay	network,	you	can	still	use	an	overlay	at	the	pod
level.	Both	Weave	and	Flannel	overlays,	as	well	as	the	BGP	routing	Project	Calico,	can	be
used	with	Kubernetes.

This	is	also	very	helpful	in	the	context	of	scheduling	the	workloads.	It	is	a	key	to	have	a
simple	and	standard	structure	for	the	scheduler	to	match	constraints	and	understand	where
space	exists	on	the	cluster’s	network	at	any	given	time.	This	is	a	dynamic	environment
with	a	variety	of	applications	and	tasks	running,	so	any	additional	complexity	here	will
have	rippling	effects.

There	are	also	implications	for	service	discovery.	New	services	coming	online	must
determine	and	register	an	IP	address	on	which	the	rest	of	the	world,	or	at	least	cluster,	can
reach	them.	If	NAT	is	used,	the	services	will	need	an	additional	mechanism	to	learn	their
externally	facing	IP.

Advanced	services
Let’s	explore	the	IP	strategy	as	it	relates	to	Services	and	communication	between
containers.	If	you	recall,	in	Chapter	2,	Kubernetes	–	Core	Concepts	and	Constructs	,	under
the	Services	section,	you	learned	that	Kubernetes	is	using	kube-proxy	to	determine	the
proper	pod	IP	address	and	port	serving	each	request.	Behind	the	scenes,	kube-proxy	is
actually	using	virtual	IPs	and	iptables	to	make	all	this	magic	work.

Recall	that	kube-proxy	is	running	on	every	host.	Its	first	duty	is	to	monitor	the	API	from
the	Kubernetes	master.	Any	updates	to	services	will	trigger	an	update	to	iptables	from
kube-proxy.	For	example,	when	a	new	service	is	created,	a	virtual	IP	address	is	chosen	and
a	rule	in	iptables	is	set,	which	will	direct	its	traffic	to	kube-proxy	via	a	random	port.	Thus,
we	now	have	a	way	to	capture	service-destined	traffic	on	this	node.	Since	kube-proxy	is
running	on	all	nodes,	we	have	cluster-wide	resolution	for	the	service	VIP.	Additionally,
DNS	records	can	point	to	this	virtual	IP	as	well.

Now	that	we	have	a	hook	created	in	iptables,	we	still	need	to	get	the	traffic	to	the	servicing
pods;	however,	the	rule	is	only	sending	traffic	to	the	service	entry	in	kube-proxy	at	this
point.	Once	kube-proxy	receives	the	traffic	for	a	particular	service,	it	must	then	forward	it
to	a	pod	in	the	service’s	pool	of	candidates.	It	does	this	using	a	random	port	that	was
selected	during	service	creation.	Refer	to	the	following	figure	(Figure	3.1)	for	an	overview
of	the	flow:

Figure	3.1.	Kube-proxy	communication

At	the	time	of	writing	this	book,	there	are	plans	in	the	upcoming	version	1.1	to	include	a
kube-proxy,	which	does	not	rely	on	service	entry	and	uses	only	iptable	rules.

Tip
It	is	also	possible	to	always	forward	traffic	from	the	same	client	IP	to	same	backend
pod/container	using	the	sessionAffinity	element	in	your	service	definition.

External	services
In	the	last	chapter,	we	saw	a	few	service	examples.	For	testing	and	demonstration
purposes,	we	wanted	all	the	services	to	be	externally	accessible.	This	was	configured	by
the	type:	LoadBalancer	element	in	our	service	definition.	The	LoadBalancer	type
creates	an	external	load	balancer	on	the	cloud	provider.	We	should	note	that	support	for
external	load	balancers	varies	by	provider	as	does	the	implementation.	In	our	case,	we	are
using	GCE,	so	integration	is	pretty	smooth.	The	only	additional	setup	needed	is	to	open
firewall	rules	for	the	external	service	ports.

Let’s	dig	a	little	deeper	and	do	a	describe	on	one	of	the	services	from	the	Chapter	2,
Kubernetes	–	Core	Concepts	and	Constructs,	under	the	More	on	labels	section.

$	kubectl	describe	service/node-js-labels

The	following	screenshot	is	the	result	of	the	preceding	command:

Figure	3.2.	Service	description

In	the	output,	in	Figure	3.2,	you’ll	note	several	key	elements.	Our	namespace	is	set	to
default,	Type:	is	LoadBalancer,	and	we	have	the	external	IP	listed	under	LoadBalancer
Ingress:.	Further,	we	see	Endpoints:,	which	shows	us	the	IPs	of	the	pods	available	to
answer	service	requests.

Internal	services
Let’s	explore	the	other	types	of	services	we	can	deploy.	First,	by	default,	services	are
internally	facing	only.	You	can	specify	a	type	of	clusterIP	to	achieve	this,	but	if	no	type
is	defined,	clusterIP	is	the	assumed	type.	Let’s	take	a	look	at	an	example,	note	the	lack
of	the	type	element:

apiVersion:	v1

kind:	Service

metadata:

		name:	node-js-internal

		labels:

				name:	node-js-internal

spec:

		ports:

		-	port:	80

		selector:

				name:	node-js

Listing	3-1:	nodejs-service-internal.yaml

Use	this	listing	to	create	the	service	definition	file.	You’ll	need	a	healthy	version	of	the
node-js	RC	(Listing	2-7:	nodejs-health-controller-2.yaml).	As	you	can	see,	the
selector	matches	on	the	pods	named	node-js	that	our	RC	launched	in	the	last	chapter.	We
will	create	the	service	and	then	list	the	currently	running	services	with	a	filter:

$	kubectl	create	-f	nodejs-service-internal.yaml

$	kubectl	get	services	-l	name=node-js-internal

The	following	screenshot	is	the	result	of	the	preceding	command:

Figure	3.3.	Internal	service	listing

As	you	can	see,	we	have	a	new	service,	but	only	one	IP.	Further,	the	IP	address	is	not
externally	accessible.	We	won’t	be	able	to	test	the	service	from	a	web	browser	this	time.
However,	we	can	use	the	handy	kubectl	exec	command	and	attempt	to	connect	from	one
of	the	other	pods.	You	will	need	node-js-pod	(Listing	2-1:	nodejs-pod.yaml)	running.
Then,	you	can	execute	the	following	command:

$	kubectl	exec	node-js-pod—curl	<node-js-internal	IP>

This	allows	us	to	run	a	docker	exec	command	as	if	we	had	a	shell	in	the	node-js-pod
container.	It	then	hits	the	internal	service	URL,	which	forwards	to	any	pods	with	the	node-
js	label.

If	all	is	well,	you	should	get	the	raw	HTML	output	back.	So,	you’ve	successfully	created
an	internal-only	service.	This	can	be	useful	for	backend	services	that	you	want	to	make
available	to	other	containers	running	in	your	cluster,	but	not	open	to	the	world	at	large.

Custom	load	balancing
A	third	type	of	service	K8s	allows	is	the	NodePort	type.	This	type	allows	us	to	expose	a
service	through	the	host	or	minion	on	a	specific	port.	In	this	way,	we	can	use	the	IP
address	of	any	node	(minion)	and	access	our	service	on	the	assigned	node	port.
Kubernetes	will	assign	a	node	port	by	default	in	the	range	of	3000–32767,	but	you	can
also	specify	your	own	custom	port.	In	the	example	in	Listing	3-2:	nodejs-service-
nodeport.yaml,	we	choose	port	30001	as	follows:

apiVersion:	v1

kind:	Service

metadata:

		name:	node-js-nodeport

		labels:

				name:	node-js-nodeport

spec:

		ports:

		-	port:	80

				nodeport:	30001

		selector:

				name:	node-js

		type:	NodePort

Listing	3-2:	nodejs-service-nodeport.yaml

Once	again,	create	this	YAML	definition	file	and	create	your	service	as	follows:

$	kubectl	create	-f	nodejs-service-nodeport.yaml

The	output	should	have	a	message	like	this:

Figure	3.4.	New	GCP	firewall	rule

You’ll	note	a	message	about	opening	firewall	ports.	Similar	to	the	external	load	balancer
type,	NodePort	is	exposing	your	service	externally	using	ports	on	the	nodes.	This	could	be
useful	if,	for	example,	you	want	to	use	your	own	load	balancer	in	front	of	the	nodes.	Let’s
make	sure	that	we	open	those	ports	on	GCP	before	we	test	our	new	service.

From	the	GCE	VM	instance	console,	click	on	the	network	for	any	of	your	nodes
(minions).	In	my	case,	it	was	default.	Under	firewall	rules,	we	can	add	a	rule	by	clicking
Add	firewall	rule.	Create	a	rule	like	the	one	shown	in	Figure	3.5:

Figure	3.5.	New	GCP	firewall	rule

We	can	now	test	our	new	service	out,	by	opening	a	browser	and	using	an	IP	address	of	any
node	(minion)	in	your	cluster.	The	format	to	test	the	new	service	is:
http://<Minoion	IP	Address>:<NodePort>/

Cross-node	proxy
Remember	that	kube-proxy	is	running	on	all	the	nodes,	so	even	if	the	pod	is	not	running
there,	traffic	will	be	given	a	proxy	to	the	appropriate	host.	Refer	to	Figure	3.6	for	a	visual
on	how	the	traffic	flows.	A	user	makes	a	request	to	an	external	IP	or	URL.	The	request	is
serviced	by	Node	1	in	this	case.	However,	the	pod	does	not	happen	to	run	on	this	node.
This	is	not	a	problem	because	the	pod	IP	addresses	are	routable.	So,	Kube-proxy	simply
passes	traffic	on	to	the	pod	IP	for	this	service.	The	network	routing	then	completes	on
Node	2,	where	the	requested	application	lives.

Figure	3.6.	Cross-node	traffic

Custom	ports
Services	also	allow	you	to	map	your	traffic	to	different	ports,	then	the	containers	and	pods
themselves	expose.	We	will	create	a	service	that	exposes	port	90	and	forwards	traffic	to
port	80	on	the	pods.	We	will	call	the	node-js-90	pod	to	reflect	the	custom	port	number.
Create	the	following	two	definition	files:

apiVersion:	v1

kind:	ReplicationController

metadata:

		name:	node-js-90

		labels:

				name:	node-js-90

spec:

		replicas:	3

		selector:

				name:	node-js-90

		template:

				metadata:

						labels:

								name:	node-js-90

				spec:

						containers:

						-	name:	node-js-90

								image:	jonbaier/node-express-info:latest

								ports:

								-	containerPort:	80

Listing	3-3:	nodejs-customPort-controller.yaml

apiVersion:	v1

kind:	Service

metadata:

		name:	node-js-90

		labels:

				name:	node-js-90

spec:

		type:	LoadBalancer

		ports:

		-	port:	90

				targetPort:	80

		selector:

				name:	node-js-90

Listing	3-4:	nodejs-customPort-service.yaml

You’ll	note	that	in	the	service	definition,	we	have	a	targetPort	element.	This	element
tells	the	service	the	port	to	use	for	pods/containers	in	the	pool.	As	we	saw	in	previous
examples,	if	you	do	not	specify	targetPort,	it	assumes	that	it’s	the	same	port	as	the
service.	Port	is	still	used	as	the	service	port,	but	in	this	case,	we	are	going	to	expose	the
service	on	port	90	while	the	containers	serve	content	on	port	80.

Create	this	RC	and	service	and	open	the	appropriate	firewall	rules,	as	we	did	in	the	last
example.	It	may	take	a	moment	for	the	external	load	balancer	IP	to	propagate	to	the	get

service	command.	Once	it	does,	you	should	be	able	to	open	and	see	our	familiar	web
application	in	a	browser	using	the	following	format:
http://<external	service	IP>:90/

Multiple	ports
Another	custom	port	use	case	is	that	of	multiple	ports.	Many	applications	expose	multiple
ports,	such	as	HTTP	on	port	80	and	port	8888	for	web	servers.	The	following	example
shows	our	app	responding	on	both	ports.	Once	again,	we’ll	also	need	to	add	a	firewall	rule
for	this	port,	as	we	did	for	Listing	3-2:	nodejs-service-nodeport.yaml	previously:

apiVersion:	v1

kind:	ReplicationController

metadata:

		name:	node-js-multi

		labels:

				name:	node-js-multi

spec:

		replicas:	3

		selector:

				name:	node-js-multi

		template:

				metadata:

						labels:

								name:	node-js-multi

				spec:

						containers:

						-	name:	node-js-multi

								image:	jonbaier/node-express-multi:latest

								ports:

								-	containerPort:	80

								-	containerPort:	8888

Listing	3-5:	nodejs-multicontroller.yaml

apiVersion:	v1

kind:	Service

metadata:

		name:	node-js-multi

		labels:

				name:	node-js-multi

spec:

		type:	LoadBalancer

		ports:

		-	name:	http

				protocol:	TCP

				port:	80

		-	name:	fake-admin-http

				protocol:	TCP

				port:	8888

		selector:

				name:	node-js-multi

Listing	3-6:	nodejs-multiservice.yaml

Note
Note	that	the	application	and	container	itself	must	be	listening	on	both	ports	for	this	to
work.	In	this	example,	port	8888	is	used	to	represent	a	fake	admin	interface.

If,	for	example,	you	want	to	listen	on	port	443,	you	would	need	a	proper	SSL	socket
listening	on	the	server.

Migrations,	multicluster,	and	more
As	you’ve	seen	so	far,	Kubernetes	offers	a	high	level	of	flexibility	and	customization	to
create	a	service	abstraction	around	your	containers	running	in	the	cluster.	However,	there
may	be	times	where	you	want	to	point	to	something	outside	your	cluster.

An	example	of	this	would	be	working	with	legacy	systems,	or	even	applications	running
on	another	cluster.	In	the	case	of	the	former,	this	is	a	perfectly	good	strategy	in	order	to
migrate	to	Kubernetes	and	containers	in	general.	We	can	begin	to	manage	the	service
endpoints	in	Kubernetes	while	stitching	the	stack	together	using	the	K8s	orchestration
concepts.	Additionally,	we	can	even	start	bringing	over	pieces	of	the	stack,	as	the
frontend,	one	at	a	time	as	the	organization	refactors	applications	for	microservices	and/or
containerization.

To	allow	access	to	non-pod–based	applications,	the	services	construct	allows	you	to	use
endpoints	that	are	outside	the	cluster.	Kubernetes	is	actually	creating	an	endpoint	resource
every	time	you	create	a	service	that	uses	selectors.	The	endpoints	object	keeps	track	of
the	pod	IPs	in	the	load	balancing	pool.	You	can	see	this	by	running	a	get	endpoints
command	as	follows:

$	kubectl	get	endpoints

You	should	see	something	similar	to	this:

NAME															ENDPOINTS

http-pd												10.244.2.29:80,10.244.2.30:80,10.244.3.16:80

kubernetes									10.240.0.2:443

node-js												10.244.0.12:80,10.244.2.24:80,10.244.3.13:80

You’ll	note	an	entry	for	all	the	services	we	currently	have	running	on	our	cluster.	For
most,	the	endpoints	are	just	the	IP	of	each	pod	running	in	a	RC.	As	I	mentioned,
Kubernetes	does	this	automatically	based	on	the	selector.	As	we	scale	the	replicas	in	a
controller	with	matching	labels,	Kubernetes	will	update	the	endpoints	automatically.

If	we	want	to	create	a	service	for	something	that	is	not	a	pod	and	therefore	has	no	labels	to
select,	we	can	easily	do	this	with	both	a	service	and	endpoint	definition	as	follows:

apiVersion:	v1

kind:	Service

metadata:

		name:	custom-service

spec:

		type:	LoadBalancer

		ports:

		-	name:	http

				protocol:	TCP

				port:	80

Listing	3-7:	nodejs-custom-service.yaml

apiVersion:	v1

kind:	Endpoints

metadata:

		name:	custom-service

subsets:

-	addresses:

		-	IP:	<X.X.X.X>

		ports:

				-	name:	http

						port:	80

						protocol:	TCP

Listing	3-8:	nodejs-custom-endpoint.yaml

In	the	preceding	example,	you’ll	need	to	replace	the	<X.X.X.X>	with	a	real	IP	address
where	the	new	service	can	point.	In	my	case,	I	used	the	public	load	balancer	IP	from
node-js-multiservice	we	created	earlier.	Go	ahead	and	create	these	resources	now.

If	we	now	run	a	get	endpoints	command,	we	will	see	this	IP	address	at	port	80
associated	with	the	custom-service	endpoint.	Further,	if	we	look	at	the	service	details,	we
will	see	the	IP	listed	in	the	Endpoints	section.

$	kubectl	describe	service/custom-service

We	can	test	out	this	new	service	by	opening	the	custom-service	external	IP	from	a
browser.

Custom	addressing
Another	option	to	customize	services	is	with	the	clusterIP	element.	In	our	examples	this
far,	we’ve	not	specified	an	IP	address,	which	means	that	it	chooses	the	internal	address	of
the	service	for	us.	However,	we	can	add	this	element	and	choose	the	IP	address	in	advance
with	something	like	clusterip:	10.0.125.105.

There	may	be	times	when	you	don’t	want	to	load	balance	and	would	rather	have	DNS	with
A	records	for	each	pod.	For	example,	software	that	needs	to	replicate	data	evenly	to	all
nodes	may	rely	on	A	records	to	distribute	data.	In	this	case,	we	can	use	an	example	like	the
following	one	and	set	clusterip	to	None.	Kubernetes	will	not	assign	an	IP	address	and
instead	only	assign	A	records	in	DNS	for	each	of	the	pods.	If	you	are	using	DNS,	the
service	should	be	available	at	node-js-none	or	node-js-none.default.cluster.local
from	within	the	cluster.	We	have	the	following	code:

apiVersion:	v1

kind:	Service

metadata:

		name:	node-js-none

		labels:

				name:	node-js-none

spec:

		clusterip:	None

		ports:

		-	port:	80

		selector:

				name:	node-js

Listing	3-9:	nodejs-headless-service.yaml

Test	it	out	after	you	create	this	service	with	the	trusty	exec	command:

$	kubectl	exec	node-js-pod—curl	node-js-none

Service	discovery
As	we	discussed	earlier,	the	Kubernetes	master	keeps	track	of	all	service	definitions	and
updates.	Discovery	can	occur	in	one	of	three	ways.	The	first	two	methods	use	Linux
environment	variables.	There	is	support	for	the	Docker	link	style	of	environment
variables,	but	Kubernetes	also	has	its	own	naming	convention.	Here	is	an	example	of	what
our	node-js	service	example	might	look	like	using	K8s	environment	variables	(note	IPs
will	vary):

NODE_JS_PORT_80_TCP=tcp://10.0.103.215:80

NODE_JS_PORT=tcp://10.0.103.215:80

NODE_JS_PORT_80_TCP_PROTO=tcp

NODE_JS_PORT_80_TCP_PORT=80

NODE_JS_SERVICE_HOST=10.0.103.215

NODE_JS_PORT_80_TCP_ADDR=10.0.103.215

NODE_JS_SERVICE_PORT=80

Listing	3-10:	Service	environment	variables

Another	option	for	discovery	is	through	DNS.	While	environment	variables	can	be	useful
when	DNS	is	not	available,	it	has	drawbacks.	The	system	only	creates	variables	at	creation
time,	so	services	that	come	online	later	will	not	be	discovered	or	would	require	some
additional	tooling	to	update	all	the	system	environments.

DNS
DNS	solves	the	issues	seen	with	environment	variables	by	allowing	us	to	reference	the
services	by	their	name.	As	services	restart,	scale	out,	or	appear	anew,	the	DNS	entries	will
be	updating	and	ensuring	that	the	service	name	always	points	to	the	latest	infrastructure.
DNS	is	set	up	by	default	in	most	of	the	supported	providers.

Tip
If	DNS	is	supported	by	your	provider,	but	not	setup,	you	can	configure	the	following
variables	in	your	default	provider	config	when	you	create	your	Kubernetes	cluster:

ENABLE_CLUSTER_DNS="${KUBE_ENABLE_CLUSTER_DNS:-true}"

DNS_SERVER_IP="10.0.0.10"

DNS_DOMAIN="cluster.local"

DNS_REPLICAS=1

With	DNS	active,	services	can	be	accessed	in	one	of	two	forms—either	the	service	name
itself,	<service-name>,	or	a	fully	qualified	name	that	includes	the	namespace,	<service-
name>.<namespace-name>.cluster.local.	In	our	examples,	it	would	look	similar	to
node-js-90	or	node-js-90.default.cluster.local.

Persistent	storage
Let’s	switch	gears	for	a	moment	and	talk	about	another	core	concept:	persistent	storage.
When	you	start	moving	from	development	to	production,	one	of	the	most	obvious
challenges	you	face	is	the	transient	nature	of	containers	themselves.	If	you	recall	our
discussion	of	layered	file	systems	in	Chapter	1,	Kubernetes	and	Container	Operations,	the
top	layer	is	writable.	(It’s	also	frosting,	which	is	delicious.)	However,	when	the	container
dies,	the	data	goes	with	it.	The	same	is	true	for	crashed	containers	that	Kubernetes	restarts.

This	is	where	persistent	disks	(PDs),	or	volumes,	come	into	play.	A	persistent	volume
that	exists	outside	the	container	allows	us	to	save	our	important	data	across	containers
outages.	Further,	if	we	have	a	volume	at	the	pod	level,	data	can	be	shared	between
containers	in	the	same	application	stack	and	within	the	same	pod.

Docker	itself	has	some	support	for	volumes,	but	Kubernetes	gives	us	persistent	storage
that	lasts	beyond	the	lifetime	of	a	single	container.	The	volumes	are	tied	to	pods	and	live
and	die	with	those	pods.	Additionally,	a	pod	can	have	multiple	volumes	from	a	variety	of
sources.	Let’s	take	a	look	at	some	of	these	sources.

Temporary	disks
One	of	the	easiest	ways	to	achieve	improved	persistence	amid	container	crashes	and	data
sharing	within	a	pod	is	to	use	the	emptydir	volume.	This	volume	type	can	be	used	with
either	the	storage	volumes	of	the	node	machine	itself	or	an	optional	RAM	disk	for	higher
performance.

Again,	we	improve	our	persistence	beyond	a	single	container,	but	when	a	pod	is	removed,
the	data	will	be	lost.	Machine	reboot	will	also	clear	any	data	from	RAM-type	disks.	There
may	be	times	when	we	just	need	some	shared	temporary	space	or	have	containers	that
process	data	and	hand	it	off	to	another	container	before	they	die.	Whatever	the	case,	here
is	a	quick	example	of	using	this	temporary	disk	with	the	RAM-backed	option.

Open	your	favorite	editor	and	create	a	file	like	the	one	in	Listing	3-11:	storage-
memory.yaml	here:

apiVersion:	v1

kind:	Pod

metadata:

		name:	memory-pd

spec:

		containers:

		-	image:	nginx:latest

				ports:

				-	containerPort:	80

				name:	memory-pd

				volumeMounts:

				-	mountPath:	/memory-pd

						name:	memory-volume

		volumes:

		-	name:	memory-volume

				emptydir:

						medium:	Memory

Listing	3-11:	storage-memory.yaml

It’s	probably	second	nature	by	now,	but	we	will	once	again	issue	a	create	command
followed	by	an	exec	command	to	see	the	folders	in	the	container:

$	kubectl	create	-f	storage-memory.yaml

$	kubectl	exec	memory-pd—ls	-lh	|	grep	memory-pd

This	will	give	us	a	bash	shell	in	the	container	itself.	The	ls	command	shows	us	a	memory-
pd	folder	at	the	top	level.	We	use	grep	to	filter	the	output,	but	you	can	run	the	command
without	|	grep	memory-pd	to	see	all	folders.

Figure	3.7.	Temporary	storage	inside	a	container

Again,	this	folder	is	quite	temporary	as	everything	is	stored	in	the	minion’s	RAM.	When

the	node	gets	restarted,	all	the	files	will	be	erased.	We	will	look	at	a	more	permanent
example	next.

Cloud	volumes
Many	companies	will	already	have	significant	infrastructure	running	in	the	public	cloud.
Luckily,	Kubernetes	has	native	support	for	the	persistent	volume	types	provided	by	two	of
the	most	popular	providers.

GCE	persistent	disks
Let’s	create	a	new	GCE	persistent	volume.	From	the	console,	under	Compute,	go	to
Disks.	On	this	new	screen,	click	on	the	New	disk	button.

We’ll	be	presented	with	a	screen	similar	to	Figure	3.8.	Choose	a	name	for	this	volume	and
give	it	a	brief	description.	Make	sure	that	the	zone	is	the	same	as	the	nodes	in	your	cluster.
GCE	PDs	can	only	be	attached	to	machines	in	the	same	zone.

Enter	mysite-volume-1	for	the	Name.	Choose	a	Source	type	of	None	(blank	disk)	and
give	10	(10	GB)	as	value	in	Size	(GB).	Finally,	click	on	Create.

Figure	3.8.	GCE	new	persistent	disk

The	nice	thing	about	PDs	on	GCE	is	that	they	allow	for	mounting	to	multiple	machines
(nodes	in	our	case).	However,	when	mounting	to	multiple	machines,	the	volume	must	be
in	read-only	mode.	So,	let’s	first	mount	this	to	a	single	pod,	so	we	can	create	some	files.
Use	Listing	3-12:	storage-gce.yaml	as	follows	to	create	a	pod	that	will	mount	the	disk	in
read/write	mode:

apiVersion:	v1

kind:	Pod

metadata:

		name:	test-gce

spec:

		containers:

		-	image:	nginx:latest

				ports:

				-	containerPort:	80

				name:	test-gce

				volumeMounts:

				-	mountPath:	/usr/share/nginx/html

						name:	gce-pd

		volumes:

		-	name:	gce-pd

				gcePersistentDisk:

						pdName:	mysite-volume-1

						fsType:	ext4

Listing	3-12:	storage-gce.yaml

First,	let’s	issue	a	create	command	followed	by	a	describe	to	find	out	which	node	it	is
running	on.	Note	the	node	and	save	the	pod	IP	address	for	later.	Then,	open	an	SSH
session	into	the	node.

$	kubectl	create	-f	storage-gce.yaml

$	kubectl	describe	pod/test-gce

$	gcloud	compute	--project	"<Your	project	ID>"	ssh	--zone	"<your	gce	zone>"	

"<Node	running	test-gce	pod>"

Since	we’ve	already	looked	at	the	volume	from	inside	the	running	container,	let’s	access	it
directly	from	the	minion	node	itself	this	time.	We	will	run	a	df	command	to	see	where	it	is
mounted:

$	df	-h	|	grep	mysite-volume-1

As	you	can	see,	the	GCE	volume	is	mounted	directly	to	the	node	itself.	We	can	use	the
mount	path	listed	in	the	output	of	the	earlier	df	command.	Use	cd	to	change	to	the	folder
now.	Then,	create	a	new	file	named	index.html	with	your	favorite	editor:

$	cd	/var/lib/kubelet/plugins/kubernetes.io/gce-pd/mounts/mysite-volume-1

$	vi	index.html

Enter	a	quaint	message	such	as	Hello	from	my	GCE	PD!.	Now	save	the	file	and	exit	the
editor.	If	you	recall	from	Listing	3-12:	storage-gce.yaml,	the	PD	is	mounted	directly	to
the	NGINX	html	directory.	So,	let’s	test	this	out	while	we	still	have	the	SSH	session	open
on	the	node.	Do	a	simple	curl	command	to	the	pod	IP	we	wrote	down	earlier.

$	curl	<Pod	IP	from	Describe>

You	should	see	Hello	from	my	GCE	PD!	or	whatever	message	you	saved	in	the
index.html	file.	In	a	real-world	scenario,	we	could	use	the	volume	for	an	entire	website
or	any	other	central	storage.	Let’s	take	a	look	at	running	a	set	of	load	balanced	web	servers
all	pointing	to	the	same	volume.

First,	leave	the	SSH	session	with	exit.	Before	we	proceed,	we	will	need	to	remove	our
test-gce	pod	so	that	the	volume	can	be	mounted	read-only	across	a	number	of	nodes.

$	kubectl	delete	pod/test-gce

Now	we	can	create	a	RC	that	will	run	three	web	servers	all	mounting	the	same	persistent
volume	as	follows:

apiVersion:	v1

kind:	ReplicationController

metadata:

		name:	http-pd

		labels:

				name:	http-pd

spec:

		replicas:	3

		selector:

				name:	http-pd

		template:

				metadata:

						name:	http-pd

				spec:

						containers:

						-	image:	nginx:latest

								ports:

								-	containerPort:	80

								name:	http-pd

								volumeMounts:

								-	mountPath:	/usr/share/nginx/html

										name:	gce-pd

						volumes:

						-	name:	gce-pd

								gcePersistentDisk:

										pdName:	mysite-volume-1

										fsType:	ext4

										readOnly:	true

Listing	3-13:	http-pd-controller.yaml

Let’s	also	create	an	external	service,	so	we	can	see	it	from	outside	the	cluster:

apiVersion:	v1

kind:	Service

metadata:

		name:	http-pd

		labels:

				name:	http-pd

spec:

		type:	LoadBalancer

		ports:

		-	name:	http

				protocol:	TCP

				port:	80

		selector:

				name:	http-pd

Listing	3-14:	http-pd-service.yaml

Go	ahead	and	create	these	two	resources	now.	Wait	a	few	moments	for	the	external	IP	to
get	assigned.	After	this,	a	describe	command	will	give	us	the	IP	we	can	use	in	a	browser:

$	kubectl	describe	service/http-pd

The	following	screenshot	is	the	result	of	the	preceding	command:

Figure	3.9.	K8s	service	with	GCE	PD	shared	across	three	pods

Type	the	IP	address	into	a	browser,	and	you	should	see	your	familiar	index.html	file
show	up	with	the	text	we	entered	previously!

AWS	Elastic	Block	Store
K8s	also	supports	AWS	Elastic	Block	Store	(EBS)	volumes.	Like	the	GCE	PDs,	EBS
volumes	are	required	to	be	attached	to	an	instance	running	in	the	same	availability	zone.	A
further	limitation	is	that	EBS	can	only	be	mounted	to	a	single	instance	at	one	time.

For	brevity,	we	will	not	walk	through	an	AWS	example,	but	a	sample	YAML	file	is
included	to	get	you	started.	Again,	remember	to	create	the	EBS	volume	before	your	pod.

apiVersion:	v1

kind:	Pod

metadata:

		name:	test-aws

spec:

		containers:

		-	image:	nginx:latest

				ports:

				-	containerPort:	80

				name:	test-aws

				volumeMounts:

				-	mountPath:	/usr/share/nginx/html

						name:	aws-pd

		volumes:

		-	name:	aws-pd

				awsElasticBlockStore:

						volumeID:	aws://<availability-zone>/<volume-id>

						fsType:	ext4

Listing	3-15:	storage-aws.yaml

Other	PD	options
Kubernetes	supports	a	variety	of	other	types	of	persistent	storage.	A	full	list	can	be	found
here:

http://kubernetes.io/v1.0/docs/user-guide/volumes.html#types-of-volumes

Here	are	a	few	that	may	be	of	particular	interest:

nfs:	This	type	allows	us	to	mount	a	Network	File	Share	(NFS),	which	can	be	very
useful	for	both	persisting	the	data	and	sharing	it	across	the	infrastructure
gitrepo:	As	you	might	have	guessed,	this	option	clones	a	Git	repo	into	an	a	new	and
empty	folder

http://kubernetes.io/v1.0/docs/user-guide/volumes.html#types-of-volumes

Multitenancy
Kubernetes	also	has	an	additional	construct	for	isolation	at	the	cluster	level.	In	most	cases,
you	can	run	Kubernetes	and	never	worry	about	namespaces;	everything	will	run	in	the
default	namespace	if	not	specified.	However,	in	cases	where	you	run	multitenancy
communities	or	want	broad-scale	segregation	and	isolation	of	the	cluster	resources,
namespaces	can	be	used	to	this	end.

To	start,	Kubernetes	has	two	namespaces:	default	and	kube-system.	kube-system	is	used
for	all	the	system-level	containers	we	saw	in	Chapter	1,	Kubernetes	and	Container
Operations,	under	the	Services	running	on	the	minions	section.	The	UI,	logging,	DNS,	and
so	on	are	all	run	under	kube-system.	Everything	else	the	user	creates	runs	in	the	default
namespace.	However,	our	resource	definition	files	can	optionally	specify	a	custom
namespace.	For	the	sake	of	experimenting,	let’s	take	a	look	at	how	to	build	a	new
namespace.

First,	we’ll	need	to	create	a	namespace	definition	file	like	the	one	in	this	listing:

apiVersion:	v1

kind:	Namespace

metadata:

		name:	test

Listing	3-16:	test-ns.yaml

We	can	go	ahead	and	create	this	file	with	our	handy	create	command:

$	kubectl	create	-f	test-ns.yaml

Now	we	can	create	resources	that	use	the	test	namespace.	The	following	is	an	example	of
a	pod	using	this	new	namespace.	We	have	the	following:

apiVersion:	v1

kind:	Pod

metadata:

		name:	utility

		namespace:	test

spec:

		containers:

		-	image:	debian:latest

				command:

						-	sleep

						-	"3600"

				name:	utility

Listing	3-17:	ns-pod.yaml

While	the	pod	can	still	access	services	in	other	namespaces,	it	will	need	to	use	the	long
DNS	form	of	<service-name>.<namespace-name>.cluster.local.	For	example,	if	you
were	to	run	command	from	inside	the	container	in	Listing	3-17:	ns-pod.yaml,	you	could
use	http-pd.default.cluster.local	to	access	the	PD	example	from	Listing	3-14:	http-
pd-service.yaml.

Limits
Let’s	inspect	our	new	namespace	a	bit	more.	Run	the	describe	command	as	follows:

$	kubectl	describe	namespace/test

The	following	screenshot	is	the	result	of	the	preceding	command:

Figure	3.10.	Namespace	describe

Kubernetes	allows	you	to	both	limit	the	resources	used	by	individual	pods	or	containers
and	the	resources	used	by	the	overall	namespace	using	quotas.	You’ll	note	that	there	are
no	resource	limits	or	quotas	currently	set	on	the	test	namespace.

Suppose	we	want	to	limit	the	footprint	of	this	new	namespace;	we	can	set	quotas	such	as
the	following:

apiVersion:	v1

kind:	ResourceQuota

metadata:

		name:	test-quotas

		namespace:	test

spec:

		hard:	

				pods:	3

				services:	1

				replicationcontrollers:	1

Listing	3-18:	quota.yaml

Note
Note	that	in	reality,	namespaces	would	be	for	larger	application	communities	and	would
probably	never	have	quotas	this	low.	I	am	using	this	in	order	to	ease	illustration	of	the
capability	in	the	example.

Here,	we	will	create	a	quota	of	3	pods,	1	RC,	and	1	service	for	the	test	namespace.	As	you
probably	guessed,	this	is	executed	once	again	by	our	trusty	create	command:

$	kubectl	create	-f	quota.yaml

Now	that	we	have	that	in	place,	let’s	use	describe	on	the	namespace	as	follows:

$	kubectl	describe	namespace/test

The	following	screenshot	is	the	result	of	the	preceding	command:

Figure	3.11.	Namespace	describe	after	quota	is	set

You’ll	note	that	we	now	have	some	values	listed	in	the	quota	section	and	the	limits	section
is	still	blank.	We	also	have	a	Used	column,	which	lets	us	know	how	close	to	the	limits	we
are	at	the	moment.	Let’s	try	to	spin	up	a	few	pods	using	the	following	definition:

apiVersion:	v1

kind:	ReplicationController

metadata:

		name:	busybox-ns

		namespace:	test

		labels:

				name:	busybox-ns

spec:

		replicas:	4

		selector:

				name:	busybox-ns

		template:

				metadata:

						labels:

								name:	busybox-ns

				spec:

						containers:

						-	name:	busybox-ns

								image:	busybox

								command:

										-	sleep

										-	"3600"

Listing	3-19:	busybox-ns.yaml

You’ll	note	that	we	are	creating	four	replicas	of	this	basic	pod.	After	using	create	to	build
this	RC,	run	the	describe	command	on	the	test	namespace	once	more.	You’ll	note	that
the	used	values	for	pods	and	RCs	are	at	their	max.	However,	we	asked	for	four	replicas
and	only	see	three	pods	in	use.

Let’s	see	what’s	happening	with	our	RC.	You	might	tempt	to	do	that	with	the	command
here:

kubectl	describe	rc/busybox-ns

However,	if	you	try,	you’ll	be	disparaged	to	see	a	not	found	message	from	the	server.	This
is	because	we	created	this	RC	in	a	new	namespace	and	kubectl	assumes	the	default
namespace	if	not	specified.	This	means	that	we	need	to	specify	--namepsace=test	with
every	command	when	we	wish	to	access	resources	in	the	test	namespace.

Tip
We	can	also	set	the	current	namespace	by	working	with	the	context	settings.	First,	we	need
to	find	our	current	context,	which	is	found	with	the	following	command:

$	kubectl	config	view	|	grep	current-context

Next,	we	can	take	that	context	and	set	the	namespace	variable	like	the	following:

$	kubectl	config	set-context	<Current	Context>		--namespace=test

Now	you	can	run	the	kubectl	command	without	the	need	to	specify	the	namespace.	Just
remember	to	switch	back	when	you	want	to	look	at	the	resources	running	in	your	default
namespace.

Run	the	command	with	the	namespace	specified	like	so.	If	you’ve	set	your	current
namespace	as	demonstrated	in	the	tip	box,	you	can	leave	off	the	--namespace	argument:

$	kubectl	describe	rc/busybox-ns	--namespace=test

The	following	screenshot	is	the	result	of	the	preceding	command:

Figure	3.12.	Namespace	quotas

As	you	can	see	in	the	preceding	image,	the	first	three	pods	were	successfully	created,	but
our	final	one	fails	with	the	error	Limited	to	3	pods.

This	is	an	easy	way	to	set	limits	for	resources	partitioned	out	at	a	community	scale.	It’s
worth	noting	that	you	can	also	set	quotas	for	CPU,	memory,	persistent	volumes,	and

secrets.	Additionally,	limits	work	similar	to	quota,	but	they	set	the	limit	for	each	pod	or
container	within	the	namespace.

Summary
We	took	a	deeper	look	into	networking	and	services	in	Kubernetes.	You	should	now
understand	how	networking	communications	are	designed	in	K8s	and	feel	comfortable
accessing	your	services	internally	and	externally.	We	saw	how	kube-proxy	balances	traffic
both	locally	and	across	the	cluster.	We	also	looked	briefly	at	how	DNS	and	service
discovery	is	achieved	in	Kubernetes.	In	the	later	portion	of	the	chapter,	we	explored	a
variety	of	persistent	storage	options.	We	finished	off	with	quick	look	at	namespace	and
isolation	for	multitenancy.

Footnotes
1http://www.wired.com/2015/06/google-reveals-secret-gear-connects-online-empire/

http://www.wired.com/2015/06/google-reveals-secret-gear-connects-online-empire/

Chapter	4.	Updates	and	Gradual	Rollouts
This	chapter	will	expand	upon	the	core	concepts,	which	show	the	reader	how	to	roll	out
updates	and	test	new	features	of	their	application	with	minimal	disruption	to	uptime.	It
will	cover	the	basics	of	doing	application	updates,	gradual	rollouts,	and	A/B	testing.	In
addition,	we	will	look	at	scaling	the	Kubernetes	cluster	itself.

This	chapter	will	discuss	the	following	topics:

Application	scaling
Rolling	updates
A/B	testing
Scaling	up	your	cluster

Example	set	up
Before	we	start	exploring	the	various	capabilities	built	into	Kubernetes	for	scaling	and
updates,	we	will	need	a	new	example	environment.	We	are	going	to	use	a	variation	of	our
previous	container	image	with	a	blue	background	(refer	to	Figure	4.2	for	a	comparison).
We	have	the	following	code:

apiVersion:	v1

kind:	ReplicationController

metadata:

		name:	node-js-scale

		labels:

				name:	node-js-scale

spec:

		replicas:	1

		selector:

				name:	node-js-scale

		template:

				metadata:

						labels:

								name:	node-js-scale

				spec:

						containers:

						-	name:	node-js-scale

								image:	jonbaier/pod-scaling:0.1

								ports:

								-	containerPort:	80

Listing	4-1:	pod-scaling-controller.yaml

apiVersion:	v1

kind:	Service

metadata:

		name:	node-js-scale

		labels:

				name:	node-js-scale

spec:

		type:	LoadBalancer

		sessionAffinity:	ClientIP

		ports:

		-	port:	80

		selector:

				name:	node-js-scale

Listing	4-2:	pod-scaling-service.yaml

Create	these	services	with	the	following	commands:

$	kubectl	create	–f	pod-scaling-controller.yaml

$	kubectl	create	–f	pod-scaling-service.yaml

Scaling	up
Over	time,	as	you	run	your	applications	in	the	Kubernetes	cluster,	you	will	find	that	some
applications	need	more	resources,	whereas	others	can	manage	with	fewer	resources.
Instead	of	removing	the	entire	RC	(and	associated	pods),	we	want	a	more	seamless	way	to
scale	our	application	up	and	down.

Thankfully,	Kubernetes	includes	a	scale	command,	which	is	suited	specifically	to	this
purpose.	In	our	new	example,	we	have	only	one	replica	running.	You	can	check	this	with	a
get	pods	command.

$	kubectl	get	pods	-l	name=node-js-scale

Let’s	try	scaling	that	up	to	three	with	the	following	command:

$	kubectl	scale	--replicas=3	rc/node-js-scale

If	all	goes	well,	you’ll	simply	see	the	word	scaled	on	the	output	of	your	terminal	window.

Tip
Optionally,	you	can	specify	the	--current-replicas	flag	as	a	verification	step.	The
scaling	will	only	occur	if	the	actual	number	of	replicas	currently	running	matches	this
count.

After	listing	our	pods	once	again,	we	should	now	see	three	pods	running	with	a	name
similar	to	node-js-scale-XXXXX,	where	the	Xs	are	a	random	string.

You	can	also	use	the	scale	command	to	reduce	the	number	of	replicas.	In	either	case,	the
scale	command	adds	or	removes	the	necessary	pod	replicas,	and	the	service	automatically
updates	and	balances	across	new	or	remaining	replicas.

Smooth	updates
The	scaling	of	our	application	up	and	down	as	our	resource	demands	change	is	useful	for
many	production	scenarios,	but	what	about	simple	application	updates?	Any	production
system	will	have	code	updates,	patches,	and	feature	additions.	These	could	be	occurring
monthly,	weekly,	or	even	daily.	Making	sure	that	we	have	a	reliable	way	to	push	out	these
changes	without	interruption	to	our	users	is	a	paramount	consideration.

Once	again,	we	benefit	from	the	years	of	experience	the	Kubernetes	system	is	built	on.
There	is	a	built-in	support	for	rolling	updates	with	the	1.0	version.	The	rolling-update
command	allows	us	to	update	entire	RCs	or	just	the	underlying	Docker	image	used	by
each	replica.	We	can	also	specify	an	update	interval,	which	will	allow	us	to	update	one
pod	at	a	time	and	wait	until	proceeding	to	the	next.

Let’s	take	our	scaling	example	and	perform	a	rolling	update	to	the	0.2	version	of	our
container	image.	We	will	use	an	update	interval	of	2	minutes,	so	we	can	watch	the	process
as	it	happens	in	the	following	way:

$	kubectl	rolling-update	node-js-scale	--image=jonbaier/pod-scaling:0.2	--

update-period="2m"

You	should	see	some	text	about	creating	a	new	RC	named	node-js-scale-XXXXX,	where
the	Xs	will	be	a	random	string	of	numbers	and	letters.	In	addition,	you	will	see	the
beginning	of	a	loop	that	is	starting	one	replica	of	the	new	version	and	removing	one	from
the	existing	RC.	This	process	will	continue	until	the	new	RC	has	the	full	count	of	replicas
running.

If	we	want	to	follow	along	in	real	time,	we	can	open	another	terminal	window	and	use	the
get	pods	command,	along	with	a	label	filter,	to	see	what’s	happening.

$	kubectl	get	pods	-l	name=node-js-scale

This	command	will	filter	for	pods	with	node-js-scale	in	the	name.	If	you	run	this	after
issuing	the	rolling-update	command,	you	should	see	several	pods	running	as	it	creates
new	versions	and	removes	the	old	ones	one	by	one.

The	full	output	of	the	previous	rolling-update	command	should	look	something	like
Figure	4.1,	as	follows:

Figure	4.1.	The	scaling	output

As	we	can	see	here,	Kubernetes	is	first	creating	a	new	RC	named	node-js-scale-
10ea08ff9a118ac6a93f85547ed28f6.	K8s	then	loops	through	one	by	one.	Creating	a	new
pod	in	the	new	controller	and	removing	one	from	the	old.	This	continues	until	the	new
controller	has	the	full	replica	count	and	the	old	one	is	at	zero.	After	this,	the	old	controller
is	deleted	and	the	new	one	is	renamed	to	the	original	controller	name.

If	you	run	a	get	pods	command	now,	you’ll	note	that	the	pods	still	all	have	a	longer
name.	Alternatively,	we	could	have	specified	the	name	of	a	new	controller	in	the
command,	and	Kubernetes	will	create	a	new	RC	and	pods	using	that	name.	Once	again,
the	controller	of	the	old	name	simply	disappears	after	updating	is	complete.	I	recommend
specifying	a	new	name	for	the	updated	controller	to	avoid	confusion	in	your	pod	naming
down	the	line.	The	same	update	command	with	this	method	would	look	like	this:

$	kubectl	rolling-update	node-js-scale	node-js-scale-v2.0	--

image=jonbaier/pod-scaling:0.2	--update-period="2m"

Using	the	static	external	IP	address	from	the	service	we	created	in	the	first	section,	we	can
open	the	service	in	a	browser.	We	should	see	our	standard	container	information	page.
However,	you’ll	note	that	the	title	now	says	Pod	Scaling	v0.2	and	the	background	is	light
yellow.

Figure	4.2.	v0.1	and	v0.2	(side	by	side)

It’s	worth	noting	that	during	the	entire	update	process,	we’ve	only	been	looking	at	pods
and	RCs.	We	didn’t	do	anything	with	our	service,	but	the	service	is	still	running	fine	and
now	directing	to	the	new	version	of	our	pods.	This	is	because	our	service	is	using	label
selectors	for	membership.	Because	both	our	old	and	new	replicas	use	the	same	labels,	the
service	has	no	problem	using	the	new	pods	to	service	requests.	The	updates	are	done	on
the	pods	one	by	one,	so	it’s	seamless	for	the	users	of	the	service.

Testing,	releases,	and	cutovers
The	rolling	update	feature	can	work	well	for	a	simple	blue-green	deployment	scenario.
However,	in	a	real-world	blue-green	deployment	with	a	stack	of	multiple	applications,
there	can	be	a	variety	of	interdependencies	that	require	in-depth	testing.	The	update-
period	command	allows	us	to	add	a	timeout	flag	where	some	testing	can	be	done,	but
this	will	not	always	be	satisfactory	for	testing	purposes.

Similarly,	you	may	want	partial	changes	to	persist	for	a	longer	time	and	all	the	way	up	to
the	load	balancer	or	service	level.	For	example,	you	wish	to	A/B	test	a	new	user	interface
feature	with	a	portion	of	your	users.	Another	example	is	running	a	canary	release	(a
replica	in	this	case)	of	your	application	on	new	infrastructure	like	a	newly	added	cluster
node.

Let’s	take	a	look	at	an	A/B	testing	example.	For	this	example,	we	will	need	to	create	a
new	service	that	uses	sessionAffinity.	We	will	set	the	affinity	to	ClientIP,	which	will
allow	us	to	forward	clients	to	the	same	backend	pod.	This	is	a	key	if	we	want	a	portion	of
our	users	to	see	one	version	while	others	see	another:

apiVersion:	v1

kind:	Service

metadata:

		name:	node-js-scale-ab

		labels:

				service:	node-js-scale-ab

spec:

		type:	LoadBalancer

		ports:

		-	port:	80

		sessionAffinity:	ClientIP

		selector:

				service:	node-js-scale-ab

Listing	4-3:	pod-AB-service.yaml

Create	this	service	as	usual	with	the	create	command	as	follows:

$	kubectl	create	-f	pod-AB-service.yaml

This	will	create	a	service	that	will	point	to	our	pods	running	both	version	0.2	and	0.3	of
the	application.	Next,	we	will	create	the	two	RCs	which	create	two	replicas	of	the
application.	One	set	will	have	version	0.2	of	the	application,	and	the	other	will	have
version	0.3,	as	shown	here:

apiVersion:	v1

kind:	ReplicationController

metadata:

		name:	node-js-scale-a

		labels:

				name:	node-js-scale-a

				version:	"0.2"

				service:	node-js-scale-ab

spec:

		replicas:	2

		selector:

				name:	node-js-scale-a

				version:	"0.2"

				service:	node-js-scale-ab

		template:

				metadata:

						labels:

								name:	node-js-scale-a

								version:	"0.2"

								service:	node-js-scale-ab

				spec:

						containers:

						-	name:	node-js-scale

								image:	jonbaier/pod-scaling:0.2

								ports:

								-	containerPort:	80

								livenessProbe:

										#	An	HTTP	health	check

										httpGet:

												path:	/

												port:	80

										initialDelaySeconds:	30

										timeoutSeconds:	5

								readinessProbe:

										#	An	HTTP	health	check

										httpGet:

												path:	/

												port:	80

										initialDelaySeconds:	30

										timeoutSeconds:	1

Listing	4-4:	pod-A-controller.yaml

apiVersion:	v1

kind:	ReplicationController

metadata:

		name:	node-js-scale-b

		labels:

				name:	node-js-scale-b

				version:	"0.3"

				service:	node-js-scale-ab

spec:

		replicas:	2

		selector:

				name:	node-js-scale-b

				version:	"0.3"

				service:	node-js-scale-ab

		template:

				metadata:

						labels:

								name:	node-js-scale-b

								version:	"0.3"

								service:	node-js-scale-ab

				spec:

						containers:

						-	name:	node-js-scale

								image:	jonbaier/pod-scaling:0.3

								ports:

								-	containerPort:	80

								livenessProbe:

										#	An	HTTP	health	check

										httpGet:

												path:	/

												port:	80

										initialDelaySeconds:	30

										timeoutSeconds:	5

								readinessProbe:

										#	An	HTTP	health	check

										httpGet:

												path:	/

												port:	80

										initialDelaySeconds:	30

										timeoutSeconds:	1

Listing	4-5:	pod-B-controller.yaml

Note	that	we	have	the	same	service	label,	so	these	replicas	will	also	be	added	to	the
service	pool	based	on	this	selector.	We	also	have	livenessProbe	and	readinessProbe
defined	to	make	sure	that	our	new	version	is	working	as	expected.	Again,	use	the	create
command	to	spin	up	the	controller:

$	kubectl	create	-f	pod-A-controller.yaml

$	kubectl	create	-f	pod-B-controller.yaml

Now	we	have	a	service	balancing	to	both	versions	of	our	app.	In	a	true	A/B	test,	we	would
now	want	to	start	collecting	metrics	on	the	visit	to	each	version.	Again,	we	have	the
sessionAffinity	set	to	ClientIP,	so	all	requests	will	go	to	the	same	pod.	Some	users	will
see	v0.2,	and	some	will	see	v0.3.

Note
Because	we	have	sessionAffinity	turned	on,	your	test	will	likely	show	the	same	version
every	time.	This	is	expected,	and	you	would	need	to	attempt	a	connection	from	multiple	IP
addresses	to	see	both	user	experiences	with	each	version.

Since	the	versions	are	each	on	their	own	pod,	one	can	easily	separate	logging	and	even
add	a	logging	container	to	the	pod	definition	for	a	sidecar	logging	pattern.	For	brevity,	we
will	not	cover	that	setup	in	this	book,	but	we	will	look	at	some	of	the	logging	tools	in
Chapter	6,	Monitoring	and	Logging.

We	can	start	to	see	how	this	process	would	be	useful	for	a	canary	release	or	a	manual	blue-
green	deployment.	We	can	also	see	how	easy	it	is	to	launch	a	new	version	and	slowly
transition	over	to	the	new	release.

Let’s	look	at	a	basic	transition	quickly.	It’s	really	as	simple	as	a	few	scale	commands,
which	are	as	follows:

$	kubectl	scale	--replicas=3	rc/node-js-scale-b

$	kubectl	scale	--replicas=1	rc/node-js-scale-a

$	kubectl	scale	--replicas=4	rc/node-js-scale-b

$	kubectl	scale	--replicas=0	rc/node-js-scale-a

Tip
Use	the	get	pods	command	combined	with	–l	filter	in	between	scale	commands	to
watch	the	transition	as	it	happens.

Now	we	have	fully	transitioned	over	to	version	0.3	(node-js-scale-b).	All	users	will	now
see	the	version	0.3	of	the	site.	We	have	four	replicas	of	version	0.3	and	0	of	0.2.	If	you	run
a	get	rc	command,	you	will	notice	that	we	still	have	a	RC	for	0.2	(node-js-scale-a).	As
a	final	cleanup,	we	can	remove	that	controller	completely	as	follows:

$	kubectl	delete	rc/node-js-scale-a

Tip
In	the	newly	released	version	1.1,	K8s	has	a	new	“Horizontal	Pod	Autoscaler”	construct
which	allows	you	to	automatically	scale	pods	based	on	CPU	utilization.

Growing	your	cluster
All	these	techniques	are	great	for	the	scaling	of	the	application,	but	what	about	the	cluster
itself.	At	some	point,	you	will	pack	the	nodes	full	and	need	more	resources	to	schedule
new	pods	for	your	workloads.

Tip
When	you	create	your	cluster,	you	can	customize	the	starting	number	of	(minions)	nodes
with	the	NUM_MINIONS	environment	variable.	By	default,	it	is	set	to	4.	The	following
example	shows	how	to	set	it	to	5	before	running	kube-up.sh:

$	export	NUM_MINIONS	=	5

Bear	in	mind	that	changing	this	after	the	cluster	is	started	will	have	no	effect.	You	would
need	to	tear	down	the	cluster	and	create	it	once	again.	Thus,	this	section	will	show	you
how	to	add	nodes	to	an	existing	cluster	without	rebuilding	it.

Scaling	up	the	cluster	on	GCE
Scaling	up	your	cluster	on	GCE	is	actually	quite	easy.	The	existing	plumbing	uses
managed	instance	groups	in	GCE,	which	allow	you	to	easily	add	more	machines	of	a
standard	configuration	to	the	group	via	an	instance	template.

You	can	see	this	template	easily	in	the	GCE	console.	First,	open	the	console;	by	default,
this	should	open	your	default	project	console.	If	you	are	using	another	project	for	your
Kuberenetes	cluster,	simply	select	it	from	the	project	dropdown	at	the	top	of	the	page.

On	the	side	panel	under	Compute	and	then	Compute	Engine,	select	Instance	templates.
You	should	see	a	template	titled	kuberenetes-minion-template.	Note	that	the	name	could
vary	slightly	if	you’ve	customized	your	cluster	naming	settings.	Click	on	that	template	to
see	the	details.	Refer	to	the	following	screenshot:

Figure	4.3.	The	GCE	Instance	template	for	minions

You’ll	see	a	number	of	settings,	but	the	meat	of	the	template	is	under	Custom	metadata.
Here,	you	will	see	a	number	of	environment	variables	and	also	a	startup	script	that	is	run
after	a	new	machine	instance	is	created.	These	are	the	core	components	that	allow	us	to
create	new	machines	and	have	them	automatically	added	to	the	available	cluster	nodes.

Because	the	template	for	new	machines	is	already	created,	it	is	very	simple	to	scale	out
our	cluster	in	GCE.	Simply	go	to	the	Instance	groups	located	right	above	the	Instance
templates	link	on	the	side	panel.	Again,	you	should	see	a	group	titled	kubernetes-
minion-group	or	something	similar.	Click	on	that	group	to	see	the	details,	as	shown	in	the
following	screenshot:

Figure	4.4.	The	GCE	Instance	group	for	minions

You’ll	see	a	page	with	a	CPU	metrics	graph	and	four	instances	listed	here.	By	default,	the
cluster	creates	four	nodes.	We	can	modify	this	group	by	clicking	the	Edit	group	button	at
the	top	of	the	page.

Figure	4.5.	The	GCE	Instance	group	edit	page

You	should	see	kubernetes-minion-template	selected	in	Instance	template	that	we
reviewed	a	moment	ago.	You’ll	also	see	an	Autoscaling	setting,	which	is	Off	by	default
and	an	instance	count	of	4.	Simply,	increment	this	to	5	and	click	on	Save.	You’ll	be	taken
back	to	the	group	details	page	and	see	a	pop-up	dialog	showing	the	pending	changes.

In	a	few	minutes,	you’ll	have	a	new	instance	listed	on	the	details	page.	We	can	test	that
this	is	ready	by	using	the	get	nodes	command	from	the	command	line:

$	kubectl	get	nodes

Autoscaling	and	scaling	down
In	the	preceding	example,	we	left	autoscaling	turned	off.	However,	there	may	be	some
cases	where	you	want	to	automatically	scale	your	cluster	up	and	down.	Turning	on
autoscaling	will	allow	you	to	choose	a	metric	to	monitor	and	scale	on.	A	minimum	and
maximum	number	of	instances	can	be	defined	as	well	as	a	cool	down	period	between
actions.	For	more	information	on	autoscaling	in	GCE,	refer	to	the	link
https://cloud.google.com/compute/docs/autoscaler/?
hl=en_US#scaling_based_on_cpu_utilization.

Note
A	word	of	caution	on	autoscaling	and	scale	down	in	general

First,	if	we	repeat	the	earlier	process	and	decrease	the	countdown	to	four,	GCE	will
remove	one	node.	However,	it	will	not	necessarily	be	the	node	you	just	added.	The	good
news	is	that	pods	will	be	rescheduled	on	the	remaining	nodes.	However,	it	can	only
reschedule	where	resources	are	available.	If	you	are	close	to	full	capacity	and	shut	down	a

https://cloud.google.com/compute/docs/autoscaler/?hl=en_US#scaling_based_on_cpu_utilization

node,	there	is	a	good	chance	that	some	pods	will	not	have	a	place	to	be	rescheduled.	In
addition,	this	is	not	a	live	migration,	so	any	application	state	will	be	lost	in	the	transition.
The	bottom	line	is	that	you	should	carefully	consider	the	implications	before	scaling	down
or	implementing	an	autoscaling	scheme.

Scaling	up	the	cluster	on	AWS
The	AWS	provider	code	also	makes	it	very	easy	to	scale	up	your	cluster.	Similar	to	GCE,
the	AWS	setup	uses	autoscaling	groups	to	create	the	default	four	minion	nodes.

This	can	also	be	easily	modified	using	the	CLI	or	the	web	console.	In	the	console,	from
the	EC2	page,	simply	go	to	the	Auto	Scaling	Groups	section	at	the	bottom	of	the	menu
on	the	left.	You	should	see	a	name	similar	to	kubernetes-minion-group.	Select	that	group
and	you	will	see	details	as	shown	in	Figure	4.6:

Figure	4.6.	Kubernetes	minion	autoscaling	details

We	can	scale	this	group	up	easily	by	clicking	Edit.	Then,	change	the	Desired,	Min,	and
Max	values	to	5	and	click	on	Save.	In	a	few	minutes,	you’ll	have	the	fifth	node	available.
You	can	once	again	check	this	using	the	get	nodes	command.

Scaling	down	is	the	same	process,	but	remember	that	we	discussed	the	same
considerations	in	the	previous	Scaling	the	cluster	on	GCE	section.	Workloads	could	get
abandoned	or	at	the	very	least	unexpectedly	restarted.

Scaling	manually
For	other	providers,	creating	new	minions	may	not	be	an	automated	process.	Depending
on	your	provider,	you’ll	need	to	perform	various	manual	steps.	It	can	be	helpful	to	look	at
the	provider-specific	scripts	under	the	cluster	directory.

Summary
We	should	now	be	a	bit	more	comfortable	with	the	basics	of	application	scaling	in
Kubernetes.	We	also	looked	at	the	built-in	functions	in	order	to	roll	updates	as	well	a
manual	process	for	testing	and	slowly	integrating	updates.	Finally,	we	took	a	look	at
scaling	the	nodes	of	our	underlying	cluster	and	increasing	overall	capacity	for	our
Kubernetes	resources.

Chapter	5.	Continuous	Delivery
This	chapter	will	show	the	reader	how	to	integrate	their	build	pipeline	and	deployments
with	a	Kubernetes	cluster.	It	will	cover	the	concept	of	using	Gulp.js	and	Jenkins	in
conjunction	with	your	Kubernetes	cluster.

This	chapter	will	discuss	the	following	topics:

Integration	with	continuous	deployment	pipeline
Using	Gulp.js	with	Kubernetes
Integrating	Jenkins	with	Kubernetes

Integration	with	continuous	delivery
Continuous	integration	and	delivery	are	key	components	to	modern	development	shops.
Speed	to	market	or	mean-time-to-revenue	are	crucial	for	any	company	that	is	creating	their
own	software.	We’ll	see	how	Kubernetes	can	help	you.

CI/CD	(short	for	Continuous	Integration/Continuous	Delivery)	often	requires
ephemeral	build	and	test	servers	to	be	available	whenever	changes	are	pushed	to	the	code
repository.	Docker	and	Kubernetes	are	well	suited	for	this	task	as	it’s	easy	to	create
containers	in	a	few	seconds	and	just	as	easy	to	remove	them	after	builds	are	run.	In
addition,	if	you	already	have	a	large	portion	of	infrastructure	available	on	your	cluster,	it
can	make	sense	to	utilize	the	idle	capacity	for	builds	and	testing.

In	this	chapter,	we	will	explore	two	popular	tools	used	in	building	and	deploying	software.
Gulp.js	is	a	simple	task	runner	used	to	automate	the	build	process	using	JavaScript	and
Node.js.	Jenkins	is	a	fully-fledged	continuous	integration	server.

Gulp.js
Gulp.js	gives	us	the	framework	to	do	Build	as	code.	Similar	to	Infrastructure	as	code,	this
allows	us	to	programmatically	define	our	build	process.	We	will	walk	through	a	short
example	to	demonstrate	how	you	can	create	a	complete	workflow	from	a	Docker	image
build	to	the	final	Kubernetes	Service.

Prerequisites
For	this	section,	you	will	need	a	NodeJS	environment	installed	and	ready	including	the
node	package	manage	(npm).	If	you	do	not	already	have	these	packages	installed,	you
can	find	instructions	at	https://docs.npmjs.com/getting-started/installing-node.

You	can	check	whether	NodeJS	is	installed	correctly	with	a	node	–v	command.

You’ll	also	need	the	Docker	CLI	and	a	DockerHub	account	to	push	a	new	image.	You
can	find	instructions	to	install	the	Docker	CLI	at	https://docs.docker.com/installation/.

You	can	easily	create	a	DockerHub	account	at	https://hub.docker.com/.

After	you	have	your	credentials,	you	can	log	in	with	the	CLI	using	$	docker	login.

https://docs.npmjs.com/getting-started/installing-node
https://docs.docker.com/installation/
https://hub.docker.com/

Gulp	build	example
Let’s	start	by	creating	a	project	directory	named	node-gulp:

$	mkdir	node-gulp

$	cd	node-gulp

Next,	we	will	install	the	gulp	package	and	check	whether	it’s	ready	by	running	the	npm
command	with	the	version	flag	as	follows:

$	npm	install	-g	gulp

You	may	need	to	open	a	new	terminal	window	to	make	sure	that	gulp	is	on	your	path.
Also,	make	sure	to	navigate	back	to	your	node-gulp	directory:

$	gulp	–v

Next,	we	will	install	gulp	locally	in	our	project	folder	as	well	as	the	gulp-git	and	gulp-
shell	plugins	as	follows:

$	npm	install	--save-dev	gulp

$	npm	install	gulp-git	–save

$	npm	install	--save-dev	gulp-shell

Finally,	we	need	to	create	a	Kubernetes	controller	and	service	definition	file	as	well	as	a
gulpfile.js	to	run	all	our	tasks.	Again,	these	files	are	available	in	the	book	file	bundle	if
you	wish	to	copy	them	instead.	Refer	to	the	following	code:

apiVersion:	v1

kind:	ReplicationController

metadata:

		name:	node-gulp

		labels:

				name:	node-gulp

spec:

		replicas:	1

		selector:

				name:	node-gulp

		template:

				metadata:

						labels:

								name:	node-gulp

				spec:

						containers:

						-	name:	node-gulp

								image:	<your	username>/node-gulp:latest

								imagePullPolicy:	Always

								ports:

								-	containerPort:	80

Listing	5-1:	node-gulp-controller.yaml

As	you	can	see,	we	have	a	basic	controller.	You	will	need	to	replace	<your
username>/node-gulp:latest	with	your	username:

apiVersion:	v1

kind:	Service

metadata:

		name:	node-gulp

		labels:

				name:	node-gulp

spec:

		type:	LoadBalancer

		ports:

		-	name:	http

				protocol:	TCP

				port:	80

		selector:

				name:	node-gulp

Listing	5-2:	node-gulp-service.yaml

Next,	we	have	a	simple	service	that	selects	the	pods	from	our	controller	and	creates	an
external	load	balancer	for	access	as	follows:

var	gulp	=	require('gulp');

var	git	=	require('gulp-git');

var	shell	=	require('gulp-shell');

//	Clone	a	remote	repo

gulp.task('clone',	function(){

		return	git.clone('https://github.com/jonbaierCTP/getting-	started-with-

kubernetes.git',	function	(err)	{

				if	(err)	throw	err;

		});

});

//	Update	codebase

gulp.task('pull',	function(){

		return	git.pull('origin',	'master',	{cwd:	'./getting-started-	with-

kubernetes'},	function	(err)	{

				if	(err)	throw	err;

		});

});

//Build	Docker	Image

gulp.task('docker-build',	shell.task([

		'docker	build	-t	<your	username>/node-gulp	./getting-started-	with-

kubernetes/	docker-image-source/container-info/',

		'docker	push	<your	username>/node-gulp'

]));

//Run	New	Pod

gulp.task('create-kube-pod',	shell.task([

		'kubectl	create	-f	node-gulp-controller.yaml',

		'kubectl	create	-f	node-gulp-service.yaml'

]));

//Update	Pod

gulp.task('update-kube-pod',	shell.task([

		'kubectl	delete	-f	node-gulp-controller.yaml',

		'kubectl	create	-f	node-gulp-controller.yaml'

]));

Listing	5-3:	gulpfile.js

Finally,	we	have	the	gulpfile.js	file.	This	is	where	all	our	build	tasks	are	defined.	Again,
fill	in	your	username	in	both	the	<your	username>/node-gulp	sections.

Looking	through	the	file,	first,	the	clone	task	downloads	our	image	source	code	from
GitHub.	The	pull	tasks	execute	a	git	pull	on	the	cloned	repository.	Next,	the	docker-
build	command	builds	an	image	from	the	container-info	subfolder	and	pushes	it	to
DockerHub.	Finally,	we	have	the	create-kube-pod	and	update-kube-pod	command.	As
you	can	guess,	the	create-kube-pod	command	creates	our	controller	and	service	for	the
first	time,	whereas	the	update-kube-pod	command	simply	replaces	the	controller.

Let’s	go	ahead	and	run	these	commands	and	see	our	end-to-end	workflow.

$	gulp	clone

$	gulp	docker-build

The	first	time	through	you	can	run	the	create-kube-pod	command	as	follows:

$	gulp	create-kube-pod

This	is	all	there	is	to	it.	If	we	run	a	quick	kubectl	describe	command	for	the	node-gulp
service,	we	can	get	the	external	IP	for	our	new	service.	Browse	to	that	IP	and	you’ll	see
the	familiar	container-info	application	running.	Note	that	the	host	starts	with	node-
gulp,	just	as	we	named	it	in	the	previously	mentioned	pod	definition.

Figure	5.1.	Service	launched	by	Gulp	build

On	subsequent	updates,	run	pull	and	update-kube-pod,	as	shown	here:

$	gulp	pull

$	gulp	docker-build

$	gulp	update-kube-pod

This	is	a	very	simple	example,	but	you	can	begin	to	see	how	easy	it	is	to	coordinate	your
build	and	deployment	end	to	end	with	a	few	simple	lines	of	code.	Next,	we	will	look	at
using	Kubernetes	to	actually	run	builds	using	Jenkins.

Kubernetes	plugin	for	Jenkins
One	way	we	can	use	Kubernetes	for	our	CI/CD	pipeline	is	to	run	our	Jenkins	build	slaves
in	a	containerized	environment.	Luckily,	there	is	already	a	plugin,	written	by	Carlos
Sanchez,	which	allows	you	to	run	Jenkins	slaves	in	Kubernetes’	pods.

Prerequisites
You’ll	need	a	Jenkins	server	handy	for	this	next	example.	If	you	don’t	have	one	you	can
use,	there	is	a	Docker	image	available	at	https://hub.docker.com/_/jenkins/.

Running	it	from	the	Docker	CLI	is	as	simple	as	this:

docker	run	--name	myjenkins	-p	8080:8080	-v	/var/jenkins_home	jenkins

https://hub.docker.com/_/jenkins/

Installing	plugins
Log	in	to	your	Jenkins	server,	and	from	your	home	dashboard,	click	on	Manage	Jenkins.
Then,	select	Manage	Plugins	from	the	list.

Figure	5.2.	Jenkins	main	dashboard

The	credentials	plugin	is	required,	but	should	be	installed	by	default.	We	can	check	the
Installed	tab	if	in	doubt,	as	shown	in	the	following	screenshot:

Figure	5.3.	Jenkins	installed	plugins

Next,	we	can	click	on	the	Available	tab.	The	Kubernetes	plugin	should	be	located	under
Cluster	Management	and	Distributed	Build	or	Misc	(cloud).	There	are	many	plugins,
so	you	can	alternatively	search	for	Kubernetes	on	the	page.	Check	the	box	for	Kubernetes
Plugin	and	click	on	Install	without	restart.

This	will	install	the	Kubernetes	Plugin	and	the	Durable	Task	Plugin.

Figure	5.4.	Plugin	installation

Tip
If	you	wish	to	install	a	nonstandard	version	or	just	like	to	tinker,	you	can	optionally
download	the	plugins.	The	latest	Kubernetes	and	Durable	Task	plugins	can	be	found
here:

Kubernetes	plugin:	https://wiki.jenkins-ci.org/display/JENKINS/Kubernetes+Plugin
Durable	Task	plugin:	https://wiki.jenkins-
ci.org/display/JENKINS/Durable+Task+Plugin

Next,	we	can	click	on	the	Advanced	tab	and	scroll	down	to	Upload	Plugin.	Navigate	to
the	durable-task.hpi	file	and	click	on	Upload.	You	should	see	a	screen	that	shows	an
installing	progress	bar.	After	a	minute	or	two,	it	will	update	to	Success.

Finally,	install	the	main	Kubernetes	plugin.	On	the	left-hand	side,	click	on	Manage
Plugins	and	then	the	Advanced	tab	once	again.	This	time,	upload	the	kubernetes.hpi
file	and	click	on	Upload.	After	a	few	minutes,	the	installation	should	be	complete.

Configuring	the	Kubernetes	plugin
Click	on	Back	to	Dashboard	or	the	Jenkins	link	in	the	top-left	corner.	From	the	main
dashboard	page,	click	on	the	Credentials	link.	Choose	a	domain	from	the	list;	in	my	case,
I	just	used	the	default	Global	credentials	domain.	Click	on	Add	Credentials.

https://wiki.jenkins-ci.org/display/JENKINS/Kubernetes+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Durable+Task+Plugin

Figure	5.5.	Add	credentials	screen

Leave	Kind	as	Username	with	password	and	Scope	as	Global.	Add	your	Kubernetes
admin	credentials.	Remember	that	you	can	find	these	by	running	the	config	command:

$	kubectl	config	view

Give	it	a	sensible	description	and	click	on	OK.

Now	that	we	have	our	credentials	saved,	we	can	add	our	Kubernetes	server.	Click	on	the
Jenkins	link	in	the	top-left	corner	and	then	Manage	Jenkins.	From	there,	select
Configure	System	and	scroll	all	the	way	down	to	the	Cloud	section.	Select	Kubernetes
from	the	Add	a	new	cloud	dropdown	and	a	Kubernetes	section	will	appear	as	follows:

Figure	5.6.	New	Kubernetes	cloud	settings

You’ll	need	to	specify	the	URL	for	your	master	in	the	form	of	https://<Master	IP>/.

Next,	choose	the	credentials	we	added	from	the	drop-down	list.	Since	Kubernetes	use	a
self-signed	certificate	by	default,	you’ll	also	need	to	check	the	Disable	https	certificate
check	checkbox.

Click	Test	Connection	and	if	all	goes	well,	you	should	see	Connection	successful
appearing	next	to	the	button.

Tip
If	you	are	using	an	older	version	of	the	plugin,	you	may	not	see	the	Disable	https
certificate	check	checkbox.	If	this	is	the	case,	you	will	need	to	install	the	self-signed
certificate	directly	on	the	Jenkins	Master.

Finally,	we	will	add	a	pod	template	by	choosing	Kubernetes	Pod	Template	from	the	Add
Pod	Template	dropdown	next	to	Images.

This	will	create	another	new	section.	Use	jenkins-slave	for	the	Name	and	Labels
section.	Use	csanchez/jenkins-slave	for	the	Docker	Image	and	leave	/home/jenkins
for	the	Jenkins	Slave	root	directory.

Tip
Labels	can	be	used	later	on	in	the	build	settings	to	force	the	build	to	use	the	Kubernetes
cluster.

Figure	5.7.	Kubernetes	pod	template

Click	on	Save	and	you	are	all	set.	Now	builds	can	use	the	slaves	in	the	Kubernetes	pod	we
just	created.

Note
There	is	another	note	about	firewalls.	The	Jenkins	Master	will	need	to	be	reachable	by	the
all	machines	in	your	Kubernetes	cluster	as	the	pod	could	land	anywhere.	You	can	find	out
your	port	settings	in	Jenkins	under	Manage	Jenkins	and	Configure	Global	Security.

Bonus	fun
Fabric8	bills	itself	as	an	integration	platform.	It	includes	a	variety	of	logging,	monitoring,
and	continuous	delivery	tools.	It	also	has	a	nice	console,	an	API	registry,	and	a	3D	game
that	lets	you	shoot	at	your	pods.	It’s	a	very	cool	project,	and	it	actually	runs	on
Kubernetes.	Refer	to	http://fabric8.io/.

It’s	an	easy	single	command	to	set	up	on	your	Kubernetes	cluster,	so	refer	to
http://fabric8.io/guide/getStarted/gke.html.

http://fabric8.io/
http://fabric8.io/guide/getStarted/gke.html

Summary
We	looked	at	two	continuous	integration	tools	that	can	be	used	with	Kubernetes.	We	did	a
brief	walk-through	of	deploying	Gulp.js	task	on	our	cluster.	We	also	looked	at	a	new
plugin	to	integrate	Jenkins	build	slaves	into	your	Kubernetes	cluster.	You	should	now	have
a	better	sense	of	how	Kubernetes	can	integrate	with	your	own	CI/CD	pipeline.

Chapter	6.	Monitoring	and	Logging
This	chapter	will	cover	the	usage	and	customization	of	both	built-in	and	third-party
monitoring	tools	on	our	Kubernetes	cluster.	We	will	cover	how	to	use	the	tools	to	monitor
health	and	performance	of	our	cluster.	In	addition,	we	will	look	at	built-in	logging,	the
Google	Cloud	Logging	service,	and	Sysdig.

This	chapter	will	discuss	the	following	topics:

How	Kuberentes	uses	cAdvisor,	Heapster,	InfluxDB,	and	Grafana
How	to	customize	the	default	Grafana	dashboard
How	FluentD	and	Grafana	are	used
How	to	install	and	use	logging	tools
How	to	work	with	popular	third-party	tools,	such	as	StackDriver	and	Sysdig,	to
extend	our	monitoring	capabilities

Monitoring	operations
Real-world	monitoring	goes	far	beyond	checking	whether	a	system	is	up	and	running.
Although	health	checks,	like	those	you	learned	in	Chapter	2,	Kubernetes	–	Core	Concepts
and	Constructs,	under	the	Health	checks	section,	can	help	us	isolate	problem	applications.
Operation	teams	can	best	serve	the	business	when	they	can	anticipate	the	issues	and
mitigate	them	before	a	system	goes	offline.

Best	practices	in	monitoring	are	to	measure	the	performance	and	usage	of	core	resources
and	watch	for	trends	that	stray	from	the	normal	baseline.	Containers	are	not	different	here,
and	a	key	component	to	managing	our	Kubernetes	cluster	is	having	a	clear	view	into
performance	and	availability	of	the	OS,	network,	system	(CPU	and	memory),	and	storage
resources	across	all	nodes.

In	this	chapter,	we	will	examine	several	options	to	monitor	and	measure	the	performance
and	availability	of	all	our	cluster	resources.	In	addition,	we	will	look	at	a	few	options	for
alerting	and	notifications	when	irregular	trends	start	to	emerge.

Built-in	monitoring
If	you	recall	from	Chapter	1,	Kubernetes	and	Container	Operations,	we	noted	that	our
nodes	were	already	running	a	number	of	monitoring	services.	We	can	see	these	once	again
by	running	the	get	pods	command	with	the	kube-system	namespace	specified	as	follows:

$	kubectl	get	pods	--namespace=kube-system

The	following	screenshot	is	the	result	of	the	preceding	command:

Figure	6.1.	System	pod	listing

Again,	we	see	a	variety	of	services,	but	how	does	this	all	fit	together?	If	you	recall	the
Node	(formerly	minions)	section	from	Chapter	2,	Kubernetes	–	Core	Concepts	and
Constructs,	each	node	is	running	a	kublet.	The	kublet	is	the	main	interface	for	nodes	to
interact	and	update	the	API	server.	One	such	update	is	the	metrics	of	the	node	resources.
The	actual	reporting	of	the	resource	usage	is	performed	by	a	program	named	cAdvisor.

cAdvisor	is	another	open	source	project	from	Google,	which	provides	various	metrics	on
container	resource	use.	Metrics	include	CPU,	memory,	and	network	statistics.	There	is	no
need	to	tell	cAdvisor	about	individual	containers;	it	collects	the	metrics	for	all	containers
on	a	node	and	reports	this	back	to	the	kublet,	which	in	turn	reports	to	Heapster.

Note
Google’s	open	source	projects

Google	has	a	variety	of	open	source	projects	related	to	Kubernetes.	Check	them	out,	use
them,	and	even	contribute	your	own	code!

cAdvisor	and	Heapster	are	mentioned	in	the	following	section:

cAdvisor:	https://github.com/google/cadvisor
Heapster:	https://github.com/kubernetes/heapster

Contrib	is	a	catch-all	for	a	variety	of	components	that	are	not	part	of	core	Kubernetes.	It
is	found	at	https://github.com/kubernetes/contrib.

LevelDB	is	a	key	store	library	that	was	used	in	the	creation	of	InfluxDB.	It	is	found	at
https://github.com/google/leveldb.

Heapster	is	yet	another	open	source	project	from	Google;	you	may	start	to	see	a	theme
emerging	here	(see	the	preceding	information	box).	Heapster	runs	in	a	container	on	one	of

https://github.com/google/cadvisor
https://github.com/kubernetes/heapster
https://github.com/kubernetes/contrib
https://github.com/google/leveldb

the	minion	nodes	and	aggregates	the	data	from	kublet.	A	simple	REST	interface	is
provided	to	query	the	data.

When	using	the	GCE	setup,	a	few	additional	packages	are	set	up	for	us,	which	saves	us
time	and	gives	us	a	complete	package	to	monitor	our	container	workloads.	As	we	can	see
from	Figure	6.1,	there	is	another	pod	with	influx-grafana	in	the	title.

InfluxDB	is	described	at	it’s	official	website	as	follows1:

An	open-source	distributed	time	series	database	with	no	external	dependencies.

It	is	based	on	a	key	store	package	(see	the	previous	Google’s	open	source	projects
information	box)	and	is	perfect	to	store	and	query	event	or	time-based	statistics	such	as
those	provided	by	Heapster.

Finally,	we	have	Grafana,	which	provides	a	dashboard	and	graphing	interface	for	the	data
stored	in	InfluxDB.	Using	Grafana,	users	can	create	a	custom	monitoring	dashboard	and
get	immediate	visibility	into	the	health	of	their	Kubernetes	cluster	and	therefore	their
entire	container	infrastructure.

Exploring	Heapster
Let’s	quickly	look	at	the	REST	interface	by	SSH’ing	to	the	node	with	the	Heapster	pod.
First,	we	can	list	the	pods	to	find	the	one	running	Heapster	as	follows:

$	kubectl	get	pods	--namespace=kube-system

The	name	of	the	pod	should	start	with	monitoring-heapster.	Run	a	describe	command
to	see	which	node	it	is	running	on	as	follows:

$	kubectl	describe	pods/<Heapster	monitoring	Pod>	--namespace=kube-system

From	the	output	in	the	following	figure	(Figure	6.2),	we	can	see	that	the	pod	is	running	in
kubernetes-minion-merd.	Also	note	the	IP	for	the	pod,	a	few	lines	down,	as	we	will	need
that	in	a	moment.

Figure	6.2.	Heapster	pod	details

Next,	we	can	SSH	to	this	box	with	the	familiar	gcloud	ssh	command	as	follows:

$	gcloud	compute	--project	"<Your	project	ID>"	ssh	--zone	"<your	gce	zone>"	

"<kubernetes	minion	from	describe>"

From	here,	we	can	access	the	Heapster	REST	API	directly	using	the	pod’s	IP	address.
Remember	that	pod	IPs	are	routable	not	only	in	the	containers	but	also	on	the	nodes
themselves.	The	Heapster	API	is	listening	on	port	8082,	and	we	can	get	a	full	list	of
metrics	at	/api/v1/metric-export-schema/.

Let’s	see	the	list	now	by	issuing	a	curl	command	to	the	pod	IP	address	we	saved	from	the
describe	command	as	follows:

$	curl	-G	<Heapster	IP	from	describe>:8082/api/v1/metric-export-schema/

We	will	see	a	listing	that	is	quite	long.	The	first	section	shows	all	the	metrics	available.
The	last	two	sections	list	fields	by	which	we	can	filter	and	group.	For	your	convenience,
I’ve	added	the	following	tables	that	are	a	little	bit	easier	to	read:

Metric Description Unit Type

uptime The	number	of	milliseconds	since	the	container	was	started ms cumulative

cpu/usage Cumulative	CPU	usage	on	all	cores ns cumulative

cpu/limit CPU	limit	in	millicores - gauge

memory/usage Total	memory	usage bytes gauge

memory/working_set Total	working	set	usage.	Working	set	is	the	memory	being	used	and	not
easily	dropped	by	the	kernel bytes gauge

memory/limit Memory	limit bytes gauge

memory/page_faults The	number	of	page	faults - cumulative

memory/major_page_faults The	number	of	major	page	faults - cumulative

network/rx Cumulative	number	of	bytes	received	over	the	network bytes cumulative

network/rx_errors Cumulative	number	of	errors	while	receiving	over	the	network - cumulative

network/tx Cumulative	number	of	bytes	sent	over	the	network bytes cumulative

network/tx_errors Cumulative	number	of	errors	while	sending	over	the	network - cumulative

filesystem/usage Total	number	of	bytes	consumed	on	a	filesystem bytes gauge

filesystem/limit The	total	size	of	filesystem	in	bytes bytes gauge

Table	6.1.	Available	Heapster	metrics

Field Description Label	type

hostname The	hostname	where	the	container	ran Common

host_id An	identifier	specific	to	a	host,	which	is	set	by	cloud	provider	or	user Common

container_name The	user-provided	name	of	the	container	or	full	container	name	for	system	containers Common

pod_name The	name	of	the	pod Pod

pod_id The	unique	ID	of	the	pod Pod

pod_namespace The	namespace	of	the	pod Pod

namespace_id The	unique	ID	of	the	namespace	of	the	pod Pod

labels A	comma-separated	list	of	user-provided	labels Pod

Table	6.2.	Available	Heapster	fields

Customizing	our	dashboards
Now	that	we	have	the	fields,	we	can	have	some	fun.	Recall	the	Grafana	page	we	looked	at
in	Chapter	1,	Kubernetes	and	Container	Operations.	Let’s	pull	that	up	again	by	going	our
cluster’s	monitoring	URL.	Note	that	you	may	need	to	log	in	with	your	cluster	credentials.
Refer	to	the	following	format	of	the	link	you	need	to	use:
https://<your	master	IP>/api/v1/proxy/namespaces/kube-

system/services/monitoring-grafana

We’ll	see	the	default	Kubernetes	dashboard,	and	now	we	can	add	our	own	statistics	to	the
board.	Scroll	all	the	way	to	the	bottom	and	click	on	Add	a	Row.	This	should	create	a
space	for	a	new	row	and	present	a	green	tab	on	the	left-hand	side	of	the	screen.

Let’s	start	by	adding	a	view	into	the	filesystem	usage	for	each	node	(minion).	Click	on	the
green	tab	to	expand	and	then	choose	Add	Panel	and	then	graph.	An	empty	graph	should
appear	on	the	screen.	If	we	click	on	the	graph	where	it	says	no	title	(click	here),	a	context
menu	will	appear.	We	can	then	click	on	Edit,	and	we’ll	be	able	to	set	up	the	query	for	our
custom	dashboard	panel.

The	series	box	allows	us	to	use	any	of	the	Heapster	metrics	we	saw	in	the	previous	tables.
In	the	series	box,	enter	filesystem/usage_bytes_gauge	and	select	to	max(value).	Then,
enter	5s	for	group	by	time	and	hostname	in	the	box	marked	column	next	to	the	plus	sign,
as	shown	in	the	following	screenshot:

Figure	6.3.	Heapster	pod	details

Next,	let’s	click	on	the	Axes	&	Grid	tab,	so	that	we	can	set	the	units	and	legend.	Under
Left	Y	Axis,	set	Format	to	bytes	and	Label	to	Disk	Space	Used.	Under	Right	Y	Axis,
set	Format	to	none.	Next,	under	Legend	styles,	make	sure	to	check	Show	values,	and
table.	A	Legend	Values	section	should	appear,	and	we	can	check	the	box	for	Max	here.

Now,	let’s	quickly	go	to	the	General	tab	and	choose	a	title.	In	my	case,	I	named	mine
Filesystem	Disk	Usage	by	Node	(max).

We	don’t	want	to	lose	this	nice	new	graph	we’ve	created,	so	let’s	click	on	the	save	icon	in
the	top	right	corner.	It	looks	like	a	floppy	disk	(you	can	do	a	Google	image	search	if	you
don’t	know	what	those	are).

After	we	click	on	the	save	icon,	a	dropdown	will	appear	with	several	options.	The	first
item	should	have	the	default	dashboard	title,	which	is	Kubernetes	Cluster!	at	the	time	of
this	writing.	Also,	click	on	the	save	icon	on	the	right-hand	side.

It	should	take	us	back	to	the	main	dashboard	where	we	will	see	our	new	graph	at	the
bottom.	Let’s	add	another	panel	to	that	row.	Again	use	the	green	tab	and	then	select	Add
Panel	and	singlestat.	Once	again,	an	empty	panel	will	appear,	and	we	can	click	it	where	it
says	no	title	(click	here)	for	the	context	menu	and	then	click	on	Edit.

Let’s	say,	we	want	to	watch	a	particular	node	and	monitor	memory	usage.	We	can	easily
do	this	by	setting	the	where	clause	in	our	query.	First,	choose
network/rx_bytes_cumulative	for	series	and	mean(value)	for	select.	Then,	we	can
specify	the	hostname	in	the	where	clause	with	hostname=kubernetes-minion-35ao	and
group	by	time	to	5s.	(Use	one	of	your	own	hostnames	if	you	are	following	along).

Figure	6.4.	Singlestat	options

Under	the	Options	tab,	make	sure	that	Unit	format	is	set	to	bytes	and	check	the	Spark
line	box	under	Spark	lines.	The	sparkline	gives	us	a	quick	history	view	of	the	recent
variation	in	the	value.	We	can	use	the	Background	mode	to	take	up	the	entire
background;	by	default,	it	uses	the	area	below	the	value.

Tip
Under	Coloring,	we	can	optionally	check	the	Value	box.	A	Thresholds	and	Colors
section	will	appear.	This	will	allow	us	to	choose	different	colors	for	the	value	based	on	the
threshold	tier	we	specify.	Note	that	an	unformatted	version	of	the	number	must	be	used	for
threshold	values.

Now,	let’s	go	back	to	the	General	tab	and	choose	a	title	as	Network	bytes	received
(Node	35ao).	Once	again,	let’s	save	our	work	and	return	to	the	dashboard.	We	should	now
have	a	row	that	looks	like	the	following	figure	(Figure	6.5):

Figure	6.5.	Custom	dashboard	panels

A	third	type	of	panel	we	didn’t	cover	is	text.	It’s	pretty	straightforward	and	allows	us	to
place	a	block	of	text	on	the	dashboard	using	HTML,	markdown,	or	just	plain	text.

As	we	can	see,	it	is	pretty	easy	to	build	a	custom	dashboard	and	monitor	the	health	of	our
cluster	at	a	glance.

FluentD	and	Google	Cloud	Logging
Looking	back	at	Figure	6.1,	you	may	have	noted	a	number	of	pods	starting	with	the	words
fluentd-cloud-logging-kubernetes.	These	pods	appear	when	using	the	GCE	provider	for
your	K8s	cluster.	A	pod	like	this	exists	on	every	node	in	our	cluster	and	its	sole	purpose	to
handle	the	processing	of	Kubernetes	logs.

If	we	log	in	to	our	Google	Cloud	Platform	account,	we	can	see	some	of	the	logs	processed
there.	Simply	navigate	to	our	project	page,	and	on	the	left,	under	Monitoring,	click	on
Logs.	(If	you	are	using	the	beta	console,	it	will	be	under	Operations	and	then	Logging.)
This	will	take	us	to	a	log	listing	page	with	a	number	of	drop-down	menus	on	the	top.	If
this	is	your	first	time	visiting	the	page,	you	should	see	a	log	selection	dropdown	with	the
value	All	Logs.

In	this	dropdown,	we’ll	see	a	number	of	Kubernetes-related	entries,	including	kublet	and
some	entries	with	kubernetes	at	the	beginning	of	the	label.	We	can	also	filter	by	date	and
use	the	play	button	to	watch	events	stream	in	live.

Figure	6.6.	The	Google	Cloud	Logging	filter

FluentD
Now	we	know	that	the	fluentd-cloud-logging-kubernetes	pods	are	sending	the	data	to
the	Google	Cloud,	but	why	do	we	need	FluentD?	Simply	put,	FluentD	is	a	collector.	It	can
be	configured	to	have	multiple	sources	to	collect	and	tag	logs,	which	are	then	sent	to
various	output	points	for	analysis,	alerting,	or	archiving.	We	can	even	transform	data	using
plugins	before	it	is	passed	on	to	its	destination.

Not	all	provider	setups	have	FluentD	installed	by	default,	but	it	is	one	of	the
recommended	approaches	to	give	us	greater	flexibility	for	future	monitoring	operations.
The	AWS	Kubernetes	setup	also	uses	FluentD,	but	instead	forwards	events	to
Elasticsearch.

Note
Exploring	FluentD

If	you	are	curious	about	the	inner	workings	of	the	FluentD	setup	or	just	want	to	customize
the	log	collection,	we	can	explore	quite	easily	using	the	kubectl	exec	command.

First,	let’s	see	if	we	can	find	the	FluentD	config	file:

$	kubectl	exec	fluentd-cloud-logging-kubernetes-minion-35ao	--

namespace=kube-system—ls	/etc

Usually,	we	would	look	in	the	etc	folder	for	a	ta-agent	or	fluent	subfolder.	However,	if
we	run	an	ls	command,	we’ll	see	that	there	is	no	ta-agent	or	fluent	subfolder,	but	there
is	a	google-fluentd	subfolder:

$	kubectl	exec	fluentd-cloud-logging-kubernetes-minion-35ao	--

namespace=kube-system—ls	/etc/google-fluentd/

While	searching	in	this	directory,	we	should	see	a	google-fluentd.conf	file.	We	can
view	that	file	with	a	simple	cat	command	as	follows:

$	kubectl	exec	fluentd-cloud-logging-kubernetes-minion-35ao	--

namespace=kube-system—cat	/etc/google-fluentd/google-fluentd.conf

We	should	see	a	number	of	sources	including	the	kublet,	containers,	etcd,	and	various
other	Kubernetes	components.

Note	that	while	we	can	make	changes	here,	remember	that	is	a	running	container	and	our
changes	won’t	be	saved	if	the	pod	dies	or	is	restarted.	If	we	really	want	to	customize,	it’s
best	to	use	this	container	as	a	base	and	build	a	new	container	that	we	can	push	to	a
repository	for	later	use.

Maturing	our	monitoring	operations
While	Grafana	gives	us	a	great	start	to	monitor	our	container	operations,	it	is	still	a	work
in	progress.	In	the	real	world	of	operations,	having	a	complete	dashboard	view	is	great
once	we	know	there	is	a	problem.	However,	in	everyday	scenarios,	we’d	prefer	to	be
proactive	and	actually	receive	notifications	when	issues	arise.	This	kind	of	alerting
capability	is	a	must	to	keep	the	operations	team	ahead	of	the	curve	and	out	of	reactive
mode.

There	are	many	solutions	available	in	this	space,	and	we	will	take	a	look	at	two	in
particular:	GCE	monitoring	(StackDriver)	and	Sysdig.

GCE	(StackDriver)
StackDriver	is	a	great	place	to	start	for	infrastructure	in	the	public	cloud.	It	is	actually
owned	by	Google,	so	it’s	integrated	as	the	Google	Cloud	Platform	monitoring	service.
Before	your	lock-in	alarm	bells	start	ringing,	StackDriver	also	has	solid	integration	with
AWS.	In	addition,	StackDriver	has	alerting	capability	with	support	for	notification	to	a
variety	of	platforms	and	webhooks	for	anything	else.

Sign-up	for	GCE	monitoring
In	the	GCE	console,	under	the	Monitoring	section,	there	is	a	Dashboard	&	alerts	link	(or
just	the	Monitoring	link	under	Operations	in	the	beta	console).	This	will	open	a	new
window	where	we	can	enable	the	monitoring	functionality	(still	in	beta	at	the	time	of	this
writing).	Once	enabled,	we’ll	be	taken	to	a	screen	that	has	install	instructions	for	each
operating	system	(this	will	be	under	Set	up	and	monitor	an	endpoint	in	the	beta
console).	It	will	also	show	your	API	key,	which	is	necessary	for	the	installation.

Tip
If	you	want	to	do	something	similar	in	AWS,	you	can	simply	sign	up	for	account	at
StackDriver’s	main	website:

https://www.stackdriver.com/

Installation	instructions	for	the	more	common	installs	can	be	found	at
http://support.stackdriver.com/customer/en/portal/articles/1491726-what-is-the-
stackdriver-agent.

We	can	find	our	API	key	under	Account	Settings	and	API	Keys.

Click	on	Go	to	Monitoring	to	proceed.	We’ll	be	taken	to	the	main	dashboard	page	where
we	will	see	some	basic	statistics	on	our	node	in	the	cluster.	If	we	go	to	Infrastructure	and
then	Instances,	we’ll	be	taken	to	a	page	with	all	our	nodes	listed.	By	clicking	on	the
individual	node,	we	can	again	see	some	basic	information	even	without	an	agent	installed.

Configure	detailed	monitoring
As	we	have	seen,	simply	enabling	monitoring	will	give	us	basic	stats	for	all	our	machines
in	GCE,	but	if	we	want	to	get	detailed	results,	we’ll	need	the	agent	on	each	node.	Let’s
walk	through	an	install.

As	before,	we’ll	want	to	use	the	gcloud	compute	ssh	command	to	get	a	shell	on	one	of
our	minion	nodes.	Then,	we	can	download	and	install	the	agent.	If	you	need	your	API	key,
this	can	be	found	by	clicking	your	user	icon	in	the	top-right	corner	and	going	to	Account
Settings	and	then	on	the	next	page,	click	on	API	Keys	in	the	menu	on	the	left:

$	curl	-O	https://repo.stackdriver.com/stack-install.sh

$	sudo	bash	stack-install.sh	--api-key=<API-KEY>

If	everything	goes	well,	we	should	have	an	agent	installed	and	ready.	We	can	check	this	by
running	the	info	command	as	follows:

https://www.stackdriver.com/
http://support.stackdriver.com/customer/en/portal/articles/1491726-what-is-the-stackdriver-agent

$	/opt/stackdriver/stack-config	info

We	should	see	a	lot	of	information	in	the	form	of	JSON	on	the	screen.	After	you	finish,
give	the	agent	a	few	minutes	before	going	back	to	Infrastructure	and	Instances.

On	the	summary	instance	page,	we’ll	note	that	all	our	GCE	instances	are	showing	CPU
usage.	However,	only	the	instance	with	the	agent	installed	will	show	the	Memory	usage
statistic.

Click	on	the	node	with	the	agent	installed,	so	we	can	inspect	it	a	bit	further.	If	we	click	on
each	one	and	look	at	the	details	page,	we	should	note	that	the	instance	with	the	agent
installed	has	a	lot	more	information.	Although	all	instances	report	CPU	usage,	Disk	I/O,
and	network	traffic,	the	instance	with	the	agent	has	much	more.

Figure	6.7.	Google	Cloud	Monitoring	with	agent	installed

In	Figure	6.7,	we	can	see	a	variety	of	additional	charts	including	Open	TCP	connections
and	processes	as	well	as	CPU	steal	(not	pictured).	We	also	have	better	visibility	into	the
machine	details	such	as	network	interfaces,	file	systems,	and	operating	system
information.

Now	that	we	see	how	much	information	is	available,	we	can	install	the	agent	on	the
remaining	instances.	You	may	also	wish	to	install	an	agent	on	the	master	as	it	is	a	critical
piece	of	your	Kubernetes	infrastructure.

Alerts

Next,	we	can	look	at	the	alerting	policies	available	as	part	of	the	monitoring	service.	From
the	instance	details	page,	click	on	the	Create	Alerting	Policy	button	in	the	Incidents
section	at	the	top	of	the	page.

We’ll	name	the	policy	as	Excessive	CPU	Load	and	set	a	metric	threshold.	Under	the
section,	in	the	Metric	Threshold	area,	click	on	Next	and	then	in	the	TARGET	section,
set	Resource	Type	to	Instances.	Then,	set	Applies	To	to	Group	and	kubernetes.	Leave
Condition	Triggers	If	set	to	Any	Member	Violates.

Click	on	Next	and	leave	IF	METRIC	as	CPU	(agent)	and	CONDITION	as	above.	Now
set	THRESHOLD	(PERCENT)	to	80	and	leave	the	time	under	FOR	to	5	minutes.	Click
on	Save	Condition.

Figure	6.8.	Google	Cloud	Monitoring	alert	policy

Finally,	we	will	add	a	notification.	Under	that	section,	leave	Method	as	Email	and	click
on	Add	Notification.	Enter	your	e-mail	address	and	then	click	on	Save	Policy.

Now	whenever	the	CPU	from	one	of	our	instances	goes	above	80	percent,	we	will	receive

an	e-mail	notification.	If	we	ever	need	to	review	our	policies,	we	can	find	them	under	the
Alerting	dropdown	and	Policies	Overview	at	the	menu	on	the	top	of	the	screen.

Beyond	system	monitoring	with	Sysdig
Monitoring	our	cloud	systems	is	a	great	start,	but	what	about	visibility	into	the	containers
themselves?	Although	there	are	a	variety	of	cloud	monitoring	and	visibility	tools,	Sysdig
stands	out	for	its	ability	to	dive	deep	not	only	into	system	operations	but	specifically
containers.

Sysdig	is	open	source	and	is	billed	as	a	universal	system	visibility	tool	with	native	support
for	containers2.	It	is	a	command-line	tool,	which	provides	insight	into	the	areas	we’ve
looked	at	earlier	such	as	storage,	network,	and	system	processes.	What	sets	it	apart	is	the
level	of	detail	and	visibility	it	offers	for	these	process	and	system	activities.	Furthermore,
it	has	native	support	for	containers,	which	gives	us	a	full	picture	of	our	container
operations.	This	is	a	highly	recommended	tool	for	your	container	operations	arsenal.	Their
main	website	is	http://www.sysdig.org/.

Sysdig	Cloud
We	will	take	a	look	at	the	Sysdig	tool	and	some	of	the	useful	command-line-based	UIs	in	a
moment.	However,	the	team	at	Sysdig	has	also	built	a	commercial	product,	named	Sysdig
Cloud,	which	provides	the	advanced	dashboard,	alerting,	and	notification	services	we
discussed	earlier	in	the	chapter.	Also,	the	differentiator	here	has	high	visibility	into
containers,	including	some	nice	visualizations	of	our	application	topology.

Note
If	you’d	rather	skip	the	Sysdig	Cloud	section	and	just	try	out	the	command-line	tool,
simply	skip	to	the	Sysdig	command	line	section	later	in	this	chapter.

If	you	have	not	done	so	already,	sign	up	for	Sysdig	Cloud	at	http://www.sysdigcloud.com.

After	activating	and	logging	in	for	the	first	time,	we’ll	be	taken	to	a	welcome	page.
Clicking	on	Next,	we	are	shown	a	page	with	various	options	to	install	the	sysdig	agents.
For	our	example	environment,	we	will	use	a	Linux	agent.	The	Next	button	will	be
disabled	until	we	install	at	least	one	agent.	The	page	should	show	the	following	command
with	our	access	key	filled	in.

curl	-s	https://s3.amazonaws.com/download.draios.com/stable/install-agent	|	

sudo	bash	-s—--access_key	<Your	Access	Key>

We’ll	need	to	SSH	into	our	master	and	each	node	to	run	the	installer.	It	will	take	a	few
minutes	to	install	several	packages	and	then	set	up	the	connection	to	the	Sysdig	Cloud.

After	our	first	install	completes,	the	page	should	update	with	the	text	You	have	one	agent
connected!	and	the	Next	button	will	become	active.	Go	ahead	and	install	the	rest	of	the
agents	and	then	come	back	to	this	page	and	click	on	Next.

We	can	skip	the	AWS	setup	for	now	and	then	click	on	Let’s	Get	Started	on	the	final
screen.

We’ll	be	taken	to	the	main	sysdig	cloud	dashboard	screen.	kubernetes-master	and	our
various	minion	nodes	should	appear	under	the	Explore	tab.	We	should	see	something

http://www.sysdig.org/
http://www.sysdigcloud.com

similar	to	Figure	6.9	with	our	cluster	master	and	all	four	minion	nodes	(or	the	nodes	we
have	already	installed	agents	on).

Figure	6.9.	Sysdig	Cloud	Explore	page

This	page	shows	us	a	table	view	and	the	links	on	the	left	let	us	explore	some	key	metrics
for	CPU,	memory,	networking,	and	so	on.	Although	this	is	a	great	start,	the	detailed	views
will	give	us	a	much	deeper	look	at	each	node.

Detailed	views

Let’s	take	a	look	at	these	views.	Select	kubernetes-master	and	then	scroll	down	to	the
detail	section	that	appears	below.	By	default,	we	should	see	the	System:	Overview	by
Process	view	(If	it’s	not	selected,	just	click	on	it	in	the	list	on	the	left.)	If	the	chart	is	hard
to	read,	simply	use	the	maximize	icon	in	the	top-left	corner	of	each	graph	for	a	larger
view.

There	are	a	variety	of	interesting	views	to	explore.	Just	to	call	out	a	few	others,
Application:	HTTP	and	System:	Overview	by	container	give	us	some	great	charts	for
inspection.	In	the	later	view,	we	can	see	stats	for	CPU,	memory,	network,	and	file	usage
by	container.

Topology	views

In	addition,	there	are	three	topology	views	at	the	bottom.	These	views	are	perfect	for
helping	us	understand	how	our	application	is	communicating.	Click	on	Topology:
Network	Traffic	and	wait	a	few	seconds	for	the	view	to	fully	populate.	It	should	look
similar	to	Figure	6.10:

Figure	6.10.	Sysdig	Cloud	network	topology	view

We	note	the	view	maps	out	the	flow	of	communication	between	the	minion	nodes	and	the
master	in	the	cluster.	On	the	right-hand	side,	there	may	be	connections	to	servers	with	a
1e100.net	name	and	also	169.254.169.254,	which	are	both	part	of	Google	infrastructure.

You	may	also	note	a	+	symbol	in	the	top	corner	of	the	node	boxes.	Click	on	that	in
kubernetes-master	and	use	the	zoom	tools	at	the	top	of	the	view	area	to	zoom	into	the
details,	as	you	see	in	Figure	6.11:

Figure	6.11.	The	Sysdig	Cloud	network	topology	detailed	view

Note	that	we	can	now	see	all	the	components	of	Kubernetes	running	inside	the	master.	We
can	see	how	the	various	components	work	together.	We	will	see	kubectl	and	the	kublet
process	running,	as	well	as	a	number	of	boxes	with	the	Docker	whale,	which	indicate	that
they	are	containers.	If	we	zoom	in	and	use	the	plus	icon,	we	will	see	that	these	are	the
containers	for	core	Kubernetes	process,	as	we	saw	in	the	services	running	on	the	master
section	in	Chapter	1,	Kubernetes	and	Container	Operations.

Also,	if	we	pan	over	to	the	minion,	we	can	also	see	kublet,	which	initiates
communication,	and	follow	it	all	the	way	through	the	kube-apiserver	container	in	the
master.

We	can	even	see	the	instance	probing	for	GCE	metadata	on	169.254.169.254.	This	view	is
great	in	order	to	get	a	mental	picture	of	how	our	infrastructure	and	underlying	containers
are	talking	to	one	another.

Metrics

Next,	let’s	switch	over	to	the	Metrics	tab	in	the	left-hand	menu	next	to	Views.	Here,	there

are	also	a	variety	of	helpful	views.

Let’s	look	at	capacity.estimated.request.total.count	(avg)	under	System.	This	view
shows	us	an	estimate	of	how	many	requests	a	node	is	capable	of	handling	when	fully
loaded.	This	can	be	really	useful	for	infrastructure	planning.

Figure	6.12.	Sysdig	Cloud	capacity	estimate	view

Alerting
Now	that	we	have	all	this	great	information,	let’s	create	some	notifications.	Scroll	back	up
to	the	top	of	the	page	and	find	the	bell	icon	next	to	one	of	your	minion	entries.	This	will
open	a	New	Alert	dialog.	Here,	we	can	set	manual	alerts	similar	to	what	we	did	earlier	in
the	chapter.	However,	there	is	also	the	option	to	use	Baselines	and	Host	comparison.

Using	the	Baseline	option	is	extremely	helpful	as	Sysdig	will	watch	the	historical	patterns
of	the	node	and	alert	us	whenever	one	of	the	metrics	strays	outside	the	expected	metric
thresholds.	No	manual	settings	are	required,	so	this	can	really	save	time	for	the
notification	setup	and	help	our	operations	team	to	be	proactive	before	issues	arise.	Refer	to

the	following	image:

Figure	6.13.	Sysdig	Cloud	new	alert

The	Host	Comparison	option	is	also	a	great	help	as	it	allows	us	to	compare	metrics	with
other	hosts	and	alert	whenever	one	host	has	a	metric	that	differs	significantly	from	the
group.	A	great	use	case	for	this	is	monitoring	resource	usage	across	minion	nodes	to
ensure	that	our	scheduling	constraints	are	not	creating	a	bottleneck	somewhere	in	the
cluster.

You	can	choose	whichever	option	you	like,	give	it	a	name	and	description	and	choose	a
notification	method.	Sysdig	supports	e-mail,	SNS	(short	for	Simple	Notification	Service),
and	PagerDuty	as	notification	methods.	Once	you	have	everything	set,	just	click	on
Create	and	you	will	start	to	receive	alerts	as	issues	come	up.

Kubernetes	support
An	exciting	new	feature	that	has	been	recently	released	is	support	for	integrating	directly
with	the	Kubernetes	API.	The	agents	make	calls	to	K8s	so	that	it	is	aware	of	metadata	and
the	various	constructs,	such	as	pods	and	RCs.

We	can	check	this	out	easily	on	the	main	dashboard	by	clicking	the	gear	icon	next	to	the
word	Show	on	the	top	bar.	We	should	see	some	filter	options	as	in	the	following	figure
(Figure	6.14).	Click	on	the	Apply	button	next	to	Logical	Apps	Hierarchy	-	Kubernetes.
This	will	set	a	number	of	filters	that	organizes	our	list	in	order	of	namespace,	RC,	pods,
and	finally	container	ID.

Figure	6.14.	Sysdig	Cloud	Kubernetes	filters

We	can	then	select	a	default	namespace	from	the	list	and	use	the	detail	views	later,	as	we
did	before.	By	selecting	the	Topology:	Network	Traffic	view,	we	can	drill	into	the
namespace	and	get	a	visual	for	each	RC	and	the	pods	running	within	(see	Figure	6.15):

Figure	6.15.	Sysdig	Cloud	Kubernetes-aware	topology	view

The	Sysdig	command	line
Whether	you	only	use	the	open	source	tool	or	you	are	trying	out	the	full	Sysdig	Cloud
package,	the	command-line	utility	is	a	great	companion	to	have	to	track	down	issues	or	get
a	deeper	understanding	of	your	system.

In	the	core	tool,	there	is	the	main	sysdig	utility	and	also	a	command-line	style	UI	named
csysdig.	Let’s	take	a	look	at	a	few	useful	commands.

We’ll	need	to	SSH	to	the	master	or	one	of	the	minion	nodes	where	we	installed	the	Sysdig
Cloud	agents.	It’s	a	single	command	to	install	the	CLI	tools	as	follows:

$	curl	-s	https://s3.amazonaws.com/download.draios.com/stable/install-

sysdig	|	sudo	bash

Note
You	can	find	instructions	for	other	OSes	at	http://www.sysdig.org/install/.

First,	we	can	see	the	process	with	the	most	network	activity	by	issuing	the	following
command:

$	sudo	sysdig	-pc	-c	topprocs_net

The	following	screenshot	is	the	result	of	the	preceding	command:

Figure	6.16.	A	Sysdig	top	process	by	network	activity

This	is	an	interactive	view	that	will	show	us	a	top	process	in	terms	of	network	activity.
Also,	there	are	a	plethora	of	commands	to	use	with	sysdig.	A	few	other	useful	commands
to	try	out	include	the	following:

$	sudo	sysdig	-pc	-c	topprocs_cpu

$	sudo	sysdig	-pc	-c	topprocs_file

$	sudo	sysdig	-pc	-c	topprocs_cpu	container.name=<Container	Name	NOT	ID>

Note
More	examples	can	be	found	at	http://www.sysdig.org/wiki/sysdig-examples/.

The	csysdig	command-line	UI

http://www.sysdig.org/install/
http://www.sysdig.org/wiki/sysdig-examples/

Because	we	are	in	a	shell	on	one	of	our	nodes	doesn’t	mean	we	can’t	have	a	UI.	Csysdig	is
a	customizable	UI	to	explore	all	the	metrics	and	insight	that	Sysdig	provides.	Simply	type
csysdig	at	the	prompt:

$	csysdig

After	entering	csysdig,	we	see	a	real-time	listing	of	all	processes	on	the	machine.	At	the
bottom	of	the	screen,	you’ll	note	a	menu	with	various	options.	Click	on	Views	or	F2	if
you	love	to	use	your	keyboard.	On	the	left-hand	menu,	there	are	a	variety	of	options,	but
we’ll	look	at	threads.	Double-click	to	select	Threads.

We	can	see	all	the	threads	currently	running	on	the	system	and	some	information	about	the
resource	usage.	By	default,	we	see	a	big	list	that	is	updating	often.	If	we	click	on	the
Filter,	F4	for	the	mouse	challenged,	we	can	slim	down	the	list.

Type	kube-apiserver,	if	you	are	on	the	master,	or	kube-proxy,	if	you	are	on	a	(minion)
node,	in	the	filter	box	and	press	enter.	The	view	now	filters	for	only	the	threads	in	that
command.

Figure	6.17.	Csysdig	threads

If	we	want	to	inspect	a	little	further,	we	can	simply	select	one	of	the	threads	in	the	list	and
click	on	Dig	or	F6.	Now	we	see	a	detail	listing	of	system	calls	from	the	command	in	real
time.	This	can	be	a	really	useful	tool	to	gain	deep	insight	into	the	containers	and

processing	running	on	our	cluster.

Press	Back	or	the	backspace	key	to	go	back	to	the	previous	screen.	Then,	go	to	Views
once	more.	This	time,	we	will	look	at	the	Containers	view.	Once	again,	we	can	filter	and
also	use	the	Dig	view	to	get	more	in-depth	visibility	into	what	is	happening	at	a	system
call	level.

Another	menu	item	you	might	note	here	is	Actions,	which	is	available	in	the	newest
release.	These	features	allow	us	to	go	from	process	monitoring	to	action	and	response.	It
gives	us	the	ability	to	perform	a	variety	of	actions	from	the	various	process	views	in
csysdig.	For	example,	the	container	view	has	actions	to	drop	into	a	bash	shell,	kill
containers,	inspect	logs,	and	more.	It’s	worth	getting	to	know	the	various	actions	and
hotkeys	and	even	add	you	own	custom	hotkeys	for	common	operations.

Summary
We	took	a	quick	look	at	monitoring	and	logging	with	Kubernetes.	You	should	now	be
familiar	with	how	Kubernetes	uses	cAdvisor	and	Heapster	to	collect	metrics	on	all	the
resources	in	a	given	cluster.	Furthermore,	we	saw	how	Kubernetes	saves	us	time	by
providing	InfluxDB	and	Grafana	set	up	and	configured	out	of	the	box.	Dashboards	are
easily	customizable	for	our	everyday	operational	needs.

In	addition,	we	looked	at	the	built-in	logging	capabilities	with	FluentD	and	the	Google
Cloud	Logging	service.	Also,	Kubernetes	gives	us	great	time	savings	by	setting	up	the
basics	for	us.

Finally,	you	learned	about	the	various	third-party	options	available	to	monitor	our
containers	and	clusters.	Using	these	tools	will	allow	us	to	gain	even	more	insight	into	the
health	and	status	of	our	applications.	All	these	tools	combine	to	give	us	a	solid	toolset	to
manage	day-to-day	operations.

Footnotes
1http://stackdriver.com/

2http://www.sysdig.org/wiki/

http://stackdriver.com/
http://www.sysdig.org/wiki/

Chapter	7.	OCI,	CNCF,	CoreOS,	and
Tectonic
The	first	half	of	this	chapter	will	cover	how	open	standards	encourage	a	diverse	ecosystem
of	container	implementations.	We’ll	look	at	the	Open	Container	Initiative	and	its	mission
to	provide	an	open	container	specification	as	well.	The	second	half	of	this	chapter	will
cover	CoreOS	and	its	advantages	as	a	host	OS,	including	performance	and	support	for
various	container	implementations.	Also,	we’ll	take	a	brief	look	at	the	Tectonic	enterprise
offering	from	CoreOS.

This	chapter	will	discuss	the	following	topics:

Why	standards	matter
The	Open	Container	Initiative	and	Cloud	Native	Computing	Foundation
Container	specifications	versus	implementations
CoreOS	and	its	advantages
Tectonic

The	importance	of	standards
Over	the	past	two	years,	containerization	technology	has	had	a	tremendous	growth	in
popularity.	While	Docker	has	been	at	the	center	of	this	ecosystem,	there	is	an	increased
number	of	players	in	the	container	space.	There	is	already	a	number	of	alternatives	to	the
containerization	and	Docker	implementation	itself	(rkt,	Garden,	LXD,	and	so	on).	In
addition,	there	is	a	rich	ecosystem	of	third-party	tools	that	enhance	and	compliment	your
container	infrastructure.	Kubernetes	lands	squarely	on	the	orchestration	side	of	this
ecosystem,	but	the	bottom	line	is	that	all	these	tools	form	the	basis	to	build	cloud	native
applications.

As	we	mentioned	in	the	very	beginning	of	the	book,	one	of	the	most	attractive	things
about	containers	is	their	ability	to	package	our	application	for	deployment	across	various
environments	(that	is,	development,	testing,	production)	and	various	infrastructure
providers	(GCP,	AWS,	On-Premise,	and	so	on).

To	truly	support	this	type	of	deployment	agility,	we	need	not	only	the	container
themselves	to	have	a	common	platform,	but	also	the	underlying	specifications	to	follow	a
common	set	of	ground	rules.	This	will	allow	for	implementations	that	are	both	flexible	and
highly	specialized.	For	example,	some	workloads	may	need	to	be	run	on	a	highly	secure
implementation.	To	provide	this,	the	implementation	will	have	to	make	more	intentional
decisions	about	some	aspects	of	implementation.	In	either	case,	we	will	have	more	agility
and	freedom	if	our	containers	are	built	on	some	common	structures	that	all
implementations	agree	on	and	support.

Open	Container	Initiative
One	of	the	first	initiatives	to	gain	widespread	industry	engagement	is	the	Open	Container
Initiative	(OCI).	Among	the	industry	collaborators	are	Docker,	Red	Hat,	VMware,	IBM,
Google,	AWS,	and	many	more	listed	on	the	OCI	website,	that	is,
https://www.opencontainers.org/.

The	purpose	of	the	OCI	is	to	split	implementations,	such	as	Docker	and	Rocket,	from	a
standard	specification	for	the	format	and	runtime	of	containerized	workloads.	By	their
own	terms,	the	goal	of	the	OCI	specification	has	three	tenets1:

Creating	a	formal	specification	for	container	image	formats	and	runtime,	which	will
allow	a	compliant	container	to	be	portable	across	all	major,	compliant	operating
systems	and	platforms	without	artificial	technical	barriers.

Accepting,	maintaining	and	advancing	the	projects	associated	with	these	standards
(the	“Projects”).	It	will	look	to	agree	on	a	standard	set	of	container	actions	(start,
exec,	pause,….)	as	well	as	runtime	environment	associated	with	container	runtime.

Harmonizing	the	above-referenced	standard	with	other	proposed	standards,
including	the	appc	specification

https://www.opencontainers.org/

Cloud	Native	Computing	Foundation
A	second	initiative	that	also	has	a	widespread	industry	acceptance	is	the	Cloud	Native
Computing	Foundation	(CNCF).	While	still	focused	on	containerized	workloads,	the
CNCF	operates	a	bit	higher	up	the	stack	at	an	application	design	level.	The	purpose	is	to
provide	a	standard	set	of	tools	and	technologies	to	build,	operate,	and	orchestrate	cloud
native	application	stacks.	Cloud	has	given	us	access	to	a	variety	of	new	technologies	and
practices	that	can	improve	and	evolve	our	classic	software	designs.	This	is	also
particularly	focused	at	the	new	paradigm	of	microservice-oriented	development.

As	a	founding	participant	in	CNCF,	Google	has	donated	the	Kubernetes	open	source
project	as	the	first	step.	The	goal	will	be	to	increase	interoperability	in	the	ecosystem	and
support	better	integration	with	projects,	starting	off	with	Mesos.

Note
For	more	information	on	CNCF	refer:	https://cncf.io/

https://cncf.io/

Standard	container	specification
A	core	result	of	the	OCI	effort	is	the	creation	and	development	of	the	overarching
container	specification.	The	specification	has	five	core	principles	for	all	containers	to
follow,	which	I	will	briefly	paraphrase2:

It	must	have	standard	operations	to	create,	start,	and	stop	containers	across	all
implementations.
It	must	be	content-agnostic,	which	means	that	type	of	application	inside	the
container	does	not	alter	the	standard	operation	or	publishing	of	the	container	itself.
The	container	must	be	infrastructure-agnostic	as	well.	Portability	is	paramount;
therefore,	the	containers	must	be	able	to	operate	just	as	easily	in	GCE	as	in	your
company	data	center	or	on	a	developer’s	laptop.
A	container	must	also	be	designed	for	automation,	which	allows	us	to	automate
across	the	build,	updating,	and	deployment	pipelines.	While	this	rule	is	a	bit	vague,
the	container	implementation	should	not	require	onerous	manual	steps	for	creation
and	release.
Finally,	the	implementation	must	support	industrial-grade	delivery.	Once	again,
speaking	to	the	build	and	deployment	pipelines	and	requiring	a	streamlined	efficiency
to	the	portability	and	transit	of	the	containers	between	infrastructure	and	deployment
tiers.

The	specification	also	defines	core	principles	for	container	formats	and	runtimes.	You	can
read	more	about	the	specifications	on	the	GitHub	project	at:

https://github.com/opencontainers/specs

While	the	core	specification	can	be	a	bit	abstract,	the	runC	implementation	is	a	concrete
example	of	the	OCI	specs	in	the	form	of	a	container	runtime	and	image	format.	Also,	you
can	read	more	of	the	technical	details	on	GitHub	at
https://github.com/opencontainers/runc.

runC	is	the	backing	format	and	runtime	for	a	variety	of	popular	container	tools.	It	was
donated	to	OCI	by	Docker	and	was	created	from	the	same	plumbing	work	used	in	the
Docker	platform.	Since	its	release,	it	has	had	a	welcome	uptake	by	numerous	projects.

Even	the	popular	Open	Source	PaaS,	Cloud	Founrdy	announced	that	it	will	use	runC	in
Garden.	Garden	provides	the	containerization	plumbing	for	Deigo,	which	acts	as	an
orchestration	layer	similar	to	Kubernetes.

rkt	was	originally	based	on	the	appc	specification.	appc	was	actually	an	earlier	attempt	by
the	folks	at	CoreOS	to	form	a	common	specification	around	containerization.	Now	that
CoreOS	is	participating	in	OCI,	they	are	working	to	help	merge	the	appc	specification	into
OCI;	it	should	result	in	a	higher	level	of	compatibility	across	the	container	ecosystem.

https://github.com/opencontainers/specs
https://github.com/opencontainers/runc

CoreOS
While	the	specifications	provide	us	a	common	ground,	there	are	also	some	trends	evolving
around	the	choice	of	OS	for	our	containers.	There	are	several	tailor-fit	OSes	that	are	being
developed	specifically	to	run	container	workloads.	Although	implementations	vary,	they
all	have	similar	characteristics.	Focus	on	a	slim	installation	base,	atomic	OS	updating,	and
signed	applications	for	efficient	and	secure	operations.

One	OS	that	is	gaining	popularity	is	CoreOS.	CoreOS	offers	major	benefits	for	both
security	and	resource	utilization.	It	provides	the	later	by	removing	package	dependencies
completely	from	picture.	Instead,	CoreOS	runs	all	applications	and	services	in	containers.
By	providing	only	a	small	set	of	services	required	to	support	running	containers	and
bypassing	the	need	for	hypervisor	usage,	CoreOS	lets	us	use	a	larger	portion	of	the
resource	pool	to	run	our	containerized	applications.	This	allows	users	to	gain	higher
performance	from	their	infrastructure	and	better	container	to	node	(server)	usage	ratios.

Note
More	container	OSes

There	are	several	other	container-optimized	OSes	that	have	emerged	recently.

Red	Hat	Enterprise	Linux	Atomic	Host	focuses	on	security	with	SELinux	enabled	by
default	and	“Atomic”	updates	to	the	OS	similar	to	what	we	saw	with	CoreOS.	Refer	to	the
following	link:

https://access.redhat.com/articles/rhel-atomic-getting-started

Ubuntu	Snappy	also	capitalizes	on	the	efficiency	and	security	gains	of	separating	the	OS
components	from	the	frameworks	and	applications.	Using	application	images	and
verification	signatures,	we	get	an	efficient	Ubuntu-based	OS	for	our	container	workloads:

http://www.ubuntu.com/cloud/tools/snappy

VMware	Photon	is	another	lightweight	container	OS	that	is	optimized	specifically	for
vSphere	and	the	VMware	platform.	It	runs	Docker,	rkt,	and	Garden	and	also	has	some
experimental	versions	you	can	run	on	the	popular	public	cloud	offerings.	Refer	to	the
following	link:

https://vmware.github.io/photon/

Using	the	isolated	nature	of	containers,	we	increase	reliability	and	decrease	the	complexity
of	updates	for	each	application.	Now	applications	can	be	updated	along	with	supporting
libraries	whenever	a	new	container	release	is	ready.

https://access.redhat.com/articles/rhel-atomic-getting-started
http://www.ubuntu.com/cloud/tools/snappy
https://vmware.github.io/photon/

Figure	7.1.	CoreOS	updates

Finally,	CoreOS	has	some	added	advantages	in	the	realm	of	security.	For	starters,	the	OS
can	be	updated	as	one	whole	unit	instead	of	by	individual	packages	(refer	to	Figure	7.1).
This	avoids	many	issues	that	arise	from	partial	updates.	To	achieve	this,	CoreOS	uses	two
partitions:	one	as	the	active	OS	partition	and	a	secondary	to	receive	a	full	update.	Once
updates	are	completed	successfully,	a	reboot	promotes	the	secondary	partition.	If	anything
goes	wrong,	the	original	partition	is	available	for	fail	back.

The	system	owners	can	also	control	when	those	updates	are	applied.	This	gives	us	the
flexibility	to	prioritize	critical	updates	while	working	with	real-world	scheduling	for	the
more	common	updates.	In	addition,	the	entire	update	is	signed	and	transmitted	via	SSL	for
added	security	across	the	entire	process.

rkt
A	central	piece	of	the	CoreOS	ecosystem	is	its	own	container	runtime,	named	rkt.	As	we
mentioned	earlier,	rkt	is	another	implementation	with	a	specific	focus	on	security.	rkt’s
main	advantage	is	in	running	the	engine	without	a	daemon	as	root	the	way	Docker	does
today.	Initially,	rkt	also	had	an	advantage	in	establishing	trust	for	container	images.
However,	recent	updates	to	Docker	have	made	great	strides	with	the	new	Content	Trust
feature.

The	bottom	line	is	that	rkt	is	still	an	implementation	focused	on	security	to	run	containers
in	production.	rkt	does	use	an	image	format	named	ACI,	but	it	also	supports	running
Docker-based	images.	At	the	time	of	writing	this	book,	it	is	only	at	version	0.11.0,	but	it’s
already	gaining	momentum	as	a	way	to	run	Docker	images	securely	in	production.

In	addition,	CoreOS	recently	announced	integration	with	the	Intel®	Virtualization
Technology,	which	allows	containers	to	run	in	higher	levels	of	isolation.	This	hardware-
enhanced	security	allows	the	containers	to	be	run	inside	a	Kernel-based	Virtual	Machine
(KVM)	process	providing	isolation	from	the	kernel	similar	to	what	we	see	with
hypervisors	today.

etcd
Another	central	piece	in	the	CoreOS	ecosystem	worth	mentioning	is	their	open	source	etcd
project.	etcd	is	a	distributed	and	consistent	key-value	store.	A	RESTful	API	is	used	to
interface	with	etcd,	so	it’s	easy	to	integrate	with	your	project.

If	it	sounds	familiar,	it’s	because	we	saw	this	process	running	in	Chapter	1,	Kubernetes
and	Container	Operations,	under	the	Services	running	on	the	master	section.	Kubernetes
actually	utilizes	etcd	to	keep	track	of	cluster	configuration	and	current	state.	K8s	uses	it
for	the	service	discovery	capabilities	as	well.

Kubernetes	with	CoreOS
Now	that	we	understand	the	benefits,	let’s	take	a	look	at	a	Kubernetes	cluster	using
CoreOS.	The	documentation	supports	a	number	of	platforms,	but	one	of	the	easiest	to	spin
up	is	AWS	with	the	CoreOS	CloudFormation	and	CLI	scripts.

Tip
If	you	are	interested	in	running	Kubernetes	with	CoreOS	on	other	platforms,	you	can	find
more	details	in	the	CoreOS	documentation	here:

https://coreos.com/kubernetes/docs/latest/

We	can	find	the	latest	scripts	for	AWS	here:

https://github.com/coreos/coreos-kubernetes/releases/latest

For	this	walk-through,	we	will	use	v0.1.0	(latest	at	the	time	of	writing)	of	the	scripts.	We’ll
need	a	Linux	machine	with	the	AWS	CLI	installed	and	configured.	See	the	Working	with
other	providers	section	of	Chapter	1,	Kubernetes	and	Container	Operations,	for	details	on
installing	and	configuring	the	AWS	CLI.	I	recommend	that	you	use	a	box	with	the
Kubernetes	control	scripts	already	installed	to	avoid	having	to	download	kubectl
separately.

Let’s	first	download	and	extract	the	tarball	from	GitHub	as	follows:

$	wget	https://github.com/coreos/coreos-

kubernetes/releases/download/v0.1.0/kube-aws-linux-amd64.tar.gz

$	tar	xzvf	kube-aws-linux-amd64.tar.gz

This	will	extract	a	single	executable	named	kube-aws.	This	file	will	launch	the	AWS
infrastructure	in	the	same	way	that	kube-up.sh	did	for	us	earlier.

Before	we	proceed,	we	need	to	create	a	key-pair	to	use	on	AWS.	For	this	example,	I	create
one	key-pair	named	kube-aws-key.	We	can	create	a	key	in	the	console	under	the	EC2
service	on	the	left-hand	menu	and	then	select	Key	Pairs.	Keys	can	also	be	created	using
the	CLI.

Next,	we	will	need	to	create	a	cluster	definition	file.	In	the	same	folder,	we	downloaded
kube-aws;	create	a	new	file	from	the	listing	7-1:

#	Unique	name	of	Kubernetes	cluster.	In	order	to	deploy

#	more	than	one	cluster	into	the	same	AWS	account,	this

#	name	must	not	conflict	with	an	existing	cluster.

#	clusterName:	kubernetes

#	Name	of	the	SSH	keypair	already	loaded	into	the	AWS

#	account	being	used	to	deploy	this	cluster.

keyName:	kube-aws-key

#	Region	to	provision	Kubernetes	cluster

region:	us-east-1

https://coreos.com/kubernetes/docs/latest/
https://github.com/coreos/coreos-kubernetes/releases/latest

#	Availability	Zone	to	provision	Kubernetes	cluster

#availabilityZone:

#	DNS	name	routable	to	the	Kubernetes	controller	nodes

#	from	worker	nodes	and	external	clients.	The	deployer

#	is	responsible	for	making	this	name	routable

externalDNSName:	kube-aws

#	Number	of	worker	nodes	to	create

#workerCount:	1

#	Location	of	kube-aws	artifacts	used	to	deploy	a	new

#	Kubernetes	cluster.	The	necessary	artifacts	are	already

#	available	in	a	public	S3	bucket	matching	the	version

#	of	the	kube-aws	tool.	This	parameter	is	typically

#	overwritten	only	for	development	purposes.

#artifactURL:	https://coreos-kubernetes.s3.amazonaws.com/<VERSION>

Listing	7-1:	coreos-cluster.yaml

We	have	a	few	things	to	note.	We	have	keyName	set	to	the	key	we	just	created,	kube-aws-
key.	The	region	is	set	to	us-east-1	(Northern	Virginia),	so	edit	this	if	you	prefer	a
different	region.	In	addition,	clustername	and	workerCount	are	commented	out,	but	their
defaults	are	as	listed,	kubernetes	and	1,	respectively.	workerCount	defines	the	number	of
slaves,	so	you	can	increase	this	value	if	you	need	more.

In	addition,	we	have	a	placeholder	DNS	entry.	The	value	for	externalDNSName	is	set	to
kube-aws.

Note
For	simplicity’s	sake,	we	can	simply	add	an	entry	for	kube-aws	in	the	/etc/hosts	file.	For
a	production	system,	we	would	want	a	real	entry	that	we	could	expose	through	Route	53,
another	DNS	registrar,	or	a	local	DNS	entry.

Now	we	can	spin	up	the	CoreOS	cluster:

$./kube-aws	up	--config="coreos-cluster.yaml"

We	should	get	the	master	IP	in	the	console	output	under	controller	IP.	We	will	need	to
update	the	IP	address	for	kube-aws	in	our	/etc/hosts	file	or	DNS	provider.	We	can	also
get	the	master	IP	by	checking	our	running	instances	in	AWS.	It	should	be	labeled	kube-
aws-controller.

$	vi	/etc/hosts

There	you	have	it!	We	now	have	a	cluster	running	CoreOS.	The	script	creates	all	the
necessary	AWS	resources,	such	as	Virtual	Private	Clouds	(VPCs),	security	groups,	and
IAM	role.

Tip
Note	that	if	this	is	a	fresh	box,	you	will	need	to	download	kubectl	separately	as	it	is	not
bundled	with	kube-aws:

wget	https://storage.googleapis.com/kubernetes-

release/release/v1.0.6/bin/linux/amd64/kubectl

We	can	now	use	kubectl	to	see	our	new	cluster:

$	kubectl	--kubeconfig=clusters/kubernetes/kubeconfig	get	nodes

We	should	see	a	single	node	listed	with	the	EC2	internal	DNS	as	the	name.	Note
kubeconfig,	this	tells	Kubernetes	to	use	the	configuration	file	for	the	cluster	we	just
created	instead	of	the	previous	GCE	cluster	we	have	been	working	thus	far.	This	is	useful
if	we	want	to	manage	multiple	clusters	from	the	same	machine.

Tectonic
Running	Kubernetes	on	CoreOS	is	a	great	start,	but	you	may	find	that	you	want	a	higher
level	of	support.	Enter	Tectonic,	the	CoreOS	enterprise	offering	for	running	Kubernetes
with	CoreOS.	Tectonic	uses	many	of	the	components	we’ve	already	discussed.	CoreOS	is
the	OS	and	both	Docker	and	rkt	runtimes	are	supported.	In	addition,	Kubernetes,	etcd,	and
flannel	are	packaged	together	to	give	a	full	stack	of	cluster	orchestration.	We	discussed
flannel	briefly	in	Chapter	3,	Core	Concepts	–	Networking,	Storage,	and	Advanced
Services.	It	is	an	overlay	network	that	uses	a	model	similar	to	the	native	Kubernetes
model,	and	it	uses	etcd	as	a	backend.

Offering	a	support	package	similar	to	Red	Hat,	CoreOS	are	also	providing	24x7	support
for	the	open	source	software	that	Tectonic	is	built	on.	Tectonic	also	provides	regular
cluster	updates	and	a	nice	dashboard	with	views	for	all	the	components	of	Kubernetes.
CoreUpdate	allows	users	to	have	more	control	of	the	automatic	updates.	In	addition,	it
ships	with	Tectonic	Identity	for	SSO	across	the	cluster	and	the	Quay	Enterprise,	which
provides	a	secure	container	registry	behind	your	own	firewall.

Dashboard	highlights
Here	are	some	highlights	of	the	Tectonic	dashboard:

Figure	7.2.	The	Tectonic	main	dashboard

Tectonic	is	now	generally	available	and	the	dashboard	already	has	some	nice	features.	As
you	can	see	in	Figure	7.3,	we	can	see	a	lot	of	detail	about	our	replication	controller	and
can	even	use	the	GUI	to	scale	up	and	down	with	the	click	of	a	button:

Figure	7.3.	Tectonic	replication	controller	detail

Another	nice	feature	is	the	Streaming	events	page.	Here,	we	can	watch	the	events	live,
pause,	and	filter	based	on	event	severity	and	resource	type.

Figure	7.4.	Events	stream

A	useful	feature	to	browse	anywhere	in	the	dashboard	system	is	the	namespace	filtering
option.	Simply	click	on	the	gear	in	the	top-right	corner	of	the	page,	and	we	can	filter	our
views	by	namespace.	This	can	be	helpful	if	we	want	to	filter	out	the	Kubernetes	system
pods	or	just	look	at	a	particular	collection	of	resources.

Figure	7.5.	Namespace	filtering

Summary
In	this	chapter,	we	looked	at	the	emerging	standards	bodies	in	the	container	community
and	how	they	are	shaping	the	technology	for	the	better	with	open	specifications.	We	also
took	a	closer	look	at	CoreOS,	a	key	player	in	both	the	container	and	Kubernetes
community.	We	explored	the	technology	they	are	developing	to	enhance	and	compliment
container	orchestration	and	saw	first-hand	how	to	use	some	of	it	with	Kubernetes.	Finally,
we	looked	at	the	supported	enterprise	offering	of	Tectonic	and	some	of	the	features	that
will	be	available	soon.

Footnotes
1https://www.opencontainers.org/faq/	(#11	on	the	page)

2https://github.com/opencontainers/specs/blob/master/principles.md

https://www.opencontainers.org/faq/
https://github.com/opencontainers/specs/blob/master/principles.md

Chapter	8.	Towards	Production-Ready
In	this	chapter,	we’ll	look	at	considerations	to	move	to	production.	We	will	also	show
some	helpful	tools	and	third-party	projects	available	in	the	Kubernetes	community	at	large
and	where	you	can	go	to	get	more	help.

This	chapter	will	discuss	the	following	topics:

Production	characteristics
The	Kubernetes	ecosystem
Where	to	get	help

Ready	for	production
We’ve	walked	through	a	number	of	typical	operations	using	Kubernetes.	As	we	saw,	K8s
offers	a	variety	of	features	and	abstractions	that	ease	the	burden	of	day-to-day
management	for	container	deployments.

There	are	many	characteristics	that	define	a	production-ready	system	for	containers.
Figure	8.1	provides	a	high-level	view	of	the	major	concerns	for	production-ready	clusters.
This	is	by	no	means	an	exhaustive	list,	but	it’s	meant	to	provide	some	solid	ground
heading	into	production	operations.

Figure	8.1.	Production	characteristics	for	container	operations.

We	saw	how	the	core	concepts	and	abstractions	of	Kubernetes	address	a	few	of	these
concerns.	The	service	abstraction	has	built	in	service	discovery	and	health	checking	at
both	the	service	and	application	level.	We	also	get	seamless	application	updates	and
scalability	from	the	replication	controller	construct.	All	three	core	abstractions	of	services,
replication	controllers,	and	pods	work	with	a	core	scheduling	and	affinity	ruleset	and	give
us	easy	service	and	application	composition.

There	is	a	built-in	support	for	a	variety	of	persistent	storage	options,	and	the	networking
model	provides	manageable	network	operations	with	options	to	work	with	other	third-
party	providers.	Also,	we	took	a	brief	look	at	CI/CD	integration	with	some	of	the	popular

tools	in	the	marketplace.

Furthermore,	we	have	built-in	system	events	tracking,	and	with	the	major	cloud	providers,
an	out-of-the	box	setup	for	monitoring	and	logging.	We	also	saw	how	this	can	be	extended
with	third-party	providers	such	as	StackDriver	and	Sysdig.	These	services	also	address
overall	node	health	and	proactive	trend	deviation	alerts.

The	core	constructs	also	help	us	address	high	availability	in	our	application	and	service
layers.	The	scheduler	can	be	used	with	autoscaling	mechanisms	to	provide	this	at	a	node
level.	There	is	also	a	support	to	make	the	Kubernetes	master	itself	highly	available.

We	finally	explored	a	new	breed	of	operating	systems	that	give	us	a	slim	base	to	build	on
and	secure	update	mechanisms	for	patching	and	updates.	The	slim	base,	together	with
scheduling,	can	help	us	with	efficient	resource	utilization.	In	addition,	there	is
functionality	in	the	OS	and	Docker	itself	for	trusted	image	verification.

Security
We	have	not	explored	many	of	the	areas	around	security	in	depth.	The	subject	itself	could
fill	its	own	book.	However,	Kubernetes	does	provide	one	very	important	construct	out	of
the	box	named	secrets.

Secrets	give	us	a	way	to	store	sensitive	information	without	including	plaintext	versions	in
our	resource	definition	files.	Secrets	can	be	mounted	to	the	pods	that	need	them	and	then
accessed	within	the	pod	as	files	with	the	secret	values	as	content.

Secrets	are	still	in	their	early	stages,	but	a	vital	component	for	production	operations.
There	are	several	improvements	planned	here	for	future	releases.

To	learn	more	about	secrets	and	even	get	a	walk-through,	check	out	the	Secrets	section	in
the	K8s	user	guide	at	http://kubernetes.io/v1.0/docs/user-guide/secrets.html.

http://kubernetes.io/v1.0/docs/user-guide/secrets.html

Ready,	set,	go
While	there	are	still	some	gaps,	a	variety	of	the	remaining	security	and	operations
concerns	are	actively	being	addresses	by	third-party	companies	as	we	will	see	in	the
following	section.	Going	forward,	the	Kubernetes	project	will	continue	to	evolve,	and	the
community	of	projects	and	partners	around	K8s	and	Docker	will	also	grow.	The
community	is	closing	the	remaining	gaps	at	a	phenomenal	pace.

Third-party	companies
Since	the	Kubernetes	project’s	initial	release,	there	has	been	a	growing	ecosystem	of
partners.	We	looked	at	CoreOS	in	the	previous	chapter,	but	there	are	many	more	projects
and	companies	in	this	space.	We	will	highlight	a	few	that	may	be	useful	as	you	move
towards	production.

Private	registries
In	many	situations,	organizations	will	not	want	to	place	their	applications	and/or
intellectual	property	in	public	repositories.	For	those	cases,	a	private	registry	solution	is
helpful	in	securely	integrating	deployments	end	to	end.

Google	Cloud	offers	the	Google	Container	Registry:	https://cloud.google.com/container-
registry/.

Docker	has	their	own	Trusted	Registry	offering:	https://www.docker.com/docker-trusted-
registry.

Quay.io	also	provides	secure	private	registries,	vulnerability	scanning,	and	comes	from
the	CoreOS	team:	https://quay.io/.

https://cloud.google.com/container-registry/
https://www.docker.com/docker-trusted-registry
https://quay.io/

Google	Container	Engine
Google	was	the	main	author	of	the	original	Kubernetes	project	and	still	a	major
contributor.	Although	this	book	has	mostly	focused	on	running	Kubernetes	on	our	own,
Google	is	also	offering	a	fully	managed	container	service	through	the	Google	Cloud
Platform.

Note
Find	more	information	on	the	Google	Container	Engine	(GKE)	website:

https://cloud.google.com/container-engine/

Kubernetes	will	be	installed	on	GCE	and	managed	by	Google	engineers.	They	also
provide	private	registries	and	integration	with	your	existing	private	networks.

Note
Create	your	first	GKE	cluster

From	the	GCP	console,	under	Compute,	click	on	Container	Engine	and	then	Container
Clusters.

If	this	is	your	first	time	creating	a	cluster,	you’ll	have	an	information	box	in	the	middle	of
the	page.	Click	on	the	Create	a	container	cluster	button.

Choose	a	name	for	your	cluster	and	the	zone.	You’ll	also	be	able	to	choose	the	machine
type	(instance	size)	for	your	nodes	and	how	many	nodes	(cluster	size)	you	want	in	your
cluster.	The	master	is	managed	and	updated	by	the	Google	team	themselves.	Leave	the
Cloud	Logging	checked.	Click	on	Create,	and	in	a	few	minutes,	you’ll	have	a	new	cluster
ready	for	use.

You’ll	need	kubectl	that	is	included	with	the	Google	SDK	to	begin	using	your	GKE
cluster.	Refer	to	Chapter	1,	Kubernetes	and	Container	Operations,	for	details	on	installing
the	SDK.	Once	we	have	the	SDK,	we	can	configure	kubectl	and	the	SDK	for	our	cluster
using	the	steps	outlined	at	https://cloud.google.com/container-engine/docs/before-you-
begin#install_kubectl.

https://cloud.google.com/container-engine/
https://cloud.google.com/container-engine/docs/before-you-begin#install_kubectl

Twistlock
Twistlock.io	is	a	vulnerability	and	hardening	tool	tailor-made	for	containers.	They	provide
the	ability	to	enforce	policy	and	audit	risk	at	the	container	level	itself.	While	not
specifically	designed	for	Kubernetes,	this	promises	to	be	a	core	piece	of	governance	and
compliance	for	container	operations.	Here	is	a	brief	description	from	their	website:

“Twistlock	is	the	first	security	solution	designed	specifically	to	protect	containerized
computing	and	micro-services.

The	Twistlock	Security	Suite	detects	vulnerabilities,	hardens	container	images,	and
enforces	security	policies	across	the	lifecycle	of	applications.

We	are	portable	and	agentless;	we	run	everywhere	your	containers	do…	dev
workstations,	public	clouds,	private	clouds.”

Note
Please	refer	to	the	Twistlock	website	for	more	information:

https://www.twistlock.io/

https://www.twistlock.io/

Kismatic
Kismatic	was	founded	by	a	few	folks	with	ties	to	both	the	Kubernetes	and	the	Mesos
ecosystems.	They	are	aiming	to	provide	enterprise	support	for	Kubernetes.	They	were
early	contributors	and	built	much	of	the	user	interface	we	saw	in	Chapter	1,	Kubernetes
and	Container	Operations.	In	addition,	they	are	building	the	following	plugins,	as	listed
on	their	site.

“Role-based	access	controls	(RBAC):	Cluster-level	virtualization	is	achieved	using
Kubernetes	namespaces,	a	mechanism	in	Kubernetes	for	partitioning	resources
created	by	users	into	a	logically	named	group.	We	extend	Kubernetes	namespaces
with	support	for	RBAC,	the	standard	enterprise	systems	security	method	used	to
implement	mandatory	access	control	(MAC)	or	discretionary	access	control	(DAC).

Kerberos	for	bedrock	authentication:	Kubernetes	currently	uses	client	certificates,
tokens,	or	HTTP	basic	authentication	to	authenticate	users	for	API	calls.	For	many
enterprises,	this	level	of	authentication	fails	to	meet	production	demands.	Kismatic
extends	existing	functionality	by	taking	the	API	server	tokens	issued	after	the	user
has	been	(re)authenticated	and	integrating	with	bedrock	authentication	in	Kerberos.

LDAP/AD	integration:	For	enterprises	looking	to	manage	user	access	via	existing
directory	services,	Kismatic	integrates	Kubernetes	such	services	for	authentication
through	LDAP	/	Active	Directory.

Auditing	controls:	In	compliance	sensitive	enterprise	environments,	we	have
recognized	that	rich	auditing	and	logging	instrumentation	and	persistence	are	key	to
production	stability.	Therefore,	we	are	excited	to	announce	our	audit	log	plugin	for
Kubernetes,	providing	a	trusted	way	to	track	security-relevant	information	on	your
running	Kubernetes	microservices	and	cluster	activities.”

Note
Please	refer	to	the	following	Kismatic	website	for	more	information:

https://kismatic.com/

https://kismatic.com/

Mesosphere	(Kubernetes	on	Mesos)
Mesosphere	itself	is	building	a	commercially	supported	product	(DCOS)	around	the	open
source	Apache	Mesos	project.	Apache	Mesos	is	a	cluster	management	system	that	offers
scheduling	and	resource	sharing	a	bit	like	Kubernetes	itself,	but	at	a	much	higher	level.
The	open	source	project	is	used	by	several	well-known	companies,	such	as	Twitter	and
AirBnB.

Note
Get	more	information	on	the	Mesos	OS	project	and	the	Mesosphere	offerings	at	these
sites:

http://mesos.apache.org/
https://mesosphere.com/

Mesos	by	its	nature	is	modular	and	allows	the	use	of	different	frameworks	for	a	variety	of
platforms.	A	Kubernetes	framework	is	now	available,	so	we	can	take	advantage	of	the
cluster	managing	in	Mesos	while	still	maintaining	the	useful	application-level	abstractions
in	K8s.	Refer	to	the	following	link:

https://github.com/mesosphere/kubernetes-mesos

http://mesos.apache.org/
https://mesosphere.com/
https://github.com/mesosphere/kubernetes-mesos

Deis
The	Deis	project	provides	an	open	source	Platform	as	a	Service	(PaaS)	solution.	This
allows	companies	to	deploy	their	own	PaaS	on	premise	or	in	the	public	cloud.	Deis	uses
CoreOS	as	an	underlying	operating	system	and	runs	applications	in	Docker.	Version	1.9
now	has	the	preview	support	for	Kubernetes	as	a	scheduler.	While	this	is	not	production-
ready	at	the	moment,	it’s	a	good	one	to	watch	if	you	are	interested	in	deploying	your	own
PaaS.

Note
You	can	refer	to	the	following	website	for	more	information	on	Deis:

http://docs.deis.io/en/latest/customizing_deis/choosing-a-scheduler/#k8s-scheduler

http://docs.deis.io/en/latest/customizing_deis/choosing-a-scheduler/#k8s-scheduler

OpenShift
Another	PaaS	solution	is	OpenShift	from	Red	Hat.	The	OpenShift	platform	uses	the	Red
Hat	Atomic	platform	as	a	secure	and	slim	OS	for	running	containers.	In	version	3,
Kubernetes	has	been	added	as	the	orchestration	layer	for	all	container	operations	on	your
PaaS.	This	is	great	combination	to	manage	PaaS	installations	at	a	large	scale.

Note
More	information	on	OpenShift	can	be	found	here:

https://enterprise.openshift.com/

https://enterprise.openshift.com/

Where	to	learn	more
The	Kubernetes	project	is	an	open	source	effort,	so	there	is	a	broad	community	of
contributors	and	enthusiasts.	One	great	resource	in	order	to	find	more	assistance	is	the
Kubernetes	Slack	channel	as	follows:

http://slack.kubernetes.io/

There	is	also	a	containers	group	on	Google	groups.	You	can	join	here:

https://groups.google.com/forum/#!forum/google-containers

If	you	enjoyed	this	book,	you	can	find	more	of	my	articles,	how	tos,	and	various	musings
on	my	blogs	and	twitter	page	as	follows:

http://www.cloudtp.com/meet-the-advisors/jonathan-baier/
https://medium.com/@grizzbaier
https://twitter.com/grizzbaier

http://slack.kubernetes.io/
https://groups.google.com/forum/#!forum/google-containers
http://www.cloudtp.com/meet-the-advisors/jonathan-baier/
https://medium.com/@grizzbaier
https://twitter.com/grizzbaier

Summary
In	this	final	chapter,	we	left	a	few	breadcrumbs	to	guide	you	on	your	continued	journey
with	Kubernetes.	You	should	have	a	solid	set	of	production	characteristics	to	get	you
started.	There	is	a	wide	community	in	both	the	Docker	and	Kubernetes	world.	There	are
also	a	few	additional	resources	we	provided	if	you	need	a	friendly	face	along	the	way.

By	now,	we	have	seen	the	full	spectrum	of	container	operations	with	Kubernetes.	You
should	be	more	confident	in	how	Kubernetes	can	streamline	the	management	of	your
container	deployments	and	how	you	can	plan	to	move	containers	off	the	developer	laptops
and	onto	production	servers.

Index
A

ACI	/	rkt
advanced	services

about	/	Advanced	services
external	services	/	External	services
internal	services	/	Internal	services
custom	load	balancing	/	Custom	load	balancing
cross-node	proxy	/	Cross-node	proxy
custom	ports	/	Custom	ports
multiple	ports	/	Multiple	ports
migrations	/	Migrations,	multicluster,	and	more
multicluster	/	Migrations,	multicluster,	and	more
custom	addressing	/	Custom	addressing

alerting,	system	monitoring	with	Sysdig
about	/	Alerting
Baseline	option	/	Alerting
Host	Comparison	option	/	Alerting

Amazon	Web	Services	(AWS)	/	Our	first	cluster
Apache	/	What	is	a	container?
appc	specification	/	Standard	container	specification
applications

scaling	up	/	Scaling	up
updates	/	Smooth	updates

application	scheduling
about	/	Application	scheduling
example	/	Scheduling	example

architecture,	Kubernetes
about	/	The	architecture
master	/	Master
nodes	/	Node	(formerly	minions)

B
balanced	design

about	/	Balanced	design
Border	Gateway	Protocol	(BGP)	/	Project	Calico
Borg	/	Advantages	of	Kubernetes
built-in	monitoring

about	/	Built-in	monitoring
Heapster	exploring	/	Exploring	Heapster
dashboards,	customizing	/	Customizing	our	dashboards

C
cAdvisor

about	/	Built-in	monitoring
URL	/	Built-in	monitoring

Cloud	Founrdy	/	Standard	container	specification
Cloud	Native	Computing	Foundation	(CNCF)	/	Cloud	Native	Computing	Foundation
cloud	volumes,	persistent	storage

about	/	Cloud	volumes
GCE	persistent	disks	/	GCE	persistent	disks
AWS	Elastic	Block	Store	/	AWS	Elastic	Block	Store

cluster
about	/	Our	first	cluster
Kubernetes	UI	/	Kubernetes	UI
Grafana	/	Grafana
Swagger	/	Swagger
command	line	/	Command	line
services,	running	on	master	/	Services	running	on	the	master
services,	running	on	minions	/	Services	running	on	the	minions
resetting	/	Resetting	the	cluster
growing	/	Growing	your	cluster
scaling	up,	on	GCE	/	Scaling	up	the	cluster	on	GCE
scaling	down	/	Autoscaling	and	scaling	down
autoscaling	/	Autoscaling	and	scaling	down
scaling	up,	on	AWS	/	Scaling	up	the	cluster	on	AWS
scaling	manually	/	Scaling	manually

command	line	/	Command	line
Command	Line	Interface	(CLI)	/	Working	with	other	providers
container’s	afterlife	/	The	container’s	afterlife
container	OSes	/	CoreOS
containers

about	/	A	brief	overview	of	containers,	What	is	a	container?
advantages	/	Why	are	containers	so	cool?
advantages,	to	Continuous	Integration	/	Advantages	to	Continuous
Integration/Continuous	Deployment
advantages,	to	Continuous	Development	/	Advantages	to	Continuous
Integration/Continuous	Deployment
resource	utilization	/	Resource	utilization

content-agnostic	/	Standard	container	specification
Content	Trust	feature	/	rkt
continuous	delivery

integrating	with	/	Integration	with	continuous	delivery
Continuous	Integration	/	Advantages	to	Continuous	Integration/Continuous
Deployment

Contrib
about	/	Built-in	monitoring

Control	groups	(cGroups)	/	What	is	a	container?
core	constructs,	Kubernetes

about	/	Core	constructs
pods	/	Pods
labels	/	Labels
container’s	afterlife	/	The	container’s	afterlife
services	/	Services
replication	controllers	(RCs)	/	Replication	controllers

CoreOS
about	/	CoreOS
rkt	/	rkt
etcd	/	etcd

CoreOS	CloudFormation	/	Kubernetes	with	CoreOS
CoreUpdate	/	Tectonic
csysdig	command-line	UI

about	/	The	csysdig	command-line	UI
cutovers	/	Testing,	releases,	and	cutovers

D
Deis

about	/	Deis
denial-of-service	attacks	/	What	is	a	container?
designed	for	automation	/	Standard	container	specification
DNS

about	/	DNS
Docker	/	The	architecture
Docker	Engine

about	/	Docker
Docker	plugins

about	/	Docker	plugins	(libnetwork)
Domain	Name	System	(DNS)	/	Node	(formerly	minions)

E
Elasticsearch	/	Working	with	other	providers
example	environment

setting	up	/	Example	set	up

F
Fabric8

about	/	Bonus	fun
URL	/	Bonus	fun

Flannel
about	/	Flannel

FluentD
about	/	FluentD
exploring	/	FluentD

G
GCE	monitoring

signing	up	/	Sign-up	for	GCE	monitoring
detailed	monitoring,	configuring	/	Configure	detailed	monitoring
alerts	/	Alerts

Google	Cloud	Logging
about	/	FluentD	and	Google	Cloud	Logging

Google	Cloud	Platform	(GCP)	/	Our	first	cluster
Google	Compute	Engine	(GCE)	/	Our	first	cluster
Google	Container	Engine

about	/	Google	Container	Engine
Grafana

about	/	Grafana
Gulp.js

about	/	Gulp.js
prerequisites	/	Prerequisites
Gulp	build	example	/	Gulp	build	example

H
health	checks

about	/	Health	checks
TCP	checks	/	TCP	checks
life	cycle	hooks	/	Life	cycle	hooks	or	graceful	shutdown

Heapster
URL	/	Built-in	monitoring
about	/	Built-in	monitoring
exploring	/	Exploring	Heapster

I
industrial-grade	delivery	/	Standard	container	specification
InfluxDB

about	/	Built-in	monitoring
infrastructure-agnostic	/	Standard	container	specification
Intel®	Virtualization	Technology	/	rkt
iptables	/	Advanced	services

J
JavaScript	/	Integration	with	continuous	delivery
Jenkins

about	/	Integration	with	continuous	delivery

K
K8s	/	The	architecture
Kernel-based	Virtual	Machine	(KVM)	process	/	rkt
Key	Pairs	/	Kubernetes	with	CoreOS
Kibana	/	Working	with	other	providers
Kismatic

about	/	Kismatic
Kube-proxy	/	Node	(formerly	minions)
kube-proxy	daemons	/	Services
Kubernetes

advantages	/	Advantages	of	Kubernetes
architecture	/	The	architecture
core	constructs	/	Core	constructs

Kubernetes,	with	CoreOS
about	/	Kubernetes	with	CoreOS

Kubernetes	application
about	/	Our	first	Kubernetes	application

Kubernetes	networking
about	/	Kubernetes	networking

Kubernetes	plugin	for	Jenkins
about	/	Kubernetes	plugin	for	Jenkins
prerequisites	/	Prerequisites
installing	/	Installing	plugins
configuring	/	Configuring	the	Kubernetes	plugin

Kubernetes	project
about	/	Where	to	learn	more
references	/	Where	to	learn	more

Kubernetes	Slack	channel
reference	/	Where	to	learn	more

Kubernetes	UI
about	/	Kubernetes	UI

kublet	/	Node	(formerly	minions),	Built-in	monitoring

L
labels

about	/	Labels,	More	on	labels
LevelDB

about	/	Built-in	monitoring

M
master

about	/	Master
Mesosphere

about	/	Mesosphere	(Kubernetes	on	Mesos)
URL	/	Mesosphere	(Kubernetes	on	Mesos)

microservices
about	/	Microservices	and	orchestration
future	challenges	/	Future	challenges

monitoring	operations
maturing	/	Maturing	our	monitoring	operations
GCE	/	GCE	(StackDriver)
StackDriver	/	GCE	(StackDriver)

multitenancy
about	/	Multitenancy,	Limits

N
namespaces	/	What	is	a	container?
Network	Address	Translation	(NAT)	/	Kubernetes	networking,	Docker
networking

about	/	Kubernetes	networking
networking	comparisons

about	/	Networking	comparisons
Docker	Engine	/	Docker
Docker	plugins	/	Docker	plugins	(libnetwork)
Weave	/	Weave
Flannel	/	Flannel
Project	Calico	/	Project	Calico

Nginx	/	What	is	a	container?
node

about	/	Node	(formerly	minions)
Node.js	/	Integration	with	continuous	delivery
node	package	manage	(npm)	/	Prerequisites

O
Omega	/	Advantages	of	Kubernetes
Open	Container	Initiative	(OCI)

about	/	Open	Container	Initiative
OpenShift

about	/	OpenShift
URL	/	OpenShift

operations
monitoring	/	Monitoring	operations

orchestration
about	/	Microservices	and	orchestration

overlay	driver	/	Docker	plugins	(libnetwork)

P
persistent	disks	(PDs)	/	Persistent	storage
persistent	storage

about	/	Persistent	storage
reference	/	Other	PD	options

placeholder	/	Kubernetes	networking
Platform	as	a	Service	(PaaS)	/	Deis
pod	infrastructure	container	/	Kubernetes	networking
pods

about	/	Pods
example	/	Pod	example

port	mapping	/	Docker
private	registries

about	/	Private	registries
Project	Calico

about	/	Project	Calico
providers

working	with	/	Working	with	other	providers

Q
Quay	Enterprise	/	Tectonic

R
ready	for	production

about	/	Ready	for	production
Red	Hat	Enterprise	Linux	Atomic	Host	/	CoreOS
Red	Hat	Linux	/	What	is	a	container?
releases	/	Testing,	releases,	and	cutovers
replication	controllers	(RCs)

about	/	Replication	controllers
runC	implementation	/	Standard	container	specification

S
scheduler	/	Master
security

about	/	Security
SELinux	/	CoreOS
service	discovery

about	/	Service	discovery
services

about	/	Services
Software-defined	Networking	(SDN)	/	Kubernetes	networking
StackDriver

about	/	GCE	(StackDriver)
standard	container	specification

about	/	Standard	container	specification
standard	operations	/	Standard	container	specification
standards

importance	/	The	importance	of	standards
Swagger

about	/	Swagger
URL	/	Swagger

Sysdig	Cloud
about	/	Sysdig	Cloud
detailed	views	/	Detailed	views
topology	views	/	Topology	views
metrics	/	Metrics

Sysdig	command	line
about	/	The	Sysdig	command	line

system	monitoring,	with	Sysdig
about	/	Beyond	system	monitoring	with	Sysdig
Sysdig	Cloud	/	Sysdig	Cloud
alerting	/	Alerting
Kubernetes	support	/	Kubernetes	support
Sysdig	command	line	/	The	Sysdig	command	line
csysdig	command-line	UI	/	The	csysdig	command-line	UI

T
Tectonic

about	/	Tectonic
dashboard	highlights	/	Dashboard	highlights

temporary	disks
about	/	Temporary	disks
cloud	volumes	/	Cloud	volumes

testing	/	Testing,	releases,	and	cutovers
third-party	companies

about	/	Third-party	companies
private	registeries	/	Private	registries
Google	Container	Engine	/	Google	Container	Engine
Twistlock.io	/	Twistlock
Kismatic	/	Kismatic
Mesosphere	/	Mesosphere	(Kubernetes	on	Mesos)
Deis	/	Deis
OpenShift	/	OpenShift

Twistlock
about	/	Twistlock

U
Ubuntu	/	What	is	a	container?
Ubuntu	Snappy	/	CoreOS
union	file	systems	/	What	is	a	container?

V
Virtual	Extensible	LAN	(VXLAN)	/	Weave
Virtual	Machine	(VM)	/	Advantages	to	Continuous	Integration/Continuous
Deployment
Virtual	Private	Cloud	(VPC)	/	Working	with	other	providers
Virtual	Private	Clouds	(VPCs)	/	Kubernetes	with	CoreOS
VMware	Photon	/	CoreOS
vSphere	/	CoreOS

W
Weave

about	/	Weave

	Getting Started with Kubernetes
	Credits
	About the Author
	Acknowledgments
	About the Reviewer
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Kubernetes and Container Operations
	A brief overview of containers
	What is a container?
	Why are containers so cool?
	Advantages to Continuous Integration/Continuous Deployment
	Resource utilization
	Microservices and orchestration
	Future challenges
	Advantages of Kubernetes
	Our first cluster
	Kubernetes UI
	Grafana
	Swagger
	Command line
	Services running on the master
	Services running on the minions
	Tear down cluster
	Working with other providers
	Resetting the cluster
	Summary
	Footnotes
	References
	2. Kubernetes – Core Concepts and Constructs
	The architecture
	Master
	Node (formerly minions)
	Core constructs
	Pods
	Pod example
	Labels
	The container's afterlife
	Services
	Replication controllers
	Our first Kubernetes application
	More on labels
	Health checks
	TCP checks
	Life cycle hooks or graceful shutdown
	Application scheduling
	Scheduling example
	Summary
	Footnotes
	3. Core Concepts – Networking, Storage, and Advanced Services
	Kubernetes networking
	Networking comparisons
	Docker
	Docker plugins (libnetwork)
	Weave
	Flannel
	Project Calico
	Balanced design
	Advanced services
	External services
	Internal services
	Custom load balancing
	Cross-node proxy
	Custom ports
	Multiple ports
	Migrations, multicluster, and more
	Custom addressing
	Service discovery
	DNS
	Persistent storage
	Temporary disks
	Cloud volumes
	GCE persistent disks
	AWS Elastic Block Store
	Other PD options
	Multitenancy
	Limits
	Summary
	Footnotes
	4. Updates and Gradual Rollouts
	Example set up
	Scaling up
	Smooth updates
	Testing, releases, and cutovers
	Growing your cluster
	Scaling up the cluster on GCE
	Autoscaling and scaling down
	Scaling up the cluster on AWS
	Scaling manually
	Summary
	5. Continuous Delivery
	Integration with continuous delivery
	Gulp.js
	Prerequisites
	Gulp build example
	Kubernetes plugin for Jenkins
	Prerequisites
	Installing plugins
	Configuring the Kubernetes plugin
	Bonus fun
	Summary
	6. Monitoring and Logging
	Monitoring operations
	Built-in monitoring
	Exploring Heapster
	Customizing our dashboards
	FluentD and Google Cloud Logging
	FluentD
	Maturing our monitoring operations
	GCE (StackDriver)
	Sign-up for GCE monitoring
	Configure detailed monitoring
	Alerts
	Beyond system monitoring with Sysdig
	Sysdig Cloud
	Detailed views
	Topology views
	Metrics
	Alerting
	Kubernetes support
	The Sysdig command line
	The csysdig command-line UI
	Summary
	Footnotes
	7. OCI, CNCF, CoreOS, and Tectonic
	The importance of standards
	Open Container Initiative
	Cloud Native Computing Foundation
	Standard container specification
	CoreOS
	rkt
	etcd
	Kubernetes with CoreOS
	Tectonic
	Dashboard highlights
	Summary
	Footnotes
	8. Towards Production-Ready
	Ready for production
	Security
	Ready, set, go
	Third-party companies
	Private registries
	Google Container Engine
	Twistlock
	Kismatic
	Mesosphere (Kubernetes on Mesos)
	Deis
	OpenShift
	Where to learn more
	Summary
	Index

