

Gradle	Essentials

Table	of	Contents

Gradle	Essentials

Credits

About	the	Authors

Acknowledgments

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Running	Your	First	Gradle	Task

Installing	Gradle

Installing	manually

Installing	on	Mac	OS	X	and	Linux

Installing	on	Windows

Alternate	methods	of	installing	Gradle

Installing	via	OS-specific	package	managers

Mac	OS	X

Linux	(Ubuntu)

Windows

Installing	via	SDKMAN

Verifying	the	installation

Setting	JVM	options

The	Gradle	command-line	interface

The	first	Gradle	build	script

Task	name	abbreviation

Gradle	Daemon

Gradle	Wrapper

Generating	wrapper	files

Running	a	build	via	wrapper

Summary

2.	Building	Java	Projects

Building	a	simple	Java	project

Creating	a	build	file

Adding	source	files

Building	the	project

A	brief	introduction	to	plugins

Unit	testing

Adding	a	unit	test	source

Adding	the	JUnit	to	the	classpath

Running	the	test

Viewing	test	reports

Fitting	tests	in	the	workflow

Bundling	an	application	distributable

Running	the	application	with	Gradle

Building	the	distribution	archive

Generating	IDE	project	files

Summary

3.	Building	a	Web	Application

Building	a	simple	Java	web	project

Creating	source	files

Creating	a	build	file

Building	the	artifact

Running	the	web	application

Plugins	to	the	rescue

References

Project	dependencies

External	libraries

The	dynamic	version

Transitive	dependencies

Dependency	configurations

Repositories

Summary

4.	Demystifying	Build	Scripts

Groovy	for	Gradle	build	scripts

Why	Groovy?

Groovy	primer

Running	Groovy	code

Variables

Strings

Regular	expressions

Closures

Data	structures

List

Set

Map

Methods

Calling	methods

Default	values	of	parameters

Methods	with	map	parameters/named	parameters

Methods	with	varags

Methods	with	closure	params

Classes

Constructors

Properties

Instance	methods

Another	look	at	applying	plugins

Gradle	–	an	object-oriented	build	tool

Build	phases

Initialization

Configuration

Execution

Life	cycle	callbacks

Gradle	Project	API

Project	methods

Project	properties

Extra	properties	on	a	project

Tasks

Attaching	actions	to	a	task

Task	flow	control

dependsOn

finalizedBy

onlyIf

mustRunAfter	and	shouldRunAfter

Creating	tasks	dynamically

Setting	default	tasks

Task	types

Using	task	types

Creating	task	types

References

Groovy

Gradle	API	and	DSL	used	in	this	chapter

Summary

5.	Multiprojects	Build

The	multiproject	directory	layout

The	settings.gradle	file

Organizing	build	logic	in	multiproject	builds

Applying	a	build	logic	to	all	projects

Applying	build	logic	to	subprojects

Dependency	on	subprojects

Summary

6.	The	Real-world	Project	with	Gradle

Migrating	from	an	Ant-based	project

Importing	an	Ant	file

Using	AntBuilder	API

Rewriting	Ant	tasks	to	Gradle	tasks

Migrating	from	a	Maven	project

Publishing	artifacts

Continuous	Integration

Generating	documentation

Summary

7.	Testing	and	Reporting	with	Gradle

Testing	with	TestNG

Integration	testing

Code	coverage

Code	analysis	reports

Summary

8.	Organizing	Build	Logic	and	Plugins

Extracting	build	logic	to	buildSrc

The	first	plugin

Configuring	plugins

Summary

9.	Polyglot	Projects

The	polyglot	application

Building	Groovy	projects

Building	Scala	projects

Joint	compilation

References

Summary

Index

Gradle	Essentials

Gradle	Essentials
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	authors,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	December	2015

Production	reference:	1161215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78398-236-3

www.packtpub.com

http://www.packtpub.com

Credits
Authors

Kunal	Dabir

Abhinandan

Reviewers

Eric	Berry

André	Burgaud

Michał	Huniewicz

Fredrik	Sandell

Commissioning	Editor

Amarabha	Banerjee

Acquisition	Editors

Richard	Brookes-Bland

Larissa	Pinto

Content	Development	Editor

Rashmi	Suvarna

Technical	Editor

Madhunikita	Sunil	Chindarkar

Copy	Editor

Trishya	Hajare

Project	Coordinator

Izzat	Contractor

Proofreader

Safis	Editing

Indexer

Hemangini	Bari

Production	Coordinator

Shantanu	N.	Zagade

Cover	Work

Shantanu	N.	Zagade

About	the	Authors
Kunal	Dabir	has	over	10	years	of	experience	working	with	clients	ranging	from	Fortune
500	companies	to	startups.	Currently,	he	works	as	a	Lead	Consultant	at	ThoughtWorks.	He
is	a	Java	user	group’s	co-organizer	and	speaks	at	various	meet-ups	and	conferences.

While	he	is	always	eager	to	learn	a	new	language,	he	usually	codes	in	languages	such	as
Groovy,	Scala,	JavaScript,	CoffeeScript,	Ruby,	and	Java.	He	frequently	contributes	to
open	source	projects	and	also	hosts	his	own	projects	on	GitHub.

He	has	always	been	passionate	about	automating	and	scripting.	From	there,	he	got	a	knack
for	build	tools.	Apart	from	Gradle,	he	has	spent	a	fair	amount	of	time	writing	build	scripts
with	tools	such	as	Ant,	Maven,	Grunt,	and	Gulp.	He	was	introduced	to	Gradle	in	2011
while	using	Gaelyk.	Since	then,	Gradle	has	become	his	tool	of	choice	for	build
automation.

He	can	be	found	on	Twitter	and	GitHub	as	@kdabir.

Acknowledgments
First	and	foremost,	a	big	thanks	to	my	loving	wife,	Smita,	and	adorable	son,	Nairit.	Both
of	them	patiently	tolerated	me	spending	countless	hours	in	front	of	my	Mac	and	never
complained.	I	would	like	to	thank	my	parents	for	always	doing	everything	that	they	could
so	that	I	could	do	what	I	like.	I	dedicate	this	book	to	Smita,	Nairit,	Aai,	and	Baba.

This	book	would	not	have	been	possible	without	Packt’s	trust	in	me.	I	would	like	to	thank
the	editors	and	coordinators	from	Packt,	including	Richard,	Parita,	Priyanka,	Rashmi,
Madhunikita,	and	many	more.	I	would	also	like	to	thank	Abhinandan	for	providing	a
helping	hand	with	the	project	at	the	time	it	was	required	the	most.	Also,	heartfelt	thanks	to
all	the	reviewers,	André	Burgaud,	Eric	Berry,	Fredrik	Sandell,	and	Michał	Huniewicz,	for
painstakingly	reviewing	all	the	chapters	and	providing	detailed	feedback.

I	am	grateful	to	ThoughtWorks	for	being	such	an	amazing	place	where	I	learned	so	many
things.

Last	but	not	the	least,	this	acknowledgement	can	not	be	complete	without	thanking	the
folks	who	made	Gradle	so	awesome,	those	who	built	and	maintained	Groovy,	and	the
Groovy	community.	Kudos	to	all	for	the	hard	work.

Abhinandan	is	a	Java	guy	with	an	extensive	experience	in	software	design,	architecture,
and	deployment	and	automation	frameworks.	He	is	passionate	about	providing	solutions
for	different	business	needs.	His	other	passions	include	hiking,	reading,	and	travelling.
You	can	contact	him	at	<designationtraveller@yahoo.com>.

Like	how	a	film	cannot	be	made	with	just	actors	and	directors—it	requires	lots	of	different
team	members’	help,	who	support	at	different	stages	until	the	movie	gets	released—	a
book	can’t	be	written	with	just	the	effort	of	one	person	or	the	author.	It	requires	lots	of
support	from	different	people	at	different	stages,	without	which	it	would	not	be	possible	to
put	the	thoughts	on	paper	and	make	it	available	to	the	audience.

First	and	foremost,	I	would	like	to	thank	my	family	for	all	the	support	they	gave	me
throughout	this	book.	They	never	complained	about	the	weekends	and	vacations	that	I
compromised	while	working	on	this	book.

I	would	like	to	express	my	gratitude	to	the	Packt	Publishing	team	(Parita,	Purav,	and
Rashmi),	who	provided	support	from	the	initiation	of	the	idea	until	the	publication	of	the
book.	I	appreciate	that	they	believed	in	me	and	provided	me	the	opportunity	to	become	the
co-author	of	this	book.

I	would	like	to	thank	the	reviewers	who	helped	me	to	improve	the	quality	of	this	book.

Thanks	to	Mainak	for	the	quality	input	and	comments,	which	helped	to	complete	this
book.	I	could	not	have	done	it	without	you.

mailto:designationtraveller@yahoo.com

About	the	Reviewers
Eric	Berry	is	the	co-founder	and	vice	president	of	engineering	at	Keeply	Inc.	He
graduated	in	2003	from	Cal	Poly	Pomona	with	a	BS	in	computer	science,	and	has	more
than	11	years	of	full-stack	development	experience	working	for	Evite
(http://www.evite.com/),	eHarmony	(http://www.eharmony.com/),	and	Chegg
(http://www.chegg.com/).	He	was	first	introduced	to	Gradle	in	late	2010	while	working	at
eHarmony,	and	created	Chegg’s	middle-tier	SOA	using	Gradle	for	all	Java-based	projects.
As	a	supporter	of	open	source	software,	he’s	the	plugin	release	manager	for	the	jEdit	text
editor	and	also	the	original	author	of	the	Gradle-release	and	Gradle-templates	plugins.

He	has	worked	as	a	senior	software	engineer	at	Evite	specializing	in	full-stack,	JSP,
Servlet,	Spring	Framework,	Hibernate,	“web-2.0”	JavaScript	based	frontend.

He	has	also	worked	as	a	senior	software	engineer	at	eHarmony	specializing	in	full-stack,
Java,	Spring,	Struts,	Groovy,	Spring	Integration,	Jersey.

He	has	worked	as	a	lead	software	engineer	at	Chegg	specializing	in	backend	services,
Java,	Spring,	Hibernate,	Gradle,	Jersey.

André	Burgaud	is	a	software	engineer	who	is	passionate	about	new	technologies,
programming	languages	in	general,	and	Python	in	particular.

He	started	in	law	enforcement	where	he	built	up	an	interest	in	security.	A	career	change
led	him	to	join	the	telecommunication	department	of	the	Gendarmerie	headquarters	in
France;	later,	he	implemented	network	management	systems	for	Qwest	broadband
services	in	Minnesota,	USA.	He	currently	leads	a	software	development	department	at
Infinite	Campus,	focusing	on	the	infrastructure	for	complex	web	applications.

During	his	spare	time,	he	attempts	to	quench	his	thirst	for	technology	by	exploring
programming	languages,	tools,	operating	systems,	servers,	or	cloud	services;	also,	he	likes
attending	local	meetups	or	online	classes,	listening	to	podcasts,	and	reading	books.

Michał	Huniewicz	is	a	London-based	professional	software	developer,	amateur	photo
journalist,	and	one-time	dervish.	Currently,	he	is	shifting	his	focus	to	big	data	challenges
and	has	been	involved	in	projects	across	a	variety	of	industries,	including	banking,	media,
finance,	telecoms,	and	government.	He	was	also	the	head	developer	of	an	award-winning
community	portal.	He	holds	an	MSc	degree	in	computer	science	from	Adam	Mickiewicz
University.	Learn	more	about	him	at	http://www.m1key.me/.

He	has	also	reviewed	Gradle	Effective	Implementation	Guide	from	Packt	Publishing.

I	would	like	to	thank	my	friend,	Bianca,	for	being	such	an	amazing	inspiration	over	the
years—dziękuję.

Fredrik	Sandell	is	a	full-stack	software	developer	with	many	years	of	experience
developing	Java-based	web	applications.	He	holds	a	MSc	degree	in	networks	and
distributed	systems	from	the	Chalmers	University	of	Technology	and	is	currently	based	in
Stockholm,	Sweden.

http://www.evite.com/
http://www.eharmony.com/
http://www.chegg.com/
http://www.m1key.me/

Fredrik	is	employed	at	a	fantastic	company	called	Squeed	AB.

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
When	I	first	came	across	Gradle	in	2011,	it	was	a	young	yet	powerful	tool.	If	I	remember
correctly,	the	version	was	0.9.	It	was	difficult	for	me	to	get	started	despite	Gradle	having
an	adequate	official	documentation.	What	I	missed	the	most	was	a	guide	that	would	just
help	me	understand	the	core	concepts	first,	without	having	to	go	through	the	entire
documentation.

Gradle	is	a	fantastic	build	tool.	There	is	so	much	to	learn	about	it	that	new	users	are	often
clueless	about	where	to	start.	It	is	unwise	to	expect	an	application	developer	to	go	through
the	entire	Gradle	reference	material	just	to	understand	the	basics.

This	book	attempts	to	help	a	reader	get	started	with	Gradle	by	revealing	the	key	concepts
in	a	step-by-step	manner.	It	introduces	a	more	advanced	topic	succinctly.	This	book
focuses	on	the	practical	usage	of	Gradle	that	a	reader	can	immediately	put	to	use	on	his	or
her	project.	This	book	strives	to	stay	true	to	the	spirit	of	‘essentials’	by	avoiding	going	into
every	possible	feature	and	option	that	Gradle	has	to	offer.	Code	samples	for	applications
have	been	consciously	kept	very	small	in	order	to	avoid	distractions	from	application
logic.

This	book	is	a	quick	start	guide	for	Gradle.	If	you	are	a	Java	developer	already	building
your	code	with	Ant	or	Maven	and	want	to	switch	to	Gradle,	this	book	helps	you	to	quickly
understand	the	different	concepts	of	Gradle.	Even	if	you	do	not	have	exposure	to	other
build	tools	such	as	Ant	or	Maven,	you	can	start	afresh	on	Gradle	with	the	help	of	this
book.	It	starts	with	the	basics	of	Gradle	and	then	gently	moves	to	concepts	such	as
multimodule	projects,	migration	strategies,	testing	strategies,	Continuous	Integration,	and
code	coverage	with	the	help	of	Gradle.

What	this	book	covers
This	book	can	be	roughly	divided	into	three	parts.

Section	1	includes	Chapter	1,	Running	Your	First	Gradle	Task,	Chapter	2,	Building	Java
Projects,	and	Chapter	3,	Building	a	Web	Application.	This	section	introduces	the	basics	of
Gradle,	with	very	simple	examples,	which	helps	readers	to	create	build	files	for	Java
projects	and	Web	applications.	It	gives	a	gentle	start	without	involving	any	complex
concepts.

Section	2	includes	Chapter	4,	Demystifying	Build	Scripts,	and	Chapter	5,	Multiprojects
Build.	This	section	helps	the	reader	to	understand	the	underpinning	of	Gradle	in	more
depth,	still	maintaining	the	‘essentials’	aspect	of	this	book.	It	also	helps	the	reader	to
understand	how	to	interpret	and	write	scripts	that	conform	to	Gradle	DSL.

Section	3	includes	Chapter	6,	The	Real-world	Project	with	Gradle,	Chapter	7,	Testing	and
Reporting	with	Gradle,	Chapter	8,	Organizing	Build	Logic	and	Plugins,	and	Chapter	9,
Polyglot	Projects.	This	section	covers	more	real-world	use	cases	that	Gradle	users	come
across.	Some	examples	include	migrating	to	Gradle	from	the	existing	build	system,	using
Gradle	on	CI	servers,	maintaining	code	quality	with	Gradle,	using	Gradle	to	build	project
languages	such	as	Groovy	and	Scala,	and	so	on.	These	concepts	mostly	revolve	around
what	various	plugins	have	to	offer	and	also	allows	the	reader	to	create	their	own	custom
plugins.

Also,	there	are	multiple	places	in	all	chapters	where	the	reader	can	find	tips,	references,
and	other	informative	notes.

Chapter	1,	Running	Your	First	Gradle	Task,	starts	with	an	introduction	to	Gradle	and	its
installation,	subsequently	moving	on	to	exploring	the	Gradle	command-line	interface,	and
finally	running	the	first	build	file.

Chapter	2,	Building	Java	Projects,	explains	topics	such	as	building	Java	applications	and
libraries,	unit	testing	with	JUnit,	reading	test	reports,	and	creating	application
distributions.

Chapter	3,	Building	a	Web	Application,	deals	with	building	and	running	Web	applications.
It	also	briefly	introduces	concepts	such	as	dependencies,	repositories,	and	configurations.

Chapter	4,	Demystifying	Build	Scripts,	starts	with	a	primer	to	the	Groovy	syntax	in	the
context	of	Gradle	DSL.	Then,	it	goes	on	to	explain	the	backbone	concepts	of	a	Gradle
build	such	as	build	phases,	project	API,	and	various	topics	related	to	Gradle	tasks.

Chapter	5,	Multiprojects	Build,	covers	a	few	options	to	structure	multiproject	directories.
Then,	covers	organization	of	a	build	logic,	which	is	a	multiproject	build.

Chapter	6,	The	Real-world	Project	with	Gradle,	deals	with	one	of	the	important	problems
faced	by	developers,	that	is,	migrating	their	existing	Ant	and	Maven	scripts	to	Gradle.
This	chapter	provides	different	strategies	and	examples,	which	guide	developers	to
perform	migration	in	a	more	simpler	and	manageable	way.	This	chapter	also	gives	an
insight	into	the	different	ways	of	publishing	artifacts	with	the	help	of	Gradle	and	also	how

a	developer	can	integrate	Gradle	with	Continuous	Integration	workflow.

Chapter	7,	Testing	and	Reporting	with	Gradle,	deals	with	the	integration	of	the	TestNG
framework	with	Gradle.	Apart	from	unit	testing	with	TestNG,	it	also	deals	with	different
strategies	for	integration	testing,	which	the	user	can	follow	to	execute	integration	tests
separate	from	unit	test	cases.	It	also	discusses	about	integrating	Sonar	with	Gradle,	which
helps	developers	to	analyze	the	quality	of	code	on	different	parameters,	and	JaCoCo
integration	for	code	coverage	analysis.

Chapter	8,	Organizing	Build	Logic	and	Plugins,	discusses	one	of	the	important	building
blocks	of	Gradle	plugins,	without	which	you	will	find	this	book	incomplete.	It	discusses
the	needs	of	the	plugin	and	the	different	ways	in	which	developers	can	create	a	plugin
based	on	the	project	size	and	complexities.

Chapter	9,	Polyglot	Projects,	demonstrates	how	to	use	Gradle	for	projects	that	use
languages	apart	from	or	in	addition	to	Java;	this	chapter	shows	the	examples	of	building
Groovy	and	Scala	projects.

What	you	need	for	this	book
Your	system	must	have	the	following	software	before	executing	the	code	mentioned	in	the
book:

Gradle
Java	1.7	or	above

For	chapters	6-8,	you	need	the	following	softwares:

Jenkins
Ant	1.9.4
Maven	3.2.2

Who	this	book	is	for
This	book	is	for	Java	and	other	JVM-based	language	developers	who	want	to	use	Gradle
or	who	are	already	using	Gradle	on	their	projects.

No	prior	knowledge	of	Gradle	is	required,	but	some	familiarity	with	build-related
terminologies	and	an	understanding	of	the	Java	language	would	help.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“This
class	exposes	just	one	method	called	greet	which	we	can	use	to	generate	a	greeting
message.”

A	block	of	code	is	set	as	follows:

task	helloWorld	<<	{

		println	"Hello,	World!"

}	

Any	command-line	input	or	output	is	written	as	follows:

$	gradle	--version

Or	it	may	be	written	as	follows:

>	gradle	--version

Whenever	some	output	or	code	block	is	truncated	it	is	denoted	by	an	ellipsis	(…)	like	this:

$	gradle	tasks

...

Other	tasks

helloWorld

...

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Once	the	Submit
button	is	pressed,	we’ll	get	the	desired	result.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Running	Your	First	Gradle
Task
We	are	embarking	on	a	fast-paced	ride	to	learn	the	Gradle	Essentials.	To	take	a	gentle
start,	we	will	first	install	Gradle.	Then,	we	will	get	friendly	with	the	Gradle’s	command-
line	interface	by	looking	at	the	usage	of	the	gradle	command.	Also,	by	the	end	of	this
chapter,	we	would	have	run	our	first	Gradle	build	script.

Building	a	software	artifact	is	a	complex	process	involving	various	activities	such	as
compiling	source	code,	running	automated	tests,	packaging	distributable	files,	and	so	on.
These	activities	are	further	split	into	many	steps,	often	dependent	on	the	execution	order,
fetching	dependent	artifacts,	resolving	configuration	variables,	and	so	on.	Executing	all
these	activities	manually	is	cumbersome	and	often	error-prone.	A	good	build	automation
tool	helps	us	reduce	the	effort	and	time	it	takes	to	build	correct	artifacts	in	a	repeatable
manner.

Gradle	is	an	advanced	build	automation	tool	that	brings	the	best	from	various	proven	build
tools	and	innovates	on	top	of	them.	Gradle	can	be	used	to	produce	artifacts	such	as	web
applications,	application	libraries,	documentation,	static	sites,	mobile	apps,	command
lines,	and	desktop	applications.	Gradle	can	be	used	to	build	projects	based	on	various
languages	and	technology	stacks	such	as	Java,	C/C++,	Android,	Scala,	Groovy,	Play,
Grails,	and	many	more.	As	Java	Virtual	Machine	(JVM)	happens	to	be	one	of	the	first
class	supported	platforms	by	Gradle,	the	examples	in	this	book	will	mostly	focus	on
building	Java-based	projects.

Gradle	gives	us	full	control	over	build	just	like	Ant	but	without	ever	needing	to	repeat
ourselves	by	providing	intelligent	defaults	in	the	form	of	conventions.	Gradle	truly	works
by	conventions	over	configuration,	just	like	Maven.	However,	it	never	gets	in	our	way
when	we	need	to	deviate.	Also	this	puts	it	in	complete	contrast	with	Maven.	Gradle
attempts	to	maintain	the	right	balance	between	conventions	and	configurability.

The	previous	generation	of	build	tools,	such	as	Ant	and	Maven,	chose	XML	to	represent
the	build	logic.	While	XML	is	human-readable,	it	is	more	of	a	machine-friendly	format
(easier	to	be	read/written	by	programs).	It	is	great	for	representing	and	exchanging
hierarchical	data,	but	when	it	comes	to	writing	any	logic,	even	the	simplest	logic	can
easily	take	hundreds	of	lines.	On	the	other	hand,	a	Gradle	build	can	be	configured	using
very	human-friendly	Groovy	DSL.	Groovy	is	a	powerful,	expressive,	and	low	ceremony
dynamic	language	and	is	a	perfect	fit	for	build	scripts.

Gradle	itself	is	a	JVM	application	written	in	Java	and	Groovy.	Since	Gradle	runs	on	the
JVM,	it	runs	the	same	way	on	Windows,	Mac	OS	X	and	Linux.	Gradle	also	boasts	an
advanced	dependency	resolution	system	and	can	resolve	dependencies	from	the	existing
Maven	and	Ivy	repositories	or	even	a	file	system.

Over	the	years	Gradle	has	matured	into	a	very	stable	open	source	project	with	active
contributors	and	commercial	backing.	The	rich	plugin	ecosystem	and	vibrant	community

makes	Gradle	an	excellent	choice	for	a	variety	of	projects.	Gradle	already	has	an
impressive	list	of	adopters,	which	includes	tech	giants	such	as	Google	Android,	LinkedIn,
Unity	3D,	Netflix	and	many	more.	Open	source	libraries	and	frameworks	such	as	Spring,
Hibernate,	and	Grails	are	using	Gradle	to	power	their	builds.

Installing	Gradle
Before	we	move	forward	with	running	Gradle,	we	must	have	it	installed	on	our	machine.
There	are	multiple	ways	through	which	Gradle	can	be	installed	and	updated.	We	will	first
see	a	more	manual	way	to	install	Gradle	and	then	take	a	quick	look	at	installing	it	via
some	commonly	used	package	managers.	We	can	choose	any	one	method	that	fits	the	bill.
Irrespective	of	the	way	we	install	Gradle,	we	must	meet	the	following	prerequisite.

Gradle	needs	Java	Runtime	Environment	(JRE)	6	or	Java	Development	Kit	(JDK)	1.6
or	higher.	There	is	no	other	dependency.	We	recommend	having	JDK	installed.	To	verify
this,	on	the	command	line,	we	can	check	the	Java	version	with	the	following	command:

$	java	-version	

java	version	"1.8.0"

Java(TM)	SE	Runtime	Environment	(build	1.8.0-b132)

Java	HotSpot(TM)	64-Bit	Server	VM	(build	25.0-b70,	mixed	mode)

If	we	don’t	see	the	output	more	or	less	like	the	one	shown	in	the	preceding	command,
there	is	problem	with	our	JDK	installation.

Note
The	latest	JDK	can	be	downloaded	from	the	following	URL:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Installing	manually
If	we	want	a	finer	control	over	the	installation	then	this	is	a	suitable	route.	This	could	be
the	case,	when	we	cannot	use	the	package	managers,	want	very	specific	binaries	to	be
downloaded	and	installed,	or	behind	corporate	firewalls	where	automatic	downloading	by
package	managers	is	not	allowed.	We	need	to	download	the	Gradle	binaries	and	make
them	available	for	use	on	the	command	line.

The	latest	Gradle	distribution	can	be	downloaded	from	http://www.gradle.org/downloads.
As	of	writing	the	latest	version	is	2.9.

Gradle	binary	distribution	comes	in	two	flavors	as	follows:

gradle-2.9-all.zip:	This	contains	binaries,	sources,	and	documentation
gradle-2.9-bin.zip:	This	contains	binaries	only

We	can	download	any	of	the	above	depending	on	what	we	need.	Also,	this	is	an	OS-
independent	zip	so	the	same	zip	can	be	extracted	on	Mac	OS	X,	Windows,	and	Linux.	The
next	section	makes	the	Gradle	command	available	on	the	command	line.	This	section	is
dependent	on	the	OS	we	use.

Installing	on	Mac	OS	X	and	Linux
Let’s	say	we	extracted	the	downloaded	zip	as	~/gradle-2.9/.	Now,	we	just	need	to	add
the	following	two	lines	at	the	end	of	.bashrc/,	.bash_profile/,	or	.zshrc,	depending	on
the	OS	and	the	shell	that	we	use:

export	GRADLE_HOME=~/gradle-2.9

export	PATH=$PATH:$GRADLE_HOME/bin

Restart	the	terminal	or	source	the	modified	file	to	have	the	change	take	effect.

Installing	on	Windows
Let’s	say	we	extracted	the	zip	as	C:\gradle-2.9,	then	perform	the	following	steps:

1.	 Open	the	Start	menu,	right	click	on	Computer	and	select	Properties.
2.	 On	Advanced	system	settings,	select	the	Advanced	tab,	and	then	select

Environment	Variables….

http://www.gradle.org/downloads

3.	 Click	on	New.
4.	 Create	a	GRADLE_HOME	environment	variable	with	the	value	C:\gradle-2.9.

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at
http://www.packtpub.com	for	all	the	Packt	Publishing	books	you	have	purchased.	If
you	purchased	this	book	elsewhere,	you	can	visit	http://www.packtpub.com/support
and	register	to	have	the	files	e-mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Tip
In	future	when	we	download	the	later	version	of	Gradle,	we	would	need	to	change	on
this	value	to	point	to	the	correct	folder.

5.	 Edit	(or	add	if	not	already	there)	the	PATH	environment	variable.	At	the	end	of	its
value,	append	;%GRADLE_HOME%\bin	(add	a	semicolon	if	multiple	path	entries	exist).

Alternate	methods	of	installing	Gradle
Although	the	manual	installation	gives	absolute	control	over	the	installation	process,
various	tasks	such	as	downloading	and	extracting	the	right	version,	upgrading	to	the	latest
versions,	uninstalling,	and	editing	environment	variables	quickly	become	cumbersome	and
error-prone.	That	is	why	many	people	prefer	package	managers	to	control	the	whole
process.

Installing	via	OS-specific	package	managers
While	installing	manually,	as	mentioned	in	the	previous	section,	is	very	easy,	we	can	make
it	super-easy	by	using	a	package	manager.

Some	Linux	distributions	like	Ubuntu	ship	with	their	package	manager,	Mac	OS	X,
Windows	don’t	have	any	package	manager	installed	by	default.	However,	luckily,	there
are	multiple	package	managers	available	for	both	platforms.	We	will	see	the	example	of
Homebrew	on	Mac	and	Chocolatey	on	Windows.

Mac	OS	X

Make	sure	we	have	Homebrew	installed.	If	it	is,	installing	Gradle	is	only	a	matter	of	using
the	following	command:

$	brew	install	gradle

Note
More	details	on	Homebrew	can	be	found	at	http://brew.sh.

Linux	(Ubuntu)

Using	the	built	in	package	manager	on	Ubuntu,	which	is	called	Advanced	Packaging
Tool	(APT),	we	can	install	Gradle	with	the	following	command:

$	sudo	apt-get	install	gradle

Windows

If	we	have	Chocolatey	installed,	installing	Gradle	is	just	a	command	away:

c:\>	cinst	gradle

Note
More	details	on	Chocolatey	can	be	found	at	https://chocolatey.org.

Installing	via	SDKMAN
SDKMAN	stands	for	the	Software	Development	Kit	Manager.	In	its	own	words,	the
website	describes	it	as:	SDKMAN!	is	a	tool	for	managing	parallel	versions	of	multiple
Software	Development	Kits	on	most	Unix	based	systems.

The	advantage	SDKMAN	has	over	other	package	managers	is	that	we	can	have	multiple
Gradle	versions	installed	on	a	system	and	select	a	different	version	for	a	given	project.	If
we	have	it	installed,	all	we	need	to	do	is	run	following	command:

http://brew.sh
https://chocolatey.org

$	sdk	install	gradle

SDKMAN	can	be	installed	from	http://sdkman.io/.

http://sdkman.io/

Verifying	the	installation
In	whichever	way	we	choose	to	install	Gradle,	it’s	a	good	idea	to	verify	that	if	it’s	working
before	we	move	ahead.	We	can	do	this	by	simply	checking	for	Gradle’s	version	on	the
command	line:

$	gradle	--version

--

Gradle	2.9

--

Build	time:			2015-11-17	07:02:17	UTC

Build	number:	none

Revision:					b463d7980c40d44c4657dc80025275b84a29e31f

Groovy:							2.4.4

Ant:										Apache	Ant(TM)	version	1.9.3	compiled	on	December	23	2013

JVM:										1.8.0_25	(Oracle	Corporation	25.25-b02)

OS:											Mac	OS	X	10.10.5	x86_64

If	we	see	output	similar	to	the	above,	we	have	Gradle	installed	correctly	on	our	machine.

Tip
We	can	use	-v	instead	--version	to	get	the	same	result.

Setting	JVM	options
Although	it’s	not	required	most	of	the	time,	but	if	in	case	we	need	to	set	some	global
options	for	the	JVM	that	Gradle	will	use,	Gradle	provides	us	a	convenient	way	to	do	that.
We	can	set	the	GRADLE_OPTS	environment	variable	with	acceptable	flags	to	tune	the	JVM.

Gradle	also	honors	the	JAVA_OPTS	environment	variable.	However,	we	need	to	be	careful
when	setting	it,	as	this	affects	the	setting	for	all	the	Java	programs	on	a	machine.	Setting
that	we	want	to	keep	common	for	all	the	Java	apps	should	be	done	via	this	variable	and
those	that	only	need	to	be	applied	to	Gradle	should	be	set	via	GRADLE_OPTS.

Tip
Some	commonly	used	options	are	-Xms	and	-Xmx,	which	set	the	minimum	and	maximum
heap	size	of	the	JVM.

The	Gradle	command-line	interface
Gradle,	just	like	other	build	tools,	is	primarily	run	from	a	command	line.	That’s	why	it	is
worth	spending	some	time	to	get	familiar	with	its	command-line	interface.	Typically,	a
gradle	command	is	issued	from	the	root	of	a	project	directory	with	some	tasks	to	be
executed.	Let’s	say	we	are	in	the	hello-gradle	directory,	which	is	currently	empty.

Gradle	provides	a	very	simple	command-line	interface	(CLI),	which	takes	the	following
form:

gradle	[options…]	[tasks…]

As	we	can	see,	apart	from	the	gradle	command	itself,	everything	else	is	optional.	The
options	tweak	the	execution	of	the	Gradle	whereas	tasks,	which	we	will	see	in	detail
later,	are	the	basic	units	of	work.	Options	are	common	across	all	projects	and	are	specific
to	Gradle	but	tasks	may	vary	depending	on	the	project	in	which	the	gradle	command	is
being	run.

There	are	some	tasks	that	are	available	on	all	projects.	One	such	task	is	help:

$	gradle	help

:help

Welcome	to	Gradle	2.9.

To	run	a	build,	run	gradle	<task>	...

To	see	a	list	of	available	tasks,	run	gradle	tasks

To	see	a	list	of	command-line	options,	run	gradle	--help

To	see	more	detail	about	a	task,	run	gradle	help	--task	<task>

BUILD	SUCCESSFUL

Total	time:	0.639	secs

Gradle	is	helping	us	out	by	telling	us	how	to	find	all	the	available	tasks	and	list	all
command-line	options.	Let’s	first	check	what	other	tasks	are	currently	available	on	our
project.	Remember	we	are	still	in	the	empty	directory	hello-gradle:

$	gradle	tasks

:tasks

--

All	tasks	runnable	from	root	project

--

Build	Setup	tasks

init	-	Initializes	a	new	Gradle	build.	[incubating]

wrapper	-	Generates	Gradle	wrapper	files.	[incubating]

Help	tasks

components	-	Displays	the	components	produced	by	root	project	'hello-

gradle'.	[incubating]

dependencies	-	Displays	all	dependencies	declared	in	root	project	'hello-

gradle'.

dependencyInsight	-	Displays	the	insight	into	a	specific	dependency	in	root	

project	'hello-gradle'.

help	-	Displays	a	help	message.

model	-	Displays	the	configuration	model	of	root	project	'hello-gradle'.	

[incubating]

projects	-	Displays	the	sub-projects	of	root	project	'hello-gradle'.

properties	-	Displays	the	properties	of	root	project	'hello-gradle'.

tasks	-	Displays	the	tasks	runnable	from	root	project	'hello-gradle'.

To	see	all	tasks	and	more	detail,	run	gradle	tasks	--all

To	see	more	detail	about	a	task,	run	gradle	help	--task	<task>

BUILD	SUCCESSFUL

Total	time:	0.652	secs

This	shows	us	some	generic	tasks	that	are	available	even	without	us	adding	any	task	to	our
project.	We	can	try	running	all	these	tasks	and	see	the	output.	We	will	see	these	tasks	in
details	in	the	upcoming	chapters.

The	other	useful	command	gradle	help	suggested	us	to	check	all	the	available	options
with	the	--help	option.

Tip
The	help	task	is	not	the	same	as	the	--help	option.

When	we	run	the	gradle	--help	command,	we	get	the	following	output:

$	gradle	--help

USAGE:	gradle	[option…]	[task…]

-?,	-h,	--help										Shows	this	help	message.

-a,	--no-rebuild								Do	not	rebuild	project	dependencies.

-b,	--build-file								Specifies	the	build	file.

…..

(The	output	is	truncated	for	brevity.)

The	option	has	a	long	form	such	as	--help	and	may	have	a	short	from	such	as	-h.	We
have	already	used	one	option	before,	that	is	--version	or	-v,	which	prints	information
about	the	Gradle	version.	The	following	are	some	commonly	used	options;	there	are	many
more	options,	which	can	be	seen	using	the	gradle	--help	command:

Options Description

-b,	--build-file This	specifies	a	build	file	(default:	build.gradle)

--continue This	continues	task	execution	even	after	a	task	failure

-D,	--system-prop This	sets	the	system	property	of	the	JVM

-d,	--debug This	prints	debug	level	logs

--gui This	starts	Gradle	GUI

-i,	--info This	prints	info	level	logs

-P,	--project-prop This	adds	a	property	to	the	project

-q,	--quiet This	logs	only	errors

-s,	--stacktrace This	prints	stack	traces	for	exceptions

-x,	--exclude-task This	excludes	a	specific	task

The	first	Gradle	build	script
So	we	are	now	ready	to	get	our	feet	wet	and	see	our	first	Gradle	script	in	action.	Let’s
create	a	file	called	build.gradle	in	the	hello-gradle	directory.	Unless	the	build	file	path
is	provided	using	the	--build-file	option,	Gradle	treats	the	current	directory	as	a	project
root	and	tries	to	find	the	build.gradle	file	there.	If	we	have	used	Ant	or	Maven	earlier,
we	can	relate	this	file	with	build.xml	or	pom.xml,	respectively.

Now,	open	the	build.gradle	file	and	let’s	declare	a	task	by	adding	the	following	line:

task	helloWorld

We	should	be	able	to	see	this	task	on	the	command	line	as	follows:

$	gradle	tasks

...

Other	tasks

helloWorld

...

Here,	we	have	successfully	created	a	task	object	called	helloWorld.	Tasks	are	first-class
objects	in	Gradle,	which	means	they	have	properties	and	methods	on	them.	This	gives	us
tremendous	flexibility	in	terms	of	customizability	and	programmability	of	build.

However,	this	task	actually	does	not	do	anything	yet.	So	let’s	add	some	meaningful	action
to	this	task:

task	helloWorld	<<	{

		println	"Hello,	World!"

}

Now	from	the	command	line,	we	can	execute	this	task	by	issuing	the	following	command:

$	gradle	-q	helloWorld

Hello,	World!

Notice	that	we	used	the	–q	flag	to	reduce	the	verbosity	in	the	output.	When	this	task	is	run,
we	see	the	output	that	our	task	generates	but	nothing	from	Gradle	unless	it’s	an	error.

Now,	let’s	try	to	briefly	understand	the	build.gradle	file.	The	first	line	declares	the	tasks
and	starts	the	body	of	a	code	block	that	will	be	executed	at	the	end.	The	left	shift	operator
(<<)	might	feel	oddly	placed,	but	it	is	very	important	in	this	context.	We	will	see	in	the
later	chapters	what	it	exactly	means.	The	second	line	is	a	Groovy	statement	that	prints	the
given	string	to	the	console.	Also,	the	third	line	ends	the	code	block.

Tip
Groovy’s	println	"Hello,	World!"	is	equivalent	to	System.out.println("Hello,
World!")	in	Java.

Task	name	abbreviation
While	calling	a	gradle	task	from	a	command	line,	we	can	save	a	few	keystrokes	by	typing
only	the	characters	that	are	enough	to	uniquely	identify	the	task	name.	For	example,	the
task	helloWorld	can	be	called	using	gradle	hW.	We	can	also	use	helloW,	hWorld,	or	even
heWo.	However,	if	we	just	call	gradle	h,	then	the	help	task	will	be	called.

This	comes	very	handy	when	we	need	to	frequently	call	long	Gradle	task	names.	For
example,	a	task	named	deployToProductionServer	can	be	invoked	just	by	calling	gradle
dTPS,	provided	that	this	does	not	match	any	other	task	name	abbreviation.

Gradle	Daemon
While	we	are	talking	about	frequently	calling	Gradle,	it	is	a	good	time	to	know	about	a
recommended	technique	to	boost	the	performance	of	our	builds.	Gradle	Daemon,	a
process	that	keeps	running	in	the	background,	can	speed	up	the	builds	significantly.

For	a	given	gradle	command	invocation,	we	can	specify	the	--daemon	flag	to	enable	the
Daemon	process.	However,	we	should	keep	in	mind	that	when	we	start	the	daemon,	only
the	subsequent	builds	will	be	faster,	but	not	the	current	one.	For	example:

$	gradle	helloWorld	--daemon

Starting	a	new	Gradle	Daemon	for	this	build	(subsequent	builds	will	be	

faster).

:helloWorld

Hello,	World!

BUILD	SUCCESSFUL

Total	time:	2.899	secs

$	gradle	helloWorld

:helloWorld

Hello,	World!

BUILD	SUCCESSFUL

Total	time:	0.6	secs

In	the	preceding	example,	if	we	notice	the	time	taken	by	two	runs,	the	second	one
completed	much	faster,	thanks	to	the	Gradle	Daemon.

We	can	also	prevent	a	specific	build	invocation	from	utilizing	a	Daemon	process	by
passing	the	--no-daemon	flag.

There	are	various	ways	to	enable	or	disable	Gradle	Daemon,	which	are	documented	at
https://docs.gradle.org/current/userguide/gradle_daemon.html

https://docs.gradle.org/current/userguide/gradle_daemon.html

Gradle	Wrapper
A	Gradle	Wrapper	consists	of	a	gradlew	shell	script	for	Linux/Mac	OS	X,	a	gradlew.bat
batch	script	for	Windows,	and	a	few	helper	files.	These	files	can	be	generated	by	running	a
gradle	wrapper	task	and	should	be	checked	into	the	version	control	system	(VCS)	along
with	project	sources.	Instead	of	using	the	system-wide	gradle	command,	we	can	run	the
builds	via	the	wrapper	script.

Some	of	the	advantages	of	running	builds	via	a	wrapper	script	are	as	follows:

1.	 We	don’t	need	to	download	and	install	Gradle	manually.	The	wrapper	script	takes
care	of	this.

2.	 It	uses	a	specific	version	of	Gradle	that	the	project	needs.	This	reduces	the	risk	of
breaking	a	project’s	build	because	of	incompatible	Gradle	versions.	We	can	safely
upgrade	(or	downgrade)	the	system-wide	Gradle	installation	without	affecting	our
projects.

3.	 It	transparently	enforces	the	same	Gradle	version	for	our	project	across	all
developers’	machines	in	the	team.

4.	 This	is	extremely	useful	in	Continuous	Integration	build	environments,	as	we	do	not
need	to	install/update	Gradle	on	the	servers.

Generating	wrapper	files
The	Gradle	wrapper	task	is	already	available	to	all	Gradle	projects.	To	generate	the
wrapper	scripts	and	supporting	files,	just	execute	the	following	code	from	the	command
line:

$	gradle	wrapper	

While	generating	wrapper,	we	can	specify	the	exact	Gradle	version	as	follows:

$	gradle	wrapper	--gradle-version	2.9

In	this	example,	we	are	specifying	the	Gradle	version	to	be	used	is	2.9.	After	running	this
command,	we	should	check-in	the	generated	files	into	VCS.	We	can	customize	the
wrapper	task	to	use	a	configured	Gradle	version,	produce	wrapper	scripts	with	different
names,	change	their	locations,	and	so	on.

Running	a	build	via	wrapper
For	availing	the	benefits	of	a	wrapper	script,	instead	of	using	the	gradle	command,	we
need	to	call	the	wrapper	script	based	on	our	OS.

On	Mac	OS	X/Linux:

$./gradlew	taskName

On	Windows:

$	gradlew	taskName

We	can	use	the	arguments	and	flags	exactly	in	the	same	way	as	we	pass	to	the	gradle

command.

Summary
In	this	chapter,	we	started	with	a	brief	introduction	to	Gradle.	Then,	we	looked	at	manual
installation	and	also	installation	via	package	managers.	We	also	learned	about	Gradle’s
command-line	interface.	Also,	finally,	we	wrote	our	first	Gradle	build	script.

If	you	have	followed	the	chapter	until	this	point,	you	are	all	set	to	check	out	any	Gradle-
based	project	on	your	machine	and	execute	builds.	Also,	you	are	equipped	with	the
knowledge	to	write	a	very	basic	Gradle	build	script.	Going	forward,	we	will	look	at
building	Java-based	projects	with	Gradle.

Chapter	2.	Building	Java	Projects
In	the	previous	chapter,	we	saw	a	very	basic	build	script,	which	just	printed	the	customary
Hello	World	on	the	console.	Now	that	we	are	comfortable	with	the	Gradle	command	line
interface,	it’s	a	perfect	time	for	us	to	jump-start	our	journey	with	a	simple	Java	project.

In	this	chapter,	we	will	see	how	to	build	and	test	simple	Java	projects	with	Gradle,	how
external	dependencies	are	added	to	the	classpath,	and	how	building	distributable	binaries
work.

We	will	try	to	keep	the	Java	code	as	minimal	as	possible	so	that	we	can	focus	more	on	the
build	of	the	project.	Along	the	way,	we	will	learn	some	best	practices	that	a	Gradle-based
project	should	follow.	It’s	okay	if	we	are	not	able	to	comprehend	all	the	build	script	syntax
in	this	chapter	because	we	are	going	to	see	that	in	detail	in	Chapter	4,	Demystifying	Build
Scripts.

Building	a	simple	Java	project
To	demonstrate	the	Java	project’s	build	with	Gradle,	let’s	create	a	very	simple	Java
application	that	will	greet	a	user.	Just	a	tad	bit	more	than	a	hello	world	in	terms	of
application	logic.

Firstly,	create	a	directory	called	hello-java.	This	is	our	project	directory.	For	the
following	steps,	feel	free	to	choose	an	IDE/text	editor	of	your	choice	for	editing	the	files.

Creating	a	build	file
In	the	root	of	the	project	directory,	let’s	create	the	build.gradle	file	and	add	the
following	code	line	to	it:

apply	plugin:	'java'

Yes,	that’s	all	that	goes	into	the	build	file	for	now,	a	single	line.	We	will	soon	see	what	it
means.

Adding	source	files
By	default,	like	Maven,	the	Java	source	files	are	read	from	the	src/main/java	directory	of
the	project.	We	can	configure	this,	of	course,	but	let’s	save	that	for	later.	Let’s	create	this
directory	structure	in	our	project.

Now,	we	need	to	create	a	Java	class	that	would	generate	the	greeting	message.	Also,	we
would	create	a	Main	class	with	a	main	method	so	that	an	app	can	be	run	from	a	command
line.	The	Java	files	should	be	kept	in	a	source	root	directory	under	a	proper	package
structure.	We	will	use	the	com.packtpub.ge.hello	package	for	this	example:

hello-java

├──	build.gradle															//	build	file

└──	src

				└──	main

								└──	java															//	source	root

												└──	com

																└──	packtpub

																				└──	ge

																								└──	hello

																												├──	GreetingService.java

																												└──	Main.java				

As	we	can	see	in	the	preceding	structure,	we	have	created	the	package	structure	under	the
src/main/java	source	root.

Let’s	create	the	GreetingService.java	file:

package	com.packtpub.ge.hello;

public	class	GreetingService	{

				public	String	greet(String	user)	{

								return	"Hello	"	+	user;

				}

}

This	class	exposes	just	one	method	called	greet,	which	we	can	use	to	generate	a	greeting
message.

Here	is	how	our	Main.java	looks:

package	com.packtpub.ge.hello;

public	class	Main	{

				public	static	void	main(String[]	args)	{

								GreetingService	service	=	new	GreetingService();

								System.out.println(service.greet(args[0]));

				}

}

This	class	has	a	main	method,	which	will	be	invoked	when	a	program	is	run.	It	instantiates
the	GreetingService	and	prints	the	output	of	the	greet	method	on	a	console.

Building	the	project
After	adding	the	Java	files,	we	now	want	to	compile	the	project	and	produce	the	class
files.	It	can	be	simply	done	by	calling	the	following	task	from	a	command	line:

$	gradle	compileJava

The	compiled	classes	go	into	build/classes/main	relative	to	the	project	root.	You	can
confirm	by	checking	the	project	tree	again.	We	will	ignore	other	files	and	directories	for
now:

hello-java

...

├──	build

│			├──	classes

│			│			└──	main

│			│							└──	com

│			│											└──	packtpub

│			│															└──	ge

│			│																			└──	hello

│			│																							├──	GreetingService.class

│			│																							└──	Main.class

...

At	this	point,	we	can	directly	run	the	class,	but	let’s	ask	for	more	and	generate	the	.jar
file	for	our	application.	Let’s	run	the	following	task:

$	gradle	build

It	produces	a	Jar	for	our	project	in	the	build/libs	directory:

hello-java

...

├──	build

│			...

│			├──	libs

│			│			└──	hello-java.jar

...

Let’s	test	if	the	Jar	works	as	expected.	To	run	the	Jar,	issue	the	following	command:

$	java	-cp	build/libs/hello-java.jar	\	com.packtpub.ge.hello.Main	Reader

We	are	passing	the	Reader	as	an	argument	to	our	java	Main	class	‘s	main	method.	This	will
produce	the	following	output:

Hello	Reader

Note
When	we	run	the	build	task,	Gradle	also	invokes	the	compileJava	and	other	dependent
tasks	before	actually	executing	the	build	task.	So,	we	don’t	need	to	explicitly	call
compileJava	here	to	compile	classes.

The	name	of	the	.jar	file	is	the	same	as	that	of	the	project.	This	can	be	configured	by

setting	the	archivesBaseName	property	in	the	build.gradle	file.	For	example,	to	generate
the	Jar	named	my-app.jar,	add	the	following	code	line	to	the	build	file:

archivesBaseName	=	"my-app"

Now,	let’s	fire:

$	gradle	clean

Also,	check	the	directory	tree	again.	No	surprise,	it’s	cleaned	keeping	the	source	files
intact.

We	know	from	our	experiences	with	Ant	that,	even	for	the	project	of	this	size,	we	would
have	to	define	at	least	a	handful	of	targets	and	this	would	be	quite	a	few	lines	of	XML.
While	Maven	would	have	worked	by	convention,	still	the	Maven’s	pom.xml	needs	some
ceremony	before	it’s	even	a	valid	pom.xml	file.	So,	a	minimal	pom.xml	file	would	still	look
like	five	to	six	lines	of	XML.

Compare	that	with	the	simplicity	and	carefully	chosen	sensible	defaults	by	Gradle.

This	is	a	good	point	where	we	should	see	what	all	tasks	were	brought	into	our	build	by	the
java	plugin:

$	gradle	–q	tasks

--

All	tasks	runnable	from	root	project

--

Build	tasks

assemble	-	Assembles	the	outputs	of	this	project.

build	-	Assembles	and	tests	this	project.

buildDependents	-	Assembles	and	tests	this	project	and	all	projects	that	

depend	on	it.

buildNeeded	-	Assembles	and	tests	this	project	and	all	projects	it	depends	

on.

classes	-	Assembles	main	classes.

clean	-	Deletes	the	build	directory.

jar	-	Assembles	a	jar	archive	containing	the	main	classes.

testClasses	-	Assembles	test	classes.

Build	Setup	tasks

init	-	Initializes	a	new	Gradle	build.	[incubating]

wrapper	-	Generates	Gradle	wrapper	files.	[incubating]

Documentation	tasks

javadoc	-	Generates	Javadoc	API	documentation	for	the	main	source	code.

Help	tasks

components	-	Displays	the	components	produced	by	root	project	'hello-java'.	

[incubating]

dependencies	-	Displays	all	dependencies	declared	in	root	project	'hello-

java'.

dependencyInsight	-	Displays	the	insight	into	a	specific	dependency	in	root	

project	'hello-java'.

help	-	Displays	a	help	message.

model	-	Displays	the	configuration	model	of	root	project	'hello-java'.	

[incubating]

projects	-	Displays	the	sub-projects	of	root	project	'hello-java'.

properties	-	Displays	the	properties	of	root	project	'hello-java'.

tasks	-	Displays	the	tasks	runnable	from	root	project	'hello-java'.

Verification	tasks

check	-	Runs	all	checks.

test	-	Runs	the	unit	tests.

...

It	is	interesting	to	see	so	many	useful	tasks	available	on	our	build	by	merely	applying	the
java	plugin.	Clearly,	Gradle	employs	a	very	powerful	plugin	mechanism	that	can	be
leveraged	to	apply	the	don’t	repeat	yourself	(DRY)	principle	on	build	logic.

A	brief	introduction	to	plugins
Gradle	by	itself	is	nothing	more	than	a	task	runner.	It	does	not	know	how	to	compile	a
Java	file	or	where	to	read	the	source	files.	It	means	that	these	tasks	are	not	there	by
default.	As	we	saw	in	the	last	chapter,	a	Gradle	build	file,	without	any	plugin	applied,
contained	very	few	tasks.

A	plugin	adds	relevant	tasks	and	conventions	to	a	Gradle	build.	In	our	current	example,	all
the	tasks	such	as	compileJava,	build,	clean,	and	many	more	are	essentially	brought	in	by
the	java	plugin	that	we	applied	to	our	build.

This	means,	Gradle	does	not	force	us	to	use	a	particular	way	to	compile	a	Java	project.	It’s
completely	up	to	us	to	choose	the	java	plugin	for	our	build.	We	can	configure	it	to	suite
our	needs.	If	we	still	don’t	like	the	way	it	works,	we	are	free	to	add	our	own	tasks	directly
to	the	build	or	through	a	custom	plugin	that	will	work	the	way	we	want.

There	are	number	of	plugins	that	come	out	of	the	box	with	Gradle.	The	java	plugin	is	one
such	plugin.	Throughout	the	course	of	this	book,	we	will	see	many	such	plugins,	which
will	bring	in	a	lot	of	interesting	functionality	to	our	build.

Unit	testing
Unit	testing	is	an	indispensable	aspect	of	software	development.	Testing	gives	us
confidence	that	our	code	works	fine	and	provides	us	a	safety	net	when	refactoring.
Fortunately,	Gradle’s	Java	plugin	makes	it	simple	and	easy	to	unit	test	your	code.

We	will	write	a	simple	test	for	the	same	example	app	we	created	above.	We	will	create	our
first	unit	test	now	using	JUnit	(v4.12)	library.

Note
More	information	about	JUnit	can	be	found	at	http://junit.org.

http://junit.org

Adding	a	unit	test	source
Again,	like	Maven,	Java	test	sources	are	kept	in	the	src/test/java	directory	relative	to
the	project	root.	We	will	create	this	directory	and,	as	a	good	practice,	the	test	package
structure	will	reflect	the	same	hierarchy	as	the	source	packages.

...

src

└──	test

				└──	java								//	test	source	root

								└──	com

												└──	packtpub

																└──	ge

																				└──	hello

																								└──	GreetingServiceTest.java

...

We	will	add	test	for	the	GreetingService.	By	convention,	the	name	of	test	will	be
GreetingServiceTest.java.	The	following	is	the	code	of	this	file:

package	com.packtpub.ge.hello;

import	org.junit.Before;

import	org.junit.Test;

import	static	org.junit.Assert.assertEquals;

public	class	GreetingServiceTest	{

				GreetingService	service;

				@Before

				public	void	setup()	{

								service	=	new	GreetingService();

				}

				@Test

				public	void	testGreet()	{

								assertEquals("Hello	Test",	service.greet("Test"));

				}

}

The	test	sets	up	an	instance	of	System	Under	Test	(SUT),	which	is	GreetingService,	and
the	testGreet	method	checks	the	equality	of	the	SUT’s	greet	methods	output	to	get	the
expected	message.

Now,	take	a	moment	and	try	to	compile	tests	by	using	the	compileTestJava	task,	which	is
exactly	the	same	as	compileJava,	but	compiles	the	test	source	files.	Did	it	compile	just
fine?	If	not,	can	we	take	a	guess	as	to	what	could	have	gone	wrong?

The	task	should	have	failed	with	a	bunch	of	compilation	errors	because	JUnit,	which	is	an
external	library,	was	not	on	the	classpath	to	compile	the	files.

Adding	the	JUnit	to	the	classpath
To	compile	and	run	this	test	case,	we	need	JUnit	library	on	the	classpath.	It	is	important	to
remember	that	this	dependency	is	only	required	while	compiling	and	running	the	tests.
Our	application	does	not	depend	on	JUnit	for	its	compilation	or	on	runtime.	We	also	need
to	tell	where	to	search	for	this	artifact	so	that	Gradle	can	download	it	if	there	is	a	need.	To
do	this,	we	need	to	update	the	build.gradle	file	as	follows:

apply	plugin:	'java'

repositories	{

				mavenCentral()

}

dependencies	{

				testCompile	'junit:junit:4.12'

}

There	are	two	additions	to	this	build	file,	from	what	we	already	know.

In	the	dependencies	section,	we	list	down	all	the	dependencies	of	the	project	along	with
their	scope.	We	declared	JUnit	to	be	made	available	in	the	testCompile	scope.

In	the	repositories	section,	we	configure	the	type	and	location	of	the	repository	where
external	dependencies	will	be	found.	In	this	example,	we	tell	Gradle	to	get	the
dependencies	from	the	Maven	central	repository.	Since	Maven	central	is	a	very	commonly
used	repo,	Gradle	provides	a	shortcut	to	configure	it	thorough	the	mavenCentral()
method	call.

We	will	cover	both	the	sections	in	greater	depth	in	the	next	chapter.

Running	the	test
We	are	interested	in	running	the	tests	to	check	whether	everything	is	working	as	expected.
Let’s	run	the	test	task,	which	will	also	sequentially	run	all	the	tasks	that	the	test	task
depends	on.	We	can	also	verify	this	by	looking	at	the	output	that	lists	all	the	tasks	that
have	been	run	as	part	of	this	build:

$	gradle	test

:compileJava

:processResources	UP-TO-DATE

:classes

:compileTestJava

:processTestResources	UP-TO-DATE

:testClasses

:test

BUILD	SUCCESSFUL

Total	time:	1.662	secs

It	looks	like	the	tests	passed.	To	see	how	Gradle	tells	us	when	a	test	fails,	let’s
intentionally	change	the	expected	value	in	assertion	to	Test	Hello	so	that	the	assertion
fails:

@Test

public	void	testGreet()	{

				assertEquals("Test	Hello",	service.greet("Guest"));

}

Then	run	the	command	again	to	see	the	result	when	the	test	fails:

$	gradle	test

:compileJava

:processResources	UP-TO-DATE

:classes

:compileTestJava

:processTestResources	UP-TO-DATE

:testClasses

:test

com.packtpub.ge.hello.GreetingServiceTest	>	testGreet	

FAILEDorg.junit.ComparisonFailure	at	GreetingServiceTest.java:18

1	test	completed,	1	failed

:test	FAILED

FAILURE:	Build	failed	with	an	exception.

......

Yes,	so	the	test	failed	and	the	output	tells	you	about	the	file	and	the	line	number	as	well.
Also,	it	points	you	to	the	report	file,	which	includes	more	details	of	the	test	failure.

Viewing	test	reports
Whether	the	test	passes	or	not,	a	nice	HTML	report	is	created	with	details	of	all	the	tests
that	are	run.	By	default,	this	report	is	located	at	build/reports/tests/index.html
relative	to	the	project	root.	You	can	open	this	file	in	a	browser.

For	the	above	failure,	the	report	looks	something	like	this:

If	we	click	on	the	failed	test,	we	get	to	see	the	details	of	the	failure:

We	can	see	org.junit.ComparisonFailure:	expected:<[Test	Hello]>	but	was:
<[Hello	Test]>	in	the	first	line	of	the	stack	trace.

Fitting	tests	in	the	workflow
Now	that	we	have	tests	in	place,	it	makes	sense	to	build	our	project	binaries	(.jar)	only	if
the	tests	pass.	For	that,	we	need	to	define	some	kind	of	flow	between	the	tasks	such	that,	if
a	task	fails,	the	pipeline	is	broken	there	and	the	subsequent	tasks	are	not	executed.	So,	in
our	examples,	the	build’s	execution	should	depend	on	the	test’s	success.

Guess	what,	it	has	already	been	taken	care	by	the	java	plugin	for	us.	We	just	need	to	call
the	last	task	in	the	flow,	and	all	the	tasks	that	the	called	tasks	depend	on	will	be	called
sequentially	and	the	build	will	not	succeed	if	any	of	the	tasks	fails.

$	gradle	build

Also,	we	don’t	need	to	call	all	the	tasks	that	the	build	depends	on	explicitly	because	they
will	be	called	anyway.

Now	let’s	fix	the	test	and	see	the	Jar	getting	created	again:

$gradle	build

:compileJava	UP-TO-DATE

:processResources	UP-TO-DATE

:classes	UP-TO-DATE

:jar	UP-TO-DATE

:assemble	UP-TO-DATE

:compileTestJava

:processTestResources	UP-TO-DATE

:testClasses

:test

:check

:build

BUILD	SUCCESSFUL

Total	time:	1.617	secs

Yay!	So	the	tests	have	passed	and	we	can	build	binaries	of	our	app	again.

Notice	how	intelligently	Gradle	figures	out	that,	if	only	tests	were	changed,	it	compiled
only	the	tests.	In	the	preceding	output,	compileJava	shows	UP-TO-DATE,	means	nothing
was	changed	and,	hence,	Gradle	didn’t	unnecessarily	compile	the	source	files	again.

Tip
If	we	need	to	force	run	task	actions	even	if	nothing	has	changed	between	the	two	runs,	we
can	pass	the	--rerun-tasks	flag	on	the	command	line	so	that	all	task	actions	can	run.

If	we	see	the	test	reports	again,	they	will	look	as	follows:

And	the	Test	Summary	will	look	something	like	this:

Bundling	an	application	distributable
In	the	first	example,	we	ran	our	application	by	using	the	java	command	directly	from	the
command	line.	Usually,	such	command-line	applications	are	shipped	with	scripts	to	run
the	application	so	that	the	end	user	need	not	always	write	the	whole	command	by	hand.
Also,	while	developing,	we	repeatedly	need	to	run	the	app.	It	would	be	nicer	if	we	could
write	a	task	in	our	build	file	such	that	an	app	can	be	run	in	one	Gradle	invocation.

The	good	news	is	that	there	already	exists	such	a	plugin	called	application,	shipped	with
Gradle,	which	can	do	both	for	us.	For	this	example,	we	will	copy	over	the	hello-test
project	as	hello-app.	Let’s	make	simple	modifications	to	our	build.gradle	as	follows:

apply	plugin:	'java'

apply	plugin:	'application'

mainClassName	=	"com.packtpub.ge.hello.Main"

run.args	=	["Reader"]

repositories	{

				mavenCentral()

}

dependencies	{

				testCompile	'junit:junit:4.11'

}

The	second	line	applies	the	application	plugin	to	our	build.	To	make	this	plugin	work,
we	need	to	configure	Gradle	to	use	our	Main	entry	point	class,	which	has	the	static	main
method	that	needs	to	run	when	our	application	is	run.	We	specified	that	on	line	#4	by
setting	the	mainClassName	property	that	is	added	to	the	build	by	the	application	plugin.
Finally,	when	we	want	to	run	the	app	using	Gradle	(that	is,	while	developing),	we	need	to
provide	some	command-line	arguments	to	our	app.	The	application	plugin	adds	the	run
task	to	our	build.	As	we	said	earlier,	tasks	are	objects	and	they	have	properties	and
methods	just	like	any	regular	object.	On	line	#5,	we	set	the	args	property	of	the	run	task
to	a	list	with	one	element	Reader,	so	whenever	we	execute	the	run	task,	Reader	will	be
passed	as	a	command-line	argument	to	our	main	method.	Those	who	have	used	IDEs	to
set	Run	Configuration	can	easily	relate	to	this.	The	rest	of	the	file	is	the	same	as	the	last
example.

Note
In	the	preceding	example,	as	we	are	applying	the	application	plugin,	it	is	not	necessary
to	explicitly	apply	the	java	plugin	as	an	application	plugin	implicitly	applies	the	java
plugin	to	our	build.

It	also	implicitly	applies	the	distribution	plugin	so	that	we	get	the	tasks	to	package	the
application	as	a	ZIP	or	TAR	archive	and	also	gets	the	task	to	install	the	application
distribution	locally.

More	information	on	the	application	plugin	can	be	found	at

https://docs.gradle.org/current/userguide/distribution_plugin.html.

Now,	if	we	check	the	tasks	that	are	available	in	our	build,	we	see	a	few	additions	under	the
Application	tasks	and	Distribution	tasks	groups:

$	gradle	tasks

...

Application	tasks

installApp	-	Installs	the	project	as	a	JVM	application	along	with	libs	and	

OS	specific	scripts.

run	-	Runs	this	project	as	a	JVM	application

...

Distribution	tasks

assembleDist	-	Assembles	the	main	distributions

distTar	-	Bundles	the	project	as	a	distribution.

distZip	-	Bundles	the	project	as	a	distribution.

installDist	-	Installs	the	project	as	a	distribution	as-is.

...

https://docs.gradle.org/current/userguide/distribution_plugin.html

Running	the	application	with	Gradle
Let’s	first	look	at	the	run	task.	We	will	call	this	task	with	the	–q	flag	to	suppress	other
messages	by	Gradle:

$	gradle	-q	run

Hello	Reader

As	expected,	we	see	the	output	on	a	console.	This	task	really	shines	when	we	make
changes	and	can	run	our	app	in	one	command	as	follows:

				public	String	greet(String	user)	{

								return	"Hola	"	+	user;

				}

We	changed	our	GreetingService	for	a	moment	to	return	“Hola”	instead	of	“Hello”	and
see	if	run	reflects	the	changes:

$	gradle	-q	run

Hola	Reader

Yes,	it	did.

Tip
One	might	wonder	how	to	pass	command-line	arguments	to	run	a	task	from	the	command
line	itself,	instead	of	the	build	file,	which	is	something	as	follows:

$	gradle	–q	run	Reader

However,	it	doesn’t	work	this	way.	As	Gradle	can	accept	multiple	task	names	from	a
command	line,	there	is	no	way	for	Gradle	to	know	whether	Reader	was	an	argument	that
needs	to	be	passed	to	run	a	task,	or	it’s	a	task	name	itself.	For	example,	the	following
command	calls	two	tasks:

$	gradle	–q	clean	build

There	are,	of	course,	some	workarounds	if	you	really	need	to	pass	the	command	line	to	the
program	at	every	invocation	of	a	run	task.	One	such	way	is	to	use	the	–Pproperty=value
command-line	option	and	then	extract	the	property’s	value	in	the	run	task	to	send	it	as
args	to	the	program.	The	–P	adds	properties	to	the	Gradle	Project.

To	achieve	this,	update	the	run.args	in	build.gradle	as	follows:

run.args	=	[project.runArgs]

Also,	then	from	command	line	provide	the	property	value	by	calling:

$	gradle	-q	run	-PrunArgs=world

In	the	preceding	example,	we	provided	the	value	of	a	property	at	the	time	of	calling	the
gradle	command.

Alternatively,	we	could	create	a	gradle.properties	in	project’s	root	parallel	to	the
build.gradle	file.	In	that	case,	for	this	example	it	would	contain	just	runArgs=world.	But

it	can	declare	more	properties,	which	would	be	available	in	the	build	as	properties	on
project	object.

There	are	other	ways	to	declare	properties	as	well,	which	can	be	found	at
https://docs.gradle.org/current/userguide/build_environment.html.

https://docs.gradle.org/current/userguide/build_environment.html

Building	the	distribution	archive
Another	interesting	task	is	distZip,	which	packages	the	application	along	with	OS-
specific	start	scripts:

$	gradle	distZip

:compileJava

:processResources	UP-TO-DATE

:classes

:jar

:startScripts

:distZip

BUILD	SUCCESSFUL

Total	time:	1.29	secs

It	would	have	generated	the	application	distribution	in	ZIP	format	in	the
build/distributions	relative	to	the	project	root.	The	name	of	the	ZIP	defaults	to	the
project	name.	In	this	case,	it	would	be	hello-app.zip.	This	can	be	changed,	if	required,
using	the	following	property	in	build.gradle:

distributions.main.baseName	=	'someName'

Let’s	unzip	the	archive	to	see	its	contents:

hello-app

├──	bin

│			├──	hello-app

│			└──	hello-app.bat

└──	lib

				└──	hello-app.jar

We	see	a	pretty	standard	directory	structure	inside	the	ZIP.	It	contains	a	shell	script	and
windows	BAT	script	to	run	our	app.	Also,	it	contains	the	JAR	file	of	our	application.	The
lib	directory	also	contains	the	application’s	runtime	dependencies.	We	can	configure	the
distribution	plugin	to	add	more	files	in	our	distributions	such	as	Javadoc,	README,
and	so	on.

We	can	run	the	script	to	verify	that	it	works.	Using	command	prompt,	we	can	execute	this
command	in	Windows.	For	that	use	the	cd	command,	and	change	the	directory	to	the	bin
directory	of	the	extracted	ZIP	file.

$	hello-app	Reader

Hello	Reader

On	Mac	OS	X/Linux,	execute	the	following	command:

$./hello-app	Reader

Hello	Reader

Generating	IDE	project	files
IDEs	are	an	integral	part	of	a	Java	developer’s	tool	chain	and	workflow.	However,
manually	setting	up	an	IDE	to	correctly	identify	the	project	structure	and	dependencies	for
any	moderately	sized	project	is	not	an	easy	task.

Checking-in	IDE-specific	files	or	directories	such	as	.classpath,	.project,	.ipr,	.iws,
.nbproject,	.idea,	.settings,	.iml,	is	not	a	good	idea.	We	know	that	some	still	do	it
because	it’s	hard	to	generate	the	IDE	file	manually	every	time	someone	checks	the	project
out	of	the	version	control	system.	However,	checking	in	such	files	creates	problems	as
they	eventually	go	out	of	sync	from	the	main	build	file.	Also,	this	forces	the	whole	team	to
use	the	same	IDE	and	manually	update	the	IDE	files	whenever	there	is	a	change	in	the
build.

How	nice	would	it	be	if	we	could	just	check-in	only	those	files	that	are	necessary	for	a
project	to	be	built	independent	of	IDE	and	let	our	build	system	generate	a	file	specific	to
our	favorite	IDE?	Our	wish	is	granted.	Also,	here	is	the	best	part.	The	number	of	lines	that
you	need	to	modify	in	your	Gradle	build	file	is	only	one.	Gradle	sports	very	nice	plugins
that	can	generate	IDE-specific	project	files.	Both	IntelliJ	IDEA	and	Eclipse	are	covered	by
their	respective	plugins.	Depending	on	which	IDE	you	want	to	support,	you	will	either
include	apply	plugin:	'idea'	or	apply	plugin:	'eclipse'.

In	fact,	there	is	no	harm	in	including	both.

Now,	from	the	command	line,	execute	the	following	for	Eclipse	and	IntelliJ	IDEA,
respectively:

$	gradle	eclipse

$	gradle	idea

It	should	generate	IDE-specific	files	for	you	and	now	you	can	directly	open	a	project	in
either	of	the	IDEs.

Tip
Make	sure	you	ignore	IDE-specific	files	in	version	control.	For	example,	if	you	are	using
Git,	consider	adding	the	following	entries	in	your	.gitignore	file	to	prevent	someone
from	accidentally	committing	the	IDE-specific	files:

.idea/

*.iml

*.ipr

*.iws

.classpath

.project

.settings/

Summary
We	started	off	this	chapter	by	building	a	very	simple	Java	project.	We	saw	how	the
intelligent	conventions	of	the	java	plugin	helped	us	keep	the	build	file	concise.	Then,	we
added	unit	tests	to	this	project	and	included	the	JUnit	library	from	the	Maven	central
repository.	We	made	the	tests	fail	and	checked	the	reports	to	see	the	explanation.	Then,	we
saw	how	the	application’s	distribution	can	be	created	using	the	application	plugin.
Finally,	we	saw	the	idea	and	eclipse	plugins	that	help	us	generate	the	IDE-specific	files
for	our	project.

Overall,	we	realized	how	powerful	the	plugin	system	in	Gradle	is.	Gradle,	out-of-the-box,
ships	with	many	interesting	plugins,	but	we	are	not	forced	to	use	any	of	them.	We	will
build	a	web	application	in	the	next	chapter	and	also	learn	how	configurations	and
dependency	management	works..

Chapter	3.	Building	a	Web	Application
Now	that	we	have	seen	the	ease	of	using	Gradle	for	building	a	command-line	Java
application,	we	shouldn’t	be	surprised	to	know	that	building	web	applications	based	on
Java	servlet	specification	is	also	equally	easy	with	Gradle.

In	this	chapter,	we	will	build	a	simple	web	application	first,	which	is	distributed	as	a	WAR
file	that	can	be	deployed	to	any	servlet	container.	Then,	we	will	take	a	look	at	how
dependencies	and	repositories	are	configured	in	a	build	file.

Building	a	simple	Java	web	project
Again,	we	will	keep	our	application	as	minimal	as	possible	and	create	a	web-enabled
version	of	the	application,	which	we	developed	in	the	last	chapter.	The	application	will
provide	the	user	a	form	to	input	their	name	and	a	Submit	button.	When	the	user	clicks	on
the	Submit	button,	the	greeting	will	be	displayed.

The	application	will	be	based	on	Servlet	3.1	specification.	We	will	reuse	the
GreetService	that	we	developed	in	the	previous	chapter.	The	form	will	be	served	by	a
static	HTML	file,	which	can	post	data	to	our	servlet.	The	servlet	will	create	a	greeting
message	and	forward	it	to	a	JSP	for	rendering.

Note
For	more	details	on	Servlet	specification	3.1,	go	to
https://jcp.org/aboutJava/communityprocess/final/jsr340/index.html.

https://jcp.org/aboutJava/communityprocess/final/jsr340/index.html

Creating	source	files
Let’s	create	the	root	of	the	project	as	hello-web.	The	structure	is	similar	to	what	we	had
seen	for	a	simple	Java	application,	with	one	addition,	which	is	the	web	app	root.	The	Web
app	root,	by	default,	is	located	at	src/main/webapp.	Those	who	are	familiar	with	Maven
will	immediately	notice	that	it’s	the	same	path	used	by	Maven	as	well.

The	Web	app	root	(webapp)	contains	all	the	public	resources	required	to	run	a	web
application,	which	includes	dynamic	pages	such	as	JSPs	or	the	files	required	for	other
view	template	engines	such	as	Thymeleaf,	FreeMarker,	Velocity,	and	so	on;	as	well	as
static	resources	such	as	HTML,	CSS,	JavaScript,	and	image	files;	and	other	configuration
files	such	as	web.xml	in	the	special	directory	called	WEB-INF.	The	files	stored	in	WEB-INF
are	not	directly	accessible	to	the	client;	hence,	it	is	a	perfect	place	to	store	protected	files.

We	will	begin	with	creating	the	directory	structure	for	what	the	final	application	should
look	like:

hello-web

├──	build.gradle

└──	src

				└──	main

								├──	java//	source	root

								│	└──	com

								│					└──	packtpub

								│									└──	ge

								│													└──	hello

								│																	├──	GreetingService.java

								│																	└──	GreetingServlet.java

								└──	webapp//	web-app	root

												├──	WEB-INF

												│	└──	greet.jsp

												└──	index.html

Then,	perform	the	following	steps:

1.	 Let’s	first	add	the	familiar	GreetingService	from	the	last	chapter	to	our	sources.	We
might	notice	that	copying	the	Java	source	file	is	not	a	right	way	to	reuse.	There	are
much	better	ways	to	organize	such	dependencies.	One	such	way	is	with	multimodule
projects.	We	will	see	this	in	Chapter	5,	Multiprojects	Build.

2.	 Now,	add	the	following	content	to	the	index.html	file:

<!doctype	html>

<html>

		<head>

				<title>Hello	Web</title>

		</head>

		<body>

				<form	action="greet"	method="post">

						<input	type="text"	name="name"/>

						<input	type="submit"/>

				</form>

		</body>

</html>

This	file	starts	with	an	HTML	5	doctype	declaration,	which	is	the	most	simple
doctype	we	can	use.	Then,	we	create	a	form	that	will	post	to	greet	endpoint	(it	is	a
relative	path	to	the	page).

3.	 Now,	at	the	heart	of	this	application,	there	is	the	GreetServlet	that	responds	to	the
post	request:

package	com.packtpub.ge.hello;

import	javax.servlet.*;

import	javax.servlet.annotation.WebServlet;

import	javax.servlet.http.*;

import	java.io.IOException;

@WebServlet("/greet")

public	class	GreetingServlet	extends	HttpServlet	{

		GreetingService	service	=	new	GreetingService();

		@Override

		public	void	doPost(HttpServletRequest	request,

																					HttpServletResponse	response)

				throws	ServletException,	IOException	{

				String	name	=	request.getParameter("name");

				String	message	=	service.greet(name);

				request.setAttribute("message",	message);

				RequestDispatcher	dispatcher	=	getServletContext()

						.getRequestDispatcher("/WEB-INF/greet.jsp");

				dispatcher.forward(request,	response);

		}

}

In	the	preceding	code	,	the	WebServlet	annotation’s	value	maps	this	servlet	to	the
/greet	path	relative	to	the	context	of	the	application.	Then,	an	instance	of
GreetService	is	made	available	in	this	servlet.	The	overridden	method	doPost
extracts	the	name	from	the	request	object,	generates	the	greeting	message,	sets	this
message	back	in	the	request	as	an	attribute	so	that	it’s	accessible	in	the	JSP,	and	then
finally	forwards	the	request	to	the	greet.jsp	file	that	is	located	at	/WEB-
INF/greet.jsp.

4.	 This	brings	us	to	the	greet.jsp	file,	which	is	kept	in	WEB-INF	so	that	it’s	not	directly
accessible	and	the	request	has	to	always	come	through	the	servlet	that	sets	the	right
request	attributes:

<!doctype	html>

<html>

		<head>

				<title>Hello	Web</title>

		</head>

		<body>

				<h1>${requestScope.message}</h1>

		</body>

</html>

This	JSP	just	prints	the	message	that	is	available	in	the	request	attribute.

Creating	a	build	file
Finally,	let’s	create	the	file	we’ve	been	waiting	for—the	build.gradle	file	—in	the	root
of	the	project:

apply	plugin:	'war'

repositories	{

				mavenCentral()

}

dependencies	{

				providedCompile	'javax.servlet:javax.servlet-api:3.1.0'

}

Let’s	try	to	understand	this	file	now:

The	first	line	applies	the	war	plugin	to	the	project.	This	plugin	adds	a	war	task	to	the
project.	One	might	wonder	why	we	don’t	need	to	apply	the	java	plugin	to	compile
the	classes.	This	is	because	the	war	plugin	extends	the	java	plugin;	so	all	the	tasks
that	were	available	when	we	applied	the	java	plugin	are	still	available	to	us	in
addition	to	the	war	task.
Next,	comes	the	repositories	section	that	configures	our	build	to	look	for	all	the
dependencies	in	the	Maven	central	repository.

Lastly,	in	the	dependencies	block,	we	add	servlet-api	to	the	providedCompile
configuration	(scope).	This	tells	Gradle	not	to	package	the	servlet	API	with	the
application,	as	it	will	already	be	available	on	the	container	where	the	application	will	be
deployed.	The	providedCompile	configuration	is	added	by	the	war	plugin	(it	also	adds
providedRuntime).	If	we	had	any	other	dependency	that	needs	to	be	packaged	with	our
application,	it	would	have	been	declared	using	the	compile	configuration.	For	example,	if
our	app	depends	on	the	Spring	Framework,	then	the	dependencies	section	might	have
looked	as	follows:

dependencies	{

				compile	'org.springframework:spring-context:4.0.6.RELEASE'

				providedCompile	'javax.servlet:javax.servlet-api:3.1.0'

}

Don’t	worry	if	it	feels	like	the	details	on	repositories,	configurations	and
dependencies	are	a	bit	sketchy.	We	will	soon	see	them	again,	in	more	detail,	later	in	this
chapter.

Building	the	artifact
Now	that	our	source	files	are	ready	with	the	build	file,	we	must	build	the	deployable	WAR
file.	Let’s	verify	the	tasks	available	for	our	build	using	the	following	command:

$	gradle	tasks	--all

…

war	-	Generates	a	war	archive	with	all	the	compiled	classes,	the	web-app	

content	and	the	libraries.	[classes]

…

We	will	notice	the	war	task	there,	which	depends	on	classes	(task).	We	don’t	need	to
explicitly	compile	and	build	the	Java	sources,	which	is	automatically	taken	care	of	by	the
classes	task.	So	all	that	we	need	to	do	now	is,	use	the	following	command:

$	gradle	war

Once	the	build	is	complete,	we	will	see	the	directory’s	structure	similar	to	following
structure:

hello-web

├──	build

│	├──	classes

│	│	└──	main

│	│					└──	com

│	│									└──	packtpub

│	│													└──	ge

│	│																	└──	hello

│	│																					├──	GreetService.class

│	│																					└──	GreetServlet.class

│	├──	dependency-cache

│	├──	libs

│	│	└──	hello-web.war

│	└──	tmp

│					└──	war

│									└──	MANIFEST.MF

…

The	war	file	is	created	at	/build/libs/hello-web.war.

Note
A	war	file	is	nothing	but	a	ZIP	file	with	a	different	file	extension.	The	same	holds	true	for
an	.ear	or	.jar	file	for	that	matter.	We	can	use	the	standard	zip/unzip	tools	too	or	use	the
JDK’s	jar	utility	to	perform	various	operations	on	these	files.	To	list	the	contents	of	WAR,
use	jar	-tf	build/libs/hello-web.war.

Let’s	check	the	content	of	this	WAR	file	once:

…

├──	META-INF

│	└──	MANIFEST.MF

├──	WEB-INF

│	├──	classes

│	│	└──	com

│	│					└──	packtpub

│	│									└──	ge

│	│													└──	hello

│	│																	├──	GreetService.class

│	│																	└──	GreetServlet.class

│	└──	greet.jsp

└──	index.html

Perfect.	The	compiled	classes	landed	into	the	WEB-INF/classes	directory.	The	servlet
API’s	JAR	is	not	included	as	it	was	in	the	providedCompile	scope.

Tip
Exercise

Add	compile	'org.springframework:spring-context:4.0.6.RELEASE'	in	the
dependencies	section	and	then	do	a	gradle	war	file	and	see	the	content	of	the	created
WAR.

Running	the	web	application
We	have	come	a	long	way	in	creating	the	web-app.	However,	to	use	it,	it	must	be	deployed
to	a	servlet	container.	It	can	be	classically	deployed	to	a	servlet	container	by	copying	the
.war	file	in	the	servlet	container’s	designated	directory	(such	as	webapps	in	the	case	of
Tomcat).	Alternatively,	a	more	recent	technique	can	be	used	to	embed	a	Servlet	container
into	a	Java	app,	which	is	packaged	as	a	.jar	and	is	run	as	any	other	java	–jar	command.

Web	apps	are	typically	run	in	three	modes,	development,	functional	testing,	and
production.	The	key	characteristics	of	all	the	three	modes	differ	as	follows:

The	key	characteristics	of	running	web	in	development	mode	is	faster	deployment
(preferably	hot	reloads),	quick	server	start	and	shutdown,	very	low	server	footprint,
and	so	on.
While	in	functional	testing,	we	typically	deploy	web-app	once	for	the	entire	test
suite’s	run.	We	need	to	mimic	production-like	behavior	of	an	app	as	much	as
possible.	We	need	to	set	up	and	destroy	the	web-app’s	state	(such	as	databases),	using
lightweight	databases	(preferably	in-memory)	for	all	tests.	We	also	need	to	mock
external	services.
Whereas,	in	production	deployments,	the	app-servers’	(whether	standalone	or
embedded)	configuration,	security,	optimization	of	app,	caches,	and	so	on,	takes
more	precedence,	features	such	as	hot	reloading	deployments	are	rarely	used;	faster
startup	time	takes	lesser	precedence.

We	will	only	cover	the	development	scenario	in	this	chapter.	We	will	start	with	the
traditional	way	to	highlight	its	problems	and	then	move	on	to	Gradle’s	way.

Now,	if	we	need	to	deploy	the	war	in	a	manual	way.	We	can	choose	any	Java	servlet
container	such	as	Jetty	or	Tomcat	to	run	our	web-app.	In	this	example,	let’s	use	Tomcat.
Assuming	Tomcat	is	installed	at~/tomcat	or	C:\tomcat	(based	on	the	OS	that	we	are
using):

1.	 If	the	server	is	running,	ideally	we	should	stop	it.
2.	 Copy	the	WAR	file	to	the	Tomcat’s	webapp	(~/tomcat/webapps)	directory.
3.	 Then,	start	the	Tomcat	server	using	~/tomcat/bin/startup.sh	or

C:\tomcat\bin\startup.bat.

However,	this	kind	of	deployment	feels	outdated	in	Gradle’s	age.	Especially,	while
developing	the	web-app,	we	have	to	constantly	package	the	application	as	a	war,	copy	the
latest	version	to	the	container,	and	restart	the	container	to	get	the	latest	code	running.
When	we	say	build	automation,	it	implicitly	means	that	no	manual	intervention	should	be
expected	and	things	should	work	in	one	click	(or	one	command	in	Gradle’s	case).	Also,
luckily,	there	are	many	options	to	achieve	this	level	of	automation.

Plugins	to	the	rescue
Out	of	the	box,	Gradle	has	no	support	for	modern	servlet	containers.	However,	this	is	the
beauty	of	Gradle’s	architecture.	Innovation	and/or	implementation	does	not	have	to	come

from	a	selected	few	who	are	creating	Gradle.	With	the	help	of	plugins	API,	anyone	can
create	functionally	rich	plugins.	We	are	going	to	use	a	plugin	called	Gretty	for	our	web-
app’s	development	time	deployment,	but	you	should	also	check	out	others	to	see	what
works	the	best	for	you.

Note
There	is	a	jetty	plugin	available,	which	is	shipped	with	Gradle.	However,	it	has	not	been
actively	updated;	hence,	it	officially	supports	only	Jetty	6.x	(as	of	this	writing).	So	we	can
use	it	if	our	web	application	is	based	on	Servlet	2.5	specification	or	lower.

A	Gretty	plugin	can	be	found	at	a	Gradle	plugin	portal	(look	at	the	references	below).	This
plugin	adds	numerous	tasks	to	the	build	and	supports	various	versions	of	Tomcat	and	Jetty.
Installing	it	cannot	be	any	easier.	The	code	for	this	uses	the	same	hello-web	source	from
the	last	section,	but	updates	the	build.gradle	file.	An	entire	source	code	for	this	example
can	be	found	in	the	chapter-03/hello-gretty	directory	of	the	book’s	sample	code.

Just	include	the	following	at	the	first	line	of	build.gradle:

plugins	{

		id	"org.akhikhl.gretty"	version	"1.2.4"

}

That’s	it—we	are	done.	This	is	relatively	a	new	syntax	for	applying	plugins	to	builds,
which	was	added	in	Gradle	2.1.	This	is	especially	useful	for	applying	third-party	plugins.
Unlike	calling	the	apply	method	to	apply	the	plugin,	we	start	with	the	plugin	block	on	the
first	line.	Then,	we	specify	the	plugin’s	ID.	For	applying	an	external	plugin,	we	must	use
the	fully	qualified	plugin	ID	and	version.	We	can	include	the	war	plugin’s	application
inside	this	block.	For	internal	plugins,	we	don’t	need	to	specify	a	version.	It	will	look	as
follows:

plugins	{

		id	"org.akhikhl.gretty"	version	"1.2.4"

		id	"war"

}

If	we	run	gradle	tasks	now,	we	must	have	an	appRun	task	under	the	Gretty	group.	There
are	many	more	tasks	in	this	group,	which	are	added	by	the	Gretty	plugin.	If	we	run	the
appRun	task,	without	configuring	the	plugin	explicitly,	then	by	default	a	Jetty	9	will	be	run
on	http://localhot:8080.	We	can	open	the	browser	and	verify.

There	are	many	configurations	exposed	by	the	plugin,	in	order	to	control	aspects	such	as
server	version,	port	number,	and	many	more.	Add	a	gretty	block	to	the	build.gradle
files	as	follows:

If	we	want	to	use	Tomcat	8	on	port	8080,	we’ll	add	the	following	lines	of	code:

gretty	{

		servletContainer	=	'tomcat8'

		port	=	8080

}

If	we	want	to	use	Jetty	9	on	9080,	we’ll	add	the	following	lines	of	code:

gretty	{

		servletContainer	=	'jetty9'

		port	=	9080

}

There	are	many	more	configuration	options	available	in	Gretty;	we	would	recommend	you
to	check	Gretty’s	online	documentation.	See	the	link	to	Gretty	in	the	references	section.

Here	is	how	the	running	application	looks	like:

Once	the	Submit	button	is	pressed,	we’ll	get	the	following	result:

References
For	Gradle,	refer	to	the	following	URL:

Gradle	plugin	portal:	https://plugins.gradle.org/

For	Gretty,	refer	to	the	following	URL:

Gretty	plugin:	https://plugins.gradle.org/plugin/org.akhikhl.gretty
Gretty	documentation:	http://akhikhl.github.io/gretty-doc/

There	are	various	plugins	available	to	automate	the	deployment.	Some	of	them	are	listed
here:

Cargo	plugin:	https://github.com/bmuschko/gradle-cargo-plugin
Arquillian	plugin:	https://github.com/arquillian/arquillian-gradle-plugin
Tomcat	plugin:	https://github.com/bmuschko/gradle-tomcat-plugin

https://plugins.gradle.org/
https://plugins.gradle.org/plugin/org.akhikhl.gretty
http://akhikhl.github.io/gretty-doc/
https://github.com/bmuschko/gradle-cargo-plugin
https://github.com/arquillian/arquillian-gradle-plugin
https://github.com/bmuschko/gradle-tomcat-plugin

Project	dependencies
In	real	life,	we	work	on	a	lot	more	complex	applications	than	what	we	have	just	seen.
Such	applications	rely	on	other	specialized	components	to	provide	some	functionality.	For
example,	an	Enterprise	Java	application’s	build	may	depend	on	various	components	such
as	open	source	libraries	in	Maven	central,	libraries	developed	and	hosted	in-house,	and
(maybe)	even	on	another	subprojects.	Such	dependencies	are,	themselves,	located	at
various	locations	like,	local	intranet,	local	filesystem,	and	so	on.	They	need	to	be	resolved,
downloaded,	and	brought	into	the	appropriate	configuration	(such	as	compile,
testCompile,	and	so	on)	of	the	build.

Gradle	does	an	excellent	job	in	locating	and	making	dependencies	available	in	the
appropriate	classpath	and	packaging	if	required.	Let’s	begin	with	the	most	common	kind
of	dependencies—external	libraries.

External	libraries
Almost	all	real-world	projects	depend	on	external	libraries	for	reusing	the	proven	and
tested	components.	Such	dependencies	include	language	utilities,	database	drivers,	web
frameworks,	XML/JSON	serialization	libraries,	ORMs,	logging	utilities,	and	many	more.

The	dependencies	of	a	project	are	declared	in	the	dependencies	section	in	the	build	file.

Gradle	provides	an	extremely	succinct	syntax	for	declaring	the	coordinates	of	an	artifact.
It	usually	takes	a	form	of	group:name:version.	Note	that	each	value	is	separated	by	a
colon	(:).

For	example,	Spring	Framework’s	core	library	can	be	referenced	using	the	following	code:

dependencies	{

		compile	'org.springframework:spring-core:4.0.6.RELEASE'

}

Note
For	those	who	don’t	enjoy	terseness,	dependencies	can	be	referred	in	a	more	descriptive
format	(called	map	format).

compile	group:'org.springframework',	name:'spring-core',	

version:'4.0.6.RELEASE'

We	can	also	specify	multiple	dependencies	as	follows:

configurationName	dep1,	dep2,	dep3….	

Where	configurationName	represents	the	configuration	such	as	compile,	testCompile
and	so	on,	we	are	soon	going	to	see	what	configuration	is	in	this	context.

The	dynamic	version
The	version	of	our	dependencies	keep	on	updating	every	now	and	then.	Also,	when	we	are
in	the	development	phase,	we	don’t	want	keep	on	checking	manually	whether	a	new
version	is	available.

In	such	situations,	we	can	add	a	+	to	denote	the	version	mentioned	above,	given	the
number	of	artifacts.	For	example,	org.slf4j:slf4j-nop:1.7+	declares	any	version	of
SLF4J	that	is	above	1.7.	Let’s	include	this	in	a	build.gradle	file	and	check	what	Gradle
brings	in	for	us.

We	run	the	following	code	in	our	build.gradle	file:

runtime	'org.slf4j:slf4j-nop:1.7+'

Then,	we	run	the	dependencies	task:

$	gradle	dependencies

…

+---	org.slf4j:slf4j-nop:1.7+	->	1.7.7

|				\---	org.slf4j:slf4j-api:1.7.7

…

We	see	that	Gradle	chose	the	1.7.7	version,	as	it’s	the	latest	version	available	as	of	the
writing	of	this	book.	If	you	observe	the	second	line,	it	tells	us	that	slf4j-nop	depends	on
slf4j-api;	hence,	it’s	a	transitive	dependency	for	our	project.

A	word	of	caution	here	is,	always	use	+	for	only	minor	version	upgrades	(such	as	1.7+	in
the	preceding	example).	Letting	the	major	version	automatically	update	(for	example,	just
image	is	spring	automatically	updates	from	3	to	4,	compile
'org.springframework:spring-core:+')	is	nothing	but	a	gamble.	A	dynamic
dependency	resolution	is	a	nice	feature,	but	it	should	be	used	with	care.	It	should	ideally
only	be	used	at	the	development	stage	of	the	project	and	not	for	releases	candidates.

We	get	a	flaky	build	whenever	the	dependency’s	version	updates	to	some	incompatible
version	with	our	app.	We	should	target	for	reproducible	builds,	such	a	build	should
produce	the	exact	same	artifact,	be	it	today	or	one	year	down	the	line.

Transitive	dependencies
By	default,	Gradle	resolves	transitive	dependencies	quite	intelligently,	giving	preference
to	the	latest	conflicting	versions,	if	any.	However,	for	some	reason,	if	we	want	to	disable
transitive	dependencies,	all	we	need	to	provide	is	an	extra	block	to	our	dependency
declaration:

				runtime	('org.slf4j:slf4j-nop:1.7+')	{

								transitive	=	false

				}

Now,	if	we	check	the	output	of	the	dependencies	task,	we	see	that	no	other	dependency	is
included	anymore:

\---	org.slf4j:slf4j-nop:1.7.2

We	can	also	force	a	given	version	of	the	library	so	that,	even	if	the	same	artifacts,	the	later
version	comes	through	the	transitive	dependency;	the	version	we	forced	will	win:

				runtime	('org.slf4j:slf4j-nop:1.7.2')	{

								force	=	true		

				}

Running	dependencies	task	now	will	produce:

+---	org.slf4j:slf4j-api:1.7.2

\---	org.slf4j:slf4j-nop:1.7.7

					\---	org.slf4j:slf4j-api:1.7.7	->	1.7.2

This	shows	the	older	version	of	slf4j-api	won,	even	though	a	later	version	could	have
been	fetched	by	the	transitive	dependency.

Dependency	configurations
Gradle	provides	a	very	elegant	way	to	declare	dependencies	that	are	required	for	building
different	groups	of	sources	in	various	stages	of	a	project	build.

Tip
These	groups	of	sources	are	known	as	source	sets.	The	simplest	and	well-understood
examples	of	source	sets	are	main	and	test.	The	main	source	set	contains	files	that	will	be
compiled	and	built	as	a	JAR	file	and	will	be	deployed	somewhere	or	published	to	some
repository.	The	test	source	set,	on	the	other	hand,	contains	files	that	will	be	executed	by	a
testing	tool	such	as	JUnit,	but	will	not	make	it	to	production.	Now,	both	the	source	sets
have	different	requirements	for	the	dependencies,	building,	packaging,	and	execution.	We
will	see	how	to	add	new	source	sets	in	Chapter	7,	Testing	and	Reporting	with	Gradle,	for
integration	testing.

As	we	have	defined	the	group	of	related	sources	in	a	source	set,	dependencies	are	also
defined	as	a	group	called	configuration.	Each	configuration	has	its	name	such	as
compile,	testCompile,	and	so	on.	Dependencies	included	in	various	configurations	also
differ.	Configurations	are	grouped	by	the	characteristics	of	dependencies.	For	example,	the
following	are	configurations	that	are	added	by	the	java	and	war	plugins:

compile:	This	is	added	by	the	java	plugin.	Adding	a	dependency	to	this
configuration	implies	that	the	dependency	is	required	to	compile	the	source.	In	the
case	of	war,	these	will	also	get	copied	in	WEB-INF/lib.	Examples	of	such
dependencies	are	libraries	such	as	Spring	Framework,	Hibernate,	and	so	on.
runtime:	This	is	added	by	the	java	plugin.	This	includes	the	compile	dependencies
by	default.	Dependencies	in	this	group	are	required	at	runtime	for	the	compiled
source	code,	but	they	are	not	required	to	compile	it.	Dependencies	such	as	JDBC
drivers	are	runtime	dependencies	only.	We	do	not	need	them	on	our	classpath	to
compile	the	source	code	as	we	code	against	the	standard	JDBC	API	interfaces
available	in	JDK.	However,	for	our	application	to	run	properly,	we	need	a	specific
driver	implementation	at	run	time.	For	example,	runtime	'mysql:mysql-
connector-java:5.1.37'	includes	the	MySQL	driver.
testCompile:	This	is	added	by	the	java	plugin.	This	includes	the	compile
dependencies	by	default.	Dependencies	added	to	this	configuration	are	only	available
to	test	sources.	Examples	are	testing	libraries	such	as	JUnit,	TestNG,	and	so	on,	or
any	libraries	that	are	exclusively	used	by	test	source	such	as	Mockito.	They	are
neither	required	to	compile,	nor	required	at	runtime	for	the	main	source	set.	They	do
not	get	included	in	war	in	the	case	of	building	a	web-app.
testRuntime:	This	is	added	by	the	java	plugin.	This	includes	testCompile	and
runtime	dependencies	by	default.	Dependencies	in	this	configuration	are	only
required	to	test	sources	at	the	runtime	(that	is,	while	running	tests).	Hence,	they	are
not	included	in	the	compilation	classpath	of	tests.	This	is	just	like	the	runtime
configuration,	but	only	for	test	sources.
providedCompile:	This	is	added	by	the	war	plugin.	Dependencies	such	as	servlet

APIs	are	provided	by	application	servers	and	hence	need	not	be	packaged	in	our	war.
Anything	that	we	expect	to	be	already	included	in	the	server	runtime	can	be	added	to
this	configuration.	However,	it	has	to	be	present	at	the	time	of	compilation	of	the
source	code.	Hence,	we	can	declare	such	dependencies	as	providedCompile.
Examples	are	servlet	API	and	any	Java	EE	implementations	that	are	available	at
server	runtime.	Such	dependencies	are	not	included	in	war.
providedRuntime:	This	is	added	by	the	war	plugin.	Dependencies	that	will	be	made
available	at	application	runtime	by	the	server	and	application	do	not	need	to	be
included	while	compiling	because	there	is	no	direct	reference	to	the	implementation.
Such	libraries	can	be	added	to	this	configuration.	Such	dependencies	will	not	be
included	in	war.	Hence,	we	should	make	sure	to	have	implementation	available	in	the
application	runtime.

As	we	know,	when	we	apply	the	war	plugin,	the	java	plugin	also	gets	applied.	That’s	why
all	six	configurations	are	available	when	we	are	building	a	web	application.	More
configurations	can	be	added	by	plugins,	or	we	can	declare	them	ourselves	in	our	build
script.

Interestingly,	configuration	does	not	just	include	dependencies,	but	also	the	artifacts
produced	by	this	configuration.

Repositories
The	repositories	section	configures	the	repositories	where	Gradle	will	look	for
dependencies.	Gradle	downloads	the	dependencies	into	its	own	cache	so	that	the	download
doesn’t	need	to	happen	every	time	Gradle	is	run.	We	can	configure	multiple	repositories	as
follows:

repositories	{

		mavenCentral()		//	shortcut	to	maven	central

		mavenLocal()				//	shortcut	to	maven	local	(typically	~/.m2)

		jcenter()							//	shortcut	to	jcenter

		maven	{

				url	"http://repo.company.com/maven"

		}

		ivy	{

				url	"http://repo.company.com/ivy"

		}

		flatDir	{							//	jars	kept	on	local	file	system

				dirs	'libDir'

		}

}

Repositories	such	as	Maven,	Ivy,	and	flat	directory	(filesystem)	are	supported	for
dependency	resolution	and	uploading	artifacts.	There	are	some	more	specific	convenience
methods	available	for	commonly	used	Maven	repositories	such	as	mavenCentral(),
jcenter(),	and	mavenLocal().	However,	more	Maven	repos	can	be	easily	configured
using	the	following	syntax:

maven	{

		url"http://intranet.example.com/repo"

}

Before	the	central	repositories,	projects	used	to	manage	the	libraries	on	filesystem,	which
were	mostly	checked	in	along	with	the	source	code.	Some	projects	still	do	it;	although	we
discourage	this,	people	have	their	reasons	to	do	so	and	Gradle	has	no	reason	to	not	support
that.

It	is	important	to	remember	that	Gradle	does	not	automatically	assume	any	repository	to
search	and	download	dependencies	from.	We	have	to	explicitly	configure	at	least	one
repository	in	the	repositories	block	where	Gradle	will	search	for	artifacts.

Tip
Exercise

Include	Apache	Commons	Lang	library	to	convert	the	message	to	title	case	using	the
following	method:

WordUtils.capitalize(String	str)

Capitalize	all	the	whitespace-separated	words	in	a	string.

Summary
In	this	chapter,	we	first	developed	a	web	application	using	Gradle.	We	generated	the	WAR
artifact	by	building	the	application	and	then	deployed	it	to	a	local	Tomcat.	Then,	we
learned	a	few	basics	about	dependency	management,	configurations,	and	supported
repositories	in	Gradle.

Note
The	reader	should	spend	some	more	time	reading	these	concepts	in	detail	at	Gradle’s
official	documentation	at	https://docs.gradle.org/current/userguide/userguide	.

For	now,	we	should	be	good	to	build	the	most	common	type	of	Java	applications	with
Gradle.	In	the	next	chapter,	we	will	try	to	understand	the	Groovy	DSL	that	Gradle
provides	and	also	understand	the	basic	project	model.

https://docs.gradle.org/current/userguide/userguide

Chapter	4.	Demystifying	Build	Scripts
In	the	first	three	chapters,	we	saw	many	interesting	functionalities	that	Gradle	can	add	to
our	builds	merely	by	adding	a	few	lines	in	the	build	file.	However,	this	was	just	the	tip	of
the	iceberg.	What	we	explored	was	mostly	the	tasks	that	were	added	by	plugins	shipped
with	Gradle.	From	our	experiences,	we	know	that	project	builds	are	never	this	simple.
They	will	have	customizations	no	matter	how	hard	we	try	to	avoid	them.	That’s	why	the
ability	to	add	custom	logic	is	extremely	important	for	a	build	tool.

Also,	the	beauty	of	Gradle	lies	exactly	there.	It	doesn’t	come	into	our	way	whenever	we
decide	to	either	extend	the	existing	functionality	or	deviate	completely	from	the
convention	and	want	to	do	something	unconventional.	We	are	not	required	to	write	the
XML	soup	or	the	bunch	of	Java	code	if	we	wish	to	add	some	logic	to	our	build.	We	can
create	our	own	tasks	or	extend	the	existing	tasks	to	do	more.

This	flexibility	comes	with	a	very	gentle	learning	curve	in	the	form	of	learning	Groovy
DSL.	In	this	chapter,	we	are	going	to	understand	the	syntax	of	the	Gradle	build	scripts	and
some	of	the	key	concepts	of	Gradle.	We	will	cover	the	following	topics:

A	Groovy	primer	that	will	help	us	understand	the	Gradle	build	script	syntax
The	two	important	objects	available	in	our	build,	namely,	the	project	object	and	the
task	object(s)
Build	phases	and	life	cycle	callbacks
Some	details	of	the	tasks	(tasks	execution	and	task	dependencies)

Groovy	for	Gradle	build	scripts
To	be	proficient	with	Gradle	and	write	effective	build	scripts,	we	need	to	understand	some
basics	of	Groovy,	which	is	a	fantastic	dynamic	language	in	itself.	If	we	have	any
experience	with	dynamic	languages	such	as	Ruby	or	Python,	in	addition	to	Java,	we	will
feel	right	at	home	with	Groovy.	If	not,	still	knowing	that	most	of	the	Java	syntax	is	also
the	valid	Groovy	syntax	should	make	us	feel	happy	about	Groovy,	because	we	can	start
writing	Groovy	code	and	be	productive	from	day	one	without	having	to	learn	anything.

To	an	unprepared	eye,	Gradle	scripts	may	look	a	little	difficult	to	comprehend	at	first.
Gradle	build	scripts	do	not	merely	use	the	Groovy	syntax,	but	also	use	a	rich	and
expressive	DSL	that	provides	high-level	abstractions	to	represent	common	build-related
logics.	Let’s	take	a	quick	look	at	what	makes	Groovy	a	great	choice	for	writing	build	files.

Note
Using	Groovy	for	writing	build	logics	is	not	new.	Gant	and	GMaven	have	already	used
Groovy	to	write	the	build	logic	in	order	to	harness	Groovy’s	syntactic	terseness	and
expressiveness.	GMavenPlus	is	a	successor	of	GMaven.	The	tools	they	are	built	upon,
namely	Ant	and	Maven,	limit	both	Gant	and	GMaven	respectively.

Instead	of	piggybacking	on	the	existing	tools	to	just	add	syntactic	enhancements,	Gradle	is
designed	by	leveraging	the	learning	from	the	past	tools.

Why	Groovy?
Gradle’s	core	is	written	mostly	in	Java	(see	the	information	below).	Java	is	a	great
language,	but	it	is	not	the	best	fit	for	writing	scripts.	Just	imagine	scripting	in	Java,	we
would	perhaps	be	writing	another	project	for	defining	the	build	of	our	main	project
because	of	the	verbosity	and	ceremony	of	Java.	XML,	which	was	heavily	used	in	the
previous	generation	of	build	tools	(Ant	and	Maven),	is	okay	for	the	declarative	part	but	is
not	great	for	writing	logic.

Note
We	can	view	and	download	Gradle’s	source	code	from	GitHub	at
https://github.com/gradle/gradle.

Groovy	is	a	dynamic	avatar	of	Java.	As	mentioned	earlier,	most	of	the	Java	syntax	is	the
valid	Groovy	syntax	too.	If	we	know	Java,	we	can	already	write	Groovy	code.	This	is	a
big	plus	provided	that	the	sheer	number	of	people	who	can	write	Java	today.

Groovy’s	syntax	is	concise,	expressive,	and	powerful.	Groovy	is	a	great	mix	of	dynamic
flavor,	while	still	being	able	to	use	types.	It	is	one	of	few	languages	that	sport	optional
typing,	that	is,	the	flexibility	to	provide	type	information	if	we	want	to	and	leave	type
information	aside	when	we	don’t	want	to.	Groovy	is	an	excellent	language	to	build
internal	DSLs	into	because	of	the	first	class	lambda	support	and	metaprogramming
capabilities.	All	of	the	above	factors	make	it	one	of	the	most	suitable	candidates	for
writing	build	scripts.

https://github.com/gradle/gradle

Groovy	primer
Although	we	can	write	Java	style	code	in	Groovy,	if	we	invest	some	time	in	learning	the
dynamic	nature	of	the	language	and	some	of	the	syntactical	enhancements	that	Groovy
offers,	we	will	be	able	to	write	better	Gradle	build	scripts	and	plugins.	This	is	going	to	be
fun	if	we	don’t	already	know	Groovy.

Let’s	learn	just	enough	of	Groovy	so	that	we	can	understand	the	Gradle	scripts	properly.
We	will	take	a	quick	look	at	a	few	language	features	of	Groovy.

It	is	highly	recommended	to	try	and	execute	the	code	in	the	subsections	that	follow.	Also,
writing	and	trying	out	more	code	on	our	own	to	explore	Groovy	would	help	us	strengthen
our	understanding	of	the	language	fundamentals.	This	guide	is	not	exhaustive	by	any
means	and	is	included	just	to	set	the	Groovy	ball	rolling.

Running	Groovy	code
The	easiest	and	recommended	way	is	to	install	the	latest	Groovy	SDK	locally.	Groovy
code	snippets	can	be	executed	using	any	of	the	following	options:

Save	the	snippets	to	the	.groovy	script	and	run	from	the	command	line	using	the
following	code:

groovy	scriptname.groovy

We	can	use	the	Groovy	console	GUI	that	comes	packaged	with	the	Groovy
installation	to	edit	and	run	the	scripts
We	can	also	use	Groovy	shell,	which	is	an	interactive	shell	for	executing	or
evaluating	Groovy	statements	and	expressions

If	we	don’t	want	to	install	Groovy	locally,	then:

We	can	run	Groovy	code	online	in	a	browser	using	Groovy	console	at
http://groovyconsole.appspot.com
We	can	also	run	Groovy	code	in	the	build	script	by	creating	tasks	and	putting	code
snippets	in	them	(we	can	also	put	them	outside	any	task	and	it	will	still	run	it	in	the
configuration	phase)

Variables
In	a	Groovy	script,	the	def	keyword	can	define	a	variable	(depending	on	the	context):

def	a	=	10

However,	the	type	of	a	is	decided	at	the	runtime	depending	on	what	type	of	object	it	points
to.	Roughly	speaking,	a	reference	declared	as	def	can	refer	to	any	Object	or	its
subclasses.

Declaring	a	more	specific	type	is	equally	valid	and	should	be	used	whenever	we	want	to
have	type	safety:

Integer	b	=	10

http://groovyconsole.appspot.com

We	can	also	use	Java	primitive	data	types,	but	keep	in	mind	that	they	are	not	actually
primitives	in	Groovy.	They	are	still	first-class	objects	and	are	actually	Java	wrapper
classes	for	corresponding	data	type.	Let’s	confirm	with	an	example,	as	follows:

int	c	=	10

println	c.getClass()

It	prints	the	following	output:

class	java.lang.Integer

This	shows	that	c	is	an	object	as	we	can	call	a	method	on	it,	and	the	type	of	c	is	Integer.

We	recommend	using	specific	types	wherever	possible	as	this	adds	to	the	readability	and
helps	the	Groovy	compiler	to	detect	errors	early	by	catching	invalid	assignments.	It	also
helps	IDEs	with	code	completion.

Strings

Unlike	Java,	the	single	quotes	are	('')	string	literals	and	not	a	char:

String	s	=	'hello'

Of	course,	regular	Java	string	literals	("")	can	also	be	used,	but	they	are	called	GStrings	in
Groovy.	They	have	an	additional	capability	of	string	interpolation	or	inline	expansion	of
variables	or	expressions:

def	name	=	"Gradle"

println	"$name	is	an	awesome	build	tool"

This	prints	the	following	output:

Gradle	is	an	awesome	build	tool

Both	${var}	and	$var	are	valid,	but	wrapping	(${})	is	more	suitable	and	required	for
complex	or	longer	expressions.	For	example:

def	number	=	4

println	"number	is	even	?	${number	%	2	==	0	}"

It	will	print	the	following:

number	is	even	?	true

All	of	us	would	remember	adding	+	"\\n"	at	the	end	of	every	line	in	order	to	produce
multiline	strings	in	Java.	Gone	are	those	days,	as	Groovy	supports	multiline	string	literals.
The	multiline	literal	starts	off	with	three	single	or	double	quotes	(the	same	string	versus
the	GString	functionality)	and	ends	with	three	single	or	double	quotes:

def	multilineString	=	'''\

				Hello

				World

'''

println	multilineString

It	will	print	the	following:

				Hello

				World

The	forward	slash	on	line	number	1	is	optional	and	is	used	to	exclude	the	first	new	line.	If
we	do	not	put	the	forward	slash,	we	would	have	an	additional	new	line	in	the	beginning	of
the	output.

Also,	look	at	the	stripMargin	and	stripIndent	methods	for	the	special	handling	of
leading	whitespaces.

If	our	literal	contains	a	lot	of	escape	characters	(for	example,	regex),	then	we	are	better	off
using	a	“slashy”	string	literal,	which	starts	and	ends	with	a	single	forward	slash	(/):

def	r	=	/(\d)+/

println	r.class

It	will	prints	the	following:

class	java.lang.String

In	the	above	example,	if	we	had	to	use	a	regular	string,	then	we	would	have	to	escape	the
backslash	before	the	character	class	d.	It	would	have	looked	as	follows:

"(\\d)+"

Regular	expressions

Groovy	supports	a	pattern	operator	(~),	which	when	applied	to	a	string,	gives	a	pattern
object:

def	pattern	=	~/(\d)+/

println	pattern.class

It	prints	the	following:

class	java.util.regex.Pattern

We	can	also	use	the	find	operator	to	directly	match	a	string	to	a	pattern:

if	("groovy"	==~	/gr(.*)/)

		println	"regex	support	rocks"

It	will	print	the	following:

regex	support	rocks

Closures

Closure	in	Groovy	is	a	block	of	code	that	can	be	assigned	to	a	reference	or	passed	around
just	like	any	other	variable.	The	concept	is	known	as	lambda	in	many	other	languages,
including	Java	8	or	function	pointers.

Note
Lambdas	have	been	supported	since	Java	8,	but	the	syntax	is	a	bit	different	than	that	of
Groovy’s	closures.	You	don’t	need	to	be	on	Java	8	to	use	closure	in	Groovy.

If	we	have	no	exposure	to	any	of	the	above,	then	some	detailed	reading	will	be	required	to

understand	the	concept	well	because	it	lays	the	foundation	for	many	other	advanced	topics
going	forward.	Closure	is	a	huge	topic	in	itself	and	an	in-depth	discussion	is	beyond	the
scope	of	this	book.

Closure	is	almost	like	a	regular	method	or	function,	but	it	can	also	be	assigned	to	a
variable.	Also,	as	it	can	be	assigned	to	a	variable,	it	must	be	an	object	as	well;	hence,	it
will	have	methods	on	itself:

def	cl1	=	{

				println	"hello	world!"

}

Here,	the	code	block	is	being	assigned	to	a	variable	called	cl1.	Now	the	code	block	can	be
executed	using	the	call	method	in	the	future	or	the	cl1	variable	can	be	passed	around	and
executed	later:

cl1.call()

No	wonder	it	prints	the	following:

hello	world!

As	closures	are	like	methods,	they	can	also	accept	parameters:

def	cl2	=	{	n	->

				println	"value	of	param	:	$n"

}

cl2.call(101)

It	prints	the	following:

value	of	param	:	101

Just	like	methods,	they	can	also	return	values.	The	last	expression	of	closure	is
automatically	returned	if	no	explicit	return	statement	is	declared.

Closures	start	shining	when	we	have	methods	that	accept	closures.	For	example,	the	times
method	is	available	on	integer,	which	takes	in	a	closure	and	executes	it	as	many	number
times	as	the	value	of	the	integer	itself;	with	every	call,	it	passes	the	current	value	as	if	we
were	looping	up	to	the	value	from	0:

3.times(cl2)

It	prints	the	following:

value	of	param	:	0

value	of	param	:	1

value	of	param	:	2

We	can	also	inline	the	block	and	pass	it	directly	to	a	method:

3.times	{	println	it	*	it	}

It	prints	the	following:

0

1

4

There	is	a	special	variable	called	it,	which	is	available	in	the	blocks	scope	if	the	closure
doesn’t	define	its	parameter.	In	the	preceding	example,	we	accessed	the	number	being
passed	to	the	block	using	it	and	multiplied	it	by	itself	to	obtain	its	square.

Closures	are	extremely	useful	in	situations	such	as	callback	handling,	whereas	in	Java	7
and	lower,	we	would	have	to	use	anonymous	interface	implementation	to	achieve	the	same
result.

Data	structures
Groovy	supports	literal	declaration	of	the	often-used	data	structures,	which	makes	the
code	a	lot	more	terse	without	sacrificing	readability.

List

Groovy	backs	on	the	thoroughly	tested	Java	Collection	API	and	uses	the	same	classes
under	the	hood,	but	with	some	extra	methods	and	syntactic	sugar:

def	aList	=	[]

println	aList.getClass()

It	prints	the	following:

class	java.util.ArrayList

Note
In	Groovy,	[]	is	actually	a	Java’s	List	instance	and	not	an	array.

Let’s	create	another	list	with	some	initial	content:

def	anotherList	=	['a','b','c']

Thanks	to	operator	overloading,	we	can	use	many	of	the	operators	intuitively	on	the	list.
For	example,	using	anotherList[1]	will	give	us	b.

The	following	are	some	more	examples	of	handy	operators.	This	adds	two	lists	and
assigns	the	result	to	the	list	variable:

def	list	=	[10,	20,	30]	+	[40,	50]

This	appends	60	to	the	list:

list		<<		60	

The	following	two	examples	simply	subtracts	a	list	from	another	list:

list	=	list	–	[20,	30,	40]	

list		-=	[20,30,40]

Iterating	over	a	list	is	equally	simple	and	intuitive:

list.each	{println	it}

It	will	print	the	following

10

50

60

The	closure	passed	to	each	is	executed	for	each	element	of	the	list,	with	the	element	as	a
parameter	to	closure.	So,	the	preceding	code	iterates	over	the	list	and	prints	the	value	of
each	element.	Notice	the	usage	of	it,	which	is	a	handle	to	the	current	element	of	the	list.

Set

Defining	a	set	is	similar	to	that	of	a	list,	but	in	addition,	we	have	to	use	as	Set:

def	aSet	=	[1,2,3]	as	Set

println	aSet.class

This	will	print	the	following:

class	java.util.LinkedHashSet

As	the	implementation	class	selected	is	LinkedHashSet,	aSet	will	maintain	the	insertion
order.

Alternatively,	declare	the	type	of	variable	to	get	the	correct	implementation:

TreeSet	anotherSet	=	[1,2,3]

println	anotherSet.class

This	prints	the	following:

class	java.util.TreeSet

Adding	elements	to	a	set	is	just	like	a	list	using	an	indirection	operator.	Other	set	interface
methods	are	also	available:

aSet	<<	4

aSet	<<	3

println	aSet

This	prints	the	following:

[1,	2,	3,	4]

We	don’t	see	the	entry	4	twice	as	the	collection	is	a	set	implementation,	which	by
definition	eliminates	duplicates.

Map

Map	is	one	of	the	most	important	data	structures	for	any	dynamic	language.	Hence,	it	gets
a	deserved	place	in	Groovy’s	syntax.	Map	can	be	declared	using	the	map	literal	[:]:

def	a	=	[:]

The	implementation	chosen	by	default	is	java.util.LinkedHashMap,	which	preserves	the
insertion	order:

def	tool	=	[version:'2.8',	name:'Gradle',	platform:'all']

Note	that	the	keys	are	not	string	literals,	but	they	get	automatically	converted	to	a	string:

println	tool.name

println	tool["version"]

println	tool.get("platform")

We	can	access	the	values	by	using	both	the	subscript	and	dot	operator,	in	addition	to	the
plain	old	get()	method.

We	can	put	and	update	data	in	map	using	the	subscript	and	dot	operator	and,	of	course,	the
good	old	put():

tool.version	=	"2.9"

tool["releaseDate"]	=	"2015-11-17"

tool.put("platform",	"ALL")

Methods
The	following	is	more	of	a	Java-like	method,	which	is	of	course	a	valid	Groovy	method:

int	sum(int	a,	int	b)	{

		return	a	+	b;

}

The	preceding	method	can	be	succinctly	rewritten	as	follows:

def	sum(a,	b)	{

		a	+	b

}

Instead	of	specifying	the	return	type,	we	just	declared	def,	which	effectively	means	the
method	can	return	any	Object	or	subclass	reference.	Then,	we	omitted	the	type	of	the
formal	parameter,	as	declaring	def	is	optional	for	formal	parameters	to	a	method.	On	line
number	2,	we	omitted	the	return	statement	as	the	evaluation	of	the	last	expression	is
automatically	returned	by	a	method.	We	also	omitted	the	semicolon	as	it’s	optional.

Both	the	examples	are	valid	Groovy	method	declarations.	However,	readers	are	advised	to
choose	types	wisely	as	they	provide	type	safety	and	act	as	a	living	documentation	for
methods.	If	we	don’t	declare	types	of	parameters,	as	in	the	preceding	method,	the	sum
(1,“2”)	will	also	become	a	valid	method	call,	and	worse,	it	returns	an	unexpected	result
without	any	exceptions.

Calling	methods

A	method	call	in	Groovy	can	omit	the	parenthesis	is	many	cases.	Both	of	the	following
cases	are	valid	method	calls.

sum(1,2)		

sum	1,	2		

Default	values	of	parameters

Many	a	time,	we	want	to	make	a	parameter	optional	by	providing	a	default	value	so	that	if
the	caller	does	not	provide	the	value,	the	default	value	will	be	used.	Take	a	look	at	the
following	example:

def	divide(number,	by=2)	{

				number/by

}

println	divide	(10,	5)

println	divide	(10)

It	prints	the	following:

2

5

If	we	provide	the	value	of	the	by	parameter	that	will	be	used,	the	default	value	2	will	be
assumed	for	the	parameter.

Methods	with	map	parameters/named	parameters

Groovy	does	not	support	named	parameters	such	as	Python,	but	Map	provides	a	very	close
approximation	to	the	same	functionality:

def	method(Map	options)	{

				def	a	=	options.a	?:	10

				def	b	=	options.b	?:	20

}

In	the	preceding	code,	we	expect	the	map	to	contain	keys	a	and	b.

Note
On	line	number	2	and	3,	notice	the	elvis	operator	?:,	which	returns	the	left	hand	side
value,	if	value	exists	and	is	truthy;	otherwise	returns	the	right	hand	side	(default)	value.	It
is	basically	short	hand	for	the	following	code:

options.a	?	options.a	:	10

Now,	this	method	can	be	called	as	follows:

method([a:10,b:20])

We	can	omit	the	square	brackets	([])	because	maps	have	special	support	in	the	method
call:

method(a:10,	b:20)

Now,	it	clearly	looks	like	the	named	parameters.	The	order	of	parameters	is	not	important
and	all	the	parameters	need	not	be	passed.	Also,	the	parenthesis	wrapping	is	optional,	just
like	any	method	call:

method	b:30,	a:40

method	b:30

Methods	with	varags

Like	in	Java,	varags	are	denoted	by	...,	but	providing	the	type	is	optional:

def	sumSquares(...numbers)	{

				numbers.collect{	it	*	it	}.sum()

}

sumSquares	1,	2,	3

In	the	preceding	examples,	numbers	are	arrays,	which	have	the	collect	method	that
accepts	a	closure	and	transforms	each	element	of	the	collection	in	order	to	produce	a	new
collection.	In	this	case,	we	transform	numbers	in	the	collection	of	squares.	Finally,	we	use
the	in-built	sum	method	to	sum	all	the	squares.

Methods	with	closure	params

Closures	are	important	and,	hence,	Groovy	has	a	special	syntax	for	closures	if	the	closure
is	the	last	parameter	of	a	method	signature:

def	myMethod	(param,	cls)	{

				...

}

Then,	this	method	can	be	called	as	follows:

myMethod(1,{	...	})

myMethod	2,	{...	}

myMethod(3)	{...}

Out	of	these,	the	third	one	is	the	special	syntactical	support	in	which	the	parenthesis	just
wraps	the	other	parameters,	while	the	closure	is	written	outside	the	parenthesis,	as	if	it
were	a	method	body.

Classes
Classes	in	Groovy	are	declared	just	like	Java	classes,	but	with	a	lot	lesser	ceremony.
Classes	are	public	by	default.	They	can	inherit	from	other	classes	using	extends	or
implementing	interfaces	using	implmenets.

The	following	is	the	definition	of	a	very	simple	class,	Person,	having	two	properties,	name
and	age:

class	Person	{

		def	name,	age

}

Instead	of	using	the	def	for	properties,	we	can	use	more	specific	types.

Constructors

In	addition	to	the	default	constructor,	classes	in	Groovy	get	a	special	constructor,	which
takes	the	map	of	properties	of	the	class.	Here	is	how	we	use	it:

def	person	=	new	Person(name:"John	Doe",	age:35)

In	the	preceding	code,	we	have	created	the	person	object	using	the	special	constructor.
The	parameters	are	key-value	pairs	where	the	keys	are	the	name	of	the	properties	in	the
class.	The	values	provided	for	the	keys	will	be	set	for	the	corresponding	properties.

Properties

Groovy	has	language-level	support	for	properties.	In	the	preceding	class,	name	and	age,
unlike	Java,	are	not	just	fields,	but	are	also	properties	of	the	class	with	their	getters	and
setters	in	place.	Fields	are	private	by	default	and	their	public	accessors	and	mutators

(getters	and	setters)	are	generated	automatically.

We	can	call	the	getAge()/setAge()	and	getName()/setName()	methods	on	the	person
object	that	we	created	above.	However,	there	is	an	even	more	succinct	way	to	do	so.	We
can	access	properties	just	as	if	they	were	public	fields,	but	behind	the	scenes,	Groovy
routes	it	through	the	getters	and	setters.	Let’s	try:

println	person.age

person.age	=	36

println	person.age

It	prints	the	following:

35

36

In	the	preceding	code,	on	line	number	1,	person.age	is	actually	a	call	to
person.getAge()	and,	hence,	it	returns	the	age	of	the	person.	Then,	we	updated	the	age
using	person.age	with	an	assignment	operator	and	value	on	the	right-hand	side.	We	did
not	update	the	field,	but	it	internally	passes	through	the	setter	setAge().	This	is	only
possible	because	groovy	offers	syntactical	support	for	properties.

We	can	provide	our	own	getters	and/or	setter	for	the	desired	fields,	which	will	take
precedence	over	the	generated	one,	but	it	is	only	necessary	if	we	have	some	logic	to	write
in	those.	For	example,	if	we	want	to	have	one	positive	value	of	age	to	be	set,	then	we	can
provide	our	own	setAge()	implementation,	and	this	will	be	used	whenever	the	property	is
updated:

		void	setAge(age){

				if	(age	<	0)	

						throw	new	IllegalArgumentException("age	must	be	a	positive	number")

				else

						this.age	=	age

		}

The	support	for	properties	results	in	the	significant	reduction	of	the	boilerplate	code	from
class	definitions	and	enhances	readability.

Tip
Properties	are	first-class	citizens	in	Groovy.	Going	forward,	whenever	we	refer	to
property,	do	not	get	confused	between	properties	and	fields.

Instance	methods

We	can	add	an	instance	and	static	methods	to	classes	just	like	we	do	in	Java:

def	speak(){

		println	"${this.name}	speaking"

}

static	def	now(){

		new	Date().format("yyyy-MM-dd	HH:mm:ss")

}

The	methods	section,	as	we	discussed	above,	did	not	use	classes,	but	applied	as-is	for	the
methods	inside	classes.

Note
Scripts	are	classes

In	fact,	the	methods	that	we	discussed	above	were	inside	a	class	and	they	were	not	free-
floating	functions.	As	scripts	get	translated	to	classes	transparently,	it	feels	as	if	we	were
using	functions.

I	am	sure	you	have	enjoyed	Groovy	so	far.	There	is	a	lot	more	to	cover	in	Groovy,	but	we
have	to	switch	back	our	focus	to	Gradle.	However,	I	hope	to	have	generated	enough
curiosity	about	Groovy	so	that	you	can	appreciate	it	as	a	language	and	explore	more	of	it
on	your	own.	There	are	a	few	good	resources	included	in	the	references	section.

Another	look	at	applying	plugins
Now	that	we	have	learned	about	basic	Groovy,	let’s	put	it	to	use	in	the	context	of	the
Gradle	build	script.	In	earlier	chapters,	we	have	already	seen	the	syntax	of	applying	a
plugin.	It	looked	something	as	follows:

apply	plugin:	'java'

If	we	look	carefully,	apply	is	a	method	call.	We	can	wrap	the	parameters	in	the
parenthesis:

apply(plugin:	'java')

A	method	that	takes	in	a	map	can	pass	key	values	just	like	named	arguments.	However,	for
a	more	clear	representation	of	Map,	we	can	wrap	the	parameters	in	[]:

apply([plugin:	'java'])

Finally,	the	apply	method	is	implicitly	applied	on	the	project	object	(we	will	soon	see
this	in	the	upcoming	sections	in	this	chapter).	So,	we	can	also	call	it	on	the	project
object’s	reference:

project.apply([plugin:	'java'])

So,	from	the	preceding	example,	we	can	see	that	the	statement	that	applies	a	plugin	to
project	is	merely	a	syntactic	sugar	to	what	is	a	method	call	on	the	project	object.	We	are
just	writing	Groovy	code	using	Gradle	API.	Also,	once	we	realize	that,	our	perspective
towards	understanding	the	build	script	syntax	changes	for	good.

Gradle	–	an	object-oriented	build	tool
If	we	were	to	think	of	a	build	system	in	an	object-oriented	way,	the	following	classes	will
immediately	come	to	our	minds:

A	project	that	represents	a	system	that	is	being	built
A	task	that	encapsulates	pieces	of	build	logics	that	need	to	be	performed

Well,	we	are	lucky.	As	we	might	expect,	Gradle	creates	objects	of	both	project	and	task
types.	These	objects	are	accessible	in	our	build	script	for	us	to	customize.	Of	course,	the
underlying	implementation	is	non-trivial	and	the	API	is	very	sophisticated.

A	project	object	is	a	central	piece	of	API	that	is	exposed	to	and	configured	via	the	build
scripts.	A	project	object	is	available	in	the	script	such	that	the	methods	without	object
reference	are	intelligently	invoked	on	the	project	object.	We	have	just	seen	an	example	of
this	in	the	last	section.	Most	of	the	build	script	syntax	can	be	understood	by	just	reading
the	project	API.

The	task	objects	are	created	for	each	task	declared	directly	in	the	build	file	and	also	for
plugins.	We	have	already	created	a	very	simple	task	in	Chapter	1,	Running	Your	First
Gradle	Task	and	used	tasks	coming	from	plugins	in	Chapter	2,	Building	Java	Projects,	and
Chapter	3,	Building	a	Web	Application.

Note
As	we	have	seen,	some	tasks	are	already	available	in	our	build	without	us	having	to	add	a
single	line	to	our	build	file	(such	as	the	help	task	and	the	tasks	task,	and	so	on).	Even	for
these	tasks,	we	would	have	task	objects.

We	will	soon	see	how	and	when	these	objects	are	created.

Build	phases
A	Gradle	build	follows	a	very	simple	life	cycle	on	every	invocation.	The	build	passes
through	three	stages:	initialization,	configuration,	and	execution.	When	a	gradle
command	is	invoked,	not	all	the	code	written	in	our	build	file	executes	sequentially	from
top	to	bottom.	Only	the	blocks	of	code	that	are	relevant	to	the	current	phase	of	the	build
are	executed.	Also,	the	build	phase’s	order	determines	when	the	block	of	code	will
execute.	An	example	is	the	task	configuration	versus	task	execution.	Understanding	of
these	phases	is	important	to	correctly	configure	our	build.

Initialization
Gradle	first	figures	out	whether	the	current	project	has	child	projects	or	if	it	is	the	only
project	in	the	build.	For	multiprojects	build,	Gradle	figures	out	which	projects	(or	sub-
module,	as	many	prefer	to	call	them)	have	to	be	included	in	the	build.	We	will	see
multiproject	builds	in	the	next	chapter.	Gradle	then	creates	a	Project	instance	for	the	root
project	and	for	each	of	the	child	projects	of	a	project.	For	single	module	projects	that	we
have	seen	so	far,	there	is	not	much	to	configure	in	this	phase.

Configuration
In	this	phase,	the	build	scripts	of	participating	projects	are	evaluated	against	the
corresponding	project	object	that	was	created	during	the	initialization	phase.	In	the	case	of
multimodule	projects,	evaluation	happens	in	breadth-wise	fashion,	that	is,	all	the	sibling
projects	will	be	evaluated	and	configured	before	child	projects.	However,	this	behavior	is
configurable.

Note	that	executing	the	scripts	does	not	mean	that	the	tasks	are	also	executed.	To	quickly
verify	this,	we	can	just	put	a	println	statement	in	the	build.gradle	file	and	also	create	a
task	that	prints	a	message:

task	myTask	<<	{

		println	"My	task	is	executed"

}

//	The	following	statement	will	execute	before	any	task	

println	"build	script	is	evaluated"

If	we	execute	the	following	code:

$	gradle	-q	myTask

We	would	see	the	following	output:

build	script	is	evaluated

My	task	is	executed

In	fact,	choose	any	in-built	task	as	well,	such	as	help:

$	gradle	-q	help

We	would	still	see	our	build	script	is	evaluated	message	before	any	task	is	executed.
Why	is	that?

When	a	script	is	evaluated,	all	the	statements	in	the	script	are	executed	sequentially.	That’s
why	the	println	statement	at	the	root	level	gets	executed.	A	task	action,	if	you	notice,	is
actually	a	closure;	hence,	it	is	only	attached	to	a	task	during	the	statement	execution.
However,	the	closure	itself	is	not	executed	yet.	The	statements	inside	the	action	closure
executes	only	if	the	task	is	executed,	which	happens	only	in	the	next	phase.

Tasks	are	only	configured	during	this	stage.	No	matter	what	tasks	are	going	to	be	called,
all	tasks	will	be	configured.	Gradle	prepares	a	Directed	Acyclic	Graph	(DAG)
representation	of	the	tasks	to	determine	the	task	dependency	and	execution	order.

Execution
In	this	phase,	Gradle	figures	out	which	tasks	need	to	be	run	based	on	the	parameters	such
as	task	names	passed	as	command	line	arguments	and	the	current	directory.	This	is	where
tasks’	actions	will	be	performed.	Hence,	here,	the	action	closures	will	actually	execute	if
the	task	is	to	run.

Note
On	subsequent	invocations,	Gradle	intelligently	determines	which	tasks	need	to	actually
run	and	which	can	be	skipped.	For	example,	for	a	compile	task,	there	is	no	point	in
compiling	again	if	there	is	no	change	in	the	source	file	after	the	last	build.	In	such	a	case,
the	execution	may	be	skipped.	We	can	see	such	tasks	in	the	output	tagged	as	UP-TO-DATE:

:compileJava	UP-TO-DATE

:processResources	UP-TO-DATE

:classes	UP-TO-DATE

:compileTestJava	UP-TO-DATE

:processTestResources	UP-TO-DATE

:testClasses	UP-TO-DATE

:test	UP-TO-DATE

In	the	preceding	output,	as	there	was	no	change	from	the	previous	build,	Gradle	actually
skipped	every	task.	However,	this	will	not	happen	for	a	custom	task	that	we	write,	unless
we	tell	Gradle	the	logic	for	figuring	out	whether	the	task	needs	execution	or	not.

Life	cycle	callbacks
Gradle	provides	various	hooks	for	executing	code	at	various	points	during	life	cycle
events.	We	can	implement	callback	interfaces	or	provide	callback	closure	to	DSL	in	the
build	script.	For	example,	we	can	listen	for	events	such	as	the	before	and	after	project
evaluation	using	the	beforeEvaluate	and	afterEvaluate	methods	on	project.	We	are
not	going	to	look	at	them	individually,	but	the	Project	and	Gradle	(the	interface	name	is
not	to	be	confused	with	the	tool’s	name	itself)	APIs	and	the	DSL	documentation	is	the
right	place	to	check	out	the	available	callbacks,	if	we	feel	the	need	to	implement	life	cycle
callbacks.

Gradle	Project	API
As	discussed	earlier,	Gradle	creates	a	project	object	for	each	build.gradle	for	us	during
the	initialization	phase.	This	object	is	available	in	our	build	scripts	using	the	project
reference.	Being	a	central	piece	of	API,	there	are	numerous	methods	and	properties
available	on	this	object.

Project	methods
We	have	been	using	the	project	API	even	without	realizing	that	we	are	calling	methods	on
the	project	object.	Based	on	a	few	governing	rules,	all	the	top-level	method	calls	in	the
build	scripts	are	called	on	a	project	object	if	no	explicit	reference	is	provided.

Let’s	rewrite	the	very	simple	build	file	from	Chapter	1,	Running	Your	First	Gradle	Task	to
use	the	project	reference	for	method	calls:

project.apply	plugin:	'java'

project.repositories	{

				mavenCentral()

}

project.dependencies	{

				testCompile	'junit:junit:4.11'

}

As	we	saw	earlier	in	this	chapter,	apply	is	the	method	on	the	project.	The	so-called
dependencies	block	is	actually	a	method	named	dependencies()	on	project	that	accepts
a	closure.	It	is	true	for	the	repositories	section	as	well.	We	can	add	parenthesis	around
the	closure	block	to	make	it	look	like	a	plain	old	method	call:

project.repositories({...})

project.dependencies({...})

There	are	many	more	interesting	methods	on	this	object,	which	we	will	see	in	the
upcoming	sections	and	chapters,	again,	with	or	without	explicit	reference	to	the	project
object.

Project	properties
There	are	several	properties	available	on	the	project	object.	Some	properties	are	read-
only	properties,	such	as	name,	path,	parent,	and	so	on,	while	others	are	both	readable	and
writable.

For	example,	we	can	set	project.description	to	provide	a	description	of	our	project.	We
can	use	the	project.version	property	to	set	the	version	of	the	project.	This	version	will
be	used	by	other	tasks	such	as	Jar	to	include	a	version	number	in	the	produced	artifact.

Note
We	cannot	change	the	project.name	from	the	build.gradle	file,	but	we	can	use
settings.gradle	in	the	same	project	to	set	the	project	name.	We	will	see	this	file	in	more
detail	when	we	learn	about	multi-project	builds.

Apart	from	directly	accessing	a	property	by	its	name,	we	can	access	properties	using	the
following	methods	on	the	project	object.

To	check	whether	a	property	exists,	use	the	following	method:

boolean	hasProperty(String	propertyName)

To	get	the	value	of	a	property	for	a	given	property	name,	use	the	following	method:

Object	property(String	propertyName)

To	set	the	value	of	a	property	for	a	given	property	name,	use	the	following	method:

void	setProperty(String	name,	Object	value)

For	example,	let’s	create	a	build.gradle	file	with	the	following	content:

description	=	"a	sample	project"

version	=	"1.0"

task	printProperties	<<	{

				println	project.version

				println	project.property("description")

}

Execute	the	following	task:

$	gradle	-q	printProperties

1.0

a	sample	project

As	seen	earlier,	in	Groovy,	we	can	use	the	property	=	value	syntax	to	call	a	setter.	We
are	setting	the	description	and	version	properties	on	the	project	object.	Then,	we	add	a
task	with	the	task	action	that	prints	the	version	using	the	project	reference	and
description	using	the	property()	method	on	the	project	object.

The	properties	that	we	have	seen	above	must	exist	on	the	project,	otherwise	build	fails
with	a	Could	not	find	property	…	message.

Extra	properties	on	a	project
Gradle	makes	it	very	easy	to	store	user-defined	properties	on	a	project,	while	still	being
able	to	enjoy	the	niceties	of	project	properties’	syntax.	All	we	have	to	do	is	to	use	the	ext
namespace	to	assign	a	value	to	a	custom	property.	Then,	this	property	can	be	accessed	on
a	project	just	like	regular	project	properties.	Here	is	an	example:

ext.abc	=	"123"

task	printExtraProperties	<<	{

				println	project.abc

				println	project.property("abc")

				println	project.ext.abc

}

Execute	the	following	task:

$	gradle	-q	printExtraProperties

123

123

123

In	the	preceding	example,	we	declared	a	custom	property	called	abc	and	assigned	it	the
value	123.	We	did	not	use	the	project	reference	as	it	is	implicitly	available	at	the	script
root	level.	In	the	task	action,	we	printed	it	first	using	a	project	reference	directly,	just	as	if

it	were	a	property	on	Project.	Then,	we	accessed	using	the	property()	method	and	also
using	the	project.ext	reference.	Note	that	inside	tasks’	action	closure,	we	should	use	the
project	reference	to	avoid	any	ambiguity.

Extra	properties	will	be	accessible	in	the	sub-projects	(modules).	Extra	properties	can	be
set	on	other	objects	as	well.

Note
We	could	have	just	used	the	local	variable	by	declaring	it	with	def.	However,	such
variables	are	not	accessible	outside	the	lexical	scope.	Also,	they	are	not	queriable.

Although	we	have	looked	at	a	few	methods	and	properties,	it’s	impractical	to	cover	all	of
those	here;	hence,	it	is	worth	spending	some	time	reading	the	API	and	the	DSL
documentation	of	the	project	interface.

Tasks
As	we	have	seen	so	far,	a	task	is	a	named	action	that	performs	some	build	logic.	It’s	a	unit
of	build	work.	For	example,	clean,	compile,	dist,	and	so	on,	are	typical	build	tasks	that
easily	come	to	our	mind	if	we	have	to	write	tasks	for	our	project.	Tasks	are	more	or	less
analogous	to	Ant’s	targets.

The	simplest	way	to	create	a	task	is	as	follows:

task	someTask

Before	we	go	any	further	with	tasks,	let’s	take	a	moment	to	ponder	about	task	creation.

We	used	the	taskName	task	form	of	a	statement.

If	we	rewrite	it	as	a	task	(taskName),	it	will	immediately	look	like	the	method	call.

The	preceding	method,	as	we	might	have	already	guessed	by	now,	is	available	on	the
project	object.

So,	we	could	write	one	of	the	following	as	well:

project.task	"myTask"

project.task("myTask")

Notice	that	in	the	later	examples	we	had	to	pass	the	task	name	as	a	string.	The	task
taskName	is	a	special	form	where	we	can	use	taskName	as	a	literal	instead	of	string.	This	is
done	by	Groovy	AST	transformation	magic.

The	project	has	several	flavors	of	a	task	method	to	create	a	task	object:

Task	task(String	name)

Task	task(String	name,	Closure	configureClosure)

Task	task(Map<String,	?>	args,	String	name)

Task	task(Map<String,	?>	args,	String	name,	Closure	configureClosure)

However,	in	essence,	we	may	pass	some	key	values	as	named	parameters	while	creating	a
task	and	a	configuration	closure	to	configure	the	task.

We	are	essentially	creating	an	object	of	the	type	Task	(the	exact	class	name	is	not
important	right	now).	We	can	query	the	properties	and	call	methods	on	this	object.	Gradle
nicely	makes	this	task	object	available	for	use.	Behind	the	nice	DSL,	we	are	actually
writing	a	script	that	creates	the	build	logic	in	a	nice	object-oriented	way.

Attaching	actions	to	a	task
A	Task	object,	such	as	the	one	created	above,	does	not	do	much.	In	fact,	there	is	no	action
attached	to	it.	We	need	to	attach	actions	to	a	Task	object	for	Gradle	to	perform	those
actions	when	a	task	is	run.

A	Task	object	has	a	method	called	doLast,	which	accepts	a	closure.	Gradle	ensures	that	all
the	closures	passed	to	this	methods	are	executed	in	the	order	they	were	passed:

someTask.doLast({

				println	"this	should	be	printed	when	the	task	is	run"

})

What	we	can	do	now	is	call	doLast	once	more:

someTask.doLast({

				println	"this	should	ALSO	be	printed	when	the	task	is	run"

})

Also,	in	an	alternate	syntax:

someTask	{

				doLast	{

								println	"third	line	that	should	be	printed"

				}

}

There	are	multiple	ways	to	add	a	doLast	logic	to	a	task,	but	the	most	idiomatic,	and
perhaps	a	terse	way	is	as	follows:

someTask	<<	{

				println	"the	action	of	someTask"

}

Just	like	the	Project	object,	we	have	the	Task	object	on	which	methods	and	properties	are
accessible.	However,	unlike	the	Project	object,	it	is	not	implicitly	available	at	the	top
level	in	the	script,	but	only	inside	the	task’s	configuration	scope.	Also,	intuitively,	we	can
say	that	there	will	be	multiple	Task	objects	per	build.gradle.	We	will	see	the	various
ways	to	access	the	Task	object	later.

Task	flow	control
Tasks	within	a	project	may	have	a	dependency	on	each	other.	In	this	section,	we	will	see
different	kinds	of	relationships	that	may	exist	within	tasks	of	a	project.

dependsOn
There	are	tasks	whose	execution	is	dependent	on	the	other	task’s	successful	completion.
For	example,	for	creating	a	distributable	JAR	file,	the	code	should	have	been	compiled
first	and	the	“class”	files	should	already	exist.	In	such	a	case,	we	don’t	want	the	user	to
explicitly	specify	all	the	tasks	and	their	order	from	the	command	line,	as	follows:

$	gradle	compile	dist

This	is	error-prone.	We	may	forget	to	include	one	task,	or	the	ordering	may	become
complicated	if	there	are	multiple	tasks	that	are	dependent	on	the	successful	completion	of
the	previous	tasks.	It	is	desirable	to	be	able	to	specify	if	a:

task	compile	<<	{

				println	'compling	the	source'

}

task	dist(dependsOn:	compile)	<<	{

				println	"preparing	a	jar	dist"

}

finalizedBy
We	can	also	declare	that,	if	a	task	is	called,	it	should	be	followed	by	another	task,	even	if
another	task	is	not	explicitly	called.	This	is	in	contrast	to	dependsOn,	where	another	task	is
executed	before	the	called	task.	In	the	case	of	finalizedBy,	another	task	is	executed	after
the	execution	of	the	called	task:

task	distUsingTemp	<<	{

		println	("preapring	dist	using	a	temp	dir")

}

task	cleanup	<<	{

		println("removing	tmp	dir")

}

distUsingTemp.finalizedBy	cleanup

onlyIf
We	can	specify	a	condition	and	if	it	is	satisfied,	the	task	will	be	executed:

cleanup.onlyIf	{	file("/tmp").exists()}

mustRunAfter	and	shouldRunAfter
There	are	times	when	we	just	want	to	order	tasks	in	a	particular	fashion	if	this	relationship
is	not	exactly	the	same	as	dependsOn.	For	example,	if	we	execute	the	following	command:

$	gradle	build	clean

Then,	unrelated	tasks	will	be	executed	in	the	order	they	were	specified	on	the	command
line,	which	in	this	case	doesn’t	make	sense.

In	such	a	case,	we	may	add	the	following	line	of	code:

build.mustRunAfter	clean

This	tells	Gradle	that,	if	both	the	tasks	are	there	in	the	task	graph,	then	the	build	must	run
after	the	clean	is	run.	Here,	build	does	not	depend	on	clean.

The	difference	between	shouldRunAfter	and	mustRunAfter	is	that	the	former	is	more
suggestive	to	Gradle,	but	doesn’t	enforce	Gradle	to	follow	the	ordering	all	the	time.	In	the
following	two	cases,	shouldRunAfter	may	not	be	honored	by	Gradle:

In	the	case	when	it	introduces	cyclic	ordering.
In	the	case	of	parallel	execution,	when	only	the	shouldRunAfter	task	has	not	yet
successfully	completed	and	other	dependencies	are	satisfied,	then	shouldRunAfter
will	be	ignored.

Creating	tasks	dynamically
One	of	the	beauties	of	Gradle	is	that	we	can	create	tasks	dynamically	as	well.	What	this
means	is	that	the	name	and	the	logic	of	task	is	not	completely	known	while	writing	the
build,	but	depending	on	some	variable	parameter,	the	tasks	will	be	automatically	added	to
our	Gradle	project.

Let’s	try	to	understand	with	an	example:

10.times	{	number	->

		task	"dynamicTask$number"	<<	{

				println	"this	is	dynamic	task	number	#	$number	"

		}

}

In	the	preceding	contrived	examples,	we	are	creating	and	adding	ten	tasks	dynamically	to
our	build.	Although	all	of	them	just	print	the	task	number,	the	ability	to	dynamically	create
and	add	tasks	to	our	project	is	extremely	powerful.

Setting	default	tasks
So	far,	we	have	always	been	calling	the	gradle	command	line	interface	with	the	task
name(s).	This	is	kind	of	repetitive	in	nature,	especially	during	development,	and	a	tool
such	as	Gradle	gets	us	covered:

defaultTasks	"myTaskName",	"myOtherTask"

It	is	wise	to	set	default	tasks	so	that	if	we	don’t	specify	any	task	name,	the	set	tasks	are
executed	by	default.

In	the	preceding	example,	running	gradle	from	the	command	line	without	any	arguments
runs	the	default	tasks	one	after	another	in	the	sequence	specified	in	the	defaultTasks.

Task	types
The	tasks	that	we	have	seen	so	far	were	ad-hoc	in	nature.	We	had	to	write	the	code	for	the
task	action	that	needs	to	be	performed	whenever	the	task	executes.	However,	no	matter
which	project	we	are	building,	there	are	many	tasks	for	which	the	logic	of	task	action	need
not	change	if	we	have	the	capability	to	make	some	configuration	changes	to	the	existing
logic.	For	example,	when	you	copy	files,	only	the	source,	target,	and	inclusion/exclusion
patterns	change,	but	the	actual	logic	of	how	to	copy	files	from	one	location	to	another
honoring	the	inclusion/exclusion	patterns	stays	the	same.	So,	if	there	are	two	copy-like
tasks	required	in	a	project,	let’s	say	copyDocumentation	and	deployWar,	would	we	really
want	to	write	an	entire	logic	to	copy	the	selected	files	twice?

This	would	be	okay	for	very	small	builds	(such	as	the	examples	in	our	chapter),	but	the
approach	does	not	scale	well.	If	we	keep	on	writing	task	actions	to	perform	these	mundane
operations,	then	our	build	scripts	will	quickly	bloat	into	an	unmanageable	state.

Custom	task	type	is	Gradle’s	solution	to	abstract	out	reusable	build	logic	into	custom	task
classes,	which	expose	the	input/output	configuration	variables	on	the	task	object.	This
helps	us	tune	a	typed	task	to	suit	our	specific	needs.	This	helps	us	keep	the	common	build
logic	reusable	and	testable.

Another	problem	with	ad-hoc	task	action	is	that	it’s	imperative	in	nature.	For	the	sake	of
flexibility	of	the	tool,	Gradle	allows	us	to	imperatively	script	custom	logic	in	build	scripts.
However,	excessive	usage	of	imperative	code	in	our	build	scripts	makes	the	build	script
unmaintainable.	Gradle	should	be	used	in	a	declarative	manner	as	much	as	possible.	An
imperative	logic	should	be	encapsulated	within	a	custom	task	class	while	exposing	the
task	configuration	for	the	user	to	configure.	In	Gradle’s	terminology,	custom	task	classes
are	called	enhanced	tasks.

Custom	task	types	act	as	a	template	with	some	sensible	defaults	for	a	common	build	logic.
We	still	need	to	declare	a	task	in	our	build,	but	we	just	tell	Gradle	the	type	of	this	task	and
configure	the	settings	of	this	task	type,	instead	of	writing	the	entire	task	action	block
again.	Gradle	already	ships	with	many	custom	task	types;	for	example,	Copy,	Exec,
Delete,	Jar,	Sync,	Test,	JavaCompile,	Zip,	and	so	on.	We	can	easily	write	our	own
enhanced	tasks	as	well.	We	will	very	briefly	see	both	the	scenarios.

Using	task	types
We	can	configure	a	task	that	is	of	type	Copy	using	the	following	syntax:

task	copyDocumentation(type:Copy)	{

from	file("src/docs/html")

into	file("$buildDir/docs")

}

In	the	preceding	example,	the	first	important	difference	is	that	we	are	passing	a	key	type
with	the	value	as	the	custom	task’s	class	name,	which	is	Copy	in	this	case.	Also,	notice	that
there	is	no	doLast	or	indirection	(<<)	operator.	The	closure	that	we	are	passing	to	this	task
actually	gets	executed	in	the	configuration	phase	of	build.	The	method	calls	inside	the

closure	are	delegated	to	the	implicitly	available	task	object,	which	is	being	configured.
We	have	not	written	any	logic	here,	but	have	just	provided	the	configuration	to	a	task
whose	type	is	Copy.	It	is	always	worth	taking	a	look	at	the	available	custom	tasks	before
we	go	ahead	with	writing	ad-hoc	task	actions.

Creating	task	types
If	we	look	back	now,	the	code	we	have	been	writing	for	our	task	actions	for	our	sample
tasks	was	mostly	a	println	statement	that	would	print	the	given	message	on	System.out.
Now,	just	imagine	that	we	found	System.out	doesn’t	fit	our	bill,	and	we	should	rather	use
text	files	to	print	the	message	from	the	tasks.	We	would	need	to	go	through	all	the	tasks
and	change	the	implementation	to	write	to	a	file	instead	of	println.

There	is	a	better	way	to	handle	such	changing	requirement.	We	can	leverage	the	capability
of	the	task	type	here	by	providing	our	own	task	type.	Let’s	put	the	following	code	in	our
build.gradle:

class	Print	extends	DefaultTask	{

		@Input

		String	message	=	"Welcome	to	Gradle"

		@TaskAction

		def	print()	{

				println	"$message"

		}

}

task	welcome(type:	Print)

task	thanks(type:	Print)	{

		message	=	"Thanks	for	trying	custom	tasks"

}

task	bye(type:	Print)

bye.message	=	"See	you	again"

thanks.dependsOn	welcome

thanks.finalizedBy	bye

In	the	preceding	code	sample:

We	first	created	a	class	(which	will	be	our	task	type)	that	extends	DefaultTask,
which	is	already	defined	in	Gradle.
Next,	we	declared	a	configurable	input	to	our	task	using	@Input	on	the	property
named	message.	The	consumer	of	our	task	can	configure	this	property.
Then,	we	used	the	@TaskAction	annotation	on	the	print	method.	This	method	is
executed	when	our	task	is	called.	It	just	uses	println	to	print	the	message.
Then,	we	declared	the	three	tasks;	all	using	different	ways	to	configure	our	task.
Notice	the	absence	of	any	task	action.
Finally,	we	applied	task	flow	control	techniques	to	declare	task	dependencies.

If	we	run	the	thanks	task	now,	we	can	see	the	expected	output,	as	follows:

$	gradle	-q	thanks

Welcome	to	Gradle

Thanks	for	trying	custom	tasks

See	you	again

A	few	points	to	note	here	are	as	follows:

If	we	want	to	change	the	implementation	of	our	printing	logic,	there	is	only	one	place
where	we	need	to	do	the	change,	the	print	method	of	our	custom	task	class.
The	tasks	using	task	types	are	used	and	they	work	just	like	any	other	tasks.	They	can
also	have	task	actions	closure	using	doLast	{},	<<	{},	but	it	is	usually	not	required.

References
The	next	sections	mention	some	of	the	useful	references	for	Groovy.

Groovy
There	is	a	plethora	of	online	reference	material	available	for	Groovy.	We	could	start	at:

For	further	reading,	refer	to	Groovy’s	online	documentation	at	http://www.groovy-
lang.org/documentation.html
More	references	of	Groovy	resources	are	available	at
https://github.com/kdabir/awesome-groovy

Here	is	a	list	of	books	on	Groovy:

The	Groovy	in	Action	book	is	available	at	https://www.manning.com/books/groovy-
in-action-second-edition.
The	Groovy	Cookbook	is	available	at	https://www.packtpub.com/application-
development/groovy-2-cookbook.
The	Programming	Groovy	2	book	is	available	at
https://pragprog.com/book/vslg2/programming-groovy-2.

http://www.groovy-lang.org/documentation.html
https://github.com/kdabir/awesome-groovy
https://www.manning.com/books/groovy-in-action-second-edition
https://www.packtpub.com/application-development/groovy-2-cookbook
https://pragprog.com/book/vslg2/programming-groovy-2

Gradle	API	and	DSL	used	in	this	chapter
Gradle’s	official	API	and	DSL	documentation	is	a	good	place	to	explore	and	learn	more
about	various	classes	discussed	in	this	chapter.	These	APIs	and	DSLs	are	very	rich	and
deserve	our	reading	time.

Project:

The	API	documentation:
http://gradle.org/docs/current/javadoc/org/gradle/api/Project.html
The	DSL	documentation:
http://gradle.org/docs/current/dsl/org.gradle.api.Project.html

Gradle	(the	interface):

The	API	documentation:
http://gradle.org/docs/current/javadoc/org/gradle/api/invocation/Gradle.html
The	DSL	documentation:
http://gradle.org/docs/current/dsl/org.gradle.api.invocation.Gradle.html

Task:

The	API	documentation:
http://www.gradle.org/docs/current/javadoc/org/gradle/api/Task.html
The	DSL	documentation:
http://www.gradle.org/docs/current/dsl/org.gradle.api.Task.html

http://gradle.org/docs/current/javadoc/org/gradle/api/Project.html
http://gradle.org/docs/current/dsl/org.gradle.api.Project.html
http://gradle.org/docs/current/javadoc/org/gradle/api/invocation/Gradle.html
http://gradle.org/docs/current/dsl/org.gradle.api.invocation.Gradle.html
http://www.gradle.org/docs/current/javadoc/org/gradle/api/Task.html
http://www.gradle.org/docs/current/dsl/org.gradle.api.Task.html

Summary
We	started	this	chapter	with	a	quick	feature	overview	of	Groovy	language,	covering	some
of	the	topics	that	would	be	helpful	for	us	to	understand	Gradle’s	syntax	and	write	better
build	scripts.	Then,	we	looked	at	the	API	that	Gradle	exposes	to	our	build	scripts	and	how
to	consume	the	API	via	the	DSL.	We	also	covered	the	Gradle	build	phases.	Then,	we
looked	at	the	way	in	which	tasks	can	be	created,	configured,	have	dependencies	between,
and	run	by	default.

After	reading	this	chapter,	we	should	be	able	to	comprehend	the	Gradle	DSL,	rather	than
just	trying	to	remember	the	syntax.	We	are	now	in	a	position	to	read	and	understand	any
given	Gradle	build	file,	and	we	should	now	be	able	to	write	custom	tasks	with	ease.

This	chapter	might	feel	a	little	long	and	complex.	We	should	take	some	time	out	to
practise	and	reread	the	sections	that	are	not	clear	and	also	look	up	the	online	references
given	throughout	the	chapter.	The	chapters	ahead	will	be	smooth	sailing.

Chapter	5.	Multiprojects	Build
Now	that	we	are	familiar	with	the	build	script	syntax,	we	are	prepared	to	handle	more
complex	project	structures.	In	this	chapter,	we	will	focus	on	builds	spanning	across
multiple	projects,	their	interdependencies,	and	many	more	things	in	between.

As	the	projects	code	base	grows,	many	times,	it	is	desirable	to	split	it	into	multiple
modules	based	on	layers,	responsibilities,	artifacts	produced,	or	sometimes	even
depending	on	development	teams,	to	effectively	break	the	work	down.	Whatever	is	the
reason,	the	reality	is	big	projects	are	broken	down	into	smaller	subprojects	sooner	or	later.
Also,	a	build	tool	such	as	Gradle	is	completely	capable	of	handling	the	complexity.

The	multiproject	directory	layout
A	multiproject	(or	multimodule,	as	some	prefer	to	call	it)	is	a	group	of	projects	that	are
logically	related	to	each	other	and	often	have	the	same	develop-build-release	cycles.	The
directory	structure	is	important	for	laying	out	the	strategy	for	building	such	projects.
Typically,	a	top-level	root	project	contains	one	or	more	subprojects.	The	root	project	may
contain	source	sets	of	its	own,	may	contain	only	the	integration	tests	that	test	the
integration	of	the	subprojects,	or	may	even	act	just	as	a	master	build	without	any	source
and	tests.	Gradle	supports	every	such	configuration.

The	arrangement	of	subprojects	relative	to	the	root	project	may	be	flat,	that	is,	all	the
subprojects	are	the	direct	children	of	the	root	project	(as	shown	in	sample	1)	or	are
hierarchical,	such	that	the	subproject	may	also	have	nested	child	projects	(as	shown	in
sample	2)	or	any	hybrid	directory	structure.

Let’s	refer	to	the	following	directory	structure	as	sample	1:

sample1

├──	repository

├──	services

└──	web-app

In	sample	1,	we	see	a	fictitious	example	project	in	which	all	the	subprojects	are	the	direct
children	of	the	root	project	and	are	siblings	of	each	other.	Just	for	the	sake	of	this	example,
we	broke	our	app	into	three	subprojects	named	:repository,	:services,	and	:web-app.
As	their	names	suggest,	a	repository	contains	the	data	access	code,	whereas	services	is	the
layer	encapsulating	the	business	rules	in	the	form	of	a	consumable	API.	The	web-app
contains	only	the	web	application-specific	code	such	as	controllers	and	view	templates.
However,	note	that	the	:web-app	project	may	depend	on	the	:services	project,	which	in
turn	may	depend	on	the	:repository	project.	We	will	soon	see	how	these	dependencies
work.

Tip
Do	not	confuse	the	multiproject	structure	with	multiple	source	directories	in	a	single
project.

Let’s	see	a	relatively	more	complex	structure	and	call	it	sample	2:

sample2

├──	core

│			├──	models

│			├──	repository

│			└──	services

├──	client

│			├──	client-api

│			├──	cli-client

│			└──	desktop-client

└──	web	

				├──	webservices

				└──	webapp

Our	app	has	now	evolved	and	to	cater	for	more	needs,	we	have	added	more	functionalities
to	it.	We	have	created	more	subprojects	such	as	a	desktop	client	for	our	app	and	a
command-line	interface.	In	sample	2,	the	root	project	is	split	into	three	projects	(groups),
which	have	their	own	child	projects.	In	this	example,	every	directory	can	be	treated	as	a
project.	The	purpose	of	this	sample	is	to	only	show	one	of	the	possible	directory
structures.	Gradle	does	not	impose	one	directory	structure	over	another.

One	might	wonder,	where	do	we	put	all	the	build.gradle	files	and	what	goes	in	them?	It
depends	on	our	needs	and	how	we	want	to	structure	our	build.	We	will	answer	all	these
questions	shortly	after	we	understand	what	is	settings.gradle.

The	settings.gradle	file
During	initialization,	Gradle	reads	the	settings.gradle	file	to	figure	out	which	projects
are	to	take	part	in	a	build.	Gradle	creates	an	object	of	type	Setting.	This	happens	even
before	any	build.gradle	is	parsed.	It	is	usually	placed	in	the	root	project	parallel	to
build.gradle.	It	is	recommended	to	put	setting.gradle	in	the	root	project,	otherwise
we	have	to	explicitly	tell	Gradle	the	location	to	the	settings	file	with	the	command-line
option	-c.	Adding	these	two	files	to	sample	1’s	directory	structure	would	gives	us
something	as	follows:

sample1

├──	repository

│			└──	...

├──	services

│			└──	...

├──	web-app

│			└──	...

├──	build.gradle

└──	settings.gradle

The	most	common	use	of	settings.gradle	is	to	enlist	all	the	subprojects	participating	in
the	build:

include	':repository',	':services',	':web-app'

Also,	this	is	all	that	is	required	to	tell	Gradle	that	the	current	build	is	a	multiproject	build.
Of	course,	this	not	the	end	of	the	story	and	there	is	a	lot	more	that	we	can	do	with
multiproject	builds,	but	this	is	the	bare	minimum	and	sometimes	just	enough	to	get
multiproject	builds	working.

The	methods	and	properties	of	Settings	are	available	in	the	settings.gradle	file	and	are
implicitly	called	on	a	Settings	instance	just	the	way	the	methods	of	Project	API	are
available	in	the	build.gradle	file,	as	we	saw	in	the	previous	chapter.

Note
Are	you	wondering	why	a	colon	(:)	is	used	before	the	project	name	in	the	preceding
section?	It	denotes	the	project	path	relative	to	the	root	project.	However,	the	include
method	allows	level	1	subproject	names	to	omit	the	colon.	So,	the	include	call	can	be
rewritten	as	follows:

include	'repository',	'services',	'web-app'

Let’s	just	query	the	projects	by	calling	the	task	projects	from	the	command	line.	The
projects	task	lists	all	the	projects	available	in	a	Gradle	build:

$	gradle	projects

:projects

--

Root	project

--

Root	project	'sample1'

+---	Project	':repository'

+---	Project	':services'

\---	Project	':web-app'

To	see	a	list	of	the	tasks	of	a	project,	run	gradle	<project-path>:tasks.

For	example,	try	running	gradle	:repository:tasks.

BUILD	SUCCESSFUL

Note
In	case	of	nesting	that	is	more	than	one	level	deep,	like	in	sample	2,	all	the	projects	must
be	included	in	the	root	project	settings.gradle	with	the	syntax	as	follows:

include	'core',

		'core:models',	'core:repository',	'core:services',

		'client'	//...	so	on

We	can	find	more	information	on	Settings	at	the	Settings	DSL	documentation
(http://www.gradle.org/docs/current/dsl/org.gradle.api.initialization.Settings.html)	and	the
Settings	API	documentation
(http://www.gradle.org/docs/current/javadoc/org/gradle/api/initialization/Settings.html).

http://www.gradle.org/docs/current/dsl/org.gradle.api.initialization.Settings.html
http://www.gradle.org/docs/current/javadoc/org/gradle/api/initialization/Settings.html

Organizing	build	logic	in	multiproject
builds
Gradle	gives	us	the	flexibility	to	create	one	build	file	for	all	projects	or	individual	build
file	per	project;	you	can	also	mix	and	match.	Let’s	start	with	adding	a	simple	task	to	our
root	project’s	build.gradle:

task	sayHello	<<	{

				println	"Hello	from	multi-project	build"

}

We	are	creating	a	task	with	an	action	that	just	prints	a	message.	Now,	let’s	check	what
tasks	are	available	on	our	root	project.	From	the	root	directory,	let’s	call	the	task	tasks:

$	gradle	tasks

...

Other	tasks

sayHello

....

No	wonder,	the	sayHello	task	is	available	on	the	root	project.	However,	what	if	we	just
want	to	see	the	tasks	available	on	a	subproject?	Let’s	say	:repository.	For	a	multiproject
build,	we	can	call	tasks	on	any	nested	project	using	the	gradle	<project-path>:<task-
name>	syntax	or	by	going	into	the	subproject	directory	and	executing	gradle	<task-
name>.	So	now,	if	we	execute	the	following	code,	we	won’t	see	the	sayHello	task:

$	gradle	repository:tasks

This	is	because	the	sayHello	is	only	defined	for	the	root	project;	hence,	it	is	not	available
on	the	subproject.

Applying	a	build	logic	to	all	projects
There	are	times	when	we	want	the	same	tasks	to	be	available	on	all	projects,	including	the
root	project.	For	example,	let’s	imagine	a	task	that	just	prints	the	project	name.	We	have
four	projects,	including	the	root	project,	and	we	want	to	define	the	same	task	for	every
project.	Wouldn’t	it	be	an	overkill	if	we	had	to	write	identical	code	four	times,	one	for
each	project?	Certainly	yes,	and	that’s	why	Gradle	DSL	provides	a	first-class	support	for
declaring	common	build	elements	across	all	projects.

Take	a	look	at	the	following	code	snippet,	which	we	will	add	to	our	root	project’s
build.gradle:

allprojects	{

				task	whoami	<<	{println	"I	am	${project.name}"}

}

Before	trying	to	understand	the	code	snippet,	let’s	run	the	familiar	task	again.	Firstly,	from
the	root	project:

$	gradle	tasks

...

Other	tasks

sayHello

whoami

...

Then,	from	the	repository	project:

$	gradle	repository:tasks

...

Other	tasks

whoami

...

We	see	the	whoami	task	in	the	repository	project	as	well.	Let’s	uncover	the	allprojects
method	that	made	it	possible.

The	allprojects	method	takes	a	closure	and	executes	it	on	the	project	(object)	of	the
build	file	and	all	the	subprojects	of	the	current	project.	So,	if	allproject	is	defined	in	the
root	project,	the	block	gets	applied	to	all	the	projects	one	by	one,	once	with	each	project
object	as	an	implicit	reference.

Now,	let’s	understand	the	code	snippet.	The	task	that	we	have	declared	inside	the
allprojects	block	(the	closure	being	passed	to	allprojects,	to	be	technically	correct)
gets	applied	to	all	the	projects.	The	task’s	action	prints	the	name	of	the	project	using	the
project	object	reference.	Remember	that	the	project	object	will	refer	to	different
projects	depending	on	the	project	on	which	the	task	is	being	called.	This	happens	because
in	the	configuration	phase,	the	allproject	block	is	executed	for	each	project	once	we
have	the	project	reference	for	that	project.

The	content	inside	the	closure	being	passed	to	allproject	would	look	exactly	like	a

single-project	build.gradle	file.	We	can	even	apply	plugins,	declare	repositories	and
dependencies,	and	so	on.	So,	in	essence,	we	can	write	any	build	logic	that	is	common	to
all	projects	and	then	it	will	be	applied	to	all	projects.	The	allprojects	method	can	also	be
used	to	query	the	project	object	in	the	current	build.	Refer	to	the	API	of	the	project	for
more	details	on	allprojects.

If	we	pass	the	--all	flag	to	the	tasks	task,	we	will	see	the	whoami	task	being	present	on
all	the	child	projects,	in	addition	to	the	root	project:

$	gradle	tasks	--all

...

Other	tasks

sayHello

whoami

repository:whoami

services:whoami

web-app:whoami

...

If	we	want	to	just	execute	whoami	on	a	specific	project,	let’s	say	:repository,	it’s	as
simple	as	the	following	command:

$	gradle	-q	repository:whoami

I	am	repository

When	we	execute	whoami	without	any	project	path:

$	gradle	-q	whoami

I	am	root

I	am	repository

I	am	services

I	am	web-app

Wow,	Gradle	goes	an	extra	mile	to	ensure	that	the	child	project	tasks	with	the	same	name
are	also	executed	when	we	execute	the	task	from	the	parent	project.	This	comes	in	very
handy	when	we	think	about	tasks	such	as	assemble,	where	we	actually	want	all	the
subprojects	to	assemble,	or	test,	which	tests	the	root	and	also	the	subprojects.

However,	what	about	executing	a	task	only	on	the	root	project?	Indeed,	a	valid	scenario.
Remember	the	absolute	task	path:

$	gradle	-q	:whoami

I	am	root

The	colon	makes	all	the	difference.	Here,	we	are	referring	to	whoami	of	the	root	project
only.	No	other	task	matches	the	same	path.	For	example,	repository’s	whoami	has	a	path
repository:whoami.

Now,	cd	in	the	repository	directory	and	then	execute	the	whoami:

$	gradle	–q	whoami

I	am	repository

So	the	task	execution	is	context-sensitive.	Here,	by	default,	Gradle	assumes	that	the	task

has	to	be	called	on	the	current	project	only.	Nice,	isn’t	it?

Let’s	add	a	little	more	dynamic	code	to	our	existing	build.gradle	file:

allprojects	{

		task("describe${project.name.capitalize()}")	<<	{

				println	project.name

		}

}

Here,	depending	on	the	project	name,	we	are	setting	the	task	name	to	be	describe,
prefixed	to	the	project	name.	So	all	projects	get	their	tasks,	but	the	name	won’t	be	the
same.	We	add	an	action	that	just	prints	the	project	name.	If	we	execute	the	tasks	on	our
project	now,	we	can	see	the	task	names	include	the	project	name:

$	gradle	tasks	

...

Other	tasks

describeRepository

describeSample1

describeServices

describeWeb-app

sayHello

whoami…

Although	the	example	is	very	trivial,	we	learn	a	few	things.	Firstly,	the	allprojects
blocks	are	additive	as	most	of	the	other	methods	in	Gradle.	We	added	the	second
allprojects	block	and	both	worked	just	fine.	Secondly,	the	task	name	can	be
dynamically	assigned,	for	example,	using	the	project	name.

Now,	we	can	call	any	of	the	describe*	tasks	from	the	project	root.	Also,	as	we	might
guess,	the	task	name	is	unique;	we	don’t	need	to	prepend	the	project	path:

$	gradle	-q	describeServices	

services

Let’s	cd	into	the	repository	directory	and	list	tasks:

$	gradle	-q	tasks		

...

Other	tasks

describeRepository

whoami

We	see	only	the	applicable	tasks	for	the	current	project,	which	is	repository.

Applying	build	logic	to	subprojects
Let’s	continue	further	with	our	example.	Here,	the	root	project	will	not	have	any	source
sets	as	all	the	Java	code	is	going	to	be	in	one	of	the	three	child	projects.	Hence,	wouldn’t	it
be	wise	to	apply	a	java	plugin	to	only	child	projects?	This	is	exactly	where	the
subprojects	method	comes	into	the	picture,	that	is,	when	we	want	to	apply	some	build
logic	only	on	subprojects	without	affecting	the	parent	project.	Its	usage	is	similar	to
allprojects.	Let’s	just	apply	the	java	plugin	to	all	subprojects:

subprojects	{

		apply	plugin:	'java'

}

Now,	running	gradle	tasks	should	show	us	the	tasks	added	by	the	java	plugin	as	well.
Although	it	might	appear	that	these	tasks	are	available	on	the	root	project,	it’s	actually	not
so.	Check	the	output	of	gradle	-q	tasks	--all	in	this	case.	The	tasks	being	there	on	the
child	project	can	be	called	from	the	root	project,	but	this	does	not	mean	they	are	present
on	the	root	project.	The	tasks	added	by	the	java	plugin	will	only	be	available	on
subprojects,	whereas	tasks	such	as	help	tasks	will	be	available	on	all	projects.

Dependency	on	subprojects
In	the	beginning	of	the	chapter,	we	mentioned	that	a	subproject	might	depend	on	another
subproject(s)	just	the	way	it	can	depend	on	the	external	library	dependency.	For	example,
the	services	project’s	compilation	depends	on	the	repository	project,	which	means	we
need	the	compiled	classes	from	the	repository	project	to	be	available	on	the	compilation
classpath	of	the	services	project.

To	achieve	this,	we	can,	of	course,	create	a	build.gradle	file	in	the	services	project	and
put	the	dependency	declaration	there.	However,	just	for	the	sake	of	showing	an	alternate
way,	we	will	put	this	declaration	in	the	root	project’s	build.gradle.

Unlike	allprojects	or	subprojects,	we	need	a	finer	mechanism	to	configure	only	a
single	project	from	the	root	project’s	build.gradle.	As	it	turns	out,	it	is	very	easy	using
the	project	method.	This	method	accepts	a	closure	just	like	the	allprojects	and
subprojects	methods	in	addition	to	the	project	name	on	which	the	closure	will	be
applied.	In	the	configuration	phase,	the	closure	is	executed	on	that	project’s	object.

So,	let’s	add	this	to	the	root	project’s	build.gradle:

project(':services')	{

		dependencies	{

				compile	project(':repository')

		}

}

Here,	we	are	configuring	dependencies	only	for	the	services	project.	In	the
dependencies	block,	we	declare	that	the	:repository	project	is	the	compile	time
dependency	for	the	services	project.	This	is	more	or	less	similar	to	the	external	library
declaration;	instead	of	the	library	name	in	the	group-id:artifact-id:version	notation,
we	used	project(:sub-project)	to	refer	to	a	subproject.

We	had	also	said	that	the	web-app	project	depends	on	the	services	project.	So	this	time,
let’s	use	web-app‘s	own	build.gradle	to	declare	this	dependency.	We	will	create	a
build.gradle	file	in	the	web-app	directory:

root

├──	build.gradle

├──	settings.gradle

├──	repository

├──	services

└──	web-app

				└──	build.gradle

As	this	is	a	project-specific	build	file,	we	can	just	add	the	dependencies	block	as	we
would	in	any	other	project:

dependencies	{

		compile	project(':services')

}

Now,	let’s	visualize	the	dependencies	of	the	web	project,	using	the	dependencies	tasks:

$	gradle	-q	web-app:dependencies

--

Project	:web-app

--

archives	-	Configuration	for	archive	artifacts.

No	dependencies

compile	-	Compile	classpath	for	source	set	'main'.

\---	project	:services

					\---	project	:repository

default	-	Configuration	for	default	artifacts.

\---	project	:services

					\---	project	:repository

runtime	-	Runtime	classpath	for	source	set	'main'.

\---	project	:services

					\---	project	:repository

testCompile	-	Compile	classpath	for	source	set	'test'.

\---	project	:services

					\---	project	:repository

testRuntime	-	Runtime	classpath	for	source	set	'test'.

\---	project	:services

					\---	project	:repository

Gradle	shows	us	the	dependencies	of	the	web-app	under	various	configurations.	Also,	we
can	clearly	see	that	Gradle	understands	the	transitive	dependency;	hence,	it	shows	web-
app	transitively	dependent	on	repository	through	services.	Note	that	we	have	not
actually	declared	any	external	dependencies	(such	as	servlet-api)	in	any	of	the	projects,
otherwise	they	would	also	show	up	here.

It	is	worth	taking	a	look	at	the	variations	of	the	configure	methods	on	the	project	object
in	order	to	filter	and	configure	selected	projects.	More	information	on	the	configure
method	can	be	found	at
https://docs.gradle.org/current/javadoc/org/gradle/api/Project.html.

https://docs.gradle.org/current/javadoc/org/gradle/api/Project.html

Summary
In	this	short	chapter,	we	learned	that	Gradle	supports	flexible	directory	structure	for
complex	project	hierarchies	and	allows	us	to	choose	the	right	structure	for	our	build.	We
then	looked	at	the	importance	of	settings.gradle	in	the	context	of	mutliprojects	build.
We	then	saw	various	ways	of	applying	a	build	logic	to	all	projects,	subprojects,	or	only	a
single	project.	Finally,	took	a	small	example	of	inter-project	dependencies.

This	is	all	we	need	to	worry	about	in	terms	of	the	Gradle	syntax.	Now	the	next	chapters
will	majorly	focus	on	the	functionalities	that	various	plugins	add	to	our	builds	and	how	we
can	configure	them.

Chapter	6.	The	Real-world	Project	with
Gradle
Until	now,	we	have	discussed	about	building	the	Java	project,	web	project,	Gradle	life
cycle,	and	multi-module	feature	of	Gradle.	As	we	know,	before	Gradle,	there	were	many
other	build	tools	in	the	market,	out	of	which	the	most	popular	ones	are	Ant	and	Maven.
Since	many	project	build	scripts	were	already	written	in	these	two	build	tools.	In	this
chapter,	we	will	discuss	different	migration	strategies	to	migrate	the	projects	existing	build
scripts	from	Ant,	Maven,	to	Gradle.	Along	with	this,	we	will	also	focus	on	integrating
Gradle	build	script	to	Continuous	Integration	tools	like	Jenkins	and	generating	Java	docs
for	the	code.

Migrating	from	an	Ant-based	project
Ant	is	one	of	the	initial	and	most	popular	build	tools,	which	made	build	and	deployment
processes	much	simpler	as	compared	to	other	native	script-based	build	tools.	Still,	you	can
find	many	projects	that	use	Ant	build	script	to	build	the	project.	Ant	was	developed	on	the
philosophy	of	imperative	programming	model,	which	tells	the	system	what	to	do	and	also
how	to	do	it.	Thus,	you	have	the	benefit	of	controlling	each	and	every	action	or	step	of
your	build	script.	The	following	is	the	sample	Ant	build	script	to	build	any	Java	project.
Here,	we	are	considering	only	minimal	required	tasks	to	build	a	Java	project,	since	our
purpose	is	to	discuss	the	strategies	to	migrate	from	Ant	scripts	to	Gradle	scripts:

<project	name="Ant	build	project"	default="createJar">

		<target	name="clean"	description="clean	the	existing	dirs">

				<delete	dir="build"/>

				<delete	dir="dist"/>

		</target>

		<target	name="compile"	description="compile	the	source"

				depends="clean">

				<mkdir	dir="build"/>

				<mkdir	dir="dist"/>

				<mkdir	dir="build/classes"/>

				<javac	srcdir="src"	destdir="build/classes"/>

		</target>

		<target	name="createJar"	depends="compile"	description="create	the

				jar">

				<jar	jarfile="dist/JavaProject-1.0.jar"	basedir="build/classes"/>

		</target>

</project>

Here,	we	have	defined	three	targets	such	as	clean,	compile,	and	createJar,	which	will
delete	the	directories,	create	the	directories,	compile	the	Java	file	present	in	source
directories,	and	finally	create	the	.jar	file,	respectively.	There	are	three	different
strategies	that	a	developer	can	follow	in	order	to	migrate	the	build	scripts	from	Ant	to
Gradle,	as	follows:

Importing	an	Ant	file
Using	AntBuilder	API
Rewriting	Ant	tasks	to	Gradle	tasks

We	will	discuss	each	of	them	with	an	example.

Importing	an	Ant	file
The	very	first	and	simplest	approach	for	migration	is	to	directly	import	your	Ant	script	file
into	a	Gradle	script.	Consider	the	following	structure:

C:\GRADLE\CHAPTER6

│			build_import.gradle

│			build.xml

│

└───src

				└───main

								└───java

												└───ch6

																				SampleJava.java

Here,	the	project	name	is	Chapter6,	the	Java	source	directory	is	src/main/java,	and	the
Ant	build	script	file	is	build.xml.	The	source	code	of	build.xml	is	mentioned	above.
Now,	as	a	part	of	the	migration,	create	the	build_import.gradle	file	with	the	following
contents:

ant.importBuild	'build.xml'

That	is	all.	Yes,	we	have	successfully	migrated	the	Ant	build	script	to	Gradle	script.	Now,
try	to	execute	the	following	command:

>	gradle	–b	build_import.gradle	createJar

:clean

:compile

:createJar

BUILD	SUCCESSFUL

Total	time:	3.045	secs

After	executing	this,	you	can	find	the	build/classes	and	dist	directory	in	the	project
directory,	and	dist	contains	the	JavaProject.jar	file.

Using	AntBuilder	API
Another	approach	to	migrate	is	using	AntBuilder	API.	By	default,	Gradle	provides	an
AntBuilder	object	ant	to	the	user.	The	user	can	use	this	object	directly	in	the	Gradle	script
to	call	the	Ant	tasks.	The	following	is	the	sample	code	of	the	build_antbuilder.gradle
file	using	AntBuilder	API:

task	cleanDir	<<	{

		ant.delete(dir:"build")

		ant.delete(dir:"dist")

}

task	compileSrc(dependsOn:'cleanDir')	<<	{

		ant.mkdir(dir:"build/classes")

		ant.mkdir(dir:"dist")

		ant.javac(srcdir:"src",	destdir:"build/classes",	

includeantruntime:"false")

}

task	createJar(dependsOn:'compileSrc')	<<	{

		ant.jar(destfile:	"dist/JavaProject-1.0.jar",	basedir:"build/classes")

}

Here,	you	can	see	we	have	used	different	Ant	tasks	such	as	mkdir,	javac,	jar,	and	so	on,
as	a	method	of	an	ant	object.	Now,	execute	the	following	command:

>	gradle	–b	build_antbuilder.gradle	createJar

:cleanDir

:compileSrc

:createJar

BUILD	SUCCESSFUL

Total	time:	3.437	secs

Here	also,	you	will	find	the	same	output,	that	is,	it	will	create	the	build/classes	directory
in	which	you	can	find	class	files	and	the	dist	directory	in	which	you	can	find	the	.jar
file.

Rewriting	Ant	tasks	to	Gradle	tasks
This	is	the	final	approach.	Using	this	approach	rather	than	using	an	ant	object,	you
actually	rewrite	the	complete	build	logic	or	functionality	using	the	actual	Gradle	tasks.
One	simple	approach	to	follow	this	strategy	is	that	the	user	first	needs	to	logically
understand	the	complete	flow	file	written	in	Ant	and	then	convert	it	into	a	Gradle	script
step	by	step.	For	all	the	targets	defined	in	Ant,	the	user	can	create	tasks	in	Gradle,	and	for
all	the	tasks	defined	in	Ant,	the	user	can	use	Gradle	features	to	replicate	the	same
behavior.	Gradle	provides	different	standard	plugins	to	support	most	of	the	steps	of	the
build	requirement.	A	plugin	has	its	own	life	cycle,	and	with	the	help	of	plugins,	the	user
can	avoid	rewriting	lot	of	boiler-plate	scripts	for	a	common	build	functionality.	One	such
plugin	is	the	java	plugin.	We	have	already	seen	the	java	plugin	details	in	Chapter	2,
Building	Java	Projects.	If	we	want	to	migrate	this	Ant	script	to	Gradle	script	in	order	to
build	a	Java	project,	the	user	can	simply	use	a	Java	plugin	and	job	is	done.

Consider	the	build.gradle	file	with	the	following	contents:

apply	plugin:'java'

If	a	developer	follows	the	default	conventions	of	a	java	plugin,	he	only	needs	to	write	this
one	line	to	build	a	Java	project,	and	on	executing	the	gradle	build	command,	all	the
required	steps	would	be	done	such	as	compiling	code,	executing	unit	test	cases,	and
preparing	a	.jar	file.	However,	this	is	not	the	case	always;	many	legacy	projects	do	not
follow	the	conventions	and	they	might	have	their	own	conventions.	The	gradle	plugin
provides	the	flexibility	to	configure	the	plugin	based	on	the	project’s	need.	We	will	rewrite
the	Ant	script	into	Gradle	script	in	the	following	sample	code:

apply	plugin:'java'

task	cleanDir	<<	{

		delete	"build"

		delete	"dist"

}

task	createDirs(dependsOn:'cleanDir')	<<	{

		def	classes	=	file("build/classes")

		def	dist	=	file("dist")

		classes.mkdirs()

		dist.mkdirs()

		

}

compileJava	{

		File	classesDir	=	file("build/classes")

		FileTree	srcDir	=	fileTree(dir:	"src")

		source	srcDir

		destinationDir	classesDir

}

task	createJar(type:	Jar)	{

		destinationDir	=	file("dist")

		baseName	=	"JavaProject-1.0"

		from	"build/classes"

}

createJar.dependsOn	compileJava

compileJava.dependsOn	createDirs

The	preceding	code	snippet	shows	how	you	can	rewrite	the	Ant	script	to	Gradle	script.	On
executing	the	gradle	createJar	command,	it	will	generate	the	same	output	which	was
generated	by	following	above	migration	strategies.

Migrating	from	a	Maven	project
Maven,	one	of	the	another	build	tool,	which	got	most	popularity	after	Ant	and	it	also	came
with	dependency	management	solution	to	the	problem	that	the	users	were	facing	in	Ant.
The	first	problem	in	Ant	was	imperative	programing	where	user	has	to	write	lots	of	boiler
plate	code.	Another	problem	was	dependency	management.	Ant	does	not	have	any	in-built
dependency	management	solution	(Ant	later	integrated	with	Ivy	for	dependency
management).	A	user	has	to	write	each	and	every	JAR	file	path	in	the	build	file	that	it
needs	to	download,	and	in	case	of	transitive	dependencies,	it	is	too	complex	for	the	user	to
identify	each	and	every	dependent	JAR	and	mention	the	JAR	name	in	the	build	file.	Also,
in	case	of	version	conflicts,	it	consumes	lots	of	a	developer’s	efforts.	Maven	came	with	the
declarative	programing	model	and	in-built	dependency	management	solution.	Gradle	is
also	built	on	the	top	of	these	principles;	thus,	migrating	from	Maven	to	Gradle	seems	very
comfortable	for	the	user.

Like	Ant	migration,	Gradle	does	not	provide	any	import	feature	or	in-built	Maven	object.
A	user	needs	to	rewrite	the	Maven	script	to	the	Gradle	script.	The	following	are	some	of
the	concepts	that	will	help	you	to	smoothly	migrate	from	Maven	to	Gradle:

Plugin	declaration
Common	conventions
Dependency	management
Repositories	configuration

Let’s	move	towards	the	explanation	of	these	concepts:

Plugin	declaration:	The	plugin	is	the	key	driver	for	both	Maven	and	Gradle
functionalities.	Same	as	Maven	plugins,	Gradle	also	packages	most	of	its
functionalities	into	plugins.	In	Maven,	a	user	includes	the	plugin	in	the	following
XML	format:

<plugin>

		<artifactId>pluginName</artifactId>

		<version>2.3.2</version>

</plugin>

To	include	a	plugin,	the	user	only	needs	to	write	the	apply	plugin	statement	as
follows:

apply	plugin:	'<plugin	name>'

Common	conventions:	In	both	Maven	and	Gradle,	a	plugin	always	comes	with	some
common	conventions	for	its	functionalities.	For	example,	if	a	user	includes	a	java
plugin,	the	common	convention	is	that	the	source	code	location	should	be
src/main/java,	test	code	location	should	be	src/test/java,	and	so	on.	If	a	user
includes	a	plugin	and	follows	the	same	convention,	then	he	can	avoid	writing	any
boiler-plate	code	that	could	save	both	his	time	and	effort.
Dependency	management:	Both	Maven	and	Gradle	come	with	in-built	dependency
management	features.	A	user	does	not	need	to	bother	about	each	and	every	individual

JAR	required	for	the	project.	He	just	needs	to	mention	the	first-level	dependency	in
the	project,	the	rest	all	is	taken	care	by	the	build	tool.

In	Maven,	a	user	can	mention	the	dependency	in	the	following	format:

<dependency>

		<groupId>	org.apache.logging.log4j</	groupId>

		<artifactId>log4j-core	</	artifactId>

		<version>1.2</version>

		<scope>compile</scope>

</dependency>

To	define	the	dependency	in	Gradle,	a	user	has	to	use	the	following	syntax:

dependencies{

compile('	org.apache.logging.log4j:	log4j-core:1.2')	

}

What	scope	is	to	Maven,	the	dependency	configuration	is	to	Gradle.	You	might	have
observed	the	scope	attribute	in	Maven	and	dependency	configuration	attributes	in
Gradle.	In	Maven,	scope	identifies	at	which	phase	of	build	dependency	needs	to	be
downloaded.	In	Gradle,	dependency	configurations	fulfill	the	same	need.

Repositories	configuration:	Whenever	we	talk	about	dependencies,	the	first	thing
that	comes	into	mind	is	the	repository.	This	is	the	location	from	where	you	download
dependencies.	The	following	is	the	code	snippet	that	can	help	you	mention	the
repository	location	in	Maven:

<repositories>

		<repository>

				<id>repository_1</id>

				<name>custom	Name</name>

				<url>	http://companylocalrepository.org	</url>

			</repository>

</repositories>

In	Gradle,	you	can	mention	the	repository	using	the	following	syntax:

repositories	{

		maven	{

				url	"http://companylocalrepository.org"

		}

}

As	we	have	seen,	both	Maven	and	Gradle	follow	the	same	philosophy	for	building	any
project.	The	main	difference	is	Maven	uses	XML	that	is	good	at	structure,	but	can	be	a
pain	while	configuring	the	build	script,	whereas	Gradle	uses	Groovy	script	that	is	a	DSL
and	offers	great	flexibility	while	managing	and	altering	the	default	behavior.

Publishing	artifacts
Building	a	software	does	not	make	much	sense	unless	you	publish	your	software	to	some
common	repositories	so	that,	if	needed,	it	can	be	reused	by	other	software	or	projects.	We
have	discussed	the	repositories	while	downloading	the	dependencies.	The	other	aspect	of
repositories	is	uploading	the	build	outcome	(JAR,	WAR,	EAR,	and	so	on)	to	some
common	location	so	that	it	could	be	downloaded	by	other	developers.	The	different
plugins	in	Gradle	provide	an	automated	way	to	publish	the	default	artifacts	of	the	plugin.
For	example,	a	java	plugin	provides	a	task	to	upload	a	JAR	file,	a	war	plugin	provides	a
task	to	upload	a	WAR	file,	a	scala	plugin	provides	a	task	to	upload	a	JAR	file,	and	so	on.
A	user	just	needs	to	configure	the	upload	repository	location.	If	a	user	does	not	want	to
upload	the	default	build	artifact	or	a	user	wants	to	upload	some	custom	artifacts,	he	can
easily	customize	Gradle	tasks	to	upload	the	other	artifacts	and	also	as	per	his	custom
requirements.

As	we	have	seen,	a	java	plugin	provides	different	configurations	such	as	compile,
testCompile,	runtime,	and	so	on,	to	download	JAR	for	a	specific	scope.	To	upload
artifacts,	Gradle	provides	one	additional	configuration,	archives.	A	user	can	configure	the
artifact	in	archives	configuration,	and	using	the	uploadArchive	task,	he	can	upload	the
artifacts	to	a	repository.

The	following	is	the	sample	example	of	the	build	file	(build_uploadArtifact.gradle)	to
upload	a	JAR	file	generated	by	a	java	plugin:

apply	plugin:	'java'

version=1.0

repositories	{

		mavenCentral()

}

dependencies	{

		compile	('log4j:log4j:1.2.16')

}

uploadArchives	{

		repositories	{

				maven	{

						credentials	{

								username	"user1"

								password	"user1"

						}

						url	"http://company.private.repo"

				}

		}

}

You	can	execute	the	gradle	–b	build_uploadArtifact.gradle	uploadArchives
command	to	upload	the	artifacts.	As	a	part	of	life	cycle,	it	will	build	and	upload	the
artifacts.

In	the	preceding	example,	the	uploadArchives	task	uploads	the	artifact	to	a	repository
(mentioned	in	the	URL).	If	it	is	a	secured	repository,	you	can	provide	a	username	and

password,	or	else	ignore	it.	You	have	noticed	that	we	have	not	mentioned	archives	here,	so
what	would	get	uploaded?	As	we	have	already	discussed,	a	java	plugin	builds	the	JAR
file,	a	war	plugin	builds	the	WAR	file,	and	so	on.	Thus,	the	default	artifact	generated	by	a
plugin	would	be	uploaded	by	default	as	a	part	of	the	uploadArchives	task.	We	will	see
another	example	as	to	how	to	upload	your	custom	artifact.

The	following	is	the	build_uploadCustom.gradle	file:

apply	plugin:	'java'

archivesBaseName="JavaProject"	//	to	customize	Jar	Name

version=1.0

repositories	{

		mavenCentral()

}

def	customFile=	file('configurations.xml')

task	customZip(type:	Zip)	{

		from	'src'

}

artifacts	{

		archives	customFile

		archives	customZip

}

uploadArchives	{

		repositories	{

				flatDir	{dirs	"./tempRepo"}

		}

}

Now,	execute	the	gradle	–b	build_uploadCustom.gradle	uploadArchives	command:

>gradle	-b	build_uploadCustom.gradle	uploadArchives

:customZip	UP-TO-DATE

:compileJava	UP-TO-DATE

:processResources	UP-TO-DATE

:classes	UP-TO-DATE

:jar	UP-TO-DATE

:uploadArchives

BUILD	SUCCESSFUL

Total	time:	4.014	secs

Here,	you	can	find	that	a	new	directory	tempRepo	is	created	after	executing	the	build
script.	This	contains	all	the	above	artifacts	(ZIP,	JAR,	and	XML	files)	that	are	published
by	the	Gradle	script.

In	the	preceding	example,	we	have	covered	the	following	two	cases:

Uploading	a	custom	file	(a	XML	and	ZIP	file	along	with	the	default	artifact)
Uploading	to	a	local	file	system	(not	on	a	central	repository)

If	you	configure	any	other	custom	file	(JAR,	WAR,	or	any	other	file)	to	the	archives,	it
will	also	get	uploaded	to	the	repository.	Here,	we	have	configured	two	additional	files,	one
.xml	file	and	one	.zip	file	along	with	the	default	Java	artifact.	If	you	want	to	share	your
artifacts	with	your	team	mates	and	at	the	same	time	do	not	want	to	upload	the	artifact	to

the	repository,	unless	it	passes	integration	tests,	Gradle	gives	you	the	flexibility	to	upload
the	file	to	a	local	file	system	using	flatDir.

Gradle	recently	introduced	a	maven-publish	plugin	to	have	more	control	over	the
publishing	process.	It	gives	you	many	additional	flexibilities	along	with	the	default
publish	tasks.	A	user	can	modify	the	POM	file,	publish	multiple	modules,	and	so	on.

Note
You	can	find	more	details	at
https://docs.gradle.org/current/userguide/publishing_maven.html.

https://docs.gradle.org/current/userguide/publishing_maven.html

Continuous	Integration
Continuous	Integration	(CI)	is	one	of	the	most	popular	buzzwords	you	can	read
everywhere.	As	is	apparent	from	its	name,	CI	is	the	process	of	integrating	the	code	base
each	time;	whenever	any	one	makes	commits	to	the	repository.	It	compiles	the	code,	run
the	unit	test	cases	and	prepare	the	build.	One	of	the	benefits	a	user	gets	here	is,	if	there	are
compile	issues	and	integration	issues,	a	user	can	figure	out	at	early	stages,	rather	than	it
being	too	late.	The	following	is	the	generic	workflow	the	CI	tool	follows:

Figure	6.1

How	does	Gradle	fit	into	this	flow?	To	plan	the	build	and	deployment	automation	solution
for	any	software,	we	need	a	different	set	of	tools	to	work	together	to	achieve	the	common
goal.	Jenkins	is	one	of	the	integration	tools	that	helps	to	integrate	the	complete	workflow.
It	also	works	on	the	concept	of	plugins;	you	can	add	different	plugins	to	Jenkins	(for
example,	Gradle,	Git,	Svn,	and	so	on)	as	per	your	need	and	configure	them	to	plan	the
automation	flow.

Here,	we	are	assuming	that	you	have	installed	Jenkins.	You	can	install	a	Gradle	plugin	by
navigating	to	Manage	Jenkins	|	Manage	Plugins	|	Search	for	Gradle.

Figure	6.2

Once	a	plugin	is	installed,	you	can	configure	jobs	in	Jenkins	using	the	following
screenshot:

Figure	6.3

Under	project	configuration	screen,	you	need	to	configure	the	repository	path.	By	default,
Jenkins	provides	CVS	and	SVN	plugins.	If	you	need	any	other	repository	(perforce	or
Git),	you	can	add	the	respective	plugins.	After	repository	configuration,	you	need	to
configure	the	Build	Triggers.	It	allows	you	to	trigger	build	periodically	or,	if	you	want	to
build	on	every	commit,	you	can	choose	Poll	SCM.	Now,	it	is	time	to	configure	your	build
script	that	will	build	your	project.

Under	the	Build	menu,	you	can	choose	Invoke	Gradle	script:

Figure	6.4

If	you	are	using	the	default	build	file	name	build.gradle,	there	is	no	need	to	configure
the	build	file.	Under	Task,	you	can	mention	the	name	of	the	task	you	want	to	execute.	For
example,	if	you	want	to	build	the	project,	you	can	mention	build	in	the	text	box.

Once	the	configuration	is	done,	you	can	click	on	Build	Now	on	the	left	menu	to	build	the
project.	Once	done,	click	on	the	respective	build	number	and	it	will	display	Console
Output	on	the	main	screen:

Figure	6.5

Generating	documentation
Documentation	is	one	of	the	important	part	of	development	life	cycle,	which	does	not	get
enough	attention	from	developers.	If	code	is	not	properly	documented,	it	always	increases
the	maintenance	efforts	and	also	it	takes	time	for	the	new	team	member	to	understand	the
code,	if	the	code	lacks	the	documentation.	When	you	apply	Java	plugin	to	your	build	file,
Gradle	provides	you	a	javadoc	task.	By	default,	Gradle	generates	the	initial
documentation	for	your	code,	even	if	the	user	does	not	mention	any	Javadoc	in	the	file.

Consider	the	following	Java	sample	code:

package	ch6;

public	class	SampleTask		{

		public	static	void	main(String[]	args)	{

				System.out.println("Building	Project");

		}

		public	String	greetings(String	name)	{

				return	"hello	"+name;

		}

}

Now,	try	to	execute	the	following	command:

>	gradle	clean	javadoc

:clean

:cleanDir

:createDirs

:compileJava

:processResources	UP-TO-DATE

:classes

:javadoc

BUILD	SUCCESSFUL

Total	time:	4.341	secs

This	command	will	generate	the	basic	Java	docs	at	<project>	\build\docs\javadoc.

As	per	requirements,	you	can	add	your	own	tags	(@description,	@param,	and	so	on)	and
details	to	the	above	class	and	get	the	updated	Java	docs.

Summary
In	this	chapter,	we	discussed	different	migration	strategies	from	existing	build	tools	to
Gradle,	which	could	be	very	handy	for	users	who	are	planning	to	migrate	their	existing
Ant	and	Maven	scripts	to	Gradle.	We	also	discussed	how	to	publish	artifacts	to
repositories,	which	is	a	key	functionality	of	any	build	tool,	which	help	the	users	to	always
fetch	the	latest	artifacts	from	the	repositories.	We	discussed	CI	framework	with	the	help	of
Jenkins	and	how	Gradle	fits	into	this	flow,	while	automating	the	build	and	deployment
solution.	Finally,	we	discussed	how	to	generate	documents	for	the	Java	code.

In	the	next	chapter,	we	will	be	discussing	how	to	integrate	TestNG	with	Gradle,	which
would	help	the	user	to	run	test	cases	as	a	part	of	the	Gradle	build.	We	will	also	be
discussing	integration	testing	strategies	and	Gradle	integration	with	code	analysis	and
code	coverage	tools.

Chapter	7.	Testing	and	Reporting	with
Gradle
In	this	chapter,	we	will	cover	four	different	topics:	testing	with	TestNG,	integration
testing,	code	coverage	with	JaCoCo,	and	code	analysis	with	Sonar.	In	Chapter	2,	Building
Java	Projects,	we	already	discussed	unit	testing	with	JUnit.	In	this	chapter,	we’ll	cover
another	widely	used	testing	tool,	TestNG.	Code	coverage	and	code	quality	are	the	other
two	important	aspects	in	test-driven	development	(TDD).	In	today’s	agile	development
process,	developers	need	continuous	feedback	on	the	code	developed	by	them.	Code
quality	tools	help	us	to	achieve	this	goal.	Often,	these	tools	are	integrated	with	the
Continuous	Integration	(CI)	systems	so	that	these	reports	are	created	on	a	daily	basis
(may	be	even	after	each	commit),	shared	among	different	teams,	and	even	be	persisted	for
future	analysis.	In	this	chapter,	we	will	be	focusing	only	on	the	Gradle	aspects	of	different
tools.	We	will	mainly	cover	different	Gradle	plugins	that	support	these	features.

Testing	with	TestNG
Working	with	TestNG	is	similar	to	the	JUnit	integration	that	we	discussed	in	Chapter	2,
Building	Java	Projects.	The	very	first	step	is	to	create	the	build	file	with	TestNG
dependencies	and	configure	the	test	closure.	The	following	build	file	adds	the	TestNG
library	as	the	testCompile	dependency	and	in	the	test	closure,	we	added	a	testng.xml
file	to	execute	the	test	cases.	In	this	section,	we	will	briefly	discuss	the	use	of	testng.xml:

apply	plugin:'java'

repositories	{

		mavenCentral()

}

dependencies	{

		testCompile	'org.testng:testng:6.8.21'

}

test	{

		ignoreFailures	=	true

		useTestNG(){

				suites("src/test/resources/testng.xml")

		}

}

Note
However,	you	can	read	more	about	TestNG	configuration	at
http://testng.org/doc/documentation-main.html.

In	our	example,	we	have	created	three	test	cases	named	as	verifyMapSize,
verifyMapNotNull,	and	addEvenNumbers.	These	test	cases	are	grouped	as	Smoke	and
Integration	test	cases.	If	you	execute	a	Gradle	test	command,	all	the	three	test	cases	will
be	executed	and	the	test	report	will	be	created	in	the	build/reports/tests	directory.	The
look	and	feel	of	the	report	is	similar	to	the	JUnit	report	that	we	saw	earlier.	The	actual
TestNG	report	is	created	in	the	test-output/	directory	in	the	project	home	directory.
Both	JUnit	and	TestNG	generate	their	own	different	report	formats,	but	Gradle	reconciles
them	into	a	standard	look	and	feel:

package	com.packtpub.ge.ch7;

import	java.util.HashMap;

import	org.testng.Assert;

import	org.testng.annotations.AfterMethod;

import	org.testng.annotations.BeforeClass;

import	org.testng.annotations.Test;

public	class	HashTest	{

		

		private	HashMap<Integer,String>	hm;

		

http://testng.org/doc/documentation-main.html

		@BeforeClass(alwaysRun	=	true)

		public	void	setup(){

				hm	=	new	HashMap<Integer,	String>();

		}

		

		@AfterMethod(alwaysRun	=	true)

		public	void	cleantask(){

				hm.clear();

		}

		

		@Test(groups	=	"Smoke")

		public	void	verifyMapSize(){

				Assert.assertEquals(hm.size(),	0);

				hm.put(1,	"first");

				hm.put(2,	"second");

				hm.put(3,	"third");

				Assert.assertEquals(hm.size(),	3);

		}

		

		@Test(groups	=	"Smoke")

		public	void	verifyMapNotNull(){

				Assert.assertNotNull(hm);

				

		}

		

		@Test(groups	=	"Integration")

		public	void	addEvenNumbers(){

				hm.put(2,	"second");

				hm.put(4,	"fourth");

				Assert.assertEquals(hm.size(),	2);

		}

		

}

A	TestNG	test	case	can	be	executed	from	a	command	line,	Ant	file,	Gradle	script,	Eclipse
plugin,	or	a	TestNG	test	suite	file.	TestNG	suite	files	provide	a	flexible	mechanism	control
for	the	test	execution.	In	a	test	suite	file,	you	can	define	test	classes,	tests,	test	group
names,	listener	information,	and	so	on.

We	have	created	a	sample	testng.xml	file	in	the	src/test/resource	folder.	The	file	has
some	important	information.	The	listener	configuration	to	create	a	report	format,	a	test
group	declaration	as	Smoke,	and	a	test	class	named	com.packtpub.ge.ch7.HashTest.

Gradle	doesn’t	force	you	to	put	testng.xml	in	the	src/test/resources,	and	we’re	just
doing	this	as	a	means	to	keep	it	organized:

<!DOCTYPE	suite	SYSTEM	"http://testng.org/testng-1.0.dtd"	>

<suite	name="Suite1"	verbose="1"	>

		<listeners>

				<listener	class-name="org.testng.reporters.EmailableReporter"	/>

		</listeners>

		<test	name="Smoke	Test">

		<groups>

				<run>

						<exclude	name="Integration"		/>

						<include	name="Smoke"		/>

				</run>

		</groups>

		<classes>

				<class	name="com.packtpub.ge.ch7.HashTest">

				</class>

		</classes>

		</test>

</suite>

As	we	have	only	included	test	cases	that	are	marked	as	Smoke,	the	TestNG	invoked	only
two	test	cases,	verifyMapNotNull	and	addEvenNumbers,	when	we	executed	the	gradle
test	command.	The	following	figure	shows	the	TestNG	report	that	is	created	in	the
<Project_Home>/	test-output/	directory:

Figure	7.1

Integration	testing
Unit	testing	is	one	of	the	key	step	in	software	development	life	cycle.	It	is	one	of	the	first
checks	to	verify	the	code	quality.	Most	of	the	basic	functionalities	can	be	tested	with	unit
test	cases.	They	are	quick	and	take	little	time	to	execute.	We	discussed	both	JUnit
framework	and	TestNG	framework	to	unit	test	the	code.	The	next	step	in	the	quality	check
process	is	integration	testing.	As	by	general	definition	of	unit	testing,	you	divide	your
code	into	small	units	and	test	them	independently,	which	is	good	when	you	are	developing
your	code	independently.	Once	you	commit	the	code	and	integrate	the	code	with	other
developers,	you	need	another	level	of	testing,	which	is	known	as	integration	testing.	It
verifies	the	communication	between	different	components	working	together	as	expected	or
not.	Your	test	reports	might	give	100	percent	success	results	in	unit	testing,	but	unless	and
until	you	perform	integration	testing,	you	cannot	be	assured	of	the	functionality	of	the
software	as	a	whole.

We	have	already	seen	Gradle	support	for	unit	testing	and	how	Gradle	provides
conventions	to	write	your	test	classes	in	different	directory	structures	and	tasks	to	execute
the	test	cases.	Gradle	does	not	differentiate	between	unit	testing	and	integration	testing,	if
we	talk	in	terms	of	the	convention	it	provides.	To	enable	integration	testing	along	with
unit	testing	in	Gradle,	you	need	to	customize	the	Gradle	to	enable	both.	Consider	the
following	hierarchy	for	your	project	source	code:

C:.

└───IntegrationSample

			└───src

							├───main

							│			└───java

							└───test

											└───java

This	is	the	standard	folder	structure	you	create	for	your	source	and	test	code.	You	create
src/test/java	to	store	your	unit	test	cases.	Now,	if	you	want	to	add	integration	test	cases
to	your	project,	you	can	merge	the	integration	test	cases	in	the	same	directory	structure;
however,	this	would	not	be	a	good	design—since	you	might	want	to	execute	the	unit	test
case	each	time	you	build	your	project	and	might	want	to	execute	the	integration	test
biweekly	or	weekly—as	it	might	consume	more	time	depending	on	the	project	complexity
and	size.	Thus,	rather	than	merging	the	integration	tests	to	your	unit	test	cases’	directory
structure,	we	recommend	you	to	create	a	separate	directory	structure,
src/integrationTest/java,	for	integration	test	cases,	and	you	can	configure	the	same	in
your	Gradle	build	scripts.

The	following	will	be	the	updated	directory	structure	to	store	the	integration	test	cases:

C:.

└───IntegrationSample

			└───src

							├───integrationTest

							│			└───java

							├───main

							│			└───java

							└───test

											└───java

Once	you	have	created	the	directory	structure,	you	need	to	configure	this	in	your	Gradle
build	script.	The	updated	build	script	would	be	as	follows:

apply	plugin:	'java'

sourceSets	{

			integrationTest	{

							java.srcDir	file('src/integrationTest/java')

							resources.srcDir	file('src/integrationTest/resources')	//	to	add	the	

resources

			}

}

task	runIntegrationTest(type:	Test)	{

			testClassesDir	=	sourceSets.integrationTest.output.classesDir

			classpath	=	sourceSets.integrationTest.runtimeClasspath

}

Here,	we	have	added	one	extra	configuration,	integrationTest,	to	add	the	integration	test
cases.	To	execute	the	integration	tests,	we	have	also	defined	one	task,
runIntegrationTest,	which	is	of	type	Test	and	configured	the	testClassesDir	and
classpath	attributes.	Once	we	have	added	additional	sourceSets	to	the	build	script,	the
java	plugin	automatically	adds	two	new	dependency	configurations	to	your	build	script
integrationTestCompile	and	integrationTestRuntime.

Execute	the	following	command	to	check	for	the	current	dependencies:

>	gradle	dependencies

--

Root	project

--

……...

compile	-	Compile	classpath	for	source	set	'main'.

No	dependencies

integrationTestCompile	-	Compile	classpath	for	source	set	'integration	

test'.

No	dependencies

integrationTestRuntime	-	Runtime	classpath	for	source	set	'integration	

test'.

No	dependencies

……….

BUILD	SUCCESSFUL

Total	time:	3.34	secs

Here,	integrationTestCompile	can	be	used	to	configure	dependencies	required	to
compile	the	test	cases	and	integrationTestRuntime	can	be	used	to	configure
dependencies	required	to	execute	the	test	cases.	As	you	can	see,	no	dependencies	are
explicitly	configured	for	integration	test	cases.	You	can	configure	them	under
dependencies	closure:

dependencies	{

//	other	configuration	dependencies	

integrationTestCompile	'org.hibernate:hibernate:3.2.3.ga'

}

We	do	not	want	to	execute	the	integration	tests	each	time	we	build	the	project.	Thus,	to
execute	the	integration	test,	you	need	to	explicitly	execute	the	following	command:

>	gradle	runIntegrationTest

This	will	invoke	the	runIntegrationTest	task	and	will	execute	the	integration	test	cases.
If	you	want	to	execute	these	test	cases	each	time	you	build	your	code,	you	can	link	this
task	with	other	tasks	using	dependsOn	or	any	other	dependency	attributes.

Code	coverage
There	are	so	many	coverage	tools	available	for	source	code	analysis	such	as	EMMA,
Corbatura,	JaCoCo,	and	so	on.	In	this	section,	we’ll	cover	Gradle	integration	with	JaCoCo
to	find	the	source	code	analysis.

Before	we	get	started,	we	need	to	understand	what	code	coverage	is	and	why	it	is
important	in	the	test-driven	development.

Code	coverage	is	a	metric	that	we	can	use	to	check	how	much	of	the	source	code	was
tested.	Higher	code	coverage	means	a	greater	percentage	of	our	code	has	been	tested.
Code	coverage	is	typically	done	in	the	unit	testing	cycle.	During	code	coverage,	a
developer	must	ensure	that	different	logical	paths	in	the	source	code	have	been	tested	and
verified	to	achieve	better	code	coverage.

Here,	it	is	important	to	understand	that	the	code	coverage	is	not	directly	related	to	code
quality.	High	code	coverage	does	not	guarantee	that	the	quality	code	has	been	written.	A
developer	must	use	static	code	analysis	tools	such	as	PMD	(https://pmd.github.io/)	to	find
the	quality	of	the	code.	Another	point	to	remember	is	that,	even	with	100	percent	of	code
coverage,	there	is	no	guarantee	that	a	complete	bug-free	code	has	been	written.	Thus,
many	developers	argue	that	this	not	a	right	metric	to	be	considered	for	the	code	quality	or
unit	test.	However,	70-80	percent	code	coverage	is	considered	to	be	a	good	number	for
healthy	code	coverage.

In	Gradle,	the	code	coverage	tool,	JaCoCo,	can	be	applied	to	a	project	like	any	other
plugin:

apply	plugin:	'jacoco'

Our	build.gradle	file	has	the	following	content.	We	have	created	a	few	TestNG	test
cases	to	test	the	functionalities	of	the	source	code.	We	have	also	configured	a	test	task	to
be	dependent	on	the	jacocoTestReport	task.	This	is	to	make	sure	that	test	cases	are
executed	before	running	and	creating	the	test	coverage	reports:

apply	plugin:	'java'

apply	plugin:	'jacoco'

repositories	{

		mavenCentral()

}

dependencies	{

		testCompile	'org.testng:testng:6.8.8'

}

test{

				systemProperty	"url",System.properties['url']

				useTestNG()

}

jacocoTestReport.dependsOn	test

https://pmd.github.io/

By	default,	the	report	will	be	created	in	the	<build	dir>/reports/jacoco/test/html
directory	and	an	HTML	report	file	will	be	generated.	For	example,	we	have	created	a
simple	POJO	User.java	file	with	the	getter	and	setter	methods.	Also,	we	have	created	a
few	unit	test	cases	to	verify	the	functionalities.	The	two	sample	test	cases	are	as	follows:

		@Test

		public	void	userEmailTest()	{

				User	user1	=	new	User("User2",	"User2	user2",	"user2@abc.com");

				Assert.assertEquals(user1.getEmail(),	"user2@abc.com");

		}

		

		@Test

		public	void	userIdTest()	{

				User	user1	=	new	User();

				user1.setUserId("User3");

				user1.setName("User3	user3");

				user1.setEmail("user3@abc.com");

				Assert.assertEquals(user1.getName(),	"User3	user3");

				Assert.assertEquals(user1.getUserId(),	"User3");

		}

Next,	we	can	execute	the	jacocoTestReport	task	to	generate	the	code	coverage	report:

>	gradle	clean	jacocoTestReport

:clean

:compileJava

:processResources	UP-TO-DATE

:classes

:compileTestJava

:processTestResources	UP-TO-DATE

:testClasses

:test

:jacocoTestReport

BUILD	SUCCESSFUL

Total	time:	7.433	secs

In	the	coverage	report,	you	can	observe	that	all	the	methods	of	the	Java	class	were	tested
unit	tests.	You	can	further	drill	down	following	the	links	in	the	report	that	shows	the	line
coverage	on	the	source	code.	The	source	code	is	marked	in	green	and	red	to	display	what
is	covered	and	what	is	not	tested.	The	following	figure	(Figure	7.2)	shows	the	code
coverage	statistics	for	the	User.java	class:

Figure	7.2

By	default,	an	HTML	report	file	is	generated	in	the	build/reports/jacoco/test/html
directory.	Also,	the	default	version	of	the	jacoco	plugin	can	be	modified	by	modifying	the
jacoco	extension	as	follows:

jacoco	{

				toolVersion	=	"<Required-Version>"

				reportsDir	=	file("Path_to_Jacoco_ReportDir")

}

Similarly,	the	report	can	be	customized	by	configuring	the	jacocoTestReport	task	as
follows:

jacocoTestReport	{

				reports	{

								xml.enabled	false

								html.destination	"<Path_to_dircectory>"

				}

}

Code	analysis	reports
Sonar	is	one	of	the	most	popular	quality	management	tools	that	gives	a	complete	analysis
of	a	project	in	terms	of	lines	of	code,	documentation,	test	coverage,	issues,	and
complexities.	As	a	developer,	we	are	mainly	interested	in	the	following	areas:

Duplicate	lines	of	code
Lacking	comments	in	the	source	code,	especially	in	public	APIs
Not	following	coding	standards	and	best	practices
Finding	code	complexity
Code	coverage	produced	by	unit	tests

In	this	section,	we	will	discuss	Gradle	integration	with	Sonar.	The	only	prerequisite	is,	the
Sonar	server	should	be	installed	and	running.

A	prerequisite	to	run	Sonar	is	to	have	Java	installed	on	the	box.	Once	prerequisites	are
met,	you	can	install	Sonar	in	just	three	simple	steps	as	follows:

1.	 Download	the	distribution	from	http://www.sonarqube.org/downloads/	and	unzip	it.
2.	 Open	a	console	and	start	the	Sonar	server:

On	Windows	platforms,	start	$SONAR_HOME\bin\windows-x86-
32\StartSonar.bat

On	other	platforms,	start	$SONAR_HOME/bin/[OS]/sonar.sh

3.	 Go	to	http://localhost:9000.

To	run	sonar-runner	plugin,	we	just	need	to	apply	the	plugin	sonar-runner	and
configure	it	to	connect	to	the	Sonar	server.

Create	the	build	file	build.gradle	for	your	project	with	the	following	contents:

apply	plugin:	'groovy'

apply	plugin:	"sonar-runner"

repositories	{

				mavenCentral()

}

version	=	'1.0'

repositories	{

				mavenCentral()

}

sonarRunner	{

		sonarProperties	{

				property	"sonar.host.url",	"http://<IP_ADDRESS>:<PORT>"

				property	"sonar.jdbc.url",

				"jdbc:h2:tcp://<IP_ADDRESS>:<PORT>/sonar"

				property	"sonar.jdbc.driverClassName",	"org.h2.Driver"

				property	"sonar.jdbc.username",	"sonar"

				property	"sonar.jdbc.password",	"sonar"

http://www.sonarqube.org/downloads/

		}

}

The	above	configuration	is	self-explanatory.	You	need	to	add	configurations	such	as	Sonar
URL,	DB	URL,	and	JDBC	driver	details,	and	our	build	file	is	ready.

The	next	step	is	to	run	the	sonarRunner	task	for	code	analysis.	After	successful	execution
of	this	task,	you	will	find	the	report	hosted	on	the	Sonar	server:

>gradle	clean	sonarRunner

:clean

:compileJava

:processResources	UP-TO-DATE

:classes

:compileTestJava

:processTestResources	UP-TO-DATE

:testClasses

:test

:sonarRunner

SonarQube	Runner	2.3

Java	1.7.0_51	Oracle	Corporation	(64-bit)

Windows	7	6.1	amd64

INFO:	Runner	configuration	file:	NONE

INFO:	Project	configuration	file:	

<Project_Home>\UserService\build\tmp\sonarRunner\sonar-project.properties

INFO:	Default	locale:	"en_IN",	source	code	encoding:	"windows-1252"	

(analysis	is	platform	dependent)

INFO:	Work	directory:	<Project_Home>\UserService\build\sonar

INFO:	SonarQube	Server	3.7.4

...

...

Now,	you	can	open	http://localhost:9000/	to	browse	the	projects.	This	page	is	the
default	dashboard	page,	which	shows	the	details	of	all	the	projects.	You	can	find	your
project	and	browse	through	the	details.	The	details	will	be	displayed	as	follows:

Figure	7.3

You	can	again	further	verify	the	details	of	each	metric,	just	by	following	the	links
provided	in	the	project	home	page.	For	example,	the	following	figure	displays	the	source
code-related	metrics	in	the	Sonar.	It	provides	details	such	as	code	complexity,	lines	of
code,	methods,	documentation,	and	so	on:

Figure	7.4

Note
You	can	find	more	on	Sonar	at
http://docs.sonarqube.org/display/SONAR/Documentation/.

http://docs.sonarqube.org/display/SONAR/Documentation/

Summary
In	this	chapter,	we	discussed	the	testing	and	reporting	aspects	of	Gradle.	We	started	our
discussion	with	TestNG	and	also	discussed	how	we	can	configure	Gradle	to	support	the
integration	test	cases	separate	from	unit	test	cases.	Then,	we	discussed	code	coverage	with
JaCoCo	and,	finally,	we	talked	about	Sonar	integration	with	Gradle.

In	the	next	chapter,	we	will	discuss	how	to	organize	the	build	logic	in	build	scripts	and
plugins.	We’ll	explore	how	to	modularize	plugin	code	so	that	it	can	be	shared	across
multi-project	Gradle	build.	We’ll	also	explore	how	to	create	a	custom	plugin	in	Gradle.

Chapter	8.	Organizing	Build	Logic	and
Plugins
Plugins	are	one	of	the	major	building	blocks	of	Gradle,	which	we	have	not	discussed
much	until	now.	You	have	seen	different	standard	plugins	such	as	Java,	Eclipse,	Scala,	and
so	on,	which	comes	with	a	set	of	defined	tasks.	Developers	just	include	the	plugin,
configure	the	required	tasks,	and	leverage	the	functionalities.	In	this	chapter,	we	will	get
an	overview	of	what	a	plugin	is,	how	you	can	group	tasks	to	a	plugin,	how	you	can	extract
the	plugin	logic	from	a	build	file	to	buildSrc,	and	also	how	to	create	a	standalone	plugin.

Extracting	build	logic	to	buildSrc
Plugins	are	nothing	but	the	group	of	tasks	with	specific	orders	and	default	configurations,
which	are	created	to	provide	a	certain	functionality.	For	example,	java	plugin	contains
tasks	that	provide	the	functionality	to	build	a	Java	project,	scala	plugin	contains	tasks	to
build	Scala	projects,	and	so	on.	Although	Gradle	provides	many	standard	plugins,	you	can
also	find	different	third-party	plugins	to	fulfil	the	project’s	need.	There	might	always	be	a
case	when	you	are	not	able	to	find	the	desired	functionality	with	the	existing	plugins	and
would	like	to	create	a	new	one	for	your	custom	requirement.	We	will	see	the	different
ways	in	which	a	developer	can	create	a	plugin	and	use	it.

The	very	first	plugin	that	a	user	can	create	is	in	the	build	file	itself.	The	following	is	the
sample	code	of	a	plugin,	which	a	developer	can	write	in	build.gradle	and	use	it:

apply	plugin:	CustomPlugin

class	CustomPlugin	implements	Plugin<Project>	{

		void	apply(Project	project)	{

				project.task('task1')	<<	{

						println	"Sample	task1	in	custom	plugin"

						

				}

				project.task('task2')	<<	{

						println	"Sample	task2	in	custom	plugin"

						

				}				

		}

}

task2.dependsOn	task1

Here,	we	have	created	a	plugin	in	the	build	file	itself.	This	is	the	beauty	of	Gradle	script.
You	can	also	write	a	class	in	the	Gradle	file.	To	create	a	custom	plugin,	you	need	to	create
a	Groovy	class	that	implements	the	Plugin	interface.	You	can	write	a	plugin	even	in	Java
or	any	other	JVN	language.	Since	Gradle	build	scripts	are	written	in	Groovy,	we	have	used
Groovy	to	write	the	plugin	implementation.	All	the	tasks	that	you	want	to	implement,	you
need	to	define	inside	the	apply	method.	We	have	defined	two	tasks,	task1	and	task2.
Also,	we	have	defined	the	life	cycle	as	a	relationship	between	the	two	tasks.	If	a	developer
calls	task1,	only	task1	will	be	executed.	If	you	execute	task2,	both	task1	and	task2	will
get	executed.	Try	to	execute	the	following	command:

>	gradle	task2

:task1

Sample	task1	in	customer	plugin

:task2

Sample	task2	in	custom	plugin

BUILD	SUCCESSFUL

Total	time:	2.206	secs

Tip

To	use	a	plugin	in	the	build	file,	you	always	need	to	use	apply	plugin:<plugin
name/plugin	class	(if	a	plugin	is	implemented	in	the	same	script	or	in	the	buildSrc
directory).

This	is	one	of	the	simple	ways	in	which	a	developer	can	define	a	custom	plugin.	However,
if	we	follow	the	design	principles,	it	is	not	a	good	practice	to	mix	the	build	logic	and
custom	logic	into	the	same	file.	It	would	be	difficult	to	maintain	the	code	and	it	might	also
increase	the	maintenance	efforts.	We	will	always	recommend	you	to	write	plugin	code
separate	from	the	build	logic.	To	achieve	this,	Gradle	provides	two	different	ways	as
follows:

Extract	plugin	code	to	buildSrc
Independent	plugin

To	extract	plugin	code	to	buildSrc,	Gradle	recommends	you	to	create	a	buildSrc
directory	inside	the	project	directory	and	keep	the	plugin	code	there.	The	following	is	the
folder	hierarchy	for	the	same:

C:./Gradle/Chapter8/CustomPlugin1

│			build.gradle

│

└───buildSrc

				└───src

								└───main

												└───groovy

																└───ch8

																								CustomPlugin.groovy

Here,	we	have	created	a	separate	buildSrc	directory;	inside	that,	we	kept	the	plugin	code
in	the	CustomPlugin.groovy	file.	Move	the	preceding	Groovy	class	from	the
build.gradle	file	into	this	file.	Include	the	package	statement	at	the	top.	You	also	need	to
import	the	org.gradle.api.*.	Your	CustomPlugin.groovy	file	will	look	as	follows:

package	ch8

import	org.gradle.api.*

class	CustomPlugin	implements	Plugin<Project>	{

//	Plugin	functionality	here

}

The	build.gradle	file	contents	will	be	as	follows:

import	ch8.CustomPlugin

apply	plugin:	CustomPlugin

You	just	need	to	import	the	package	and	add	the	apply	plugin	statement.	All	the
background	work	of	compiling	the	class	and	including	the	class	into	classpath	at	the
runtime,	will	be	performed	by	Gradle.	Now,	try	to	execute	the	following	command:

>	gradle	task1

:buildSrc:compileJava	UP-TO-DATE

:buildSrc:compileGroovy	UP-TO-DATE

:buildSrc:processResources	UP-TO-DATE

:buildSrc:classes	UP-TO-DATE

:buildSrc:jar	UP-TO-DATE

:buildSrc:assemble	UP-TO-DATE

:buildSrc:compileTestJava	UP-TO-DATE

:buildSrc:compileTestGroovy	UP-TO-DATE

:buildSrc:processTestResources	UP-TO-DATE

:buildSrc:testClasses	UP-TO-DATE

:buildSrc:test	UP-TO-DATE

:buildSrc:check	UP-TO-DATE

:buildSrc:build	UP-TO-DATE

:task1

Sample	task1	in	custom	plugin

BUILD	SUCCESSFUL

Total	time:	3.374	secs

Here,	you	can	see	that	Gradle	performed	the	compile	and	build	task	for	your	custom
plugin	code,	and	now	you	just	need	to	execute	the	tasks	that	are	part	of	your	custom
plugin.	Gradle	also	allows	you	to	configure	your	custom	plugin	in	a	build	file.	You	can	set
a	dependency	between	the	tasks	or	add	more	functionality	to	the	tasks	in	the	build	file
itself,	rather	than	updating	your	plugin	code	again	and	again.	If	you	want	to	add	some
more	features	for	task1,	you	can	do	it	as	follows:

task1.doLast	{

println	"Added	more	functionality	to	task1"

}

task2.dependsOn	task1

Now,	if	you	try	to	execute	task1,	it	will	append	the	preceding	statement.

In	this	way,	you	can	separate	the	build	logic	from	the	build.gradle	file	to	a	separate	class
file	under	buildSrc	directory.	If	you	have	a	multi-project	build,	the	plugin	defined	in
the	root	project	buildSrc	can	be	reused	by	all	the	subprojects’	build	files.	You	do	not	need
to	define	a	separate	plugin	for	each	sub-projects.	This	process	has	still	one	limitation.	It
does	not	allow	you	to	use	this	plugin	for	other	projects.	Since	it	is	tightly	coupled	with	the
current	project,	you	can	use	this	plugin	only	with	the	same	project	or	the	sub-projects
defined	in	the	root	project.	To	overcome	this,	you	can	plug	out	the	plugin	code	into	a
standalone	plugin	and	package	it	into	a	JAR	file,	which	you	can	publish	to	a	repository	so
that	it	can	be	reused	by	any	projects.	In	the	next	section,	we	will	discuss	the	standalone
plugin.

The	first	plugin
To	make	the	plugin	reusable	for	all	the	other	projects,	Gradle	allows	you	to	separate	the
plugin	code	and	package	it	in	a	JAR	file.	You	can	include	this	JAR	file	in	any	projects	in
which	you	want	to	reuse	this	functionality.	You	can	create	the	standalone	project	in	Java	or
Groovy.	We	will	proceed	with	Groovy.	You	can	use	any	editor	(Eclipse,	NetBeans,	or
Idea)	to	create	a	plugin.	Since	our	main	purpose	is	to	show	you	how	to	create	a	standalone
plugin,	we	will	not	go	into	the	details	of	the	editor.	We	will	use	a	simple	text	editor.	To
proceed	with	the	standalone	plugin,	separate	the	above	buildSrc	code	into	an	independent
directory.	You	can	name	it	CustomPlugin.	So,	the	directory	structure	will	be	as	follows:

C:/Gradle/Chapter8/CustomPlugin.

│			build.gradle

│

└───src

				└───main

								└───groovy

												└───ch8

																				CustomPlugin.groovy

You	might	be	surprised	to	know	why	we	are	creating	a	build.gradle	file	here.	With	this
build.gradle,	we	will	package	the	plugin	code	into	a	jar	file.	Now,	the	question	arises	as
to	how	you	will	include	this	plugin	into	other	build	files.	You	need	a	plugin	ID	for	this
plugin.	To	add	a	plugin	ID	to	your	plugin,	you	need	to	create	a	property	file	inside	the
src/main/resources/META-INF/gradle-plugins	directory.	The	name	of	the	properties
file	will	be	your	plugin	ID.	Here,	we	will	add	the	customplugin.properties	file	in	the
above	directory.	The	content	of	this	file	will	be	as	follows:

implementation-class=ch8.CustomPlugin

Your	build	file	content	would	be.

apply	plugin:	'groovy'

version	=	'1.0'

dependencies	{

		compile	gradleApi()

		compile	localGroovy()

}

To	compile	Groovy	code,	you	need	to	include	the	preceding	two	statements	in	compile
configurations.	Since	we	are	using	a	plain	vanilla	Groovy	class	here,	we	have	not	added
any	other	dependency	JARs.	If	your	plugin	code	has	a	dependency	on	any	other	third-
party	JARs,	you	can	include	them	in	the	dependency	and	configure	the	respective
repositories.

Now,	we	will	build	the	plugin	as	follows:

>	gradle	clean	build

:clean

:compileJava	UP-TO-DATE

:compileGroovy

:processResources

:classes

:jar

:assemble

:compileTestJava	UP-TO-DATE

:compileTestGroovy	UP-TO-DATE

:processTestResources	UP-TO-DATE

:testClasses	UP-TO-DATE

:test	UP-TO-DATE

:check	UP-TO-DATE

:build

BUILD	SUCCESSFUL

Total	time:	4.671	secs

You	can	find	the	JAR	file	inside	<project>/build/libs/CustomPlugin-1.0.jar.

You	can	publish	this	plugin	JAR	to	your	organization’s	internal	repositories	so	that	any
other	projects	can	directly	download	it	from	there	and	use	it.	Now,	we	will	create	another
project	and	will	refer	to	this	plugin	JAR	into	that	project.

Create	a	new	directory,	SampleProject,	and	add	build.gradle	to	the	project.	Now,	a
question	arises	as	to	how	will	your	build.gradle	refer	to	SamplePlugin.	For	this,	you
need	to	mention	the	location	of	the	SamplePlugin	JAR	in	buildscript	closure	and	add
dependency	to	this	JAR	in	the	dependencies	closure.

The	content	of	your	build.gradle	will	be	as	follows:

buildscript	{

repositories	{

		flatDir	{dirs	"../CustomPlugin/build/libs/"}

}

dependencies	{

classpath	group:	'ch8',	name:	'CustomPlugin',version:	'1.0'

}

}

apply	plugin:	'customplugin'

Here,	we	are	using	a	flat	file	repository,	thus,	referring	to	the	custom	plugin	JAR
using	the	flatDir	configuration.	We	recommend	you	to	use	the	organization’s	local
repository;	thus,	it	can	be	centrally	accessed	by	any	of	the	organization’s	projects.	In	the
dependencies	closure,	we	are	referring	to	the	CustomPlugin	JAR	file.	This	is	the
prerequisite	to	use	any	plugin.	Finally,	we	are	adding	the	apply	plugin	statement	and
mentioning	the	plugin	name	in	single	quotes.

Tip
The	plugin	name	is	the	name	of	the	property	file	you	create	in	the
src/main/resources/META-INF/gradle-plugins	directory.

Now,	you	can	execute	the	build	file	using	the	following	command:

>	gradle	task1

:task1

Sample	task1	in	custom	plugin

BUILD	SUCCESSFUL

Total	time:	2.497	secs

Configuring	plugins
So	far,	we	have	seen	how	to	create	a	standalone	custom	plugin	and	include	it	in	another
project	build	file.	Gradle	also	allows	you	to	configure	plugin	properties	and	customize
them	as	per	your	project’s	need.	You	have	already	learned	how	you	can	customize	the
source	code	location	and	test	code	location	in	a	java	plugin.	We	will	see	an	example	of
how	you	can	replicate	the	same	behavior	in	your	custom	plugin.	To	define	plugin
properties,	you	need	to	create	one	additional	extension	class	and	register	the	class	into
your	plugin	class.	Let’s	say	we	want	to	add	the	location	property	to	the	plugin.	Create
the	CustomPluginExtension.groovy	class	as	follows:

package	ch8

class	CustomPluginExtension	{

def	location	=	"/plugin/defaultlocation"

}

Now,	register	this	class	to	your	plugin	class:

class	CustomPlugin	implements	Plugin<Project>	{

		void	apply(Project	project)	{

				def	extension	=	

project.extensions.create("customExt",CustomPluginExtension)

project.task('task1')	<<	{

						println	"Sample	task1	in	custom	plugin"

						println	"location	is	"+project.customExt.location

		}

}

}

Now,	build	the	plugin	again	so	that	your	changes	are	part	of	the	latest	plugin	JAR	file	and
then	try	to	execute	build.gradle	of	SampleProject:

>	gradle	task1

:task1

Sample	task1	in	custom	plugin

location	is	/plugin/defaultlocation

BUILD	SUCCESSFUL

Total	time:	2.79	secs

Here,	you	can	see	the	default	value	on	the	command	line	output.	If	you	want	to	change
this	field	to	some	other	value,	add	customExt	closure	to	your	SampleProject
build.gradle	file	with	a	different	value	configured	for	the	location:

buildscript	{

repositories	{

		flatDir	{dirs	"../CustomPlugin/build/libs/"}

}

dependencies	{

		classpath	group:	'ch8',	name:	'CustomPlugin',version:	'1.0'

}

}

apply	plugin:	'customplugin'

customExt	{

		location="/plugin/newlocation"

}

Now	try	to	execute	task1	again:

>	gradle	task1

:task1

Sample	task1	in	custom	plugin

location	is	/plugin/newlocation

BUILD	SUCCESSFUL

Total	time:	5.794	secs

Here,	you	can	observe	the	update	value	for	the	location	attribute.

Summary
In	this	chapter,	we	discussed	one	of	Gradle’s	main	building	blocks,	plugins.	A	plugin	helps
to	organize	and	modularize	the	functionality	and	also	helps	to	package	a	set	of	related
tasks	and	configurations.	We	also	discussed	the	different	ways	of	creating	custom	plugins,
from	writing	the	plugin	code	in	the	build	file	itself	to	creating	a	standalone	plugin	JAR	file
and	reusing	it	in	different	projects.	In	the	last	section,	we	also	covered	how	you	can
configure	the	plugin’s	existing	properties	and	customize	them	as	per	your	project’s
requirement.

Before	concluding	this	book	in	the	next	chapter,	we	will	be	discussing	how	you	can	build
Groovy	and	Scala	projects	with	the	help	of	Gradle.	Also,	as	this	is	a	mobile	age,	where	all
the	traditional	software	or	web	applications	are	now	moving	to	apps,	we	will	also	be
discussing	building	Android	projects.

Chapter	9.	Polyglot	Projects
We	are	living	in	an	era	where	one	language	is	not	enough.	Developers	are	expected	to	be
polyglot	programmers	and	choose	the	right	tool	for	a	job.	While	it	is	always	a	subjective
decision,	we	try	to	select	languages	and	ecosystems	based	on	various	parameters	such	as
execution	speed,	developer	productivity,	available	libraries	and	resources,	a	team’s
comfort	level	with	the	language,	and	many	more.

When	we	are	already	carrying	the	cognitive	load	of	working	with	different	languages,
Gradle	turns	out	to	be	our	good	friend,	as	we	don’t	have	to	change	our	build	tool	even	if
we	are	building	projects	in	other	languages.	We	can	even	use	multiple	languages	in	the
same	project	and	Gradle	orchestrating	the	build	for	the	entire	project.	Apart	from	the	array
of	JVM-based	languages,	Gradle	also	supports	C,	C++,	Objective	C	and	others	to	produce
native	applications	as	well.	Gradle	is	also	an	official	build	tool	for	the	Android	platform.
The	list	of	supported	languages	is	on	the	rise.	Apart	from	official	plugins,	there	are	many
community-supported	language	plugins.

Although	throughout	the	book	we	have	focused	primarily	on	Java	as	the	language,	we
could	have	very	well	used	Groovy	or	Scala	to	write	the	examples.	The	java	plugin	(along
with	the	java-base	plugin,	which	is	applied	by	the	java	plugin	to	the	project)	provides
the	basic	functionality	for	the	JVM-based	projects.	Language	specific	plugins	such	as
scala	and	groovy	extend	the	java	plugin	to	support	common	idioms	in	a	consistent
manner.	So,	once	we	have	used	the	java	plugin,	we	are	already	familiar	with	what
sourceSet	is,	how	configuration	works,	how	to	add	library	dependencies,	and	so	on,
and	this	knowledge	is	readily	useful	when	we	use	these	language	plugins.	In	this	chapter,
we	will	see	how	we	can	easily	add	more	spice	to	Java	projects	by	adding	Groovy	or	Scala
to	the	mix.

The	polyglot	application
For	the	code	example,	in	this	chapter,	let’s	build	a	simple	Quote	of	the	Day	service	that
returns	a	quote	based	on	the	day	of	the	year.	Since	we	might	have	fewer	quotes	in	our
store,	the	service	should	repeat	the	quotes	in	a	cyclic	fashion.	Again,	as	usual,	we	will	try
to	keep	it	as	simple	as	possible	to	focus	more	on	build	aspects	rather	than	the	application
logic.	We	will	create	two	separate	Gradle	projects	to	implement	the	exact	same
functionality,	once	in	Groovy	then	in	Scala.

Before	going	into	language-specific	details,	let’s	start	with	defining	the	QotdService
interface,	which	just	declares	only	one	method,	getQuote.	The	contract	is,	as	long	as	we
pass	the	same	date,	we	should	get	the	same	quote	back:

package	com.packtpub.ge.qotd;

import	java.util.Date;

interface	QotdService	{

		String	getQuote(Date	day);

}

The	logic	to	implement	getQuote	can	use	the	Date	object	in	any	manner,	such	as	using	the
entire	date	including	the	time	for	determining	the	quote.	However,	for	the	sake	of
simplicity,	we	will	use	only	the	day	component	of	the	Date	object	in	our	implementations.
Also,	because	we	want	our	interface	to	be	open	for	future	implementations,	we	let
getQuote	take	a	Date	object	as	the	parameter.

This	interface	is	a	Java	file	that	we	will	have	in	both	projects.	This	is	just	to	demonstrate
the	integration	of	Java	and	Groovy/Scala	sources	in	one	project.

Building	Groovy	projects
Let’s	first	implement	the	QotdService	interface	in	Groovy.	Also,	we	will	write	some	unit
tests	to	make	sure	that	the	functionality	works	as	expected.	To	start	the	project,	let’s	create
the	directory	structure	as	follows:

qotd-groovy

├──	build.gradle

└──	src

				├──	main

				│			├──	groovy

				│			│			└──	com

				│			│							└──	packtpub

				│			│											└──	ge

				│			│															└──	qotd

				│			│																			└──	GroovyQotdService.groovy

				│			└──	java

				│							└──	com

				│											└──	packtpub

				│															└──	ge

				│																			└──	qotd

				│																							└──	QotdService.java

				└──	test

								└──	groovy

												└──	com

																└──	packtpub

																				└──	ge

																								└──	qotd

																												└──	GroovyQotdServiceTest.groovy

The	src/main/java	directory	is	the	default	directory	for	Java	sources.	Similarly,
src/main/groovy	is	used	by	default	to	compile	Groovy	source	files.	Again,	it	is	just	a
convention,	and	the	source	directories’	path	and	name	can	be	easily	configured	via
sourceSets.

Let’s	first	write	the	build	script	for	our	Groovy	project.	Create	a	build.gradle	file	in	the
project	root	with	the	following	content:

apply	plugin:	'groovy'

repositories	{

		mavenCentral()

}

dependencies	{

		compile	'org.codehaus.groovy:groovy-all:2.4.5'

		testCompile	'junit:junit:4.11'

}

Building	Groovy	project	is	as	simple	as	building	a	Java	project.	Instead	of	applying	the
java	plugin,	we	apply	the	groovy	plugin,	which	automatically	applies	the	java	plugin	for
us.	Apart	from	applying	the	plugin,	we	also	need	to	add	Groovy	as	a	library	dependency
so	that	it	is	available	for	compilation	and	is	also	available	at	runtime.	We	also	add	junit	in

the	testCompile	configuration	so	it	is	available	for	unit	tests.	We	declare	Maven	central
as	the	repository	to	be	used,	but	this	can	be	changed	to	any	valid	repository	configuration
that	can	serve	our	project’s	dependencies.

Note
Gradle	build	script	is	a	Groovy	DSL,	and	parts	of	Gradle	are	written	in	Groovy.	However,
like	any	other	library	that	Gradle	itself	depends	on	at	runtime,	Groovy	is	not	implicitly
available	to	the	project	that	we	are	building.	Hence,	we	must	explicitly	declare	Groovy	as
a	project	dependency,	depending	on	whether	we	are	using	Groovy	in	production	or	test
sources.

Groovy	plugin	takes	care	of	compiling	Java	source	files	in	the	project	as	well.	Let’s
implement	the	QotdService	interface	in	Groovy:

package	com.packtpub.ge.qotd

class	GroovyQotdService	implements	QotdService	{

		List	quotes

		GroovyQotdService(List	quotes)	{

				this.quotes	=	quotes

		}

		@Override

		String	getQuote(Date	day)	{

				quotes[day[Calendar.DAY_OF_YEAR]	%	quotes.size()]

		}

}

The	implementation	of	service	accepts	a	list	of	quotes	in	a	constructor.	The	getQuote
method	gets	quote	by	the	index	in	the	list.	To	ensure	that	the	computed	index	always	stays
within	the	range	of	the	quote’s	size,	we	get	the	modulus	of	the	day	of	the	year	and	the
list’s	size.

To	test	the	service,	let’s	write	very	basic	JUnit	test	cases	in	Groovy:

package	com.packtpub.ge.qotd

import	org.junit.Before

import	org.junit.Test

import	static	org.junit.Assert.assertEquals

import	static	org.junit.Assert.assertNotSame

public	class	GroovyQotdServiceTest	{

		QotdService	service

		Date	today,	tomorrow,	dayAfterTomorrow

		def	quotes	=	[

				"Be	the	change	you	wish	to	see	in	the	world"	+

						"	-	Mahatma	Gandhi",

				"A	person	who	never	made	a	mistake	never	tried	anything	new"	+

						"	-	Albert	Einstein"

]

		@Before

		public	void	setup()	{

				service	=	new	GroovyQotdService(quotes)

				today	=	new	Date()

				tomorrow	=	today	+	1

				dayAfterTomorrow	=	tomorrow	+	1

		}

		@Test

		void	"return	same	quote	for	same	date"()	{

				assertEquals(service.getQuote(today),	service.getQuote(today))

		}

		@Test

		void	"return	different	quote	for	different	dates"()	{

				assertNotSame(service.getQuote(today),

						service.getQuote(tomorrow))

		}

		@Test

		void	"repeat	quotes"()	{

				assertEquals(service.getQuote(today),

						service.getQuote(dayAfterTomorrow))

		}

}

We	prepare	the	test	data	in	setup,	and	each	test	case	makes	sure	the	contract	of	the	quote
service	is	maintained.	As	the	quote’s	list	contains	only	two	quotes,	they	should	repeat
every	alternate	day.

We	can	run	the	tests	from	the	command	line	using	the	following	code:

$	gradle	test

Building	Scala	projects
Following	the	last	section,	most	of	this	section	would	be	very	predictable	from	the
application	build’s	standpoint.	So	let’s	quickly	go	through	the	gist	of	it.	The	directory
structure	is	as	follows:

qotd-scala

├──	build.gradle

└──	src

				├──	main

				│			├──	java

				│			│			└──	com/packtpub/ge/qotd

				│			│																							└──	QotdService.java

				│			└──	scala

				│							└──	com/packtpub/ge/qotd

				│																											└──	ScalaQotdService.scala

				└──	test

								└──	scala

												└──	com/packtpub/ge/qotd

																																└──	ScalaQotdServiceTest.scala

All	Scala	source	files	are	read	from	src/main/scala	and	src/test/scala,	unless
configured	using	sourceSets.	This	time,	the	only	plugin	that	we	need	to	apply	is	the
scala	plugin,	which	just	like	the	groovy	plugin,	implicitly	applies	the	java	plugin	to	our
project.	Let’s	write	the	build.gradle	file	for	this	project:

apply	plugin:	'scala'

repositories	{

		mavenCentral()

}

dependencies	{

		compile	'org.scala-lang:scala-library:2.11.7'

		testCompile	'org.specs2:specs2-junit_2.11:2.4.15',

				'junit:junit:4.11'

}

Here,	we	have	to	provide	scala-library	as	a	dependency.	We	also	added	specs2	as	a
dependency	for	the	test	configuration.	We	are	using	JUnit	runner	for	the	tests.

Note
The	specs2	is	a	popular	Scala	testing	library,	which	supports	both	unit	and	acceptance
testing	and	the	BDD/TDD	style	of	writing	tests.	More	information	is	available	at
http://etorreborre.github.io/specs2/.

Moving	on	to	the	service’s	Scala	implementation,	we	can	implement	it	as	follows:

package	com.packtpub.ge.qotd

import	java.util.{Calendar,	Date}

class	ScalaQotdService(quotes:	Seq[String])	extends	QotdService	{

http://etorreborre.github.io/specs2/

		def	getQuote(day:	Date)	=	{

				val	calendar	=	Calendar.getInstance()

				calendar.setTime(day)

				quotes(calendar.get(Calendar.DAY_OF_YEAR)	%	quotes.size)

		}

}

The	implementation	is	not	very	idiomatic	Scala,	but	that’s	out	of	scope	of	this	book.	The
class	takes	the	quotes	Seq	in	the	constructor	and	implements	the	getQuote	method	in	a
similar	fashion	to	the	Groovy	counterpart.

Now	that	the	service	is	implemented,	let’s	verify	that	it	honors	the	semantics	of
QotdService	by	writing	unit	tests.	For	brevity,	we	will	cover	only	the	important	test	cases:

package	com.packtpub.ge.qotd

import	java.util.{Calendar,	Date}

import	org.junit.runner.RunWith

import	org.specs2.mutable._

import	org.specs2.runner.JUnitRunner

@RunWith(classOf[JUnitRunner])

class	ScalaQotdServiceTest	extends	SpecificationWithJUnit	{

		def	service	=	new	ScalaQotdService(Seq(

				"Be	the	change	you	wish	to	see	in	the	world"	+

						"	-	Mahatma	Gandhi",

				"A	person	who	never	made	a	mistake	never	tried	anything	new"	+

						"	-	Albert	Einstein"

))

		val	today	=	new	Date()

		val	tomorrow	=	incrementDay(today)

		val	dayAfterTomorrow	=	incrementDay(tomorrow)

		"Quote	service"	should	{

				"return	same	quote	for	same	day	in	multiple	invocations"	in	{

						service.getQuote(today)	must	be(service.getQuote(today))

				}

				"return	different	quote	for	different	days"	in	{

						service.getQuote(today)	must	not	be	(

								service.getQuote(tomorrow))

				}

				"repeat	quote	if	total	quotes	are	less	than	days	in	year"	in	{

						service.getQuote(today)	must	be(

								service.getQuote(dayAfterTomorrow))

				}

		}

		def	incrementDay(date:	Date)	=	{

				val	cal	=	Calendar.getInstance()

				cal.setTime(date)

				cal.add(Calendar.DATE,	1)

				cal.getTime

		}

}

The	task	to	run	test	cases	is	just	the	same	as	the	Groovy	counterpart.	We	can	run	tests
using	the	following	code:

$	gradle	test

Joint	compilation
In	the	preceding	examples	in	this	chapter,	we	declared	an	interface	in	Java	and
implemented	it	in	Groovy	and	Scala	respectively.	It	was	possible	because	the	classes
compiled	by	the	java	plugin	are	available	to	Groovy	and	Scala	classes.

If	we	want	a	Java	class	to	have	access	to	Groovy	or	Scala	classes	for	its	compilation,	then
we	must	compile	the	Java	source	file	using	the	joint	compilation	supported	by	the
respective	plugin.	Both	the	groovy	and	scala	plugins	support	joint	compilation	and	can
compile	Java	sources.

For	referencing	Groovy	classes	in	a	Java	class,	the	easiest	way	is	to	move	the
corresponding	Java	source	file	into	src/main/groovy	(or	in	any	of	the	Groovy	srcDirs
configured	for	sourceSets),	and	the	Groovy	compiler	makes	Groovy	classes	available	to
the	Java	class	while	compilation.	The	same	goes	for	Scala	joint	compilation.	We	can	put
the	Java	files,	which	need	Scala	classes	for	their	compilation,	in	any	of	the	Scala	srcDirs
(src/main/scala	by	default).

References
The	detailed	official	documentation	for	language	plugins,	discussed	in	this	chapter,	can	be
found	at	the	following	URLs:

Java	plugin:	https://docs.gradle.org/current/userguide/java_plugin.html
Groovy	plugin:	https://docs.gradle.org/current/userguide/groovy_plugin.html
Scala	plugin:	https://docs.gradle.org/current/userguide/scala_plugin.html

The	links	to	the	official	documentation	for	various	languages	and	other	plugins	shipped
with	Gradle	can	be	found	at	the	following	URL:

https://docs.gradle.org/current/userguide/standard_plugins.html

https://docs.gradle.org/current/userguide/java_plugin.html
https://docs.gradle.org/current/userguide/groovy_plugin.html
https://docs.gradle.org/current/userguide/scala_plugin.html
https://docs.gradle.org/current/userguide/standard_plugins.html

Summary
We	took	a	simple	example	problem	and	implemented	a	solution	in	Groovy	and	Scala	to
demonstrate	how	Gradle	makes	polyglot	project	development	easy.	Instead	of	going	into
language	and	plugin-specific	details	and	differences,	we	tried	to	focus	on	the	commonality
and	consistency	that	Gradle	brings	to	the	table.

Index
A

Ant-based	project,	migrating	from
about	/	Migrating	from	an	Ant-based	project
Ant	file,	importing	/	Importing	an	Ant	file
AntBuilder	API,	using	/	Using	AntBuilder	API
Ant	tasks,	rewriting	to	Gradle	tasks	/	Rewriting	Ant	tasks	to	Gradle	tasks

application
running,	with	Gradle	/	Running	the	application	with	Gradle

application	distributable
bundling	/	Bundling	an	application	distributable

application	plugin
reference	link	/	Bundling	an	application	distributable

archives	/	Publishing	artifacts
artifacts

publishing	/	Publishing	artifacts

B
build	file

creating	/	Creating	a	build	file
build	logic

organizing,	in	multiproject	builds	/	Organizing	build	logic	in	multiproject	builds
applying,	to	all	projects	/	Applying	a	build	logic	to	all	projects
applying,	to	subprojects	/	Applying	build	logic	to	subprojects
dependency	on	subproject	/	Dependency	on	subprojects
extracting	to	buildSrc	/	Extracting	build	logic	to	buildSrc

build	phases,	Gradle
about	/	Build	phases
initialization	/	Initialization
configuration	/	Configuration
execution	/	Execution
life	cycle	callbacks	/	Life	cycle	callbacks

C
classes,	Groovy	primer

about	/	Classes
constructors	/	Constructors
properties	/	Properties
instance	methods	/	Instance	methods

classpath
JUnit,	adding	to	/	Adding	the	JUnit	to	the	classpath

closure,	Groovy
about	/	Closures

code	analysis	reports
about	/	Code	analysis	reports

code	coverage
about	/	Code	coverage

command-line	interface	(CLI)
about	/	The	Gradle	command-line	interface

compile	plugin
about	/	Dependency	configurations

configuration
about	/	Dependency	configurations

Continuous	Integration	(CI)
about	/	Continuous	Integration

D
data	structures,	Groovy	primer

about	/	Data	structures
list	/	List
set	/	Set
maps	/	Map

dependency	configurations
about	/	Dependency	configurations

Directed	Acyclic	Graph	(DAG)	/	Configuration
distribution	archive

building	/	Building	the	distribution	archive
documentation

about	/	Generating	documentation
generating	/	Generating	documentation

don’t	repeat	yourself	(DRY)	principle	/	Building	the	project

E
enhanced	tasks	/	Task	types
external	libraries

about	/	External	libraries
dynamic	version	/	The	dynamic	version
transitive	dependencies	/	Transitive	dependencies

F
first	Gradle	build	script

about	/	The	first	Gradle	build	script

G
Gradle

installing	/	Installing	Gradle
manual	installation	/	Installing	manually
alternate	methods,	for	installation	/	Alternate	methods	of	installing	Gradle
installing,	via	OS-specific	package	managers	/	Installing	via	OS-specific
package	managers
installation,	verifying	/	Verifying	the	installation
JVM	options,	setting	/	Setting	JVM	options
command-line	interface	/	The	Gradle	command-line	interface
first	build	script	/	The	first	Gradle	build	script
application,	running	with	/	Running	the	application	with	Gradle
references	/	References
about	/	Gradle	–	an	object-oriented	build	tool
build	phases	/	Build	phases

Gradle	API	and	DSL	documentation
references	/	Gradle	API	and	DSL	used	in	this	chapter

Gradle	distribution
download	link	/	Installing	manually

Gradle	installation,	via	OS-specific	package	managers
about	/	Installing	via	OS-specific	package	managers
Mac	OS	X	/	Mac	OS	X
Linux	(Ubuntu)	/	Linux	(Ubuntu)
Windows	/	Windows

Gradle	project	API
about	/	Gradle	Project	API
project	methods	/	Project	methods
project	properties	/	Project	properties
extra	properties	/	Extra	properties	on	a	project

Gradle	source	code,	from	GitHub
reference	/	Why	Groovy?

Gretty
references	/	References

Groovy
for	Gradle	build	scripts	/	Groovy	for	Gradle	build	scripts
about	/	Why	Groovy?
features	/	Why	Groovy?
plugins,	applying	/	Another	look	at	applying	plugins
references	/	References,	Groovy

Groovy	plugin
reference	/	References

Groovy	primer
about	/	Groovy	primer

Groovy	code,	running	/	Running	Groovy	code
variables	/	Variables
data	structures	/	Data	structures
methods	/	Methods
classes	/	Classes

Groovy	projects
building	/	Building	Groovy	projects

I
IDE	project	files

generating	/	Generating	IDE	project	files
integration	testing

about	/	Integration	testing

J
Java	Development	Kit	(JDK)	1.6	/	Installing	Gradle
Java	plugin

reference	/	References
Java	Runtime	Environment	(JRE)	6	/	Installing	Gradle
joint	compilation

about	/	Joint	compilation
JUnit

URL	/	Unit	testing
adding,	to	classpath	/	Adding	the	JUnit	to	the	classpath

L
lambda	/	Closures

M
manual	installation,	Gradle

about	/	Installing	manually
on	Mac	OS	X	/	Installing	on	Mac	OS	X	and	Linux
on	Linux	/	Installing	on	Mac	OS	X	and	Linux
on	Windows	/	Installing	on	Windows

Maven	project,	migrating	from
about	/	Migrating	from	a	Maven	project
plugin	declaration	/	Migrating	from	a	Maven	project
common	conventions	/	Migrating	from	a	Maven	project
dependency	management	/	Migrating	from	a	Maven	project
repositories	configuration	/	Migrating	from	a	Maven	project

methods,	Groovy	primer
about	/	Methods
calling	/	Calling	methods
default	values	of	parameters	/	Default	values	of	parameters
with	map	parameters	/	Methods	with	map	parameters/named	parameters
with	named	parameters	/	Methods	with	map	parameters/named	parameters
with	varags	/	Methods	with	varags
with	closure	params	/	Methods	with	closure	params

multiproject	directory	layout
about	/	The	multiproject	directory	layout

P
plugin

about	/	The	first	plugin
configuring	/	Configuring	plugins

plugin	ID	/	The	first	plugin
plugins

about	/	A	brief	introduction	to	plugins
PMD

URL	/	Code	coverage
polyglot	application

about	/	The	polyglot	application
project	dependencies

about	/	Project	dependencies
external	libraries	/	External	libraries
dependency	configurations	/	Dependency	configurations
repositories	/	Repositories

providedCompile	plugin
about	/	Dependency	configurations

providedRuntime	plugin
about	/	Dependency	configurations

Q
Quote	of	the	Day	service	/	The	polyglot	application

S
Scala	plugin

reference	/	References
Scala	projects

building	/	Building	Scala	projects
Servlet	specification	3.1

reference	/	Building	a	simple	Java	web	project
settings.gradle	file

about	/	The	settings.gradle	file
simple	Java	project

building	/	Building	a	simple	Java	project,	Building	the	project
source	files,	adding	/	Adding	source	files

simple	Java	web	project
building	/	Building	a	simple	Java	web	project
source	files,	creating	/	Creating	source	files
build	file,	creating	/	Creating	a	build	file
artifact,	building	/	Building	the	artifact
web	application,	running	/	Running	the	web	application
plugins,	using	/	Plugins	to	the	rescue

Sonar
download	link	/	Code	analysis	reports
reference	/	Code	analysis	reports

source	sets	/	Dependency	configurations
specs2

about	/	Building	Scala	projects
reference	/	Building	Scala	projects

System	Under	Test	(SUT)	/	Adding	a	unit	test	source

T
task	flow	control

about	/	Task	flow	control
dependsOn	/	dependsOn
finalizedBy	/	finalizedBy
onlyIf	/	onlyIf
mustRunAfter	/	mustRunAfter	and	shouldRunAfter
shouldRunAfter	/	mustRunAfter	and	shouldRunAfter

tasks
about	/	Tasks
actions,	attaching	/	Attaching	actions	to	a	task
task	flow	control	/	Task	flow	control
creating	dynamically	/	Creating	tasks	dynamically
default	tasks,	setting	/	Setting	default	tasks
task	types	/	Task	types
enhanced	tasks	/	Task	types
task	types,	using	/	Using	task	types
task	types,	creating	/	Creating	task	types

testCompile	plugin
about	/	Dependency	configurations

TestNG
testing	with	/	Testing	with	TestNG
reference	/	Testing	with	TestNG
listener	configuration	/	Testing	with	TestNG
test	group	declaration	/	Testing	with	TestNG

test	reports
viewing	/	Viewing	test	reports

testRuntime	plugin
about	/	Dependency	configurations

tests
running	/	Running	the	test
fitting,	in	workflow	/	Fitting	tests	in	the	workflow

U
unit	testing

about	/	Unit	testing,	Integration	testing
unit	test	source

adding	/	Adding	a	unit	test	source

V
variables,	Groovy	primer

about	/	Variables
strings	/	Strings
regular	expressions	/	Regular	expressions
closures	/	Closures

W
workflow

tests,	fitting	in	/	Fitting	tests	in	the	workflow

	Gradle Essentials
	Credits
	About the Authors
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Running Your First Gradle Task
	Installing Gradle
	Installing manually
	Installing on Mac OS X and Linux
	Installing on Windows
	Alternate methods of installing Gradle
	Installing via OS-specific package managers
	Mac OS X
	Linux (Ubuntu)
	Windows
	Installing via SDKMAN
	Verifying the installation
	Setting JVM options
	The Gradle command-line interface
	The first Gradle build script
	Task name abbreviation
	Gradle Daemon
	Gradle Wrapper
	Generating wrapper files
	Running a build via wrapper
	Summary
	2. Building Java Projects
	Building a simple Java project
	Creating a build file
	Adding source files
	Building the project
	A brief introduction to plugins
	Unit testing
	Adding a unit test source
	Adding the JUnit to the classpath
	Running the test
	Viewing test reports
	Fitting tests in the workflow
	Bundling an application distributable
	Running the application with Gradle
	Building the distribution archive
	Generating IDE project files
	Summary
	3. Building a Web Application
	Building a simple Java web project
	Creating source files
	Creating a build file
	Building the artifact
	Running the web application
	Plugins to the rescue
	References
	Project dependencies
	External libraries
	The dynamic version
	Transitive dependencies
	Dependency configurations
	Repositories
	Summary
	4. Demystifying Build Scripts
	Groovy for Gradle build scripts
	Why Groovy?
	Groovy primer
	Running Groovy code
	Variables
	Strings
	Regular expressions
	Closures
	Data structures
	List
	Set
	Map
	Methods
	Calling methods
	Default values of parameters
	Methods with map parameters/named parameters
	Methods with varags
	Methods with closure params
	Classes
	Constructors
	Properties
	Instance methods
	Another look at applying plugins
	Gradle – an object-oriented build tool
	Build phases
	Initialization
	Configuration
	Execution
	Life cycle callbacks
	Gradle Project API
	Project methods
	Project properties
	Extra properties on a project
	Tasks
	Attaching actions to a task
	Task flow control
	dependsOn
	finalizedBy
	onlyIf
	mustRunAfter and shouldRunAfter
	Creating tasks dynamically
	Setting default tasks
	Task types
	Using task types
	Creating task types
	References
	Groovy
	Gradle API and DSL used in this chapter
	Summary
	5. Multiprojects Build
	The multiproject directory layout
	The settings.gradle file
	Organizing build logic in multiproject builds
	Applying a build logic to all projects
	Applying build logic to subprojects
	Dependency on subprojects
	Summary
	6. The Real-world Project with Gradle
	Migrating from an Ant-based project
	Importing an Ant file
	Using AntBuilder API
	Rewriting Ant tasks to Gradle tasks
	Migrating from a Maven project
	Publishing artifacts
	Continuous Integration
	Generating documentation
	Summary
	7. Testing and Reporting with Gradle
	Testing with TestNG
	Integration testing
	Code coverage
	Code analysis reports
	Summary
	8. Organizing Build Logic and Plugins
	Extracting build logic to buildSrc
	The first plugin
	Configuring plugins
	Summary
	9. Polyglot Projects
	The polyglot application
	Building Groovy projects
	Building Scala projects
	Joint compilation
	References
	Summary
	Index

