
ptg16476052

www.allitebooks.com

http://www.allitebooks.org

ptg16476052

in One Hour a Day

SamsTeachYourself

Laura Lemay
Rafe Coburn
Jennifer Kyrnin

800 East 96th Street, Indianapolis, Indiana 46240

HTML, CSS
& JavaScript
Web Publishing

Seventh Edition

www.allitebooks.com

http://www.allitebooks.org

ptg16476052

Sams Teach Yourself HTML, CSS & JavaScript
Web Publishing in One Hour a Day, Seventh
Edition
Copyright © 2016 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,

or transmitted by any means, electronic, mechanical, photocopying, recording, or

otherwise, without written permission from the publisher. No patent liability is assumed

with respect to the use of the information contained herein. Although every precaution

has been taken in the preparation of this book, the publisher and author assume no

responsibility for errors or omissions. Nor is any liability assumed for damages resulting

from the use of the information contained herein.

ISBN-13: 978-0-672-33623-2

ISBN-10: 0-672-33623-5

Library of Congress Control Number: 2015918052

Printed in the United States of America

First Printing December 2015

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have

been appropriately capitalized. Sams Publishing cannot attest to the accuracy of this

information. Use of a term in this book should not be regarded as affecting the validity of

any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible,

but no warranty or fitness is implied. The information provided is on an “as is” basis. The

authors and the publisher shall have neither liability nor responsibility to any person or

entity with respect to any loss or damages arising from the information contained in this

book.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities

(which may include electronic versions; custom cover designs; and content particular to

your business, training goals, marketing focus, or branding interests), please contact our

corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Acquisitions Editor

Mark Taber

Managing Editor

Sandra Schroeder

Senior Project Editor

Tonya Simpson

Copy Editor

Keith Cline

Indexer

Tim Wright

Proofreader

Gill Editorial Services

Editorial Assistant

Vanessa Evans

Cover Designer

Mark Shirar

Compositor

Bronkella Publishing

www.allitebooks.com

http://www.allitebooks.org

ptg16476052

Contents at a Glance
 Introduction 1

PART I: Getting Started

 1 What Is Web Publishing? 7

 2 Getting Your Tools in Order 23

 3 Introducing HTML and CSS 41

PART II: Creating Web Pages

 4 Learning the Basics of HTML 57

 5 Organizing Information with Lists 71

 6 Working with Links 89

PART III: Doing More with HTML and CSS

 7 Formatting Text with HTML and CSS 121

 8 Using CSS to Style a Site 159

 9 Using Images on Your Web Pages 197

 10 Building Tables 241

 11 Using CSS to Position Elements on the Page 287

 12 Designing Forms 313

 13 Structuring a Page with HTML5 371

 14 Integrating Multimedia: Video and Sound 385

 15 Advanced CSS: Page Layout in CSS 421

 16 Using Responsive Web Design 443

PART IV: Using JavaScript and jQuery

 17 Introducing JavaScript 471

 18 Using jQuery 499

 19 Using JavaScript in Your Pages 527

 20 Working with Frames and Linked Windows 555

PART V: Designing for Everyone

 21 Designing for the Mobile Web 575

 22 Designing for User Experience 605

PART VI: Going Live on the Web

 23 How to Publish Your Site 625

 24 Taking Advantage of the Server 651

 25 Search Engines and SEO 687

 Index 703

www.allitebooks.com

http://www.allitebooks.org

ptg16476052

Table of Contents

Introduction 1

PART I: Getting Started

LESSON 1: What Is Web Publishing? 7

Thinking Like a Web Publisher . 8

The Web Is a Hypertext Information System . 8

The Web Is Cross-Platform . 9

The Web Is Distributed . 9

The Web Is Dynamic . 10

The Web Is Interactive . 12

Web Browsers . 14

What the Browser Does . 14

An Overview of Some Popular Browsers . 15

Web Servers . 18

Uniform Resource Locators . 18

Defining Web Publishing Broadly . 19

Summary . 20

Workshop . 20

Q&A . 20

Quiz . 21

Quiz Answers . 21

Exercises . 21

LESSON 2: Getting Your Tools in Order 23

Anatomy of a Website . 24

Setting Up Your Computer for Web Publishing . 26

Text Editors . 26

A Web Browser . 28

Using the Google Chrome Developer Tools . 29

What Do You Want to Do on the Web? . 33

Wireframing Your Website . 33

What’s Wireframing, and Why Do I Need It? . 34

Hints for Wireframing . 35

www.allitebooks.com

http://www.allitebooks.org

ptg16476052

Web Hosting . 36

Using a Content-Management Application . 36

Setting Up Your Own Web Hosting . 37

Summary . 38

Workshop . 39

Q&A . 39

Quiz . 39

Quiz Answers . 40

Exercises . 40

LESSON 3: Introducing HTML and CSS 41

What HTML Is (And What It Isn’t) . 42

HTML Describes the Structure of a Page . 42

HTML Does Not Describe Page Layout . 43

Why It Works This Way . 44

How Markup Works . 45

What HTML Files Look Like . 45

Text Formatting and HTML . 49

HTML Attributes . 50

Using the style Attribute . 50

Including Styles in Tags . 51

A Short History of HTML Standards . 52

XHTML . 52

The Current and Evolving Standard: HTML5 . 53

Summary . 54

Workshop . 54

Q&A . 54

Quiz . 54

Quiz Answers . 55

Exercises . 55

PART II: Creating Web Pages

LESSON 4: Learning the Basics of HTML 57

Structuring Your HTML. 58

The <html> Tag . 58

The <head> Tag . 59

The <body> Tag . 59

www.allitebooks.com

http://www.allitebooks.org

ptg16476052

vi Sams Teach Yourself HTML, CSS & JavaScript Web Publishing in One Hour a Day

The Title . 60

Headings . 62

Paragraphs . 64

Comments . 65

Summary . 68

Workshop . 68

Q&A . 68

Quiz . 69

Quiz Answers . 69

Exercises . 70

LESSON 5: Organizing Information with Lists 71

Lists: An Overview . 72

Numbered Lists . 73

Customizing Ordered Lists . 74

Unordered Lists . 78

Customizing Unordered Lists . 78

Definition Lists . 81

Nesting Lists . 82

Other Uses for Lists . 84

Summary . 85

Workshop . 87

Q&A . 87

Quiz . 88

Quiz Answers . 88

Exercises . 88

LESSON 6: Working with Links 89

Creating Links . 90

The Link Tag: <a> . 90

Linking Local Pages Using Relative and Absolute Pathnames . 95

Absolute Pathnames . 96

Should You Use Relative or Absolute Pathnames? . 97

Links to Other Documents on the Web . 98

Linking to Specific Places Within Documents . 104

Creating Links and Anchors . 104

The name Attribute of the <a> Tag . 105

Linking to Elements in the Same Document . 110

www.allitebooks.com

http://www.allitebooks.org

ptg16476052

Contents vii

Anatomy of a URL . 110

Parts of URLs. 110

Special Characters in URLs . 112

The rel Attribute . 113

Kinds of URLs . 113

HTTP . 113

Anonymous FTP . 114

Non-Anonymous FTP . 115

Mailto . 115

File . 116

Summary . 117

Workshop . 117

Q&A . 118

Quiz . 119

Quiz Answers . 120

Exercises . 120

PART III: Doing More with HTML and CSS

LESSON 7: Formatting Text with HTML and CSS 121

Character-Level Elements . 122

Semantic HTML Tags . 122

Changes to Physical Style Tags in HTML5 . 124

Character Formatting Using CSS . 125

The Text Decoration Property . 125

Font Properties . 126

Preformatted Text . 128

Horizontal Rules (or Thematic Breaks) . 130

Attributes of the <hr> Tag . 132

Line Break . 133

Addresses . 134

Quotations . 135

Special Characters . 138

Character Encoding . 139

Character Entities for Special Characters . 140

Character Entities for Reserved Characters . 141

www.allitebooks.com

http://www.allitebooks.org

ptg16476052

viii Sams Teach Yourself HTML, CSS & JavaScript Web Publishing in One Hour a Day

Fonts and Font Sizes. 142

Summary . 154

Workshop . 156

Q&A . 156

Quiz . 157

Quiz Answers . 157

Exercises . 158

LESSON 8: Using CSS to Style a Site 159

Including Style Sheets in a Page . 160

Creating Page-Level Styles . 160

Creating Sitewide Style Sheets . 161

Selectors . 162

Contextual Selectors . 162

Classes and IDs . 163

What Cascading Means . 165

Units of Measure . 166

Specifying Colors. 168

Editing Styles with Developer Tools . 171

Using Color . 172

Links . 173

The Box Model . 174

Borders . 175

Margins and Padding . 177

Controlling Size and Element Display . 182

Float . 185

More Selectors . 189

Pseudo-Classes . 190

Attribute Selectors . 193

The <body> Tag . 194

Summary . 194

Workshop . 195

Q&A . 195

Quiz . 196

Quiz Answers . 196

Exercises . 196

www.allitebooks.com

http://www.allitebooks.org

ptg16476052

LESSON 9: Using Images on Your Web Pages 197

Images on the Web . 198

Image Formats . 198

GIF . 198

JPEG . 199

PNG . 199

SVG . 200

Inline Images in HTML: The Tag . 200

Adding Alternative Text to Images . 201

Images and Text . 205

Text and Image Alignment . 207

Wrapping Text Next to Images . 210

Adjusting the Space Around Images . 213

Images and Links . 214

Other Neat Tricks with Images . 219

Image Dimensions and Scaling . 219

Image Backgrounds . 220

Using Images as Bullets . 224

What Is an Imagemap? . 226

Getting an Image . 226

Determining Your Coordinates . 227

The <map> and <area> Tags . 230

The usemap Attribute . 231

Image Etiquette . 237

Summary . 237

Workshop . 238

Q&A . 238

Quiz . 239

Quiz Answers . 239

Exercises . 240

LESSON 10: Building Tables 241

Creating Tables . 242

Table Parts . 242

The <table> Element . 243

Summarizing the Table . 243

Rows and Cells . 244

Contents ix

www.allitebooks.com

http://www.allitebooks.org

ptg16476052

x Sams Teach Yourself HTML, CSS & JavaScript Web Publishing in One Hour a Day

Empty Cells . 246

Captions . 247

Sizing Tables, Borders, and Cells . 251

Setting Table Widths . 252

Changing Table Borders . 253

Cell Padding . 256

Cell Spacing . 257

Column Widths . 259

Table and Cell Color . 260

Aligning Your Table Content . 262

Table Alignment . 263

Cell and Caption Alignment . 264

Spanning Multiple Rows or Columns . 266

More Advanced Table Enhancements . 276

Grouping and Aligning Columns. 276

Grouping and Aligning Rows . 279

How Tables Are Used . 282

Summary . 282

Workshop . 284

Q&A . 285

Quiz . 285

Quiz Answers . 285

Exercises . 286

LESSON 11: Using CSS to Position Elements on the Page 287

Positioning Schemes . 288

Relative Positioning . 288

Absolute Positioning. 293

Positioning Properties . 293

Positioning Properties and Height and Width . 294

Nesting Absolutely Positioned Elements. 295

Dynamic Overlays . 297

Fixed Positioning . 301

Controlling Stacking . 303

Creating Drop-Down Menus . 306

Summary . 311

ptg16476052

Contents xi

Workshop . 311

Q&A . 311

Quiz . 312

Quiz Answers . 312

Exercises . 312

LESSON 12: Designing Forms 313

Understanding Form and Function . 314

Using the <form> Tag . 319

Using the <label> Tag . 323

Creating Form Controls with the <input> Tag . 324

Creating Text Controls . 325

Adding Options to Text Fields with datalist . 327

Using the New HTML5 Controls . 328

Creating Password Controls . 332

Creating Submit Buttons . 333

Creating Reset Buttons . 334

Creating Check Box Controls . 334

Creating Radio Buttons . 336

Using Images as Submit Buttons . 337

Creating Generic Buttons. 337

Hidden Form Fields . 338

The File Upload Control . 339

Using Other Form Controls . 340

Using the button Element . 340

Creating Large Text-Entry Fields with textarea . 341

Creating Menus with select and option . 342

Grouping Controls with fieldset and legend . 350

Changing the Default Form Navigation . 351

Using Access Keys . 352

Creating disabled and readonly Controls . 352

Displaying Updates with progress and meter . 354

Applying Cascading Style Sheet Properties to Form Elements . 359

Planning Your Forms . 365

Summary . 365

ptg16476052

xii Sams Teach Yourself HTML, CSS & JavaScript Web Publishing in One Hour a Day

Workshop . 367

Q&A . 367

Quiz . 368

Quiz Answers . 368

Exercises . 369

LESSON 13: Structuring a Page with HTML5 371

A Short History of HTML Page Layout . 372

Laying Out a Page in HTML5 . 373

HTML5 Structural Tags . 375

Sections . 375

Header . 376

Footer . 376

Navigation . 377

Articles . 378

Asides . 379

The Page Outline . 379

Elements with Their Own Outlines . 381

Using HTML5 Structural Elements . 381

Polyfill Scripts . 381

Summary . 381

Workshop . 382

Q&A . 382

Quiz . 383

Quiz Answers . 383

Exercise . 383

LESSON 14: Integrating Multimedia: Video and Sound 385

Embedding Video the Simple Way . 386

Advantages and Disadvantages of Hosting Videos on External Sites 387

Uploading Videos to YouTube . 388

Customizing the Video Player . 389

Other Services . 390

Hosting Your Own Video . 391

Video and Container Formats . 392

Converting Video to H.264 . 393

ptg16476052

Contents xiii

Embedding Video Using <video> . 396

The <video> Tag . 397

Using the <source> Element. 399

Embedding Flash Using the <object> Tag . 400

Alternative Content for the <object> Tag . 403

The <embed> Tag . 404

Embedding Flash Movies Using SWFObject . 406

Flash Video Players . 408

JW Player . 408

Using Flowplayer . 410

Using the <object> Tag with the <video> Tag . 412

Embedding Audio in Your Pages . 413

The <audio> Tag . 413

Flash Audio Players . 414

Summary . 416

Workshop . 417

Q&A . 417

Quiz . 418

Quiz Answers . 418

Exercises . 419

LESSON 15: Advanced CSS: Page Layout in CSS 421

Laying Out the Page . 422

The Problems with Layout Tables . 422

Writing HTML with Structure . 423

Writing a Layout Style Sheet . 426

The Floated Columns Layout Technique . 433

The Role of CSS in Web Design . 435

Style Sheet Organization . 436

Site-Wide Style Sheets . 439

Summary . 439

Workshop . 440

Q&A . 440

Quiz . 441

Quiz Answers . 441

Exercises . 441

ptg16476052

xiv Sams Teach Yourself HTML, CSS & JavaScript Web Publishing in One Hour a Day

LESSON 16: Using Responsive Web Design 443

What Is Responsive Web Design? . 444

History of Responsive Web Design . 444

Why RWD Is Important . 445

RWD Is More Than Just Changing the Number of Columns . 445

Mobile Devices Should Come First . 445

Mobile First . 446

Affecting the Viewport . 447

Planning a Responsive Website . 449

Check Your Analytics . 449

Try the Site with Your Own Phone . 449

Decide What Content Is Critical . 449

Writing Media Queries . 450

Media Types . 450

Media Features . 451

Breakpoints . 452

Building a Style Sheet with Media Queries . 454

Understanding the Mechanics of RWD . 454

Adjusting the Layout . 454

Making Images and Videos Responsive . 460

Building Responsive Tables . 463

Responsive Web Design Best Practices . 467

Give Everyone the Best Experience . 467

Use the Best Breakpoints for Your Website, Not for Devices . 468

Be Flexible But Think Small . 468

Summary . 468

Workshop . 469

Q&A . 469

Quiz . 469

Quiz Answers . 469

Exercises . 470

ptg16476052

Contents xv

PART IV: Using JavaScript and jQuery

LESSON 17: Introducing JavaScript 471

Why Would You Want to Use JavaScript? . 472

Ease of Use . 473

Improving Performance . 473

Integration with the Browser . 473

The <script> Tag . 473

The Structure of a JavaScript Script . 474

The src Attribute . 474

JavaScript and the Chrome Development Tools . 475

The JavaScript Language . 476

Operators and Expressions . 479

Variables . 480

Control Structures . 482

Functions . 486

Data Types . 488

Arrays . 489

Objects . 489

The JavaScript Environment . 491

Events . 491

Summary . 495

Workshop . 495

Q&A . 495

Quiz . 496

Quiz Answers . 496

Exercises . 497

LESSON 18: Using jQuery 499

What Are JavaScript Libraries? . 500

Getting Started with jQuery . 500

Your First jQuery Script . 501

Selecting Elements from the Document . 503

Binding Events . 504

Modifying Styles on the Page . 505

Hiding and Showing Elements . 505

Retrieving and Changing Style Sheet Properties . 507

ptg16476052

xvi Sams Teach Yourself HTML, CSS & JavaScript Web Publishing in One Hour a Day

Modifying Content on the Page . 508

Manipulating Classes . 508

Manipulating Form Values . 511

Manipulating Attributes Directly . 513

Adding and Removing Content . 514

Special Effects . 518

AJAX and jQuery . 520

Using AJAX to Load External Data . 521

Summary . 525

Workshop . 525

Q&A . 525

Quiz . 526

Quiz Answers . 526

Exercises . 526

LESSON 19: Using JavaScript in Your Pages 527

Validating Forms with JavaScript . 528

Hiding and Showing Content . 538

The Same Code with jQuery . 546

Adding New Content to a Page . 546

Summary . 551

Workshop . 551

Q&A . 551

Quiz . 552

Quiz Answers . 552

Exercises . 553

LESSON 20: Working with Frames and Linked Windows 555

What Are Frames? . 556

Why Were Frames Removed from HTML5? . 556

What About Iframes? . 556

Working with Linked Windows . 557

Browsing Context Keywords . 557

The <base> Tag . 562

Inline Frames . 563

Opening Linked Windows with JavaScript . 567

Summary . 571

ptg16476052

Contents xvii

Workshop . 572

Q&A . 572

Quiz . 572

Quiz Answers . 572

Exercises . 573

PART V: Designing for Everyone

LESSON 21: Designing for the Mobile Web 575

People Browse Differently on Mobile Phones . 576

Standards Compliance and the Mobile Web . 577

Progressive Enhancement . 577

Validating Your Pages . 578

Writing for the Mobile Web . 581

Write Clearly and Be Brief . 582

Organize Your Pages for Quick Scanning . 582

Make Each Page Stand on Its Own . 583

Be Careful with Emphasis . 583

Don’t Use Browser-Specific Terminology . 584

Spell Check and Proofread Your Pages . 584

Design and Page Layout . 585

Use Headings as Headings . 585

Group Related Information Visually . 586

Use a Consistent Layout . 586

Using Links . 587

Mobile Users Tap; They Don’t Click . 587

Use Link Menus with Descriptive Text . 587

Use Links in Text. 588

Avoid the “Here” Syndrome . 588

To Link or Not to Link. 589

Using Images and Multimedia . 591

Don’t Overuse Images . 591

Keep Images Small . 591

Watch Out for Assumptions About Your Visitors’ Hardware . 592

Don’t Make Your Videos Annoying . 592

Avoid Flash . 593

ptg16476052

xviii Sams Teach Yourself HTML, CSS & JavaScript Web Publishing in One Hour a Day

Making the Most of CSS and JavaScript . 593

Put Your CSS and JavaScript in External Files . 593

Location Matters . 594

Shrink Your CSS and JavaScript . 594

Take Advantage of Mobile Features . 595

Geolocation . 595

Make Phone Calls . 596

SMS . 597

Other Good Habits and Hints for Mobile Web Design . 597

Link Back to Home . 597

Don’t Split Topics Across Pages . 598

Sign Your Pages . 598

One Final Secret to Mobile Web Design . 599

Summary . 599

Workshop . 601

Q&A . 601

Quiz . 602

Quiz Answers . 602

Exercises . 603

LESSON 22: Designing for User Experience 605

Considering User Experience Level . 606

Add a Search Engine . 606

Use Concise, Sensible URLs . 606

Navigation Provides Context . 608

Are Your Users Tourists or Regulars? . 609

Determining User Preferences . 610

What Is Accessibility? . 611

Common Myths Regarding Accessibility . 611

Section 508 . 612

Alternative Browsers . 613

Writing Accessible HTML . 613

Tables . 614

Links . 615

Images and Multimedia . 616

Designing for Accessibility . 617

Using Color . 617

Fonts . 618

ptg16476052

Contents xix

Take Advantage of All HTML Tags . 619

Frames . 619

Forms . 619

Validating Your Sites for Accessibility . 620

Summary . 621

Workshop . 621

Q&A . 622

Quiz . 623

Quiz Answers . 623

Exercises . 624

PART VI: Going Live on the Web

LESSON 23: How to Publish Your Site 625

What Does a Web Server Do? . 626

Other Things Web Servers Do . 626

How to Find Web Hosting . 627

Using a Web Server Provided by Your School or Work . 627

Using a Commercial Web Host . 628

Commercial Web Builders . 629

Setting Up Your Own Server . 629

Free Hosting . 630

Organizing Your HTML Files for Publishing . 630

Questions to Ask Your Webmaster . 630

Keeping Your Files Organized with Directories . 632

Having a Default Index File and Correct Filenames . 632

Publishing Your Files . 633

Moving Files Between Systems . 633

Troubleshooting . 636

I Can’t Access the Server . 636

I Can’t Access Files . 636

I Can’t Access Images . 636

My Links Don’t Work . 637

My Files Are Being Displayed Incorrectly . 638

Promoting Your Web Pages . 638

Getting Links from Other Sites . 639

Content Marketing Through Guest Posting . 639

www.allitebooks.com

http://www.allitebooks.org

ptg16476052

xx Sams Teach Yourself HTML, CSS & JavaScript Web Publishing in One Hour a Day

Promoting Your Site Through Social Media . 640

Creating a Facebook Page for Your Site . 642

Site Indexes and Search Engines . 643

Business Cards, Letterhead, Brochures, and Advertisements . 644

Finding Out Who’s Viewing Your Web Pages . 644

Log Files . 644

Google Analytics . 645

Summary . 648

Workshop . 648

Q&A . 649

Quiz . 649

Quiz Answers . 649

Exercises . 650

LESSON 24: Taking Advantage of the Server 651

How PHP Works . 652

Getting PHP to Run on Your Computer . 653

The PHP Language . 654

Comments . 654

Variables . 655

Arrays . 656

Strings . 659

Conditional Statements . 661

PHP Conditional Operators . 662

Loops . 662

foreach Loops . 663

for Loops. 664

while and do...while Loops . 664

Controlling Loop Execution . 665

Built-In Functions . 666

User-Defined Functions . 666

Returning Values . 667

Processing Forms . 668

Handling Parameters with Multiple Values . 669

Presenting the Form . 674

Using PHP Includes . 678

Choosing Which Include Function to Use . 680

ptg16476052

Contents xxi

Expanding Your Knowledge of PHP . 681

Database Connectivity . 682

Regular Expressions . 682

Sending Mail . 682

Object-Oriented PHP . 682

Cookies and Sessions . 683

File Uploads . 683

Other Application Platforms. 683

Microsoft ASP.NET . 683

Java EE . 684

Ruby on Rails. 684

Summary . 684

Workshop . 684

Q&A . 685

Quiz . 685

Quiz Answers . 686

Exercises . 686

LESSON 25: Search Engines and SEO 687

What Is SEO? . 688

Why You Need SEO . 688

What About Social Media? . 688

You Can Do Your Own SEO . 689

Why Don’t Search Engines Find Sites Without SEO? . 689

How Search Engines Work . 689

Google . 690

Microsoft Bing . 691

Yahoo! . 691

Don’t Forget International Searches . 691

SEO Techniques . 692

Is Your Site “Friendly?” . 692

Using Keywords and Keyword Research . 693

Creating Content for Customers Is the Best SEO . 694

Myths and Facts About SEO . 695

Tools for Tracking and Managing SEO . 696

Using Sitemaps . 696

The robots.txt File . 697

ptg16476052

xxii Sams Teach Yourself HTML, CSS & JavaScript Web Publishing in One Hour a Day

Understanding Canonical Links . 698

Redirecting Duplicate Content . 698

Checking How Your Site Looks to Search Engines . 699

Tracking Your SEO Efforts . 700

Paying for Links . 700

Summary . 701

Workshop . 701

Q&A . 701

Quiz . 702

Quiz Answers . 702

Exercises . 702

Index 703

ptg16476052

About the Authors

Rafe Colburn is an author and web developer with more than 15 years of experience

building websites. His other books include Special Edition Using SQL and Sams Teach
Yourself CGI in 24 Hours. You can read his blog at http://rc3.org or find him on Twitter

as @rafeco.

Jennifer Kyrnin is an author and web designer who has been working on the Internet

since 1995. Her other books include Sams Teach Yourself Bootstrap in 24 Hours, Sams
Teach Yourself Responsive Web Design in 24 Hours, and Sams Teach Yourself HTML5
Mobile Application Development in 24 Hours. She can be found at http://htmljenn.com/

or on Twitter as @htmljenn.

Laura Lemay is one of the world’s most popular authors on web development topics.

She is the original author of Sams Teach Yourself Web Publishing with HTML, Sams
Teach Yourself Java in 21 Days, and Sams Teach Yourself Perl in 21 Days.

http://rc3.org
http://htmljenn.com/

ptg16476052

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value

your opinion and want to know what we’re doing right, what we could do better, what

areas you’d like to see us publish in, and any other words of wisdom you’re willing to

pass our way.

We welcome your comments. You can email or write to let us know what you did or

didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this
book.

When you write, please be sure to include this book’s title and author as well as your

name and email address. We will carefully review your comments and share them with

the author and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: Sams Publishing

ATTN: Reader Feedback

800 East 96th Street

Indianapolis, IN 46240 USA

Reader Services

Register your copy of Sams Teach Yourself HTML, CSS & JavaScript Web Publishing
in One Hour a Day (ISBN 978-0-672-33623-2) at informit.com/register for convenient

access to downloads, updates, and corrections as they become available.

ptg16476052

Introduction

Over the past decade, the Web has become completely integrated into the fabric of

society. Most businesses have websites, and it’s unusual to see a commercial on televi-

sion that doesn’t display a URL. The simple fact that most people know what a URL is

speaks volumes. People who didn’t know what the Internet was several years ago are

now reconnecting with their high school friends on Facebook.

Perhaps the greatest thing about the Web is that you don’t have to be a big company to

publish things on it. The only things you need to create your own website are a computer

with access to the Internet and the willingness to learn. Obviously, the reason you’re

reading this is that you have an interest in web publishing. Perhaps you need to learn

about it for work, or you’re looking for a new means of self-expression, or you want to

post baby pictures on the Web so that your relatives all over the country can stay up-to-

date. The question is, how do you get started?

There’s more than enough information on the Web about how to publish websites like

a seasoned professional. There are tutorials, reference sites, tons of examples, and free

tools to make it easier to publish on the Web. However, the advantage of reading this

book instead is that all the information you need to build websites is organized in one

place and presented in an orderly fashion. It has everything you need to master HTML,

publish sites to a server on the Web, create graphics for use on the Web, and keep your

sites running smoothly.

But wait, there’s more. Other books on how to create web pages just teach you the basic

technical details, such as how to produce a boldface word. In this book, you’ll also learn

why you should be producing a particular effect and when you should use it. In addi-

tion, this book provides hints, suggestions, and examples of how to structure your overall

website, not just the words on each page. This book won’t just teach you how to create

a website—it’ll teach you how to create a great website and how to get people to come

visit it.

In this book, examples are written in valid HTML5 and CSS3 using tags that work in all

current browsers wherever possible. Exceptions and caveats are noted whenever I use

tags that are obsolete or not included in HTML5.

ptg16476052

2 Sams Teach Yourself HTML, CSS & JavaScript Web Publishing in One Hour a Day

Who Should Read This Book
Is this book for you? That depends:

■ If you’ve seen what’s out on the Web and you want to contribute your own con-

tent, this book is for you.

■ If you work for a company that wants to create a website and you’re not sure

where to start, this book is for you.

■ If you’re an information developer, such as a technical writer, and you want to

learn how the Web can help you present your information online, this book is for

you.

■ If you’re just curious about how the Web works, some parts of this book are for

you, although you might be able to find what you need on the Web itself.

■ If you’ve created web pages before with text, images, and links, and you’ve played

with a table or two and set up a few simple forms, you may be able to skim the

first half of the book. The second half should still offer you a lot of helpful infor-

mation.

What This Book Contains
The lessons are arranged in a logical order, taking you from the simplest tasks to more

advanced techniques:

■ Part I: Getting Started

In Part I, you’ll get a general overview of the World Wide Web and what you can

do with it. You’ll also write your first (basic) web page with HTML and CSS.

■ Part II: Creating Web Pages

In Part II, you’ll learn how to write simple documents in the HTML language and

style them with CSS. You’ll learn how to create lists on your pages as well as

paragraphs of text, and you’ll learn how to link your pages with hypertext links.

Visit our website and register this book at www.informit.com/
register for convenient access to any updates, downloads, or
errata that might be available for this book.

NOTE

http://www.informit.com/

ptg16476052

■ Part III: Doing More with HTML and CSS

In Part III, you’ll learn the meat of building web pages. You’ll learn how to format

text and style a page using CSS. You’ll learn how to add images and create tables

and forms and place them on your pages. You’ll also learn how to lay out your

web pages with CSS and make them responsive to the devices that are viewing

them.

■ Part IV: Using JavaScript and jQuery

In Part IV, you’ll learn how you can extend the functionality of your web pages

by adding JavaScript to them. First, we provide an overview of JavaScript and of

jQuery. We provide some specific JavaScript examples you can use on your own

pages. And you learn how to make inline frames and linked windows.

■ Part V: Designing for Everyone

Part V gives you hints for creating a well-constructed website, and you’ll learn

how to design for mobile devices as well as make your site accessible so that it is

usable by people with disabilities.

■ Part VI: Going Live on the Web

In Part VI, you’ll learn how to put your site up on the Web, including how to

advertise the work you’ve done. You’ll also learn how to use some of the features

of your web server to make your life easier. And you’ll get some tips for making

your site searchable in the most popular search engines with search engine optimi-

zation (SEO).

What You Need Before You Start
There are lots of books about how to use the Web. This book isn’t one of them. We’re

assuming that if you’re reading this book, you already have a working connection to

the Internet, you have a modern web browser such as Chrome, Safari, Firefox, Opera,

Internet Explorer version 10, or Microsoft Edge, and that you’re familiar with the basics

of how the Web and the Internet work. You should also have at least a passing acquain-

tance with some other elements of the Internet, such as email and FTP, because we refer

to them in general terms in this book.

In other words, you need to have used the Web to provide content for the Web. If you

meet this one simple qualification, read on!

Many of the screenshots in this book are made on a Macintosh computer, but you can

do all the work on Windows or a Linux machine if that’s what you use. You should just

be familiar with how your operating system works and where common programs are

located.

Introduction 3

ptg16476052

4 Sams Teach Yourself HTML, CSS & JavaScript Web Publishing in One Hour a Day

▼

Conventions Used in This Book
This book uses special typefaces and other graphical elements to highlight different types

of information.

Special Elements
Three types of “boxed” elements present pertinent information that relates to the topic

being discussed: Note, Tip, and Caution as follows:

Notes highlight special details about the current topic.NOTE

It’s a good idea to read the tips because they present shortcuts
or trouble-saving ideas for performing specific tasks.

TIP

Don’t skip the cautions. They help you avoid making bad decisions
or performing actions that can cause you trouble.

CAUTION

Task

Tasks demonstrate how you can put the information in a lesson into practice by giving

you a real working example.

HTML Input and Output Examples
Throughout the book, we present exercises and examples of HTML input and output.

Input ▼

An input icon identifies HTML code that you can type in yourself.

Output ▼

An output icon indicates the results of the HTML input in a web browser such as

Microsoft Internet Explorer.

▲

ptg16476052

Special Fonts
Several items are presented in a monospace font, which can be plain or italic. Here’s

what each one means:

■ plain mono—Applied to commands, filenames, file extensions, directory names,

and HTML input. For example, HTML tags such as <table> and <p> appear in

this font.

■ mono italic—Applied to placeholders. A placeholder is a generic item that

replaces something specific as part of a command or computer output. For

instance, the term represented by filename would be the real name of the file, such

as myfile.txt.

Workshop
In the “Workshop” section, you can reinforce your knowledge of the concepts in the les-

son by answering quiz questions or working on exercises. The Q&A provides additional

information that didn’t fit in neatly elsewhere in the lesson.

Introduction 5

www.allitebooks.com

http://www.allitebooks.org

ptg16476052

This page intentionally left blank

ptg16476052

LESSON 1
What Is Web
Publishing?

A journey of a thousand miles begins with a single step, and here you are
in Lesson 1 of a journey that will show you how to write, design, and pub-
lish pages on the World Wide Web. But before beginning the actual jour-
ney, you should start simple, with the basics. You’ll learn the following:

n How the World Wide Web really works

n What web browsers do, and which browsers your audience will be
using

n What a web server is, and why you need one

n Some information about uniform resource locators (URLs)

These days, the Web is pervasive, and today’s lesson might seem like old
news. If so, feel free to skim it and skip ahead to Lesson 2, “Getting Your
Tools in Order,” where you’ll discover the first steps you need to take to
learn to create web pages.

ptg16476052

8 LESSON 1: What Is Web Publishing?

Thinking Like a Web Publisher
You’re almost certainly already familiar with the Web as a user. You open your favorite

web browser and visit websites where you look up information, shop, or keep up with

what your friends are doing. You may also use your web browser to read your email,

check your calendar, and do your work.

Being a web publisher means understanding what happens when you enter an address in

your web browser or click a link and visit a website. But first, before I get into explaining

the Web at a technical level, I want to define it at a conceptual level.

The Web is

n A hypertext information system

n Cross-platform

n Distributed

n Dynamic

n Interactive

So, let’s look at all these words and see what they mean in the context of how you use

the Web as a publishing medium.

The Web Is a Hypertext Information System
The idea behind hypertext is that instead of reading text in a rigid, linear structure (such

as a book), you can skip easily from one point to another. You can get more information,

go back, jump to other topics, and navigate through the text based on what interests you

at the time.

Hypertext enables you to read and navigate text and visual information in a nonlinear

way, based on what you want to know next.

When you hear the term hypertext, think links. (In fact, some people still refer to links as

hyperlinks.) Whenever you visit a web page, you’re almost certain to see links through-

out the page. Some of the links might point to locations within that same page, others

to pages on the same site, and still others might point to pages on other sites. Hypertext

was an old concept when the Web was invented—it was found in applications such as

HyperCard and various help systems. However, the World Wide Web redefined how

large a hypertext system could be. Even large websites were hypertext systems of a scale

not before seen, and when you take into account that it’s no more difficult to link to a

document on a server in Australia from a server in the United States than it is to link to a

document stored in the same directory, the scope of the Web becomes truly staggering .

ptg16476052

1

Thinking Like a Web Publisher 9

Nearly all large corporations and medium-sized businesses and
organizations are using web technology to manage projects, order
materials, and distribute company information in a paperless envi-
ronment. By locating their documents on a private, secure web
server called an intranet, they take advantage of the technologies
the World Wide Web has to offer while keeping the information
contained within the company.

The Web Is Cross-Platform
If you can access the Internet, you can access the World Wide Web, regardless of

whether you’re working on a smartphone, a tablet, a brand new laptop, or a desktop com-

puter you bought at the flea market. If you think Windows menus and buttons look bet-

ter than Macintosh menus and buttons or vice versa (or if you think both Macintosh and

Windows people are weenies), it doesn’t matter. The World Wide Web isn’t limited to

any one kind of machine or developed by any one company. The Web is entirely cross-

platform.

Cross-platform means that you can access web information equally well from any com-

puter hardware running any operating system using any display .

NOTE

The Cross-Platform Ideal

The whole idea that the Web is—and should be—cross-platform is strongly held to
by purists. The reality, however, is somewhat different. With the introduction over
the years of numerous special features, technologies, and media types, the cross-
platform nature of the Web has been compromised. Web authors can choose to
use nonstandard features, like Flash, but in doing so they limit the potential audi-
ence for their site, especially as more and more people switch to smartphones and
mobile devices to view the Web. Web publishers also must choose between creating
native applications for mobile devices or using modern web standards to build web
applications that are more cross-platform compatible. It’s up to individual creators to
decide whether to compromise cross-platform flexibility for the greater capabilities of
a proprietary platform.

The Web Is Distributed
Web content can take up a great deal of storage, particularly when you include images,

audio, and video. To store all the information published on the Web, you would need

ptg16476052

10 LESSON 1: What Is Web Publishing?

an untold amount of disk space, and managing it would be almost impossible. (Not that

there aren’t people who try.)

The Web succeeds at providing so much information because that information is dis-

tributed globally across millions of websites, each of which contributes the space for the

information it publishes. These sites reside on one or more computers, referred to as web

servers. A web server is just a computer that listens for requests from web browsers and

responds to that request. You, as a consumer of that information, request a resource from

the server to view it. You don’t have to install it or do anything other than point your

browser at that site.

A website is a location on the Web that publishes some kind of information. When you

view a web page, your browser connects to that website to get that information.

Each website, and each page or bit of information on that site, has a unique address. This

address is called a uniform resource locator or URL. When people tell you to visit a site

at http://www.nytimes.com/, they’ve just given you a URL. Whenever you use a browser

to visit a website, you get there using a URL. You’ll learn more about URLs later in this

lesson in the “Uniform Resource Locators ” section.

The Web Is Dynamic
If you want a permanent copy of some information that’s stored on the Web, you have to

save it locally because the content can change any time, even while you’re viewing the

page.

If you’re browsing that information, you don’t have to install a new version of the help

system, buy another book, or call technical support to get updated information. Just

launch your browser and check out what’s there.

If you’re publishing on the Web, you can make sure that your information is up-to-date

all the time. You don’t have to spend a lot of time re-releasing updated documents.

There’s no cost of materials. You don’t have to get bids on numbers of copies or quality

of output. Color is free. And you won’t get calls from hapless customers who have a ver-

sion of the book that was obsolete four years ago.

Consider a book published and distributed entirely online, such as Little Brother by Cory

Doctorow (which you can find at http://craphound.com/littlebrother/). He can correct

any mistakes in the book and simply upload the revised text to his website, making it

instantly available to his readers. He can post pointers to foreign language translations of

the book as they arrive. The website for the book appears in Figure 1.1.

http://www.nytimes.com/
http://craphound.com/littlebrother/

ptg16476052

Thinking Like a Web Publisher 11

1

The pictures throughout this book are taken in Google Chrome or
Safari running on OS X. The only reason for this use is that I’m
writing this book on an Apple Macintosh. If you’re using a different
operating system, don’t feel left out. As I noted earlier, the glory
of the Web is that you see the same information regardless of the
platform you’re using.

For some sites, the capability to update the site on-the-fly, at any moment, is precisely

why the site exists. Figure 1.2 shows the home page for the BBC News, a site that’s

updated 24 hours a day to reflect up-to-the-minute news as it happens. Because the site

is up and available all the time, it has an immediacy that newspapers cannot match. Visit

the BBC News at http://www.bbc.co.uk/news/world/ .

These days, you don’t even need to reload a web page to receive updated informa-

tion. Through the use of JavaScript , which I discuss starting in Lesson 17, “Introducing

JavaScript,” you can update the contents of a page in real time. The scores and statistics

on the NBA game page in Figure 1.3 are updated in place as the game progresses.

FIGURE 1.1

The website for
Little Brother.

NOTE

http://www.bbc.co.uk/news/world/

ptg16476052

12 LESSON 1: What Is Web Publishing?

The Web Is Interactive
Interactivity is the capability to “talk back” to the web server. More traditional media,

such as television, isn’t interactive in the slightest; all you do is sit and watch as shows

are played at you. Other than changing the channel, you don’t have much control over

FIGURE 1.2

The BBC News .

FIGURE 1.3

Live game updates
on the CBS Sports
website.

ptg16476052

Thinking Like a Web Publisher 13

1

what you see. The Web is inherently interactive; the act of selecting a link and jumping

to another web page to go somewhere else on the Web is a form of interactivity. In addi-

tion to this simple interactivity, however, the Web enables you to communicate with the

publisher of the pages you’re reading and with other readers of those pages.

Indeed, the most popular sites on the Web these days are about interacting with other

users of the site rather than with the site’s publisher. That’s what people mean when they

say “social media.” Rather than spending money to hire writers and cameramen, now

sites are spending money to hire programmers to create spaces for people to share content

they create with one another. These days, it’s not uncommon to see people on TV reading

viewer posts from Twitter or Facebook out loud on the air. Such is the degree to which

this form of media has taken hold.

As a web publisher, you’ll need to decide the type of interaction you want your site to

provide. You can publish web pages without any outlet for users to interact. You can

enable users to submit feedback privately. You can enable them to publish public com-

ments and converse with you and with each other. You can provide forums that enable

users to interact with one another directly. You can provide games or other interactive

features. You can even incorporate interactive features from other websites into your own

so that you can integrate your site with the sites to which your users already belong. For

example, Figure 1.4 shows a Facebook widget incorporated into a third-party website.

FIGURE 1.4

A Facebook widget .

ptg16476052

14 LESSON 1: What Is Web Publishing?

Web Browsers
A web browser, as mentioned earlier, is the application you use to view pages and navi-

gate the World Wide Web. A wide array of web browsers is available for just about every

platform you can imagine. Microsoft Internet Explorer, for example, is included with

Windows, and Safari is included with OS X. Mozilla Firefox, Google Chrome, and Opera

are all available as free downloads. Likewise, more and more people are using browsers

on mobile devices and tablets. iPhone and iPad use Mobile Safari. The Android mobile

platform has its own browser. There are also other mobile platforms, like BlackBerry and

Windows Phone, and third-party browsers for both Android and iPhone. Not too many

years ago, Internet Explorer was the dominant browser for Windows, the OS X market

share was less than 5%, and mobile browsers were so limited that they wouldn’t work

with regular web pages at all. Back then, developers sometimes chose to support Internet

Explorer and ignore other browsers. That is no longer a viable strategy.

Choosing to develop for a specific browser, such as Internet
Explorer, is only suitable when you know a limited audience using
the targeted browser software will view your website. Developing
this way is a common practice in corporations implementing
intranets. In these situations, it’s a fair assumption that all users
in the organization will use the browser supplied to them and,
accordingly, it’s possible to design the web pages on an intranet
to use the specific capabilities of the browser in question .

What the Browser Does
The core purpose of a web browser is to connect to web servers, request documents, and

then properly format and display those documents. Web browsers can also display files

on your local computer, download files that are not meant to be displayed, and in some

cases even allow you to send and retrieve email. What the browser is best at, however, is

retrieving and displaying web documents. Each web page is written in a language called

the Hypertext Markup Language (HTML) that includes the text of the page, a description

of its structure, and links to other documents, images, or other media. The browser takes

the information it gets from the web server and formats it for your display. Different

browsers might format and display the same file in diverse ways, depending on the capa-

bilities of that system and how the browser is configured.

NOTE

ptg16476052

Web Browsers 15

1

An Overview of Some Popular Browsers
There’s a good chance you use only one browser, or two, if you use a browser on a com-

puter and one on a mobile device. However, your website will probably be visited by a

variety of browsers, and to publish on the Web successfully, you’ll need to be aware of

them. This section describes some of the most popular browsers on the Web. They’re

in no way the only browsers available, and if the browser you’re using isn’t listed here,

don’t feel that you have to use one of these. Whichever browser you have is fine as long

as it works for you.

Google Chrome
Google Chrome is currently the most popular web browser. Its market share has shown

incredible growth because the browser offers great performance and stability and is

updated often, plus it is used on both desktop and mobile devices. It uses the same

HTML engine as Apple’s Safari browser, an open source engine called WebKit. It’s

available as a free download at http://www.google.com/chrome/. You’ll see Google

Chrome used for the screenshots in this book, and I’ll be talking about its special features

for people creating websites, starting in Lesson 2.

Microsoft Internet Explorer
Microsoft’s browser, Microsoft Internet Explorer, is included with Microsoft Windows

and is still the second most popular web browser. It has lost market share to other

browsers because new versions are not released as often as Google Chrome and Mozilla

Firefox. However, a huge number of people still use Internet Explorer, and it is the

most unlike other browsers like Chrome, Firefox, and Safari. According to the website

CanIUse.com, Internet Explorer 10 offers 49% support of HTML5 features, and Internet

Explorer 11 offers 58% support.

If you’re serious about web design, you should install all the popu-
lar browsers on your system and use them to view your pages
after you’ve published them. That way, you can make sure that
everything is working properly. Even if you don’t use a particular
browser on a day-to-day basis, your site will be visited by people
who do. If you are interested in checking cross-browser compatibil-
ity issues, start with Microsoft Internet Explorer and Mozilla Firefox,
and include Google Chrome, too.

Figure 1.5 shows Microsoft Edge—the successor to Internet Explorer—running under

Windows 10 .

NOTE

http://www.google.com/chrome/

ptg16476052

16 LESSON 1: What Is Web Publishing?

One other important point to make about Internet Explorer is that the different versions

differ greatly. Version 10 of Internet Explorer was released in 2012, but many users

haven’t upgraded from version 9, version 8, or even version 7. Internet Explorer differs

widely between versions, so to get a site to work properly you need to test in each ver-

sion. Web publishers have dropped support for version 6, and most have also dropped

version 7, and Microsoft recommends that all users upgrade to a newer version. And

in 2015 Microsoft released a new browser Microsoft Edge—the default browser for

Windows 10.

Mozilla Firefox
Mozilla Firefox is a free, open source web browser that makes up roughly 15% of the

browser market as of July 2015. Netscape Navigator was the first popular commercial

web browser. Version 1.0 was released in 1994. In 1998, Netscape Communications

opened the source code to their web browser and assigned some staff members to work

on making it better. Seven years and many releases later, the result of that effort was

Mozilla Firefox. Netscape Communications, since acquired by America Online, no longer

has any official ties to the Mozilla Foundation, which is now an independent nonprofit

organization.

FIGURE 1.5

Microsoft Edge
(Windows 10).

ptg16476052

Web Browsers 17

1

Firefox became popular in large part because it was free from the security issues that

plagued Internet Explorer. In addition, a large number of Firefox extensions improve the

browser experience, and Firefox has done a good job of keeping up with web standards

as they have evolved. Firefox is available for Windows, Mac OS X, and Linux and is a

free download at http://www.mozilla.com/.

Apple Safari
Safari is the default browser for OS X. There is also a mobile version of this browser

installed on the Apple iPhone and iPad. It is based on open source technology, and its

support for web standards is at a similar level to Firefox. Right now, Safari has around

9% of the browser market share.

Mobile Browsers
No discussion of browsers would be complete without talking about mobile browsers.

The big three are Chrome, Safari, and Android. As of July 2015, Chrome has 31% of

the market share for mobile browsers, with Safari and Android at 24% and 15%, respec-

tively.

Google Chrome came on the market for mobile devices before 2014 and became the

most popular browser on mobile devices in early 2015. It uses the same engine as the

desktop version of the browser and offers the performance and reliability people have

come to expect of Chrome. Safari is the browser Apple includes with iOS devices like

the iPhone and iPad. It offers very strong HTML5 support and, apart from screen size,

provides an experience very similar to a desktop browser. Similarly, Android provides a

browser that also provides a high-quality web experience. All three of them are based on

the WebKit rendering engine, just like Safari and Chrome for the desktop. I’ll discuss the

considerations that go into building sites that are friendly to mobile devices in Lesson 21,

“Designing for the Mobile Web.”

Other Browsers
As of July 2015, Google Chrome has the lion’s share of the market for web browsers on

both desktop and mobile devices. The remaining browsers all share a relatively small

slice of the pie—13% or less. For example, Opera (http://www.operasoftware.com/) has

a niche market with only 5% share. It’s small, fast, free, and available for a number of

platforms, including Windows, Mac OS X, and Linux. It’s also standards compliant . For

UNIX users who use KDE, there’s Konqueror . There are various Mozilla offshoots, such

as Camino for Mac OS X. Likewise, command-line browsers such as Lynx and Links are

available to provide an all-text view of web pages. There are also a number of browsers

that provide access to the Web for people with various special needs. It makes sense to

code to common standards to accommodate all these types of browsers.

http://www.mozilla.com/
http://www.operasoftware.com/

ptg16476052

18 LESSON 1: What Is Web Publishing?

Web Servers
To view and browse pages on the Web, all you need is a web browser. To publish pages

on the Web, you need a web server.

A web server is the program that runs on a computer and is responsible for replying to

web browser requests for whatever content is associated with a particular URL. You need

a web server to publish documents on the Web. One point of confusion is that the com-

puter on which a server program runs is also referred to as a server. So, when someone

uses the term web server, she could be referring to a program used to respond to requests

for web pages or the computer on which that program runs.

When you use a browser to request a page on a website, that browser makes a web con-

nection to a server using HTTP. The server accepts the connection, sends the contents of

the requested files, and then closes the connection. The browser then formats the infor-

mation it got from the server.

On the server side, many different browsers can connect to the same server to get the

same information. The web server is responsible for handling all these requests.

Web servers do more than just serve files. They’re also responsible for managing form

input and for linking forms and browsers with programs such as databases running on the

server.

As with browsers, many different servers are available for many different platforms, each

with many different features. For now, all you need to know is what the server is there

for; you’ll learn more about web servers in Lesson 23, “How to Publish Your Site .”

Uniform Resource Locators
As you learned earlier, a URL is a pointer to some bit of data on the Web, be it a web

document, an image, a style sheet, or a JavaScript script. You’ll learn about all of these

later. The URL provides a universal, consistent method for finding and accessing infor-

mation.

In addition to typing URLs directly into your browser to go to a particular page, you also

use URLs when you create a hypertext link within a document to another document. So,

any way you look at it, URLs are important to how you and your browser get around on

the Web.

ptg16476052

Defining Web Publishing Broadly 19

1

URLs contain information about the following:

n How to get to the information (which protocol to use: FTP, HTTP, or file)

n The Internet hostname of the computer where the content is stored

(www.ncsa.uiuc.edu, ftp.apple.com, netcom16.netcom.com, and so on)

n The directory or other location on that site where the content is located

You also can use special URLs for tasks such as sending mail to people (called Mailto
URLs) and running JavaScript code. You’ll learn all about URLs and what each part

means in Lesson 6, “Working with Links .”

Defining Web Publishing Broadly
When the Web was invented, web publishing meant one thing: creating web pages as

individual files and uploading them to a server so that people could view them in their

browsers. Since then, pretty much everything has changed.

A few websites still include hand-coded web pages that the creator uploads, but most

websites are created using software that runs on the server. Web pages have gotten

more complex, as have websites. These days, most content on web pages is written

using applications that live on the Web as well. For example, you can create a blog at

WordPress.com and immediately begin posting content through the WordPress web

interface.

Whether you’re posting status updates on Twitter, writing comments on a news site,

publishing a blog through a tool, or editing articles on Wikipedia, you’re publishing

on the Web. In most cases, you are not required to directly write HTML on your own.

Generally, the pages live in templates that someone else created, and often you can for-

mat the content you create using a graphical editor or with simplified markup that enables

you to avoid the use of HTML.

Ultimately the content, however you enter it, will be converted to HTML before it is

displayed to users. So if you publish something and it doesn’t look right, you’ll need to

know HTML if you want to fix it. You’ll need to be able to differentiate between the

parts of the page you control and the parts that are built in to the publishing application

that you’re using. And if you want to take greater control of the appearance of your site,

you will probably need to know HTML to update the templates that are used to give your

pages their own look and feel.

So no matter what approach you take to web publishing, you will likely benefit by start-

ing with the basics and learning how web publishing works from end to end. You may

never write individual web pages by hand, but understanding how to do so will prepare

you to build websites using whichever tool you ultimately choose.

http://www.ncsa.uiuc.edu

ptg16476052

20 LESSON 1: What Is Web Publishing?

Summary
To publish on the Web, you have to understand the basic concepts that make up the parts

of the Web. In this lesson, you learned three major concepts. First, you learned about

a few of the more useful features of the Web for publishing information. Second, you

learned about web browsers and servers and how they interact to deliver web pages.

Third, you learned about what a URL is and why it’s important to web browsing and

publishing.

Workshop
Each lesson in this book contains a workshop to help you review the topics you learned.

The first section of this workshop lists some common questions about the Web. Next,

you’ll answer some questions that I’ll ask you about the Web. The answers to the quiz

appear in the next section. At the end of each lesson, you’ll find some exercises that will

help you retain the information you learned about the Web.

Q&A
 Q Who runs the Web? Who controls all these protocols? Who’s in charge of all

this?

 A No single entity owns or controls the World Wide Web. Given the enormous num-

ber of independent sites that supply information to the Web, for any single organi-

zation to set rules or guidelines would be impossible. Two groups of organizations,

however, have a great influence over the look and feel and direction of the Web

itself.

 The first is the World Wide Web Consortium (W3C), based at Massachusetts

Institute of Technology in the United States and INRIA in Europe. The W3C is

made up of individuals and organizations interested in supporting and defining the

languages and protocols that make up the Web (HTTP, HTML, XHTML, and so

on). It also provides products (browsers, servers, and so on) that are freely available

to anyone who wants to use them. The W3 Consortium is the closest anyone gets to

setting the standards for and enforcing rules about the World Wide Web. You can

visit the Consortium’s home page at http://www.w3.org/ .

 The second group of organizations that influences the Web is the browser devel-

opers themselves, most notably Google, Apple, Microsoft, and the Mozilla

Foundation. The competition to be the most popular and technically advanced

browser on the Web can be fierce. A group of people and companies interested

in the future of the Web have created an organization called the Web Hypertext

Application Technology Working Group (or WHATWG). The WHATWG, along

with the W3C, wrote the HTML5 specification.

http://www.w3.org/

ptg16476052

Workshop 21

1

 Going forward, the WHATWG has abandoned version numbers for the HTML

specification entirely. Instead, HTML will be a “living standard” and incorporate

both experimental and widely supported features. The goal is to make sure that the

specification evolves to match the features that browser makers have agreed to add

to their browsers. If a proposed feature does not reach consensus, it is removed

from the specification. This is an attempt to prevent the problems of the past where

the process of creating the HTML specification diverged from the work the browser

makers were doing.

 Q I’ve heard that the Web changes so fast that it’s almost impossible to stay cur-
rent. Is this book doomed to be out-of-date the day it’s published?

 A Although it’s true that things do change on the Web, the vast majority of the infor-

mation in this book will serve you well far into the future. HTML is as stable now

as it has ever been, and once you learn the core technologies of Hypertext Markup
Language (HTML) , Cascading Style Sheets (CSS) , and JavaScript , you can add on

other things at your leisure.

Quiz
1. What’s a URL?

2. What’s required to publish documents on the Web?

Quiz Answers
1. A URL, or uniform resource locator, is an address that points to a specific docu-

ment or bit of information on the Internet.

2. You need access to a web server. Web servers, which are programs that serve up

documents over the Web, reply to web browser requests for files and send the

requested pages to many different types of browsers. They also manage form input

and handle database integration.

Exercises
1. Start thinking more about web publishing as you surf the Web. Look at how URLs

are constructed. Pay attention to how the pages are constructed. Soon you’ll under-

stand how these pages are built from the inside out.

2. Download a different browser than the one you ordinarily use and try it out for a

while. If you’re using Internet Explorer, try out Firefox, Chrome, Safari, or even

a command-line browser such as Lynx or Links. To really see how things have

changed and how some users who don’t upgrade their browser experience the Web,

download an old browser from http://browsers.evolt.org/ and try it out.

http://browsers.evolt.org/

ptg16476052

This page intentionally left blank

ptg16476052

LESSON 2
Getting Your Tools in
Order

When you start on a project, whether it’s writing a book or painting a
room, you don’t just jump in and grab a brush or start typing. You come
up with a plan to complete the project and gather the materials you
need to get the work done. Your plan may be as simple as deciding to
paint the walls before you paint the ceiling, or it may be as complex as a
detailed outline of everything you plan to write in your book.

The same goes for materials. If you’re painting a room, you need
brushes, paint, and maybe something to prevent getting paint where you
don’t want it. Likewise, if you’re writing a book, you’ll want to install a
word processor and perhaps gather the research materials you need to
support your writing. Just as with most other projects, the process of writ-
ing and designing web pages takes some planning and thought before
you start flinging text and graphics around and linking them wildly to each
other. Likewise, you’ll want to make sure you have everything you need
on your computer to build web pages, as well as a place on the Web to
host your website when you’re finished.

To prepare to publish on the Web, you must

n Learn the differences between a web server, a website, a web
page, and a home page.

n Set up your computer so that you can start creating web pages.

ptg16476052

24 LESSON 2: Getting Your Tools in Order

Anatomy of a Website
First, here’s a look at some simple terminology I use throughout this book. You need to

know what the following terms mean and how they apply to the body of work you’re

developing for the Web:

n Website—A collection of one or more web pages linked together in a meaningful

way that, as a whole, describes a body of information or creates an overall effect

(see Figure 2.1).

Pages within the website

The website

this ios asd
this aiasd dd
kiwlwototdfsdd
sddsd lfl ff dgj

this ios asd
this aiasd dd
kiwlwototdfsdd

n Web server— A computer on the Internet or an intranet that delivers web pages

and other files in response to browser requests. (An intranet is a network that uses

Internet protocols but is not publicly accessible.)

n Web page—A single document on a website, usually consisting of a Hypertext
Markup Language (HTML) document and any items that are displayed within that

document, such as inline images or style sheets.

n Home page— The entry page for a website, which can link to additional pages on

the same website or pages on other sites.

Each website is hosted on a web server. Throughout the first few lessons in this book,

you’ll learn how to develop well thought-out and well-designed websites. Later, you’ll

learn how to publish your site on an actual web server.

A web page is an individual element of a website in the same way that a page is a single

element of a book or a newspaper (although, unlike paper pages, web pages can be of any

FIGURE 2.1

Websites and
pages.

ptg16476052

Anatomy of a Website 25

2

length). Web pages sometimes are called web documents. Both terms refer to the same

thing. A web page consists of an HTML document and all the other components that are

included on the page, such as images or other media.

Most websites aren’t built out of individual pages these days.
Rather, they are created using applications that publish web con-
tent stored in a database of some kind through a common set of
templates. The URLs on the site act as input for the publishing
application. In this book, you’ll still be creating web pages in the
traditional sense, because it’s the easiest way to learn.

NOTE

If you’re publishing a website, the home page is the first or topmost page on your web-

site. It’s the intended entry point that provides access to the rest of the pages on the site

(see Figure 2.2) .

Most of your customers will access your site through your home
page, but some will enter your site through other pages. The
nature of the Web is that people can link to any page on your
site. If you have interesting information on a page other than your
home page, people will link directly to that page. On the other
pages of your site, you shouldn’t assume that the visitor has seen
your home page.

CAUTION

The home page

this ios asd
this aiasd dd
kiwlwototdfsdd
sddsd lfl ff dgj

this ios asd
this aiasd dd
kiwlwototdfsdd

A home page often contains an overview of the content of the website, available from

that starting point—for example, in the form of a table of contents or a set of icons. If

FIGURE 2.2

A home page.

www.allitebooks.com

http://www.allitebooks.org

ptg16476052

26 LESSON 2: Getting Your Tools in Order

you don’t have too much content, you might include everything on that single page—

making your home page and your website the same thing. A personal home page might

include a link to a person’s resumé and a link to his Twitter account and his photos on

Flickr. A restaurant’s home page will likely include the restaurant’s hours and location,

and links to the menu and directions to the restaurant. A corporate home page usu-

ally describes what the company does and contains links like “About the Company,”

“Products and Services,” and “Customer Support .”

Setting Up Your Computer for Web
Publishing
First of all, if you just want to post some words or pictures on a web page, you don’t

really need to do anything to set up your computer. You can just open a browser, find a

site that enables you to publish your content like Tumblr or Wix, and then publish from

within the browser.

If you want to learn how to create websites from scratch, set up your own computer so

that you can create web pages and view them locally. The only two tools you absolutely

must have to experiment with web publishing are a text editor and a web browser. You

learned a bit about web browsers in the previous lesson, so let’s talk about text editors

first.

Text Editors
HTML files are plain-text files and should be edited using a tool that works with plain-

text files. What this essentially means is that you are going to learn HTML, you shouldn’t

be editing your files with a word processing application like Microsoft Word or an online

application like Google Docs. Those types of programs allow you to edit files in what

will be their final format and then save the results in a document format like Microsoft

Word’s proprietary format. Confusingly, these types of applications will also enable you

to save your documents as HTML documents. Doing so may be sufficient to meet your

needs in terms of producing a document but won’t teach you the first thing about HTML,

which is your goal.

If you’ve used text editors before, chances are you already have a favorite. People tend to

be highly opinionated about what makes a good text editor. If you haven’t used one at all

or haven’t used one much, you’ll need a recommendation. To get started, you can use the

text editor that’s provided with your computer’s operating system; they all have one.

If you’re a Windows user, you can use the Notepad application. If you are using OS

X, you can start with TextEdit. If you are a Linux user, you can start with vi or Emacs.

ptg16476052

Setting Up Your Computer for Web Publishing 27

2

Notepad, TextEdit, and vi offer very limited functionality, and if you do a lot of text edit-

ing, you’ll want to track down another more powerful application to do your text editing.

Here’s a list of a few editors often used by people who create websites:

n Komodo Edit is a free, open source version of the popular Komodo IDE. It runs on

Windows, Macintosh, and Linux and offers a lot of features of an IDE. You can

download it at http://komodoide.com/komodo-edit/.

n HTML-Kit is a popular text editor specifically for web pages for Windows. You

can download it at http://www.htmlkit.com/. You can use an older version for free

or you can pay for the latest and greatest.

n Notepad++ is a free, open source text editor for Windows that is very popular. You

can download it at http://notepad-plus-plus.org/.

n TextWrangler is a popular, free text editor for OS X. It was created by Bare Bones

Software, and you can download it at their website at http://www.barebones.com/

products/textwrangler/. You may also be interested in BBEdit, a more powerful text

editor with a licensing fee.

n Coda is a text editor specifically for people creating web pages by Panic. It includes

a lot of development features like source control and database connectivity. You

can find it at http://panic.com/coda/. It also has a licensing fee.

You’ll want to find your text editor and open the application. If you’re using TextEdit on

OS X, make sure that it’s in plain-text mode. If the document window has controls that

let you choose a font or apply other formatting, go to the Format menu and select Make

Plain Text. Once you have your editor open, you can type in some stuff and, if you like,

save the file you’re editing. The main thing to make note of is that simply typing in char-

acters with your keyboard is the only thing you’re able to do. You have no formatting

options whatsoever—that’s what’s meant by plain text.

You can work through every lesson in this book using Notepad or
TextEdit, but most web developers find that using a more power-
ful tool improves their productivity significantly. Many provide high-
lighting that makes your documents easier to read. All of them
also enable you to have multiple documents open at once and
enable you to treat a group of files as a project. It would be tough
to find a new tool that suits you before you have even started, but
I would encourage you to look into different editors as you make
your way through the book. And many of the commercial editors
have free trials, so you can try them out before you buy.

NOTE

http://komodoide.com/komodo-edit/
http://www.htmlkit.com/
http://notepad-plus-plus.org/
http://www.barebones.com/products/textwrangler/
http://panic.com/coda/
http://www.barebones.com/products/textwrangler/

ptg16476052

28 LESSON 2: Getting Your Tools in Order

Figure 2.3 is a screenshot of the OS X text editor TextEdit. It is notable mainly due to

the fact that it has no text formatting menu or toolbar at all. This is what you’re looking

for in a text editor; it should enable you to edit the contents of the file without applying

formatting of any kind.

A Web Browser
As mentioned in the previous lesson, a number of popular web browsers are available,

and you can use any that you like to surf the Web on a day-to-day basis. However, as

you’re working through the lessons in this book, I’m going to recommend one browser

in particular: Google Chrome. The main reason is that Google Chrome offers a number

of powerful tools aimed at helping people create websites. Other browsers have similar

tools, but I’m going to make reference to the Google Chrome Developer Tools specifi-

cally in the text, and you’ll find it easier to follow along if you’re using Google Chrome

as well. If you feel confident, you can choose another browser if you prefer. (You’ll

need to translate the parts where I mention Google Chrome to your own browser, but I’d

encourage you to download Google Chrome and work through the next section regardless

of which browser you plan to ultimately use, especially if you’re completely unfamil-

iar with these kinds of tools). You can download Google Chrome at http://google.com/

chrome.

FIGURE 2.3

TextEdit on OS X.

http://google.com/chrome
http://google.com/chrome

ptg16476052

Using the Google Chrome Developer Tools 29

2

Using the Google Chrome Developer
Tools
After you’ve downloaded and installed Google Chrome, open the application, and navi-

gate to http://getbootstrap.com/. Bootstrap is a generic framework for web pages and is

discussed later. For now, it’s useful because the source code for the web pages was writ-

ten to be easily readable. In Chrome’s View menu, open the Developer submenu, and

then click Developer Tools. At this point, the Developer Tool s will open, as shown in

Figure 2.4.

FIGURE 2.4

The Google Chrome
Developer Tools.

There is also a keyboard shortcut to open the Developer Tools.
On Windows, you can open them by pressing Control+Shift+I. On
OS X, you can open them with Command+Option+I. You’ll find
yourself using the Developer Tools a lot, so it’s definitely worth
memorizing the keyboard shortcut.

TIP

The Developer Tools opens as a panel in the browser, covering the bottom of the web

page. If you prefer, you can click the button on the upper right to detach the Developer

Tools from the browser window. This allows you to see more in both windows, but

you’ll have to switch between them. You can also move the tools to the side of your

browser window rather than the bottom if you prefer. Position the Developer Tools how-

ever you feel the most comfortable.

http://getbootstrap.com/

ptg16476052

30 LESSON 2: Getting Your Tools in Order

From the earliest days of the Web, browsers have supported a feature called “View

Source” that displays the actual HTML source code for the web page that you’re view-

ing. In Google Chrome, you can view the source for the current page by selecting View

Source from the Developer submenu of the browser’s View menu. The source for

http://g etbootstrap.com/ appears in Figure 2.5.

The Developer Tools are a much more powerful extension of this concept. The Developer

Tools have a number of tabs. When you open them, the Elements tab is displayed. This

tab contains the source of the page, sort of. When a browser downloads a web page, it

transforms it so that the engine that formats the HTML and presents it can understand

it. Depending on the validity of the web page, this transformation is pretty minor. The

 Elements tab presents the HTML as the browser sees it. View Source shows the actual

HTML that the browser downloaded, so if you compare the contents of the View Source

window with the contents of the Elements tab, you’ll see a few differences that illustrate

what I’m talking about.

Don’t worry about what any of the actual HTML does right now, I’ll dig into that soon

enough. For now, just focus on the tool. When you move your mouse over the elements

in the Elements tab, the part of the web page associated with the element under the

mouse will be highlighted so that you can see how the HTML corresponds to the HTML

source. When you click one of the elements, the panes to the right of the window are

updated with the style information for that element. Later, when you start working with

Cascading Style Sheets, this feature will be really helpful because it shows exactly how

the browser interprets your styles.

FIGURE 2.5

The source
code for http://
getbootstrap.com/.

http://getbootstrap.com/
http://getbootstrap.com/
http://getbootstrap.com/

ptg16476052

Using the Google Chrome Developer Tools 31

2

▼

Finally, on the bottom row, you’ll find a number of buttons. The first is the button that

detaches or reattaches the tools window. The next opens the JavaScript console, which

is discussed starting in Lesson 17, “Introducing JavaScript.” The next button looks like

a magnifying glass. If you click it, you can then click content on the web page, and the

HTML element corresponding to it will be selected in the Elements tab. This is useful

when you want to inspect a particular element on the page.

Finally, the next buttons show the nesting order of the tags for the selected elements.

These are useful for moving through the structure of the web page. You’ll learn more

about how pages are structured in lessons to come.

Exercise 2.1: Using the Inspector

Before moving on, it’s worth seeing exactly how the Inspector works to see how to

use the Developer Tools to find specific elements on the page in the Elements view. If

you’re not viewing http://getbootstrap.com/ in your browser, go ahead and open it, and

then open the Chrome Developer Tools. You may want to go ahead and try the keyboard

shortcut mentioned earlier in a tip. As I said, as you progress you’ll find yourself doing

this a lot.

Once the browser tools are open, click the “inspect” button in the Developer Tools. It’s the

first button on the left in the bottom row—a magnifying glass. The button will turn blue,

indicating that the Developer Tools are ready to inspect the element that you click. At this

point, move the mouse over the browser window until you locate the large heading near the

top of the page. The browser window s hould look something like the one in Figure 2.6.

FIGURE 2.6

Inspecting the
Bootstrap page.

▼

http://getbootstrap.com/

ptg16476052

32 LESSON 2: Getting Your Tools in Order

As you can see, the heading is highlighted, and some information about the size of the

element is provided in a tool tip. This is the element I want you to inspect, so you should

locate it in your browser and click it. As you saw in Figure 2.4, the source of the page

shown in the Elements is mostly collapsed when you initially open the Developer Tools.

When you inspect an element, the source is expanded enough to show you the HTML

source corresponding to whatever it was on the page that you clicked. The Developer

Tools window should now be displaying the HTML tags used to create the heading you

clicked. It will look like Figure 2.7.

I don’t expect to understand much of what you see in the Developer Tools window yet,

but let me go over the highlights. In the left panel, you’ll see the actual HTML source for

the page. In the right column, you’ll find style information that shows why the selected

element looks as it does. In the bottom row, you can see where the selected element falls

within the structure of the page. The selected element is the “span” around the Bootstrap

B at the right end of the bottom bar. It is four levels deep in the page and has three CSS

classes applied to it.

You’ll find yourself falling back on the Developer Tools a lot, especially when things

don’t look like you’d expect them to on the page. It shows how the browser sees your

page and makes it easy to drill down to exactly the element you want to find, which is

especially useful as your pages grow larger and more complex.

FIGURE 2.7

Inspecting the
B icon in the
Developer Tools.

▼

▲

ptg16476052

Wireframing Your Website 33

2

What Do You Want to Do on the Web?
This question might seem silly. You wouldn’t have bought this book if you didn’t already

have some idea of what you want to publish. But maybe you don’t really know what you

want to put on the Web, or you have a vague idea but nothing concrete. Maybe it has

suddenly become your job to work on the company website, and someone handed you

this book and said, “Here, this will help.” Maybe you’re a software developer who’s sud-

denly in charge of building a web interface for a product or building a web application.

Maybe you just want to do something similar to some other web page you’ve seen and

thought was particularly cool.

What you want to put on the Web is what I refer to throughout this book as your content.

Content is a general term that can refer to text, graphics, media, forms, and so on. If you

tell someone what your web pages are about, you’re describing your content.

The only thing that limits what you can publish on the Web is your own imagination.

In fact, if what you want to do seems especially wild or half-baked, that’s an excellent

reason to try it. The most interesting websites are the ones that stretch the boundaries of

what the Web is supposed to be capable of.

You might also find inspiration in looking at other websites similar to the one you have

in mind. If you’re building a corporate site, look at the sites belonging to your competi-

tors and see what they have to offer. If you’re working on a personal site, visit sites that

you admire and see whether you can find inspiration for building your own site. Decide

what you like about those sites and you want to emulate and where you can improve on

those sites when you build your own.

These days, the barriers to building many kinds of websites are extremely low. If you

want to publish text and photos, you can use one of any number of free blogging sites to

set up a site in minutes, as long as blogging software suits your needs. Experimenting is

easier than ever. Try something, see whether it takes off, and then build from there.

If you really have no idea of what to put up on the Web, don’t feel that you have to stop

here, put this book away, and come up with something before continuing. Maybe by

reading through this book, you’ll get some ideas (and this book will be useful even if

you don’t have ideas). I’ve personally found that the best way to come up with ideas is to

spend an afternoon browsing on the Web and exploring what other people have done.

Wireframing Your Website
The next step in planning your website is to figure out what content goes on which pages

and to come up with a scheme for navigating between those pages. If you have a lot of

ptg16476052

34 LESSON 2: Getting Your Tools in Order

content that needs to be linked together in sophisticated ways, sitting down and making a

specific plan of what goes where will be incredibly useful later as you develop and link

each individual page .

What’s Wireframing, and Why Do I Need It?
Wireframes provides a rough outline of what the website will look like when it’s done,

showing which content will appear on which pages and how they will be connected

together. With that representation in hand, you can develop each page without trying to

remember exactly where that page fits into the overall website and its often complex rela-

tionships to other pages.

In the case of really large sites, wireframes enable different people to develop various

portions of the same website. With clear wireframes, you can minimize duplication of

work and reduce the amount of contextual information each person needs to remember.

For smaller websites, or websites built using content management applications that pro-

vide a specific structure, wireframes might be unnecessary. For larger and more complex

projects, however, the existence of wireframes can save enormous amounts of time and

frustration. If you can’t keep all the parts of your content and their relationships in your

head, consider creating a wireframe.

So, what do wireframes look like? Generally speaking, they are collections of documents

or images, each of which represents a certain type of page on a website. The documents

contain a rough diagram of the page, illustrating how the various components of the page

will be positioned, how much space they should take up, and what function they will

serve. For example, the wireframes for a newspaper website would include a diagram

of the home page, the home page for sections of the paper, and a wireframe for article

pages. The wireframes might also include the registration form for the site and a page

that can be used to purchase advertisements. An example wireframe created using a tool

called Balsamiq is included in Figure 2.8.

Don’t feel that your wireframes have to be pretty or built in specific wireframing soft-

ware. The point of wireframing is that it organizes your web pages in a way that works

for you. If you like index cards and string, work with these tools. If a simple outline on

paper or on the computer works better, use that instead .

ptg16476052

Wireframing Your Website 35

2

Hints for Wireframing
Some things to think about when developing your wireframes are as follows:

n Which topics will go on each page?

Trying to figure out how much information to put on one page can be tricky. Some

websites put all of their content on one long, cleverly designed page. Others split

it up between a great many pages. Still others use modern techniques to dynami-

cally load parts of the page on demand without ever really moving from one page

to another. Without getting too fancy, your best bet is to organize your content so

that each page consists of information on a single topic. If your pages become more

than a few screens long, it might be time to split them into logical subtopics.

n What are the primary forms of navigation between pages?

What links will you need for your visitors to navigate from page to page? They are

the main links in your document that enable your visitors to accomplish the goals

you defined in the first section. Links for forward, back, up, down, and home all

fall under the category of primary navigation.

n What alternative forms of navigation are you going to provide?

In addition to the simple navigation links, some websites contain extra information

that’s parallel to the main web content, such as a glossary of terms, an alphabetic

index of concepts, copyright information, or a credits page. Consider these extra

FIGURE 2.8

A wireframe for a
newspaper home
page.

ptg16476052

36 LESSON 2: Getting Your Tools in Order

forms of information when designing your plan, and think about how you’re going

to link them into the main content.

n What will you put on your home page?

Because the home page is the starting point for the rest of the information in your

website, consider what sort of information you’re going to put on the home page.

A blog? A general summary of what’s to come? A list of links to other topics?

Whatever you put on the home page, make sure that it’s compelling enough so that

members of your intended audience want to stick around.

n How will visitors to inner pages establish context?

Unless your website requires customers to register to view your content, there’s a

good chance that users could arrive on any page on your site by way of a search

engine. It’s important to make sure that customers can figure out which site they’re

on and that there’s more information that they may also be interested in. You can

generally establish this context through your design and navigation.

n What are your goals?

As you design the framework for your website, keep your goals in mind, and make

sure that you aren’t obscuring your goals with extra information or content .

Several utilities and packages can assist you in creating
wireframes. Some free tools include Mockingbird (http://
gomockingbird.com/), Denim (http://dub.washington.edu:2007/
denim/), and Gliffy (https://www.gliffy.com/uses/
wireframe-software/). In addition, several mobile apps for
iOS and Android devices help you create website mockups.

TIP

Web Hosting
At some point, you’ll want to move the websites you create from your local computer

to a server on the Internet. Before doing so, you must decide exactly what kind of host-

ing arrangement you want. The simplest approach is to get a web hosting account that

enables you to upload your HTML files, images, style sheets, and other web content to

a server that’s visible on the Web. This approach enables you to easily create web pages

(and websites) locally and publish them on the server without making changes to them.

Using a Content-Management Application
The other option is to use an application to publish content on the Web. This can make

more sense if your idea for a website falls into an existing category with publishing

http://gomockingbird.com/
http://gomockingbird.com/
http://dub.washington.edu:2007/denim/
http://dub.washington.edu:2007/denim/
https://www.gliffy.com/uses/wireframe-software/
https://www.gliffy.com/uses/wireframe-software/

ptg16476052

Web Hosting 37

2

tools available for it. For example, if you want to publish a blog, you can use sites

like TypePad (http://typepad.com/), Blogger (http://blogger.com), WordPress (http://

wordpress.com/), or Tumblr (http://tumblr.com), among many others. The advantage

of these applications is that it’s easy to set up a site, pick a theme, and start publishing

content on the Web through a web interface. There’s no need to build the web pages by

hand, set up a hosting account, or even deal with editing files by hand.

There are also online tools like Wix (http://www.wix.com/), Squarespace (http://

squarespace.com/), and Weebly (http://www.weebly.com/) that let you build a more open

format website than a blog. These applications make it easy to create a website using

their many templates, and they include other features like domain names, ecommerce,

image and multimedia collections, and more. The advantage of using these applications

is that they are easy to set up and create more professional-looking sites than blogging

platforms.

Generally with either of these types of applications, all you need to do to get started is fill

out a form, choose a URL, and pick a theme for your website. Then you can enter your

content by way of forms, enabling you to avoid writing the HTML for the pages yourself.

Some of them even include WYSIWYG editors so that you can format the content you

enter without using HTML.

However, that doesn’t mean that you don’t need to learn anything about HTML or

Cascading Style Sheets (CSS) . Even if you’re not creating the pages by hand, you’ll still

need to understand how pages are structured when you start entering content or modify-

ing themes yourself. If you don’t understand how web pages are built, you won’t know

how to track down and fix problems with the markup on your website, whether you’re

responsible for writing it or not.

For most people taking their first steps into web publishing, using an application to get

started is the best approach, because it enables you to start putting the content you’re

interested in on the Web immediately without figuring out too many things for yourself.

However, people run into limitations in these applications that leave them wanting to take

more control of their websites and go further on their own. This book will help you

do so.

Setting Up Your Own Web Hosting
If you do want to create and upload your own web pages, you’ll need to choose a com-

pany that will provide you with the space you need. There are a huge number of hosting

companies that provide web space to people who want to launch their own websites.

Companies like DreamHost (http://dreamhost.com/) and Pair.com (http://pair.com/) have

been in the hosting business for many years and offer a variety of affordable hosting

http://typepad.com/
http://blogger.com
http://wordpress.com/
http://wordpress.com/
http://tumblr.com
http://www.wix.com/
http://squarespace.com/
http://squarespace.com/
http://www.weebly.com/
http://dreamhost.com/
http://pair.com/

ptg16476052

38 LESSON 2: Getting Your Tools in Order

plans, but there are plenty of other options, too. Many people subscribe to hosting plans

from the company that they use to register the domain name for their website or go with

hosting companies that are in their local area.

If you choose to go this route, the steps for going from setting up a hosting account to

making your pages available on the Web are as follows:

1. Optionally, register a domain name. If you want your website to appear at a URL

like mycoolsite.com or mycompany.com, you’ll need to register that domain name

if you haven’t already. There are a number of domain registrars; just enter “domain

registration” in your favorite search engine to see a large number of ads and search

results for companies that offer domain registration.

2. Pick out a web hosting company and sign up for an account. If you’re going to be

putting your pages on an internal or external server belonging to your employer or

your school, you won’t need your own hosting. But if you’re creating a new web-

site that will be available on the Internet, you’ll need some sort of hosting arrange-

ment.

3. Associate your domain name with your new website, if you have registered one.

Your domain registrar and hosting company should provide instructions for set-

ting it up so that your domain name points to your hosting account. That way when

users enter your domain name in a URL, they’ll get the content that you upload to

your server.

4. Start uploading your content. Once your web hosting is set up, you can use what-

ever tool you prefer to start uploading web content to the server. Many hosts pro-

vide a web interface that will allow you to upload content, but most hosts will also

let you use a file transfer tool that supports File Transfer Protocol (FTP), Secure
Copy (SCP) , or Secure FTP (SFTP) to get your files to the server.

There will be a much more extensive discussion of web hosting and how to publish your

site in Lesson 23, “How to Publish Your Site,” but I wanted to give you a head start if

you’re eager to start publishing on the Web .

Summary
In this lesson, I explained how to get set up to productively work on web pages. You

learned about how to use the Developer Tools built in to Google Chrome to assist in

working on web pages and how to find a text editor that you can use to create web pages.

You also learned about setting goals for your website and about finding hosting for your

site. I also explained how wireframes are used to create a map of your website before you

start creating it in HTML.

ptg16476052

Workshop 39

2

Workshop
The first section of the workshop lists some of the common questions people ask while

planning a website, along with an answer to each. Following that, you have an opportu-

nity to answer some quiz questions yourself. If you have problems answering any of the

questions in the quiz, go to the next section, where you’ll find the answers. The exercises

help you formulate some ideas for your own website.

Q&A
Q Getting organized seems like an awful lot of work. All I want to do is make

something simple, and you’re telling me I have to have plans and wireframes.
Are all the steps listed here really necessary?

 A If you’re doing something simple, you won’t need to do much, if any, of the stuff

I recommended in this lesson. However, if you’re talking about developing two or

three interlinked pages or more, having a plan before you start will really help. If

you just dive in, you might discover that keeping everything straight in your head

is too difficult. And the result might not be what you expected, making it hard for

people to get the information they need out of your website as well as making it

difficult for you to reorganize it so that it makes sense. Having a plan before you

start can’t hurt, and it might save you time in the long run.

Q You talked a lot in this lesson about organizing topics and pages, but you said
nothing about the design and layout of individual pages. Why?

 A I discuss design and layout later in this book, after you’ve learned more about the

sorts of layout that HTML (the language used for web pages) can do and the stuff

that it just can’t do.

Q What if I don’t like any of the basic structures you talked about in this lesson?

 A Then design your own. As long as your visitors can find what they want or do what

you want them to do, no rules say you must use a hierarchy or a linear structure. I

presented these structures only as potential ideas for organizing your web pages.

Quiz
1. How would you briefly define the meaning of the terms website, web server, and

web pages?

2. In terms of web publishing, what’s the meaning of the term home page?

3. Regardless of the navigation structure you use in your website, there’s one link that

should typically appear on each of your web pages. What is it?

4. What’s the purpose of a wireframe?

ptg16476052

40 LESSON 2: Getting Your Tools in Order

Quiz Answers
1. A website is one or more web pages linked together in a meaningful way. A web

server is the actual computer that stores the website (or, confusingly enough, the

piece of software that responds to requests for pages from the browser). Web pages
are the individual elements of the website, like a page is to a book.

2. A home page , in terms of web publishing, is the entry point to the rest of the pages

in your website (the first or topmost page).

3. You should try to include a link to your home page on each of the pages in your

website. That way, users can always find their way back home if they get lost.

4. A wireframe provides an overall outline of what the website will look like when

it’s done. It helps organize your web pages in a way that works for you. It is most

beneficial for a larger website.

Exercises
1. Come up with a list of several goals that your visitors might have for your web

pages. The clearer your goals are, the better.

2. After you set your goals, visit sites on the Web that cover topics similar to those

you want to cover in your own website. As you examine the sites, ask yourself

whether they’re easy to navigate and have good content. Then make a list of what

you like about the sites. How would you make your website better?

ptg16476052

LESSON 3
Introducing HTML and
CSS

Now that you’ve learned all about the Web at a high level and you’ve got-
ten your computer set up, you’re probably ready to write a web page. That
is, after all, why you bought this book. Wait no longer! In this lesson, you
get to create your very first (albeit brief) web page, learn about HTML (the
language for writing web pages), and learn about the following:

n What HTML is and why you have to use it

n What you can and cannot do when you design HTML pages

n What HTML tags are and how to use them

n How to write pages that conform to the HTML standard

n How you can use Cascading Style Sheets to control the look and
feel of your pages

ptg16476052

42 LESSON 3: Introducing HTML and CSS

What HTML Is (And What It Isn’t)
Take note of just one more thing before you start writing web pages. You should know

what HTML is, what it can do, and most important, what it can’t do.

HTML stands for Hypertext Markup Language . HTML was originally based on the

Standard Generalized Markup Language (SGML), a much larger, more complicated

document-processing system. To write HTML pages, you won’t need to know much

about SGML. However, knowing that one of the main features of SGML is that it

describes the general structure of the content inside documents—rather than its actual

appearance on the page or onscreen—does help. This concept might be a bit foreign

to you if you’re used to working with WYSIWYG (What You See Is What You Get)

editors, so let’s go over the information carefully .

HTML Describes the Structure of a Page
HTML , by virtue of its SGML heritage, is a language for describing the structure of a

document, not its actual presentation. The idea here is that most documents have common

elements—for example, titles, paragraphs, and lists. Before you start writing, therefore,

you can identify and define the set of elements in that document and name them appro-

priately (see Figure 3.1).

Paragraph

Bulleted list

Paragraph

Heading

If you’ve worked with word processing programs that use style sheets (such as Microsoft

Word) or paragraph catalogs (such as FrameMaker), you’ve done something similar;

each section of text conforms to one of a set of styles that are predefined before you start

working.

FIGURE 3.1

Document ele-
ments.

ptg16476052

What HTML Is (And What It Isn’t) 43

3

HTML defines a set of common elements for web pages: headings, paragraphs, lists, and

tables. It also defines character formats such as boldface and code examples. These ele-

ments and formats are indicated inside HTML documents using tags . Each tag has a spe-

cific name and is set off from the content of the document using a notation that I discuss

a bit later .

HTML Does Not Describe Page Layout
When you’re working with a word processor or page layout program, styles are not just

named elements of a page; they also include formatting information such as the font size

and style, indentation, underlining, and so on. So, when you write some text that’s sup-

posed to be a heading, you can apply the Heading style to it, and the program automati-

cally formats that paragraph for you in the correct style.

HTML doesn’t go this far. For the most part, the HTML specification doesn’t say any-

thing about how a page looks when it’s viewed. HTML tags just indicate that an element

is a heading or a list; they say nothing about how that heading or list is to be formatted.

The only thing you have to worry about is marking which section is supposed to be a

heading, not how that heading should look.

Although HTML doesn’t say much about how a page looks when
it’s viewed, Cascading Style Sheets (CSS) enable you to apply
advanced formatting to HTML tags. HTML has evolved to the
point where web publishers are intended to use CSS for format-
ting instructions. You’ll learn about CSS later in the book.

NOTE

Web browsers, in addition to providing the networking functions to retrieve pages from

the Web, double as HTML formatters. When you read an HTML page into a browser

such as Firefox, Chrome, or Internet Explorer, the browser interprets, or parses, the

HTML tags and formats the text and images on the screen. The browser has mappings

between the names of page elements and actual styles on the screen; for example, head-

ings might appear in a larger font than the text on the rest of the page. The browser also

wraps all the text so that it fits into the current width of the window.

Different browsers running on diverse platforms style elements differently. For the most

part, browsers have standardized on the styles associated with the various HTML tags,

but there are some cases where they differ. Some non-smartphones display web pages

very differently than desktop and smartphone browsers; for example, they might not pro-

vide support for multiple fonts or even italics on a web page. More importantly, browsers

ptg16476052

44 LESSON 3: Introducing HTML and CSS

intended to be accessible to the disabled, like screen readers for the visually impaired, use

a radically different set of “styles” to enable users to access web pages. In these cases,

the idea that HTML describes the structure of a document rather than its appearance is

crucially important.

How the Visual Styles for Tags Evolved

In practice, most HTML tags are rendered in a fairly standard manner, on desktop
computers at least. When the earliest browsers were written, somebody decided that
links would be underlined and blue, visited links would be purple, and emphasized
text would appear in italic. Similar decisions were made about every other tag. Since
then, pretty much every browser maker has followed that convention. These conven-
tions blurred the line separating structure from presentation, but in truth the line still
exists, even if it’s not obvious .

Why It Works This Way
If you’re used to writing and designing documents that will wind up printed on paper,

this concept might seem almost perverse. No control over the layout of a page? The

whole design can vary depending on where the page is viewed? This is awful! Why on

earth would a system work like this?

Remember in Lesson 1, “What Is Web Publishing?” when I mentioned that one of the

cool things about the Web is that it’s cross-platform and that web pages can be viewed on

any computer system, on any size screen, with any graphics display? If the final goal of

web publishing is for your pages to be readable by anyone in the world, you can’t count

on your readers having the same computer systems, the same screen size, the same num-

ber of colors, or the same fonts that you have. The Web takes into account all these dif-

ferences and enables all browsers and all computer systems to be on equal ground.

The Web, as a design medium, is not a new form of paper. The Web is an entirely differ-

ent medium, with its own constraints and goals that are very different from working with

paper. The most important rules of web page design, as I’ll keep harping on throughout

this book, are the following:

DO design your pages so that they
work in most browsers.

DO focus on clear, well-structured
content that’s easy to read and under-
stand.

DON’T design your pages based on
what they look like on your computer
system and on your browser.

 DO DON’T

ptg16476052

What HTML Files Look Like 45

3

Throughout this book, you’ll see examples of HTML code and what they look like when

displayed.

How Markup Works
HTML is a markup language . Writing in a markup language means that you start with

the text of your page and add special tags around words and paragraphs. The tags indicate

the different parts of the page and produce different effects in the browser. You’ll learn

more about tags and how they’re used in the next section.

HTML has a defined set of tags you can use. You can’t make up your own tags to cre-

ate new styles or features. And just to make sure that things are really confusing, various

browsers support different sets of tags.

What HTML Files Look Like
Enough theory. It’s time to get into writing HTML. HTML documents are plain-text files

(ASCII), which means that they contain no platform- or program-specific information.

Any editor that supports text (which should be just about any editor; read more about this

subject in Lesson 2, “Getting Your Tools in Order”) can be used to create them.

HTML files contain the following:

n The text of the page itself

n HTML tags that identify page elements, structure, formatting, and hypertext links

to other pages or to included media

Most HTML tags look something like the following:

<thetagname>affected text</thetagname>

The tag name itself (here, thetagname) is enclosed in angle brackets (< >). HTML tags

generally have a beginning and an ending tag surrounding the text they affect. The begin-

ning tag “turns on” a feature (such as headings, bold, and so on), and the ending tag turns

it off. Closing tags contain the tag name preceded by a slash (/). The opening tag (for

example, <p> for paragraphs) and closing tag (for example, </p> for paragraphs) compose

what is officially called an HTML element .

Be aware of the difference between the forward slash (/) mentioned
with relation to tags , and backslashes (\), which are used by Windows
in directory references on hard drives (as in C:\window or other direc-
tory paths). If you accidentally use the backslash in place of a forward
slash in HTML, the browser won’t recognize the ending tags.

CAUTION

ptg16476052

46 LESSON 3: Introducing HTML and CSS

▼

Not all HTML tags have both an opening and a closing tag. Some tags are only one-

sided, and still other tags are containers that hold extra information and text inside the

brackets. You’ll learn the proper way to open and close the tags as the book progresses.

Some HTML tags have additional text inside them that provides additional information

about the tags. These are called attributes, and they are usually defined as name=value

pairs that follow the tag name separated by a space. An HTML tag with an attribute looks

something like this:

<thetagname theattribute="theattributevalue">affected text</thetagname>

HTML tags are not case sensitive; that is, you can specify them in uppercase, in lower-

case, or in any mixture. So, <HTML> is the same as <html>, which is the same as <HtMl>.

This is true for attributes as well.

Exercise 3.1: Creating Your First HTML Page

Now that you’ve seen what an HTML tag looks like, it’s your turn to create a web page

that uses a few. Start with a simple example so that you can get a basic feel for HTML.

To get started writing HTML, you don’t need a web server, web hosting, or even a con-

nection to the Internet. All you really need is an application in which you can create your

HTML files and a browser to view them. You can write, link, and test whole suites of

web pages without even touching a network. In fact, that’s what you’re going to do for

the majority of this book. Later, I discuss publishing everything on the Web so that other

people can see your work.

Many word processors are including HTML modes or mechanisms
for creating HTML or XML code. This feature can produce unusual
results or files that simply don’t behave as you expect. Using a word
processor to generate HTML is not a good idea if you plan on editing
the web pages later. They also don’t provide the opportunity to learn
HTML, so they make a poor companion for this book. When you work
on the examples in this book, you should use a regular text editor.

CAUTION

Open your text editor and type the following code. You don’t have to understand what

any of it means at this point. You’ll learn more about much of this in this lesson and the

following lesson. This simple example is just to get you started:

<!DOCTYPE html>
<html>
<head>▼

ptg16476052

What HTML Files Look Like 47

3

▼

<title>My Sample HTML Page</title>
</head>
<body>
<h1>This is an HTML Page</h1>
</body>
</html>

Note that the <!DOCTYPE> tag in the previous example looks a
little different from the others, starting with the fact that it begins
with an exclamation point. The purpose of the DOCTYPE is to tell
validators and browsers which specification your page was written
to—in this case, HTML5.

NOTE

After you create your HTML file, save it. When you choose a name for the file, follow

these two rules:

n The filename should have an extension of .html (.htm is OK, but not preferred)—

for example, myfile.html, text.html, or index.htm. Most web software requires

your files to have these extensions, so get into the habit of doing it now. (If you

are using Windows, make sure that your computer is configured to show file

extensions. If it isn’t, you’ll find yourself creating files named things like

myfile.html.txt, which your browser will not think are HTML files.)

n Use short, simple names. Don’t include spaces or special characters (bullets,

accented characters)—just letters and numbers are fine . Be sure to choose descrip-

tive, readable names for your files. They’ll help you keep track of what they’re

used for, and they can help make your site friendlier to search engines .

Exercise 3.2: Viewing the Result

Now that you have an HTML file, start your web browser. After your browser is run-

ning, look for a menu item or button labeled Open, Open File. Choosing it enables you to

browse your local disk. The Open command (or its equivalent) opens a document from

your local disk, parses it, and displays it. By using your browser and the Open command,

you can write and test your HTML files on your computer in the privacy of your own

home. (On most computers, you can just drag the icon from your HTML file into an open

browser window if you prefer.)

If you don’t see something similar to what’s shown in Figure 3.2 (for example, if parts

are missing or if everything looks like a heading), go back into your text editor and

▲

▼

▼

ptg16476052

48 LESSON 3: Introducing HTML and CSS

compare your file to the example. Make sure that all your tags have closing tags and that

all your < characters are matched by > characters. You don’t have to quit your browser to

do so; just fix the file and save it again under the same name.

Next , go back to your browser. Locate and choose a menu item or button called Refresh

or Reload. The browser will read the new version of your file, and voilà! You can edit

and preview and edit and preview until you get the file right.

If you’re getting the actual HTML text repeated in your browser rather than what’s

shown in Figure 3.2, make sure that your HTML file has an .html or .htm extension.

This file extension tells your browser that it’s an HTML file. The extension is important.

If things are going really wrong—if you’re getting a blank screen or you’re getting some

really strange characters—something is wrong with your original file. If the text editor

can’t read the file or if the result is garbled, you haven’t saved the original file in the

right format. Go back into your original editor and try saving the file as text only again.

Then try viewing the file again in your browser until you get it right .

Once you’ve opened the file in the browser, go ahead and take a look at it using the

Chrome Developer Tools. Once you’ve opened the Developer Tools, you can view the

source of the page in the Elements tab. Go ahead and mouse over the elements in the

source window to see the corresponding markup highlighted on the page. The Elements

view of the page is shown in Figure 3.3.

FIGURE 3.2

The sample HTML
file.

▼

▼

ptg16476052

What HTML Files Look Like 49

3
Text Formatting and HTML
When an HTML page is parsed by a browser, any formatting you might have done with

whitespace characters—that is, any extra spaces, tabs, returns, and so on—is ignored.

The only thing that specifies formatting in an HTML page is an HTML tag. If you spend

hours carefully editing a plain text file to have nicely formatted paragraphs and columns

of numbers but don’t include any tags, when a web browser loads the page, all the text

will flow into one paragraph. All your work will have been in vain.

FIGURE 3.3

The Developer
Tools view of the
sample HTML file.

▲

There are two exceptions to this rule: the <pre> tag and the
CSS pre property. You’ll learn about both of them in Lesson 7,
“Formatting Text with HTML and CSS.”

NOTE

The advantage of having all whitespace (spaces, tabs, returns) ignored is that you can put

your tags wherever you want. The following examples all produce the same output. Try

them!

<h1>Everything You Need to Know About HTML </h1>

<h1>
Everything You Need to Know About HTML</h1>

<h1>
Everything You Need to Know About HTML </h1>

<h1> Everything You Need to Know
About HTML </h1>

ptg16476052

50 LESSON 3: Introducing HTML and CSS

HTML Attributes
HTML elements can be modified by attributes. Attributes are placed within the opening

tag in an element. Many elements support specialized attributes, and there are also a few

global elements that can be used with any tag. For example, the ID attribute is used to

specify an identifier that uniquely identifies that element on the page. These identifiers

are used with JavaScript and Cascading Style Sheets , as you’ll learn in later lessons.

Here’s what a tag with an attribute looks like:

<h1 id="theTopHeading">Everything You Need to Know About HTML</h1>

As you can see, the attribute is placed within the opening tag, to the right of the tag

name. You can also include multiple attributes in a single tag, as follows:

<h1 id="theTopHeading" class="first">Everything You Need to Know About HTML</h1>

The class attribute is another global attribute that can be used to establish arbitrary

groups of elements. You can assign the same class to multiple elements so that they can

be referenced as a group via CSS or JavaScript.

The third global attribute you’ll use a lot is style, which I talk about in the following

section. There are also a number of attributes that are associated with specific elements or

families of elements. I’ll talk about those attributes along with the associated elements.

Using the style Attribute
Earlier in this lesson, I mentioned Cascading Style Sheets as a way you could control the

look and feel of your pages. As I mentioned, although there are default styles associated

with tags, their main purpose is to describe the structure of a document. Cascading Style

Sheets are a way to control how the browser renders HTML elements.

For example, in this lesson, I’ve used the <h1> tag a couple of times. Browsers print text

enclosed inside an <h1> tag in a large, boldface font and leave some whitespace after the

heading before printing something else. Using CSS, you can tell the browser to render the

<h1> tag differently than it normally would. CSS provides a lot of flexibility in how you

can alter the appearance of any type of element, and the styles can be applied in a number

of different ways.

The advantage of CSS is that it can be used in various ways. For example, you can put all

your styles into a separate file and link to that file from your web page. That way, if you

want to change the appearance an entire site, you can simply edit your CSS file and make

changes that span every page that links to your style sheet. Or, if you prefer, you can

include styles at the top of your page so that they apply only to that page. Style sheets

affect the entire page; there’s also a way to apply styles one tag at a time, using the style

attribute. You can also include styles inside the tags themselves using the style attribute.

ptg16476052

Using the style Attribute 51

3

You can also control the specificity of the styles you create based on how you define

them. For example, you can write rules that apply to all tags of a specific type, such as

all <h1> elements. Or you can specify classes for your elements and then write rules that

apply only to members of that class. Classes are categories or labels that are assigned

to tags using the class attribute. For example, you could create a class called headline

and then make all <h1> elements in the headline class red. You can also write rules that

apply to single elements by assigning them a unique identifier using the id attribute and

writing rules that apply to that identifier. Here’s an example of an <h1> tag that includes

both a class and an ID:

<h1 class="headline" id="leadstoryheadline">Lead Story Headline</h1>

One thing you’ll find as you progress through the book is that CSS can serve as a

replacement for some tags. As I describe various tags, I explain how you can achieve the

same effects using CSS instead. Best practices suggest you should use HTML to describe

the structure of pages and CSS to define their appearance. The coverage of CSS in this

book culminates with Lesson 15, “Advanced CSS: Page Layout in CSS,” which explains

how to use CSS to manage the entire layout of the page or even the entire layout of a site .

Including Styles in Tags
As mentioned previously, the style attribute can be used with any tag . By including the

style attribute in a tag, you can specify one or more style rules within a tag itself. Here’s

an example using the <h1> tag, which I introduced earlier:

<h1 style="font-family: Verdana, sans-serif;">Heading</h1>

The style attribute of the <h1> tag contains a style declaration. All style declarations

follow this same basic pattern, with the property on the left and the value associated

with that property on the right. The rule ends with a semicolon, and you can include

more than one in a style attribute by placing semicolons between them. If you’re only

including one rule in the style attribute, the semicolon is optional, but it’s a good idea

to include it. In the preceding example, the property is font-family, and the value is

Verdana, sans-serif. This attribute modifies the standard <h1> tag by changing the font

to Verdana, and if the user doesn’t have that font installed on his system, whichever sans-

serif font the browser selects. (Sans-serif fonts are those that do not include serifs , the

small lines at the ends of characters.)

Many, many properties can be used in style declarations. As previously mentioned, put-

ting a declaration into a style attribute is just one of several ways that you can apply

styles to your document .

ptg16476052

52 LESSON 3: Introducing HTML and CSS

A Short History of HTML Standards
HTML 2.0 was the original standard for HTML and the set of tags that all browsers

should support. Most of the tags in that original specification are still supported and still

make up the core of HTML. You can create perfectly good web pages using only tags

that were included in HTML 2.0.

The HTML 3.2 specification was developed in early 1996. Several software vendors,

including IBM, Microsoft, Netscape Communications Corporation, Novell, SoftQuad,

Spyglass, and Sun Microsystems, joined with the W3C to develop this specification.

Some of the primary additions to HTML 3.2 included features such as tables, applets, and

text flow around images.

HTML 4.0, first introduced in 1997, incorporated many new features that gave designers

greater control over page layout than HTML 2.0 and 3.2. Like HTML 2.0 and 3.2, the

W3C created the HTML 4.0 standard.

Frames (originally introduced in Netscape 2.0) and floating frames (originally introduced

in Internet Explorer 3.0) were introduced with the HTML 4.0 specification. Frames are

discussed in more detail in Lesson 20, “Working with Frames and Linked Windows.” By

far, however, the most important change in HTML 4.0 was its increased integration with

Cascading Style Sheets.

XHTML
The specification that followed HTML 4.0 was XHTML 1.0, which was followed by

XHTML 1.1. The most significant new change introduced with XHTML was that it

required that HTML documents to also be valid Extensible Markup Language (XML)

documents . The X in XHTML stands for XML. XML is another markup standard derived

from SGML. XML is a language used to create other markup languages, and XHTML is

one such language. The main difference from HTML is that XHTML requires documents

to conform to XML’s strict rules for document structure. Whereas HTML 4 was forgiv-

ing of unclosed elements, XML requires that every tag be closed, every attribute have a

value, and more.

Technically, XHTML and HTML 4 were very similar. The actual tags and attributes are

almost the same, but the XML rules required large changes to many websites.

While XHTML has been superseded by HTML5, most websites that currently exist were

built using XHTML. If you’re working on a site that was built with XHTML, you must

adhere to a few rules if you want your HTML markup to be valid XHTML. All of these

ptg16476052

The Current and Evolving Standard: HTML5 53

3

rules are a direct result of the fact that to be valid, an XHTML document must be valid

XML as well. Here’s a list:

n All the tags in your document must be lowercase.

n Any tags that do not have closing tags must be closed using a slash after the tag

name. So the
 tag would be written as
.

n All attributes must have a value. You’ll see later that some attributes don’t have

any values associated with them. XHTML requires that you use the attribute name

as the value in these cases. So they follow the form attribute="attribute".

The Current and Evolving Standard:
HTML5
While the W3C is still involved in web standards, a new group , the WHATWG , is

busy creating a new standard for HTML: HTML5. The goal of HTML5 is to make sure

that the HTML standard accurately reflects the state of the Web as it exists now. The

WHATWG, or Web Hypertext Application Technology Working Group, includes repre-

sentatives from all the major browser makers and is writing an HTML specification that

includes only features that all the browser vendors have reached a consensus on support-

ing.

HTML5 does not demand that web pages be valid XML, relaxing some of the rules that

XHTML 1.0 imposed. However, today’s valid HTML or XHTML will still be valid in

HTML5 when it’s fully adopted.

While no current browsers offer 100% support for HTML5, most popular browsers sup-

port over 80%. To find out whether a particular browser offers support for an HTML5

feature, go to http://caniuse.com/, which maintains a list of all the features in HTML5 and

which version of each browser supports them, along with the percentage of users whose

browsers support that feature. For example, at the time of the writing, 87% of users cur-

rently have browsers that fully support the HTML5 form features. However, only 9% of

users have browsers that support SVG favicons.

Another important note about HTML5 is that the WHATWG has decided to do away

with the concept of versions for HTML period. The HTML specification is being writ-

ten to reflect the current and future state of the industry and will evolve over time with

browsers. This is a new experiment designed to make sure that the specification process

more accurately reflects the evolution of the Web.

http://caniuse.com/

ptg16476052

54 LESSON 3: Introducing HTML and CSS

Summary
In this lesson, you learned some basic points about what HTML is and how you cre-

ate HTML files. You learned a bit about the history of HTML and the reasons why the

HTML specification has changed several times since the beginning. You also learned

how CSS can be used to augment your HTML. You created your first web page with

some basic tags. It wasn’t so bad, was it? You also learned a bit about the current stan-

dard version of HTML, XHTML, and how to apply styles using CSS. In the following

lesson, you’ll expand on this and learn more about adding headings, text, and lists to your

pages.

Workshop
Now that you’ve had an introduction to HTML and a taste of creating your first (very

simple) web page, here’s a workshop that will guide you toward more of what you’ll

learn. A couple of questions and answers that relate to HTML formatting are followed by

a brief quiz and answers about HTML. The exercises prompt you to examine the code of

a more advanced page in your browser.

Q&A
 Q Can I do any formatting of text in HTML?

 A You can apply some formatting to strings of characters. CSS has superseded most

of the tags for formatting text. However, browsers still support the older text for-

matting elements. You’ll learn some formatting tricks in Lesson 7.

 Q I have some existing XHTML pages that I work on. Should I convert them to
HTML5?

 A To have correct HTML5, you just need the simplified DOCTYPE at the top of your

document. By just changing that, you have converted to HTML5. Then you will

not be limited by the constraints of XHTML and can use all the new features of

HTML5. HTML5 is well supported by browsers, especially if all you do is change

the DOCTYPE, so there really is no reason not to convert any old pages you edit.

Quiz
1. What does HTML stand for? How about XHTML?

2. What’s the primary function of HTML?

3. Why doesn’t HTML control the layout of a page?

4. What’s the basic structure of an HTML tag?

ptg16476052

Workshop 55

3

Quiz Answers
1. HTML stands for Hypertext Markup Language. XHTML stands for Extensible

Hypertext Markup Language.

2. HTML enables you to describe the structure of a document so that it can be styled,

either using HTML tags or using CSS.

3. HTML doesn’t control the layout of a page because it’s designed to be cross-

platform. It takes the differences of many platforms into account and allows all

browsers and all computer systems to be on equal ground.

4. Most HTML elements consist of opening and closing tags, and they surround the

text that they affect. The tags are enclosed in brackets (<>). The beginning tag turns

on a feature, and the ending tag, which is preceded by a forward slash (/), turns it

off .

Exercises
1. Before you actually start writing a meatier HTML page, getting a feel for what an

HTML page looks like certainly helps. Luckily, you can find plenty of source mate-

rial to look at. Every page that comes over the wire to your browser is in HTML

(or perhaps XHTML) format.

One feature of Chrome’s Developer Tools (and developer tools provided by other

browsers) is the ability to edit the content and style of pages while they are being

displayed. Use the Chrome Developer Tools to make some changes to a web page

as you watch.

For example, go to the HTML5 article in Wikipedia (http://en.wikipedia.org/wiki/

HTML5) and open the Chrome Developer Tools. Use the inspector tool to go to the

article title. Double-click the title and change it to something else. You’ll see the

change reflected on the page. If you’re feeling adventurous, you can also change

the styles associated with the page to alter its appearance. None of these changes

will be preserved, so feel free to experiment.

When you’re working on your own web pages, you can use the Developer Tools

to experiment rather than editing your files, saving your changes, and reloading the

web page. Just edit your pages in the Developer Tools and then transfer the changes

back to your files once you’re happy with the results you see.

2. Try viewing the source of your own favorite web pages, either using View Source

or with the Developer Tools. You should start seeing some similarities in the way

pages are organized and get a feel for the kinds of tags that HTML uses. You can

learn a lot about HTML by comparing the text onscreen with the source for that

text.

http://en.wikipedia.org/wiki/HTML5
http://en.wikipedia.org/wiki/HTML5

ptg16476052

This page intentionally left blank

ptg16476052

LESSON 4
Learning the Basics of
HTML

Over the first three lessons, you learned about the World Wide Web, how
to prepare to build websites, and why you need to use HTML to create a
web page. In Lesson 3, “Introducing HTML and CSS,” you even created
your first very simple web page. In this lesson, you learn about each of
the basic HTML tags in more depth, and begin writing web pages with
headings, paragraphs, and several different types of lists. We focus on
the following topics and HTML tags:

n Tags for overall page structure: <html>, <head>, and <body>

n Tags for titles, headings, and paragraphs: <title>, <h1> through
<h6>, and <p>

n Tags for comments: <!--...-->

ptg16476052

58 LESSON 4: Learning the Basics of HTML

Structuring Your HTML
HTML defines three tags that are used to define the page’s overall structure and provide

some simple header information . These three tags—<html>, <head>, and <body>—make

up the basic skeleton of every web page. They also provide simple information about the

page (such as its title or its author) before loading the entire thing. The page structure

tags don’t affect what the page looks like when it’s displayed; they’re only there to help

browsers.

The DOCTYPE Identifier

Although it’s not a page structure tag, the XHTML 1.0 and HTML5 standards impose
an additional requirement on your web pages. The first line of each page must
include a DOCTYPE identifier that defines the HTML version to which your page con-
forms, and in some cases, the Document Type Definition (DTD) that defines the
specification. This is followed by the <html>, <head>, and <body> tags. In the fol-
lowing example, the HTML5 document type appears before the page structure tags:

<!DOCTYPE html>
<html>
<head>
<title>Page Title</title>
</head>
<body>
...your page content...
</body>
</html>

The <html> Tag
The first page structure tag in every HTML page is the <html> tag. It indicates that the

content of this file is in the HTML language. The <html> tag should immediately follow

the DOCTYPE identifier (as mentioned in the previous note), as shown in the following

example.

All the text and HTML elements in your web page should be placed within the beginning

and ending HTML tags, like this:

<!DOCTYPE html>
<html>
...your page...
</html>

ptg16476052

Structuring Your HTML 59

4

The <html> tag serves as a container for all of the tags that make up the page. It is

required because both XML and SGML specify that every document have a root ele-

ment. Were you to leave it out, which you shouldn’t do because it would make your page

invalid, the browser would make up an <html> tag for you so that the page would make

sense to its HTML processor.

The <head> Tag
The <head> tag is a container for the tags that contain information about the page, rather

than information that will be displayed on the page. Generally, only a few tags are used

in the <head> portion of the page (most notably, the page title, described later). You

should never put any of the text of your page into the header (between <head> tags).

Here’s a typical example of how you properly use the <head> tag. (You’ll learn about

<title> later.)

<!DOCTYPE html>
<html>
<head>
<title>This is the Title. It will be explained later on</title>
</head>
...your page...
</html >

The <body> Tag
The content of your HTML page (represented in the following example as ...your

page...) resides within the <body> tag. This includes all the text and other content (links,

pictures, and so on). In combination with the <html> and <head> tags, your page will

look something like this:

<!DOCTYPE html><html>
<head>
<title>This is the Title. It will be explained later on</title>
</head>
<body>
...your page...
</body>
</html>

You might notice here that the tags are nested . That is, both <body> and </body> tags go

inside the <html> tags; the same with both <head> tags. All HTML tags work this way,

ptg16476052

60 LESSON 4: Learning the Basics of HTML

forming individual nested sections of text. You should be careful never to overlap tags.

That is, never do something like the following:

<!DOCTYPE html><html>
<head>
<body>
</head>
</body>
</html>

Whenever you close an HTML tag, make sure that you’re closing the most recent

unclosed tag. (You’ll learn more about closing tags as you go on .)

In HTML, closing some tags is optional. In fact, in HTML 4.0 and
earlier, closing tags were forbidden in some cases. The XHTML
standard requires your markup to be well-formed XML, which leads
to the requirement that all tags be closed. Because the examples
shown in this book use HTML5, closing tags will be used only when
they are required, but if you are working with XHTML you must
close them.

NOTE

The Title
Each HTML page needs a title to indicate what the page describes. It appears in the title

bar of the browser when people view the web page. The title is stored in your browser’s

bookmarks and in search engines when they index your pages. Use the <title> tag to

give a page a title.

<title> tags are placed within the <head> tag and are normally used to describe the con-

te nts of the page, as follows:

<!DOCTYPE html><html>
<head>
<title>The Lion, The Witch, and the Wardrobe</title>
</head>
<body>
...your page...
</body>
</html>

Each page can have only one title, and that title can contain only plain text; that is, no

other tags should appear inside the title.

ptg16476052

The Title 61

4

Try to choose a title that’s both short and descriptive of the content. Your title should

be relevant even out of context. If someone browsing on the Web follows a random link

and ends up on this page, or if a person finds your title in a friend’s browser history list,

would he have any idea what this page is about? You might not intend the page to be

used independently of the pages you specifically linked to it, but because anyone can link

to any page at any time, be prepared for that consequence and pick a helpful title .

When search engines index your pages, each page title is captured
and listed in the search results. The more descriptive your page
title, the more likely it is that someone will choose your page from
all the search results.

NOTE

Also, because browsers put the title in the title bar of the window, you might have a limited

amount of space. (Although the text within the <title> tag can be of any length, it might

be cut off by the browser when it’s displayed.) Here are some examples of good titles:

<title>Poisonous Plants of North America</title>
<title>Image Editing: A Tutorial</title>
<title>Upcoming Cemetery Tours, Summer 1999</title>
<title>Installing the Software: Opening the CD Case</title>
<title>Laura Lemay's Awesome Home Page</title>

Here are some not-so-good titles:

<title>Part Two</title>
<title>An Example</title>
<title>Nigel Franklin Hobbes</title>
<title>Minutes of the Second Meeting of the Fourth Conference of the
Committee for the Preservation of English Roses, Day Four, After Lunch</title>

Figure 4.1 shows how the follo wing title looks in a browser :

<title>The Lion, the Witch, and the Wardrobe</title>

FIGURE 4.1

The title appears in
the tab bar, not on
the page.

ptg16476052

62 LESSON 4: Learning the Basics of HTML

Headings
Headings are used to add titles to sections of a page. HTML defines six levels of head-

ings. Heading tags look like the following:

<h1>Installing Your Safetee Lock</h1>

The numbers indicate heading levels (h1 through h6). The headings, when they’re dis-

played, aren’t numbered. They’re displayed in larger and bolder text so that they stand

out from regular text.

Think of the headings as items in an outline. If the text you’re writing is structured, use

the headings to express that structure, as shown in the following code:

<h1>Movies</h1>
 <h2>Action/Adventure</h2>
 <h3>Caper</h3>
 <h3>Sports</h3>
 <h3>Thriller</h3>
 <h3>War</h3>
 <h2>Comedy</h2>
 <h3>Romantic Comedy</h3>
 <h3>Slapstick</h3>
 <h2>Drama</h2>
 <h3>Buddy Movies</h3>
 <h3>Mystery</h3>
 <h3>Romance</h3>
 <h2>Horror</h2>

Notice that I’ve indented the headings in this example to better show the hierarchy. They

don’t have to be indented in your page; in fact, the browser ignores the indenting.

Even though the browser ignores any indenting you include in your
code, you will probably find it useful to indent your code so that
it’s easier to read. You’ll find that any lengthy examples in this
book are indented for that reason, and you’ll probably want to
carry that convention over to your own HTML code.

TIP

Unlike titles, headings can be any length, spanning many lines of text. Because headings

are emphasized, however, having many lines of emphasized text might be tiring to read.

A common practice is to use a first-level heading at the top of your page to either dupli-

cate the title or to provide a shorter or less context-specific form of the title. If you have a

ptg16476052

Headings 63

4

page that shows several examples of folding bed sheets—for example, part of a long pre-

sentation on how to fold bed sheets—the title might look something like the following:

<title>How to Fold Sheets: Some Examples</title>

The topmost heading, however, might just be as follows:

<h1>Examples</h1>

Don’t use headings to display text in boldface type or to make cer-
tain parts of your page stand out more. Although the result might
look as you intend, the markup will not represent the structure of
your page. This comes into play for search engines, accessibility,
and some browsers.

CAUTION

Figure 4.2 shows the following headings as they appear in a browser:

Input ▼

<h1>Mythology Through the Ages</h1>
 <h2>Common Mythological Themes</h2>
 <h2>Earliest Known Myths</h2>
 <h2>Origins of Mythology</h2>
 <h3>Mesopotamian Mythology</h3>
 <h3>Egyptian Mythology</h3>
 <h4>The Story of Isis and Osiris</h4>
 <h4>Horus and Set: The Battle of Good vs. Evil</h4>
 <h4>The Twelve Hours of the Underworld</h4>
 <h4>The River Styx</h4>
 <h2>History in Myth</h 2>

ptg16476052

64 LESSON 4: Learning the Basics of HTML

Output ▼

FIGURE 4.2

HTML heading ele-
ments.

From a visual perspective, headings 4 through 6 aren’t visually
interesting, but they do have meaning in terms of the document’s
structure. If using more than three levels of headings makes
sense for the document you’re creating, you can use those tags
and then use styles to make them appear as you intend.

TIP

Paragraphs
Now that you have a page title and several headings, you can add some ordinary para-

graphs to the page.

Paragraphs are created using the <p> tag. The Enigern story should look like this:

<p>Slowly and deliberately, Enigern approached the mighty dragon.
A rustle in the trees of the nearby forest distracted his attention
for a brief moment, a near fatal mistake for the brave knight.</p>
<p>The dragon lunged at him, searing Enigern's armor with a rapid
blast of fiery breath. Enigern fell to the ground as the dragon
hovered over him. He quickly drew his sword and thrust it into the
dragon's chest.</p>

ptg16476052

Comments 65

4

What if you want more (or less) space between your paragraphs than the browser pro-

vides by default? The answer is to use CSS. As you’ll see, it provides fine control over

the spacing of elements on the page, among other things. Figure 4.3 shows what happens

when I add another paragraph about Enigern and the dragon to the page. The paragraph

breaks are added between the closing and ope ning <p> tags in the text .

Input ▼

<p>The dragon fell to the ground, releasing an anguished cry and
seething in pain. The thrust of Enigern's sword proved fatal as
the dragon breathed its last breath. Now Enigern was free to
release Lady Aelfleada from her imprisonment in the dragon's lair. </p>

Output ▼

The closing </p> tag, while not required, is important for defining the exact contents of a

paragraph for CSS. Most web designers use it automatically, but if you don’t need it, you

can leave it out of your HTML.

Comments
You can put comments into HTML pages to describe the page itself or to provide some

kind of indication of the status of the page. Some source code control programs store the

page status in comments, for example. Text in comments is ignored when the HTML file

is parsed; comments never show up onscreen—that’s why they’re comments. Comments

look like the following:

<!-- This is a comment -->

FIGURE 4.3

An HTML para-
graph.

www.allitebooks.com

http://www.allitebooks.org

ptg16476052

66 LESSON 4: Learning the Basics of HTML

▼

Here are some examples:

<!-- Rewrite this section with less humor -->
<!-- Neil helped with this section -->
<!-- Go Tigers! -->

As you can see from Figure 4.4, users can view your comments using the View Source

functionality in their browsers, so don’t put anything in comments that you don’t want

them to see .

Exercise 4.1: Creating a Real HTML Page

At this point, you know enough to get started creating simple HTML pages. You under-

stand what HTML is, you’ve been introduced to a handful of tags, and you’ve even

opened an HTML file in your browser. You haven’t created any links yet, but you’ll get

to that soon enough, in Lesson 6, “Working with Links.”

This exercise shows you how to create an HTML file that uses the tags you’ve learned

about up to this point. It’ll give you a feel for what the tags look like when they’re dis-

played onscreen and for the sorts of typical mistakes you’re going to make. (Everyone

makes them, and that’s why using an HTML editor that does the typing for you is often

helpful. The editor doesn’t forget the closing tags, leave off the slash, or misspell the tag

itself.)

So, create a simple example in your text editor. Your example doesn’t have to say much

of anything; in fact, all it needs to include are the structure tags, a title, a couple of head-

ings, and a paragraph or two. H ere’s an example:

FIGURE 4.4

HTML comments
displayed within
the source for a
page.

▼

ptg16476052

Comments 67

4

Input ▼

<!DOCTYPE html><html>
<head>
<title>Camembert Incorporated</title>
</head>
<body>
<h1>Camembert Incorporated</h1>
<p>"Many's the long night I dreamed of cheese -- toasted, mostly."
-- Robert Louis Stevenson</p>
<h2>What We Do</h2>
<p>We make cheese. Lots of cheese; more than eight tons of cheese
a year.</p>
<h2>Why We Do It</h2>
<p>We are paid an awful lot of money by people who like cheese.
So we make more.</p>
</body>
</html>

Save the example to an HTML file, open it in your browser, and see how it came out.

Figure 4.5 shows what the cheese factory example looks like .

Output ▼

FIGURE 4.5

The cheese factory
example.

▼

▲

ptg16476052

68 LESSON 4: Learning the Basics of HTML

Summary
HTML, a text-only markup language used to describe hypertext pages on the World Wide

Web, describes the structure of a page, not its appearance.

In this lesson, you learned what HTML is and how to write and preview simple HTML

files. You also learned about the HTML tags shown in Table 4.1.

TABLE 4.1 HTML Tags from Lesson 4

Tag Use

<html> .. </html> The entire HTML page

<head> .. </head> The head, or prologue, of the HTML page

<body> .. </body> All the other content in the HTML page

<title> .. </title> The title of the page

<h1> .. </h1> First-level heading

<h2> .. </h2> Second-level heading

<h3> .. </h3> Third-level heading

<h4> .. </h4> Fourth-level heading

<h5> .. </h5> Fifth-level heading

<h6> .. </h6> Sixth-level heading

<p> .. </p> A paragraph

Workshop
You’ve learned a lot in this lesson, and the following workshop will help you remember

some of the most important points. I’ve anticipated some of the questions you might have

in the first section of the workshop.

Q&A
 Q In some web pages, I’ve noticed that the page structure tags (<html>, <head>,

<body>) aren’t used. Do I really need to include them if pages work just fine
without them?

 A Most browsers handle plain HTML without the page structure tags. The only tag

that is required in HTML5 is the <title> tag. But it’s a good idea to get into the

habit of using the structure tags now. Including these tags ensures that browsers

handle your markup properly. And, using these tags is the correct thing to do if you

want your pages to conform to true HTML format.

ptg16476052

Workshop 69

4

 Q Is the <p> tag the general-purpose tag for use when styling a page?

 A No. The <div> tag is the general-purpose tag for containing content on a page. The

<p> tag is intended specifically to hold paragraphs of text. There are many tags

that are not valid when placed within a <p> tag, including <div>. You’ll learn more

about <div> in Lesson 7, “Formatting Text with HTML and CSS.”

 Q Is it possible to put HTML tags inside comments?

 A Yes, you can enclose HTML tags within comments, and the browser will not dis-

play them. In fact, it’s common to use comments to temporarily hide sections of a

page, especially when testing things. Programmers (and web developers) generally

refer to this as “commenting it out.”

Quiz
1. What three HTML tags are used to describe the overall structure of a web page,

and what do each of them define?

2. Where does the <title> tag go, and what is it used for?

3. How many different levels of headings does HTML support? What are their tags?

4. Why is it a good idea to use two-sided paragraph tags, even though the closing tag

</p> is optional in HTML?

Quiz Answers
1. The <html> tag indicates that the file is in the HTML language. The <head> tag

specifies that the lines within the beginning and ending points of the tag are the

prologue to the rest of the file. The <body> tag encloses the remainder of your

HTML page (text, links, pictures, and so on).

2. The <title> tag is used to indicate the title of a web page in a browser’s title bar

and bookmarks. It is also used by search engines. This tag always goes inside the

<head> tags.

3. HTML supports six levels of headings. Their tags are <h1 .. /h1> through

<h6 .. /h6>.

4. The closing </p> tag becomes important when using CSS to style your text.

Closing tags also are required for XHTML 1.0.

ptg16476052

70 LESSON 4: Learning the Basics of HTML

Exercises
1. Using the Camembert Incorporated page as an example, create a page that briefly

describes topics that you would like to cover on your own website.

2. Create a second page that provides further information about one of the topics you

listed in the first exercise. Include a couple of subheadings (such as those shown in

Figure 4.2). If you feel really adventurous, complete the page’s content and include

lists where you think they enhance the page. This exercise will help prepare you for

Lesson 5, “Organizing Information with Lists.”

ptg16476052

LESSON 5
Organizing Informati on
with Lists

In the previous lesson, you learned about the basic elements that make
up a web page. In this lesson, I introduce lists, which, unlike the other
tags that have been discussed thus far, are composed of multiple tags
that work together. As you’ll see, lists come in a variety of types and can
be used not only for traditional purposes, like shopping lists or bulleted
lists, but also for creating outlines or even navigation for websites. In this
lesson, you’ll learn the following:

n How to create numbered lists

n How to create bulleted lists

n How to create definition lists

n The Cascading Style Sheets (CSS) properties associated with lists

ptg16476052

72 LESSON 5: Organizing Information with Lists

Lists: An Overview
Lists are a general-purpose container for collections of things. They come in three vari-

eties. Ordered lists are numbered and are useful for presenting things like your top 10

favorite songs from 2015 or the steps to bake a cake. Unordered lists are not numbered

and by default are presented with bullets for each list item. However, these days unor-

dered lists are often used as a general-purpose container for any list-like collection of

items. Yes, they’re frequently used for bulleted lists of the kind you might see on a

PowerPoint slide, but they’re also used for things like collections of navigation links and

even pull-down menus. Finally, definition lists are used for glossaries and other items

that pair a label with some kind of description.

Older HTML standards also supported two additional list types:
menu lists (<menu>) and directory lists (<dir>). Menu lists were
deprecated until HTML5, but they have been reinstated for use as
lists of commands.

NOTE

All the list tags have the following common elements:

n Each list has an outer element specific to that type of list. For example, and

 for unordered lists, and for ordered lists, or <dl> and </dl> for

definition lists.

n Each list item has its own tag: <dt> and <dd> for the glossary lists, and for the

other lists.

The closing tags for <dd>, <dt>, and were optional in HTML.
To comply with HTML5, use closing tags of </dd>, </dt>, .

NOTE

Although the tags and the list items can be formatted any way you like in your HTML

code, I prefer to arrange the tags so that the list tags are on their own lines and each new

item starts on a new line. This way, you can easily select the whole list as well as the

individual elements. In other words, I find the following HTML

<p>Dante's Divine Comedy consists of three books:</p>

The Inferno
The Purgatorio
The Paradiso

ptg16476052

Numbered Lists 73

5

easier to read than

<p>Dante's Divine Comedy consists of three books:</p>
The InfernoThe PurgatorioThe Paradiso

although both result in the same output in the browser .

Numbered Lists
Numbered lists are surrounded by the ... tags (ol stands for ordered list), and

each item within the list is included in the ... (list item) tag.

When the browser displays an ordered list, it numbers and indents each of the elements

sequentially. You don’t have to perform the numbering yourself and, if you add or delete

items, the browser renumbers them the next time the page is loaded.

Ordered lists are lists in which each item is numbered or labeled with a counter of some

kind (like letters or roman numerals).

Use numbered lists only when the sequence of items on the list is relevant. Ordered lists

are good for steps to follow or instructions to the readers, or when you want to rank the

items in a list. If you just want to indicate that something has a number of elements that

can appear in any order, use an unordered list instead.

For example, the following is an ordered list of steps that explain how to boil an egg.

You can see how the list is displayed in a browser in Figure 5.1.

Input ▼

<h1>How to Boil an Egg</h1>

Put eggs in a pot filled with cold water
Bring the water to a boil
Take the pot off the heat, cover it, and let it sit for

12 minutes
Remove the eggs from the hot water and cool them by

running water over them or placing them in a bowl of
ice water to cool off

Peel and eat

ptg16476052

74 LESSON 5: Organizing Information with Lists

Output ▼

Customizing Ordered Lists
There are two customizations that are specific to ordered lists. The first enables you

to change the numbering style for the list, and the second enables you to change the

numbering itself. There are two ways to change the numbering style: the CSS property

list-style-type, and the type attribute, which is obsolete in HTML5. If you’re creating

a new ordered list, you should always use the CSS property, however, you may see

existing Web pages in which the type attribute is used instead.

Table 5.1 lists the numbering styles.

TABLE 5.1 Ordered List Numbering Styles

CSS Value Attribute Value Description

decimal 1 Standard Arabic numerals (1, 2, 3, 4, and so on)

lower-alpha a Lowercase letters (a, b, c, d, and so on)

upper-alpha A Uppercase letters (A, B, C, D, and so on)

lower-roman i Lowercase Roman numerals (i, ii, iii, iv, and so on)

upper-roman I Uppercase Roman numerals (that is, I, II, III, IV, and
so on)

You can specify types of numbering in the tag using the style attribute, like this:

<ol style="list-style-type: lower-alpha;">

By default, the decimal type is assumed.

FIGURE 5.1

An ordered list in
HTML.

ptg16476052

Numbered Lists 75

5

As an example, consider the following list:

<p>The Days of the Week in French:</p>

Lundi
Mardi
Mercredi
Jeudi
Vendredi
Samedi
Dimanche

If you were to set the list style type upper-roman to the to the tag, as follows, it

would appear in a browser as shown in Figure 5.2:

Input ▼

<h1>The days of the week in French</h1>
<ol style="list-style-type: upper-roman;">

Lundi
Mardi
Mercredi
Jeudi
Vendredi
Samedi
Dimanche

Output ▼

FIGURE 5.2

An ordered list
displayed using an
alternative number-
ing style.

ptg16476052

76 LESSON 5: Organizing Information with Lists

Let me digress briefly to talk about how you can use Chrome’s Developer Tools to

edit styles on the fly. If you want to see what the list in Figure 5.2 looks like with the

lower-roman list style, you can change the style attribute directly and see the results.

Just open the developer tools, make sure the elements tab is open, and then click on the

style attribute of the tag. You can then edit the attribute and see the page change

instantly. The updated developer tools window is shown in Figure 5.3.

You can also use the list-style-type property with the tag, changing the num-

bering type in the middle of the list, but you need to change every list item following

it if you want them all to have the same new type. Using the start attribute, you can

specify the number or letter with which to start your list. The default starting point is 1,

of course. You can change this number by using start. <ol start="4">, for example,

would start the list at number 4, whereas <ol style="list-style-type: lower-alpha"
start="3"> would start the numbering with c and move through the alphabet from there.

The value for the start attribute should always be a decimal number, regardless of the

numbering style being used.

For example, you can list the last six months of the year and start numbering with the

Roman numeral VII as follows. The results appear in Figure 5.4.

FIGURE 5.3

The Chrome devel-
oper tools with the
updated tag.

ptg16476052

Numbered Lists 77

5

Input ▼

<p>The Last Six Months of the Year (and the Beginning of the Next Year):</p>
<ol style="list-style-type: upper-roman;" start="7">

July
August
September
October
November
December
<li style="list-style-type: lower-roman;">January

Output ▼

As with the type attribute , you can change the value of an entry’s number at any point

in a list. You do so by using the value attribute in the tag . Assigning a value in an

 tag restarts numbering in the list starting with the affected entry.

Suppose that you wanted the last three items in a list of ingredients to be 10, 11, and 12

rather than 6, 7, and 8. You can reset the numbering at Eggs using the value attribute, as

follows:

<h1>Cheesecake Ingredients</h1>

Quark Cheese
Honey
Cocoa
Vanilla Extract
Flour
<li value="10">Eggs
Walnuts
Margarine

FIGURE 5.4

An ordered list with
an alternative num-
bering style and
starting number.

ptg16476052

78 LESSON 5: Organizing Information with Lists

Unordered Lists
Unordered lists are often referred to as bulleted lists. Instead of being numbered, each

element in the list has the same marker. The markup to create an unordered list looks just

like an ordered list except that the list is created by using ... tags rather than

ol. The elements of the list are placed within tags, just as with ordered lists.

Browsers have standardized on using a solid bullet to mark each item in an unordered list

by default. Text browsers usually use an asterisk for these lists. The following input and

output example shows an unordered list. Figure 5.5 shows the results in a browser.

Input ▼

<p>Things I like to do in the morning:</p>

Drink a cup of coffee
Watch the sunrise
Listen to the birds sing
Hear the wind rustling through the trees
Curse the construction noises for spoiling the peaceful mood

Output ▼

Customizing Unordered Lists
As with ordered lists, unordered lists can be customized using the type attribute or the

list-style-type property. As mentioned in the section on ordered lists, the type attri-

bute is no longer valid for HTML5. The bullet styles are as follows:

FIGURE 5.5

An unordered list.

ptg16476052

Unordered Lists 79

5

n "disc"—A disc or bullet; this style is the default.

n "square"—Obviously, a square rather than a disc.

n "circle"—As compared with the disc, which most browsers render as a filled

circle, this value should generate an unfilled circle.

In this case, the values for list-style-type and for the type attribute are the same. In

the following input and output example, you see a comparison of these three types as ren-

dered in a browser (see Figure 5.6):

Input ▼

<ul style="list-style-type: disc">
DAT - Digital Audio Tapes
CD - Compact Discs
Cassettes

<ul style="list-style-type: square">

DAT - Digital Audio Tapes
CD - Compact Discs
Cassettes

<ul style="list-style-type: circle">

DAT - Digital Audio Tapes
CD - Compact Discs
Cassettes

Output ▼

FIGURE 5.6

Unordered lists
with different bullet
types.

ptg16476052

80 LESSON 5: Organizing Information with Lists

If you don’t like any of the bullet styles used in unordered lists, you can substitute an

image of your own choosing in place of them. To do so, use the list-style-image prop-

erty. By setting this property, you can use an image of your choosing for the bullets in

your list. Here’s an example :

<ul style="list-style-image: url(/bullet.gif);">
Example

Don’t worry much about what this all means right now. I discuss images later in Lesson

9, “Using Images on Your Web Pages.” Right now, all you need to know is that the URL

in parentheses should point to the image you want to use .

As you’ve seen in the screenshots so far, when items are formatted in a list and the list

item spans more than one line, the lines of text that follow the first are aligned with the

beginning of the text on the first line. If you prefer that they begin at the position of the

bullet or list number, as shown in Figure 5.7, use the list-style-position property:

<ul style="list-style-position: inside;">
Always use Pillsbury's Best Flour.
Sift flour twice before adding to cakes or breakfast cakes.
Make all measurements level by using edge of knife to lightly

scrape off from top of cup or spoon until material is even with
the edges.

Use same sized cups or spoons in measuring for the same recipe.
Before starting to make recipe, read through carefully, then put

on table all the materials and tools needed in making that particular
recipe.

The default value is outside, and the only alternative is inside. Finally, if you want

to modify several list-related properties at once, you can simply use the list-style

FIGURE 5.7

How the list-
style-position
property affects the
layout of lists.

ptg16476052

Definition Lists 81

5

property. You can specify three values for list-style: the list style type, the list style

position, and the URL of the image to be used as the bullet style. This property is just a

shortcut for use if you want to manipulate several of the list-related properties simultane-

ously. Here’s an example:

<ul style="list-style: circle inside URL(/bullet.gif)">
Example

Definition Lists
Definition lists differ slightly from other lists. Each list item in a definition list has two

parts:

n A term

n The term’s definition

Each part of the glossary list has its own tag: <dt> for the term (definition term), and

<dd> for its definition (definition description). <dt> and <dd> usually occur in pairs,

although most browsers can handle single terms or definitions. The entire glossary list is

indicated by the tags <dl>...</dl> (definition list).

The following is a glossary list example with a set of herbs and descriptions of how they

grow (see Figure 5.8):

Input ▼

<dl>
 <dt>Basil</dt>

<dd>Annual. Can grow four feet high; the scent of its tiny white
flowers is heavenly</dd>

 <dt>Oregano</dt>
<dd>Perennial. Sends out underground runners and is difficult

to get rid of once established.</dd>
 <dt>Coriander</dt>

<dd>Annual. Also called cilantro, coriander likes cooler
weather of spring and fall.</dd>

</dl>

ptg16476052

82 LESSON 5: Organizing Information with Lists

Output ▼

Definition lists usually are formatted in browsers with the terms and definitions on sepa-

rate lines, and the left margins of the definitions are indented.

You don’t have to use definition lists for terms and definitions, of course. You can use

them anywhere that the same sort of list is needed. Here’s an example involving a list of

frequently asked questions:

<dl>
<dt>What is the WHATWG?</dt>
<dd>The Web Hypertext Application Technology Working Group (WHATWG) is a growing
community of people interested in evolving the Web. It focuses primarily on the
development of HTML and APIs needed for Web applications.</dd>
<dt>What is the WHATWG working on?</dt>
<dd>The WHATWG's main focus is HTML5. The WHATWG also works on Web Workers and
occasionally specifications outside WHATWG space are discussed on the WHATWG
mailing list and forwarded when appropriate.</dd>
<dt>How can I get involved?</dt>
<dd>There are lots of ways you can get involved, take a look and see What you can
do!</dd>
<dt>Is participation free?</dt>
<dd>Yes, everyone can contribute. There are no memberships fees involved, it's an
open process. You may easily subscribe to the WHATWG mailing lists. You may also
join the the W3C's new HTMLWG by going through the slightly longer application
process.</dd>
</dl>

Nesting Lists
What happens if you put a list inside another list? Nesting lists is fine as far as HTML is

concerned; just put the entire list structure inside another list as one of its elements. The

nested list just becomes another element of the first list, and it’s indented from the rest of

the list. Lists like this work especially well for menu-like entities in which you want to

show hierarchy (for example, in tables of contents) or as outlines.

FIGURE 5.8

A definition list.

ptg16476052

Nesting Lists 83

5

Indenting nested lists in HTML code itself helps show their relationship to the final

layout:

WWW
Organization
Beginning HTML

What HTML is
How to Write HTML
Doc structure
Headings
Paragraphs
Comments

Links
More HTML

Many browsers format nested ordered lists and nested unordered lists differently from

their enclosing lists. They might, for example, use a symbol other than a bullet for a

nested list, or they might number the inner list with letters (a, b, c) rather than numbers.

Don’t assume that this will be the case, however, and refer back to “section 8, subsection

b” in your text because you can’t determine what the exact formatting will be in the final

output. If you do need to be sure which symbols or numbering scheme will be used for a

list, specify a style using CSS.

The following input and output example shows a nested list and how it appears in a

browser (see Figure 5.9):

Input ▼

<h1>Peppers</h1>

Bell
Chile

Serrano
Jalapeno
Habanero
Anaheim

Szechuan
Cayenne

ptg16476052

84 LESSON 5: Organizing Information with Lists

Output ▼

FIGURE 5.9

Nested lists.

DO remember that you can change the
numbering and bullet styles for lists to
suit your preference.

DO feel free to nest lists to any extent
that you like.

DON’T use the deprecated list types;
use one of the other lists instead.

DON’T number or format lists yourself;
use the list tags.

DON’T use list tags to indent text on a
page; use Cascading Style Sheets .

 DO DON’T

Other Uses for Lists
Lists have moved a long way past simple bullets. As it turns out, lists are very useful

when designing web pages because of the structure they provide. Semantically speaking,

there are many common elements of web design that naturally lend themselves to list-like

structures. Here are some advanced examples of how lists are used that combine a num-

ber of concepts that will be introduced throughout the book.

Many websites have lots of navigation links to present, and to keep from cluttering up

the page, they use nested pull-down menus similar to those used in desktop applications.

In this lesson, you’ve already seen that you can create nested lists in HTML. You can

put your navigation links in such lists and then use CSS to radically change their appear-

ance so that rather than looking like other lists, they instead look and behave like menus.

There’s an example of such menus in Figure 5.10.

ptg16476052

Summary 85

5

Using a combination of JavaScript and CSS, you can turn a standard HTML list into a sort-

able user interface element for a web application. You can see an example in Figure 5.11.

You’ll see other uses of lists in later lessons. With the introduction of Cascading Style

Sheets, lists became one of the fundamental building blocks of web pages.

Summary
In this relatively brief lesson, you got a look at HTML lists. Lists are a core structural

element for presenting content on web pages and can be used for everything from the list

of steps in a process to a table of contents to a structured navigation system for a website.

They come in three varieties: ordered lists, which are numbered; unordered lists, which

FIGURE 5.10

Pull-down naviga-
tion menus imple-
mented using lists.

FIGURE 5.11

A sortable list.

ptg16476052

86 LESSON 5: Organizing Information with Lists

by default are presented bullets; and definition lists, which are presented as a series of

terms and the definitions associated with them.

Not only are there CSS properties specifically associated with lists, but lists can also be

styled using properties that apply to any block-level element, like lists and list items.

The full list of HTML tags discussed in this lesson is shown in Table 5.2, and the CSS

properties are shown in Table 5.3.

TABLE 5.2 HTML Tags from Lesson 5

Tag Attribute Use

... An ordered (numbered) list. Each of the items in the list
begins with .

type Specifies the numbering scheme to use in the list. Replaced
with CSS in HTML5.

start Specifies at which number to start the list.

... An unordered (bulleted or otherwise marked) list. Each of
the items in the list begins with .

type Specifies the bulleting scheme to use in the list. Replaced
with CSS in HTML5.

... Individual list items in ordered, unordered, menu, or direc-
tory lists.

type Resets the numbering or bulleting scheme from the current
list element. Applies only to and lists. Replaced
with CSS in HTML5.

value Resets the numbering in the middle of an ordered ()
list.

<dl>...</dl> A glossary or definition list. Items in the list consist of pairs
of elements: a term and its definition.

<dt>...</dt> The term part of an item in a glossary list.

<dd>...</dd> The definition part of an item in a glossary list.

ptg16476052

Workshop 87

5

TABLE 5.3 CSS Properties from Lesson 5

Property Use/Values

list-style-type Used to specify the bullet style or numbering style for the list. Valid
values are disc, circle, square, decimal, lower-roman, upper-
roman, lower-alpha, upper-alpha, and none.

list-style-image The image to use in place of the bullets for a list. The value should
be the URL of the image.

list-style-position Defines the alignment of lines of text in list items after the first.
Values are inside and outside.

list-style Enables you to set multiple list properties at once: list style type,
list style position, and the URL of the bullet style.

Workshop
You’ve learned how to create and customize lists in HTML. In this section, you’ll see

the answers to some common questions about lists, as well as some exercises that should

help you remember the things you’ve learned.

Q&A
 Q My glossaries came out formatted really strangely! The terms are indented

farther in than the definitions!

 A Did you mix up the <dd> and <dt> tags? The <dt> tag is always used first (the defi-

nition term), and the <dd> follows (the definition description). I mix them up all the

time. There are too many d tags in definition lists.

 Q Is it possible to change the amount that list items are indented, or remove the
indentation entirely?

 A Yes, the properties used to control list indentation are margin-left and padding-

left. Some browsers use one and some use the other, so you need to set both of

them to change the indentation for your lists. You might need to use negative mar-

gins to get the text to line up the way you want.

ptg16476052

88 LESSON 5: Organizing Information with Lists

Quiz
1. Ordered and unordered lists use the tag for list items. What tags are used by

definition lists?

2. Is it possible to nest an ordered list within an unordered list or vice versa?

3. Which attribute is used to set the starting number for an ordered list? What about to

change the value of an element within a list?

4. What are the three types of bullets that can be specified for unordered lists using

the list-style-type CSS property?

Quiz Answers
1. Definition lists use the <dt> and <dd> tags for list items.

2. Yes, you can nest ordered lists within unordered lists or vice versa. You can also

nest lists of the same type, too.

3. With the tag, the start attribute is used to specify the starting value for the

list. To change the numbering within a list, the value attribute is used.

4. The bullet types supported by the list-style-type property are disc, circle, and

square. The default is disc.

Exercises
1. Use nested lists to create an outline of the topics covered in this book so far.

2. Use nested lists and the list-style-type CSS property to create a traditional out-

line of the topics you plan to cover on your own website.

ptg16476052

LESSON 6
Working with Links

After finishing the preceding lesson, you now have a couple of pages that
have some headings, text, and lists in them. These pages are all well and
good, but rather boring. The real fun starts when you learn how to create
hypertext links and link your pages to the Web. In this lesson, you’ll learn
just that. Specifically, you’ll learn about the following:

n The HTML link tag (<a>) and its various parts

n How to link to other pages using relative and absolute paths

n How to link to other pages on the Web using URLs

n How to use links and anchors to link to specific locations inside
pages

n URLs: the various parts of the URL and the kinds of URLs you can
use

ptg16476052

90 LESSON 6: Working with Links

Creating Links
To create a link in HTML, you need two things:

n The name of the file (or the URL) to which you want to link

n The text that will serve as the clickable link

Only the text included within the link tag is actually visible on your page. When your

readers click the link, the browser loads the URL associated with the link .

The Link Tag: <a>
To create a link in an HTML page, you use the HTML link tag <a>.... The <a>

tag is also called an anchor tag because it also can be used to create anchors for links.

(You’ll learn more about creating anchors later in this lesson.) The most common use of

the link tag, however, is to create links to other pages.

Unlike the tags you learned about in the preceding lesson, the <a> tag requires attributes

in order to be useful. You’ve seen optional attributes for tags, and attributes like style

that can be used with basically any tag. The <a> tag uses attributes to define the link. So,

rather than the opening <a> tag having just the tag name inside brackets, it looks some-

thing like the following:

The additional attributes (in this example, href, and title) describe the link itself. The

attribute you’ll probably use most often is the href attribute , which is short for hyper-
text reference . You use the href attribute to specify the name or URL to which this link

points.

HTML5 made <a> tags with no attributes valid as placeholder
links for use with CSS and scripts.

NOTE

Like most HTML tags, the link tag also has a closing tag, . All the text between the

opening and closing tags will become the actual link on the screen and be highlighted,

underlined, or otherwise marked as specified in the page’s style sheet when the web page

is displayed. That’s the text you or your readers will click to follow the link to the URL

in the href attribute.

Figure 6.1 shows the parts of a typical link using the <a> tag, including the href, the text

of the link, and the closing tag.

ptg16476052

Creating Links 91

6▼

Go back to Main Menu

Text that will be highlighted
File to load

when link is selected

Closing tagOpening tag

The following example shows a simple link and what it looks like (see Figu re 6.2) :

Input ▼
Go back to Main Menu

Output ▼

Exercise 6.1: Linking Two Pages

Now you can try a simple example with two HTML pages on your local disk. You’ll

need your text editor and your web browser for this exercise. Because both the pages

you’ll work with are on your local disk, you don’t need to be connected to the Internet.

(Be patient; you’ll get to do network stuff in the next section.)

Create two HTML pages and save them in separate files. Here’s the code for the two

HTML files I created for this section, which I called menu.html and claudius.html. What

your two pages look like or what they’re called really doesn’t matter. However, make sure

that you insert your own filenames if you’re following along with this example.

FIGURE 6.1

A link on a web
page.

FIGURE 6.2

How a browser dis-
plays a link.

▼

ptg16476052

92 LESSON 6: Working with Links

The following is the first file, called menu.html:

<!DOCTYPE html>
<html>
<head>
<title>The Twelve Caesars</title>
 </head>
<body>
<h1>"The Twelve Caesars" by Suetonius</h1>
<p>Seutonius (or Gaius Suetonius Tranquillus) was born circa A.D. 70
and died sometime after A.D. 130. He composed a history of the twelve
Caesars from Julius to Domitian (died A.D. 96). His work was a
significant contribution to the best-selling novel and television
series "I, Claudius." Suetonius' work includes biographies of the
following Roman emperors:</p>

Julius Caesar
Augustus
Tiberius
Gaius (Caligula)
Claudius
Nero
Galba
Otho
Vitellius
Vespasian
Titus
Domitian

</body>
</html>

The list of menu items (Julius Caesar, Augustus, and so on) will be links to other pages.

For now, just type them as regular text; you’ll turn them into links later.

The following is the second file, claudius.html:

<!DOCTYPE html>
<html>
<head>
<title>The Twelve Caesars: Claudius</title>
</head>
<body>
<h2>Claudius Becomes Emperor</h2>
<p>Claudius became Emperor at the age of 50. Fearing the attack of
Caligula's assassins, Claudius hid behind some curtains. After a guardsman
discovered him, Claudius dropped to the floor, and then found himself
declared Emperor.</p>
<h2>Claudius is Poisoned</h2>
<p>Most people think that Claudius was poisoned. Some think his wife
Agrippina poisoned a dish of mushrooms (his favorite food). His death

▼

▼

ptg16476052

Creating Links 93

6

was revealed after arrangements had been made for her son, Nero, to
succeed as Emperor.</p>
<p>Go back to Main Menu</p>
</body>
</html>

▼

Make sure that both of your files are in the same directory or
folder. If you haven’t called them menu.html and claudius.html,
make sure that you take note of the filenames because you’ll
need them later.

CAUTION

Create a link from the menu file to the claudius file. Edit the menu.html file, and put the

cursor at the following line:

Claudius

You’ll want to nest the <a> tag inside the existing tag. First, put in the link tags

themselves (the <a> and tags) around the text that you want t o use as the link:

<a>Claudius

Now add the URL that you want to link to as the href part of the opening link tag. In

this case the URL is simply a pointer to the other file you’ve created. Enclose the name

of the file in quotation marks (straight quotes ["], not curly or typesetter’s quotes [“]),

with an equal sign between href and the name. Filenames in links are case sensitive, so

make sure that the filename in the link is identical to the name of the file you created.

(Claudius.html is not the same file as claudius.html; it has to be exactly the same

case.) Here I’ve used claudius.html; if you used different files, use those filenames.

Claudius

Now start your browser, select Open File (or its equivalent in your browser), and open

the menu.html file. The paragraph you used as your link should now show up as a link

that is in a different color, underlined, or otherwise highlighted. Figure 6.3 shows how it

looked when I opened it.

Now when you click the link, your browser should load and display the claudius.html

page, as shown in Figure 6.4. ▼

ptg16476052

94 LESSON 6: Working with Links

If your browser can’t find the file when you click on the link, make sure that the name

of the file in the href part of the link tag is the same as the name of the file on the disk,

uppercase and lowercase match, and both files are in the same directory. Remember to

close your link, using the tag, at the end of the text that serves as the link. Also,

FIGURE 6.3

The menu.html file
with link.

FIGURE 6.4

The
claudius.html
page.

▼

▼

ptg16476052

Linking Local Pages Using Relative and Absolute Pathnames 95

6

make sure that you have quotation marks at the beginning and end of the filename (some-

times you can easily forget) and that both quotation marks are ordinary straight quotes.

All these things can confuse the browser and prevent it from finding the file or displaying

the link properly.

Now you can create a link from the caesar page back to the menu page. A paragraph at

the end of the claudius.html page is intended for just this purpose:

<p>Go back to Main Menu</p>

Add the link tag with the appropriate href to that line, such as the following in which

menu.html is the original menu file:

<p>Go back to Main Menu</p>

Nesting Tags Properly

When you include tags inside other tags, make sure that the closing tag closes the
tag that you most recently opened. That is, enter

<p> <a> .. </p>

rather than

<p> <a> .. </p>

Improper nesting of tags is invalid and could prevent your page from being displayed
properly, so always make sure that you close the most recently opened tag first .

Now when you reload the Claudius file, the link will be active, and you can jump

between the menu and the detail page by clicking on those links .

Linking Local Pages Using Relative and
Absolute Pathnames
The example in the preceding section shows how to link together pages that are contained

in the same folder or directory on your local disk. This section continues that thread, link-

ing pages that are still on the local disk but might be contained in different directories or

folders on that disk.

▼

▲

Folders and directories are the same thing, but they’re called
different names depending on whether you’re on Macintosh,
Windows, or UNIX. I’ll simply call them directories from now on to
make your life easier.

NOTE

ptg16476052

96 LESSON 6: Working with Links

When you specify just the filename of a linked file within quotation marks, as you did

earlier, the browser looks for that file in the same directory as the current file. This is true

even if both the current file and the file being linked to are on a server somewhere else

on the Internet; both files are contained in the same directory on that server. It is the sim-

plest form of a relative pathname .

Relative pathnames point to files based on their locations relative to the current file. They

can include directory names, or they can point to the path you would take to navigate to

that file if you started at the current directory or folder. A pathname might, for example,

include directions to go up two directory levels and then go down two other directories to

get to the file.

To specify relative pathnames in links, you must use UNIX -style paths regardless of the

system you actually have. You therefore separate directory or folder names with forward

slashes (/), and you use two dots to refer generically to the directory above the current

one (..) .

Table 6.1 shows some examples of relative pathnames and where they lead.

TABLE 6.1 Relative Pathnames

Pathname Means

href=”file.html” file.html is located in the current directory.

href=”files/file.html” file.html is located in the directory called files (and
the files directory is located in the current directory).

href=”files/morefiles/file.html” file.html is located in the morefiles directory, which
is located in the files directory, which is located in the
current directory.

href=”../file.html” file.html is located in the directory one level up from
the current directory (the parent directory).

href=”../../files/file.html” file.html is located two directory levels up, in the direc-
tory files.

Absolute Pathnames
You can also specify the link to another page on your local system by using an absolute

pathname.

Absolute pathnames point to files based on their absolute locations on the file system.

Whereas relative pathnames point to the page to which you want to link by describing its

location relative to the current page, absolute pathnames point to the page by starting at

ptg16476052

Linking Local Pages Using Relative and Absolute Pathnames 97

6

the top level of your directory hierarchy and working downward through all the interven-

ing directories to reach the file.

Absolute pathnames always begin with a slash, which is the way they’re differentiated

from relative pathnames. Following the slash are all directories in the path from the top

level to the file you are linking.

Top has different meanings, depending on how you’re publishing
your HTML files. If you’re just linking to files on your local disk,
the top is the top of your file system (/ on UNIX, or the disk name
on a Macintosh or PC). When you’re publishing files using a web
server, the top is the directory where the files served by the web
server are stored, commonly referred to as the document root.

NOTE

Table 6.2 shows some examples of absolute pathnames on a local computer and what

they mean.

TABLE 6.2 Absolute Pathnames Examples

Pathname Means

href=”/home/lemay/file.html” file.html is located in the directory /home/lemay
(typically on UNIX systems).

href=”/d|/files/html/file.htm” file.htm is located on the D: disk in the directory
files/html (on Windows systems).

href=”/Macintosh%20HD/
HTML%20Files/file.html”

file.html is located on the disk Macintosh HD, in
the folder HTML Files (typically on OS X systems).

In the last example, the series of characters “%20” represents a space. It has been

encoded so that the space character does not cause issues. You’ll learn more about this

encoding later on.

Should You Use Relative or Absolute Pathnames?
The answer to that question is, “It depends.” If you have a set of files that link only to

other files within that set, using relative pathnames makes sense. On the other hand, if the

links in your files point to files that aren’t within the same hierarchy, you probably want

to use absolute links. Generally, a mix of the two types of links makes the most sense for

complex sites.

ptg16476052

98 LESSON 6: Working with Links

I can explain this better with an example. Let’s say that your site consists of two sections,

/stuff and /things. If you want to link from the file index.html in /stuff to

history.html in /stuff (or any other file in /stuff), you use a relative link. That way,

you can move the /stuff directory around without breaking any of the internal links. On

the other hand, if you want to create a link in /stuff/index.html to /things/

index.html, an absolute link is probably called for. That way, if you move /stuff to

/more/stuff, your link will still work.

The rule of thumb I generally use is that if pages are part of the same collection, I use

relative links, and if they’re part of different collections, I use absolute links.

Links to Other Documents on the Web
So , now you have a whole set of pages on your local disk, all linked to each other. In

some places in your pages, however, you want to refer to a page somewhere else on

the Internet—for example, to The First Caesars page by Dr. Ellis Knox at Boise State

University for more information on the early Roman emperors. You also can use the link

tag to link those other pages on the Internet, which I’ll call remote pages. Remote pages
are contained somewhere on the Web other than the system on which you’re currently

working.

The HTML code you use to link pages on the Web looks exactly the same as the code

you use for links between local pages. You still use the <a> tag with an href attribute,

and you include some text to serve as the link on your web page. Rather than a filename

or a path in the href, however, you use the URL of that page on the Web, as Figure 6.5

shows .

URL of remote file

Closing tag

Cern Home Page

Opening tag

FIGURE 6.5

Link to remote
files.

ptg16476052

Links to Other Documents on the Web 99

6

▼Exercise 6.2: Linking Your Caesar Pages to the Web

Go back to those two pages you linked earlier today—the ones about the Caesars. The

menu.html file contains several links to other local pages that provide information about

12 Roman emperors.

Now suppose that you want to add a link to the bottom of the menu file to point to The

Twelve Caesars page on Wikipedia, whose URL is http://en.wikipedia.org/wiki/

The_Twelve_Caesars.

First, add the appropriate text for the link to your menu page, as follows:

<p><i>The Twelve Caesars</i> article in Wikipedia has more information on
these Emperors.</p>

What if you don’t know the URL of the home page for The Twelve Caesars page (or the

page to which you want to link), but you do know how to get to it by following several

links on several different people’s home pages? Not a problem. Use your browser to

find the home page for the page to which you want to link. Figure 6.6 shows what The

Twelve Caesars page looks like in a browser.

You can find the URL of the page you’re currently viewing in your browser in the

address box at the top of the browser window. To find the URL for a page you want to

link to, use your browser to go to the page, copy the URL from the address field, and

paste it into the href attribute of the link tag. No typing!

FIGURE 6.6

The Twelve
Caesars page.

▼

http://en.wikipedia.org/wiki/The_Twelve_Caesars
http://en.wikipedia.org/wiki/The_Twelve_Caesars

ptg16476052

100 LESSON 6: Working with Links

After you have the URL of the page, you can construct a link tag in your menu file and

paste the appropriate URL into the link, like th is:

Input ▼
<p>"
The Twelve Caesars" article in Wikipedia has more information on these
Emperors.</p>

In that code I also italicized the title of the page using the tag. You’ll learn more

about that tag and other text formatting tags in Lesson 7, “Formatting Text with HTML

and CSS.”

Of course, if you already know the URL of the page to which you want to link, you can

just type it into the href part of the link. Keep in mind, however, that if you make a mis-

take, your browser won’t be able to find the file on the other end. Many URLs are too

complex for humans to be able to remember them; I prefer to copy and paste whenever I

can to cut down on the chances of typing URLs incorrectly.

Figure 6.7 shows how the menu.html file, with the new link in it, looks when it is dis-

played .

Output ▼

FIGURE 6.7

The Twelve
Caesars link.

▼

▲

ptg16476052

Links to Other Documents on the Web 101

6

▼Exercise 6.3: Creating a Link Menu

Now that you’ve learned how to create lists and links, you can create a link menu. Link

menus are links on your web page that are arranged in list form or in some other short,

easy-to-read, and easy-to-understand format. Link menus are terrific for pages that are

organized in a hierarchy, for tables of contents, or for navigation among several pages.

Web pages that consist of nothing but links often organize the links in menu form.

The idea of a link menu is that you use short, descriptive terms as the links, with either

no text following the link or with a further description following the link itself. Link

menus look best in a bulleted or unordered list format, but you also can use glossary lists

or just plain paragraphs. Link menus enable your readers to scan the list of links quickly

and easily, a task that might be difficult if you bury your links in body text.

In this exercise, you’ll create a web page for a set of book reviews. This page will serve

as the index to the reviews, so the link menu you’ll create is essentially a menu of book

names.

Start with a simple page framework: a first-level headin g and some basic explanatory

text:

<!DOCTYPE html>
<html>
<head>
<title>Really Honest Book Reviews</title>
</head>
<body>
<h1>Really Honest Book Reviews</h1>
<p>I read a lot of books about many different subjects. Though I'm not a
book critic, and I don't do this for a living, I enjoy a really good read
every now and then. Here's a list of books that I've read recently:</p>

Now add the list that will become the links, without the link tags themselves. It’s always

easier to start with link text and then attach actual links afterward. For this list, you’ll use

a tag to create a bulleted list of individual books. The tag wouldn’t be appropriate

because the numbers would imply that you were ranking the books in some way. Here’s

the HTML list of books, and Figure 6.8 shows the page as it currently looks with the

introduction and the list:

Input ▼

 The Rainbow Returns by E. Smith
 Seven Steps to Immeasurable Wealth by R. U. Needy
 The Food-Lovers Guide to Weight Loss by L. Goode ▼

ptg16476052

102 LESSON 6: Working with Links

 The Silly Person's Guide to Seriousness by M. Nott

</body>
</html>

Output ▼

FIGURE 6.8

A list of books.

▼

In the previous example, you’ll see the use of the tag. This
tag is used to indicate that the text within it should be empha-
sized. By convention, browsers emphasize the text using italics.

NOTE

Now , modify each of the list items so that they include links. You need to keep the

tag in there because it indicates where the list items begin. Just add the <a> tags around

the text itself. Here you’ll link to filenames on the local disk in the same directory as this

file, with each file contai ning the review for the particular book:

 The Rainbow Returns by E. Smith
 Seven Steps to Immeasurable Wealth by R. U.
 Needy
 The Food-Lovers Guide to Weight Loss by L.
 Goode
 The Silly Person's Guide to Seriousness by M.
 Nott
▼

ptg16476052

Links to Other Documents on the Web 103

6

The menu of books looks fine, although it’s a little sparse. Your readers don’t know any-

thing about each book (although some of the book names indicate the subject matter) or

whether the review is good or bad. An improvement would be to add some short explana-

tory text after the links to provide hints of what is on the other s ide of the link:

Input ▼

 The Rainbow Returns by E. Smith. A
 fantasy story set in biblical times. Slow at times, but interesting.
 Seven Steps to Immeasurable Wealth by R. U.
 Needy. I'm still poor, but I'm happy! And that's the whole point.
 The Food-Lovers Guide to Weight Loss by L.
Goode
 . At last! A diet book with recipes that taste good!
 The Silly Person's Guide to Seriousness by M.
 Nott. Come on ... who wants to be serious?

The final list looks like Figure 6.9.

Output ▼

You’ll use link menus similar to this one throughout this book .

FIGURE 6.9

The final menu
listing.

▼

▲

ptg16476052

104 LESSON 6: Working with Links

Linking to Specific Places Within
Documents
The links you’ve created so far in this lesson have been from one point in a page to

another page. But what if, rather than linking to that second page in general, you want to

link to a specific place within that page—for example, to the fourth major section down?

You can do so by referring to the ID of the element you want to link to specifically in

the URL in your link. When you follow the link with your browser, the browser will load

the second page and then scroll down to the element you specify. (Figure 6.10 shows an

example.)

softfruits.html berries.html

Please choose a subtopic:

Soft Fruits

*Strawberries

*Cane Fruits:

*Bush Fruits:

*Blackberries
*Raspberries
*Loganberries

*Blueberries
*Huckleberries

Strawberries are an
herbaceous plant

Strawberries

Blackberries

Blueberries

Blackberries grow on canes

Blueberries grow on bushes
in colder climates

You can use links to jump to a specific element within the same page. For example, you

can assign IDs to the headings at the beginning of each section and include a table of

contents at the top of the page that has links to the sections .

The id attribute can be used with any element on a page. The only requirement is that

each ID is unique within that page. For example, here’s a heading with an ID:

<h2 id="contents">Table of Contents

IDs are also often used when styling pages. I’ll discuss that more in Lesson 8, “Using

CSS to Style a Site.”

Creating Links and Anchors
When you create links using <a>, the link has two parts: the href attribute in the opening

<a> tag, and the text between the opening and closing tags that serves as a hot spot for

the link.

FIGURE 6.10

Links and anchors.

ptg16476052

Linking to Specific Places Within Documents 105

6▼

For example, to create an anchor at the section of a page labeled Part 4, you might add an

ID part4 to the heading, similar to the following:

<h1 id="part4">Part Four: Grapefruit from Heaven</h1>

To point to an anchor in a link, use the same form of link that you would when linking

to the whole page, with the filename or URL of the page in the href attribute. After the

name of the page, however, include a hash sign (#) and the ID of the element exactly as

it appears in the id attribute of that element (including the same uppercase and lowercase

characters!), as follows:

Go to Part 4

This link tells the browser to load the page mybigdoc.html and then to scroll down to the

anchor named part4. The text inside the anchor definition will appear at the top of the

screen .

The name Attribute of the <a> Tag
Before browsers supported linking to elements directly using their IDs, you had to use

the name attribute of the <a> tag to create anchors on the page to which you could link.

Rather than including the href attribute in your <a> tag to link to a location, you included

the name attribute to indicate that the <a> was an anchor to which someone could link.

For example, you would write the previous example as follows:

<h1>Part Four: Grapefruit from Heaven</h1>

The tag wouldn’t produce a visible change on the page, but it would provide an anchor to

which you could link. Best practices recommend that you avoid using the name attribute

and use the ID attribute instead. You can use the ID attribute on any HTML element, not

just the <a> tag. However, you may still encounter old markup that uses the <a> tag in

this way.

Exercise 6.4: Linking Sections Between Two Pages

Now let’s create an example with two pages. These two pages are part of an online ref-

erence to classical music, in which each web page contains all the references for a par-

ticular letter of the alphabet (a.html, b.html, and so on). The reference could have been

organized such that each section is its own page. Organizing it that way, however, would

have involved several pages to manage, as well as many pages the readers would have to

load if they were exploring the reference. Bunching the related sections together under

lettered groupings is more efficient in this case. ▼

ptg16476052

106 LESSON 6: Working with Links

The first page you’ll look at is for M; the first section looks like the following in HTML:

Input ▼
<!DOCTYPE html>
<html>
<head>
<title>Classical Music: M</title>
</head>
<body>
<h1>M</h1>
<h2>Madrigals</h2>

William Byrd, This Sweet and Merry Month of May
William Byrd, Though Amaryllis Dance
Orlando Gibbons, The Silver Swan
Claudio Monteverdi, Lamento d'Arianna
Thomas Morley, My Bonny Lass She Smileth
Thomas Weelkes, Thule, the Period of Cosmography
John Wilbye, Sweet Honey-Sucking Bees

<p>Secular vocal music in four, five and six parts, usually a capella.
15th-16th centuries.</p>
<p>See Also
Byrd, Gibbons, Lassus, Monteverdi, Morley, Weelkes, Wilbye </p>
</body>
</html>

Figure 6.11 shows how this section looks when it’s displayed.

Output ▼

FIGURE 6.11

Part M of the
Online Music
Reference.

▼

▼

ptg16476052

Linking to Specific Places Within Documents 107

6

In the last line (the See Also), linking the composer names to their respective sections

elsewhere in the reference would be useful. If you use the procedure you learned earlier

today, you can create a link here around the word Byrd to the page b.html. When your

readers select the link to b.html, the browser drops them at the top of the Bs. Those hap-

less readers then have to scroll down through all the composers whose names start with B

(and there are many of them: Bach, Beethoven, Brahms, Bruckner) to get to Byrd—a lot

of work for a system that claims to link information so that you can find what you want

quickly and easily.

What you want is to be able to link the word Byrd in m.html directly to the section for

Byrd in b.html. Here’s the relevant part of b.html you want to link. (I’ve deleted all the

Bs before Byrd to make the file shorter for this example . Pretend they’re still there.)

<!DOCTYPE html><html>
<head>
<title>Classical Music: B</title>
</head>
<body>
<h1>B</h1>
<!-- I've deleted all the Bs before Byrd to make things shorter -->
<h2>Byrd, William, 1543-1623</h2>

Madrigals

 This Sweet and Merry Month of May
 Though Amaryllis Dance
 Lullabye, My Sweet Little Baby

Masses

 Mass for Five Voices
 Mass for Four Voices
 Mass for Three Voices

Motets

 Ave verum corpus a 4

<p>See Also
 Byrd, Gibbons, Lassus, Monteverdi, Morley, Weelkes, Wilbye</p>
</body>
</html>

▼

▼

ptg16476052

108 LESSON 6: Working with Links

You’ll need to add an ID to the section heading for Byrd. You then can link to that ID

from the See Also instances in the file for M.

You can choose any ID you want for the element, but each ID in the page must be

unique. (If you have two elements with the ID fred in the same page, how would the

browser know which one to choose when a link to that ID is selected?) A good, unique

ID for this example is simply byrd because byrd can appear only one place in the file,

and this is it. Adding the ID is as simple as adding the id attribute to your <h2> element:

<h2 id="byrd">Byrd, William, 1543-1623</h2>

So, you’ve added your ID to the heading and its name i s "byrd". Now go back to the See

Also line in your m.html file :

<p>See Also
 Byrd, Gibbons, Lassus, Monteverdi, Morley, Weelkes, Wilbye</p>

You’re going to create your link here around the word Byrd, just as you would for any

other link. But what’s the URL? As you learned previously, pathnames to anchors look

similar to the following:

page_name#anchor_name

If you’re creating a link to the b.html page itself, the href is as follows:

Because you’re linking to a section inside that page, add the anchor name to link that sec-

tion so that it looks like this:

Note the small b in byrd. Anchor names and links are case sensitive; if you put #Byrd in

your href, the link might not work properly. Make sure that the anchor name you use in

the name attribute and the anchor name in the link after the # are identical.

▼

A common mistake is to put a hash sign in both the anchor name
and the link to that anchor. You use the hash sign only to sepa-
rate the page and the anchor in the link. Anchor names should
never have hash signs in them.

CAUTION

So, with the new link to the new section, the See Also line looks like this:

 <p>See Also
 Byrd,
 Gibbons, Lassus, Monteverdi, Morley, Weelkes, Wilbye</p>▼

ptg16476052

Linking to Specific Places Within Documents 109

6

Of course, you can go ahead and add anchors and links to the other parts of the reference

for the remaining composers.

With all your links and anchors in place, test everything. Figure 6.12 shows the

Madrigals section with the link to Byrd ready to be selected.

Figure 6.13 shows the screen that pops up when you select the Byrd link. If the page fits

entirely within the window, the browser will not be able to move down to the anchor,

so you may need to reduce the size of your browser window to see how the link to the

anchor takes you to the correct spot on the page .

FIGURE 6.12

The Madrigals sec-
tion with a link to
Byrd.

FIGURE 6.13

The Byrd section.

▼

▲

ptg16476052

110 LESSON 6: Working with Links

Linking to Elements in the Same Document
What if you have only one large page, and you want to link to sections within that page?

You can link to them as well. For longer pages, using IDs can be an easy way to jump

around within sections. To link to sections, you just need to add IDs to each section the

way you usually do. Then, when you link to those IDs, leave off the name of the page

itself, but include the hash sign and the ID. So, if you’re linking to an element with the

ID section5 in the same page as the link, the link looks like the following:

Go to The Fifth Section

When you leave off the page name, the browser assumes that you’re linking to the cur-

rent page and scrolls to the appropriate section. You’ll get a chance to see this feature in

action in Lesson 7. There, you’ll create a complete web page that includes a table of con-

tents at the beginning. From this table of contents, the reader can jump to different sec-

tions in the same web page. The table of contents includes links to each section heading.

In turn, other links at the end of each section enable the user to jump back to the table of

contents or to the top of the page .

Anatomy of a URL
So far in this book, you’ve encountered URLs twice: in Lesson 1, “What Is Web

Publishing?,” as part of the introduction to the Web; and in this lesson, when you created

links to remote pages. If you’ve ever done much exploring on the Web, you’ve encoun-

tered URLs as a matter of course. You couldn’t start exploring without a URL.

As I mentioned in Lesson 1, URLs are uniform resource locators. In effect, URLs are

street addresses for bits of information on the Internet. Most of the time, you can just

navigate to the page to which you want to link in your browser and copy the URL from

the address bar into your link. But understanding what a URL is all about and why it can

sometimes be so long and complex is useful. Also, when you put your own information

up on the Web, knowing something about URLs will be useful so that you can tell people

where your web page is.

In this section, you learn what the parts of a URL are, how you can use them to get to

information on the Web, and the kinds of URLs you can use (HTTP, FTP, mailto, and so

on).

Parts of URLs
Most URLs contain (roughly) three parts: the protocol, the hostname, and the directory or

filename (see Figure 6.14) .

ptg16476052

Anatomy of a URL 111

6

http://daytona.raceway.com/home/www/files/race.html

Directory and filenameProtocol

Hostname

The protocol is the way in which the page is accessed; that is, it’s the means of commu-

nication your browser uses to get the file. If the protocol in the URL is http, the browser

will attempt to use the Hypertext Transfer Protocol (HTTP) to talk to the server. For a

link to work, the host named in the link must be running a server that supports the proto-

col that’s specified. So if you use an ftp URL to connect to www.example.com, the link

won’t work if that server isn’t running File Transfer Protocol (FTP) server software .

The hostname is the address of the computer on which the information is stored, like

www.google.com, ftp.apple.com, or www.aol.com. The same hostname can support more

than one protocol, as follows:

http://example.com

ftp://example.com

It’s one machine that offers two different information services, and the browser will use

different methods of connecting to each. So long as both servers are installed and avail-

able on that system, you won’t have a problem.

The hostname part of the URL might include a port number. The port number tells your

browser to open a connection using the appropriate protocol on a specific network port.

The only time you’ll need a port number in a URL is if the server responding to the

request has been explicitly installed on that port. If the server is listening on the default

port, you can leave the port number out.

If a port number is necessary, it’s placed after the hostname but before the directory, as

follows:

http://my-public-access-unix.com:1550/pub/file

If the port is not included , the browser tries to connect to the default port number associ-

ated with the protocol in the URL. The default port for HTTP is 80, so links to http://

www.example.com:80/ and http://www.example.com/ are equivalent.

The path is the location of the file or other form of information on the host. The path

does not necessarily point to a physical directory and file on the server. Some web

applications generate content dynamically and just use the directory information as

FIGURE 6.14

URL parts.

http://www.example.com
http://www.google.com
http://www.aol.com
http://my-public-access-unix.com:1550/pub/file
http://www.example.com:80/
http://www.example.com:80/
http://www.example.com/

ptg16476052

112 LESSON 6: Working with Links

an identifier. For the files you’ll be working with while learning HTML, the directory

information will point to files that exist on your computer . The path of the root URL on a

server is just /, as in http://www.example.com/.

After the path, some URLs include a query. The query is separated from the rest of the

URL by a question mark. The query is made up of name and value pairs, separated by

ampersands (&). An equals sign (=) separates the names and values. Here’s an example:

http://www.example.com/search?q=urls

The query portion of a URL isn’t typically used with regular HTML files, but it can be

accessed by web applications and can be used with JavaScript. These query parameters

will not be discussed much in this book, but you’ll see an awful lot of them when you’re

visiting websites.

The final part of a URL is the anchor, which was described in the previous section.

Special Characters in URLs
A special character in a URL is anything that is not an upper- or lowercase letter, a num-

ber (0–9), or one of the following symbols: dollar sign ($), dash (-), underscore (_), or

period (.). You might need to specify any other characters by using special URL escape

codes to keep them from being interpreted as parts of the URL itself.

These special characters are replaced by codes that consist of a percent sign followed

by two hexadecimal digits, which consist of digits (0–9) and letters (A–F). For example,

once a URL has been encoded, %20 replaces a space, %3f replaces a question mark, and

%2f replaces a slash. (Spaces are also sometimes encoded as + signs, and + signs are

encoded as %2b.) The need for encoding these characters makes sense because such char-

acters can have a specific meaning when seen within a URL. The slash is the path separa-

tor in a URL, and a question mark separates the path in a URL from the query. Spaces

that aren’t encoded are hard to interpret in many contexts.

Suppose that you have a directory named All My Files. Your first pass at a URL with

this name in it might look like the following:

http://myhost.com/harddrive/All My Files/www/file.html

If you put this URL in quotation marks in a link tag, it might work (but only if you put

it in quotation marks). Because the spaces are considered special characters to the URL,

however, some browsers might have problems with them and not recognize the pathname

correctly. For full compatibility with all browsers, use %20, as follows :

http://myhost.com/harddrive/All%20My%20Files/www/file.html

http://www.example.com/
http://www.example.com/search?q=urls
http://myhost.com/harddrive/
http://myhost.com/harddrive/All%20My%20Files/www/file.html
http://www/file.html

ptg16476052

Kinds of URLs 113

6

The rel Attribute
One additional attribute that’s supported by the <a> tag is the rel attribute, which is used

to describe the relationship between the linking document and the document that the user

is linking to. There’s a set of specific values that should be used with this attribute. The

most well known is the nofollow attribute, which indicates that search engines should

not factor that link into their ranking of the document that is linked. nofollow is intended

as a measure to fight search engine spam. You would use it like this:

Link to example site

There are a number of other values that can be used with rel as well. You can see a

full list of the accepted values at the Microformats website at the following URL: http://

microformats.org/wiki/existing-rel-values.

Kinds of URLs
Many kinds of URLs are defined by the Uniform Resource Locator specification. This

section describes some of the more popular URLs and some situations to look out for

when using them.

HTTP
HTTP URLs are by far the most common type of URLs because they point to other docu-

ments on the Web. HTTP is the protocol that World Wide Web servers use to communi-

cate with web browsers.

HTTP URLs follow this basic URL form:

http://www.example.com/home/foo/

If the URL ends in a slash, the last part of the URL is considered a directory name. The

file that you get using a URL of this type is the default file for that directory as defined

by the HTTP server, usually a file called index.html. If the web page you’re designing

If you make sure that your file and directory names are short and
use only alphanumeric characters, you won’t need to include spe-
cial characters in URLs. Special characters can be problematic
in a variety of ways. When you’re creating your own pages, you
should avoid using spaces in filenames as well as other non-
alphanumeric characters whenever possible. The two exceptions
are _ and -, which are the preferred separators between words in
URLs.

CAUTION

http://microformats.org/wiki/existing-rel-values
http://microformats.org/wiki/existing-rel-values
http://www.example.com/home/foo/

ptg16476052

114 LESSON 6: Working with Links

is the top-level file for all a directory’s files, calling it index.html is a good idea. Putting

such a file in place will also keep users from browsing the directory where the file is

located.

You also can specify the filename directly in the URL. In this case, the file at the end of

the URL is the one that is loaded, as in the following examples:

http://www.foo.com/home/foo/index.html

http://www.foo.com/home/foo/homepage.html

Using HTTP URLs such as the following, where foo is a directory, is also usually

acceptable:

http://www.foo.com/home/foo

In this case, because foo is a directory, this URL should have a slash at the end. Most

web servers can figure out that this is a link to a directory and redirect to the appropriate

file . Including the trailing slash helps the pages load more quickly.

Anonymous FTP
FTP URLs are used to point to files located on FTP servers—usually anonymous FTP

servers; that is, the ones that allow you to log in using anonymous as the login ID and

your email address as the password. FTP URLs also follow the standard URL form, as

shown in the following examples:

ftp://ftp.foo.com/home/foo

ftp://ftp.foo.com/home/foo/homepage.html

Because you can retrieve either a file or a directory list with FTP, the restrictions on

whether you need a trailing slash at the end of the URL aren’t the same as with HTTP.

The first URL here retrieves a listing of all the files in the foo directory. The second

URL retrieves and parses the file homepage.html in the foo directory.

Navigating FTP servers using a web browser can often be much
slower than navigating them using FTP itself because the browser
doesn’t hold the connection open. Instead, it opens the connec-
tion, finds the file or directory listing, displays the listing, and
then closes down the FTP connection. If you select a link to open
a file or another directory in that listing, the browser constructs a
new FTP URL from the items you selected, reopens the FTP con-
nection by using the new URL, gets the next directory or file, and
closes it again. For this reason, FTP URLs are best for when you
know exactly which file you want to retrieve rather than for when
you want to browse an archive.

NOTE

http://www.foo.com/home/foo/index.html
http://www.foo.com/home/foo/homepage.html
http://www.foo.com/home/foo
ftp://ftp.foo.com/home/foo
ftp://ftp.foo.com/home/foo/homepage.html

ptg16476052

Kinds of URLs 115

6

Although your browser uses FTP to fetch the file, if it’s an HTML file, your browser will

display it just as it would if it were fetched using HTTP. Web browsers don’t care how

they get files. As long as they can recognize the file as HTML, either because the server

explicitly says that the file is HTML or by the file’s extension, browsers will parse and

display that file as an HTML file. If they don’t recognize it as an HTML file, no big deal.

Browsers can either display the file if they know what kind of file it is or just save the

file to disk .

Non-Anonymous FTP
All the FTP URLs in the preceding section are used for anonymous FTP servers. You

also can specify an FTP URL for named accounts on an FTP server, like the following:

ftp://username:password@ftp.foo.com/home/foo/homepage.html

In this form of the URL, the username part is your login ID on the server, and pass-

word is that account’s password. Note that no attempt is made to hide the password in

the URL. Be very careful that no one is watching you when you’re using URLs of this

form—and don’t put them into links that someone else can find!

Furthermore, the URLs that you request might be cached or logged somewhere, either on

your local machine or on a proxy server between you and the site you’re connecting to.

For that reason, it’s probably wise to avoid using this type of non-anonymous FTP URL

altogether . You may find yourself using non-anonymous FTP to upload your HTML files

(or other files related to websites) to a web server in order to publish them. Normally, it’s

best to connect to the FTP server using a dedicated FTP client rather than the browser.

Using FTP to publish web content will be covered in Lesson 23, “How to Publish Your

Site.”

Mailto
Mailto URLs are used to send electronic mail. If the browser supports mailto URLs,

when a link that contains one is selected, the browser will open a new outgoing email

in your default email application and send that message to the address in the link when

you’re done. Depending on how the user’s browser and email client are configured,

mailto links might not work at all for them.

The mailto URL is different from the standard URL form. It looks like the following:

mailto:internet_email_address

Here’s an example:

mailto:lemay@lne.com

ftp://username:password@ftp.foo.com/home/foo/homepage.html

ptg16476052

116 LESSON 6: Working with Links

Unlike the other URLs described here, the mailto URL works strictly on the client side.

The mailto link just tells the browser to compose an email message to the specified

address. It’s up to the browser to figure out how that should happen. Most browsers will

also let you add a default subject to the email by including it in the URL like this:

mailto:lemay@lne.com?subject=Hi there!

When the user clicks the link, most browsers will automatically stick Hi there! in the

subject of the message. You can also define Cc and Bcc addresses like this:

mailto:lemay@lne.com?cc=htmljenn@gmail.com

Some even support putting body text for the email message in the link with the body=

query. Then you can combine them all together, like this :

mailto:lemay@lne.com?subject=Hi there!&cc=htmljenn@gmail.com&body=Body text.

File
File URLs are intended to reference files contained on the local disk. In other words, they

refer to files located on the same system as the browser. For local files, URLs have an

empty hostname (three slashes rather than two):

file:///dir1/dir2/file

You’ll use file URLs a lot when you’re testing pages you’ve created locally, although it’s

easier to use the browser’s “Open File” functionality or drag and drop to open local files

in your browser than it is to type in a file URL. Another use of file URLs is to create a

local startup page for your browser with links to sites you use frequently. In this instance,

because you’ll be referring to a local file, using a file URL makes sense.

The problem with file URLs is that they reference local files, where local means on the

same system as the browser pointing to the file—not the same system from which the

page was retrieved! If you use file URLs as links in your page, and someone from else-

where on the Internet encounters your page and tries to follow those links, that person’s

browser will attempt to find the file on her local disk (and generally will fail). Also,

because file URLs use the absolute pathname to the file, if you use file URLs in your

page, you can’t move that page elsewhere on the system or to any other system.

If your email address includes a percent sign (%), you have to use
the escape character %25 instead. Percent signs are special char-
acters to URLs and thus to mailto URLs.

NOTE

ptg16476052

Workshop 117

6

If your intention is to refer to files that are on the same file system or directory as the

current page, use relative pathnames rather than file URLs. With relative pathnames for

local files and other URLs for remote files, you shouldn’t need to use a file URL at all .

Summary
In this lesson, you learned about links. Links turn the Web from a collection of unrelated

pages into an enormous, interrelated information system.

To create links, you use the <a>... tag pair, called the link or anchor tag . The

anchor tag has attributes for creating links (the href attribute) and anchor names (the

name attribute).

When linking pages that are stored on the local disk, you can specify their pathnames

in the href attribute as relative or absolute paths. For local links, relative pathnames are

preferred because they enable you to move local pages more easily to another directory

or to another system. If you use absolute pathnames, your links will break if you change

anything in the hard-coded path.

If you want to link to a page on the Web (a remote page), the value of the href attribute

is the URL of that page. You can easily copy the URL of the page you want to link. Just

go to that page by using your favorite web browser, and then copy and paste the URL

from your browser into the appropriate place in your link tag.

To create links to specific parts of a page, set an anchor at the point you want to link to

with the id attribute on an element at that part of the page. You then can link directly to

that ID by using the name of the page, a hash sign (#), and the ID.

Finally, URLs (uniform resource locators) are used to point to pages, files, and other

information on the Internet. Depending on the type of information, URLs can contain

several parts, but most contain a protocol type and location or address. URLs can be used

to point to many kinds of information but are most commonly used to point to web pages

(http), FTP directories or files (ftp), or electronic mail addresses (mailto).

Workshop
Congratulations, you learned a lot in this lesson! Now it’s time for the workshop. Many

questions about links appear here. The quiz focuses on other items that are important for

you to remember, followed by the quiz answers. In the following exercises, you’ll take

the list of items you created in Lesson 5, “Organizing Information with Lists,” and link

them to other pages.

ptg16476052

118 LESSON 6: Working with Links

Q&A
Q My links aren’t being highlighted in blue or purple at all. They’re still just

plain text.

 A Is the filename in a name attribute rather than in an href? Did you remember to

close the quotation marks around the filename to which you’re linking? Both of

these errors can prevent links from showing up as links.

Q I put a URL into a link, and it shows up as highlighted in my browser, but
when I click it, the browser says “unable to access page.” If it can’t find the
page, why did it highlight the text?

 A The browser highlights text within a link tag whether or not the link is valid. In

fact, you don’t even need to be online for links to show up as highlighted links,

although you can’t get to them. The only way you can tell whether a link is valid is

to select it and try to view the page to which the link points.

 As to why the browser couldn’t find the page you linked to—make sure that you’re

connected to the network and that you entered the URL into the link correctly. Also

verify that you have both opening and closing quotation marks around the filename

and that those quotation marks are straight quotes. If your browser prints link des-

tinations in the status bar when you move the mouse cursor over a link, watch that

status bar and see whether the URL that appears is actually the URL you want.

 Finally, try opening the URL directly in your browser and see whether that solution

works. If directly opening the link doesn’t work either, there might be several rea-

sons why. The following are two common possibilities:

 n The server is overloaded or is not on the Internet.

 Machines go down, as do network connections. If a particular URL doesn’t

work for you, perhaps something is wrong with the machine or the network.

Or maybe the site is popular, and too many people are trying to access it

simultaneously. Try again later. If you know the people who run the server,

you can try sending them electronic mail or calling them.

 n The URL itself is bad.

 Sometimes URLs become invalid. Because a URL is a form of absolute path-

name, if the file to which it refers moves around, or if a machine or directory

name gets changed, the URL won’t be valid anymore. Try contacting the per-

son or site you got the URL from in the first place. See whether that person

has a more recent link.

 Be sure to read the error message provided by the browser carefully. Often it will

describe the reason why the link can’t be opened, indicating whether it is a network

problem or a problem with the URL.

ptg16476052

Workshop 119

6

Q Can I put any URL in a link?

 A You bet. If you can get to a URL using your browser, you can put that URL in a

link. Note, however, that some browsers support URLs that others don’t. For exam-

ple, Lynx is really good with mailto URLs (URLs that enable you to send elec-

tronic mail to a person’s email address). When you select a mailto URL in Lynx, it

prompts you for a subject and the body of the message. When you’re done, it sends

the mail.

Q Can I use images as links?

 A Yup, in more ways than one, actually. You’ll learn how to use images as links

and define multiple links within one image using image maps in Lesson 9, “Using

Images on Your Web Pages.”

Q My links aren’t pointing to my anchors. When I follow a link, I’m always
dropped at the top of the page rather than at the anchor. What’s going on
here?

 A Are you specifying the anchor name in the link after the hash sign the same way

that it appears in the anchor itself, with all the uppercase and lowercase letters iden-

tical? Anchors are case sensitive, so if your browser can’t find an anchor name with

an exact match, the browser might try to select something else in the page that’s

closer. This is dependent on browser behavior, of course, but if your links and

anchors aren’t working, the problem usually is that your anchor names and your

anchors don’t match. Also, remember that anchor names don’t contain hash signs—

only the links to them do.

Q Is there any way to indicate a subject in a mailto URL?

 A If you include ?subject=Your%20subject in the mailto URL, it will work with

most email clients. Here’s what the whole link looks like :

Send email

Quiz
1. What two things do you need to create a link in HTML?

2. What’s a relative pathname? Why is it advantageous to use one?

3. What’s an absolute pathname?

4. What’s an anchor, and what is it used for?

5. Besides HTTP (web page) URLs, what other kinds are there?

ptg16476052

120 LESSON 6: Working with Links

Quiz Answers
1. To create a link in HTML, you need the name or URL of the file or page to which

you want to link and the text that your readers can select to follow the link.

2. A relative pathname points to a file, based on the location that’s relative to the cur-

rent file. Relative pathnames are portable, meaning that if you move your files else-

where on a disk or rename a directory, the links require little or no modification.

3. An absolute pathname points to a page by starting at the top level of a directory

hierarchy and working downward through all intervening directories to reach the

file.

4. An anchor marks a place that you can link to inside a web document. A link on the

same page or on another page can then jump to that specific location instead of the

top of the page.

5. Other types of URLs are FTP URLs (which point to files on FTP servers); file

URLs (which point to a file contained on a local disk); and mailto URLs (which are

used to send electronic mail).

Exercises
1. Remember the list of topics that you created in Lesson 5 in the first exercise?

Create a link to the page you created in Lesson 5’s second exercise (the page that

described one of the topics in more detail).

2. Now open the page that you created in Lesson 5’s second exercise, and create a

link back to the first page. Also, find some pages on the World Wide Web that dis-

cuss the same topic and create links to those pages, too. Good luck !

ptg16476052

LESSON 7
Formatting Text with
HTML and CSS

Over the previous lessons, you learned the basics of HTML, including
tags used to create page structure and add links. With that background,
you’re now ready to learn more about what HTML and CSS can do in
terms of text formatting and layout. In this lesson, you’ll learn about
many of the remaining tags in HTML that you’ll need to know to construct
pages, including how to use HTML and CSS to do the following:

n Specify the appearance of individual characters (bold, italic,
underlined)

n Include special characters (characters with accents, copyright
marks, and so on)

n Create preformatted text (text with spaces and tabs retained)

n Align text left, right, and centered

n Change the font and font size

n Create other miscellaneous HTML text elements, including line
breaks, rule lines, addresses, and quotations

ptg16476052

122 LESSON 7: Formatting Text with HTML and CSS

Character-Level Elements
When you use HTML tags to create paragraphs, headings, or lists, those tags affect that

block of text as a whole—changing the font, changing the spacing above and below the

line, or adding characters (in the case of bulleted lists). They’re referred to as block-level
elements.

Character-level elements are tags that affect words or characters within other HTML tags

and change the appearance of that text so that it’s somehow different from the surround-

ing text—making it bold or underlined, for example. Tags like <p>, , and <h1> are

block-level elements. The only character-level element you’ve seen so far is the <a> tag.

In HTML4 it was not valid to nest a block-level element within a
character-level element. For example, if you create a heading that
is also a link, the <a> tag was required to always appear within
the heading tag. But HTML5 changed that rule, making it possible
to link entire paragraphs or other blocks of content by wrapping
them with an <a> tag.

NOTE

To change the appearance of a set of characters within text, you can use one of two meth-

ods: semantic HTML tags or Cascading Style Sheets (CSS) .

Semantic HTML Tags
Semantic tags describe the meaning of the text within the tag, not how it should look in

the browser. For example, semantic HTML tags might indicate a definition, a snippet

of code, or an emphasized word. This can be a bit confusing because there are de facto

standards that correlate each of these tags with a certain visual style. In other words, even

though a tag like would mean different things to different people, most brows-

ers display it in boldface, but it has the semantic meaning of strong emphasis.

Each character style tag has both opening and closing sides and affects the text within

those two tags. The following are semantic HTML tags:

 This tag indicates that the characters are emphasized in some way.
Most browsers display in italics. For example:
<p>The anteater is the strangest looking animal,
isn't it?</p>

 With this tag, the characters are more strongly emphasized than with
—usually in boldface. Consider the following:
<p>Take a left turn at Dee's Hop
Stop</p>

ptg16476052

Character-Level Elements 123

7

<code> This tag indicates that the text inside is a code sample and displays it
in a fixed-width font such as Courier. For example:
<p><code>#include "trans.h"</code></p>

<samp> This tag indicates sample text and is generally presented in a fixed-
width font, like <code>. An example of its usage follows :
<p>The URL for that page is <samp>http://www.cern.ch/
</samp></p>

<kbd> This tag indicates text that’s intended to be typed by a user. It’s also
presented in a fixed-width font. Consider the following :
<p>Type the following command: <kbd>find . -name "prune"
-print</kbd></p>

<var> This tag indicates the name of a variable, or some entity to be replaced
with an actual value. Often it’s displayed as italic or underline and is
used as follows:
<p><code>chown</code> <var>your_name for the_file
</var></p>

<dfn> This tag indicates a definition. <dfn> is used to highlight a word (usu-
ally in italics) that will be defined or has just been defined, as in the
following example:
<p>Styles that are named after how they are actually
used are called
<dfn>logical styles</dfn></p>

<cite> This tag indicates the cited title of a work—usually displayed in italics.
It is written as in the following:
<p>"use the Force, Luke" <cite>"Star Wars"</cite> (1976)</p>

<abbr> This tag indicates the abbreviation of a word, as in the following:
<p>Use the standard two-letter state abbreviation
(such as <abbr>CA</abbr> for California)</p>

Only the <abbr> tag made it into HTML5, <acronym> has been
removed due to redundancy. You may still see it used, but you
should use the <abbr> tag instead.

NOTE

The following code snippets demonstrate each of the semantic HTML tags mentioned,

and Figure 7.1 illustrates how al l the tags are displayed .

ptg16476052

124 LESSON 7: Formatting Text with HTML and CSS

Input ▼
<p>The anteater is the strangest looking animal, isn't it?</p>
<p>Take a left turn at Dee's Hop Stop
</p>
<p><code>#include "trans.h"</code></p>
<p>The URL for that page is <samp>http://www.cern.ch/</samp></p>
<p>Type the following command: <kbd>find . -name "prune" -print</kbd></p>
<p><code>chown </code><var>your_name the_file</var></p>
<p>Styles that are named after how they are used are called <dfn>logical
styles</dfn></p>
<p>Eggplant has been known to cause nausea in some
people<cite> (Lemay, 1994)</cite></p>
<p>Use the standard two-letter state abbreviation (such as
<abbr>CA</abbr> for California)</p>

Output ▼

Changes to Physical Style Tags in HTML5
Over time, a number of physical style tags were added to HTML as well. You should

avoid using them and use CSS or the semantic equivalents instead, but if you decide to

use them, HTML5 has given them semantic meanings:

 Text that is usually bold

<i > Text that is usually displayed as italic

<u > Text that is usually displayed as underlined

<small > Text that displays as small print

FIGURE 7.1

Various semantic
tags displayed in a
browser.

ptg16476052

Character Formatting Using CSS 125

7

<sub > Subscript

<sup > Superscript

Character Formatting Using CSS
You’ve already seen how styles can be used to modify the appearance of various ele-

ments. Any of the effects associated with the tags introduced in this lesson can also be

created using CSS. Before I go into these properties, however, I want to talk a bit about

how to use them. As I’ve said before, the style attribute can be used with most tags.

However, most tags somehow affect the appearance of the text that they enclose. There’s

a tag that doesn’t have any inherent effect on the text that it’s wrapped around: the

 tag. It exists solely to be associated with style sheets. It’s used exactly like any of

the other tags you’ve seen in this lesson. Simply wrap it around some text, like this:

<p>This is an example of the usage of the span tag.</p>

Used by itself, the tag has absolutely no effect. Paired with the style attribute, it

can take the place of any of the tags you’ve seen in this lesson and can do a lot more than

that, as well .

The Text Decoration Property
The text-decoration property is used to specify which, if any, decoration will

be applied to the text within the affected tag. The valid values for this property are

underline, overline, line-through, and blink. The application of each of them is self-

explana tory. However, here’s an example that demonstrates how to use each of them:

<p>Here is some underlined text
.</p>
<p>Here is some overlined text.
</p>
<p>Here is some line-through text
.</p>
<p>Here is some blinking text.</p>

The cool thing is that you can use these styles along with all the other properties you’ll

see i n this lesson with any tag that contains text. Take a look at this example:

<h1 style="text-decoration: underline;">An Underlined Heading</h1>

Using the style attribute, you can specify how the text of the heading appears. As you

can see, using the style attribute involves a lot more typing than using the <u> tag. The

tradeoff is that there are many other ways to specify styles that are much more efficient

www.allitebooks.com

http://www.allitebooks.org

ptg16476052

126 LESSON 7: Formatting Text with HTML and CSS

than using the style attribute. Later, you’ll see how to use style sheets to control the

appearance of many elements simultaneously .

Font Properties
When you want to modify the appearance of text, the other major family of properties

you can use is font properties. You can use font properties to modify pretty much any

aspect of the type used to render text in a browser. One of the particularly nice things

about font properties is that they’re much more specific than the tags that you’ve seen so

far.

First, let’s look at some of the direct replacements for tags you’ve already seen. The

font-style property can be used to italicize text. It has three possible values: normal,

which is the default; italic, which renders the text in the same way as the <i> tag; and

oblique, which is a slanted version of the standard typeface. Most fonts provide an italic

version, which has letterforms separate from the normal version or an oblique version,

but not both. When you specify that text should be oblique or italic, the browser will

choose whichever of the two is available. If neither variant is installed, the browser wi ll

usually generate its own oblique version of the font. Here are some examples:

<p>Here's some italicized text.</p>
<p>Here's some oblique text
(which may look like regular italics in your browser).</p>

Now let’s look at how you use CSS to create boldfaced text. In the world of HTML,

you have two options: bold and not bold. With CSS, you have many more options. In

practice, text is either bold or normal. To specify that text should be boldface, the

font-weight property is used. Valid values are normal (the default), bold , bolder,

lighter, and 100 through 900, in units of 100. Here are some examples:

<p>Here's some bold text.</p>
<p>Here's some bolder text.</p>
<p>Here's some lighter text.</p>
<p>Here's some bolder text.</p>

In some cases, computers will have a bold variation of a font, an
italic variation, and a normal variation but not a bold, italic varia-
tion. If you specify that text has a font-weight of bold and a
font-style of italic or oblique, the browser will substitute an
oblique version of the bold font that it creates on the fly, and the
result will often be ugly text. If you are concerned with nice typog-
raphy, make sure to only specify font variations that are normally
installed.

TIP

ptg16476052

Character Formatting Using CSS 127

7

You can also set the typeface for text using the font-family property. In addition, you

can set the specific font for text, but I’m not going to discuss that until later in the les-

son. In the meantime, let’s look at how you can set the font to a member of a particular

font family. The specific font will be taken from the user’s preferences. The property to

modify is font-family. The possible values are serif, sans-serif, cursive, fantasy,

and monospace. So, if you want to specify that a monospace font should be used with

CSS rather than the now obsolete <tt> tag, use the following code:

<p>This is monospaced text.</p>

Now let’s look at one capability not available using regular HTML tags. Using the

font-variant property, you can have your text rendered so that lowercase letters are

replaced with small capital letters. The two values available are normal and small-caps.

Here’s an example:

<p>This Text Uses Small Caps.</p>

The web page in Figure 7.2 contains some text that uses the font-variant property as

well as all the other properties described in this section .

Output ▼

FIGURE 7.2

Text styled using
CSS.

ptg16476052

128 LESSON 7: Formatting Text with HTML and CSS

Preformatted Text
Most of the time, text in an HTML file is formatted based on the HTML tags used to

mark up that text. In Lesson 3, “Introducing HTML and CSS,” I mentioned that any extra

whitespace (spaces, tabs, returns) that you include in your HTML source is stripped out

by the browser.

The one exception to this rule is the preformatted text tag <pre>. Any whitespace that

you put into text surrounded by the <pre> and </pre> tags is retained in the final output.

With these tags, the spacing in the text in the HTML source is preserved when it’s dis-

played on the page.

The catch is that preformatted text usually is displayed (in graphical displays, at least)

in a monospaced font such as Courier. Preformatted text is excellent for displaying code

examples in which you want the text formatted with exactly the indentation the author

used. Because you can use the <pre> tag to align text by padding it with spaces, you can

use it for simple tables. However, the fact that the tables are presented in a monospaced

font might make them less than ideal. (You’ll learn how to create real tables in Lesson

10, “Building Tables.”) The following is an example of a table created with <pre>:

Input ▼
<pre>

Diameter Distance Time to Time to
(miles) from Sun Orbit Rotate

(millions
of miles)

--
Mercury 3100 36 88 days 59 days
Venus 7700 67 225 days 244 days
Earth 7920 93 365 days 24 hrs
Mars 4200 141 687 days 24 hrs 24 mins
Jupiter 88640 483 11.9 years 9 hrs 50 mins
Saturn 74500 886 29.5 years 10 hrs 39 mins
Uranus 32000 1782 84 years 23 hrs
Neptune 31000 2793 165 days 15 hrs 48 mins
Pluto 1500 3670 248 years 6 days 7 hrs</pre>

Figure 7.3 shows how it looks in a browser.

ptg16476052

Preformatted Text 129

7

Output ▼

When you’re creating text for the <pre> tag, you can use link tags and character styles

but not element tags such as headings or paragraphs. You should break your lines with

hard returns and try to keep your lines to 60 characters or fewer. Some browsers might

have limited horizontal space in which to display text. Because browsers usually won’t

reformat preformatted text to fit that space, you should make sure that you keep your text

within the boundaries to prevent your readers from having to scroll from side to side.

Be careful with tabs in preformatted text. The actual number of characters for each tab

stop varies from browser to browser. One browser might have tab stops at every fourth

character, whereas another may have them at every eighth character. You should convert

any tabs in your preformatted text to spaces so that your formatting isn’t messed up if it’s

viewed with different tab settings than in the program you used to enter the text.

The <pre> tag is also excellent for converting files that were originally in some sort of

text-only form, such as email messages, into HTML quickly and easily. Just surround the

entire content of the message within <pre> tags and you have instant HTML, as in the

following example:

<pre>
To: lemay@lne.com
From: jokes@lne.com
Subject: Tales of the Move From Hell, pt. 1

I spent the day on the phone today with the entire household
services division of northern California, turning off services,
turning on services, transferring services and other such fun
things you have to do when you move.

It used to be you just called these people and got put on hold for
an interminable amount of time, maybe with some nice music, and
then you got a customer representative who was surly and hard of

FIGURE 7.3

A table created
using <pre>,
shown in a
browser.

ptg16476052

130 LESSON 7: Formatting Text with HTML and CSS

hearing, but with some work you could actually get your phone
turned off.
</pre>

One creative use of the <pre> tag is to create ASCII art for your web pages. The follow-

ing HTML input and output example shows a simple ASCII-art cow:

 Input ▼
<pre>
 ()
Moo (oo)
 \/------\

|| | \
||---W|| *
|| ||

</pre>

Figure 7.4 displays the result .

Output ▼

Horizontal Rules (or Thematic Breaks)
The <hr> tag, which has no closing tag in HTML and no text associated with it, creates

a horizontal line on the page. As of HTML5, the tag has also been given a semantic

meaning—thematic break. It’s represented by a horizontal line as it always has been,

but it has now been ascribed a semantic meaning as well. It represents a change of topic

within a section or, for example, a change in scene in a story.

FIGURE 7.4

A bit of ASCII art
that illustrates how
preformatted text
works.

ptg16476052

Horizontal Rules (or Thematic Breaks) 131

7

The following input shows a horizontal rule used to separate two sections in Emily

Bronte’s novel Wuthering Heights:

Input ▼
<p>At first, on hearing this account from Zillah, I determined
to leave my situation, take a cottage, and get Catherine to
come and live with me: but Mr. Heathcliff would as soon permit
that as he would set up Hareton in an independent house; and
I can see no remedy, at present, unless she could marry again;
and that scheme it does not come within my province to arrange.</p>
<hr>
<p>Thus ended Mrs. Dean's story. Notwithstanding the doctor's
prophecy, I am rapidly recovering strength; and though it be
only the second week in January, I propose getting out on
horseback in a day or two, and riding over to Wuthering Heights,
to inform my landlord that I shall spend the next six months
in London; and, if he likes, he may look out for another
tenant to take the place after October. I would not pass
another winter here for much.</p>

Figure 7.5 shows how it appears in a browser .

Output ▼

FIGURE 7.5

An example of how
horizontal rules are
used to separate
sections.

Closing Empty Elements

The <hr> tag has no closing tag in HTML. To convert this tag to XHTML, add a space
and a forward slash to the end of the tag:

<hr />

If the horizontal line has attributes associated with it, the forward slash still appears
at the end of the tag.

ptg16476052

132 LESSON 7: Formatting Text with HTML and CSS

Attributes of the <hr> Tag
If you’re working in HTML5, this one is easy. HTML5 does not support any attributes

of the <hr> element other than those supported by all elements. However, past versions

of HTML supported a number of attributes that could be used to modify the appearance

of a horizontal rule. If you are creating new web pages, you should use CSS to style your

horizontal rules. However, you may encounter these attributes in existing HTML.

The size attribute indicates the thickness, in pixels, of the rule line. The default is 2, and

this also is the smallest that you can make the rule line.

To change the thickness of an <hr> with CSS, use the height property, which I’ll discuss

in Lesson 8, “Using CSS to Style a Site.”

The width attribute specifies the horizontal width of the rule line. You can specify the

exact width of the rule in pixels. You can also specify the value as a percentage of the

browser width (for example, 30% or 50%). If you set the width of a horizontal rule to a

percentage, the width of the rule will change to conform to the window size if the user

resizes the browser window. You should use the width CSS property instead. I’ll also

talk about width in the following lesson. Most browsers automatically center <hr> tags.

Figure 7.6 shows the result of the following code, which displays some sample rule line

widths :

Input ▼
<h2>100%, Default Size</h2>
<hr>
<h2>75%, Size 2</h2>
<hr width="75%" size="2">
<h2>50%, Size 4</h2>
<hr width="50%" size="4">
<h2>25%, Size 6</h2>
<hr width="25%" size="6">
<h2>10%, Size 8</h2>
<hr width="10%" size="8">

ptg16476052

Line Break 133

7

Output ▼

If you specify a width smaller than the actual width of the browser window, you can

also specify the alignment of that rule with the align attribute, making it flush left

(align="left"), flush right (align="right"), or centered (align="center"). By default,

rule lines are centered . Like all of the other <hr> attributes, the align attribute has been

replaced with CSS in HTML5 for all elements that once used it. Alignment will be cov-

ered in the following lesson.

Finally, the obsolete noshade attribute causes the browser to draw the rule line as a plain

line without the three-dimensional shading .

Line Break
The
 tag breaks a line of text at the point where it appears. When a web browser

encounters a
 tag, it restarts the text after the tag at the left margin (whatever the cur-

rent left margin happens to be for the current element). You can use
 within other

elements, such as paragraphs or list items;
 won’t add extra space above or below the

new line or change the font or style of the current entity. All it does is restart the text at

the next line.

The following example shows a simple paragraph in which each line (except for the last,

which ends with a closing <p> tag) ends with a
:

FIGURE 7.6

Examples of rule
line widths and
heights.

ptg16476052

134 LESSON 7: Formatting Text with HTML and CSS

Input ▼
<p>Tomorrow, and tomorrow, and tomorrow,

Creeps in this petty pace from day to day,

To the last syllable of recorded time;

And all our yesterdays have lighted fools

The way to dusty death. Out, out, brief candle!

Life's but a walking shadow; a poor player,

That struts and frets his hour upon the stage,

And then is heard no more: it is a tale

Told by an idiot, full of sound and fury,

Signifying nothing.</p >

clear is an obsolete attribute of the
 tag. It’s used with
images that have text wrapped alongside them. You’ll learn about
this attribute in Lesson 9, “Using Images on Your Web Pages.”
Like similar attributes of other tags, the clear attribute has been
replaced with CSS.

NOTE

Figure 7.7 sho ws how it appears in a browser .

Output ▼

Addresses
The address tag <address> is used to supply contact information on web pages. Address

tags usually go at the bottom of the web page and are used to indicate who wrote the

web page, whom to contact for more information, the date, any copyright notices or other

warnings, and anything else that seems appropriate.

FIGURE 7.7

Line breaks.

ptg16476052

Quotations 135

7

Signing each of your web pages using the <address> tag is an excellent way to make

sure that people can get in touch with you and that visitors who arrive on your web page

by way of an external link can see who created it. <address> is a block-level tag, and

some browsers italicize the text inside it.

Th e following input shows an address:

Input ▼
<address>
Laura Lemay lemay@lne.com

A service of Laura Lemay, Incorporated

last revised July 10, 2012

Copyright Laura Lemay 2012 all rights reserved

Void where prohibited. Keep hands and feet inside the vehicle at all times.
</address>

Figure 7.8 shows it in a browser .

Output ▼

As you can see, by default many browsers italicize the contents of address blocks. To

render them in normal text, you can use styles to set the font-style property to normal.

Quotations
The <blockquote> tag is used to indicate that a block of text represents an extended

quotation. The <blockquote> tag is a block-level element. By default, <blockquote>

elements are indented, although that can be changed with CSS. For example, the

FIGURE 7.8

An address block.

ptg16476052

136 LESSON 7: Formatting Text with HTML and CSS

Macbeth soliloquy I used in the example for line breaks would have worked better as a

<blockquote> than a s a simple paragraph. Here’s an example:

<p>From Shakespeare's <cite>MacBeth</cite>:

<blockquote>Tomorrow, and tomorrow, and tomorrow,

Creeps in this petty pace from day to day,

To the last syllable of recorded time;

And all our yesterdays have lighted fools

The way to dusty death. Out, out, brief candle!

Life's but a walking shadow; a poor player,

That struts and frets his hour upon the stage,

And then is heard no more: it is a tale

Told by an idiot, full of sound and fury,

Signifying nothing.</blockquote>

As with paragraphs, you can split lines in a <blockquote> using the line break tag,
.

The following inp ut example shows a n example of this use:

Input ▼
<blockquote>
Guns aren't lawful,

nooses give.

gas smells awful.

You might as well live.
</blockquote>
<p>-- Dorothy Parker</p>

Figure 7.9 shows how the preceding input example appears in a browser .

Output ▼

FIGURE 7.9

A block quotation.

ptg16476052

Quotations 137

7

The <blockquote> tag supports one attribute, cite. The value of the cite attribute is the

URL that is the source of the quotation inside the <blockquote> tag. For example, the

<blockquote> tag for the preceding Dorothy Parker quotation could point back to the

original source using the cite attribute:

<blockquote cite="http://www.poetryfoundation.org/poem/174101">
Guns aren't lawful,

nooses give.

gas smells awful.

You might as well live.
</blockquote>
<p>-- Dorothy Parker</p>

The cite attribute does not produce visible changes on the page, and for that reason best

practices recommend that you not use it. Instead, you should use the <cite> tag directly

on the page to indicate the author, title, or URL of the work referenced.

For inline quotations, you should use the <q> tag, and, optionally, the cite attribute to

indicate them and provide the source URL. The <q> tag does not affect the visual display

of the page. Here’s an example of how it’s used:

<p>As Albert Einstein said,
"<q cite="https://en.wikiquote.org/wiki/Albert_Einstein">
I never think of the future. It comes soon enough.</q>"</p>

Finally, the <cite> element is used to cite the author, title, or URL of the work quoted.

Like the <q> tag, it does not affect the visual display of the page in any way, although

both can be styled using CSS. And, as previously mentioned, the <cite> tag contents are

visible on the page and are the recommended method to cite quot ations. Here’s how the

<cite> tag is used:

<p>In Roger Ebert's book <cite>The Great Movies</cite>, he lists
<cite>The Wizard of Oz</cite> as one of the great films.</p>

Figu re 7.10 shows how all three tags are used.

FIGURE 7.10

Use of the
<blockquote>, <q>
and <cite> tags.

ptg16476052

138 LESSON 7: Formatting Text with HTML and CSS

Special Characters
As you’ve already learned, HTML files are ASCII text and should contain no formatting

or fancy characters. In fact, the only characters you should put in your HTML files are

the characters that are actually printed on your keyboard. If you have to hold down any

key other than Shift or type an arcane combination of keys to produce a single character,

you can’t use that character in your HTML file. This includes characters you might use

every day, such as em dashes and curly quotes. (If you are using a word processor that

does automatic curly quotes, you should find another HTML editor that writes text files

instead.)

“But wait a minute,” you say. “If I can type a character like a bullet or an accented a on

my keyboard using a special key sequence, and I can include it in an HTML file, and my

browser can display it just fine when I look at that file, what’s the problem?”

The problem is that the internal encoding your computer does to produce that character

(which enables it to show up properly in your HTML file and in your browser’s display)

probably won’t translate to other computers. Someone on the Internet who’s reading your

HTML file with that funny character in it might end up with some other character or just

plain garbage.

So, what can you do? HTML provides a reasonable solution. It defines a special set of

codes, called character entities, that you can include in your HTML files to represent the

characters you want to use. When interpreted by a browser, these character entities dis-

play as the appropriate special characters for the given platform and font.

Some special characters don’t come from the set of extended ASCII characters. For

example, quotation marks and ampersands can be presented on a page using character

entities even though they’re found within the standard ASCII character set. These char-

acters have a special meaning in HTML documents within certain contexts, so they can

be represented with character entities to avoid confusing web browsers. Modern browsers

generally don’t have a problem with these characters, but it’s not a bad idea to use the

entities anyway .

HTML validators will complain when they encounter ampersands
that are not part of entities, so you always want to encode them
using entities on your pages.

CAUTION

ptg16476052

Special Characters 139

7

Character Encoding
Before I can talk about how to add special characters to your web page, I first have to

talk a little bit about character encoding. When we think of text, we think of charac-

ters like “a” or “6” or “&” or a space. Computers, however, think of them as numbered

entries in a list. Each of these lists of characters is referred to as a character set.

One character set you may have heard of is ASCII, which contains 128 characters,

including the upper and lowercase letters, numbers, punctuation, and a number of other

special characters like space, carriage return, and tab. The space character is in the 32nd

position of the list of ASCII characters. When you convert that to hexadecimal (base 16)

notation, it’s in position 20. That may ring a bell—back in Lesson 6, you learned that

when URL encoding is used, spaces are encoded as %20. That’s because encoded charac-

ters in URL encoded are numbered by their position in the list of ASCII characters.

When a web page is displayed, the browser looks up all of the characters on the page

in the character set that is being used to display the page. There are a number of ways

to specify which character set is used for a page. If none of them are used, the browser

displays the page using its default encoding. There are a whole lot of character sets avail-

able; you can see a list of them from Chrome’s View Encoding menu in Figure 7.11.

For the most part, as long as you stick with using characters from the list of 128 charac-

ters in the ASCII character set, your page will look fine regardless of which encoding is

selected because all the characters are based on ASCII. You run into problems when you

get past those 128 initial characters. This becomes important if you want to use special

characters like em dashes, smart quotation marks, or letters with accents.

There is a lot more that can be said about character encoding; in fact, large books have

been written on the topic. At this point, I’m just going to give you a shortcut. To ensure

that your special characters always look the way they’re supposed to, you just have to

FIGURE 7.11

A list of some
of the character
encodings sup-
ported by Google
Chrome.

ptg16476052

140 LESSON 7: Formatting Text with HTML and CSS

make sure that your pages specify that they are encoded in UTF-8 and that you use the

entities that I’ll describe shortly for any characters that are not in the 128 characters in

the ASCII set. If you do both of those things, you’ll never run into problems with brows-

ers not displaying the characters that you intend.

UTF-8 is a character set that’s backward compatible with ASCII
and that supports every character in the Unicode character set.
This is important because Unicode supports a huge number of
characters in a large number of alphabets. It’s extremely unlikely
that you would ever want to use a character that is not supported
by Unicode.

NOTE

The question is, how do you specify that your web pages use the UTF-8 character set?

The character set can be configured at the web server level, and I’ll discuss that in Lesson

23, “How to Publish Your Site.” You can specify the encoding at the page level. If you

are using HTML5, you should begi n your page like this:

<!DOCTYPE HTML>
<html>
<head>
<meta charset="UTF-8">

The character set is specified using the <meta> tag. For HTML5, the character set is spec-

ified using the following <meta> tag:

<meta charset="utf-8">

UTF-8 was created to provide a single character set that would encompass the huge num-

ber of characters used in various languages around the world, and it should be used for all

web pages unless there is a very good reason not to.

Character Entities for Special Characters
Character entities take one of two forms: named entities and numbered entities.

Named entities begin with an ampersand (&) and end with a semicolon (;). In between

is the name of the character (or, more likely, a shorthand version of that name, such

as agrave for an a with a grave accent, or reg for a registered trademark sign). Unlike

other HTML tags, the names are case sensitive, so you should make sure to type them in

exactly. Named entities look something like the following:

à
"

ptg16476052

Special Characters 141

7

«
© ;

The numbered entities also begin with an ampersand and end with a semicolon, but rather

than a name, they have a pound sign (#) and a number. The numbers correspond to char-

acter positions in the character set for the web page. In this lesson, I’ll assume you’re

using UTF-8. Every character you can type or for which you can use a named entity also

has a numbered entity. Numbered entities look like the following:

à
"
«
©

You can use either numbers or named entities in your HTML file by including them in

the same place that the character they represent would go. So, to place the word résumé

in your HTML file, you would use either

résumé

or

résumé

If you use named entities, the character set is not important because the browser will

translate the named entity into the appropriate character in the character set specified for

the page. You can find a full list of the named entities at

http://www.w3.org/TR/2011/WD-html5-20110113/named-character-references.html

Given that UTF-8 supports more than 100,000 characters, it’s tough to print a table of all

of them. However, one resource you can use to look up UTF-8 characters is the resource

at http://www.utf8-chartable.de/. Remember that you’ll need to use the decimal represen-

tations in your entities.

Character Entities for Reserved Characters
For the most part, character entities exist so that you can include special characters that

aren’t part of the standard ASCII character set. However, there are several exceptions for

the few characters that have special meaning in HTML itself. You must use entities for

these characters, too.

Suppose that you want to include a line of code that looks something like the following

in an HTML file:

<p><code>if x < 0 do print i</code></p>

http://www.w3.org/TR/2011/WD-html5-20110113/named-character-references.html
http://www.utf8-chartable.de/

ptg16476052

142 LESSON 7: Formatting Text with HTML and CSS

Doesn’t look unusual, does it? Unfortunately, this is not valid HTML as written. Why?

The problem is with the < (less-than) character. To an HTML browser, the less-than

character means “this is the start of a tag.” Because the less-than character isn’t actually

the start of a tag in this context, your browser might get confused. You’ll have the same

problem with the greater-than character (>) because it means the end of a tag in HTML,

and with the ampersand (&) because it signals the beginning of an entity. Written cor-

rectly for HTML, the preceding line of code would look like the following instead:

<p><code>if x < 0 do print i</code></p>

Use of these entities is also important if you want to print HTML tags in your web pages,

like this:

<p>The <code><p></code> element represents a paragraph.</p>

HTML provides named entities for each of these characters, and one for the double quo-

tation mark, too, as shown in Table 7.1.

TABLE 7.1 Escape Codes for Characters Used by Tags

Entity Result

< <

> >

& &

Fonts and Font Sizes
Earlier in this lesson, I described a few font-related properties that you can manipu-

late using CSS. In fact, you can use CSS to control all font usage on the page. I also

described how the font-family property can be used to specify that text should be ren-

dered in a font belonging to a particular general category, such as monospace or serif.

You can also use the font-family property to specify a specific font.

You can provide a single font or a list of fonts, and the browser will search for each of

the fonts until it finds one on your system that appears in the list. You can also include a

generic font family in the list of fonts if you like. Here are some examples:

<p style="font-family: Verdana, Trebuchet, Arial, sans-serif;">
This is sans-serif text.</p>
<p style="font-family: ‘Courier New', monospace;">This is
monospace text.</p>
<p style="font-family: Georgia;">This text will appear in the
Georgia font, or, if that font is not installed, the browser's
default font.</p>

ptg16476052

Fonts and Font Sizes 143

7
▼

You can also use CSS to specify font size. CSS provides a lot of flexibility and power

when it comes to specifying how large things are. You can specify sizes in a variety of

units. I’ll dig deep into how sizes work in CSS in Lesson 8, “Using CSS to Style a Site,”

but I’ll provide a preview here. Let’s start with the basics. To change the font size for

some text, the font-size property is used. The value is a size (relative or absolute) in

any of the units of measure supported by CSS.

The simplest is the percentage size, relative to the current font size. So, to make the font

twice as large as the size inherited from the enclosing element, just use the following:

<p>This text is normal sized, and this text is
twice that size.</p>

You can also specify the size in any of a number of units. For example, the px unit speci-

fies the height in pixels. To set your text to be 12 pixels high, the following style declara-

tion is used:

<p style="font-size: 12px;">This text is 12 pixels tall.</p>

One thing to watch out for: When you specify units in CSS, you
must leave no spaces between the number of units and unit
specification. In other words, 12px and 100% are valid, and 12 px
and 100 % aren’t.

CAUTION

DO list backup fonts when specifying
a font family in order to make it more
likely that your users will have one of
the fonts you specify.

DON’T use too many different fonts on
the same page.

DON’T use absolute font sizes with
CSS if you can help it, because some
browsers won’t let users alter the text
size if you do so.

 DO DON’T

Exercise 7.1: Creating a Real HTML Page

Here’s your chance to apply what you’ve learned and create a real web page. No more

disjointed or overly silly examples. The web page you’ll create in this section is a real

one, suitable for use in the real world (or the real world of the web, at least). ▼

ptg16476052

144 LESSON 7: Formatting Text with HTML and CSS

Your task for this example is to design and create a home page for a bookstore called The

Bookworm, which specializes in old and rare books .

Planning the Page First, consider the content you want to include on this page. The

following are some ideas for topics for this page:

n The address and phone number of the bookstore

n A short description of the bookstore and why it’s unique

n Recent titles and authors

n Upcoming events

Now come up with some ideas for the content you’re going to link to from this page.

Each title in a list of recently acquired books seems like a logical candidate. You also can

create links to more information about each book, its author and publisher, its price, and

maybe even its availability.

The Upcoming Events section might suggest a potential series of links, depending on

how much you want to say about each event. If you have only a sentence or two about

each one, describing them on this page might make more sense than linking them to

another page. Why make your readers wait for each new page to load for just a couple of

lines of text?

Other interesting links might arise in the text itself, but for now, starting with the basic

link plan is enough .

Beginning with a Framework Next , create the framework that all HTML files must

include: the document structure, a title, and some initial headings. Note that the title is

descriptive but short; you can save the longer title for the <h1> element in the body of the

text. The four <h2> subheadings help you define the four main sections you’ll have o n

your web page:

<!DOCTYPE htm l>
<html>
<head>
<meta charset="UTF-8">
<title>The Bookworm Bookshop</title>
</head>
<body>
<h1>The Bookworm: A Better Book Store</h1>
<h2>Contents</h2>
<h2>About the Bookworm Bookshop</h2>
<h2>Recent Titles (as of July 11, 2012)</h2>
<h2>Upcoming Events</h2>
</body>
</html>

▼

▼

ptg16476052

Fonts and Font Sizes 145

7

Each heading you’ve placed on your page marks the beginning of a particular section.

You’ll add IDs to each of the topic headings so that you can jump from section to section

with ease. The IDs are simple: top for the main heading; contents for the table of con-

tents; and about, recent, and upcoming for the three subsections on the page. With the

IDs in place, the revised code looks like the following:

 Input ▼
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>The Bookworm Bookshop</t itle>
</head>
<body>
<h1 id="top">The Bookworm: A Better Book Store</h1>
<h2 id="contents">Contents</h2>
<h2 id="about">About the Bookworm Bookshop</h2>
<h2 id="recent">Recent Titles (as of July 11, 2012)</h2>
<h2 id="upcoming">Upcoming Events</h2>
</body>
</html>

Adding Content Now begin adding the content. You’re undertaking a literary

endeavor, so starting the page with a nice quote about old books would be a nice touch.

Because you’re adding a quote, you can use the <blockquote> tag to make it stand out as

such. Also, the name of the poem is a citation, so use <cite> there, too.

Insert the following code on the line after the level 1 he ading:

Input ▼
<blockquote>
"Old books are best---how tale and rhyme

Float with us down the stream of time!"

-- Clarence Urmy, <cite>Old Songs are Best</cite>
</blockquote>

Immediately following the quote, add the address for the bookstore. Since it contains

contact information, it’s appropriate to use the <address> tag, as fo llows:

Input ▼
<address style="font-style: normal;">The Bookworm Bookshop

1345 Applewood Dr

Springfield, CA 94325

(415) 555-0034
</address >

▼

▼

ptg16476052

146 LESSON 7: Formatting Text with HTML and CSS

Adding the Table of Contents The page you’re creating will require a lot of scroll-

ing to get from the top to the bottom. One nice enhancement is to add a small table of

contents at the beginning of the page, listing the sections in a bulleted list. If a reader

clicks one of the links in the table of contents, he’ll automatically jump to the section

that’s of most interest to him. Because you’ve added the IDs already, it’s easy to see

where the links will take you.

You already have the heading for the table of contents. You just need to add the bulleted

list and then create the links to the other sections on the page. The code looks like the fol-

lowing:

Input ▼
<h2 id="contents">Contents</h2>

 About the Bookworm Bookshop
 Recent Titles
 Upcoming Events

Figure 7.12 shows an example of the introductory portion of the Bookworm Bookshop

page as it appears in a browser .

Output ▼

FIGURE 7.12

The top section
of the Bookworm
Bookshop page.

▼

▼

ptg16476052

Fonts and Font Sizes 147

7

Creating the Description of the Bookstore Now you come to the first descrip-

tive subheading on the page, which you’ve added already. This section gives a descrip-

tion of the bookstore. After the heading (shown in the first line of the following

example), I’ve arranged the description to include a list of features to make them stand

out from the text better:

Input ▼
<h2 id= "about">About the Bookworm Bookshop</h2>
<p>Since 1933, The Bookworm Bookshop has offered
rare and hard-to-find titles for the discerning reader.
The Bookworm offers:</p>

Friendly, knowledgeable, and courteous help
Free coffee and juice for our customers
A well-lit reading room so you can "try before you buy"
Four friendly cats: Esmerelda, Catherine, Dulcinea and Beatrice

Add a note about the hours the store is open and emphasi ze the actual numbers:

Input ▼
<p>Our hours are 10am to 9pm weekdays,
noon to 7 on weekends.</p>

Then, end the section with links to the table of contents and the top of the page, using th e

implicit top anchor:

Input ▼
<p>Back to Contents | Back to Top</p>

Figure 7.13 shows you what the About the Bookworm Bookshop section looks like in a

browser .

▼

▼

ptg16476052

148 LESSON 7: Formatting Text with HTML and CSS

Output ▼

Creating the Recent Titles Section The Recent Titles section itself is a classic

link menu, as I described earlier in this section. Here you can put the list of titles in an

unordered list, with the titles themselves as citations, by using the <cite> tag. End the

section with another horizontal rule.

After the Recent Titles heading (shown in the first line in t he following example), enter

the following code:

<h2 id="recent">Recent Titles (as of July 11, 2012)</h2>

Sandra Bellweather, <cite>Belladonna</cite>
Jonathan Tin, <cite>20-Minute Meals for One</cite>
Maxwell Burgess, <cite>Legion of Thunder</cite>
Alison Caine, <cite>Banquo's Ghost</cite>

Now add the anchor tags to create the links. How far should the link extend? Should it

include the whole line (author and title) or just the title of the book? This decision is a

matter of preference, but remember that people viewing your page on mobile devices

need longer links to be able to tap them with their fingers. Here, I linked only the titles of

the books. At the same time, I also added links to the table of con tents and the top of the

page:

FIGURE 7.13

The About the
Bookworm
Bookshop section.

▼

▼

ptg16476052

Fonts and Font Sizes 149

7

Input ▼
<h2 id="recent">Recent Titles (as of July 11, 2012)</h2>

Sandra Bellweather,
<cite>Belladonna</cite>

Johnathan Tin,
<cite>20-Minute Meals for One</cite>

Maxwell Burgess,
<cite>Legion of Thunder</cite>

Alison Caine,
<cite>Banquo's Ghost</cite>

 <p>Back to Contents | Back to Top</p>

Note that I put the <cite> tag inside the link tag <a>. I could have just as easily put it

outside the anchor tag; character style tags can go just about anywhere. But as I men-

tioned once before, be careful not to overlap tags. Your browser might not be able to

understand what’s going on, and it’s invalid. In other words, don’t do the following:

<cite>Banquo's Ghost</cite>

Take a look at how the Recent Titles section appears in Figure 7.14.

Output ▼

FIGURE 7.14

The Recent Titles
section.

▼

▼

ptg16476052

150 LESSON 7: Formatting Text with HTML and CSS

Completing the Upcoming Events Section Next , move on to the Upcoming

Events section. In the planning stages, you weren’t sure whether this would be another

link menu or whether the content would work better solely on this page. Again, this deci-

sion is a matter of preference. Here, because the amount of extra information is minimal,

creating links for just a couple of sentences doesn’t make much sense. So, for this sec-

tion, create an unordered list using the tag. I’ve boldfaced a few phrases near the

beginning of each paragraph. These phrases emphasize a summary of the event itself so

that the text can be scanned quickly and ignored if the readers aren’t interested.

As in the previous sections, you end the se ction with links to the top and to the table of

contents:

<h2 id="upcoming">Upcoming Events</h2>

 The Wednesday Evening Book Review meets, appropriately,
 on Wednesday evenings at 7 pm for coffee and a round-table discussion.
 Call the Bookworm for information on joining the group.
 The Children's Hour happens every Saturday at 1 pm and
 includes reading, games, and other activities. Cookies and milk are

served.
 Carole Fenney will be at the Bookworm on Sunday,
 January 19, to read from her book of poems <cite>Spiders in the Web.</

cite>
 The Bookworm will be closed March 1st to remove a family
 of bats that has nested in the tower. We like the company, but not
 the mess they leave behind!

 <p>Back to Contents | Back to
 Top</p>

Signing the Page To finish, sign what you have so that your readers know who

did the work. Here, I’ve separated the signature from the text with a rule line. I’ve also

included the most recent revision date, my name as the webmaster, and a basic copyright

(with a copyright symbo l indicated by the numeric escape ©):

Input ▼
<address>
 Last Updated: July 11, 2012

 Webmaster: Laura Lemay
 lemay@bookworm.com

 © copyright 2012 the Bookworm

</address>

▼

▼

ptg16476052

Fonts and Font Sizes 151

7

Figure 7.15 shows the signature at the bottom portion of the page as well as the

Upcoming Events section .

Output ▼

Reviewing What You’ve Got Here’s the HTML code for the page so far:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>The Bookworm Bookshop</title>
 </head>
 <body>
 <h1>The Bookworm: A Better Book Store</h1>
 <blockquote>

"Old books are best---how tale and rhyme

Float with us down the stream of time!"

-- Clarence Urmy, <cite>Old Songs are Best</cite>

 </blockquote>
 <address style="font-style: normal">The Bookworm Bookshop

1345 Applewood Dr

Springfield, CA 94325

(415) 555-0034

 </address>

FIGURE 7.15

The Upcoming
Events section and
the page signature.

▼

▼

ptg16476052

152 LESSON 7: Formatting Text with HTML and CSS

 <h2 id="contents">Contents</h2>

About the Bookworm Bookshop
Recent Titles
Upcoming Events

 <h2 id="about">About the Bookworm Bookshop</h2>
<p>Since 1933, The Bookworm Bookshop has offered
rare and hard-to-find titles for the discerning reader.
The Bookworm offers:</p>

Friendly, knowledgeable, and courteous help
Free coffee and juice for our customers
A well-lit reading room so you can "try before you buy"
Four friendly cats: Esmerelda, Catherine, Dulcinea and Beatrice

<p>Our hours are 10am to 9pm weekdays,
noon to 7 on weekends.</p>
 <p>Back to Contents | Back to Top
</p>

 <h2 id="recent">Recent Titles (as of July 11, 2012)</h2>

Sandra Bellweather,
<cite>Belladonna</cite>

Johnathan Tin,
<cite>20-Minute Meals for One</cite>

Maxwell Burgess,
<cite>Legion of Thunder</cite>

Alison Caine,
<cite>Banquo's Ghost</cite>

<p>Back to Contents | Back to Top</

a></p>

 <h2 id="upcoming">Upcoming Events</h2>

The Wednesday Evening Book Review meets,
appropriately, on Wednesday evenings at 7 pm for coffee and a round-table.
discussion Call the Bookworm for information on joining the group.
The Children's Hour happens every Saturday at 1 pm
 and includes reading, games, and other activities. Cookies and milk are
served.
Carole Fenney will be at the Bookworm on Sunday,
 January 19, to read from her book of poems <cite>Spiders in the Web.
</cite>
The Bookworm will be closed March 1st to remove a
family of bats that has nested in the tower. We like the company, but not
the mess they leave behind!

▼

▼

ptg16476052

Fonts and Font Sizes 153

7

<p>Back to Contents | Back to

Top</p>

<address>
Last Updated: July 11, 2012

Webmaster: Laura Lemay
lemay@bookworm.com

© copyright 2012 the Bookworm

</address>

 </body>
</html>

Now you have some headings, some text, some topics, and some links, which form the

basis for an excellent web page. With most of the content in place, now you need to con-

sider what other links you might want to create or what other features you might want to

add to this page.

For example, the introductory section has a note about the four cats owned by the book-

store. Although you didn’t plan for them in the original organization, you could easily

create web pages describing each cat (and showing pictures) and then link them back to

this page, one link (and one page) per cat.

Is describing the cats important? As the designer of the page, that’s up to you to decide.

You could link all kinds of things from this page if you have interesting reasons to link

them (and something to link to). Link the bookstore’s address to an online mapping ser-

vice so that people can get driving directions. Link the quote to an online encyclopedia of

quotes. Link the note about free coffee to the Coffee home page.

My reason for bringing up this point here is that after you have some content in place on

your web pages, there might be opportunities for extending the pages and linking to other

places that you didn’t think of when you created your original plan. So, when you’re just

about finished with a page, stop and review what you have, both in the plan and on your

web page.

For the purposes of this example, stop here and stick with the links you have. You’re

close enough to being done, and I don’t want to make this lesson any longer than it

already is !

Testing the Result Now that all the code is in place, you can preview the results in

a browser. Figures 7.12 through 7.15 show how it looks in a browser. Actually, these fig-

ures show what the page looks like after you fix the spelling errors, the forgotten closing

tags, and all the other strange bugs that always seem to creep into an HTML file the first

time you create it. These problems always seem to happen no matter how good you are

▼

▼

ptg16476052

154 LESSON 7: Formatting Text with HTML and CSS

at creating web pages. If you use an HTML editor or some other help tool, your job will

be easier, but you’ll always seem to find mistakes. That’s what previewing is for—so you

can catch the problems before you actually make the document available to other people.

Plus, the more browsers that you view your pages in, the fewer problems your customers

will see .

Summary
Tags, tags, and more tags! In this lesson, you learned about most of the remaining tags

in the HTML language for presenting text, and quite a few of the tags for additional text

formatting and presentation. You also put together a real-life HTML home page. You

could stop now and create quite presentable web pages, but more cool stuff is to come.

So, don’t put down the book yet.

Table 7.2 presents a quick summary of all the tags and attributes you’ve learned about in

this lesson. Table 7.3 summarizes the CSS properties that have been described in this les-

son.

TABLE 7.2 HTML Tags from Lesson 7

Tag Attribute Use

<address>...</address> A signature for each web page; typically
occurs near the bottom of each document
and contains contact or copyright informa-
tion.

... Bold text.

<blockquote>...</blockquote> A quotation longer than a few words.

cite The URL that was the source for the quota-
tion.

<cite>...</cite> A citation.

<code>...</code> A code sample.

<dfn>...</dfn> A definition , or a term about to be defined.

... Emphasized text.

<i>...</i> Italic text.

<kbd>...</kbd> Text to be typed in by the user.

<pre>...</pre> Preformatted text; all spaces, tabs, and
returns are retained. Text is printed in a
monospaced font.

▼

▲

ptg16476052

Summary 155

7

Tag Attribute Use

<q>...</q> An inline quotation.

cite The URL that was the source for the quota-
tion.

<samp>...</samp> Sample text.

<small>...</small> Text in a smaller font than the text around it.

... Strongly emphasized text.

_{...} Subscript text.

^{...} Superscript text.

<u>...</u> Underlined text.

<var>...</var> A variable name.

... A generic tag used to apply styles to a par-
ticular bit of text.

<hr> A horizontal rule line at the given position
in the text. There’s no closing tag in HTML
for <hr>; for XHTML, add a space and for-
ward slash (/) at the end of the tag and
its attributes (for example, <hr size="2"
width="75%" />).

size The thickness of the rule, in pixels.
(Obsolete in HTML5.)

width The width of the rule, either in exact pixels
or as a percentage of page width (for exam-
ple, 50%). (Obsolete in HTML5.)

align The alignment of the rule on the page.
Possible values are left, right, and cen-
ter. (Obsolete in HTML5.)

noshade Displays the rule without three-dimensional
shading. (Obsolete in HTML5.)

 A line break; starts the next character on the
next line but doesn’t create a new paragraph
or list item. There’s no closing tag in HTML
for
; for XHTML, add a space and for-
ward slash (/) at the end of the tag and its
attributes (for example, <br clear="left"
/>).

ptg16476052

156 LESSON 7: Formatting Text with HTML and CSS

TABLE 7.3 CSS Properties from Lesson 7

Property Use/Values

text-decoration Specifies which sort of decoration should be applied to the text. The
values are underline, overline, line-through, blink, and none.

font-style Specifies whether text should be italicized. The three values are
normal, italic, and oblique.

font-weight Specifies the degree to which text should be emboldened. Options are
normal, bold, bolder, lighter, and 100 to 900.

font-family Enables you to specify the font used for text. You can choose families
such as serif, sans serif, and monospace, or specific font names. You
can also specify more than one font or font family.

font-variant Sets the font variant to normal or small-caps.

font-size Enables you to specify the font size in any unit supported by CSS.

Workshop
Here you are at the close of this lesson (a long one!) and facing yet another workshop.

This lesson covered a lot of ground, so I’ll try to keep the questions easy. There are

a couple of exercises that focus on building some additional pages for your website.

Ready?

Q&A
Q If line breaks appear in HTML, can I also do page breaks?

 A HTML doesn’t have a page break tag. Consider what the term page means in a web

document. If each document on the web is a single page, the only way to produce a

page break is to split your HTML document into separate files and link them.

 Even within a single document, browsers have no concept of a page; each HTML

document simply scrolls by continuously. If you consider a single screen a page,

you still can’t have what results in a page break in HTML. The screen size in each

browser is different. It’s based on not only the browser itself, but also the size of

the monitor on which it runs, the number of lines defined, the font currently being

used, and other factors that you cannot control from HTML.

 When you’re designing your web pages, don’t get too hung up on the concept of a

page the way it exists in paper documents. Remember, HTML’s strength is its flex-

ibility for multiple kinds of systems and formats. Instead, think in terms of creating

small chunks of information and how they link together to form a complete presen-

tation.

ptg16476052

Workshop 157

7

 If page breaks are essential to your document, you might consider saving it in the

PDF format and making it available for download.

Q How can I include em dashes or curly quotes (typesetter’s quotes) in my
HTML files?

 A There are entities for all of these characters, but they might not be supported by all

browsers or on all platforms. Most people still don’t use them. To add an em dash,

use —. The curly quote entities are “ for the left quote and ”

for the right quote. Similarly, you can create curly single quotes using ‘ and

’.

Quiz
1. What makes an HTML tag semantic?

2. What are some things that the <pre> (preformatted text) tag can be used for?

3. What’s the most common use of the <address> tag?

4. Without looking at Table 7.2, list eight semantic tags and what they’re used for.

Quiz Answers
1. Semantic HTML tags are tags that provide meaning to the enclosed content,

beyond just the framework of the document.

2. Preformatted text can be used for text-based tables, code examples, ASCII art, and

any other web page content that requires extra spaces to align characters.

3. The <address> tag is most commonly used for signature-like entities on a web

page. These include the name of the author of the web page, contact information,

dates, copyright notices, or warnings. Address information usually appears at the

bottom of a web page.

4. The semantic tags are (for emphasized text), (for strongly empha-

sized text), <code> (for programming code), <samp> (similar to <code>), <kbd> (to

indicate user keyboard input), <var> (for variable names), <dfn> (for definitions),

and <cite> (for short quotes or citations) .

ptg16476052

158 LESSON 7: Formatting Text with HTML and CSS

Exercises
1. Now that you’ve had a taste of building your first really thorough web page, take a

stab at your own home page. What can you include that would entice people to dig

deeper into your pages? Don’t forget to include links to other pages on your site.

2. Try out your home page in several browsers. Web developers have to get used to

the fact that their designs are at the mercy of their users, and it’s best to see right

away how different browsers and platforms treat pages .

ptg16476052

LESSON 8
Using CSS to Style a
Site

In the past few lessons, I’ve discussed how to lay out web pages using
Hypertext Markup Language (HTML) tags. In this lesson, I describe how
you can create complex pages using Cascading Style Sheets (CSS).
You’ve already learned about the advantages CSS can provide for format-
ting smaller snippets of text. In this lesson, you’ll learn how to use CSS
to control the appearance of an entire page.

The following topics are covered:

n Creating style sheets and including them in a page

n Linking to external style sheets

n Using selectors to apply styles to elements on a page

n Examining units of measure supported by CSS

n Considering the CSS box model

n Positioning elements using CSS

n Applying styles to tables and the <body> tag

n Using CSS to create multicolumn layouts

ptg16476052

160 LESSON 8: Using CSS to Style a Site

Including Style Sheets in a Page
Thus far, when I’ve discussed style sheets, I’ve applied them using the style attribute.

For example, I’ve shown how you can modify the font for some text using tags such as

 or how you can modify the appearance of a list item by applying a style within an

 tag. If you rely on the style attribute of tags to apply CSS, if you want to embolden

every paragraph on a page, you need to put style="font-weight: bold" in every <p>

tag. This is no improvement over just using <p> and </p> instead. The good

news is that the style attribute is the least efficient method of applying styles to a page or

a site. In this section, I’ll explain more powerful approaches.

Creating Page-Level Styles
First , let’s look at how we can apply styles to our page at the page level. Thus far, you’ve

seen how styles are applied, but you haven’t seen any style sheets. Here’s what one looks

like:

<style type="text/css">
h1 { font-size: x-large; font-weight: bold; }
h2 { font-size: large; font-weight: bold; }
</style>

The <style> tag should be included within the <head> tag on your page. The type attri-

bute indicates the MIME type of the style sheet. text/css is the only value you’ll use.

It’s not required in HTML5, and most designers leave it out. The body of the style sheet

consists of a series of rules. All rules have the same structure:

selector { property1: value1; property2: value2; .. }

Each rule consists of a selector followed by a list of properties and values associated with

those properties. All the properties being set for a selector are enclosed in curly braces, as

shown in the example. You can include any number of properties for each selector, and

they must be separated from one another using semicolons. You can also include a semi-

colon following the last property/value pair in the rule, or not, but best practices recom-

mend that you do.

You should already be familiar with CSS properties and values because that’s what you

use in the style attribute of tags. Selectors are something new. I discuss them in detail in

a bit. The ones I’ve used thus far have the same names as tags. If you use h1 as a selec-

tor, the rule will apply to any <h1> tags on the page. By the same token, if you use p as

your selector, it will apply to <p> tags .

ptg16476052

Including Style Sheets in a Page 161

8

Creating Sitewide Style Sheets
You can’t capture the real efficiency of style sheets until you start creating sitewide style

sheets. You can store all of your style information in a file and include it in your Web

pages using an HTML tag. A CSS file contains the body of a <style> tag. To turn the

style sheet from the previous section into a separate file, you could just save the follow-

ing to a file called styles.css:

h1 { font-size: x-large; font-weight: bold; }
h2 { font-size: large; font-weight: bold; }

In truth, the extension of the file is irrelevant, but the extension .css is the de facto stan-

dard for style sheets, so you should probably use it. After you’ve created the style sheet

file, you can include it in your page using the <link> tag, like this:

<link rel="stylesheet" href="styles.css" type="text/css" >

The type attribute is the same as that of the <style> tag and is not required in HTML5.

The href attribute is the same as that of the <a> tag. It can be a relative URL , an abso-

lute URL, or even a fully qualified URL that points to a different server. As long as the

browser can fetch the file, any URL will work. This means that you can just as easily use

other people’s style sheets as your own.

There’s another attribute of the link tag, too: media . This enables you to specify different

style sheets for different display mediums. For example, you can specify one for print,

another for screen display, and others for things like aural browsers for use with screen

readers. Not all browsers support the different media types, but if your style sheet is spe-

cific to a particular medium, you should include it. The options are screen, print,

projection, aural, braille, tty, tv, embossed, handheld and all . I go into more uses

for this attribute in Lesson 16, “Using Responsive Web Design.”

You can also specify titles for your style sheets using the title attribute, as well as

alternative style sheets by setting the rel attribute to alternative style sheet.

Theoretically, this means that you could specify multiple style sheets for your page (with

the one set to rel="stylesheet" as the preferred style sheet). The browser would then

enable the user to select from among them based on the title you provide. You can use

JavaScript to select from the different style sheets.

As it is, you can include links to multiple style sheets in your pages, and all the rules will

be applied. This means that you can create one general style sheet for your entire site,

and then another specific to a page or to a section of the site, too.

As you can see, the capability to link to external style sheets provides you with a pow-

erful means for managing the look and feel of your site. After you’ve set up a sitewide

ptg16476052

162 LESSON 8: Using CSS to Style a Site

style sheet that defines the styles for your pages, changing things such as the headline

font and background color for your pages all at once is trivial. Before CSS, making these

kinds of changes required a lot of manual labor or a facility with tools that had search

and replace functionality for multiple files. Now it requires quick edits to a single linked

style sheet .

Selectors
You’ve already seen one type of selector for CSS: element names. Any tag can serve as a

CSS selector, and the rules associated with that selector will be applied to all instances of

that tag on the page. You can add a rule to the tag that sets the font weight to normal

if you choose to do so, or you can italicize every paragraph on your page by applying a

style to the <p> tag. Applying styles to the <body> tag using the body selector enables you

to apply pagewide settings. However, you can apply styles on a more granular basis in a

number of ways and apply them across multiple types of elements using a single selector.

First, there’s a way to apply styles to more than one selector at the same time. Suppose,

for instance, that you want all unordered lists, ordered lists, and paragraphs on a page

to be displayed using blue text. Instead of writing individual rules for each of these ele-

ments, you can write a single rule that applies to all of them. Here’s the syntax:

p, ol, ul { color: blue; }

A comma-separated list indicates that the style rule should apply to all the tags listed. The

preceding rule is just an easier way to write the following:

p { color: blue; }
ol { color: blue; }
ul { color: blue; }

Contextual Selectors
Contextual selectors are also available. These are used to apply styles to elements only

when they’re nested within other specified elements. Take a look at this rule:

ol em { color: blue; }

The fact that I left out the comma indicates that this rule applies only to em elements that

are nested within ordered lists. Let’s look at two slightly different rules:

p cite { font-style: italic; font-weight: normal; }
li cite { font-style: normal; font-weight: bold; }

ptg16476052

Selectors 163

8

In this case, <cite> tags that appear within <p> tags will be italicized. If a <cite> tag

appears inside a list item, the contents will be rendered in boldface. Let’s add in one

more rule:

cite { color: green; }
p cite { font-style: italic; font-weight: normal; }
li cite { font-style: normal; font-weight: bold; }

In this case, we have one rule that applies to all <cite> tags, and the two others that

you’ve already seen. In this case, the contents of all <cite> tags will be green, and the

appropriately nested <cite> tags will take on those styles, too. Here’s one final example:

cite { color: green; }
p cite { font-style: italic; font-weight: normal; color: red; }
li cite { font-style: normal; font-weight: bold; color: blue; }

In this case, the nested styles override the default style for the <cite> tag because they

are a more specific style definition. The contents of <cite> tags that don’t meet the crite-

ria of the nested rules will appear in green. The nested rules will override the color speci-

fied in the less-specific rule, so for <cite> tags that are inside <p> tags, the contents will

be red. Inside list items, the contents will be blue .

The ability to override property settings by using more specific selectors is what provides

the ability to set styles with the precision of the style attribute from a style sheet. This is

called CSS specificity.

Classes and IDs
Sometimes selecting by tag (even using contextual selectors) isn’t specific enough for

your needs, and you must create your own classifications for use with CSS. There are

two attributes supported by all HTML tags : class and id. The class attribute is used to

classify elements, and the id attribute is for assigning identifiers to unique elements.

To apply a selector to a class, use a leading . in the class name in your style sheet. So, if

you have a tag like this

<div class="imprtnt">Some text.</div>

then you write the rule like this

.imprtnt { color: red; font-weight: bold; }

Any element with the class imprtnt will appear in bold red text. If you want to give this

treatment to only important <div>s, you can include the element name along with the

class name in your rule.

div.imprtnt { color: red; font-weight: bold; }
p.imprtnt { color: blue; font-weight: bold; }

ptg16476052

164 LESSON 8: Using CSS to Style a Site

In this case, if a <p> tag is has the class imprtnt, the text inside will be blue. If a <div>

has the imprtnt class, its text will be red. You could also rewrite the preceding two rules

as follows:

.imprtnt { font-weight: bold; }
div.imprtnt { color: red; }
p.imprtnt { color: blue; }

All members of the imprtnt class will be bold and <div> tags with the class imprtnt will

be red, whereas paragraphs with the class will be blue. If you assigned the imprtnt class

to another tag, like , the default color would be applied to it.

Whenever you want to specify styles for a single element, assign it an ID. The element

must be unique on the page—the only element with that identifier. As you’ll learn later

in the book, assigning IDs to elements is also very useful when using JavaScript because

doing so lets you write scripts that reference individual items specifically. For now,

however, let’s look at how IDs are used with CSS. Generally, a page will have only one

footer. To identify it, use the id attribute:

<div id="footer">
Copyright 2010, Example Industries.
</div>

You can then write CSS rules that apply to that element by referencing the ID. Here’s an

example:

#footer { font-size: small; }

As you can see, when you refer to IDs in your style sheets, you need to prepend a # on

the front to distinguish them from class names and element names. Note that there’s no

additional facility for referring to IDs that are associated with particular elements. IDs are

required to be unique, so there’s no need to qualify them further. Finally, there’s nothing

to say that you can’t mix up all these selectors in one rule, like so:

h1, #headline, .heading, div.imprtnt { font-size: large; color: green; }

As you can see, I’ve included several types of selectors in one rule. This is perfectly valid

if you want to set the same properties for a number of different selectors. Classes also

work with contextual selectors:

ul li.important { color: red; }

In this case, list items in the imprtnt class will be red if they occur in an unordered list.

If they’re in an ordered list, the rule will not be applied .

ptg16476052

Selectors 165

8

You can also use selectors that are applied only to elements that have all of the classes

specified for a rule. For example, you can set up three selectors like this:

.yellow { color: yellow; }

.blue { color: blue; }

.yellow.blue { color: green; }

The paragraph that follows would be green because it has the class blue and the class

yellow:

<p class="blue yellow">My green paragraph.</p>

What Cascading Means
You may be wondering where the cascading in Cascading Style Sheets comes from.

They are so named because styles cascade from parent elements to their children. To

override a style that has been applied via cascading, you just need to set the same prop-

erty using a more specific selector.

Here’s an example style sheet that will illustrate how cascading works:

body { font-size: 200%; }
div { font-size: 80%; }
p { font-size: 80%; }
span.smaller { font-size: 80%; font-weight: bold; }
#smallest { font-size: 80%; font-weight: normal; }

Figure 8.1 shows what the page looks like when that style s heet is applied to the follow-

ing HTML:

Input ▼
<div>
 This text is in a div but not in a paragraph.

<p>This test is in a paragraph.</p>

 <p>This is in a span with the class "smaller"
inside a paragraph.</p>

One common mistake is to include the . when assigning classes
or the # when assigning IDs. The punctuation should only be
used in the style sheet. In the attributes, leave them off. So
id="primary" is correct; id="#primary" is not.

CAUTION

ptg16476052

166 LESSON 8: Using CSS to Style a Site

 <p>This text is in a
span with the ID "smallest".</p>
</div>

Output ▼

When percentage units are used in style sheets, the percentage is applied to the value

that’s inherited as the styles cascade down. To start, all the text on the page is set to a

font size of 200% using the selector for the <body> tag. Then I use a variety of selectors

to make the text progressively smaller as the styles cascade down through the style sheet.

With CSS, the styles that are applied to a given element are calculated from all the selec-

tors that match that style in the style sheet.

It’s also possible to override styles. This style sheet sets the font weight for spans with

the class smaller to bold. The element with the ID smallest has its font weight set to

normal. In Figure 8.1, you’ll see that the last line is not bold. It inherits the font weight

from the span.smaller selector, but the #smallest selector overrides it.

Units of Measure
One of the most confusing aspects of CSS is the units of measure it provides. Four types

of units can be specified in CSS: length units, percentage units, color units, and URLs.

There are two kinds of length units: absolute and relative. Absolute units theoretically

correspond to a unit of measure in the real world, such as an inch, a centimeter, or a

point. Relative units are based on some more arbitrary unit of measure. Table 8.1 contains

a full list of length units.

FIGURE 8.1

How cascading
styles work.

ptg16476052

Units of Measure 167

8

TABLE 8.1 Length Units in CSS

Unit Measurement

em Relative; height of the element’s font

ex Relative; height of x character in the element’s font

px Relative; pixels, which are relative to the viewing device

in Absolute; inches

cm Absolute; centimeters

mm Absolute; millimeters

pt Absolute; points

pc Absolute; picas

rem Relative; height of the root element’s font (new in CSS3)

vh Relative; percent of the viewport height (new in CSS3)

vw Relative; percent of the viewport width (new in CSS3)

The absolute measurements seem great, except that an inch isn’t really an inch when it

comes to measuring things on a screen. Given the variety of browser sizes and resolu-

tions supported, the browser doesn’t really know how to figure out what an inch is. For

example, you might have a laptop with a 15-inch display running at 1440 by 900 pixels.

I might have a 23-inch CRT running at roughly the same resolution. If the browser thinks

that one inch is 96 pixels, a headline set to 1in may appear as less than an inch on your

monitor or more than an inch on mine. Using relative units is safer.

In this lesson, I use one length unit: px. It’s my favorite for sizing most things. However,

other relative units can also be useful. For example, if you want paragraphs on your page

to appear as double spaced, you can specify them like this :

p { line-height: 2em; }

CSS3 also brings in three new relative units that are very useful: rem, vh, and vw. The

rem unit acts like the em unit; it is relative to the font size. But rather than being relative

to the current element’s font size, it’s relative to the base font size for the whole page.

This means that you can set values that don’t combine with each other. Many designers

did not like the em unit because it would combine and result in font sizes that were much

larger or smaller than they expected. rem acts the way most designers expect.

The other two new units are vh and vw. These are relative to the viewport window. This is

particularly useful if you are designing pages to look good on mobile and smaller screen

ptg16476052

168 LESSON 8: Using CSS to Style a Site

devices. By setting the text size to be relative to the viewport, you can ensure that it will

be legible even on small screens.

Percentage units are also extremely common. They’re written as you’d expect: 200% (with

no spaces). The thing to remember with percentages is that they’re always relative to

something. If you set a font size to 200%, it will be double the size of the font it inherited

through CSS, or 200% of the browser’s default font size if no font size has been applied

to that element. If you set a <div> ’s width to 50%, it will be half as wide as the enclosing

element (or the browser window, if there’s no enclosing element). When you use percent-

ages, always keep in mind what you’re talking about a percent of .

Using Percentage Units

When you use percentages as units , bear in mind that the percentage applies not
to the size of the page, but rather to the size of the box that encloses the box to
which the style applies. For example, if you have a <div> with its width set to 50%
inside a <div> with its width set to 500px, the inner <div> will be 250 pixels wide.
However, if the outer <div> were also set to 50%, it would be half as wide as the
browser window, and the inner <div> would be 25% of the width of the browser win-
dow .

Color units can be specified in a variety of ways. Some colors can be specified by name,

or you can use color codes. I’ll talk about how colors are specified shortly.

Most of the time, when you use URL units, they’re used in the <a> tag or tag. In

CSS, they’re usually included to specify the location of a background image or a bullet

image for a list. Generally, URLs are specified like this :

url('http://www.example.com/')

Specifying Colors
As you’ve already seen, browsers understand some color names. Unfortunately, once you

get past a few common names like black and white, things become more uncertain. It’s

better to define colors by the specific shade. For reasons related to the way computer dis-

plays work, in CSS and HTML, colors are created by mixing red, green, and blue. When

you specify a color, you specify the intensity of those three colors and a distinct color

results.

Aside from color names, there are several ways to specify colors using CSS:

n Hexadecimal—A six-character string that comprises three two-digit hexadecimal

numbers that represent the intensity of red, green, and blue on a scale of 00 to FF

(255 in decimal)

ptg16476052

Units of Measure 169

8

n Hexadecimal shorthand—A three-character string that comprises three single-

digit hexadecimal numbers that are duplicated to represent the intensity of red,

green, and blue on a scale of 00 to FF (255 in decimal)

n RGB—Three percentages representing the intensity of red, green, and blue

n RGB—Three decimal numbers representing the intensity of red, green, and blue on

a scale of 0 to 255

n HSL—Three numbers representing the hue (from 0 to 360 degrees), saturation per-

centage, and lightness percentage

n Transparency or alpha channel—Add a fourth number to the RGB and HSL col-

ors that ranges from 0 to 1 to specify the opacity

The approaches differ in terms of notation and precision. The methods that scale from

0 to 255 are more precise than the percentages, which run from 0 to 100, and the single

hexadecimal digits, which are meant as a shorthand for writing common colors.

In practical terms, nearly everyone uses the six digit hexadecimal strings because

that form of notation was supported in HTML for defining colors as well. The other

approaches were not. Let’s examine a few shades to look a little deeper at how CSS col-

ors work:

black rgb(0,0,0) 000000 hsl(0,0,0)

white rgb(255,255,255) FFFFFF hsl(0,0,100)

red rgb(255,0,0) FF0000 hsl(0,100,50)

yellow rgb(255,255,0) FFFF00 hsl(60,100,50)

coral rgb(255,127,80) FF7F50 hsl(16,100,66)

As you can see, black is created by setting all three colors to zero intensity. White is cre-

ated by setting all three colors to maximum intensity. The brightest shade of red has the

hue red (0) at 100% saturation and 50% lightness. Yellow is maximum red and green and

no blue. Coral is a mixture of all three shades, with an emphasis on red. The RGB units

and hexadecimal units are identical—the only difference is in notation.

CSS added the ability to make colors transparent with the alpha channel on RGB and

HSL colors. Colors are assumed to be 100% opaque. However, if you convert to RGBa

or HSLa by adding a number from 0 to 1, you can make your colors see through. For

example, red (rgb(255,0,0)) becomes pink when displayed at 50% transparent on a

white background.

rgba(255,0,0,0.5)

ptg16476052

170 LESSON 8: Using CSS to Style a Site

Web designers tend to prefer RGB or HSL notation because it is very easy to add opacity

information by switching to RGBa or HSLa.

Given that there are millions of possible colors, how do you find the colors you want to

use? Generally speaking, you’ll either use a color picker to choose a color from a palette,

or you’ll use a sampling tool to grab a color from a source on your screen—a picture, a

Web page, whatever.

Col or Schemer, available at http://www.colorschemer.com/online.html, is one of the bet-

ter color pickers on the Web. It enables you to view several colors next to each other to

see how they match and will even suggest colors that match the ones you choose. The

current Color Schemer interface appears in Figure 8.2.

Another is Adobe Color CC at https://color.adobe.com/. It makes it easy to create your

own color schemes and to browse and rate color schemes created by others. It’s a great

place to find inspiration if you’re thinking about adding color to a site.

If you want to sample colors from Web pages, there are browser add-ons like ColorZilla

for Firefox or Eye Dropper for Google Chrome. Most graphics programs also provide

color sampling tools that you can use.

FIGURE 8.2

Color Schemer.

http://www.colorschemer.com/online.html
https://color.adobe.com/

ptg16476052

Editing Styles with Developer Tools 171

8

Editing Styles with Developer Tools
When you start working with full-fledged style sheets, it becomes easier to manipulate

those style sheets using the Chrome Developer Tools (or the tools for other browsers).

Figure 8.3 shows the Chrome Developer T ools for the page in Figure 8.1.

As you can see, the styles that apply to the current element are displayed on the right. In

this case, the style sheet on the page supplies one style that sets the font-size to 80% for

<p> tags, and the user agent style sheet provides others. The user agent style sheet rep-

resents the browser defaults. There are also inherited styles listed, with the rules marked

out. That’s because the style for the <p> tag overrides them.

You can click on the styles in the panel to the right to modify the values, disable and re-

enable the styles, and even add new style rules. This enables you to experiment with the

styles on the page easily.

As your style sheets become more complex, a large number of styles can be applied to a

specific element. The Computed Styles provide a view of the actual styles applied to the

element from all sources.

FIGURE 8.3

Viewing and modi-
fying CSS in the
Chrome Developer
Tools.

ptg16476052

172 LESSON 8: Using CSS to Style a Site

Using Color
Using CSS, you can easily set up a color scheme for your entire website or just tweak

the colors of specific elements on a page. There are two key properties when it comes to

assigning colors to elements using CSS— color and background-color. For elements

with borders, you can also set the border color using the border-color property.

To indicate that a paragraph should be displayed with white text on a black background,

you could use the following code:

<p style="color: #ffffff; background-color: #000000;">This paragraph has
white text on a black background.</p>

You can also use these properties to adjust the colors on the whole page by applying

them to the body tag. Here’s an example:

<body style="color: #ffffff; background-color: #0000ff;">

This page will have white text on a blue background. You can also specify colors as part

of the background and border properties, which allow you to set the values for a whole

family of properties at once. The background property will be discussed in Lesson 9,

“Using Images on Your Web Pages,” because most of its subproperties are associated

with background images.

To set the link color for all the links on a page, you need to use a style sheet for the page

and specify the style for the <a> tag, like this:

<style>
 a { color: #ff9933; }
</style>

What about active links and visited links? CSS provides pseudo-classes that apply to

links in particular states, as follows:

a:link Applies to unvisited links.

a:visited Applies to links that the user has visited.

a:hover Applies to links when the user has her mouse pointer over the link.

a:active Like the alink attribute, this selector is used when the user is clicking
on the link.

ptg16476052

Links 173

8

As you can see, these selectors provide access to an additional state that the old attributes

did not: the hover state. Here’s an example that specifies the colors for links in each of

their states:

 <style type="text/css">
 a { color: #ff9933; }
 a:visited { color: #bbbbbb; }
 a:hover { color: #E58A2E; }
 a:active { color: #FFA64D; }
</style>

Pseudo-classes are most commonly used with links, but there are a number of other

pseudo-classes that can also be used that I’ll talk about later in this lesson.

Links
You already know how to adjust the colors of elements on a page, but links are a bit dif-

ferent. They’re more complicated than other types of elements because they can exist in

multiple states: an unvisited link, a visited link, an active link, and a link that the user

currently has the pointer over. Using CSS, you can change the color of a link when the

user mouses over it (referred to as the hover state) as opposed to when he’s currently

clicking it (the active state).

Another advantage of CSS is that you can change the color schemes for links on the same

page rather than being forced to use one scheme throughout. Finally, you can turn off

link underlining if you want. For example, here’s a style sheet that turns off link under-

lining for navigation links, renders them in boldface, and keeps the same color for visited

and unvisited links:

a:link { color: blue; }
a:active { color: red; }
a:visited { color: purple; }
a:hover { color: red; }
a.nav { font-weight: bold;

text-decoration: none; }
a.nav:hover, a.nav: active { background-color: yellow;

color: red; }
a.nav:link, a.nav:visited { color: green; }

From the style sheet, you can see that for all <a> tags in the class nav, the text-decoration

property is set to none, which turns off underlining, and font-weight is set to bold. For

<a> tags on the rest of the page, the underlining remains on, but I’ve set it up so that when

the mouse is over the links, they turn red. For navigation links, when the mouse is over the

links, the background of the element turns yellow and the text turns red.

ptg16476052

174 LESSON 8: Using CSS to Style a Site

The Box Model
When working with CSS, it helps to think of every element on a page as being contained

within a box. This is true of inline elements like <a> or block-level elements like <p>.

Each of these boxes is contained within three larger boxes, and the entire set of four is

refe rred to as the CSS box model. Figure 8.4 shows a diagram of the box model.

ContentLPLB

Margin Edge
Border Edge
Padding Edge
Content Edge

LM RP

TP

TB

TM

BP

BB

BM

Bottom

Top

RB RM RightLeft

Border

Margin (Transparent)

Padding

The innermost box contains the content of the element. Surrounding that is the padding,

then the border, and finally, the outermost layer (the margin). In addition to properties

that you can use to change how the content is displayed, CSS provides properties that

can be used to change the padding, border, and margins around each box. In this section,

you’ll learn how to modify all the layers in the box model. If you get confused about how

the layers are ordered, just refer to Figure 8.4.

FIGURE 8.4

The CSS box
model.

You can use pretty much any property you like with the pseudo-
selectors for links, and browsers that support them will dynami-
cally reflow the page to accommodate the change. However,
changes that affect the size of the element (such as boldfacing
the text dynamically or increasing the font size) can be very jarring
to users, so use them cautiously .

CAUTION

ptg16476052

The Box Model 175

8

The Chrome Developer Tools will display the box properties for an element so that

you can see its current size along with its border, margin, and padding. You can use the

Inspect tool to choose an element on the page, or you can locate an element in the source

by way of the Elements tab. Then choose Metrics in the right column, and you’ll see a

box representing the element along with its properties. You can see the Metrics view in

Figure 8.5.

Borders
Before I talk about padding or margins, I want to talk about borders. CSS provides sev-

eral properties for adding borders around elements and changing how they are displayed.

Using CSS, you can apply a border to any box.

The border-style property specifies the type of border that will be displayed. Valid

options for the border-style are none, dotted, dashed, solid, double, groove, ridge,

inset, outset, and inherit. Most of the styles alter the border appearance, but none and

inherit are special. Setting the border-style to none disables borders, and inherit

uses the border-style inherited from a less-specific selector.

The border-width property specifies how wide the border around a box should be.

Borders are usually specified in pixels, but any CSS unit of measurement can be used. To

create a 1-pixel, dashed border around all the anchors on a page, you use the following

CSS:

a { border-width: 1px; border-style: solid; }

FIGURE 8.5

The Metrics view
in the Chrome
Developer Tools.

ptg16476052

176 LESSON 8: Using CSS to Style a Site

The final border style, border-color, is used to set the color for a border. To set the bor-

der color for links to red, you use the following style declaration:

a { border-color: red; }

You can also set border properties for an element using what’s called a shorthand prop-
erty. Instead of using the three separate border properties, you can apply them all simul-

taneously as long as you put the values in the right order, using the border property. It’s

used as follows:

selector { border: style width color; }

So, to add a three-pixel dashed red border to the links on a page, you use the following

style decoration:

a { border: dashed 3px red; }

You can use different values for each side of a box when you’re using any of the box

properties. There are two ways to do so. The first is to add directions to the property

names, as follows :

a {
 border-left-width: 3px;
 border-left-style: dotted;
 border-left-color: green;
}

The directions are top, bottom, left, and right. Alternatively, you can set the values for

each side. If you specify four values, they will be applied to the top, right, bottom, and

left, in that order. If you specify two values, they will be applied to the top and bottom

and left and right. And if you set three values, they will be set to the top, right, and left

the same, and bottom. To se t different border widths for all four sides of a box, you use

the following style:

p.box { border-width: 1px 2px 3px 4px; }

That’s equivalent to the following:

p.box {
border-top-width: 1px;
border-right-width: 2px;
border-bottom-width: 3px;
border-left-width: 4px;

}

To apply different values for the border shortcut property to different sides of a box, it’s

necessary to use the directional property names. You can’t supply multiple values for

the components of the shortcut property. However, CSS will apply the styles in the order

ptg16476052

The Box Model 177

8

they appear in the CSS document, so you can use styles like this to change the properties

of just one side :

 Input ▼
p {
 border: solid 2px red ;
 border-bottom: dashed 4px green;
}

The results are shown in Figure 8. 6.

Output ▼

If you want to experiment with border styles, colors, and widths, you can open the exam-

ple page in the Developer Tools and modify the styles directly.

Margins and Padding
In the box model, there are two ways to control whitespace around a box. Padding is

the whitespace inside the border, and the margin is the whitespace outside the border,

separating the box from surrounding elements. Let’s look at an example that illustrates

how padding and margins work. The web page that follows has one <div> nested within

another. The outer <div> has a solid black border; the inner <div> has a dotted black bor-

der. The page appears in Figure 8.7.

Input ▼
<html>
<head>
 <title>Nested Elements</title>
 <style type="text/css">
 .outer { border: 2px solid black; }
 .inner { border: 2px dotted black;

FIGURE 8.6

Border styles.

ptg16476052

178 LESSON 8: Using CSS to Style a Site

padding: 0;
margin: 0; }

 </style>
</head>
<body>
<div class="outer">
Outer.
<div class="inner">
Friends, Romans, countrymen, lend me your ears;

I come to bury Caesar, not to praise him.

The evil that men do lives after them;

The good is oft interred with their bones;

So let it be with Caesar. The noble Brutus

</div>
</div>

</body>
</html>

Output ▼

As you can see, the text in the inner <div> is jammed right up against the border, and

the inner border and outer border are flush against each other. That’s because I’ve set

both the padding and the margin of the inner <div> to 0. (When you’re setting a property

to 0 there’s no need to specify a unit.) The results in Figure 8.8 show what happens if I

change the style sheet to this :

Input ▼
.outer { border: 2px solid black; }
.inner { border: 2px dotted black;
 padding: 15px;
 margin: 15px; }

FIGURE 8.7

Nested <div>s
with no margins or
padding.

ptg16476052

The Box Model 179

8

Output ▼

As you can see, I’ve created some space between the border of the inner <div> and the

text inside the inner <div> using padding, and some space between the border of the

inner <div> and the border of the outer <div> using margin. Now let’s look at what hap-

pens when I add some margin and padding to the outer <div>, too. I’m also going to give

both the inner and outer <div>s background colors so that you can see how colors are

assigned to whitespace. (I discuss backgrounds and background colors in a later lesson.)

The results are in Figure 8.9. Here’s the new style sheet :

Input ▼
.outer { border: 2px solid black;
 background-color: gray;
 padding: 15px;
 margin: 40px; }
.inner { border: 2px dotted black;
 background-color: white;
 padding: 15px;
 margin: 15px; }

FIGURE 8.8

The inner <div>
has 15 pixels of
padding and mar-
gin here.

ptg16476052

180 LESSON 8: Using CSS to Style a Site

Output ▼

I gave the outer <div> a large 40-pixel margin so that you could see how it moves the

borders away from the edges of the browser window. Note also that there’s now space

between the text in the outer <div> and the border. You can also see that the padding

of the outer <div> and the margin of the inner <div> are combined to provide 30 pixels

of whitespace between the border of the outer <div> and the border of the inner <div>.

Finally, it’s important to understand the behavior of the background color. The back-

ground color is applied to the padding, but not to the margin. So, the 15-pixel margin

outside the inner <div> takes on the background color of the outer <div>, and the margin

of the outer <div> takes on the background color of the page.

FIGURE 8.9

Both the inner
<div> and the
outer <div> have
margin and
padding.

Collapsing Margins

In the CSS box model, horizontal margins are never collapsed. (If you put two items
with horizontal margins next to each other, both margins will appear on the page.)
Vertical margins, however, are collapsed. Only the larger of the two vertical margins
is used when two elements with margins are next to each other. For example, if a
<div> with a 40-pixel bottom margin is above a <div> with a 20-pixel top margin,
the margin between the two will be 40 pixels, not 60 pixels.

To center text within a box, the text-align: center; style property is used. The ques-

tion now is this: How do you center a box on the page? In addition to passing units of

measure or a percentage to the margin property, you can set the margin to auto . In the-

ory, this means to set this margin to the same value as the opposite margin. However, if

you set both the left and the right margins to auto, your element will be centered. To do

ptg16476052

The Box Model 181

8

so, you can use the margin-left and margin-right properties or provide multiple values

for the margin property. So, to center a <div> horizontally, the following style sheet is

used. (The n ewly centered <div > is in Figure 8.10.)

Input ▼
.inner { border: 2px dotted black;
 background-color: white;
 padding: 15px;
 width: 50%;
 margin-left: auto;
 margin-right: auto;
 }

Output ▼

FIGURE 8.10

A centered <div>.

If you want elements to overlap each other, you can apply nega-
tive margins to them rather than positive margins.

TIP

I used the width property in that style sheet to shrink the <div> so that it could be cen-

tered. I explain how to resize elements using CSS later in the lesson.

Another thing to remember is that the <body> of the page is a box, too. Here’s a style

sheet that includes new values for the border, margin, and padding properties of the

<body> tag. It also includes some changes to the outer <div> to illustrate how the changes

to the <body> tag work. You can se e the updated page in Figure 8.11.

ptg16476052

182 LESSON 8: Using CSS to Style a Site

Input ▼
.outer { border: 2px solid black;
 background-color: gray;
 padding: 15px; }
.inner { border: 2px dotted black;
 background-color: white;
 padding: 15px;
 margin: 15px; }
body { margin: 20px;
 border: 3px solid blue;
 padding: 20px;
 background-color: yellow;
 }

Output ▼

In this example , you can see that you can adjust the margin, padding, and border of a

document’s body. However, unlike other boxes, the background c olor is applied to the

margin as well as the padding .

Controlling Size and Element Display
The one box in the box model I haven’t discussed is the content box. For starters, there

are two types of content boxes: block and inline. In previous lessons, I’ve discussed

block-level elements versus inline elements; this distinction is important in CSS. Block

elements are, by default, as wide as the container you place them within, and you can

modify their height and width using CSS. Block elements are also preceded and followed

by line breaks. Inline elements are only as wide as they need to be to display their con-

tents, as well as the margins, borders, and padding that you apply to them.

FIGURE 8.11

Treating the body
of a document as
a box.

ptg16476052

The Box Model 183

8

Each element is, by default, either a block element or an inline element, but CSS provides

the display property to allow you to change this behavior. The block property supports

three values: block, inline, and none. For example, if you want the elements in a list to

appear inline rather than each appearing on its own line, as shown in Figure 8.12, you use

the following style:

ul.inline li { display: inline; }

Setting the display property to none removes the selected elements from the page

entirely. Hiding elements with this property is useful if you want to use JavaScript to

dynamically hide and show items on the page. Using JavaScript to modify page styles is

discussed starting in Lesson 17, “Introducing JavaScript.”

There are two properties for controlling the size of a block: width and height. They

enable you to set the size of the box using any of the units of measurement mentioned

previously. If you use a percentage for the height or width, that percentage is applied to

the size of the containing element.

To make the header of your page 100 pixels high and half the width of the browser, you

could use the following rule:

#header { width: 50%; height: 100px; }

The following paragraph will appear to be very narrow, but the box in which it resides

will be as wide as the browser window unless you specify a width.

<p>one.
two.
three.
</p>

It’s possible to set maximum and minimum heights and widths for elements to account

for differences in the size of users’ browser windows. The properties that enable you to

do so are max-width, min-width, max-height, and min-height. Let’s say you’ve created

FIGURE 8.12

Inline list items.

ptg16476052

184 LESSON 8: Using CSS to Style a Site

a page design that only looks right if it’s at least 600 pixels wide. You could use the fol-

lowing style:

#container { min-width: 600px; }

The element with the ID container will expand to fit the size of the browser window as

long as it’s at least 600 pixels wide. If the browser is smaller than 600 pixels wide, the

contents of the element will scroll off the screen. Likewise, you may want to constrain

the maximum size of an element so that lines of text do not become so long that they’re

difficult to read. To do so, use the following style:

#container { max-width: 800px; }

You can also use both styles together to keep the size of your page within a certain range,

regardless of the size of the user’s browser window:

#container { min-width: 600px; max-width: 800px; }

Normally elements in HTML are sized to fit the content that is placed within them.

However, if you constrain the size of an element with a size or a maximum size and then

place content inside the element that won’t fit, the browser has to decide what to do with

it. By default, when content won’t fit inside its box, the browser just displays the over-

flow as best it ca n. As you can see from Figure 8.13, the results are not always pretty.

The border shows the dimensions of the box specified in the style sheet. Because there’s

too much text to fit inside the box, it runs over the border and down the page. Using the

CSS overflow property, you can tell the browser what to do when these situations arise.

The values are visible (this is the default), hidden, scroll, auto, and inherit. You can

see how the different overflow settings look in Figure 8.14.

FIGURE 8.13

Content that is too
large for its con-
tainer.

ptg16476052

The Box Model 185

8

When overflow is hidden, the content that does not fit in the box is not displayed at all.

Both scroll and auto add scrollbars to enable users to view the entire contents of the

box. When the setting is scroll, the scrollbars are always displayed, whereas when the

setting is auto, the scrollbars display only if needed. When overflow is visible, content

that overflows the box is not taken into account when laying out other items on the page,

and the overflow content bleeds onto other content on the page. When you are sizing ele-

ments on the page manually, you should always account for potential overflow so that it

doesn’t break the layout of your page.

Float
Normally , block-level elements flow down the page from top to bottom. If you want to

alter the normal flow of the page, you can use absolute positioning, which I discuss in a

bit, or you can use the float property. The float property is used to indicate that an ele-

ment should be placed as far as possible to the left or right on the page and that any other

content should wrap around it. This is best illustrated with an example. First, take a look

at the page in Figure 8.15.

FIGURE 8.14

Different ways of
dealing with over-
flow.

FIGURE 8.15

A page with no
floating elements.

ptg16476052

186 LESSON 8: Using CSS to Style a Site

As you can see, the three boxes run straight down the page. I’ve added a border to the

first box, but that’s it. Here’s the source code to the page, with the addit ion of a few other

properties that demonstrate how float works:

Input ▼
<!DOCTYPE html>
<html>
<head>
 <title>Floated Elements</title>
 <style type="text/css" media="screen">
 .right {

border: 3px solid black;
padding: 10px;
margin: 10px;
float: right;
width: 33%; }

 .bottom { clear: both; }
 </style>
</head>
<body>
<p class="right">
The absence of romance in my history will, I fear, detract somewhat
from its interest; but if it be judged useful by those inquirers who
desire an exact knowledge of the past as an aid to the interpretation
of the future, which in the course of human things must resemble if
it does not reflect it, I shall be content.
</p>
<p class="main">
The absence of romance in my history will, I fear, detract somewhat
from its interest; but if it be judged useful by those inquirers who
desire an exact knowledge of the past as an aid to the interpretation
of the future, which in the course of human things must resemble if
it does not reflect it, I shall be content. In fine, I have written
my work, not as an essay w hich is to win the applause of the moment,
but as a possession for all time.
</p>
<p class="bottom">
The absence of romance in my history will, I fear, detract somewhat
from its interest; but if it be judged useful by those inquirers who
desire an exact knowledge of the past as an aid to the interpretation
of the future, which in the course of human things must resemble if
it does not reflect it, I shall be content. In fine, I have written
my work, not as an essay which is to win the applause of the moment,
but as a possession for all time.
</p>
</body>
</html>

ptg16476052

The Box Model 187

8

As you can see from the style sheet, I’ve set the float property for elements with the

class “right” to right. I’ve also added some padding, a margin, and a border to that class

for aesthetic purposes and set the width for that class to 33% so that it isn’t as wide as the

browser window. I’ve also put the second paragraph on the page in the class bottom, and

I’ve added the clear: both property to it. Figure 8.16 shows the results.

Output ▼

The <div> is moved over to the right side of the page, and the first paragraph appears

next to it. The float: right property indicates that the rest of the page’s content should

flow around it. The bottom paragraph does not flow around the <div> because I’ve

applied the clear: both property to it, which cancels any float that has been set. The

options for float are easy to remember: left, right, and none. The options for clear are

none, left, right, and both.

Using the clear property, you have the option of clearing either the left or the right float

without canceling both at the same time. This proves useful if you have a long column on

the right and a short one on the left and you want to maintain the float on the right even

though you’re canceling it on the left (or vice versa).

Now let’s look at how floated elements work together. Figure 8.17 shows what happens

when you have two right-floating elements together, and Figure 8.18 shows the effect

with a left-floating element and a right-floating element.

FIGURE 8.16

A page with a
<div> floated to
the right.

ptg16476052

188 LESSON 8: Using CSS to Style a Site

As you can see, when you put two floating elements together, they appear next to each

other. If you want the second one to appear below the first, you need to us e the clear

property as well as the float property in the rule, as shown in this style sheet:

Input ▼
.right {
 border: 3px solid black;
 padding: 10px;
 margin: 10px;
 float: right;

FIGURE 8.17

Two right-floating
elements together.

FIGURE 8.18

A left-floating and
a right-floating ele-
ment together.

ptg16476052

More Selectors 189

8

 width: 33%; }

#second { clear: right; }

.bottom { clear: both; }

The additional <div> I’ve added has been given the ID second so that it inherits all the

styles of the cla ss right and the styl e rule associated with the ID second. The result is in

Figure 8.19 .

Output ▼

More Selectors
A number of other CSS selectors provide even more fine-grained control over which ele-

ments on the page have styles applied to them. You can always group elements in an arbi-

trary fashion using classes, identify single elements using IDs, and add and <div>

elements to the page to provide structure to which styles can be applied. These additional

selectors make it easier to apply styles to very specific items on a page without altering the

structure of the page itself. The only catch is that some of these selectors are incompatible

with old browsers, especially versions of Internet Explorer prior to version 8.

FIGURE 8.19

Two floating ele-
ments that are
aligned vertically.

ptg16476052

190 LESSON 8: Using CSS to Style a Site

You’ve already seen the basic descendant selector, which looks like this:

p span.important { font-weight: bold }

That selector matches any tag with the class important that’s nested inside a <p>

tag. The child selector is slightly stricter; it looks like this:

p > span.important { font-weight: bold }

That selector only matches if the tag is a child of the <p> tag. It would not match

the tag in the following paragraph, whereas the descendant selector would:

<p>This is a paragraph. This is an
important sentence.</p>

Let’s say that you have some nested lists on a page, and you have a style that should

only apply to items in the top-level list. This is another example in which the descendant

selector would make sense:

ul.topmost > li { color: green; }

The items in the topmost list would be green. The items in the other lists would not.

Finally, there’s the next sibling selector, which uses the + operator. The selector h1 + p

matches the first paragraph that follows a first level heading, assuming they both have the

same parent. You could use this rule if you wanted to add special styling to the lead para-

graphs for stories on your site. The ~ selector matches any siblings, not just the first. So

h1 ~ p would match any paragraph that follows an <h1> tag.

Pseudo-Classes
A couple of pseudo-classes can also be used to apply styles to content based on its posi-

tion on the page. For example, the :first-letter pseudo-class selects only the first

letter in each of the elements selected by the selector. Likewise, the :first-line pseudo-

class selects the first line of text in the element.

Let’s say you want to create what’s known as a drop-cap, a large capital letter at the

beginning of a block of text. You could do it by wrapping the character in a tag,

but using the :first-letter pseudo-class, you can avoid adding an element to the page.

To create the drop-cap, you’ll need to increase the font size, float the character to the left,

and manipulate the padding to be sure that the appearance is correct. Figure 8.20 shows

the re sult.

p:first-letter {
 font-size: 300%;
 float: left;
 font-family: sans-serif;
 padding: 0 5 px;
}

ptg16476052

More Selectors 191

8

As you can see, both paragraphs have the drop cap. This is where the next sibling selec-

tor comes in handy. I can use the selector I introduced earlier to ensure that only the first

paragraph on the page has the drop cap, as shown in Figure 8.21.

Input ▼
h1 + p:first-letter {
 font-size: 300%;
 float: left;
 font-family: sans-serif;
 padding: 0 5 px;
}

Output ▼

FIGURE 8.20

Drop caps recre-
ated using the
:first-letter
pseudo-class.

FIGURE 8.21

Using the sibling
selector limits the
drop cap to the
first paragraph.

ptg16476052

192 LESSON 8: Using CSS to Style a Site

The :hover and :focus pseudo-classes are applied based on how the user is interact-

ing with the page. The :focus selector is triggered when a matching element has focus.

Focus is mostly associated with HTML forms, so I’ll come back to it in Lesson 12,

“Designing Forms.” Selectors that include the :hover pseudo-class are activated when

the user has his pointer over the matching element. You’ve already see how the :hover

pseudo-class can be used with links—it can in fact be used with any element on a page.

To change the background color and border when users move their pointer over a para-

graph, you’d use the following style sheet rule:

p:hover {
 background-color: yellow;
 border: 1px solid green;
}

Over time, CSS has evolved to enable you to make your pages more dynamic only

through the use of style sheets. At one time, if you wanted to change styles on your page

after it loaded, you had to write a script using JavaScript, which I’ll discuss later in the

book. Now, a number of CSS selectors enable you to add dynamic content to your pages

without scripting.

You can even use CSS to modify the contents of the page directly using the :before and

:after selectors. The newer notation is ::before and ::after, but :before and :after

are more widely supported. These selectors create a pseudo-element that’s the first child

of the matched element. You can use a style property called content to insert any content

you like into that pseudo-element, and it will be displayed on the screen. Using :before,

:after, and content, you can make changes to the actual content of your page.

Let’s say I have a style guide for my site that requires me to place square brackets around

any abbreviation I use. I have the following content for my page:

<p><abbr>NASA</abbr> is responsible for the US space program.</p>

Rather than editing the page to add the square brackets, which are a stylistic element

more than proper content, I can add them using CSS. Here’s the style sheet:

abbr:before { content: "[" }
abbr:after { content: "]" }

You can see the results in Figure 8.22.

ptg16476052

More Selectors 193

8

Output ▼

A number of other pseudo-classes can be used, but they are not as widely supported

in browsers as the other pseudo-classes I’ve discussed. Specifically, Internet Explorer

did not add support for them until version 9. You can read about the additional pseudo-

classes, as well as the ones that have been discussed in the Mozilla developer documenta-

tion: https://developer.mozilla.org/en-US/docs/CSS/Pseudo-classes.

Attribute Selectors
CSS also provides selectors that match the attributes associated with elements. For exam-

ple, here’s a simple selector that matches paragraphs with the class highlight:

p[class="highlight"] { font-weight: bold; }

That’s not really any more useful than simply using the selector p.highlight. The

important point is that the selector works with any attribute name and value. You can also

use the =~ operator with attributes. In that case, it will match any value in a list of values,

separated by spaces. Here ’s an example:

p[class=~"highlight"] { font-weight: bold; }

In that case, the selector would match a paragraph like the following:

<p class="major highlight">This is a major highlight.</p>

The class “highlight” is one member of the list of classes, so it matches the selector

thanks to the presence of the =~ operator.

You can also leave out the attribute value entirely and match any element that has the

listed attribute. The rule that follows will match paragraphs that have any class at all:

p[class] { font-weight: bold; }

FIGURE 8.22

Content added
to a page using
the :before and
:after pseudo-
elements.

https://developer.mozilla.org/en-US/docs/CSS/Pseudo-classes

ptg16476052

194 LESSON 8: Using CSS to Style a Site

There are several other attribute selectors that you may find useful as well. The ^= attri-

bute selector matches elements with attributes that start with the supplied value. The *=

attribute selector matches elements with attribute values that contain the value passed

to the operator. You can match attribute values that end with a certain string using $=.

Finally, the |= operator matches any value in a hyphen-separated list of values.

The <body> Tag
I’ve already mentioned that you can adjust the margin, padding, and border of a page by

applying styles to the <body> tag. More important, any styles that you want to apply on

a page-wide basis can be assigned to the page’s body. You already know about setting

the background color for the page by using style="background-color: black" in your

<body> tag. That’s really just the beginning. If you want the default font for all the text

on your page to appear in the Georgia font, you can use the following style:

body { font-family: Georgia; }

That’s a lot easier than changing the font-family property for every tag that contains

text on your page. You can modify the background and text colors of your page like this:

body { color: white;
 background-color: black; }

One of the main advantages of taking this approach, aside from the fact that it’s how the

standard says you should do things, is that then you can put the style into a linked style

sheet and set the background color for your whole site on one page.

Many layouts require that elements be flush with the edge of the browser. In these cases,

you need to set the margin to 0 for your <body> tag. To turn off margins, just use this

rule :

body { margin: 0px; }

Summary
In the preceding lessons, I’ve given you a taste of how to use CSS. You didn’t get the

full flavor because I used them only within the context of the style attribute of tags. In

this lesson, I discussed how you can create style sheets either as part of a page or as a

standalone file that can be included by any page. I also moved beyond properties that dis-

cuss text formatting to explain how to use CSS to lay out an entire page.

By understanding how browsers render pages and how you can affect that process using

CSS, you can achieve the effects you want without writing loads of markup that’s diffi-

cult to understand and maintain.

ptg16476052

Workshop 195

8

You’ll continue to be introduced to new CSS properties in the lessons that follow. In

Lesson 9, I explain how to use CSS to create pages that respond to the devices view-

ing them, in Lesson 10 I show you how to change colors on the page and provide all the

details on using CSS to define the backgrounds of pages and specific elements. Lesson

16 takes a deeper look at CSS selectors and explains how to create entire page layouts

using CSS.

Workshop
In this lesson, you learned about Cascading Style Sheets, the wonderful supplement to

HTML that makes formatting your pages less painful. Throughout the rest of this book, I

use CSS where appropriate, so please review this workshop material before continuing.

Q&A
Q My CSS isn’t working like I’d expect. What should I do?

 A CSS probably doesn’t seem that clear in the first place, and things can only get

messier when you actually start applying styles to your pages. You should be sure

to test your pages in every browser you can find, and don’t be afraid to experiment.

Just because something seems like it should work doesn’t mean it will. The W3C

also pr ovides a CSS Validator (http://jigsaw.w3.org/css-validator/) that you can use

to make sure that your CSS syntax is correct. You should probably use it all the

time, but even if you don’t, it can still help out if you get stuck.

Q Are there naming rules for classes and IDs?

 A Yes, there are. A name must start with a letter and can contain only letters, num-

bers, or dashes (-). Some browsers may not enforce these rules, but to be safe, you

should adhere to them.

Q What are the relevant CSS standards?

 A There are three CSS recommendations from the W3C: CSS1, CSS2, and CSS3.

Most modern browsers support a large part of CSS1 and CSS2, as well as parts of

CSS3. You can find out more at http://www.w3.org/Style/CSS/. If you’re curious

about how well your browser supports CSS or the effect that properties have in real

browsers, you can check out the CSS test suites at http://www.w3.org/Style/CSS/

Test/. CSS2 and CSS3 include a number of additional selectors.

http://jigsaw.w3.org/css-validator/
http://www.w3.org/Style/CSS/
http://www.w3.org/Style/CSS/Test/
http://www.w3.org/Style/CSS/Test/

ptg16476052

196 LESSON 8: Using CSS to Style a Site

Quiz
1. Why can’t absolute units be used reliably in CSS?

2. True or false: Including style sheets on your page requires features provided by a

web server.

3. Is the margin or padding of an element inside the border?

Quiz Answers
1. Absolute units have problems in CSS because there’s no way to know exactly what

sort of display medium the user has. An inch on one monitor might be completely

different than an inch on another.

2. The answer is false; you can use the <link> tag to load external style sheets.

3. The padding of an element is inside the border of an element, and the margin is

outside.

Exercises
1. If you’ve already created some web pages, go back and try to figure out how you

could apply CSS to them.

2. Examine the style sheets used by some websites that you admire. Take a look at

how they use classes and IDs in their markup.

3. Create a web page that includes a sidebar on the left, with text wrapped around it.

Create a navigation menu at the bottom that is positioned below the sidebar .

ptg16476052

LESSON 9
Using Images on Your
Web Pages

Few things can do more to make a web page more interesting than a
strategically placed image or an attractive color scheme. Effective use of
images and color is one of the key things that separates professionally
designed sites from those designed by novices. The process of selecting
images, resizing them and saving them in the proper format, and integrat-
ing them into a page can be intimidating, but this lesson will explain how
it’s done.

This lesson covers the following topics:

n The kinds of images you can use in web pages

n How to include images on your web page, either alone or along-
side text

n How to use images in links

n How to set up and assign links to regions of images using client-
side imagemaps

n How to provide alternatives for browsers that can’t view images

n How to use images as backgrounds for page elements

n How and when to use images on your web pages

n A few tips on image etiquette

ptg16476052

198 LESSON 9: Using Images on Your Web Pages

Images on the Web
Images displayed on the Web should be converted to one of the formats supported by

most browsers: GIF, JPEG, or PNG. Every popular browser supports all three. HTML5

introduces support for SVG images. Many other image formats are supported by some

browsers and not others. You should avoid them.

Let’s assume that you already have an image you want to put on your web page. How do

you get it into PNG, GIF, or JPEG format so it can be viewed on your page? Most image

editing programs, such as Adobe Photoshop (http://www.adobe.com/), iPhoto (http://

apple.com/), Picasa (http://picasa.google.com/), and GIMP (http://gimp.org/), will convert

images to the popular formats. You might have to look under the option for Save As or

Export to find the conversion option. There are also freeware and shareware programs

for most platforms that do nothing but convert between image formats as well as online

photo editors available at http://pixlr.com/ and http://www.picmonkey.com.

If you’re a Windows user, you can download IrfanView, which
enables you to view images, and convert them to various f ormats,
at http://www.irfanview.com/. It also provides a number of other
image-manipulation features that are useful for working with
images for the Web. Best of all, it’s free for noncommercial use.

TIP

Remember how your HTML files have to have an .html or .htm extension to work prop-

erly? Image files have specific extensions, too. For PNG files, the extension is .png. For

GIF files, the extension is .gif. For JPEG files, the extensions are .jpg and .jpeg.

Image Formats
As I just mentioned, several image formats are supported by every major web browser:

GIF, JPEG, PNG, and SVG. JPEG and GIF are the old standbys, each useful for different

purposes. PNG was designed as a replacement for the GIF format. SVG or scalable vec-

tor graphics are an Extensible Markup Language (XML) format to add vector drawings to

web pages. To design web pages, you must understand and be able to apply all the image

formats and to decide which is appropriate to use in each case.

GIF
Graphics Interchange Format, also known as GIF, was once the most widely used image

format. It was developed by CompuServe to fill the need for a cross-platform image format.

http://www.adobe.com/
http://apple.com/
http://apple.com/
http://picasa.google.com/
http://gimp.org/
http://pixlr.com/
http://www.picmonkey.com
http://www.irfanview.com/

ptg16476052

Image Formats 199

9

The GIF format is okay for logos, icons, line art, and other simple images. It doesn’t

work as well for highly detailed images because each image can only use a maximum of

256 colors. Photographs in GIF format tend to look grainy and blotchy because the color

palette limits smooth color transitions. The GIF format supports transparency, which

makes it easy to incorporate an image into a larger design, but not alpha transparency.

Alpha transparency, which is supported by PNG, actually blends an image with what’s

behind it and works much better than GIF’s simple transparency (which simply disables

some pixels).

One feature that is unique to the GIF format among web image formats is support for

simple animations. Animated GIFs don’t support sound or playback control, but they can

be embedded on a page without a browser plug-in, so they are assured of working on

mobile devices.

JPEG
JPEG, which stands for Joint Photographic Experts Group (the group that developed it),

is the most popular format for images on the Web. JPEG (pronounced jay-peg) is actu-

ally a method of compressing images that other file formats can use. The file format for

which it’s known is also commonly called JPG.

JPEG was designed for the storage of photographic images. Unlike GIF images, JPEG

images can include any number of colors. The style of compression that JPEG uses (the

compression algorithm) works especially well for photographs, so photographs com-

pressed using the JPEG algorithm are considerably smaller than those compressed using

GIF or PNG. JPEG uses a lossy compression algorithm, which means that some of the

data used in the image is discarded to make the file smaller. Lossy compression works

extremely well for photographic data, but it makes JPEG unsuitable for images that con-

tain elements with sharp edges, such as logos, line art, and type. If you’re working with

photos to display on the Web, you should save them in the JPEG format.

PNG
PNG, pronounced ping, was originally designed as a replacement for GIFs. It stands for

Portable Network Graphics. All current browsers support PNG, and it has some impor-

tant advantages over GIF and JPEG. Like GIF, no data is lost when images are converted

to PNG.

GIF is pronounced jiff, like the peanut butter, not with a hard G as
in gift. Really—the early documentation of GIF tools says so.

NOTE

ptg16476052

200 LESSON 9: Using Images on Your Web Pages

As mentioned, PNG’s alpha transparency works better than GIF’s more rudimentary

approach and supports palette-based images (like GIF) as well as true-color and grayscale

images (like JPEG). In other words, you don’t have to worry about color usage with

PNG, although the number of colors used will result in smaller files.

If you’re creating new images that aren’t photographs, PNG is the format to use. JPEG

still makes more sense for photographs because of its superior compression. If you are

creating new images, GIFs only really make sense if you are using GIF animation.

SVG
Scalable Vector Graphics (SVG) is a graphics format that was developed for the Web. It

became a standard at the W3C in 2001, and all current web browsers support basic SVG

features.

One advantage of using SVG is that they are scalable vectors. This means that they

can be resized up or down without any loss of quality. This makes them well suited to

responsive web design and web applications.

SVG images are written in XML and can be written directly in HTML5 documents.

This makes SVG images faster to load and easy to manipulate with scripts or programs.

They can also be used to create moving images and complex animations. If you look

at an SVG image that has been included in HTML, it will look a lot like other HTML

code. SVG uses XML to create the images, so it uses tags and attributes just like you’ve

learned to use in HTML documents. But you don’t need to go out and learn the SVG

markup. Instead, a lot of tools are available to create the images for you. Most vector

graphics programs like Adobe Illustrator (http://www.adobe.com/products/

illustrator.html) and Inkscape (https://inkscape.org/en/) will save the images as SVG. You

can then open the SVG files in a text editor and see that they are just complex XML files.

SVG is a good choice for images that need to be available at many different sizes, such

as on responsive websites. It is also good for scripted images like graphs. But while all

current browsers support SVG, if your site must support Internet Explorer 8 (or lower),

you will need to have fallback options for SVG images.

Inline Images in HTML: The Tag
After you have an image ready to go, you can include it on your web page. Inline images

are placed in HTML documents using the tag. This tag, like the <hr> and

tags, has no closing tag in HTML.

http://www.adobe.com/products/illustrator.html/
http://www.adobe.com/products/illustrator.html
https://inkscape.org/en/

ptg16476052

Inline Images in HTML: The Tag 201

9

The tag has many attributes that enable you to control how the image is presented

on the page. Some attributes have been deprecated in favor of Cascading Style Sheets

(CSS). There are only two required attributes of the image tag in HTML5: src and alt.

The most important attribute of the tag is src, which is the URL of the image.

There’s nothing special about image URLs, so everything you learned about absolute

and relative paths in Lesson 6, “Working with Links,” applies. To point to a file named

image.gif in the same directory as the HTML document, you can use the following tag :

For an image file one directory up from the current directory, use this tag:

Apply the same rules as for URLs in the href part of the <a> tag.

You can also point to images on remote servers from the src attribute of an tag,

just as you can from the href attribute of a link. If you wanted to include the image

example.gif from www.example.com on your web page, you could use the following tag :

Just because you can use images stored on other servers for your
own web pages doesn’t mean that you should. A lot of legal, ethi-
cal, and technical issues are involved with using images on other
sites. I discuss them later in this lesson.

CAUTION

Adding Alternative Text to Images
Occasionally there are cases where your images may not be displayed as intended on

your page. Maybe a user with a visual impairment visits your page with a screen reader.

Perhaps it’s a user on a mobile device with a slow connection that’s taking too long to

download your images. You can use the alt attribute of the tag to describe your

image so that some meaning is conveyed even when the image cannot be displayed.

You should enter a text description of the image in the alt attribute, like this:

The alt attribute supports a simple text description, not markup of any kind. Therefore,

you can’t use whole blocks of HTML code as a replacement for an image—just a few

words or phrases.

http://www.example.com

ptg16476052

202 LESSON 9: Using Images on Your Web Pages

▼ Exercise 9.1: Adding Images to a Page

Here’s the web page for a local haunted house that’s open every year at Halloween.

Using all the advice I’ve given you in the preceding lessons, you should be able to create

a page like this one fairly easily. Here’s the HTML code for this HTML file, and Figure

9.1 shows how it looks so far:

Input ▼
<!DOCTYPE html>
<html>
 <head>
 <title>Welcome to the Halloween House of Terror</title>
 </head>
 <body>
 <h1>Welcome to The Halloween House of Terror</h1>
 <p>

Voted the most frightening haunted house three years in a
row, the Halloween House of Terror
provides the ultimate in Halloween thrills. Over
20 rooms of thrills and excitement to
make your blood run cold and your hair stand on end!

 </p>
 <p>

The Halloween House of Terror is open from October 20
to November 1st, with a gala celebration on
Halloween night. Our hours are:

 </p>

Mon-Fri 5PM-midnight
Sat & Sun 5PM-3AM
Halloween Night (31-Oct): 3PM-???

 <p>

The Halloween House of Terror is located at:

The Old Waterfall Shopping Center

1020 Mirabella Ave

Springfield, CA 94532

 </p>
 </body>
</html>

▼

ptg16476052

Inline Images in HTML: The Tag 203

9

Output ▼

So far, so good. Now you can add an image to the page. Suppose that you happen to have

an image of a haunted house lying around on your hard drive; it would look excellent at

the top of this web page. The image, called haunted_house.png, is in PNG format. It’s

located in the same directory as the halloween.html page, so adding it to the page will

be easy.

Now, suppose that you want to place this image above the page heading. To do so, add

an tag to the file, just before the heading:

<div></div>
<h1>Welcome to The Halloween House of Terror</h1>

Images, like links, don’t define their own text elements, so the tag has to go inside

a paragraph or heading element.

When you reload the halloween.html page, your browser should include the haunted

house image on the page, as shown in Figure 9.2.

If the image doesn’t load and your browser displays a funny-looking icon in its place,

make sure that you entered the filename properly in the HTML file. Image filenames are

case sensitive, so all the uppercase and lowercase letters have to be correct.

If the case isn’t the problem, double-check the image file to make sure that it is indeed a

GIF or JPEG image and that it has the proper file extension.

FIGURE 9.1

The Halloween
House home page.

▼

▼

ptg16476052

204 LESSON 9: Using Images on Your Web Pages

If one image is good, two would be really good, right? Try adding another tag next

to the first one, as follows, and see what happens:

Input ▼
<div>
</div>
<h1>Welcome to The Halloween House of Terror</h1>

FIGURE 9.2

The Halloween
House home page
with the haunted
house.

▼

▼

ptg16476052

Images and Text 205

9

Output ▼

Figure 9.3 shows how the page looks in a browser. The two images are adjacent to each

other, as you would expect.

And that’s all there is to adding images!

Images and Text
In the preceding exercise, you put an inline image on a page with text below it. You also

can include an image inside a line of text. In fact, this is what the phrase “inline image”

actually means—it’s in a line of text.

To include images inside a line of text, just add the tag inside an element tag

(<h1>, <p>, <address>, and so on), as in the following line:

<h2>The Halloween House of Terror!!
</h2>

Figure 9.4 shows the difference you can make by putting the image inline with the head-

ing. (I’ve also shortened the heading itself and changed it to <h2> so that it all fits on one

line.)

FIGURE 9.3

Multiple images.

▼

▲

ptg16476052

206 LESSON 9: Using Images on Your Web Pages

The image doesn’t have to be large, and it doesn’t have to be at the beginning of the text.

You can include an image anywhere in a block of text, as in the following:

Input ▼
<blockquote>

Love, from whom the world begun,

Hath the secret of the sun.

Love can tell, and love alone, Whence the million stars
 were strewn

Why each atom knows its own.

--Robert Bridges

 </blockquote>

FIGURE 9.4

The Halloween
House page with
an image inside
the heading.

ptg16476052

Images and Text 207

9

Figure 9.5 shows how this block looks.

Output ▼

Text and Image Alignment
In these examples, the bottom of the image and the bottom of the text are aligned. You

can change how inline images align with text using the vertical-align CSS property.

The values supported by the vertical-align property are as follows:

baseline Aligns the bottom of the image with the baseline of its parent. This is
the default.

top Aligns the top of the image with the top of the line (which may be the
top of the text or the top of an other image).

middle Aligns the center of the image with the middle of lowercase letters in
the parent element.

bottom Aligns the bottom of the image with the bottom of the line.

text-top Aligns the top of the image with the top of the parent element’s font
(whereas top aligns the image with the topmost item in the line).

text-bottom Aligns the bottom of the image with the bottom of the parent ele-
ment’s font.

sub Aligns the element as if it were a subscript.

sup Aligns the element as if it were a superscript.

length Raises or lowers the element by the specified length. Negative values
are allowed.

% Raises or lowers the element in a percent of the line-height prop-
erty. Negative values are allowed.

FIGURE 9.5

Images can go any-
where in text.

ptg16476052

208 LESSON 9: Using Images on Your Web Pages

Figure 9.6 shows the Robert Bridges poem from the previous section with the world

image unaligned, the sun image aligned to the top of the line, the star image aligned to

the middle, and the atom aligned to the bottom of the text.

Input ▼
<blockquote>

Love, from whom the world
 begun,

Hath the secret of the sun.

Love can tell, and love alone, Whence the million stars
 were strewn

Why each atom
knows its own.

--Robert Bridges

</blockquote>

Output ▼

Other alignment options are shown in the following example.

Input ▼
<h2>vertical-align "top" versus vertical-align "text-top":</h2>
<p>

 vertical-align: top
 vertical-align: text-top <img src="uparrow.gif" style="vertical-align:
text-top;" />

</p>

FIGURE 9.6

Images unaligned,
aligned top, aligned
middle, and aligned
bottom.

ptg16476052

Images and Text 209

9

<h2>align "absmiddle" versus vertical-align "middle"</h2>
<p>

 align: middle
 vertical-align: middle
</p>
<h2>vertical-align "baseline" versus vertical-align "text-bottom"</h2>
<p>

 vertical-align: baseline
 vertical-align: text-bottom <img src="down.gif" style="vertical-align:
text-bottom;">

</p>

Figure 9.7 shows examples of all the options as they appear in a browser. In each case,

the line on the left side and the text are aligned with each other, and the position of the

arrow varies.

Output ▼

FIGURE 9.7

Image alignment
options.

ptg16476052

210 LESSON 9: Using Images on Your Web Pages

Wrapping Text Next to Images
Including an image inside a line works fine if you have only one line of text. To control

the flow of text around an image, you’ll need to use CSS. Images are just like any other

element as far as the float property goes, so you can use the float and clear CSS prop-

erties to control text flow around them, as discussed in the earlier lesson.

Floating Images
As you learned in Lesson 8, “Using CSS to Style a Site,” the float property removes

an element from flow of the page and aligns it with the left or right side of its container.

You can float images the same way you float any other element, using the float property

as shown in the example that follows:

Input ▼

<h1>Mystery Tulip Murderer Strikes</h1>
<p>
 Someone, or something, is killing the tulips of New South
 Haverford, Virginia. Residents of this small town are
 shocked and dismayed by the senseless vandalism that has
 struck their tiny town.
</p>
<p>
 New South Haverford is known for its extravagant displays
 of tulips in the springtime, and a good portion of its
 tourist trade relies on the people who come from as far as
 New Hampshire to see what has been estimated as up to two
 hundred thousand tulips that bloom in April and May.
</p>
<p>
 Or at least the tourists had been flocking to New South
 Haverford until last week, when over the course of three
 days the flower of each and every tulip in the town was
 neatly clipped off while the town slept.
</p>
<p>
 "It started at the south end of town," said Augustin Frouf,
 a retired ladder-maker who has personally planted over five
 hundred pink lily-flowered tulips. "They hit the houses up
 on Elm Street, and moved down into town from there. After
 the second night, we tried keeping guard. We tried bright
 lights, dogs, everything. There was always something that
 pulled us away, and by the time we got back, they were all
 gone."
</p>

ptg16476052

Images and Text 211

9

Figure 9.8 shows an image with some text aligned next to it. In this case, the enclosing

container for the image is the body of the page, and the image is floated to the left side of

that container. The rest of the content of the page flows around it.

Output ▼

Stopping Text Wrapping
What if you want to stop the page content flowing around a floated image and start the

next line underneath the image? A normal line break won’t do it; it just breaks the line

to the current margin alongside the image. A new paragraph also continues wrapping

the text alongside the image. To stop wrapping text next to an image, use the clear CSS

property. This enables you to return to the normal page flow past the floated element.

As mentioned in Lesson 8, the clear property can have one of three values:

left Break to an empty left margin, for left-aligned images

right Break to an empty right margin, for right-aligned images

both Break to a line clear to both margins

For example, the following code snippet shows a picture of a tulip with some text

wrapped next to it. Adding a style attribute to the first paragraph with clear set to left

breaks the text wrapping after the heading and restarts the text after the image:

FIGURE 9.8

A floated image.

ptg16476052

212 LESSON 9: Using Images on Your Web Pages

Input ▼
<p></p>
 <h1>Mystery Tulip Murderer Strikes</h1>
 <p style="clear: left;">

Someone, or something, is killing the tulips of New South
Haverford, Virginia. Residents of this small town are
shocked and dismayed by the senseless vandalism that has
struck their tiny town.

 </p>
 <p>

New South Haverford is known for its extravagant displays
of tulips in the springtime, and a good portion of its
tourist trade relies on the people who come from as far as
New Hampshire to see what has been estimated as up to two
hundred thousand tulips that bloom in April and May.

 </p>
 <p>

Or at least the tourists had been flocking to New South
Haverford until last week, when over the course of three
days the flower of each and every tulip in the town was
neatly clipped off while the town slept.

 </p>
 <p>

"It started at the south end of town," said Augustin Frouf,
a retired ladder-maker who has personally planted over five
hundred pink lily-flowered tulips. "They hit the houses up
on Elm Street, and moved down into town from there. After
the second night, we tried keeping guard. We tried bright
lights, dogs, everything. There was always something that
pulled us away, and by the time we got back, they were all
gone."

 </p>

Figure 9.9 shows the result in a browser.

ptg16476052

Images and Text 213

9

Output ▼

Adjusting the Space Around Images
With the capability to wrap text around an image, you also might want to add some space

between the image and the text that surrounds it. In the previous lesson, you learned how

to manage the whitespace around elements using CSS padding and margins. Images are

like any other element when it comes to adding white space around them—you can use

the margin and padding style properties with them.

The following HTML code, displayed in Figure 9.10, illustrates two examples. The upper

example shows default horizontal and vertical spacing around the image, and the lower

example shows how to add whitespace using padding. Both images are floated to the left.

As you can see, the text next to the bottom image is a ligned with the top of the padding,

not the image itself.

Input ▼
<p></p>
<p>
 This is an eggplant. We intend to stay a good ways away
 f rom it, because we really don't like eggplant very much.
</p>
<p style="clear: left;">

</p>
<p>
 This is an eggplant. We intend to stay a good ways away
 from it, because we really don't like eggplant very much.
</p>

FIGURE 9.9

Line break to a
clear margin.

ptg16476052

214 LESSON 9: Using Images on Your Web Pages

Output ▼

Images and Links
Can an image serve as a link? Sure it can! If you include an tag inside a link tag

(<a>), that image serves as a link itself:

If you include both an image and text in the link tag, they become links to the same URL:

Up to Index

FIGURE 9.10

The upper example
doesn’t have
image spacing, and
the lower example
does.

One thing to look out for when you’re placing images within links,
with or without text, is whitespace between the tag and the
 tag or between the text and the image. Some browsers
turn the whitespace into a link, and you get an odd “tail” on your
images. To avoid this unsightly problem, don’t leave spaces or
line feeds between your tags and tags.

TIP

Some browsers add a border around images that appear when the image is linked. You

can control the border around an image using the border CSS property. To remove the

border, just use the style attribute:

ptg16476052

Images and Links 215

9

▼

You can use any of the border-related properties that were described in the previous les-

son to control the borders around an image, changing the width, color, or style. If you

don’t want any of the images on your page to have borders, whether they’re in links or

not, you can use the following style rule in your page’s style sheet:

img { border: none; }

Or, if you want to disable only borders on images that are inside links, you can use this

rule:

a img { border: none; }

You can always override that rule by adding a more specific rule that applies to the

images that should have a border. For example, let’s say you have some photos on your

page that are linked to individual pages but look better with a border. First, write your

image tag like this:

<img src="photo1.jpg" alt="Lake house"
class="photo">

Then add the following style rule:

img.photo { border: 2px solid black; }

Even if you disabled borders for images in general using one of the previous rules, that

rule will turn them back on for images with the photo class.

Including borders around images that are links has really fallen
out of favor with most web designers. Using them can make your
design look very dated.

TIP

Exercise 9.2: Using Navigation Icons

Now you can create a simple page that uses images as links. When you have a set of

related web pages, it’s usually helpful to create a consistent navigation scheme that is

used on all the pages.

This example shows you how to create a set of icons that are used to navigate through a

linear set of pages. You have three icons in GIF format: one for forward, one for back,

and a third to enable the visitors to jump to the top-level contents page. ▼

ptg16476052

216 LESSON 9: Using Images on Your Web Pages

First, you’ll write the HTML structure to support the icons. Here, the page itself isn’t

very important, so you can just include a shell page:

Input ▼
<!DOCTYPE html>
<html>
 <head>
 <title>Motorcycle Maintenance: Removing Spark Plugs</title>
 </head>
 <body>
 <h1>Removing Spark Plugs</h1>
 <p>(include some info about spark plugs here)</p>
 </body>
</html>

Figure 9.11 shows how the page looks at the beginning.

Output ▼

At the bottom of the page, add your images using tags:

Input ▼
<div>

</div>

FIGURE 9.11

The basic page,
with no icons.

▼

▼

ptg16476052

Images and Links 217

9

Now add the anchors to the images to activate them:

Input ▼
<div>

</div>

Figure 9.12 shows the result of this addition.

When you click the icons now, the browser jumps to the linked page just as it would have

if you had used text links.

Output ▼

Speaking of text, are the icons usable enough as they are? How about adding some text

describing exactly what’s on the other side of each link? You can add this text inside

or outside the anchor, depending on whether you want the text to be a hot spot for the

link, too. Here, include it outside the link so that only the image is a link. You also can

position the icons so that the text is aligned with the middle of them using the vertical-

align attribute of the tag. Finally, because the extra text causes the icons to move

onto two lines, arrange each one on its own line instead:

Input ▼
<!DOCTYPE html>
<html>
 <head>
 <title>Motorcycle Maintenance: Removing Spark Plugs</title>

FIGURE 9.12

The basic page
with navigation
links.

▼

▼

ptg16476052

218 LESSON 9: Using Images on Your Web Pages

 <style type="text/css">
img { vertical-align: middle; }
ul { padding: 0; }

 </style>
 </head>
 <body>
 <h1>Removing Spark Plugs</h1>
 <p>(include some info about spark plugs here)</p>
 <ul id="bottom-links">

Up to index

On to "Gapping the New Plugs"

Back to "When You Should Replace your Spark Plugs"

 </body>
</html>

See Figure 9.13 for the final menu.

Output ▼

FIGURE 9.13

The basic page
with iconic links
and text.

▼

▲

ptg16476052

Other Neat Tricks with Images 219

9

Other Neat Tricks with Images
Now that you’ve learned about inline images, images as links, and how to wrap text

around images, you know what most people do with images on web pages. But you can

play with a few newer tricks, too.

Image Dimensions and Scaling
Two attributes of the tag, height and width, specify the height and width of the

image in pixels or as a percentage.

If the values for width and height are different from the actual width and height of the

image, your browser will resize the image to fit those dimensions.

Here’s an example tag that uses the height and width attributes:

Although the width and height attributes are still part of HTML5, best practices recom-

mend that you avoid using them. Instead, you should size your images with CSS. This

lets your images be responsive. You will learn more about this in Lesson 16, “Using

Responsive Web Design.”

To specify the height and width using CSS, use the height and width properties:

If you leave out either the height or the width, the browser will calculate that value based

on the value you provide for the other aspect. If you have an image that’s 100 pixels

by 100 pixels and you specify a height (using the attribute or CSS) of 200 pixels, the

browser will automatically scale the width to 200 pixels, as well, preserving the original

aspect ratio of the image. To change the aspect ratio of an image, you must specify both

the height and the width.

As you’ve seen in this lesson, browsers can figure out the dimensions of images on their

own. There are two reasons to specify the dimensions. The first is to alter them—to

resize the image in the browser so it better fits on the page. This is how images are made

responsive. You should create your images exactly as large as the largest device will be

viewing them. Then use a graphics program to make the file size as small as possible.

Then you can use CSS to resize the image down in smaller devices.

ptg16476052

220 LESSON 9: Using Images on Your Web Pages

The second reason to specify the dimensions of an image is to let the browser know

ahead of time how large it is going to be. You should do this even if you aren’t going

to resize the image, because it enables the browser to establish the page layout before

it downloads the images that will be displayed. This will help your pages display more

quickly because the browser can lay out the page correctly before the images are fully

downloaded. You can set the height and width of the image using the height and width

attributes, the height and width style properties, or by specifying the height and width of

the parent element.

Image Backgrounds
With CSS, you can specify a background image for any element and control exactly how

it appears and is positioned.

To add a background image to an element, use the background-image style property. In

the example below, I added a background image to a <div>, and added a few other style

properties to illustrate how the background works. You can see how the example code

appears in a browser in Figure 9.14.

<div style="background-image: url('black_rook.png');
 height: 240px; width: 240px; border: 1px solid black;
 background-color: #9 99;">
 An element with a background.
</div>

As you can see from the example, background images are tiled both horizontally and

vertically. I added a grey background to the <div> but you can’t see it at all because the

background image is tiled to cover the entire background. I also added a border to show

the exact size of the <div>.

Finding the best image size is a challenge for all web designers.
You don’t want images that are too large, making them slow to
download on smartphones and tablets, but you don’t want tiny
images that look terrible on 5K displays. A good rule of thumb is
to create your feature images as large or slightly larger than your
page will handle. Then use CSS and responsive web design to
resize it down for smaller devices. For nonfeature images, you can
start with smaller initial images. You should never use CSS or the
browser to make an image appear larger than it is. This will never
look good. Instead, if you need a larger version of the image, go
back and get a larger original.

CAUTION

ptg16476052

Image Backgrounds 221

9

CSS provides a number of options for controlling how backgrounds are applied. The

background-repeat property is used to specify how background images are tiled.

Options include repeat (the default, which tiles the image horizontally and vertically),

repeat-x (tile horizontally only), repeat-y (tile vertically only), and no-repeat. In

Figure 9.15, I’ve altered the <div> so that the background image does not repeat:

<div style="background-image: url('black_rook.png');
 height: 240px; width: 240px; border: 1px solid black;
 background-color: #999; background-repeat: no -repeat;">
 An element with a background.
</div>

FIGURE 9.14

An element with a
tiled background.

FIGURE 9.15

An element with a
nonrepeating back-
ground.

ptg16476052

222 LESSON 9: Using Images on Your Web Pages

As you can see, there’s only one background image in the upper-left corner of the <div>,

and the background color is showing through everywhere else.

What if you want the background image to appear somewhere other than the upper-left

corner? The background-position property enables you to position a background image

anywhere you like within its container.

The background-position property is a bit more complex than most you’ll see. You

can either pass in two percentages, or the horizontal position (left, right, center), or

the vertical position (top, bottom, center), or both the horizontal and vertical positions.

If you specify only one value, the default position (center) will be used for the other. If

you specify two values that can apply as the vertical or horizontal positions (a percent-

age, or center), the browser treats the first value as the horizontal setting and the second

as vertical.

Here are some valid settings for this property:

Upper right 100% 0%

top right

right top

Center 50% 50%

center center

50%

Bottom center 50% 100%

bottom center

center bottom

Here’s a tag that places the background centered 30% from the top of the <div>. You can

see the results in Figure 9.16.

<div style="background-image: url('black_rook.png');
 height: 240px; width: 240px; border: 1px solid black;
 background-color: #999; background-repeat: no-repeat;
 background-position: center 30%;">
 An element with a background.
</div>

ptg16476052

Image Backgrounds 223

9

You can also specify negative percentages for the background-position tag, if you want to

position the background partially outside its container. This can be useful with tiled back-

grounds if you don’t want the upper-left corner of your background image to start in the

upper-left corner of its container.

The final individual CSS property associated with backgrounds is background-

attachment. It supports three values: scroll, fixed, and local. The default value is

scroll—the background will scroll along with the element in which it is contained.

fixed indicates that the background should not scroll at all; when the browser’s viewport

moves, the image maintains its position. The local setting means that the image will not

move when its containing element moves but will scroll if the containing element itself

scrolls. Usually this property is used to pin a background image to a fixed location in the

browser window so that it doesn’t scroll with the rest of the page.

Instead of using all these different properties to specify the background, you can use the

background shorthand property by itself to specify all the background properties. With

the background property, you can specify the background color, image, repeat setting,

attachment, and position. All the properties are optional, but they must appear in a spe-

cific order. Here’s the structure of the property:

background: background-color background-image background-repeat background-
attachment background-position;

To condense the preceding specification into one property, the following tag is used:

<body style="background: url('backgrounds/rosemarble.gif')
no-repeat fixed center right;">

FIGURE 9.16

Using background-
position with a
background image.

ptg16476052

224 LESSON 9: Using Images on Your Web Pages

If you like, you can also include a background color. Here’s what the new tag looks like:

<body style="background: #000 url('backgrounds/rosemarble.gif')
no-repeat fixed center right;">

Whether you use the background property or the individual properties for each of the

background-related rules is a matter of taste.

CSS Backgrounds and the Tag

Applying backgrounds to elements using CSS is an alternative to using the
tag to place images on a page. There are many situations in which both options will
work. (For example, if you want to layer text over an image, you can place the text
in a <div> and use the image as the background for that <div>, or you can use the
 tag and then use CSS positioning to place the text over the image.)

However, there is a rule of thumb that many web designers use when choosing
between the two alternatives. If an image is purely decorative, it should be included
on the page as a background. If an image is part of the content of the page, you
should use an tag. So if the page is a news article, and you’re including an
image to illustrate the article, the tag is appropriate. If you have a photo of a
landscape that you want to use to make the heading of your page more attractive,
it makes more sense to use CSS to include the image as a background in the
heading.

The reason for this rule is that it makes things easier for visually challenged users
who may be visiting a page using a screen reader. If you include your pretty header
image using the tag, the users’ screen readers will tell them about the image
on every page they visit. On the other hand, they probably would want to know about
the photo accompanying a news article.

Another simple rule is to think about what you would put in the alt attribute for an
image. If the alternate text is interesting or useful, you should use the tag.
If you can’t think of anything interesting to put in the alternate text for an image, it
probably should be a background for an element instead.

Using Images as Bullets
All the way back in Lesson 5, “Organizing Information with Lists,” you learned about

the list-style-image property, which enables you to use images as bullets for lists.

Specifying the image URL for bullets is the same as specifying the URL for background

images in CSS. The browser will substitute the default bullets with the image you spec-

ify. Here’s an example, the results of which are shown in Figure 9.17.

ptg16476052

Using Images as Bullets 225

9

Input ▼
<!DOCTYPE html>
<html>
 <head>
 <title>Southern Summer Constellations</title>
 <style type="text/css" media="screen">

ul {
list-style-image: url("Bullet.png");

}
 </style>
 </head>
 <body>
 <h1>Southern Summer Constellations</h1>

Canis Major
Cetus
Eridanus
Gemini
Orion
Perseus
Taurus

 </body>
</html>

Output ▼

You can also supply both the list-style-image and list-style-type properties so that

if the image is not found, the list will use the bullet style of your choosing.

FIGURE 9.17

A list that uses
images for bullets.

ptg16476052

226 LESSON 9: Using Images on Your Web Pages

What Is an Imagemap?
 Earlier in this lesson, you learned how to create an image that doubles as a link simply by

including the tag inside a link tag (<a>). In this way, the entire image becomes a

link.

In an imagemap, you can define regions of an image as links. You can specify that cer-

tain areas of a map link to various pages, as in Figure 9.18. Or you can create visual

metaphors for the information you’re presenting, such as a set of books on a shelf or a

photograph with a link from e ach person in the picture to a page with his or her biogra-

phy on it.

washington.html

minnesota.html

ohio.html

florida.htmlalaska.html

california.html

texas.html

HTML5 supports the <map> element for creating image maps. If you don’t want to use

the <map> tag, you can also use CSS to position links over an image and hide the contents

of those links, making it appear as though regions of an image are clickable. I discuss

both techniques in this lesson.

Getting an Image
To create an imagemap, you need an image (of course). This image will be the most use-

ful if it has several discrete visual areas that can be selected individually. For example,

use an image that contains several symbolic elements or that can be easily broken down

into polygons. Photographs generally don’t make good imagemaps because their various

elements tend to blend together or are of unusual shapes. Figures 9.19 and 9.20 show

examples of good and poor images for imagemaps.

FIGURE 9.18

Imagemaps: differ-
ent places, differ-
ent links.

ptg16476052

What Is an Imagemap? 227

9

Determining Your Coordinates
Imagemaps consist of two parts; the first is the image used for the imagemap. The second

is the set of HTML tags used to define the regions of the imagemap that serve as links.

To define these tags, you must determine the exact coordinates on your image that define

the regions you’ll use as links.

You can determine these coordinates either by sketching regions and manually noting

the coordinates or by using an imagemap creation program. The latter method is easier

because the program automatically generates a map file based on the regions you draw

with the mouse.

FIGURE 9.19

A good image for
an imagemap.

FIGURE 9.20

A not-so-good
image for an
imagemap.

ptg16476052

228 LESSON 9: Using Images on Your Web Pages

The Mapedit program for Windows, Linux, and Mac OS X can help you create client-

side imagemaps. You can find it online at http://www.boutell.com/mapedit/. In addition,

many of the latest WYSIWYG editors for HTML pages and web grap hics enable you to

generate imagemaps. There’s a web-based editor for imagemaps that you can try out at

http://www.image-maps.com/; it creates both imagemaps and the CSS equivalents.

If you must create your imagemaps by hand, here’s how. First, make a sketch of the

regions that will be active on your image. Figure 9.21 shows the three types o f shapes

that you can specify in an imagemap: circles, rectangles, and polygons.

A circular region A polygonal region

A rectangular region

You next need to determine the coordinates for the endpoints of those regions. Most

image-editing programs have an option that displays the coordinates of the current mouse

position. Use this feature to note the appropriate coordinates. (All the mapping programs

mentioned previously will create the <map> tag for you, but for now, following the steps

manually will help you better understand the processes involved.)

Defining a Polygon
Figure 9.22 shows the x,y coordinates of a polygon region. These values are based on

their positions from the upper-left corner of the image, which is coordinate 0,0. The first

number in the coordinate pair indicates the x value and defines the number of pixels from

the extreme left of the image. The second number in the pair indicates the y measurement

and defines the number of pixels from the top of the image.

FIGURE 9.21

Three types of
shapes are avail-
able for creating
imagemaps.

http://www.boutell.com/mapedit/
http://www.image-maps.com/

ptg16476052

What Is an Imagemap? 229

9

(0,0) (229,66)

(333,94)

(332,19)

(276,19)

(263,94)

Defining a Circle
Figure 9.23 shows how to get the coordinates for circles. Here you note the coordinates

for the center point of the circle and the radius, in pixels. The center point of the circle is

defined as the x,y coordinate from the upper-left corner of the image.

(0,0) Center (121,79)

Radius of circle=66 pixels

FIGURE 9.23

Getting the coordi-
nates for a circle.

The 0,0 origin is in the upper-left corner of the image, and posi-
tive y is down.

NOTE

FIGURE 9.22

Getting the coor-
dinates for a poly-
gon.

ptg16476052

230 LESSON 9: Using Images on Your Web Pages

Defining a Rectangle
Figure 9.24 shows how to obtain coordinates for rectangle regions. Note the x,y coordi-

nates for the upper-left and lower-right corners of the rectangle.

(0,0) Top Left (342,19)

Bottom right (440,318)

The <map> and <area> Tags
If you’re creating your imagemap manually and you’ve written down all the coordinates

for your regions and the URLs they’ll point to, you can include this information in the

client-side imagemap tags on a web page. To include a client-side imagemap inside an

HTML document, use the <map> tag, which looks like the following:

<map name="mapname"> coordinates and links </map>

The value assigned to the name attribute is the name of this map definition. This is the

name that will be used later to associate the clickable image with its corresponding coor-

dinates and hyperlink references. So, if you have multiple imagemaps on the same page,

you can have multiple <map> tags with different names.

Between the <map> and the </map> tags, enter the coordinates for each area in the image-

map and the destinations of those regions. The coordinates are defined inside yet another

new tag: the <area> tag. To define a rectangle, for example, you write the following:

<area shape="rect" coords="41,16,101,32" href="test.html">

The type of shape to be used for the region is declared by the shape attribute, which

can have the values rect, poly, circle, and default. The coordinates for each shape

FIGURE 9.24

Getting the coor-
dinates for a rect-
angle.

ptg16476052

What Is an Imagemap? 231

9

are noted using the coords attribute. For example, the coords attribute for a poly shape

appears as follows:

<area shape="poly" coords="x1,y1,x2,y2,x3,y3,...,xN,yN" href="URL">

Each x,y combination represents a point on the polygon. For rect shapes, x1,y1 is the

upper-left corner of the rectangle, and x2,y2 is the lower-right corner:

<area shape="rect" coords="x1,y1,x2,y2" href="URL">

For circle shapes, x,y represents the center of a circular region of size radius:

<area shape="circle" coords="x,y,radius" href="URL">

The default shape is different from the others—it doesn’t require coordinates to be spec-

ified. Instead, the link associated with the default shape is followed if the user clicks

anywhere on the image that doesn’t fall within another defined region.

Another attribute you need to define for each <area> tag is the href attribute. You can

assign href any URL you usually would associate with an <a> link, including relative

pathnames. In addition, you can assign href a value of "nohref" to define regions of the

image that don’t contain links to a new page.

If you’re using client-side imagemaps with frames, you can
include the target attribute inside an <area> tag to open a
new page in a specific window, as in this example:

<area shape="rect" coords="x1,y1,x2,y2" href="URL" target=
"window_name">

NOTE

You need to include one more attribute in HTML5. Earlier in this lesson, you learned

how to specify alternate text for images. In HTML5, the alt attribute is an additional

requirement for the <area> tag that displays a short description of a clickable area on a

client-side imagemap when you pass your cursor over it. Using the <area> example that I

cited, the alt attribute appears as shown in the following example:

<area shape="rect" coords="41,16,101,32" href="test.html" alt="test link">

The usemap Attribute
After you’ve created your <map> tag and defined the regions of your image using <area>

tags, the next step is to associate the map with the image. To do so, the usemap attribute

of the tag is used. The map name that you specified using the name attribute of the

ptg16476052

232 LESSON 9: Using Images on Your Web Pages

▼

<map> tag, preceded by a #, should be used as the value of the usemap attribute, as shown

in this example:

The value assigned to usemap is a standard URL. This is why
mapname has a pound symbol (#) in front of it. As with links to
anchors inside a web page, the pound symbol tells the browser to
look for mapname in the current web page. If you have a very com-
plex imagemap, however, you can store it in a separate HTML file
and reference it using a standard URL.

NOTE

Exercise 9.3: A Clickable Jukebox

Let’s take a look at how to create a client-side imagemap for a real image. In this exam-

ple, you’ll define clickable regions on an image of a jukebox. The image you’ll be using

appears in Figure 9.25.

First, define the regions that will be clickable on this image. There are six rectangular

buttons with musical categories on them, a center area that looks li ke a house, and a

 circle with a question mark inside it. Figure 9.26 shows regions on the image.

Now that you know where the various regions are, you need to find the exact coordinates

of the areas as they appear in your image. You can use a mapping program like Mapedit,

or you can do it manually. If you try it manually, it’s helpful to keep in mind that most

image-editing programs display the x and y coordinate of the image when you move the

mouse over it.

FIGURE 9.25

The jukebox image.

▼

ptg16476052

What Is an Imagemap? 233

9Polygon

Circle

Rectangle

Rectangle

FIGURE 9.26

The jukebox with
areas defined.

Getting Image Coordinates from the Browser

You don’t have an image-editing program? If you use Firefox as your browser, here’s
a trick: Create an HTML file with the image inside a link pointing to a fake file, and
include the ismap attribute inside the tag. You don’t need a real link; anything
will do. The HTML code might look something like the following:

When you load this into your browser, the image displays as if it were an imagemap.
When you move your mouse over it, the x and y coordinates appear in the status
line of the browser. Using this trick, you can find the coordinates for the map file of
any point on that image.

With regions and a list of coordinates, all you need are the web pages to jump to when

the appropriate area is selected. These can be documents, scripts, or anything else you

can call from a browser as a jump destination. For this example, I’ve created several doc-

uments and stored them inside the music directory on my web server. These are the pages

you’ll define as the end points when the clickable images are selected. Figure 9.27 identi-

fies each of the eight clickable areas in the imagemap. Table 9.1 shows the coordinates of

each and the URL that’s called up when it’s clicked.

TABLE 9.1 Clickable Areas in the Jukebox Image

Number Type URL Coordinates

1 rect music/classics.html 101,113,165,134

2 rect music/country.html 101,139,165,159

3 rect music/rockpop.html 101,163,165,183

▼

▼

ptg16476052

234 LESSON 9: Using Images on Your Web Pages

Number Type URL Coordinates

4 poly music/home.html 175,152,203,118

220,118,247,152

237,153,237,181

186,181,186,153

5 rect music/swing.html 259,113,323,134

6 rect music/jazz.html 259,139,323,159

7 rect music/gospel.html 259,163,323,183

8 circle music/help.html 379,152,21

5

1

8

2

3 4 7 6

For the jukebox image, the <map> tag and its associated <area> tags and attributes look

like the following:

<map name="jukebox">
<area shape="rect" coords="101,113, 165,134"
 href="/music/classics.html"
 alt="Classical Music and Composers">
<area shape="rect" coords="101,139, 165,159"
 href="/music/country.html"
 alt="Country and Folk Music">
<area shape="rect" coords="101,163, 165,183"
 href="/music/rockpop.html"
 alt="Rock and Pop from 50's On">
<area shape="poly" coords="175,152, 203,118, 220,118, 247,152,
 237,153, 237,181, 186,181, 186,153"
 href="code/music/home.html"
 alt="Home Page for Music Section">

FIGURE 9.27

Eight hot spots,
numbered as iden-
tified in Table 9.1.

▼

▼

ptg16476052

What Is an Imagemap? 235

9

<area shape="rect" coords="259,113, 323,134"
 href="/music/swing.html"
 alt="Swing and Big Band Music">
<area shape="rect" coords="259,139, 323,159"
 href="/music/jazz.html"
 alt="Jazz and Free Style">
<area shape="rect" coords="259,163, 323,183"
 href="/music/gospel.html"
 alt="Gospel and Inspirational Music">
<area shape="circle" coords="379,152, 21"
 href="/music/help.html"
 alt="Help">
</map>

The tag that refers to the map coordinates uses usemap, as follows:

Finally, put the whole thing together and test it. Here’s a sample HTML file for The

Really Cool Music Page with a client-side imagemap, which contains both the <map> tag

and the image that uses it:

Input ▼
<!DOCTYPE html>
<html>
<head>
<title>The Really Cool Music Page</title>
</head>
<body>
<div align="center">
<h1>The Really Cool Music Page</h1>
<p>Select the type of music you want to hear.

You'll go to a list of songs that you can select from.</p>
<p>

<map name="jukebox">
<area shape="rect" coords="101,113, 165,134"
 href="/music/classics.html"
 alt="Classical Music and Composers">
<area shape="rect" coords="101,139, 165,159"
 href="/music/country.html"
 alt="Country and Folk Music">
<area shape="rect" coords="101,163, 165,183"
 href="/music/rockpop.html"
 alt="Rock and Pop from 50's On">
<area shape="poly" coords="175,152, 203,118, 220,118, 247,152,
 237,153, 237,181, 186,181, 186,153"
 href="code/music/home.html"
 alt="Home Page for Music Section">

▼

▼

ptg16476052

236 LESSON 9: Using Images on Your Web Pages

<area shape="rect" coords="259,113, 323,134"
 href="/music/swing.html"
 alt="Swing and Big Band Music">
<area shape="rect" coords="259,139, 323,159"
 href="/music/jazz.html"
 alt="Jazz and Free Style">
<area shape="rect" coords="259,163, 323,183"
 href="/music/gospel.html"
 alt="Gospel and Inspirational Music">
<area shape="circle" coords="379,152, 21"
 href="/music/help.html"
 alt="Help">
</map></p>
<p>
Home |
Classics |
Country |
Rock/Pop |
Swing |
Jazz |
Gospel |
Help
</p>
</div>
</body>
</html>

Figure 9.28 shows the imagemap in a browser.

Output ▼

FIGURE 9.28

The finished Really
Cool Music Page
with client-side
imagemap.

▼

▲

ptg16476052

Summary 237

9

Image Etiquette
There are great images on sites all over the Web: cool icons, great photographs, excellent

line art, and plenty of other graphics, too. You might feel the temptation to link directly

to these images and include them on your own pages or save them to disk and then use

them. There are a number of reasons why it’s wrong to do so.

First of all, if you’re linking directly to images on another site, you’re stealing band-

width from that site. Every time someone requests your page, that person is also issuing

a request to the site where the image is posted and downloading the image from there. If

you get a lot of traffic, you can cause problems for the remote site.

The second reason is actually a problem regardless of how you use images from other

sites. If you don’t have permission to use an image on your site, you’re violating the

rights of the image’s creator. Copyright law protects creative work from use without per-

mission, and it’s granted to every creative work automatically.

The best course of action is to create your own images or look for images that are explic-

itly offered for free use by their creators. Even if images are made available for your use,

you should download them and store them with your web pages rather than linking to

them directly. Doing so prevents you from abusing the bandwidth of the person providing

the images.

Summary
In this lesson you learned to place images on your web pages. Those images are normally

in GIF, JPEG, PNG, or SVG format and should be small enough that they can be down-

loaded quickly over a slow link. You also learned that the HTML tag enables you

to put an image on a web page either inline with text or on a line by itself. The tag

has two primary attributes supported in standard HTML:

src The location and filename of the image to include.

alt A text string to substitute for the image in text-only browsers.

You can include images inside a link tag (<a>) to treat them as links. You also learned

how to display images on a page using CSS, as backgrounds for elements or as list

bullets.

ptg16476052

238 LESSON 9: Using Images on Your Web Pages

Workshop
Now that you know how to add images and color to your pages, you can really get cre-

ative. This workshop will help you remember some of the most important points about

using images on your pages.

Q&A
Q What are the differences between GIF, PNG, and JPEG images? Is there any

rule of thumb that defines when you should use one format rather than the
other?

 A JPEG images are best for photographic-quality or high-resolution 3D rendered

graphics because they can display true-color images to great effect. Most image-

editing programs enable you to specify how much to compress a JPEG image. The

size of the file decreases the more an image is compressed; however, compression

can also deteriorate the quality and appearance of the image if you go overboard.

You have to find just the right balance between quality and file size, and that can

differ from image to image.

 As a rule, you should use PNG (or GIF) for all images that are not photographs.

They both offer good compression, but PNG offers a number of advantages over

GIF, including support for palettes of more than 256 colors, and alpha-based trans-

parency. There’s no reason to convert existing GIFs to PNG, but if you are creating

new images, PNG is almost always the better choice.

 The one unique feature offered by GIFs is simple animation. Many sites are using

animated GIFs rather than video for some things these days because you don’t need

to worry about browser support, plug-ins, or any of the overhead associated with

web video if you just want to present an animated image.

Q My client-side imagemaps aren’t working. What’s wrong?

 A Make sure that the pathnames or URLs in your <area> tags point to real files. Also,

make sure the map name in the <map> file matches the name of the map in the

usemap attribute in the tag. Only the latter should have a pound sign in front

of it.

Q How can I create thumbnails of my images so that I can link them to larger
external images?

 A You’ll have to do that with some type of image-editing program (such as Adobe

Photoshop); the Web won’t do it for you. Just open up the image and scale it down

to the right size.

ptg16476052

Workshop 239

9

Q What about images that are partially transparent so that they are able to dis-
play the page background? They look like they sort of float on the page. How
do I create those?

 A This is another task you can accomplish with an image-editing program. Both GIF

and PNG support transparency. Most image-editing programs provide the capability

to create these types of images.

Q Can I put HTML tags in the string for the alt attribute?

 A That would be nice, wouldn’t it? Unfortunately, you can’t. All you can do is put an

ordinary string in there. Keep it simple, and you should be fine.

Quiz
1. What’s the most important attribute of the tag? What does it do?

2. If you see a funny-looking icon rather than an image when you view your page, the

image isn’t loading. What are some of the reasons this could happen?

3. Why is it important to use the alt attribute to display a text alternative to an

image? When is it most important to do so?

4. What is an imagemap?

5. Why is it a good idea to also provide text versions of links that you create on an

imagemap?

6. True or false: When you use the background shorthand property, the order of the

values is important.

Quiz Answers
1. The most important attribute of the tag is the src attribute. It indicates the

filename or URL of the image you want to include on your page.

2. Several things might cause an image not to load: The URL may be incorrect, the

filename might not be correct (they’re case sensitive), it might have the wrong file

extension, it might be the wrong type of file, or you might have forgotten to load

the image to the web server.

3. It’s a good idea to provide text alternatives with images because some people use

text-only browsers or have their graphics turned off. It’s especially important to

provide text alternatives for images used as links.

4. An imagemap is a special image in which different areas point to different locations

on the Web.

ptg16476052

240 LESSON 9: Using Images on Your Web Pages

5. It’s a good idea to include text versions of imagemap links in case there are users

who visit your page with text-only browsers or with images turned off. This way,

they can still follow the links on the web page and visit other areas of your website.

6. True. The property will only work if you enter the values in the proper order.

Exercises
1. Create or find some images that you can use as navigation icons or buttons on one

or more pages of your website. Remember that it’s always advantageous to use

images more than once. Create a simple navigation bar that you can use on the top

or bottom of each page.

2. Create or find some images that you can use to enhance the appearance of your

web pages. After you find some that you like, try to create background, text, and

link colors that are compatible with them.

3. Create and test a simple client-side imagemap that links to pages that reside in dif-

ferent subdirectories in a website or to other sites on the World Wide Web.

4. Create and test a client-side imagemap for your own home page or for the entry

page in one of the main sections of your website. Remember to include alternatives

for those who are using text-only browsers or browsers designed for the disabled .

ptg16476052

LESSON 10
Building Tables

So far in this book, you’ve used plain vanilla Hypertext Markup Language
(HTML) to build and position the elements on your pages, and you’ve
used Cascading Style Sheets (CSS) to fine-tune their appearance. Although
you can get your point across using paragraphs and lists, some informa-
tion lends itself best to being presented in tables. In this lesson, you
learn how to use HTML to create them.

When tables were officially introduced in HTML 3.2, they were commonly
used to lay out entire pages. More recently, that role has been taken over
by CSS. With the introduction of HTML 4 and later releases, new features
were added to enable tables to better perform their designated role: the
presentation of tabular data.

In this lesson, you’ll learn all about tables, including the following:

n Defining tables in HTML

n Creating captions, rows, and heading and data cells

n Modifying cell alignment

n Creating cells that span multiple rows or columns

n Adding color to tables

n Using tables in web pages

ptg16476052

242 LESSON 10: Building Tables

Creating Tables
Creating tables in HTML is a degree more complex than anything you’ve seen so far

in this book. Think about how many different types of tables there are. A table can be

a three-by-three grid with labels across the top, or two side-by-side cells, or a complex

Excel spreadsheet that comprises many rows and columns of various sizes. Representing

tables in HTML is heavy on tags, and the tags can be hard to keep track of when you get

going.

The basic approach with table creation is that you represent tabular data in a linear fash-

ion, specifying what data goes in which table cells using HTML tags. In HTML, tables

are created from left to right and top to bottom. You start by creating the upper-left cell

and finish with the bottom-right cell. This will all become clearer when you see some

actual table code .

Table Parts
Before getting into the actual HTML code to create a table, here are some table-related

terms you’ll see throughout this lesson:

n The caption indicates what the table is about: for example, “Voting Statistics,

1950–1994,” or “Toy Distribution Per Room at 1564 Elm St.” Captions are

optional.

n The table headings label the rows, columns, or both. Usually they’re in an empha-

sized font that’s different from the rest of the table. They’re optional.

n Table cells are the individual squares in the table. A cell can contain normal table

data or a table heading.

n Table data is the values in the table itself. The combination of the table headings

and table data makes up the sum of the table.

Figure 10.1 shows a typical table and its parts .

FIGURE 10.1

The elements that
make up a table.

ptg16476052

Table Parts 243

10

The <table> Element
All the components of a table are placed within a <table>...</table> element:

<table>
...table caption (optional) and contents...
</table>

Here’s the code that produces the table shown in Figure 10.1. Don’t be concerned if you

don’t know what all this means right now. For now, notice that the table starts with a

<table> tag and its attributes and ends with a </table> tag:

<table border="1">
<caption>Vital Statistics</caption>
 <tr>
 <th>Name</th>
 <th>Height</th>
 <th>Weight</th>
 <th>Eye Color</th>
 </tr>
 <tr>
 <td>Alison</td>
 <td>5'4"</td>
 <td>140</td>
 <td>Blue</td>
 </tr>
 <tr>
 <td>Tom</td>
 <td>6'0"</td>
 <td>165</td>
 <td>Hazel</td>
 </tr>
 <tr>
 <td>Susan</td>
 <td>5'1"</td>
 <td>97</td>
 <td>Brown</td>
 </tr>
</table >

Summarizing the Table
Previous versions of HTML before HTML5 required that tables be summarized within

the table. HTML5 removed this attribute in favor of describing tables more explicitly

within the page. Specifically, tables that might be difficult to understand or where the

headers are not in the first row or column should have explanatory information introduc-

ing the table. This summary should introduce the purpose of the table, explain the cell

structure, and teach the reader how the table will be used.

ptg16476052

244 LESSON 10: Building Tables

This information can be included in several ways, including the following:

n In a prose paragraph before the table

n In the table’s caption

n Inside a <details> element in the caption

n Next to the table in a figure or the figure’s caption

This is not required if your table is used for presentation.

Rows and Cells
Now that you’ve been introduced to the <table> element, we’ll move on to the rows and

cells. Inside the <table>...</table> element, you define the actual contents of the table.

Tables are specified in HTML row by row, and each row definition contains all the cells

in that row. So, to create a table, you start with the top row and then each cell in turn,

from left to right. Then you define a second row and its cells, and so on. The number of

columns is calculated based on how many cells there are in each row.

Each table row starts with the <tr> tag and ends with the closing </tr>. Your table can

have as many rows and columns as you like, but you should make sure that each row has

the same number of cells so that the columns line up.

The cells within each row are created using one of two elements:

n <th>...</th> elements are used for heading cells. Generally, browsers center the

contents of a <th> cell and render any text in the cell in boldface.

n <td>...</td> elements are used for data cells. td stands for table data.

Closing tags are not required for <th>, <td>, and <tr> tags. And
as long as your table data is clear without them, you can leave
them out. However, if you’re writing XHTML or your tables don’t
display correctly, you should include them. Most HTML editors
include them automatically.

NOTE

In this table example, the heading cells appear in the top row and are defined with the

following code:

<tr>
 <th>Name</th>
 <th>Height</th>
 <th>Weight</th>
 <th>Eye Color</th>
</tr>

ptg16476052

Table Parts 245

10

The top row is followed by three rows of data cells, which are coded as follows:

<tr>
 <td>Alison</td>
 <td>5'4"</td>
 <td>140</td>
 <td>Blue</td>
</tr>
<tr>
 <td>Tom</td>
 <td>6'0"</td>
 <td>165</td>
 <td>Blue</td>
</tr>
<tr>
 <td>Susan</td>
 <td>5'1"</td>
 <td>97</td>
 <td>Brown</td>
</tr>

As you’ve seen, you can place the headings along the top edge by defining the <th> ele-

ments inside the first row. Let’s make a slight modification to the table. You’ll put the

headings along the left edge of the table instead. To accomplish this, put each <th> in the

first cell in each row and follow it with the data that pertains to each heading. The new

code looks like the following:

Input ▼
<tr>
 <th>Name</th>
 <td>Alison</td>
 <td>Tom</td>
 <td>Susan</td>
</tr>
<tr>
 <th>Height</th>
 <td>5'4"</td>
 <td>6'0"</td>
 <td>5'1"</td>
</tr>
<tr>
 <th>Weight</th>
 <td>140</td>
 <td>165</td>
 <td>97</td>
</tr>
<tr>
 <th>Eye Color</th>

ptg16476052

246 LESSON 10: Building Tables

 <td>Blue</td>
 <td>Blue</td>
 <td>Brown</td>
</tr>

Figure 10.2 shows how this table is displayed in a browser .

Output ▼

Empty Cells
Both table heading cells and data cells can contain any text, HTML code, or both, includ-

ing links, lists, forms, images, and other tables. But what if you want a cell with nothing

in it? That’s easy. Just define a cell with a <th> or <td> element with nothing inside it:

Input ▼
<table border="1">
<tr>
 <td></td>
 <td>10</td>
 <td>20</td>
</tr>
</table>

Some older browsers display empty cells of this sort as if they don’t exist at all, leaving

off the borders. If you want to force a truly empty cell, you can add a line break with no

other text in that cell by itself:

Input ▼
<table border="1">
<tr>
 <td>
</td>

FIGURE 10.2

An example of a
table that includes
headings in the
leftmost column.

ptg16476052

Table Parts 247

10

 <td>10</td>
 <td>20</td>
</tr>
</table>

Captions
Table captions tell your visitor what the table is for. The <caption> element, created just

for this purpose, displays the text inside the tag as the table caption (usually centered

above the table). Although you could use a regular paragraph or a heading as a caption

for your table, tools that process HTML files can extract <caption> elements into a

separate file, automatically number them, or treat them in special ways simply because

they’re captions.

If you don’t want a caption, it’s optional. If your table is under-
standable without a caption or you have described it in some
other location, you can leave it off.

NOTE

The <caption> element goes inside the <table> element just before the table rows, and it

contains the title of the table. It closes with the </caption> tag:

<table>
<caption>Vital Statistics</caption>
<tr >

You can include details inside a caption to provide additional information about the table

that is hidden by default. When you include details, you need to also include a sum-

mary that acts as a title for the additional details. Chrome, Safari, and Opera all support

showing and hiding content with the <detail> and <summary> tags. You can use the

<details> and <summary> tags inside the <caption> tag:

<caption>
 <details>
 <summary>Vital Statistics</summary>

 <p>This table includes the name, height, and, weight of various employees.
</p>

 </details>
</caption>

Figure 10.3 shows a <detail> element that has been clicked on to show the hidden

content.

ptg16476052

248 LESSON 10: Building Tables

▼ Exercise 10.1: Creating a Simple Table

Now that you know the basics of how to create a table, try a simple example. You’ll

create a table that indicates the colors you get when you mix the three primary colors

together. Figure 10.4 shows the table you’re going to re-create in this example.

Here’s a quick hint for laying out tables: Because HTML defines tables on a row-by-row

basis, sometimes it can be difficult to keep track of the columns, particularly with com-

plex tables. Before you start actually writing HTML code, it’s useful to make a sketch of

your table so that you know the heads and the values of each cell. You might even find

that it’s easiest to use a word processor with a table editor (such as Microsoft Word) or

a spreadsheet to lay out your tables. Then, when you have the layout and the cell values ,

you can write the HTML code for that table. Eventually, if you do this enough, you’ll

think of these things in terms of HTML tags, whether you want to or not.

FIGURE 10.3

A visible details
area.

FIGURE 10.4

A simple color
table.

▼

ptg16476052

Table Parts 249

10

Start with a simple HTML framework for a page that contains a table. As with all HTML

files, you can create this file in any text editor:

<!doctype html>
<html>
 <head>
 <title>Colors</title>
 </head>
 <body>
 <table border="1">

<!-- ...add table rows and cells here... -->
 </table>
 </body>
</html>

Now start adding table rows inside the opening and closing <table> tags (where the line

<!-- ...add table rows and cells here... --> is). The first row is the three head-

ings along the top of the table. The table row is indicated by <tr> and each cell by a <th>

tag:

<tr>
 <th>Red</th>
 <th>Yellow</th>
 <th>Blue</th>
</tr>

▼

You can format the HTML code any way you want. As with all
HTML, the browser ignores most extra spaces and returns. I like
to format it like this, with the contents of the individual rows
indented and the cell elements on separate lines, so that I can
pick out the rows and columns more easily. But you will often see
tables condensed to just one line of HTML for each row of the
table to save space.

NOTE

Now add the second row. The first cell in the second row is the Red heading on the left

side of the table, so it will be the first cell in this row, followed by the cells for the table

data :

<tr>
 <th>Red</th>
 <td>Red</td>
 <td>Orange</td>
 <td>Purple</td>
</tr> ▼

ptg16476052

250 LESSON 10: Building Tables

Continue by adding the remaining two rows in the table, with the Yellow and Blue head-

ings. Here’s what you have so far for the entire table:

Input ▼
<table border="1">
<tr>
 <th>Red</th>
 <th>Yellow</th>
 <th>Blue</th>
</tr>
<tr>
 <th>Red</th>
 <td>Red</td>
 <td>Orange</td>
 <td>Purple</td>
</tr>
<tr>
 <th>Yellow</th>
 <td>Orange</td>
 <td>Yellow</td>
 <td>Green</td>
</tr>
<tr>
 <th>Blue</th>
 <td>Purple</td>
 <td>Green</td>
 <td>Blue</td>
</tr>
</table>

Finally, add a simple caption. The <caption> element goes just after the <table> tag and

just before the first <tr> tag:

<table border="1">
<caption>Mixing the Primary Colors</caption>
<tr>

With a first draft of the code in place, test the HTML file in your favorite browser that

supports tables. Figure 10.5 shows how it looks.

▼

▼

ptg16476052

Sizing Tables, Borders, and Cells 251

10

Output ▼

Oops! What happened with that top row? The headings are all messed up. The answer, of

course, is that you need an empty cell at the beginning of that first row to space the head-

ings out over the proper columns. HTML isn’t smart enough to match it all up for you.

(This is exactly the sort of error you’re going to find the first time you test your tables.)

Add an empty table heading cell to that first row. (Here, it’s the line <th></th>.)

Input ▼
<tr>
 <th></th>
 <th>Red</th>
 <th>Yellow</th>
 <th>Blue</th>
</tr>

FIGURE 10.5

The not-quite-
perfect color table.

I used <th> here, but it could be <td> just as easily. Because
there’s nothing in the cell, its formatting doesn’t matter.

NOTE

If you try it again, you should get the right result with all the headings over the right col-

umns, as the original example in Figure 10.4 shows .

Sizing Tables, Borders, and Cells
With the basics out of the way, now you’ll look at how you can change the overall

appearance of your tables. As with most other appearance features on web pages, you use

CSS to design how your tables should look.

▼

▲

ptg16476052

252 LESSON 10: Building Tables

Setting Table Widths
Tables determine widths differently than other elements in HTML. Rather than each ele-

ment taking up the full width of its container element, table elements only take up the

width their content uses, up to the full width of the container. This is very useful when

you’re working with CSS designs. You can set elements to display: table;, and they

will act more like a table cell, taking up only the space the content takes up.

But when working with actual tables, sometimes you might want more control over how

wide your tables and columns are, particularly if the defaults the content provides are

really strange. In this section, you’ll learn how to change the width of your tables and

columns.

The easiest way is to use the width property on the table itself. This defines how wide

the table will be on the page. The width property can have a value that is either the exact

width of the table (in pixels) or a percentage (such as 50% or 75%) of the current con-

tainer width, which can therefore change if the window or container element is resized.

You can also set the width property on your table cells, defining the width of each

column.

To make a table as wide as the browser window, you add the width property to the table,

as shown in the following line of code:

Input ▼
<table border="1" style="width: 100%;">

Figure 10.6 shows the result.

Output ▼

FIGURE 10.6

A table set to
100% width.

ptg16476052

Sizing Tables, Borders, and Cells 253

10

It’s nearly always a better idea to specify your table widths as percentages rather than as

specific pixel widths. Because you don’t know how wide the browser window will be,

using percentages allows your table to be reformatted to whatever width the browser is.

Using specific pixel widths might cause your table to run off the page. Also, if you make

your tables too wide using a pixel width, your pages might not print properly .

Changing Table Borders
The border attribute, which appears immediately inside the opening <table> tag, is the

most common attribute of the <table> element. With it, you specify whether border lines

are displayed around the table. This also serves as an indicator of the type of content the

table contains. But this attribute is nonconforming in HTML5. This means that if you use

it, your HTML isn’t 100% correct.

In HTML4, it was incorrect to use tables for layout, but many people continued to do so

because they were easier to visualize and understand than many of the CSS methods for

layout. So, HTML5 made it valid again, but with a few rules.

Tables are bad for layout because they are not accessible. They can be difficult for assis-

tive technology to read correctly, but with a few tweaks, you can adjust your tables to use

them for layout. If you use one or more of the following features, you are indicating that

your table is probably a layout table and does not contain tabular data:

n Use the role attribute with the value presentation.

n Use the border attribute with a value of 0.

n Use the nonconforming cellspacing or cellpadding attributes with the value of 0.

By using the caption tag and the border="1" attribute, we are indicating that our table is

almost certainly a nonlayout table and contains tabular data.

If you make your table too narrow for whatever you put in it, the
browser will ignore your settings and make the table as wide as
it needs to be to display the content unless you use the CSS
overflow property to specify otherwise. The overflow property was
discussed in Lesson 8, “Using CSS to Style a Site.”

CAUTION

ptg16476052

254 LESSON 10: Building Tables

You can change the width of the border around the table by changing the number value

in the border attribute. Figure 10.7 shows a table that has a border width of 10 pixels.

The table and border definition looks like this :

Input ▼
<table border="10" style="width:100%;">

Output ▼

You can also adjust the borders around your tables using CSS, with much finer control

than the border attribute provides.

You learned about borders in Lesson 8, but there’s more to them when it comes to tables.

For example, if you write a table like the one that follows, it will have a border around

the outside, but no borders around the cells:

<table style="border: 1px solid red;">
 <!-- Table rows and cells go here. -->
</table>

To draw borders around all the cells in a table (the way the border attribute does), the

easiest way is to use a style sheet like this:

<style>
table { border: 1px solid black; }

FIGURE 10.7

A table with the
border width set to
10 pixels.

You really should avoid using tables for layout. Even if you use
the previously mentioned indicators, they are still difficult for
screen readers and other assistive devices to read. This book
provides information on how to use CSS for layout in Lesson 15,
“Advanced CSS: Page Layout with CSS.”

NOTE

ptg16476052

Sizing Tables, Borders, and Cells 255

10

td, th { border: 1px solid black; }
</style>

If I applied that style sheet to the vital statistics table used in the previous example, it

would appear as it does in Figure 10.8.

As you can see, there are gaps between the borders on each cell for this table. To fix this,

we need to use the CSS border-collapse property on the table element. It has two pos-

sible values, separate and collapse. The default is separate, it produces the result you

see in Figure 10.8. The style sheet that follows shows how to apply it:

<style>
table {
 border: 1px solid black;
 border-collapse: collapse;
}
td, th {
 border: 1px solid black;
}
</style>

Figure 10.9 shows the results.

FIGURE 10.8

A table with cell
borders applied
using CSS.

FIGURE 10.9

A table that uses
the border-
collapse property
to eliminate space
between cells.

ptg16476052

256 LESSON 10: Building Tables

Cell Padding
The cell padding attribute defines the amount of space between the edges of the cells and

the content inside a cell. By default, many browsers draw tables with a cell padding of

two pixels. You can add more space by adding the nonconforming cellpadding attribute

to the <table> element, with a value in pixels for the amount of cell padding you want.

Here’s the revised code for your <table> element, which increases the cell padding to 10

pixels. Figure 10.10 shows the result.

Input ▼
<table cellpadding="10" border="1">

Output ▼

A cellpadding attribute with a value of 0 causes the edges of the cells to touch the edges

of the cell’s contents. This doesn’t look good when you’re presenting text, but it can

prove useful in other situations .

FIGURE 10.10

A table with the
cell padding set to
10 pixels.

The tables that I used for these examples included the border
attribute to create a border. If you apply table borders using
CSS, they will override the border attribute, so you don’t need
to remove it. This can be helpful because primitive browsers
(including the browsers on some mobile phones) don’t offer
CSS support, and including the border attribute will ensure that
borders are still displayed. It also, as mentioned previously,
indicates that your table is a data table rather than a layout table.

NOTE

ptg16476052

Sizing Tables, Borders, and Cells 257

10

You can also specify the padding of a table cell using the padding property in CSS. The

advantages of doing so are that you can specify the padding for the top, left, right, and

bottom separately, and you can specify different padding amounts for different cells of

the table if you choose to do so. For example, you can set the padding of header cells to

10 pixels on the top and 5 pixels on the sides and bottom and then set the padding to four

pixels on all four sides for regular table cells. This is also the valid HTML5 method of

defining padding for table cells.

To create the table in Figure 10.10 with CSS, you add the style sheet:

Input ▼
table {
 border: 1px solid black;
}
td, th {
 border: 1px solid black;
 padding: 10px;
}

Cell Spacing
Cell spacing is similar to cell padding except that it affects the amount of space between

cells—that is, the width of the space between the inner and outer lines that make up the

table border. The nonconforming cellspacing attribute of the <table> element affects

the spacing for the table. Cell spacing is two pixels by default.

Cell spacing also includes the outline around the table, which is just inside the table’s

border (as set by the border attribute). Experiment with it, and you can see the differ-

ence. For example, Figure 10.11 shows our table with cell spacing of 8 and a border of 4,

as shown in the following code :

Input ▼
<table border="4" cellspacing="8" cellpadding="10">

ptg16476052

258 LESSON 10: Building Tables

Output ▼

The CSS equivalent of the cellspacing attribute is the border-spacing property, which

must be applied to the table. To use it, the border-collapse property must not be set to

collapse, as it eliminates cell spacing. border-spacing is slightly different than padding.

With padding, you can specify the padding for all four sides of an element. border-

spacing takes one or two values. If one value is specified, it is used for all four sides of

each cell. If two are specified, the first sets the horizontal spacing and the second sets the

vertical spacing. The table in Figure 10.12 uses the following style sheet, which sets the

cell padding for each cell to 5 pixels and sets the cell spacing for the table to 10 pixels

horizontally and 5 pixels vertically:

<style>
table {

border-collapse: separate;
border-spacing: 10px 5px;

}

td, th {
 border: 1px solid black;

padding: 5px;
}
</style>

FIGURE 10.11

How increased cell
spacing looks.

FIGURE 10.12

Using CSS to spec-
ify cell spacing and
cell padding.

ptg16476052

Sizing Tables, Borders, and Cells 259

10

Column Widths
You also can apply the width property to individual cells (<th> or <td>) to indicate the

width of columns in a table. As with table widths, discussed earlier, you can make the

width property in cells an exact pixel width or a percentage (which is taken as a percent-

age of the full table width). As with table widths, using percentages rather than specific

pixel widths is a better idea because it allows your table to be displayed regardless of the

window size.

Column widths are useful when you want to have multiple columns of identical widths,

regardless of their contents (for example, for some forms of page layout).

Figure 10.13 shows your original table from Figure 10.1. This time, however, the table

spans 100% of the screen’s width. The first column is 40% of the table width, and the

remaining three columns are 20% each.

To accomplish this, the column widths are applied to the heading cells as follows:

Input ▼
<table border="1" style="width:100%;">
<caption>Vital Statistics</caption>
<tr>
 <th style="width:40%;">Name</th>
 <th style="width:20%;">Height</th>
 <th style="width:20%;">Weight</th>
 <th style="width:20%;">Eye Color</th>
 </tr>
</table>

Output ▼

What happens if you have a table that spans 80% of the screen, and it includes the same

header cells (40%, 20%, 20%, and 20%) as in the preceding example? Revise the code

FIGURE 10.13

A table with manu-
ally set column
widths.

ptg16476052

260 LESSON 10: Building Tables

slightly, changing the width of the entire table to 80%, as shown in Figure 10.14. When

you open the new table in your browser, you’ll see that the table now spans 80% of the

width of your screen. The four columns still span 40%, 20%, 20%, and 20% of the table.

To be more specific, the columns span 32%, 16%, 16%, and 16% of the entire screen

width:

Input ▼
<table border="1" style="width:80%;">
<caption>Vital Statistics</caption>
<tr>
 <th width="40%">Name</th>
 <th width="20%">Height</th>
 <th width="20%">Weight</th>
 <th width="20%">Eye Color</th>
 </tr>
</table>

Output ▼

If you are going to specify cell widths, make sure to specify the widths for cells only on

one row or to the same values for every row. If you specify more than one value for the

width of a column (by specifying different values on multiple rows of a table), there’s no

good way to predict which one the browser will use .

Table and Cell Color
After you have your basic table layout with rows, headings, and data, you can start refin-

ing how that table looks. You can refine tables in a couple of ways. One way is to add

color to borders and cells.

FIGURE 10.14

A modified table
with manually set
column widths.

ptg16476052

Table and Cell Color 261

10

This is how you change the background color of a table, a row, or a cell inside a row.

You use the background-color property or the background property . You can use the

style attribute in the <th> and <td> elements, just as you can in other elements.

Also, if you change the color of a cell, don’t forget to change the color of the text inside

it so that you can still read it.

Here’s an example of changing the background and cell colors in a table. I’ve created

a checkerboard using an HTML table. The table itself is white, with alternating cells in

black. The checkers (here, red and black circles) are images. In the source code, I’ve used

the background-color property on a class attribute to set background colors for some of

the cells :

Input ▼
<!DOCTYPE html>
<html>
<head>
<title>Checkerboard</title>
<style>
 table {
 width: 50%;
 background-color:#ffffff;
 }
 tr {
 text-align: center;
 }
 td {
 width: 33%;
 }
 td.black {
 background-color: #000000;
 }
</style>
</head>
<body>
<table>
 <tr>
 <td class="black"></td>
 <td></td>
 <td class="black"></td>
 </tr>

 <tr align="center">
 <td></td>
 <td class="black">
</td>
 <td></td>
 </tr>

ptg16476052

262 LESSON 10: Building Tables

 <tr align="center">
 <td class="black">
</td>
 <td></td>
 <td class="black">
</td>
 </tr>
</table>
</body>
</html>

Figure 10.15 shows the result .

Output ▼

FIGURE 10.15

Table cell colors.

DO test your tables with various
sizes of browser windows and mobile
devices to make sure they look okay.

DO increase the padding in your table
cells to make them more readable.

DON’T use tables just to put borders
around elements on a page; use CSS.

DON’T use tables just to apply a back-
ground color to an element; use CSS
instead.

DON’T use tables for layout.

 DO DON’T

Aligning Your Table Content
Another enhancement that you can make to your tables is to adjust the alignment of

their content. The text-align CSS property aligns content horizontally, whereas the

vertical-align property aligns content vertically, and of course, you can use CSS

properties to accomplish the same things, too. The following sections describe how to use

these attributes in tables.

ptg16476052

Aligning Your Table Content 263

10

Table Alignment
By default, tables are displayed on a line by themselves along the left side of the page,

with any text above or below the table. However, you can use the float style property

to float tables along the left or right margins and wrap text alongside them the same way

you can with images.

float: left; aligns the table along the left margin, and all text following that table is

wrapped in the space between that table and the right side of the page. float: right;

does the same thing, with the table aligned to the right side of the page.

In the example shown in Figure 10.16, a table that spans 70% of the width of the page is

aligned to the left with the following code:

<table border="1" style="width: 70%; float: left;">

As you can see from the screenshot, one problem with wrapping text around tables is that

HTML has no provision for creating margins that keep the text and the image from jam-

ming right up next to each other. That problem can be addressed by applying a margin to

the table using CSS.

As with images, you can use the line break element with the clear attribute to stop wrap-

ping text alongside a table. Centering tables is slightly more difficult. Instead of using the

float property, you need to set the margin-right and margin-left properties to auto.

As long as the table has an explicit width set, it will be positioned in the center of the

screen horizontally:

<table border="1" style="width: 70%; margin-right: auto; margin-left: auto;">

FIGURE 10.16

A table with text
alongside it.

ptg16476052

264 LESSON 10: Building Tables

Cell and Caption Alignment
After you have your rows and cells in place inside your table and the table is properly

aligned on the page, you can align the captions and the data within each cell for the best

effect, based on what your table contains. You can align the data within your cells both

horizontally and vertically. Figure 10.17 shows a table of the various alignment options.

Horizontal alignment (the text-align property) defines whether the data within a cell is

aligned with the left cell margin (left), the right cell margin (right), or centered within

the two (center).

Vertical alignment (the vertical-align property) defines the vertical alignment of the

data within the cell: flush with the top of the cell (top), flush with the bottom of the cell

(bottom), or vertically centered within the cell (middle). You can also use vertical-

align: baseline;, which is similar to vertical-align: top; except that it aligns the

baseline of the first line of text in each cell. (Depending on the contents of the cell, this

might or might not produce a different result than vertical-align: top;.)

By default, heading cells are centered both horizontally and vertically, and data cells are

centered vertically but aligned flush left. Captions are centered horizontally, and if your

caption has a height, the contents will be aligned at the top vertically.

You can override the defaults for an entire row by adding the text-align or vertical-

align properties to the <tr> element, as in the following:

<tr style="text-align: right; vertical-align: middle;">

FIGURE 10.17

Aligned content
within cells.

ptg16476052

Aligning Your Table Content 265

10

You can override the row alignment for individual cells by adding align to the <td> or

<th> elements:

<tr style="text-align: center; vertical-align: top;">
 <td>14</td>
 <td>16</td>
 <td style="text-align:left;">No Data</td>
 <td>15</td>
</tr>

The following input and output example shows the various cell alignments and how they

look (see Figure 10.18). I’ve added a style sheet that sets the cell heights to 100 pixels to

make the vertical alignments easier to see:

Input ▼
<!DOCTYPE html>
<html>
<head>
<title>Cell Alignments</title>
 <style>

td { height: 100px; }
 </style>
</head>
<body>
<table border="1" style="padding: 8px; width: 100%;">
 <tr>
 <th>
</th>
 <th>Left</th>
 <th>Centered</th>
 <th>Right</th>
 </tr>

 <tr>
 <th>Top</th>
 <td style="text-align: left; vertical-align: top;"><img src="star.png" alt=""
/></td>
 <td style="text-align: center; vertical-align: top;"><img src="star.png"
alt="" /></td>
 <td style="text-align: right; vertical-align: top;"><img src="star.png"
alt="" /></td>
 </tr>

 <tr>
 <th>Centered</th>
 <td style="text-align: left; vertical-align: middle;"><img src="star.png"
alt="" /></td>
 <td style="text-align: center; vertical-align: middle;"><img src="star.png"
alt="" /></td>

ptg16476052

266 LESSON 10: Building Tables

 <td style="text-align: right; vertical-align: middle;"><img src="star.png"
alt="" /></td>
 </tr>

 <tr>
 <th>Bottom</th>
 <td style="text-align: left; vertical-align: bottom;"><img src="star.png"
alt="" /></td>
 <td style="text-align: center; vertical-align: bottom;"><img src="star.png"
alt="" /></td>
 <td style="text-align: right; vertical-align: bottom;"><img src="star.png"
alt="" /></td>
 </tr>
</table>
</body>
</html>

Output ▼

Spanning Multiple Rows or Columns
The tables you’ve created up to this point all had one value per cell or the occasional

empty cell. You also can create cells that span multiple rows or columns within the table.

Those spanned cells then can hold headings that have subheadings in the next row or col-

umn, or you can create other special effects within the table layout. Figure 10.19 shows a

table with spanned columns and rows.

FIGURE 10.18

A matrix of cell
alignment settings.

ptg16476052

Spanning Multiple Rows or Columns 267

10

This cell spans
two rows

This cell spans rows and two columns

This cell spans two columns

To create a cell that spans multiple rows or columns, you add the rowspan or colspan

attribute to the <th> or <td> elements, along with the number of rows or columns you

want the cell to span. The data within that cell then fills the entire width or length of the

combined cells, as in the following example:

Input ▼
<!DOCTYPE html>
<html>
<head>
<title>Row and Column Spans</title>
</head>
<body>
<table border="1">
 <tr>
 <th colspan="2">Gender</th>
 </tr>

 <tr>
 <th>Male</th>
 <th>Female</th>
 </tr>

 <tr>
 <td>15</td>
 <td>23</td>
 </tr>
</table>
</body>
</html>

Figure 10.20 shows how this table might appear when displayed.

FIGURE 10.19

Using span set-
tings to alter table
layout.

ptg16476052

268 LESSON 10: Building Tables

Output ▼

Note that if a cell spans multiple rows, you don’t have to redefine it as empty in the next

row or rows. Just ignore it and move to the next cell in the row. The span fills in the spot

for you.

Cells always span downward and to the right. To create a cell that spans several columns,

you add the colspan attribute to the leftmost cell in the span. For cells that span rows,

you add rowspan to the topmost cell.

The following input and output example shows a cell that spans multiple rows (the cell

with the word Piston in it). Figure 10.21 shows the result.

Input ▼
<!DOCTYPE html>
<html>
<head>
<title>Ring Clearance</title>
</head>
<body>
<table border="1">
 <tr>
 <th colspan="2"> </th>
 <th>Ring

Clearance</th>
 </tr>

 <tr style="text-align: center;">
 <th rowspan="2">Piston</th>
 <th>Upper</th>
 <td>3mm</td>
 </tr>

 <tr style="text-align: center;">
 <th>Lower</th>

FIGURE 10.20

Using span set-
tings to widen a
column.

ptg16476052

Spanning Multiple Rows or Columns 269

10

▼

 <td>3.2mm</td>
 </tr>
</table>
</body>
</html >

Output ▼

Exercise 10.2: A Table of Service Specifications

Had enough of tables yet? Let’s do another example that takes advantage of everything

you’ve learned here: tables that use colors, headings, normal cells, alignments, and col-

umn and row spans. This is a very complex table, so we’ll go step by step, row by row,

to build it.

Figure 10.22 shows the table, which indicates service and adjustment specifications from

the service manual for a car.

FIGURE 10.21

Cells that span
multiple rows and
columns.

FIGURE 10.22

The really complex
service specifica-
tion table.

▼

ptg16476052

270 LESSON 10: Building Tables

There are actually five rows and columns in this table. Do you see them? Some of them

span columns and rows. Figure 10.23 shows the same table with callouts drawn over it so

that you can see where the rows and columns are.

With tables such as this one that use many spans, it’s helpful to draw this sort of grid to

figure out where the spans are and in which row they belong. Remember, spans start at

the topmost row and the leftmost column.

Column 1

Row 1

Column 2

Column 3

Column 4

Column 5

Row 2 Row 3 Row 5Row 4

Ready? Start with the framework, just as you have for the other tables in this lesson :

<!DOCTYPE html>
<html>
 <head>
 <title>Service Data</title>
 </head>
 <body>
 <table border="1">

<caption>Drive Belt Deflection</caption>
 </table>
 </body>
</html>

To enhance the appearance of the table, make all the cells light yellow (#ffffcc) by

using the background-color property. The border will be increased in size to 5 pixels,

and you’ll color it deep gold (#cc9900) by using the border property. You’ll make

the rules between cells appear solid by using a cellspacing setting of 0 and increase

the whitespace between the cell contents and the borders of the cells by specifying a

cellpadding setting of 5. The new table definition now looks like the following:

<table border="1" style="background-color: #ffffcc; border: 5px solid #cc9900;
border-collapse: collapse;">

FIGURE 10.23

Five columns, five
rows.

▼

▼

ptg16476052

Spanning Multiple Rows or Columns 271

10

You should also adjust the padding on all the table cells and headers. The quickest way is

with a style sheet:

<style>
 th, td { padding: 5px; }
</style>

Now create the first row. With the grid on your picture, you can see that the first cell is

empty and spans two rows and two columns (see Figure 10.24). Therefore, the HTML for

that cell would be as follows:

<tr>
<th rowspan="2" colspan="2"></th>

The second cell in the row is the Used Belt Deflection heading cell, which spans two col-

umns (for the two cells beneath it). The code for that cell is as follows :

<th colspan="2">Used Belt Deflection</th>

Now that you have two cells that span two columns each, there’s only one left in this

row. However, this one, like the first one, spans the row beneath it:

<th rowspan="2">Set deflection of new belt</th>
</tr>

Now go on to the second row. This isn’t the one that starts with the Alternator heading.

Remember that the first cell in the previous row has a rowspan and a colspan of two,

meaning that it bleeds down to this row and takes up two cells. You don’t need to

FIGURE 10.24

The first cell.

▼

▼

ptg16476052

272 LESSON 10: Building Tables

redefine it for this row. You just move on to the next cell in the grid. The first cell in this

row is the Limit heading cell, and the second cell is the Adjust Deflection heading cell:

<tr>
 <th>Limit</th>
 <th>Adjust Deflection</th>
</tr>

What about the last cell? Just like the first cell, the cell in the row above this one had a

rowspan of 2, which takes up the space in this row. The only values you need for this row

are the ones you already defined.

Are you with me so far? Now is a great time to try this out in your browser to make

sure that everything is lining up. It’ll look kind of funny because you haven’t really put

anything on the left side of the table yet, but it’s worth a try. Figure 10.27 shows what

you’ve got so far.

Next row! Check your grid if you need to. Here, the first cell is the heading for

Alternator, and it spans this row and the one below it:

<tr>
 <th rowspan="2">Alternator</th>

Are you getting the hang of this yet?

The next three cells are pretty easy because they don’t span anything. Here are their defi-

nitions:

<td>Models without AC</td>
<td>10mm</td>
<td>5-7mm</td>

The last cell in this row is just like the first one:

<td rowspan="2">5-7mm</td>
</tr>

FIGURE 10.25

The table so far.

▼

▼

ptg16476052

Spanning Multiple Rows or Columns 273

10

You’re up to row number four. In this one, because of the rowspans from the previous

row, there are only three cells to define: the cell for Models with AC, and the two cells

for the numbers :

<tr>
 <td>Models with AC</td>
 <td>12mm</td>
 <td>6-8mm</td>
</tr>

▼

In this table, I’ve made the Alternator cell a heading cell and the
AC cells plain data. This is mostly an aesthetic decision on my
part. I could have made all three into headings just as easily.

NOTE

Now for the final row—this one should be easy. The first cell (Power Steering Oil Pump)

spans two columns (the one with Alternator in it and the with/without AC column). The

remaining three are just one cell each:

<tr>
 <th colspan="2">Power Steering Oil Pump</th>
 <td>12.5mm</td>
 <td>7.9mm</td>
 <td>6-8mm</td>
</tr>

That’s it. You’re done laying out the rows and columns. That was the hard part. The rest

is just fine-tuning. Try looking at it again to make sure there are no strange errors (see

Figure 10.26).

FIGURE 10.26

The table with the
data rows included.

▼

ptg16476052

274 LESSON 10: Building Tables

Now that you have all the rows and cells laid out, adjust the alignments within the cells.

The numbers should be centered, at least. Because they make up the majority of the table,

center the default alignment for each row:

<tr style="text-align: center;">

The labels along the left side of the table (Alternator, Models with/without AC, and

Power Steering Oil Pump) look funny if they’re centered, however, so left-align them

using the following code:

<th rowspan="2" style="text-align: left;">Alternator</th>
<td style="text-align: left;">Models without AC</td>
<td style="text-align: left;">Models with AC</td>
<th colspan="2" style="text-align: left;">Power Steering Oil Pump</th>

I’ve put some line breaks in the longer headings so that the columns are a little narrower.

Because the text in the headings is pretty short to start with, I don’t have to worry too

much about the table looking funny if it gets too narrow. Here are the lines I modified :

<th rowspan="2">Set
deflection
of new belt</th>
<th>Adjust
Deflection</th>

For one final step, you’ll align the caption to the left side of the table:

<caption style="text-align: left;">Drive Belt Deflection</caption>

Voilà—the final table, with everything properly laid out and aligned! Figure 10.27 shows

the final result.

FIGURE 10.27

The final Drive Belt
Deflection table.

▼

If you got lost at any time, the best thing you can do is pull out
your handy text editor and try it yourself, following along tag by
tag. After you’ve done it a couple of times, it becomes easier.

TIP

▼

ptg16476052

Spanning Multiple Rows or Columns 275

10

Here’s the full text for the table example:

<!DOCTYPE html>
<html>
 <head>
 <title>Service Data</title>
 <style>

th, td { padding: 5px; }
 </style>
 </head>
 <body>
 <table border="1" style="background-color: #ffffcc; border: 5px solid
#cc9900;

border-collapse: collapse;">
<caption style="text-align: left;">Drive Belt Deflection</caption>
<tr style="text-align: center;">
<th rowspan="2" colspan="2"></th>
<th colspan="2">Used Belt Deflection</th>
<th rowspan="2">Set
deflection
of new belt</th>

</tr>
<tr style="text-align: center;">
<th>Limit</th>
<th>Adjust
Deflection</th>

</tr>
<tr style="text-align: center;">
<th rowspan="2" style="text-align: left;">Alternator</th>
<td style="text-align: left;">Models without AC</td>
<td>10mm</td>
<td>5-7mm</td>
<td rowspan="2">5-7mm</td>

</tr>
<tr style="text-align: center;">
<td style="text-align: left;">Models with AC</td>
<td>12mm</td>
<td>6-8mm</td>

</tr>
<tr style="text-align: center;">
<th colspan="2" style="text-align: left;">Power Steering Oil Pump</th>
<td>12.5mm</td>
<td>7.9mm</td>
<td>6-8mm</td>

</tr>
 </table>
 </body>
</html>

▼

Under normal circumstances, avoid the use of the style attribute and
instead use a style sheet for the page and apply classes where neces-
sary to style your table. Using the style attribute is the least efficient
way to apply styles to a page, but it makes the example more readable.

NOTE

▲

ptg16476052

276 LESSON 10: Building Tables

More Advanced Table Enhancements
Tables are laid out row by row, but HTML also provides some elements that enable you

to group cells into columns and modify their properties. There are also elements that

enable you to group the rows in tables so that you can manage them collectively.

Grouping and Aligning Columns
Sometimes it’s helpful to be able to apply styles to the columns in your tables rather than

applying them to individual cells or to rows. To do so, you need to define the columns in

your table with the <colgroup> and <col> elements.

The <colgroup>...</colgroup> element is used to enclose one or more columns in a

group. The closing </colgroup> tag is optional in HTML. This element has one attribute:

n span defines the number of columns in the column group. Its value must be an

integer greater than 0. If span isn’t defined, the <colgroup> element defaults to a

column group that contains one column. If the <colgroup> element contains one or

more <col> elements (described later), however, the span attribute is ignored.

Suppose that you have a table that measures 450 pixels in width and contains six col-

umns. You want each of the six columns to be 75 pixels wide. The code looks something

like the following:

<table border="1" style="width: 450px;">
 <colgroup span="6" style="width: 75px;"></colgroup>
</table>

Now you want to change the columns. Using the same 450-pixel-wide table, you make

the first two columns 25 pixels wide and the last four columns 100 pixels wide. This

requires two <colgroup> elements , as follows :

<table border="1" style="width: 450px;">
 <colgroup span="2" style="width:25px;"></colgroup>
 <colgroup span="4" style="width:100px;"></colgroup>

What if you don’t want all the columns in a column group to be the same width or

have the same appearance? That’s where the <col> element comes into play. Whereas

<colgroup> defines the structure of table columns, <col> defines their attributes. To use

this element, begin the column definition with a <col> tag. The end tag is forbidden in

this case.

Going back to your 450-pixel-wide table, you now want to make the two columns in the

first column group 75 pixels wide. In the second column group, you have columns of 50,

ptg16476052

More Advanced Table Enhancements 277

10

75, 75, and 100 pixels, respectively. Here’s how you format the second column group

with the <col> tag:

<table border="1" style="width: 450px;">
 <colgroup span="2" style="width:75px;">
 <colgroup span="4" style="width:100px;">
 <col span="1" style="width:50px;">
 <col span="2" style="width: 75px;">
 <col span="1" style="width: 100px;">
 </colgroup>

You can affect more than the width of your columns. You can add any style to the

colgroup and col elements, and that will be applied to the columns they span. For

example, you could change the background color:

<colgroup span="2" style="background-color: #ffffcc;">

Now apply this to some real code. The following example shows a table that displays

science and mathematics class schedules. Start by defining a table that has a 1-pixel-wide

border and spans 100% of the browser window width.

Next, you define the column groups in the table. You want the first column group to

display the names of the classes. The second column group consists of two columns that

display the room number for the class, as well as the time that the class is held. The first

column group consists of one column of cells that spans 20% of the entire width of the

table. The contents of the cell are aligned vertically toward the top and centered hori-

zontally. The second column group consists of two columns, each spanning 40% of the

width of the table. Their contents are vertically aligned to the top of the cells. To further

illustrate how colgroup works, I use the style attribute and background-color property

to set each of the column groups to have different background colors.

Finally, you enter the table data the same way that you normally do. Here’s what the

complete code looks like for the class schedule, and the results are shown in Figure

10.28 :

Input ▼
<!DOCTYPE html>
<html>
<head>
<title>Grouping Columns</title>
</head>
<body>
<table border="1" style="width: 100%;">
 <caption>Science and Mathematic Class Schedules</caption>

ptg16476052

278 LESSON 10: Building Tables

 <colgroup style="width: 20%; text-align: center; vertical-align: top;
background-color: #fcf;">
 <colgroup span="2" style="width: 40%; vertical-align: top; background-color:
#ccf;">

 <tr>
 <th>Class</th>
 <th>Room</th>
 <th>Time</th>
 </tr>

 <tr>
 <td>Biology</td>
 <td>Science Wing, Room 102</td>
 <td>8:00 AM to 9:45 AM</td>
 </tr>

 <tr>
 <td>Science</td>
 <td>Science Wing, Room 110</td>
 <td>9:50 AM to 11:30 AM</td>
 </tr>

 <tr>
 <td>Physics</td>
 <td>Science Wing, Room 107</td>
 <td>1:00 PM to 2:45 PM</td>
 </tr>

 <tr>
 <td>Geometry</td>
 <td>Mathematics Wing, Room 236</td>
 <td>8:00 AM to 9:45 AM</td>
 </tr>

 <tr>
 <td>Algebra</td>
 <td>Mathematics Wing, Room 239</td>
 <td>9:50 AM to 11:30 AM</td>
 </tr>

 <tr>
 <td>Trigonometry</td>
 <td>Mathematics Wing, Room 245</td>
 <td>1:00 PM to 2:45 PM</td>
 </tr>

 <tr>
 <th>Class</th>
 <th>Room</th>
 <th>Time</th>

ptg16476052

More Advanced Table Enhancements 279

10

 </tr>
</table>
</body>
</html>

Output ▼

Grouping and Aligning Rows
Now that you know how to group and format columns, let’s turn to the rows. You can

group the rows of a table into three sections: table heading, table footer, and table body.

You can modify CSS properties to emphasize the table heading and table footer and give

the body of the table a different appearance.

The table header, footer, and body sections are defined by the <thead>, <tfoot>, and

<tbody> elements, respectively. Each of these elements must contain the same number of

columns.

The <thead>...</thead> element defines the heading of the table, which should contain

information about the columns in the body of the table. Typically, this is the same type of

information that you’ve been placing within header cells so far in the lesson.

The head of the table appears right after the <table> element or after <colgroup> ele-

ments, as the following example shows, and must include at least one row group defined

by the <tr> element. I’m including style attributes in the row grouping tags to illustrate

how they are used. The table is formatted as follows:

FIGURE 10.28

The class schedule
with formatted col-
umn groups.

ptg16476052

280 LESSON 10: Building Tables

Input ▼
<table border="1" style="width: 100%;">
 <caption style="font-weight: bold;">Science and Mathematic Class Schedules
</caption>
 <colgroup style="width: 20%; text-align:center; vertical-align: top;">
 <colgroup span="2" style="width: 40%; vertical-align: top;">
 <thead style="background-color: red;">
 <tr>
 <th>Class</th>
 <th>Room</th>
 <th>Time</th>
 </tr>
</thead >

The <tfoot>...</tfoot> element defines the footer of the table. The starting <tfoot>

tag is always required when defining the footer of a table. The closing <tfoot> tag is

optional. The footer of the table can appear immediately after the table heading if one is

present, or after the <table> element if a table heading isn’t present or after the <tbody>

element. It must contain at least one row group, defined by the <tr> element. A good

example of information that you could place in a table footer is a row that totals columns

of numbers in a table.

You usually define the footer of the table before the table body because the browser has

to render the footer before it receives all the data in the table body. For the purposes of

this example, we’ll include the same information in the table head and the table footer.

The code looks like this :

Input ▼
<tfoot style="background-color: blue;">
 <tr>
 <th>Class</th>
 <th>Room</th>
 <th>Time</th>
 </tr>
</tfoot>

After you define the heading and footer for the table, you define the rows in the table

body. A table can contain more than one body element, and each body can contain one or

more rows of data. This might not seem to make sense, but using multiple body sections

enables you to divide up your table into logical sections. I show you one example of why

this is rather cool in a little bit.

ptg16476052

More Advanced Table Enhancements 281

10

The <tbody>...</tbody> element defines a body section within your table. The <tbody>

start tag is required if at least one of the following is true:

n The table contains head or foot sections.

n The table contains more than one table body.

The following example contains two table bodies, each consisting of three rows of three

cells each. The body appears after the table footer, as follows:

Input ▼
<tbody style="background-color: yellow;">
 <tr>
 <td>Biology</td>
 <td>Science Wing, Room 102</td>
 <td>8:00 AM to 9:45 AM</td>
 </tr>
 <tr>
 <td>Science</td>
 <td>Science Wing, Room 110</td>
 <td>9:50 AM to 11:30 AM</td>
 </tr>
 <tr>
 <td>Physics</td>
 <td>Science Wing, Room 107</td>
 <td>1:00 PM to 2:45 PM</td>
 </tr>
</tbody>
<tbody style="background-color: gray;">
 <tr>
 <td>Geometry</td>
 <td>Mathematics Wing, Room 236</td>
 <td>8:00 AM to 9:45 AM</td>
 </tr>
 <tr>
 <td>Algebra</td>
 <td>Mathematics Wing, Room 239</td>
 <td>9:50 AM to 11:30 AM</td>
 </tr>
 <tr>
 <td>Trigonometry</td>
 <td>Mathematics Wing, Room 245</td>
 <td>1:00 PM to 2:45 PM</td>

 </tr>
</tbody>
</table>

ptg16476052

282 LESSON 10: Building Tables

Put all the preceding together, and you get a table that looks like that shown in Figure

10.29 .

Output ▼

How Tables Are Used
In this lesson, I explained the usage of tables in publishing tabular data. That was the

original purpose for HTML tables. In 1996, however, Netscape 2.0 introduced the option

of turning off table borders, and this, along with other limitations in HTML, changed the

way tables were used.

Before style sheets were invented and implemented in most browsers, there was only

one way to lay out elements on a page other than straight down the middle: tables. These

days, developers use CSS to lay out pages, but before CSS support in browsers became

really solid, tables were the key page layout tool that most web developers used.

Even now, there are some cases in which using tables to lay out pages make sense. If you

are creating a web page that will be sent out as part of an email message, tables should

be used. Some email clients do not support CSS, so for more advanced layouts you’re

required to use tables.

Summary
In this lesson, you’ve learned quite a lot about tables . They enable you to arrange your

information in rows and columns so that your visitors can get to the information they

need quickly.

FIGURE 10.29

The class schedule
with a head, two
bodies, and a foot.

ptg16476052

Summary 283

10

While working with tables, you learned about headings and data, captions, defining rows

and cells, aligning information within cells, and creating cells that span multiple rows or

columns. With these features, you can create tables for most purposes.

As you’re constructing tables, it’s helpful to keep the following steps in mind:

n Sketch your table, indicating where the rows and columns fall. Mark which cells

span multiple rows and columns.

n Start with a basic framework and lay out the rows, headings, and data row by row

and cell by cell in HTML. Include row and column spans as necessary. Test fre-

quently in a browser to make sure that it’s all working correctly.

n Modify the alignment in the rows to reflect the alignment of the majority of the

cells.

n Modify the alignment for individual cells.

n Adjust line breaks, if necessary.

n Make other refinements, such as cell spacing, padding, and color.

n Test your table in multiple browsers. Different browsers might have different

approaches to laying out your table or might be more accepting of errors in your

HTML code.

Table 10.1 presents a quick summary of the HTML elements that you learned about in

this lesson and that remain current in HTML5.

TABLE 10.1 Current HTML5 Table Elements

Tag Use

<table>...</table> Indicates a table.

<caption>...</caption> Creates a caption for the table (optional).

<colgroup>...</colgroup> Encloses one or more columns in a group.

<col> Used to define the attributes of a column in a table.

<thead>...</thead> Creates a row group that defines the heading of the table. A
table can contain only one heading.

<tfoot>...</tfoot> Creates a row group that defines the footer of the table. A
table can contain only one footer. Must be specified before
the body of the table is rendered.

<tbody>...</tbody> Defines one or more row groups to include in the body of the
table. Tables can contain more than one body section.

ptg16476052

284 LESSON 10: Building Tables

Tag Use

<tr>...</tr> Defines a table row, which can contain heading and data
cells.

<th>...</th> Defines a table cell that contains a heading. Heading cells
are usually indicated by boldface and centered both horizon-
tally and vertically within the cell.

<td>...</td> Defines a table cell containing data. Table cells are in a
regular font and are left-aligned and vertically centered within
the cell.

Because several of the table attributes apply to more than one of the preceding elements,

I’m listing them separately. Table 10.2 presents a quick summary of the HTML attributes

you learned about in this lesson that remain current in HTML5.

TABLE 10.2 Current HTML5 Table Attributes

Attribute Applied to Element Use

border <table> Indicates whether the table will be drawn with a border.
The default is no border. If border has a value, it’s the
width of the shaded border around the table. This attribute
is nonconforming in HTML5.

span <colgroup> Defines the number of columns in a column group. Must
be an integer greater than 0.

<col> Defines the number of columns that a cell spans. Must be
an integer greater than 0.

colspan <th> or <td> Indicates the number of cells to the right of this one that
this cell will span.

rowspan <th> or <td> Indicates the number of cells below this one that this cell
will span.

Workshop
This lesson covered one of the more complex subjects in HTML: tables. Before you

move on to the next lesson, work through the following questions and exercises to make

sure that you’ve really got a good grasp of how tables work.

ptg16476052

Workshop 285

10

Q&A
Q Tables are a real hassle to lay out, especially when you get into row and col-

umn spans. That last example was awful.

 A You’re right. Tables are a tremendous pain to lay out by hand like this. However,

if you’re using writing editors and tools to generate HTML code, having the table

defined like this makes more sense because you can just write out each row in turn

programmatically.

Q Can you nest tables, putting a table inside a single table cell?

 A Sure! As mentioned earlier, you can put any HTML code you want inside a table

cell, and that includes other tables. But nesting tables can significantly slow down

pages loading.

Q Is there a way to specify a beveled border like the default table borders using
CSS?

 A CSS actually provides three different beveled border styles: inset, outset, and

ridge. You should experiment with them and use the one that looks the best to you.

Quiz
1. What are the basic parts of a table, and which tags identify them?

2. Which attribute is the most common attribute of the table tag, and what does it do?

3. Which attributes are used to create cells that span more than one column or row?

4. Which elements are used to define the head, body, and foot of a table?

Quiz Answers
1. The basic parts of a table (the <table> tag) are the caption (defined with the

<caption> tag), header cells (<th>), data cells (<td>), and table rows (<tr>).

2. The border attribute is the most common attribute for the table tag. It specifies

whether border lines are displayed around the table and how wide the borders

should be. It is nonconforming in HTML5, but you will still see it on many tables

to identify them as presentation or data tables.

3. The rowspan attribute creates a cell that spans multiple rows. The colspan attribute

creates a cell that spans multiple columns.

4. <thead>, <tbody>, and <tfoot> define the head, body, and foot of a table.

ptg16476052

286 LESSON 10: Building Tables

Exercises
1. Here’s a brainteaser for you: Create a simple nested table (a table within a table)

that contains three rows and four columns. Inside the cell that appears at the second

column in the second row, create a second table that contains two rows and two

columns.

2. One tricky aspect of working with the HTML for tables is accounting for cells with

no data. Create a table that includes empty cells and verify that once you’ve done

so, all the rows and columns line up as you originally anticipated.

ptg16476052

LESSON 11
Using CSS to Position
Elements on the Page

When web pages display pages, the content normally flows from left to
right and top to bottom. You’ve seen that elements can be floated to
the right or left, but the basic top-to-bottom paradigm still remains. CSS
enables you to position elements anywhere you like on the page, alter-
ing the default layout rules of HTML in any way that you choose. You’ve
already seen how you can use styling to change the appearance of ele-
ments on the page. In this lesson, you’ll learn how to use styles to posi-
tion them as well.

These days, it’s not uncommon to visit websites that look more like desk-
top applications than they look like traditional web pages. Such sites are
created using CSS positioning, which you’ll learn about in this lesson.

ptg16476052

288 LESSON 11: Using CSS to Position Elements on the Page

Positioning Schemes
To control the position of an element on the page, you first have to choose a positioning

scheme. There are four positioning schemes: static, relative, absolute, and fixed.

You specify which scheme to use for an element using the position CSS property.

You can put these schemes into two categories. The static and relative schemes do

not alter the layout of the document, while no space is reserved in the page layout for ele-

ments positioned using the absolute and fixed schemes.

The static scheme is the default. Elements that are not floated flow down the page

from left to right and top to bottom. This is referred to as the normal flow. The relative

scheme positions the element relative to its position in the normal flow. The element’s

original positioned is preserved and affects the position of the subsequent elements. The

absolute and fixed schemes enable you to position elements in any location you like,

and elements positioned using those schemes are removed from the document layout

entirely.

If you specify a position for an element other than static, you can set a position for

the element. There are four positioning properties : top, left, bottom, and right. The

position setting is what establishes what the values of these properties relate to. Here’s

an example:

.thing {
 position: relative;
 left: 50px;
 top: 50px;
}

In this case, elements in the thing class will be shifted 50 pixels down and 50 pixels to

the left from the element’s position in the normal flow. If I were to change position

to absolute or fixed, the element would appear 50 pixels from the nearest positioned

ancestor of the element, or if no such ancestor exists, the browser window itself.

Generally, when you’re positioning elements, you specify a left or a right value and

a top or a bottom value. If you specify conflicting values, one of the values you specify

will be ignored. It’s much safer to use the sizing properties to size your elements and then

specify the position of one corner of your element if you want to indicate where it should

be positioned .

Relative Positioning
Let’s look at a page that uses relative positioning. This page illustrates both how relative

positioning works and some of the problems with it. A screenshot of the page listed in the

following code appears in Figure 11.1.

ptg16476052

Positioning Schemes 289

11

Input ▼
<!DOCTYPE html>
<html>
<head>
 <title>CSS Example</title>
 <style type="text/css">
.offset {
 border: 3px solid blue;
 padding: 10px;
 margin: 10px;
 background-color: #aaaaaa;
 position: relative;
 top: -30px;
 left: 30px;
 width: 33%; }
</style >
</head>
<body>
<p>
The absence of romance in my history will, I fear, detract somewhat
from its interest; but if it be judged useful by those inquirers who
desire an exact knowledge of the past as an aid to the interpretation
of the future, which in the course of human things must resemble if
it does not reflect it, I shall be content.
</p>
<p class="offset">
The absence of romance in my history will, I fear, detract somewhat
from its interest; but if it be judged useful by those inquirers who
desire an exact knowledge of the past as an aid to the interpretation
of the future, which in the course of human things must resemble if
it does not reflect it, I shall be content. In fine, I have written
my work, not as an essay which is to win the applause of the moment,
but as a possession for all time.
</p>
<p>
The absence of romance in my history will, I fear, detract somewhat
from its interest; but if it be judged useful by those inquirers who
desire an exact knowledge of the past as an aid to the interpretation
of the future, which in the course of human things must resemble if
it does not reflect it, I shall be content.
</p>
</body>
</html>

ptg16476052

290 LESSON 11: Using CSS to Position Elements on the Page

Output ▼

As you can see, the relatively positioned paragraph is shifted up and to the right from its

natural position in the layout. You can also see that its position on the page is preserved

and that the size I specified for the element is taken into account.

I used a negative value for the top property to move the element up 30 pixels, and I spec-

ified a left offset of 30 pixels, which actually moves the element 30 pixels to the right.

To move the element to the left, I could have used a negative left offset or a positive right

offset. The spot in the layout where the paragraph would be in the normal flow remains,

creating whitespace before the third paragraph. The relative positioning of the paragraph

causes it to overlap its predecessor.

By default, the element backgrounds are transparent. I added a background color to the

relatively positioned box to more clearly illustrate how my page works. If I remove the

background-color property from class offset, the page will look li ke Figure 11.2.

In this example, transparency is probably not the effect I’m looking for. However, taking

advantage of this transparency can be useful when you create text blocks that partially

overlap images or other non-text boxes .

FIGURE 11.1

A page that uses
relative positioning
for an element.

ptg16476052

Positioning Schemes 291

11
Elements are positioned relative to their containing block. A containing block is the

block-level element that’s the ancestor of the positioned element. In the example you just

saw, the page’s <body> element is the containing block for the paragraphs. Let’s say I

add a new style to the page’s style sheet:

#positioned { position: relative; left: 50px; }

Then I put the three paragraphs in the preceding example in a new <div>:

<div id="positioned">
 ... the three paragraphs above ...
</div>

All three paragraphs will be moved 50 pixels to the right, and the offset paragraph will be

positioned relative to the <div> that is its containing block.

In addition to containing blocks, there are also anonymous blocks. Browsers automati-

cally create anonymous blocks when a block-level element appears within a containing

block along with inline elements. Here’s an example:

<div>
 This content is inside an anonymous block.

<p>This is a paragraph.</p>
This content is also inside an anonymous block.

</div>

FIGURE 11.2

Transparency of
overlapping ele-
ments.

ptg16476052

292 LESSON 11: Using CSS to Position Elements on the Page

The anonymous blocks enable the browser to create a proper page layout when inline

elements are mixed with blocks. If I were to relatively position the paragraph inside the

<div> above, the anonymous blocks are what enables the rest of the content in the <div>

to be laid out along with the paragraph.

Inline elements can also be positioned relatively and are handled in the same fashion as

block-level elements. They are positioned relative to their position in the normal flow.

If you nest relatively positioned elements, the inner element is positioned relative to the

location of the enclosing element, as shown in Figure 11.3:

<!DOCTYPE html>
<html>
<head>
 <title>CSS Example</title>
 <style type="text/css">
 span { background-color: white; border: 1px solid black; }
 #inner { position: relative; left: 25px; top: 10px; }
 #outer { position: relative; top: 10px; }
 </style>
</head>
<body>
<p>
The absence of romance in my history will, I fear, detract somewhat from its interest; but if it be
judged useful by those inquirers who desire an exact knowledge of the past as
an aid to the interpretation of the future, which in the course of human things
must resemble if it does not reflect it, I shall be content.
</p>
</body>
</html>

In the example, I have a tag nested within another . Both of the elements

are relatively positioned. As you can see, the space in the layout for both is preserved,

and the inner element is positioned relative to the outer element, which in turn is

FIGURE 11.3

Relatively posi-
tioned inline ele-
ments.

ptg16476052

Absolute Positioning 293

11

positioned relative to its natural location in the page layout. There is enough space left in

the original layout to contain all of the relatively positioned content.

Absolute Positioning
Now let’s look at absolute positioning. As mentioned previously, when an element is

absolutely positioned it is removed from the normal flow entirely. However, the default

coordinates of an absolutely positioned element are its position in the normal flow. So if

you specify an alternate position, its position in the normal flow will not be reserved. If

you do not, it will appear in the normal flow exactly as an element that is not positioned

would. Before going further, I should describe the positioning properties in more detail.

Positioning Properties
As you’ve seen, there are four properties that can be used to specify the position of a

positioned element: top, right, bottom, and left. All the positioning properties have

slightly different meanings depending on the positioning scheme.

In the absolute positioning scheme, the top property specifies the distance between the

top margin of the positioned element and the top inside border of its containing block.

This means that while the margin and border of the containing block do affect the posi-

tion of the absolutely positioned element, the block’s padding does not.

In the relative positioning scheme, the top property specifies where the top margin of the

positioned element should appear relative to its predecessor in the normal flow, or from

the top edge of its containing block if it’s the first element in that block. So if you set a

top position of 100px, it will be moved 100 pixels down from its position in the normal

flow. The key difference in positioning relative and absolute is that for absolutely

positioned elements, the positioning is always in reference to the edges of the containing

block. For relative elements, the positioning refers to adjacent elements in the normal

flow if they exist.

The bottom property is exactly like the top property except that it refers to the bottom

margin of the positioned element. So in the absolute scheme, it specifies the distance

from the inner edge of the bottom border of the containing block. In the relative

scheme, it relates to the following element in the normal flow. A positive value moves

the element up the page, and a negative value moves the element down the page.

The left and right properties are similar as well. In absolute positioning schemes, posi-

tive values of the left property move elements to the right, and positive values of the

right property move elements to the left. They work the same in relative schemes as

well, moving elements to the left or the right relative to the adjacent blocks in the normal

ptg16476052

294 LESSON 11: Using CSS to Position Elements on the Page

flow. The catch is that there will only be adjacent blocks to the left or right of elements in

the normal flow if they are floated.

Positioning Properties and Height and Width
You’ve already seen that you can specify the size of an element using the height and

width properties. You can also specify the size of an element if you use more than two

of the positioning properties, or only two properties if those two properties are left and

right or top and bottom. When you specify the position of two parallel sides of a block,

it establishes a height or width for that block. If you specify the positions of all four

sizes, you specify both the height and the width of a block.

Here’s a style sheet for a page with positioned <div> elements:

<style type="text/css">
 body { background-color: #aaaaaa; }
 div {
 background-color: white; border: 2px solid black; padding: 10px;
 }

 #pos {
 position: absolute;
 left: 50px;
 top: 50px;
 }

 #pos2 {
 top: 160px;
 left: 75px;
 bottom: 75px;
 right: 100px;
 position: absolute;
 overflow: hidden;
 }

 #pos3 {
 position: absolute;
 width: 50%;
 height: 50%;
 bottom: 0px;
 right: 0px;
 }
</style>

The resulting page is shown in Figure 11.4.

ptg16476052

Absolute Positioning 295

11

The first <div> is positioned using the left and top properties, and no size is specified.

The left and top edges of the box are positioned as described in the style sheet, but the

right side of the box runs to the edge of the page, just as it would in normal flow, and the

box’s height is derived from the content in it, again just as it would be in normal flow.

The second <div> has all four positioning properties set, which indicates exactly where

all four edges of the box should appear. This establishes the exact size of the box, and if

the content is larger than the box, it is treated as overflow. In this case, positioning also

specifies the size of the box.

In the third example <div>, I use the bottom and right properties to position the box in

the bottom-right corner of the page and the height and width properties to specify the

size of the box. This is the preferred method of combining positioning and sizing. Rather

than specifying all four positions, you should position one corner of the box (whichever

makes the most sense) and then use height and width to specify a size. If you specify

positions for all four sides of the box and you include a height and width, the size of the

box will be taken from the size properties, and the position will be set using the top and

left properties. The bottom and right properties would be ignored completely.

Nesting Absolutely Positioned Elements
As you may remember, absolutely positioned elements are positioned relative to the

closest positioned ancestor. So when you nest an absolutely positioned element within

another element that’s positioned absolutely or relatively, the positioning will be relative

FIGURE 11.4

How size and posi-
tioning interact.

ptg16476052

296 LESSON 11: Using CSS to Position Elements on the Page

to the element in which the element is nested. This explains why you may want to

position an element even if you don’t specify attributes to alter its position. Doing so

enables you to make it easier to position nested elements.

Let’s look at an example of how you might take advantage of nesting. You may have

seen websites where you can add annotations to images, drawing boxes and adding notes.

In this example, I’m going to illustrate how to design images with annotations of that

kind, along with how to prevent the annotations from being displayed except when you

want to see them.

The web page in Figure 11.5 includes a <div> containing an image and a note I’ve

applied to that image. Here’s the source code for the page:

<!DOCTYPE html>
<html>
<head>
 <title>Image Notes</title>
 <style type="text/css">
 #picture {

position: relative;
width: 500px;

 }

 #picture img {
width: 500px;
margin: 0;
padding: 0;

 }

 #note1 {
position: absolute;
border: 2px solid black;
width: 340px;
height: 300px;
top: 40px;
left: 40px;
text-align: right;

 }

 </style>
</head>
<body>
 <h1>Claude Monet The Bridge at Argenteuil</h1>
 <div id="picture">

 <div id="note1">
 This is a boat!

 </div>

ptg16476052

Absolute Positioning 297

11

</div>
</body>
</html>

I placed the picture within a relatively positioned <div> and then added an absolutely

positioned <div> within it. I chose relative positioning for the outer <div> because I want

to position elements within it, and yet I still want it to appear within the normal flow so

that it won’t overlap elements that follow it on the page. I then nested both the image

and the <div> containing the note within that positioned <div>. The absolutely posi-

tioned <div> with the note is positioned relative to the positioned <div> within which it

is nested. That’s what makes it easy to treat it as an overlay for the image, as seen in the

screenshot .

Dynamic Overlays
The previous example was a simple overlay, but there’s more you can do. For example,

it’s fairly common to only show the overlays over images when the user moves his

pointer over the image. You can accomplish this effect using CSS. To hide the overlay in

FIGURE 11.5

A picture with a
note overlaid above
it.

ptg16476052

298 LESSON 11: Using CSS to Position Elements on the Page

the example, I need to make two small tweaks to the CSS. I added a new rule to display

the overlay, and I hid the #note1 element by default. Here are the changes:

#note1 {
 position: absolute;
 border: 2px solid black;
 width: 340px;
 height: 300px;
 top: 40px;
 left: 40px;
 text-align: right;
 display: none;
}

#picture:hover #note1 {
 display: block;
}

The result is that the overlay <div> is hidden unless the mouse pointer is over the image.

Note that I used the :hover pseudo-class with #picture. This ensures that the overlay

is displayed whenever the mouse is over the picture, rather than just when it’s over the

overlay.

In Lesson 9, “Using Images on Your Web Pages,” you were introduced to image maps.

You can also approximate image maps using positioning. For example, let’s say I want to

let users click the left side of the image in the previous example to move to the previous

image in a set, or the right side of the image to move to the next image.

The first step is to remove the overlay from the previous example and add the links that

I’m going to use:

 <div id="picture">
 Next
 Previous

</div>

As you can see in Figure 11.6, the links appear in the normal flow above the image

because I haven’t positioned them yet .

First I’ll apply some styles to both of the links to get them to overlay the page.

#picture a {
 position: absolute;
 border: 3px double #333;
 padding: 1em;
}

ptg16476052

Absolute Positioning 299

11
At this point, the two links will appear over the image, but they’ll be stacked right on

top of each other because they have been removed from the normal flow but they have

not been positioned. I added a border just to make the positioning clear. The next step is

to position the two links. I’m going to put the “previous” link on the upper left and the

“next” link on the upper right. The results are shown in Figure 11.7.

#previous {
 left: 0;
 top: 0;
 }

 #next {
 right: 0;
 top: 0;
 }

FIGURE 11.6

Inline links.

ptg16476052

300 LESSON 11: Using CSS to Position Elements on the Page

That’s looking much better. As you can see, the links are now positioned correctly, in the

upper corners of the image. The final step is to resize the links so that they both consume

20% of the width of the image and run the entire height of the image. Here’s the updated

style:

#picture a {
 position: absolute;
 border: 3px double #333;
 padding: 1em;
 height: 337px;
 width: 20%;
}

When this style is applied, the links take up the full left and right sides of the image. The

links could be more attractive, but this demonstrates how you can create links that over-

lay images. When you resize links, the entire link remains clickable, which enables you

to create large clickable regions, as I did in this example. The final image is shown in

Figure 11 .8 .

FIGURE 11.7

Links positioned in
the upper left and
right corners.

ptg16476052

Fixed Positioning 301

11Fixed Positioning
Fixed positioning is similar to absolute positioning. Elements are positioned using the

same properties, and fixed elements are removed from the normal flow. The difference is

that rather than being positioned in relation to their containing block, fixed elements are

positioned relative to the viewport. The obvious question is, what’s the viewport?

When all of the elements on a page are laid out in the normal flow, that page may be 300

pixels wide and 100 pixels tall if it’s very small, or it may be 1000 pixels wide and 8000

pixels tall if it’s a long article. In the meantime, the browser window has its own size,

perhaps 900 pixels wide and 700 pixels tall. The viewport is the part of the HTML page

that is currently being displayed in the browser window.

When you apply the fixed positioning scheme to an element, the viewport is treated as

the containing block, and the positioned elements remain in that position if the contents

of the viewport change through scrolling or resizing the window. Here’s an example.

You may create a restaurant website that shows the hours, address, and phone number at

FIGURE 11.8

An image with large
links overlaid.

ptg16476052

302 LESSON 11: Using CSS to Position Elements on the Page

the bottom of the browser window at all times. First, I add an ordinary <div> to the page

with the ID bottom. Here’s the code:

<div id="bottom">
 The Tiny Diner | 150 Water Street, Brooklyn, NY 11201
 | 718.555.1111 | 11-10 Tues - Sat
</div>

The next step is to apply styles to the element so that it appears at the bottom of the

viewport in a fixed location. Here are the styles:

 #bottom {
position: fixed;
bottom: 0;
left: 0;
width: 100%;
text-align: center;
padding: 5px;
border-top: 3px solid blue;
background-color: #cccccc;

}

First, I set the positioning of the element as fixed. Then, I set the bottom and left prop-

erties to 0 to position the element in the bottom-left corner of the viewport. To create a

bar that runs the full length of the viewport, I set the width to 100%. Then I centered the

contents of the <div>, added some padding, and added a border to the top and specified a

background color. The results are shown in Figure 11.9.

FIGURE 11.9

A fixed bar at the
bottom of a web
page.

ptg16476052

Controlling Stacking 303

11

One thing you might notice in the figure is that the bar covers some of the text at the bot-

tom of the page. Both fixed and absolute positioning remove the element from the normal

flow, so the browser does not take the fixed element into account when it creates the

scrollbar for the page’s vertical scrolling. When you use fixed elements, you may need

to strategically add whitespace to the page so that parts of the page are not permanently

covered by those elements. To make sure that the bottom of the final paragraph on the

page is not permanently covered by the bar I added to the bottom of the viewport, I added

this style:

p:last-of-type {
 padding-bottom: 2em;
}

It adds some padding to the bottom of the last paragraph on the page, creating enough

space for all of the text to be displayed. There are other ways to add whitespace as well;

this is just the one I chose .

Controlling Stacking
CSS provides a way of taking control over how overlapping elements are presented.

The z-index property is used to manually specify a value for the stacking order associ-

ated with a selector. By default, elements that appear in the same layer of a document

are stacked in source order. In other words, an element that appears after another in the

HTML source for the page will generally be stacked above it . The easiest way to think

about it is to think of all of the elements on a page being numbered from first to last in

the source. Larger numbers are stacked above smaller numbers.

By manually assigning z-index values for elements, however, you can put elements in

specific stacking layers. If all elements appear in stacking layer 0 by default, any element

in stacking layer 1 (z-index: 1) will appear above all elements in layer 0. The catch

here is that z-index can be applied only to elements that are positioned. Elements in the

normal flow always appear below relatively or absolutely positioned elements. The stack-

ing layers below 0 are considered beneath the body element, so they don’t show up at all.

If you want to have an element in the normal flow but you want to
control its stacking layer, assign it the relative positioning scheme
and don’t specify a position. It will appear on the page normally,
but you will be able to apply a z-index to it.

TIP

ptg16476052

304 LESSON 11: Using CSS to Position Elements on the Page

Let’s look at another page. This one contains two paragraphs , both part of the same

(default) stacking layer. As you can see in Figure 11.10, the second overlaps the f irst.

Input ▼
<!DOCTYPE html>
<html>
<head>
 <title>Stacking Example</title>
 <style type="text/css">
#one {
 position: relative;
 width: 50%;
 padding: 15px;
 background-color: yellow;
}

#two {
 position: absolute;
 top: 15%;
 left: 15%;
 padding: 15px;
 width: 50%;
 background-color: navy;
 color: white ;
}
 </style>
</head>
<body>
<p id="one">
The absence of romance in my history will, I fear, detract somewhat
from its interest; but if it be judged useful by those inquirers who
desire an exact knowledge of the past as an aid to the interpretation
of the future, which in the course of human things must resemble if
it does not reflect it, I shall be content.
</p>
<p id="two">
The absence of romance in my history will, I fear, detract somewhat
from its interest; but if it be judged useful by those inquirers who
desire an exact knowledge of the past as an aid to the interpretation
of the future, which in the course of human things must resemble if
it does not reflect it, I shall be content. In fine, I have written
my work, not as an essay which is to win the applause of the moment,
but as a possession for all time.
</p>

</body>
</html>

ptg16476052

Controlling Stacking 305

11

Output ▼

So, how do I cause the first element to overlap the second? Because I’ve assigned the

first element the relative positioning scheme (even though I haven’t specified a posi-

tion), I can assign it a z-index of 1 (or higher) to move it into a stacking layer above the

second paragraph. The new style sheet for the page, which appears in Figure 11.11 , is as

follows:

Input ▼
#one {
 position: relative;
z-index: 1;
width: 50%;
padding: 15px;
background-color: #ffc;

}

#two {
 position: absolute ;
 top: 15%;
 left: 15%;
 padding: 15px;
 width: 50%;
 background-color: #060;
 col or: #fff;
}

FIGURE 11.10

Two normally
stacked elements.

ptg16476052

306 LESSON 11: Using CSS to Position Elements on the Page

Output ▼

Using a combination of absolute and relative positioning, you can create complex pages

with many stacked layers . Using your browser’s developer tools is a great way to experi-

ment with stacking and positioning. It’s easy to open the developer tools, change the

z-index values for elements, and see how the stack order changes.

Floated elements also have their own special handing. They have a higher precedence in

the stacking order than elements in the normal flow, and they have a lower precedence

than positioned elements. If you need to raise their precedence, you can add relative posi-

tioning and assign a z-index to them.

Creating Drop-Down Menus
Drop-down menus are one of the most common navigation techniques used on websites.

They enable you to provide deep navigation without requiring a lot of screen real estate.

To give a sneak preview, Figure 11.12 shows what the finished navigation menus will

look like when the menu is completed. In earlier times, such elements had to be created

using JavaScript, but CSS is powerful enough now that you can use it alone to build these

sorts of interface elements. Indeed, this example incorporates techniques that you’ve

already seen.

FIGURE 11.11

A page that uses
z-index to control
positioning.

ptg16476052

Creating Drop-Down Menus 307

11

The navigation bar starts as a regular nested HTML list. Styles will be used to convert it

into the dynamic navigation bar. Here’s the source code for the page:

<!DOCTYPE html>
<html>
<head>
 <title>Navigation Menus</title>
 <style type="text/css">
 </style>
</head>
<body>
 <h1>A Typical Web Site</h1>
 <nav id="navigationBar">

Home
Products

Something Awesome
Another Awesome Thing
Our Best Thing
A Cheap Thing

About

History
The Team

Contact

 </nav>
<p>Typical web site content.</p>
</body>
</html>

FIGURE 11.12

A navigation bar
with drop-down
menus.

ptg16476052

308 LESSON 11: Using CSS to Position Elements on the Page

The first step in creating the menu is to lay out the parent list horizontally with appropri-

ate spacing and to hide the nested lists. I’ll also need to make it a positioned element.

As it turns out, not only does the outer list need to be positioned, but it needs to be abso-

lutely positioned. Unfortunately, as you know, absolutely positioning removes an element

from the normal flow. If I position the list that way, it will mess up the normal flow for

the rest of the page .

For this reason I’ll need to add another element to the page that I can position relatively.

So the real first step is to wrap the list in a <nav>, with an ID like this:

<nav id="navigationBar"> ... menu lists ... </nav>

You will learn more about the <nav> tag in Lesson 13, “Structuring a Page with

HTML5.”

Okay, now that’s all set and I can start to style the <nav> and the lists nested in it. I need

to take care of the following things in the style sheet to get the menus working:

n Remove the bullets from the lists

n Lay out the top-level list horizontally

n Specify sizes for all of the lists and list items to assist with positioning

n Position the submenus so that they appear in the correct place

n Hide the submenus by default

n Apply styles to customize the appearance of the menus

n Show the submenus on hover

Let’s look at the styles required to make the menu work, in order of increasing specific-

ity. First, I style the container for my <nav>:

#navigationBar {
 position: relative;
 margin: 0;
 padding: 0;
 height: 30px;
 width: 90%;
}

These styles position the navigation bar relatively so that I can position absolutely posi-

tioned items relative to it. I also disable the margins and padding and specify a size for

the navigation bar. Next, I style the top-level list in the navigation bar:

#navigationBar ul {
 margin: 0;
 padding: 0;

ptg16476052

Creating Drop-Down Menus 309

11

 position: absolute;
 height: 100%;
 width: 100%;
 list-style-type: none;
 background-color: #eeeeee;
 overflow: visible;
}

Again, I remove the margins and padding. This time, I position the list absolutely, rela-

tive to its container. Its height and width are set to 100% so that it fills the container, and

the bullets for the list are disabled. I also specify a background color and allow overflow

in the list to be shown. The next step is styling the list items in the top-level list. I use the

> selector to make sure that these styles only affect the list items in the top-level lists and

not those in child lists.

#navigationBar ul > li {
 display: block;
 float: left;
 height: auto;
 /* menu header's items width */
 width: 120px;
}

I float the list items to the left, set them to block display, and specify a width for each list

item. The next step is to style the links in the top-level list:

#navigationBar li > a {
 display: block;
 padding: 0 0 0 10px;
 height: 100%;
 width: 109px;
 border-right: 1px black solid;
 line-height: 30px;
 font-family: sans-serif;
 font-size: 17px;
 text-decoration: none;
 background-color: #eeeeee;
 color: #5d5636;
}

I apply a lot of styles to the link to get it to look just right and to get it to fit properly in

the layout. Next it’s time to start working on the nested lists. First, the nested list itself:

#navigationBar ul ul {
 margin-top: 2px;
 display: none;
 position: static;
 height: auto;

ptg16476052

310 LESSON 11: Using CSS to Position Elements on the Page

 width: 160px;
 border: 1px #666666 solid;
 background-color: #dddddd;
}

It’s set to display none so that it’s hidden when the page loads. The position is set to

static, which is the default. I also add a border and a background color. Next, I style the

list items in the submenu:

#navigationBar ul ul li {
 position: relative;
 float: none;
 display: block;
 height: 28px;
 width: 100%;
 border: none;
}

In this case, the list items are positioned relatively, float is disabled, and the list items are

sized. Many of these styles override styles set for the items in the parent list. Following

the pattern, I next style the links in the list:

#navigationBar ul ul li > a {
 height: 100%;
 width: 96%;
 padding: 0 0 0 4%;
 line-height: 28px;
 background-color: transparent;
 border: none;
 color: #000000;
 font-size: 12px;
 font-style: normal;
}

In this case, I set the height and width of the link, add a little padding, and set the line-

height so that the link is positioned properly. I also reduce the font size a bit so that the

links fit in the space allotted. Once I’m done with that, I just have to add the hover styles

to make the page dynamic:

#navigationBar li:hover > a {
 color: #220000;
 background-color: #eeeabe;
}
#navigationBar li:hover > ul {
 display: block;
}

ptg16476052

Workshop 311

11

When the mouse pointer is over a list item in the navigation lists, I set the display prop-

erty of the list that’s a child of that list item to block. I also change the background color

and color of the link so that it’s highlighted. That’s it for the list. The resul t is a dynamic

menu system implemented with pure CSS.

Summary
In this lesson, I looked at the styles associated with positioning elements on the page.

Using positioning, you can arrange elements in any arbitrary fashion that you like. As

you saw in the final example, you can combine these properties with other styles to create

complex page elements that behave like applications. You also saw that you can position

elements relative to parent elements, as I did when I created the overlays for the image.

Finally, you saw that fixed positioning can position elements based on the viewport. CSS

positioning is what enables web developers to create websites that work like desktop

applications.

Workshop
If you’ve made it this far, I’m sure that you still have a few questions. I’ve included a

few that I think are interesting. Afterward, test your retention by taking the quiz, and then

expand your knowledge by tackling the exercises.

Q&A
 Q Is it possible to move absolutely positioned items around the page?

 A Yes, you can move positioned elements with JavaScript. The first lesson on

JavaScript is Lesson 17, “Introducing JavaScript.” You can use JavaScript to mod-

ify any styles on a page. There are also libraries that enable you to apply effects

when you show or hide elements, like jQuery UI, which you can find out more

about at http://jqueryui.com/.

 Q Where can I find more examples of using CSS for positioning?

 A The Mozilla developer site provides a wide variety of examples in the Mozilla

DemoStudio, at https://developer.mozilla.org/en-US/demos/. You can use it to get

an idea of what can be accomplished with CSS.

http://jqueryui.com/
https://developer.mozilla.org/en-US/demos/

ptg16476052

312 LESSON 11: Using CSS to Position Elements on the Page

Quiz
1. What is the normal flow?

2. When you position an element relatively, how does that position affect other ele-

ments on the page?

3. How do the absolute and fixed positioning schemes differ?

Quiz Answers
1. The normal flow is the default layout of the page, with elements flowing from left

to right and top to bottom. Positioning is used to alter the placement of elements in

the normal flow or to remove them from that flow entirely.

2. The relative positioning system does not affect other nearby elements. They are

placed within the normal flow as they would be if the element were statically posi-

tioned.

3. The absolute positioning scheme positions elements relative to the closest posi-

tioned ancestor. The fixed positioning scheme positions elements relative to their

viewport maintaining that position as the page scrolls.

Exercises
1. Create a page with a navigation element on the right side that follows the user as

she scrolls down the page.

2. Alter the drop-down navigation menu example so that there is a second-level sub-

menu. You should be able to follow the pattern of the submenus to create the sec-

ond submenu.

ptg16476052

LESSON 12
Designing Forms

Up to this point, you’ve learned almost everything you need to know to
create functional, attractive, and somewhat interactive web pages. If you
think about it, however, the pages you’ve created thus far have a one-
way information flow. This lesson is about creating HTML forms to collect
information from people visiting your website. Forms enable you to gather
just about any kind of information for immediate processing by a server-
side script or for later analysis using other applications

This lesson covers the following topics, which enable you to create any
type of form possible with HTML:

n Discovering how HTML forms interact with server-side scripts to
provide interactivity

n Creating simple forms to get the hang of it

n Learning all the types of form controls you can use to create radio
buttons, check boxes, and more

n Using more advanced form controls to amaze your friends and
co-workers

n Using other interactivity tags to make your pages more interesting

n Planning forms so that your data matches any server-side scripts
you us e

ptg16476052

314 LESSON 12: Designing Forms

▼

Understanding Form and Function
Right off the bat, you need to understand a few things about forms. First, a form is part

of a web page that you create using HTML elements. Each form contains a form element

that contains special controls, such as buttons, text fields, check boxes, Submit buttons,

and menus. These controls make up the user interface for the form (that is, the pieces of

the form users see on the web page). When people fill out forms, they’re interacting with

these elements. In addition, you can use many other HTML elements within forms to cre-

ate labels, provide additional information, add structure, and so on. These elements aren’t

part of the form itself, but they can enhance your form’s look and improve its usability.

When someone fills out an HTML form, he enters information or makes choices using

the form controls. When the user submits the form, the browser collects all the data from

the form and sends it to the URL specified as the form’s action. It’s up to the program

residing at that URL to process the form input and create a response for the user.

It’s important that you understand the implications of this final step. The data is what you

want, after all! This is the reason you’ve chosen to create a form in the first place. When

a user clicks the Submit button, the process ceases to be one of pure HTML and becomes

reliant on applications that reside on the web server. In other words, for your form to

work, you must already have a program on the server that will store or manipulate the

data in some manner.

In some cases, forms aren’t necessarily submitted to programs. Using JavaScript, you can

take action based on form input. For example, you can open a new window when a user

clicks a form button. You can also submit forms via email, which is okay for testing but

isn’t reliable enough for real applications .

Creating a Simple Form That Accepts a Name and a Password

Okay, let’s get right to it and create a simple form that illustrates the concepts just pre-

sented. It’s a web page that prompts the user to enter a name and a password to continue.

Start by opening your favorite HTML editor and creating a web page template. Enter the

standard HTML header information, include the body element, and then close the body

and html elements to form a template from which to work. If you already have a template

similar to this, just load it into your HTML editor:

<!DOCTYPE html>
<html>
<head>
<title>Page Title</title>▼

ptg16476052

Understanding Form and Function 315

12

</head>
<body>

</body>
</html>

Next, add your title so that people will understand the purpose of the web page:

<title>Please Log In</title>

And don’t forget to include a title in the body of the page:

<h1>Please Log In</h1>

Within the body of the web page, add a form element. I’ve added both the opening and

the closing tags, with an empty line between them, so that I don’t forget to close the form

when I’m finished :

<form action="/form-processing-script" method="post">

</form>

Before continuing, you need to know more about the form element and the attributes you

see within the opening tag. Obviously, form begins the element and indicates that you’re

creating an HTML form. The action attribute specifies the URL to the server-side script

(including the filename) that will process the form when it’s submitted. It’s important

that the script with the name you’ve entered is present on your web server at the location

the URL specifies. In this example, I use the full URL for the script, but you can just as

easily use a relative URL if it makes more sense .

▼

Before going live with forms , contact your web hosting provider
and ask whether you can use the hosting provider’s scripts or add
your own. You must also determine the URL that points to the
directory on the server that contains the scripts. Some hosting
providers rigidly control scripts for security purposes and won’t
allow you to create or add scripts to the server. If that’s the case,
and you really need to implement forms on your web pages, con-
sider searching for a new hosting provider.

CAUTION

The next attribute is method, which can accept one of two possible values: post or get.

These values define how form data is submitted to your web server. The post method

includes the form data in the body of the form and sends it to the web server. The get ▼

ptg16476052

316 LESSON 12: Designing Forms

method appends the data to the URL specified in the action attribute and most often is

used in searches. I chose the post method here because I don’t want to send the user’s

password back in plain sight as part of the URL. Now add some form controls and infor-

mation to make it easy for a visitor to understand how to fill out the form. Within the

form element, begin by adding a helpful description of the data to be entered by the user,

and then add a text form control . This prompts the user to enter her name in a text-entry

field. Don’t worry about positioning just yet because you’ll lay out the form controls

later :

<form action="/form-processing-script" method="post">
 <label for="username">Username</label> <input type="text" name="username">
</form>

Next, add another bit of helpful text and a password control:

<form action="/form-processing-script" method="post">
 <label for="username">Username</label> <input type="text" name="username">

 <label for="password">Password</label> <input type="password" name="password">
</form >

Notice that both these form controls are created using the input element. The type attri-

bute defines which type of control will be created. In this case, you have a text control

and a password control. Each type of control has a distinct appearance, accepts a different

type of user input, and is suitable for different purposes. Each control is also assigned a

name that distinguishes it and its data from the other form controls.

The labels for the form fields are specified using the <label> tag. Each label is attached

to the form field it is associated with through the for attribute, which should match the

name or id attribute of the form tag with which it is associated. The <label> element

doesn’t provide formatting by default, but you can make it appear any way you want

using CSS.

Finally, add a Submit button so that the user can send the information she entered into the

form. Here’s the form so far, with some <div> tags added to make it easier to style:

Input ▼
<form action="/form-processing-script" method="post">
 <div>
 <label for="username">Username</label>
 <input type="text" name="username">
 </div>
 <div>
 <label for="password">Password</label>

▼

▼

ptg16476052

Understanding Form and Function 317

12

 <input type="password" name="password">
 </div>
 <div>
 <input type="submit" class="submit" value="Log In">
 </div>
</form>

The Submit button is another type of input field. The value attribute is used as the

label for the Submit button. If you leave it out, the default label will be displayed by the

browser.

▼

When you’re naming form controls and labeling buttons, strive for
clarity and meaning. If a form is frustrating or hard to figure out,
visitors will leave your site for greener pastures!

TIP

Figure 12.1 contains a screenshot of the form with all the form elements in place .

Output ▼

At this point, you’ve created the form and it’s ready to rumble. However, if you load

it into your web browser, you’ll see that it doesn’t look all that appealing. I can vastly

improve the appearance using Cascading Style Sheets (CSS) . Here’s the code for the full

page, including the style sheet:

<!DOCTYPE html>
<html>
 <head>
 <title>Please Log In</title>
 <style>

div {
margin-bottom: 5px;

FIGURE 12.1

The form with all
the input elements
in place.

▼

ptg16476052

318 LESSON 12: Designing Forms

}
label {
display: block;
float: left;
width: 150px;
text-align: right;
font-weight: bold;
margin-right: 10px;

}
input.submit {
margin-left: 160px;

}
 </style>
 </head>
 <body>
 <h1>Please Log In</h1>
 <form action="/form-processing-script" method="post">

<div>
<label for="username">Username</label>
<input type="text" name="username">

</div>
<div>
<label for="password">Password</label>
<input type="password" name="password">

</div>
<div>
<input type="submit" class="submit" value="Log In">

</div>
 </form>
 </body>
</html>

At one time, it was rare to see forms that were laid out without the use of tables, but

tables are no longer necessary thanks to CSS. Let’s look at the style sheet for the form.

First, I added 5 pixels of margin to the bottom of the <div> elements to separate the

form elements a bit. Then, I used CSS on the labels to align the form fields vertically

and right-align the labels. You can only apply widths to block-level elements, so I set the

display property on the labels to block. Then I used float: left and a width of 150

pixels to get the form fields to move to the right of the labels. Setting the text-align

property to right for the labels moves them to the right side of the 150-pixel box I put

them in. Then I just added 10 pixel margin to create some space between the labels and

the form fields, and I bolded the label text. To get the Submit button, which has no label,

to line up with the other form fields, I added a 160-pixel left margin. That’s 150 pixels

for the label and 10 pixels for the margin I added to the labels. That took a little work,

but I think the final page shown in Figure 12.2 looks good.

▼

▼

ptg16476052

Using the <form> Tag 319

12

To complete the exercise, let’s test the form to see whether it produces the data we

expect. Because you don’t have the script “form-processing-script” available on your

hard drive, you should modify your <form> tag to send the data to the page with a get

request:

<form method="get">

Then when you submit your form, here’s what the data that’s sent to the server looks

like:

username=somename&password=somepassword

This data will appear at the end of the URL in your browser window as in Figure 12.3.

FIGURE 12.2

A simple form.

FIGURE 12.3

The URL field after
submitting a form

Most forms won’t work if they are not on a web server. And if the
URL in the action attribute does not exist, the form won’t work
when you submit it.

CAUTION

It’s pretty measly, but you can see that the names assigned to each field are tied to the

values entered in those fields. You can then use a program to use this data to process the

user’s request .

Using the <form> Tag
To accept input from a user, you must wrap all of your input fields inside a <form> tag.

The purpose of the <form> tag is to indicate where and how the user’s input should be

sent. First, let’s look at how the <form> tag affects page layout. Forms are block-level

▼

▼

ptg16476052

320 LESSON 12: Designing Forms

elements. That means when you start a form, a new line is inserted (unless you apply the

display: inline CSS property to the form tag).

▼

In older versions of HTML, form controls had to be placed inside
a <form> tag and then inside a block-level element to be valid.
But HTML5 doesn’t require either of these things. Instead, you
should use the <form> tag when you need to collect a group of
form controls and submit them all to the server for processing.

NOTE

Take a look at the following code fragment:

Input ▼
<p>Please enter your username <form><input> and password
<input></form> to log in.</p>

You might think that your entire form would appear on a single line based on the preced-

ing markup. As shown in Figure 12.4, the opening and closing <form> tags act like open-

ing and closing paragraph tags.

Output ▼

The two most commonly used attributes of the <form> tag are action and method. Both

of these attributes are optional. The following example shows how the <form> tag is typi-

cally used:

<form action="someaction" method="get or post">
content, form controls, and other HTML elements
</form>

FIGURE 12.4

A line break
inserted by an
opening <form>
tag.

▼

ptg16476052

Using the <form> Tag 321

12

action specifies the URL to which the form is submitted. Again, remember that for the

form to be submitted successfully, the script must be in the exact location you specify

and must work properly.

If you leave out the action attribute, the form is submitted to the current URL. In other

words, if the form appears on the page http://www.example.com/form.html and you leave

off the action attribute, the form will be submitted to that URL by default. This prob-

ably doesn’t seem very useful, but it is if your form is generated by a program instead

of residing in an HTML file. In that case, the form is submitted back to that program for

processing. One advantage of doing so is that if you move the program on the server, you

don’t have to edit the HTML to point the form at the new location .

Although most forms send their data to scripts, you also can make the action link to

another web page or a mailto link. The latter is formed as follows:

<form action="mailto:somebody@isp.com" method="post">

This attaches the form data set to an email, which then is sent to the email address listed

in the action attribute . But be aware that there are many things that can go wrong with

using a mailto link in your forms. It’s better to find a program or CGI script to link to in

the action attribute.

▼

To test your forms, I recommend using the get method and leav-
ing out the action attribute of the form tag as shown earlier in
the lesson. When you submit the form, the values you entered
will appear in the URL for the page so that you can inspect them
and make sure that the results are what you expected.

TIP

The method attribute supports two values: get and post. The method indicates how

the form data should be packaged in the request that’s sent back to the server. The get

method appends the form data to the URL in the request. The form data is separated from

the URL in the request by a question mark and is referred to as the query string. If I have

a text input field named searchstring and enter Orangutans in the field, the resulting

URL would look like the following:

http://www.example.com/search?searchstring=Orangutans

The method attribute is not required; if you leave it out, the get method will be used. The

other method is post. Instead of appending the form data to the URL and sending the

combined URL-data string to the server, post sends the form data to the location speci-

fied by the action attribute in the body of the request . This is not readily visible to the

user, and most forms work best with this method. ▼

http://www.example.com/form.html
http://www.example.com/search?searchstring=Orangutans

ptg16476052

322 LESSON 12: Designing Forms

The general rule when it comes to choosing between post and get is that if the form will

change any data on the server, you should use post. If the form is used to retrieve infor-

mation, using get is fine. For example, suppose that you’re writing a message board pro-

gram. The registration form for new users and the form used to publish messages should

use the post method. If you have a form that enables the user to show all the posts

entered on a certain date, it could use the get method .

HTML5 and modern browsers now offer a validation feature before the form is submit-

ted. The browsers use a combination of rules written in the control attributes and the

attribute types themselves to determine whether the content is what you’re asking for.

You’ll learn about this in more detail later in this lesson. But because of this feature, the

form tag has an attribute novalidate that lets you turn off validation on your forms. The

main reason you will use this attribute is to test the JavaScript and server-side validation

mechanisms you have in place. This is a Boolean attribute, so you don’t need to include

any values. Simply add it to your form tag:

<form novalidate>

Another new attribute of the <form> tag is the autocomplete attribute. It can have the

value of on or off. on is the default, and it tells the browser to attempt to predict the

value when a user is typing in a form control. By turning the autocomplete attribute off

you tell the browser to avoid suggesting values for form fields. You can turn autocomple-

tion on or off for your entire form by adding it to your <form> tag:

<form autocomplete="off">

Two other less-often used attributes of the <form> tag are enctype and accept-charset.

enctype defines how form data is encoded when it’s sent to the server, and accept-charset

defines the character encodings to be used for the form submission. The default for enctype

is application/x-www-form-urlencoded, and the default for accept-charset is the same

DO use the POST method when data
on the server will be changed in any
way.

DO use the GET method if the form
just requests data (like search forms,
for example).

DO use the GET method if you want to
bookmark the results of the form sub-
mission.

DON’T use the GET method if you do
not want the form parameters to be
visible in a URL.

DON’T use the GET method if the form
is used to delete information .

 DO DON’T
▼

▼

ptg16476052

Using the <label> Tag 323

12

as the page’s character set. The only time you will ever need to use these attributes is when

your form includes a file upload field (discussed a bit later) or you expect to receive data in a

different language or character set than the page. If you’re going to request a file upload, you

need to specify that the enctype is multipart/form-data . Otherwise, it’s fine to leave them

out .

That about does it for the <form> tag, but you’ve really only just begun. The <form>

tag alone is just a container for the input fields that are used to gather data from users.

It indicates where the data should go and how it should be packaged. To actually gather

information, you’re going to need items called form controls.

Using the <label> Tag
Whenever you enter text that describes a form field, you should use the <label> tag

and use the for attribute to tie it to the control it labels. To create a label, begin with the

opening label tag and then enter the for attribute. The value for this attribute, when

present, must match the id or name attribute for the control it labels. Next, enter text that

will serve as the label and then close the element with the end label tag, as in the fol-

lowing:

Input ▼
<label for="control4">Who is your favorite NFL Quarterback?</label>
<input type="text" name="favqb" id="control4">

Figure 12.5 shows this text control with a label assigned to it.

Output ▼

FIGURE 12.5

You can assign
labels to any form
control.

▼

▲

ptg16476052

324 LESSON 12: Designing Forms

If you include your form control within the label element, as shown in the following

code, you can omit the for attribute:

<label>User name <input type="text" name="username"></label>

The <label> tag doesn’t cause visible changes to the page, but you can style it using

CSS , as you saw in the sample login form earlier. One common styling approach people

use is to apply a special style to the labels of required fields. For example, you may

declare a style rule like this:

label.required { font-weight: bold; }

You can then set the class for the labels for all the required fields in your form to

“required,” and the labels for those fields will appear in boldface.

You should not use purely visual effects (like boldface or color
changes) to indicate if a field is required. These will not be acces-
sible to users with screen readers. It’s best to mention it in
the text so that screen readers can read aloud that the field is
required.

CAUTION

Creating Form Controls with the <input>
Tag
Now it’s time to learn how to create the data entry fields form. The <input> tag enables

you to create many different types of form controls.

Form controls are special HTML tags used in a form that enable you to gather informa-

tion from visitors to your web page. The information is packaged into a request sent to

the URL in the form’s action attribute.

The input element consists of an opening tag with attributes, no other content, and no

closing tag:

<input attributes />

The key point here is using the right attributes to create the form control you need. The

most important of these is type, which specifies what kind of form control to display. For

all controls, except Submit and Reset buttons, the name attribute is recommended. It asso-

ciates a name with the data entered in that field when the data is sent to the server. Most

designers make the name attribute and the id attribute the same value to reduce confusion.

The rest of this section describes the different types of controls you can create using the

input element .

ptg16476052

Creating Form Controls with the <input> Tag 325

12

Creating Text Controls
Text controls enable you to gather information from a user in small quantities. This con-

trol type creates a single-line text input field in which users can type information, such

as their name or a search term. This is the default input type and is the fallback type if a

browser does not recognize the type you chose.

To create a text input field, create an input element and choose text as the value for the

type attribute . Make sure to give your control an id so that the server script will be able

to process the value:

Input ▼
<label for="petname">Enter your pet's name</label>
<input type="text" id="petname">

Figure 12.6 shows this text control, which tells the user what to type in.

Output ▼

You can modify the appearance of text controls using the size attribute . Entering a num-

ber sets the width of the text control in characters:

<input type="text" id="petname" size="15">

The size attribute will be overridden by any CSS widths set on the element. It is an

approximate length and does not affect the number of characters the user can enter. To

limit the number of characters a user can enter, add the maxlength attribute to the text

control. This doesn’t affect the appearance of the field; it just prevents the user from

entering more characters than specified by this attribute. If users attempt to enter more

text, their web browsers will stop accepting input for that particular control:

<input type="text" id="petname" size="15" maxlength="15">

FIGURE 12.6

A text entry field.

ptg16476052

326 LESSON 12: Designing Forms

You can also specify the minimum number of characters the user must enter before the

form will submit with the minlength attribute. However, as of this writing this is only

supported in Chrome (and Android) and Opera web browsers.

To display text in the text control before the user enters any information, use the value

attribute. If the user is updating data that already exists, you can specify the current or

default value using value, or you can prompt the user with a value:

<input type="text" id="petname" size="15" maxlength="15" value="Enter Pet Name">

In this case, Enter Pet Name appears in the field when the form is rendered in the web

browser. It remains there until the user modifies it . It will also be submitted to the form

just like anything the user writes. If you want to make a suggestion as to what the user

should write, but you don’t want that value submitted with the other form data, you

should use the placeholder attribute:

<input type="text" id="petname" size="15" maxlength="15" placeholder="Fido">

This is particularly important on fields that are required. If there is a value set, the fields

will not validate as empty and will not trigger the automatic browser validation.

When you’re using the placeholder attribute, using a value
that’s larger than the size of the text control can confuse the user
because the text will appear to be cut off. Try to use only enough
information to make your point. Ensure that any placeholder text
is less than or equal to the number of characters you specified in
size.

CAUTION

HTML5 adds a number of new attributes on form controls to help browsers validate the

data before it is submitted to the form. The most important one is the required attri-

bute. This indicates that a form field must be filled out for the form to be submitted. It

is a Boolean attribute, so you just need to include the word required for the field to be

marked required:

<input id="name" required>

The pattern attribute provides a regular expression against which the control’s value

should be checked. It uses the JavaScript regex patterns. You should include the pattern

description somewhere on the page or in the input control (such as in the title attribute)

so that your customers know what the rules are. If you wanted someone to submit a part

number that has one digit followed by three uppercase letters, you would write

<label> Part number:
 <input pattern="[0-9][A-Z]{3}" name="part"
 title="A part number is a digit followed by three uppercase letters.">
</label>

ptg16476052

Creating Form Controls with the <input> Tag 327

12

Adding Options to Text Fields with datalist
One of the reasons that users don’t like to fill out forms on the Web is because they can

be very difficult to fill out. But HTML5 offers a new tag <datalist> that is intended to

help with that. With the datalist tag you set up a list of options that users might want

to use when filling out a text field. This is especially useful for text fields in which you’d

like to get specific information, but you also want the ability to receive new values that

no one has submitted before. In the past, web designers would do this with a drop-down

menu or select list (I’ll show you these later in this lesson) and then include an “Other”

option with a text field for the user to fill out.

With a data list, you can provide a set of answers that most people fill out, and as the

user types, the form guesses at what they want to write and provides suggestions as they

type. To do this, first you need a data list with a bunch of options:

Input ▼
<datalist id="game">
 <option value="rock">
 <option value="paper">
 <option value="scissors">
 <option value="unicorn">
 <option value="sledgehammer">
</datalist>

Then you need to associate that list with the appropriate form control using the list

attribute:

<label>
 Your Move:
 <input id="move" list="game">
</label>

Figure 12.7 shows how Chrome displays a data list.

Output ▼

FIGURE 12.7

A text field with a
data list attached.

ptg16476052

328 LESSON 12: Designing Forms

While the datalist tag has reasonable support in most browsers (except Safari and iOS

at the time of writing), there is a way to use a select list inside your data list to get the

best of both worlds:

<label>
 Your Move:
 <input id="move" list="game">
</label>
<datalist id="game">
<label>or select from a list:
 <select name="gameoption">
 <option value="">
 <option>rock
 <option>paper
 <option>scissors
 <option>unicorn
 <option>sledgehammer
 </select>
</label>

Browsers that support the datalist element will show the drop-down menu in the field.

Browsers that don’t will show the drop-down menu as a separate form control. You will

learn more about creating drop-down menus later in this lesson.

Using the New HTML5 Controls
HTML5 adds more than just the datalist element to form controls. There are also sev-

eral new form types you can use to both validate the data you collect and make it easier

for your customers to fill out the forms correctly.

There are two types for which browsers will validate the contents automatically for you:

email and url. This will help keep your data cleaner, but it also makes the forms easier

for your customers to fill out. When a customer on an Android or iOS device (and other

compatible mobile devices) gets to an email or url form control, the keyboard will

change to make it easier to fill in an email address or a web page URL. For instance, with

the email type, the @ sign will be visible on the keyboard without having to go into a

second layer. To set up these controls, change the type to email or url:

<label>Email:
 <input type="email" id="address">
</label>
<label>URL:
 <input type="url" id="website">
</label>

ptg16476052

Creating Form Controls with the <input> Tag 329

12

On any input type you can request multiple values with the multiple attribute:

<input type="url" id="website" multiple>

There are several types for collecting different kinds of numbers: tel for collecting tele-

phone numbers, number for collecting specific numbers, and range for collecting a num-

ber when the exact value is not important.

Telephone numbers are difficult to validate because they vary depending on your loca-

tion and how specific you need to be. For instance, if you were asking for a U.S. phone

number to be used internationally, you would need to include a +1 at the beginning, fol-

lowed by 10 digits. However, if you were looking for a U.S. phone number from a prese-

lected area code, all you would need would be seven digits. If you have a specific format

you need your phone numbers in, you should use the pattern attribute discussed earlier

along with some explanation or placeholder text showing how the phone number should

be entered. The benefit of using the tel type for collecting phone numbers is that those

numbers can then be passed to mobile devices as phone numbers to either call or send

SMS text messages to. To collect a U.S. phone number with area code:

<label>Telephone:
 <input type="tel" id="phone" placeholder="xxx-xxx-xxxx" pattern="[0-9]{3}-[0-9]
{3}-[0-9]{4}">
</label>

With the number type, you can specify the minimum value, the maximum value, and

even how the number picker should step through the values. Most browsers display the

number type with a drop-down menu with the possible values. To request a whole number

between 1 and 10:

<label>Pick a number between 1 and 10
 <input type="number" id="num" min="1" max="10" step="1">
</label>

If you want your readers to choose values with decimal points, add those values to the

min, max, step, or placeholder:

<label>Pick a number between 0 and 1
 <input type="number" id="num" min="0" max="1" step="0.1" placeholder="0.5">
</label>

The range type is a little more confusing. It allows you to request a number when you

don’t care what the actual value is. This is perfect for customer surveys in which you

want to know how people feel on a sliding scale. Rather than forcing them to choose a

specific number—for instance: “rate this on a scale of 1 to 5”—you can provide a range

control with the top and bottom values beside it:

ptg16476052

330 LESSON 12: Designing Forms

Input ▼
<label>How much do you like our product?

 Not at all <input type="range" id="likes" min="0" max="5" value="4.3"> More
than anything
</label>

As you can see in Figure 12.8, the range slider doesn’t give specific values, even though

they are included in the input element.

Output ▼

HTML5 provides several date and time types you can use to collect more specific dates

from your customers.

date Collects the month, day, and year you need

datetime Collects the month, day, and year as well as the hours, minutes,
and seconds

datetime-local Collects the local date and time including time zone information

month Collects the month and year

week Collects the week number and year

time Collects the time in hours, minutes, and seconds

FIGURE 12.8

A range input type.

ptg16476052

Creating Form Controls with the <input> Tag 331

12

Input ▼
<label>When can you return the book?

 <input type="date" id="returndate">
</label>

Some browsers display a date picker automatically, as you see in Figure 12.9.

Output ▼

The last two types allow you to specify color values and search terms. Browsers that

support the color type will display a color picker, and browsers that support the search

type change the way the form control displays—adding rounded corners and sometimes a

search icon inside the control. You add them the same way you add other input types:

Input ▼
<label>What is your favorite color?
 <input type="color" id="favoritecolor">
</label>

<label>Search:
 <input type="search" id="s">
</label>

Figure 12.10 demonstrates how Chrome displays the color picker and search control.

FIGURE 12.9

A date input type.

ptg16476052

332 LESSON 12: Designing Forms

Output ▼

The best thing about using these new HTML5 input controls is that you don’t need any

fallback options to use them. You don’t need JavaScript to set up special controls—

although you can if you want to—because if the browser doesn’t support the input type

you’re using it will display a text field. Because a text field is what you would have had

to use to collect that form data anyway, you lose nothing. You should still validate the

data that comes through your forms, even if the browser does support the input type. And

that fixes bad data problems.

Creating Password Controls
The password and text field types are identical in every way except that the data entered

in a password field is masked so that someone looking over the shoulder of the person

entering information can’t see the value that was typed into the field.

FIGURE 12.10

Color and search
input types.

You don’t have to limit your use of the password control to just
passwords. You can use it for any sensitive material that you feel
needs to be hidden when the user enters it into the form. But
remember that because the text cannot be seen, it can be very
easy to enter it incorrectly. And this makes password fields dif-
ficult to use.

TIP

ptg16476052

Creating Form Controls with the <input> Tag 333

12

To create a password control, create an input element with the type set to password. To

limit the size of the password control and the maximum number of characters a user can

enter, you can use the size and maxlength attributes just as you would in a text control.

Here’s an example:

Input ▼
<label for="userpassword">Enter your password</label> <input type="password"
id="userpassword"
 size="8" maxlength="8">

Figure 12.11 shows a password control .

Output ▼

FIGURE 12.11

A password form
field.

When data entered in a password field is sent to the server, it is
not encrypted in any way. Therefore, this is not a secure means of
transmitting sensitive information. Although the users can’t read
what they are typing, the password control provides no other secu-
rity measures.

CAUTION

Creating Submit Buttons
Submit buttons are used to indicate that the user is finished filling out the form. Setting

the type attribute of the form to submit places a Submit button on the page with the

default label determined by the browser, usually Submit Query. To change the button

text, use the value attribute and enter your own label, as follows:

<input type="submit" value="Send Form Data">

ptg16476052

334 LESSON 12: Designing Forms

If you include a name attribute for a Submit button, the value that you assign to the field

is sent to the server if the user clicks on that Submit button. This enables you to take dif-

ferent actions based on which Submit button the user clicks, if you have more than one.

For example, you could create two Submit buttons, both with the name attribute set to

“action". The first might have a value of “edit" and the second a value of “delete". In

your script, you could test the value associated with that field to determine what the user

wanted to do when he submitted the form .

Creating Reset Buttons
Reset buttons set all the form controls to their default values. These are the values

included in the value attributes of each field in the form (or in the case of selectable

fields, the values that are preselected). As with the Submit button, you can change the

label of a Reset button to one of your own choosing by using the value attribute, like

this:

<input type="reset" value="Clear Form" >

Your forms can contain more than one Submit button.NOTE

Reset buttons can be a source of some confusion for users.
Unless you have a really good reason to include them on your
forms, you should probably just avoid using them. If your form is
large and the user clicks the Reset button when he means to click
the Submit button, he isn’t going to be very pleased with having to
go back and reenter all of his data.

CAUTION

Creating Check Box Controls
Check boxes are fields that can be set to two states: on and off (see Figure 12.12). To

create a check box, set the input tag’s type attribute to checkbox. The name attribute is

also required, as shown in the following example:

Input ▼
<label>Check to receive SPAM email <input type="checkbox" id="spam"></label>

ptg16476052

Creating Form Controls with the <input> Tag 335

12

Output ▼

To display the check box as checked, include the checked attribute , as follows:

<input type="checkbox" id="year" checked>

You can group check boxes and assign them the same control name using the name attri-

bute. This allows multiple values associated with the same name to be chosen:

<p>Check all symptoms that you are experiencing:</p>
<label><input type="checkbox" name="symptoms" value="nausea"> Nausea</label>
<label><input type="checkbox" name="symptoms" value="lightheadedness">
Light-headedness</label>
<label><input type="checkbox" name="symptoms" value="fever"> Fever</label>
<label><input type="checkbox" name="symptoms" value="headache"> Headache</label>

When this form is submitted to a script for processing, each check box that’s checked

returns a value associated with the name of the check box. If a check box isn’t checked,

neither the field name nor the value will be returned to the server—it’s as if the field

didn’t exist at all .

You may have noticed that when I applied labels to these check box elements, I put the

input tags inside the label tags. There’s a specific reason for doing so. When you asso-

ciate a label with a check box (or with a radio button, as you’ll see in the next section),

the browser enables you to check the box by clicking the label as well as by clicking the

button. That can make things a bit easier on your user.

In the examples thus far, I have tied labels to fields by putting the field id in the for

attribute of the label, but most designers don’t identify individual check box fields, and

the browser would not be able to figure out which check box the label applies to if you

pointed to the checkbox name. Instead, I put the input tag inside the label tag.

FIGURE 12.12

A check box field.

ptg16476052

336 LESSON 12: Designing Forms

Creating Radio Buttons
Radio buttons, which generally appear in groups, are designed so that when one but-

ton in the group is selected, the other buttons in the group are automatically unselected.

They enable you to provide users with a list of options from which only one option can

be selected. To create a radio button, set the type attribute of an <input> tag to radio.

To create a radio button group, set the name attributes of all the fields in the group to the

same value, as shown in Figure 12.13. To create a radio button group with three options,

the following code is used:

Input ▼
<p>Select a color:</p>
<label style="display: block;"><input type="radio" name="color" value="red">
Red</label>
<label style="display: block;"><input type="radio" name="color" value="blue">
Blue</label>
<label style="display: block;"><input type="radio" name="color" value="green">
Green</label>

Output ▼

I’ve used the same <label> technique here that I did in the check box example. Placing

the radio buttons inside the labels makes the labels clickable as well as the radio buttons

themselves. I’ve changed the display property for the labels to block so that each radio

button appears on a different line. Ordinarily I’d apply that style using a style sheet; I

used the style attributes to include the styles within the example.

As with check boxes, if you want a radio button to be selec ted by default when the form

is displayed, use the checked attribute. One point of confusion is that even though brows-

ers prevent users from having more than one member of a radio button group selected at

once, they don’t prevent you from setting more than one member of a group as checked

by default. You should avoid doing so yourself .

FIGURE 12.13

A group of radio
buttons.

ptg16476052

Creating Form Controls with the <input> Tag 337

12

Using Images as Submit Buttons
Using image as the type of input control enab les you to use an image as a Submit but-

ton:

Input ▼
<input type="image" src="submit.gif" id="submitformbtn">

Figure 12.14 shows a custom button created with an image.

Output ▼

When the user clicks an image field, the x and y coordinates of the point where the user

clicked are submitted to the server. The data is submitted as name.x = x coord and

name.y = y coord, where name is the name assigned to the control. Using the preceding

code, the result might look like the following:

submitoformbtn.x=150&submitformbtn.y=200

You can omit the name if you choose. If you do so, the coordinates returned would just

be x = and y =. Form controls with the type image support all the attributes of the

tag. You can also use the same CSS properties you would use with tags to modify

the appearance and spacing of the button. To refresh your memory on the attributes sup-

ported by the tag, go back to Lesson 9, “Using Images on Your Web Pages .”

Creating Generic Buttons
In addition to creating Submit, Reset, and Image buttons, you can create buttons that

generate events within the browser that can be tied to client-side scripts. To create such a

FIGURE 12.14

The image input
type.

ptg16476052

338 LESSON 12: Designing Forms

button, set the type attribute to button. Figure 12.15 shows a button that calls a function

when it is pressed. Use the following code to create a button:

Input ▼
<input type="button" id="verify" value="verify" onclick="verifydata()">

Output ▼

This example creates a button that runs a function called verifydata when it’s clicked.

You provide the label that appears on the button with the value attribute of Verify Data.

Unlike Submit buttons, regular buttons don’t submit the form when they’re clicked . I

explain the onclick attribute when you get to Lesson 17, “Introducing JavaScript.”

Hidden Form Fields
Hidden form fields are used when you want to embed data in a page that shouldn’t be

seen or modified by the user. The name and value pair associated with a hidden form

field will be submitted along with the rest of the contents of the form when the form is

submitted. To create such a field, set the field’s type to hidden and be sure to include

both the name and the value attributes in your <input> tag. Here’s an example:

<input type="hidden" id="uid" value="1402">

Hidden form fields are generally used when data identifying the user needs to be included

in a form. For example, suppose you’ve created a form that allows a user to edit the name

and address associated with her bank account. Because the user can change her name and

address, the data she submits can’t be used to look up her account after she submits the

form, plus there might be multiple accounts associated with one name and address. You

can include the account number as a hidden field on the form so that the program on the

server knows which account to update when the form is submitted .

FIGURE 12.15

A button element
on a web page.

ptg16476052

Creating Form Controls with the <input> Tag 339

12

The File Upload Control
The file control enables a user to upload a file when he submits the form. As you can see

in the following code, the type for the input element is set to file:

Input ▼
<label>Please select a file for upload <input type="file" name="fileupload">
</label>

Figure 12.16 shows a file upload control.

Output ▼

If you want to use a file upload field on your form, you have to do a lot of behind-the-

scenes work to get everything working. For one thing, the program specified in the

action attribute of your form must be able to accept the file being uploaded. Second, you

have to use the post method for the form. Third, you must set the enctype attribute of

the <form> tag to multipart/form-data. Ordinarily, the default behavior is fine, but you

must change the enctype in this particular case.

FIGURE 12.16

The file upload
control.

It’s important to understand that when it comes to hidden form
fields, hidden means “won’t clutter up the page” rather than
“won’t be discoverable by the user.” Anyone can use the View
Source feature in the browser to look at the values in hidden form
fields, and if you use the GET method, those values will appear
in the URL when the form is submitted, too. Don’t think of hid-
den fields as a security feature but rather as a convenient way to
embed extra data in the form that you know the script that pro-
cesses the form input will need to use.

CAUTION

ptg16476052

340 LESSON 12: Designing Forms

Let’s look at a simple form that supports file uploads:

<form action="/upload" enctype="multipart/form-data" method="post">
 <input type="file" id="new_file">
 <input type="submit">
</form>

After you’ve created a form for uploading a file, you need a program that can process the

file submission. Creating such a program is beyond the scope of this book, but all popular

web programming environments support file uploads .

Using Other Form Controls
In addition to form controls you can create using the input element, there are three that

are elements in and of themselves.

Using the button Element
A button you create using the button element is similar to the buttons you create with the

input element, except that content included between the opening and closing button tags

appears on the button.

You can create three different types of buttons: Submit, Reset, and Custom. The

<button> tag is used to create buttons. As with other form fields, you can use the name

attribute to specify the name of the parameter sent to the server, and the value attribute

to indicate which value is sent to the server when the button is clicked. Unlike buttons

created with the <input> tag, the bu tton’s label is specified by the content within the

<button> tag, as shown in this code:

Input ▼
<button type="submit"><i>Submit button</i></button>
<button type="custom"></button>

The button element is shown in a browser in Figure 12.17.

ptg16476052

Using Other Form Controls 341

12

Output ▼

Creating Large Text-Entry Fields with textarea
The textarea element creates a large text entry field where people can enter as much

information as they like. To create a textarea, use the <textarea> tag. To set the size of

the field, use the rows and cols attributes. These attributes specify the height and width

of the text area in characters. A text area with cols set to 5 and rows set to 40 creates

a field that’s 5 lines of text high and 40 characters wide. If you leave out the rows and

cols attributes, the browser default will be used. This can vary, so you should make sure

to include those attributes to maintain the form’s appearance across browsers. The clos-

ing textarea tag is required, and any text you place inside the textarea tag is displayed

inside the field as the default value:

Input ▼
<label for="question4" style="display: block;">Please comment on our customer
service.</label>
<textarea name="question4" rows="10" cols="60">Enter your answer here
</textarea>

Figure 12.18 shows a textarea element in action .

FIGURE 12.17

The button ele-
ment provides a
more flexible way
to create form but-
tons.

ptg16476052

342 LESSON 12: Designing Forms

Output ▼

FIGURE 12.18

Use textarea to
create large text-
entry areas.

You can also change the size of a textarea with the height and
width CSS properties. This will override any cols or rows attri-
butes you have set. You can alter the font in the text area using
the CSS font properties, too.

TIP

Creating Menus with select and option
The select element creates a menu that can be configured to enable users to select one

or more options from a pull-down menu or a scrollable menu that shows several options

at once. The <select> tag defines how the menu will be displayed and the name of the

parameter associated with the field. The <option> tag is used to add selections to the

menu. The default appearance of select lists is to display a pull-down list that enables the

user to select one of the options. Here’s an example of how one is created:

Input ▼
<label for="location">Please pick a travel destination</label>
<select id="location">
 <option>Indiana</option>
 <option>Fuji</option>
 <option>Timbuktu</option>
 <option>Alaska</option>
</select>

As you can see in the code, the field name is assigned using the id attribute of the

<select> tag. The field created using that code appears in Figure 12.19.

ptg16476052

Using Other Form Controls 343

12

Output ▼

To create a scrollable list of items, just include the size attribute in the opening select

tag, like this:

Input ▼
<select id="location" size="3">

Figure 12.20 shows the same select element as Figure 12.19, except that the size

attribute is set to 3. Setting the size to 3 indicates that the browser should display three

options simultaneously .

Output ▼

To see the fourth item , the user would have to use the scrollbar built in to the select list.

By default, the value inside the <option> tag specifies both what is displayed in the

form and what’s sent back to the server. To send a value other than the display value to

the server, use the value attribute. The following code, for example, causes bw499 to be

FIGURE 12.19

You can use
select form con-
trols to create pull-
down menus.

FIGURE 12.20

You also can cre-
ate scrollable lists
using the select
element.

ptg16476052

344 LESSON 12: Designing Forms

submitted to the server as the value associated with the Courses field instead of Basket

Weaving 499:

<select id="courses" >
 <option value="p101">Programming 101
 <option value="e312">Ecomomics 312
 <option value="pe221">Physical Education 221
 <option value="bw499">Basket Weaving 499
</select>

To select an option by default, include the selected attribute in an option element, as

follows:

<select id="courses">
 <option value="p101">Programming 101</option>
 <option value="e312">Ecomomics 312</option>
 <option value="pe221" selected>Physical Education 221</option>
 <option value="bw499">Basket Weaving 499</option>
</select>

The closing </option> tag is not required. You can use it or
leave it off, your choice.

NOTE

Thus far, you’ve created menus from which a user can select only one choice. To enable

users to select more than one option, use the multiple attribute:

<select id="courses" multiple>

A user can choose multiple options by Shift-clicking to select sev-
eral in a row, or Ctrl-clicking (Windows) or Cmd-clicking (OS X) to
select several different items.

NOTE

There are some usability issues associated with select lists. When you think about it,

select lists that enable users to choose one option are basically the equivalent of radio

button groups, and select lists that allow multiple selections are the same as check box

groups. It’s up to you to decide which tag to use in a given circumstance. If you need to

present the user with a lot of options, select lists are generally the proper choice. A select

list with a list of states is a lot more concise and usable than a group of 50 radio buttons.

By the same token, if there are four options, radio buttons probably make more sense.

The same rules basically hold with check box groups versus multiple select lists.

ptg16476052

Using Other Form Controls 345

12

▼

However, sometimes a text box with some JavaScript validation is even better. Most peo-

ple can type their two-letter state abbreviation a lot faster than they can find it in a select

list. Drop-down menus are difficult to use and hide options that people don’t realize they

have. And don’t forget people on small devices like cell phones: A tiny check box could

be just as difficult to tap as it is to scroll through a huge select list.

The other usability issue with select lists is specific to multiple select lists. The bottom

line is that they’re hard to use. Most users don’t know how to select more than one item,

and if the list is long enough, as they move through the list they’ll have problems keep-

ing track of the items they already selected when they scroll through to select new ones.

Sometimes there’s no way around using a multiple select list, but you should be careful

about it .

Exercise 12.2: Using Several Types of Form Controls

Form controls often come in bunches. Although there are plenty of forms out there that

consist of a text input field and a Submit button (like search forms), a lot of the time

forms consist of many fields. For example, many websites require that you register to see

restricted content, download demo programs, or participate in an online community. In

this example, we’ll look at a perhaps slightly atypical registration form for a website.

The purpose of this exercise is to show you how to create forms that incorporate a num-

ber of different types of form controls. In this case, the form will include a text field, a

radio button group, a select list, a check box group, a file upload field, and a text area.

The form, rendered in a browser, appears in Figure 12.21.

FIGURE 12.21

A registration form
for a website.

▼

ptg16476052

346 LESSON 12: Designing Forms

Let’s look at the components used to build the form. The styles for the form are included

in the page header. Here’s the style sheet:

<style>
 form div {

margin-bottom: 1em;
 }

div.submit input {
margin-left: 165px;

 }

 label.field {
display: block;
float: left;
margin-right: 15px;
width: 150px;
text-align: right;

 }

 label.required {
font-weight: bold;

 }
</style>

Looking at the style sheet, you should get some idea of how the form will be laid out.

Each field will be in its own <div>, and I’ve added a margin to the bottom of each of

them. Just as I did in the login form example earlier, I’ve added a left margin for the

Submit button so that it lines up with the other fields. Most of the styling has to do with

the labels.

In this form, I am using labels in two ways—first to create a left column of labels for

the form, and second to add clickable labels to the radio buttons and check boxes. To

distinguish between them, I’m using a class called field, which I apply to the field-level

labels. I’ve also got a class called required that will be used with labels on required

fields.

Now that you’ve seen the styles, let’s look at the body of the page. After some introduc-

tory text, we open the form like this:

<form action="/register" method="post"
 enctype="multipart/form-data">

▼

▼

ptg16476052

Using Other Form Controls 347

12

Because this form contains a file upload field, we have to use the post method and the

multipart/form-data enctype in the <form> tag. The action attribute points to a CGI

script that lives on my server. Next, we start adding form inputs. Here’s the name input:

<div>
 <label class="required field" for="name">Name</label>
 <input id="name">
</div>

All the inputs will follow this basic pattern. The input and its label are nested within

a <div>. In this case, the label has the classes field and required. The only attribute

included in the input tag is the field name because the default values for the rest of the

attributes are fine. Next is the gender field, which uses two radio buttons:

<div>
 <label class="required field">Gender</label>
 <label><input type="radio" name="gender" value="male"> male</label>
 <label><input type="radio" name="gender" value="female"> female</label>
</div>

As you can see, the radio button group includes two controls (both with the same name,

establishing the group). Because we didn’t include line breaks between the two fields,

they appear side by side in the form. Here’s an instance in which I used the <label> tag

two different ways. In the first case, I used it to label the field as a whole, and then I used

individual labels for each button. The individual labels allow you to select the radio but-

tons by clicking their labels. As you can see, I used the approach of putting the <input>

tags inside the <label> tags to associate them.

The next field is a select list that enables the user to indicate which operating system he

runs on his computer :

<div>
 <label class="required field">Operating System</label>
 <select id="os">
 <option value="windows">Windows</option>
 <option value="macos">Mac OS</option>
 <option value="linux">Linux</option>
 <option value="other">Other ...</option>
 </select>
</div>

This select list is a single-line, single-select field with four options. Instead of using

the display values as the values that will be sent back to the server, we opt to set them

▼

▼

ptg16476052

348 LESSON 12: Designing Forms

specifically using the value attribute of the <option> tag. The next form field is a check

box group:

<div>
 <label class="field">Toys</label>
 <label><input type="checkbox" name="toy" value="digicam"> Digital Camera
</label>
 <label><input type="checkbox" name="toy" value="phone"> Smartphone</label>
 <label><input type="checkbox" name="toy" value="tablet"> Tablet</label>
</div>

As you can see, we use labels for each of the individual check boxes here, too. The next

field is a file upload field:

<div>
 <label class="field" for="portrait">Portrait</label>
 <input type="file" id="portrait">
</div>

The last input field on the form is a text area intended for the user’s bio.

<div>
 <label class="field" for="bio">Mini Biography</label>
 <textarea id="bio" rows="6" cols="40"></textarea>
</div>

After the text area, there’s just the Submit button for the form. After that, it’s all closing

tags for the <form> tag, the <body> tag, and the <html> tag. The full source code for the

page follows, along with a screenshot of the form as shown ea rlier in Figure 12.21.

Input ▼
<!doctype html>
<html>
 <head>
 <title>Registration Form</title>
<style>
 form div {
 margin-bottom: 1em;
 }

div.submit input {
margin-left: 165px;

 }

 label.field {
 display: block;
 float: left;
 margin-right: 15px;
 width: 150px;

▼

▼

ptg16476052

Using Other Form Controls 349

12

 text-align: right;
 }

 label.required {
 font-weight: bold;
 }
</style>
 </head>
 <body>
 <h1>Registration Form</h1>
 <form action="/register" method="post"

enctype="multipart/form-data">
<div>
<label class="required field" for="name">Name</label>
<input id="name">

</div>
<div>
<label class="required field">Gender</label>
<label><input type="radio" name="gender" value="male"> male</label>
<label><input type="radio" name="gender" value="female"> female</label>

</div>
<div>
<label class="required field">Operating System</label>
<select id="os">
<option value="windows">Windows</option>
<option value="macos">Mac OS</option>
<option value="linux">Linux</option>
<option value="other">Other ...</option>

</select>
</div>
<div>
<label class="field">Toys</label>
<label><input type="checkbox" name="toy" value="digicam"> Digital

Camera</label>
<label><input type="checkbox" name="toy" value="phone"> Smartphone

</label>
<label><input type="checkbox" name="toy" value="tablet"> Tablet</label>

</div>
<div>
<label class="field" for="portrait">Portrait</label>
<input type="file" id="portrait">

</div>
<div>
<label class="field" for="bio">Mini Biography</label>
<textarea id="bio" rows="6" cols="40"></textarea>

</div>
<div class="submit">
<input type="submit" value="register">

</div>
 </form>
 </body>
</html>

▼

▲

ptg16476052

350 LESSON 12: Designing Forms

Grouping Controls with fieldset and
legend
The fieldset element organizes form controls into groupings that appear in the web

browser. The legend element displays a caption for the fieldset. To create a fieldset

element, start with the opening fieldset tag, followed by the legend element.

Next, enter your form controls and fini sh things off with the closing fieldset tag:

Input ▼
<fieldset>
 <legend>Oatmeal Varieties</legend>
 <label><input type="radio" name="applecinnamon"> Apple Cinnamon</label>
 <label><input type="radio" name="nuttycrunch"> Nutty Crunch</label>
 <label><input type="radio" name="brownsugar"> Brown Sugar</label >
</fieldset>

Figure 12.22 shows the result .

Output ▼

The presentation of the fieldset in Figure 12.22 is the default, but you can use CSS to

style fieldset elements in any way that you like. A fieldset is a standard block-level

element, so you can turn off the borders using the style border: none and use them as

you would <div> tags to group inputs in your forms.

One thing to watch out for with the <legend> tag is that it’s a little less flexible than the

<label> tag in terms of how you’re allowed to style it. It’s also not handled consistently

between browsers . If you want to apply a caption to a set of form fields, use <legend>

but be aware that complex styles may have surprising results. Figure 12.23 shows the

markup from Figure 12.22 with some the following styles applied:

FIGURE 12.22

The fieldset and
legend elements
enable you to orga-
nize your forms.

ptg16476052

Grouping Controls with fieldset and legend 351

12

Input ▼
<style>
 fieldset {
 border: none;
 background-color: #aaa;
 width: 400px;
 }
 legend {
 text-align: right;
 }
</style>

Output ▼

As you can see, I’ve changed the background color of the field set and assigned a specific

width. I’ve also aligned the legend to the right. Because of the default browser position-

ing of the legend, the background color splits the legend text. This is an example of how

browsers treat legends uniquely. To set a background for the field set that includes the

full legend, I’d have to wrap the field set in another block-level element (like a div) and

apply the background color to that.

Changing the Default Form Navigation
In most browsers, you can use the Tab key to step through the form fields and links on

a page. When filling out long forms, it’s often much easier to use the Tab key to move

from one field to the next than to use the mouse to change fields. If you have a mix of

form fields and links on your page, setting things up so that using Tab skips past the links

and moves directly from one form field to the next can improve the usability of your

applications greatly. To set the tab order for your page, use the tabindex attribute . You

FIGURE 12.23

The fieldset and
legend elements
enable you to orga-
nize your forms.

ptg16476052

352 LESSON 12: Designing Forms

should number your form fields sequentially to set the order that the browser will use

when the user tabs through them. Here’s an example:

<p>
 <label>Enter your name
 <input type="text" name="username" tabindex="1">
 </label>
</p>
<p>
 <label>Enter your age
 <input type="text" name="age" tabindex="2">
 </label>
</p>
<p>
 <input type="submit" tabindex="3">
</p>

When you tab through this page, the browser will skip past the links and move directly to

the form fields .

Using Access Keys
Access keys also make your forms easier to navigate. They assign a character to an ele-

ment that moves the focus to that element when the user presses a key. To add an access

key to a check box, use the following code:

<p>What are your interests?</p>
<label>Sports <input type="checkbox" name="sports" accesskey="S"></label>
<label>Music <input type="checkbox" name="music" accesskey="M"></label>
<label>Television <input type="checkbox" name="tv" accesskey="T"></label>

Most browsers require you to hold down a modifier key and the key specified using

accesskey to select the field. On Windows, both Firefox and Internet Explorer require

you to use the Alt key along with the access key to select a field. Access keys are mostly

useful for forms that will be used frequently by the same users. A user who is going to

use a form only once won’t bother to learn the access keys, but if you’ve written a form

for data entry, the people who use it hundreds of times a day might really appreciate the

shortcuts .

Creating disabled and readonly Controls
Sometimes you might want to display a form control without enabling your visitors to

use the control or enter new information. To disable a control, add the disabled attribute

to the form control:

<label for="question42">What is the meaning of life?</label>
<textarea id="question42" disabled>

ptg16476052

Grouping Controls with fieldset and legend 353

12

Enter your answer here.
</textarea>

When displayed in a web browser, the control will be dimmed (a light shade of gray) to

indicate that it’s unavailable.

To create a read-only control, use the readonly attribute:

Input ▼
<label for="month">This month</label>
<input type="text" id="month" value="September" readonly>

The read-only control is not distinguished in any way from a normal form control.

However, when visitors attempt to enter new information (or, in the case of buttons or

check boxes, select them), they’ll find that they cannot change the value. Figure 12.24

shows both a disabled control and a read-only control. You’ll generally find disabled to

be more useful because it’s less confusing to your users .

Output ▼

FIGURE 12.24

Disabled controls
are dimmed.
Read-only controls
appear normally—
they just can’t be
changed.

Form Security

It’s important to remember that regardless of what you do with your form controls,
what gets sent back to the server when the form is submitted is really up to your
user. There’s nothing to stop her from copying the source to your form, creating a
similar page on her own, and submitting that to your server. If the form uses the get
method, the user can just edit the URL once the form has been submitted.

The point here is that there is no form security. In Lesson 19, “Using JavaScript in
Your Pages,” you’ll learn how to validate your forms with JavaScript. Even in that
case, you can’t guarantee that users will supply the input that you intend. What this
means is that you must always validate the data entered by your users on the server
before you use it .

ptg16476052

354 LESSON 12: Designing Forms

Displaying Updates with progress and
meter
HTML5 adds two new tags to help you display and measure changes on your website:

progress and meter. With these elements, you can indicate changes in time on your web-

site. This is useful for web applications as well as web forms.

The progress tag is used to view the completion progress of a task. It is usually displayed

as a progress bar. It can define either indeterminate progress or a specific amount of progress

including a number from zero to a maximum with a fraction of that amount that has been

completed. At its most basic, a progress bar is just the progress tag with a value set:

<p>Progress task 1:
<progress id="prog1" value="0">0%</progress>

 </p>

While the value attribute is not required, it’s a good idea to set it explicitly as some

browsers default to 100% progress and some default to 0%. You should also set the max

attribute so that the browser has a measure and include the value of the progress inside

the progress tag so that browsers and screen readers that don’t support the tag can still

get the content. Figure 12.25 shows three progress bars at 0%, 45%, and 98%, written:

Input ▼
<p>Progress task 1:
<progress id="prog1" value="0" max="100">0%</progress>

</p>
<p>Progress task 2:

<progress id="prog2" value="45" max="100">45%</progress>
</p>
<p>Progress task 3:

<progress id="prog3" value="98" max="100">98%</progress>
</p>

Output ▼

FIGURE 12.25

Three progress
bars.

ptg16476052

Displaying Updates with progress and meter 355

12

Different browsers style the progress bar in different ways. And even if you like the thin,

rounded, blue bars that most browsers use, it might clash with your design. So, it is pos-

sible to adjust how the progress bar looks using pseudo-classes. As of this writing, there

isn’t a consensus as to how to style them, so you have to do a couple of extra steps to

make sure that your progress bar looks as you expect it to.

In Safari and Chrome, the -webkit-progress-bar pseudo-class changes the progress

tag, and the -webkit-progress-value changes the value—in other words, the bar inside

that tracks the progress. Firefox does it slightly differently. To style the progress tag,

you select that tag as you normally would. And to style the value, you style the

-moz-progress-bar pseudo-class. Before you can do any of that, though, you need to

remove the default styles by changing the appearance:

Input ▼
progress {
 -webkit-appearance: none;
-moz-appearance: none;
appearance: none;

}

Then you can adjust how the progress bar looks using the pseudo-classes:

/* Chrome and Safari */
progress::-webkit-progress-bar {
 height: 10px;
 background: #dfdfdf;
 box-shadow: 0 2px 3px rgba(0,0,0,0.2) inset;
 border-radius: 5px;
}
progress {
 height: 10px;
 background: #dfdfdf;
 box-shadow: 0 2px 3px rgba(0,0,0,0.2) inset;
 border-radius: 5px;
}
/* Mozilla Firefox */
progress::-webkit-progress-value {
 background-color: #026105;
 border-radius: 5px;
}
progress::-moz-progress-bar {
 background-color: #026105;
 border-radius: 5px;
}

ptg16476052

356 LESSON 12: Designing Forms

Figure 12.26 shows how this would look in Chrome. But be sure to test in Safari and

Firefox as well.

Output ▼

Here is the full listing for the page shown in Figure 12.26:

Input ▼
<!doctype html>
<html>
 <head>
 <title>Styled Progress Bar</title>
 <style>
progress {
 -webkit-appearance: none;

-moz-appearance: none;
appearance: none;

}
/* Chrome and Safari */
progress::-webkit-progress-bar {
 height: 10px;
 background: #dfdfdf;
 box-shadow: 0 2px 3px rgba(0,0,0,0.2) inset;
 border-radius: 5px;
}
progress {
 height: 10px;
 background: #dfdfdf;
 box-shadow: 0 2px 3px rgba(0,0,0,0.2) inset;
 border-radius: 5px;
}
/* Mozilla Firefox */
progress::-webkit-progress-value {

FIGURE 12.26

Styling the prog-
ress bars.

ptg16476052

Displaying Updates with progress and meter 357

12

 background-color: #026105;
 border-radius: 5px;
}
progress::-moz-progress-bar {
 background-color: #026105;
 border-radius: 5px;
}
 </style>
 </head>
 <body>
 <h1>Task Progress</h1>

<p>Progress task 1:
<progress id="prog1" value="0">0%</progress>

 </p>
<p>Progress task 2:

<progress id="prog2" value="45" max="100">45%</progress>
 </p>

<p>Progress task 3:
<progress id="prog3" value="98" max="100">98%</progress>

 </p>
 </body>
</html>

It’s not good code, but for the moment, you cannot combine the
Firefox and Chrome styles into one style call. They don’t work if
they are combined.

CAUTION

progress is a useful tag for providing information to customers, but remember that it

does have a semantic element to it—it is a “progress” indicator, not just a gauge. In other

words, you should use this tag to track things that have a time component to them. If you

need to show information that does not have a time component attached, such as a disk

space monitor, use the meter element instead.

The meter element represents a measurement with a known range (for example, disk

usage, search relevance, or the fraction of voters that voted “yes” on a particular initia-

tive). You should not use meter to represent a value that does not have a known maxi-

mum value (for instance, height or weight).

ptg16476052

358 LESSON 12: Designing Forms

Like progress, you can set the value of the measurement with the value attribute. You

can also set the maximum value with the max attribute. But you can set several other val-

ues as well:

min Defines the minimum or lower boundary of the range. Unlike the progress
tag, this can be a number other than zero, including negative numbers.

low Defines the part of the meter that is in the low range. This is not the mini-
mum, but rather a point where the value is considered low.

high Like the low value, this defines the part of the meter that is in the high
range. This is not the maximum, but rather a point where the value is con-
sidered high.

optimum This gives the position on the meter that is considered the best. If this is
higher than the high point, this indicates that the higher the value the bet-
ter. If it is lower than the low point, this indicates that the lower values are
better. And if it’s in between this indicates that neither high nor low values
are good.

If you don’t specify a minimum or maximum, the range is
assumed to be between 0 and 1. The value, high, low, and opti-
mum numbers must be within that range as well.

NOTE

In Figure 12.27, you can see how browsers change the display of meter depending upon

where the value is in relation to the low, high, and optimum values:

Input ▼
<p>
 Jetta:
 <meter min="0" max="14.2" high="13.5" low="3" optimum="14" value="2.5">2.5
gallons</meter>
 is getting low, we should get gas!
</p>
<p>
 Tundra:
 <meter min="0" max="22" high="20" low="5" optimum="21" value="14">14 gallons
</meter>
 is okay, we don't need gas yet.
</p>
<p>
 Vespa:
 <meter min="0" max="5" high="4.5" low="1" optimum="4.6" value="4.7">4.7
gallons</meter>
 is practically full, you just filled up!
</p>

ptg16476052

Applying Cascading Style Sheet Properties to Form Elements 359

12

Output ▼

Just like the progress bar, you should also include a textual representation of your meter

gauge for those browsers that don’t support it.

And just like progress, to style your meters, you need to use pseudo-classes and browser

prefixed properties. But rather than just the meter and the value, you need to style how it

should look when the value is the best it can be, a middle value, and the worst it can be.

Table 12.1 describes those values.

TABLE 12.1 Pseudo-Classes to Style the Meter Element

Safari/Chrome Firefox

Meter bar -webkit-meter-bar -moz-meter-bar

Best value -webkit-meter-bar-optimum-value -moz-meter-optimum

Middle value -webkit-meter-suboptimum-value -moz-meter-suboptimum

Worst value -webkit-meter-even-less-good-value -moz-meter-sub-sub-optimum

And, yes, the pseudo-class really is -webkit-meter-even-less-good. Don’t blame me; I

didn’t name it. Style these just like you did the progress bars or any other element.

Applying Cascading Style Sheet
Properties to Form Elements
In this lesson, I’ve already shown you some approaches you can take to managing the

layout of your forms with CSS. Now I explain how to alter the appearance of form input

FIGURE 12.27

Three meter sta-
tuses.

ptg16476052

360 LESSON 12: Designing Forms

fields themselves using style properties. As you can see from the screenshots so far, regu-

lar form controls might not blend in too well with your pages. The default look and feel

of form controls can be altered in just about any way using CSS. For example, in many

browsers, by default, text input fields use Courier as their font, have white backgrounds,

and have beveled borders. As you know, border, font, and background-color are all

properties that you can modify using CSS. In fact, the following example uses all those

properties:

Input ▼
<!DOCTYPE html>
<html>
 <head>
 <title>Style Sheet Example</title>
 <style>
 input.styled
 {
 border: 2px solid #000;
 background-color: #aaa;
 font: bold 18px Verdana;
 padding: 4px;
 }
 </style>
 </head>
 <body>
 <form>

<p><label>Default</label> <input value="value"></p>
<p><label>Styled</label> <input value="value" class="styled"></p>

 </form>
 </body>
</html>

The page contains two text input fields: one with the default look and feel, and another

that’s modified using CSS. The page containing the form appears in Figure 12.28.

Output ▼

FIGURE 12.28

A regular text input
field and a styled
text input field.

ptg16476052

Applying Cascading Style Sheet Properties to Form Elements 361

12

▼

As you can see, the field that we applied styles to is radically different from the one that

uses the default decoration. You can do anything to regular form fields that you can do

to other elements. In fact, you can make form fields look just like the rest of your page,

with no borders and the same fonts as your page text if you like. Of course, that will

make your forms extremely confusing to use, so you probably don’t want to do it, but

you could.

It’s also fairly common to modify the buttons on your pages. Normally, Submit buttons

on forms are gray with beveled edges, or they have the look and feel provided by the

user’s operating system. By applying styles to your buttons, you can better integrate them

into your designs. This is especially useful if you need to make your buttons smaller than

they are by default. I provide more examples of style usage in forms in Exercise 12.3.

Bear in mind that some browsers support CSS more fully than others. So some users

won’t see the styles that you’ve applied. The nice thing about CSS, though, is that they’ll

still see the form fields with the browser’s default appearance.

Exercise 12.3: Applying Styles to a Form

Let’s take another look at the form from Exercise 12.2. The form can easily be further

spruced up by tweaking its appearance using CSS. The main objectives are to make the

appearance of the controls more consistent and to make it clear to users which form fields

are required and which are not. In the original version of the form, the labels for the

required fields were bold. We keep with that convention here and also change the border

appearance of the fields to indicate which fields are required and which aren’t.

Let’s look at the style sheet. This style sheet is similar to the one in Exercise 11.2, but I

have made some changes. First, here are three styles that I copied directly from the previ-

ous exercise:

form div {
 margin-bottom: 1em;
}
div.submit input {
margin-left: 165px;

}
label.field {
 display: block;
 float: left;
 margin-right: 15px;
 width: 150px;
 text-align: right;
} ▼

ptg16476052

362 LESSON 12: Designing Forms

These styles set up the basic form layout that I’m using in both exercises. Next, I tweak

the appearance of my input fields:

input[type="text"], select, textarea {
 width: 300px;
 font: 18px Verdana;
 border: solid 2px #666;
 background-color: #ada;
}

The rule above applies to three different selectors: select, textarea, and

input[type="text"]. The third selector is a bit different from the ones you’ve seen thus

far. It is what’s known as an attribute selector and matches only input tags with the value

of text for the type attribute . This sort of selector can be used for any attribute. In this case,

I’m using it to avoid applying this rule to Submit buttons, radio buttons, and check boxes.

One catch is that the attribute has to exist, so I had to add type="text" to my <input> tag.

The selector won’t match if you leave out the attribute and go with the default value.

Next, I add more styles that are related to the required fields. In the previous exercise,

I applied the required class to the labels, but I’ve moved it out to the <div>s this time

around so that I can apply it to my labels and to my form fields. The labels are still

bolded, but now I use the nested rule seen below. Also note that I apply the style only to

label.required rather than to label. That’s so that the other labels (used for radio but-

tons and check boxes) aren’t bolded:

div.required label.field {
font-weight: bold;

}
div.required input, div.required select {
background-color: #6a6;
border: solid 2px #000;
font-weight: bold;

}

Finally, I have made some enhancements that make it clearer which fields are required.

In the original form the labels for required fields were displayed in boldface. In this

example, that remains the case. However, I moved the required class to the enclos-

ing div so that I can also use it in selectors that match the form fields themselves. I also

styled required input fields and select fields with a dark green background color, bold

type, and a different color border than optional fields have. After the style sheet is set up,

all we have to do is make sure that the class attributes of our tags are correct. The full

source code for the page, including the form updated with classes, follows:

Input ▼
<!DOCTYPE html>
<html>

▼

▼

ptg16476052

Applying Cascading Style Sheet Properties to Form Elements 363

12

 <head>
 <title>Registration Form</title>
 <style>
form div {
 margin-bottom: 1em;
}
div.submit input {

margin-left: 165px;
}
label.field {
 display: block;
 float: left;
 margin-right: 15px;
 width: 150px;
 text-align: right;
}
input[type="text"], select, textarea {
 width: 300px;
 font: 18px Verdana;
 border: solid 2px #666;
 background-color: #ada;
}
div.required label.field {

font-weight: bold;
}
div.required input, div.required select {

background-color: #6a6;
border: solid 2px #000;
font-weight: bold;

}
 </style>
 </head>
 <body>
 <h1>Registration Form</h1>
 <form action="/register" method="post"

enctype="multipart/form-data">
<div class="required">
<label class="field" for="name">Name</label>
<input id="name" type="text">

</div>
<div class="required">
<label class="field">Gender</label>
<label><input type="radio" name="gender" value="male"> male</label>
<label><input type="radio" name="gender" value="female"> female</label>

</div>
<div class="required">
<label class="field">Operating System</label>
<select id="os">
<option value="windows">Windows</option>
<option value="macos">Mac OS</option>
<option value="linux">Linux</option>
<option value="other">Other ...</option>

</select>

▼

▼

ptg16476052

364 LESSON 12: Designing Forms

</div>
<div>
<label class="field">Toys</label>
<label><input type="checkbox" name="toy" value="digicam"> Digital

Camera</label>
<label><input type="checkbox" name="toy" value="phone"> Smartphone

</label>
<label><input type="checkbox" name="toy" value="tablet"> Tablet</label>

</div>
<div>
<label class="field" for="portrait">Portrait</label>
<input type="file" id="portrait">

</div>
<div>
<label class="field" for="bio">Mini Biography</label>
<textarea id="bio" rows="6" cols="40"></textarea>

</div>
<div class="submit">
<input type="submit" value="register">

</div>
 </form>
 </body>
</html>

Figure 12.29 shows the page containing this form .

Output ▼

FIGURE 12.29

A form with styled
input fields.

▼

▲

ptg16476052

Summary 365

12

Planning Your Forms
Before you start creating complex forms for your web pages, you should do some plan-

ning that will save you time and trouble in the long run.

First, decide what information you need to collect. That might sound obvious, but you

need to think about this before you start worrying about the mechanics of creating the

form.

Next, review this information and match each item with a type of form control. Ask your-

self which type of control is most suited to the type of questions you’re asking. If you

need a yes or no answer, radio buttons or check boxes work great, but the textarea ele-

ment is overkill. Try to make life easier for the users by making the type of control fit the

question. This way, analyzing the information using a script, if necessary, will be much

easier.

You also need to coordinate with the person writing the CGI script to match variables

in the script with the names you’re assigning to each control. There isn’t much point in

naming every control before collaborating with the script author—after all, you’ll need

all the names to match. You also can create lookup tables that contain expansive descrip-

tions and allowable values of each form control.

Finally, you might want to consider validating form input through scripting. Using

JavaScript, you can embed small programs in your web pages. One common use for

JavaScript is writing programs that verify a user’s input is correct before she submits a

form. I discuss JavaScript in more detail in Lesson 17.

Summary
As you can see, the wonderful world of forms is full of different types of form controls

for your visitors. This truly is a way to make your web pages interactive.

Be cautious, however. Web surfers who are constantly bombarded with forms are likely

to get tired of all that typing and move on to another site. You need to give them a reason

for playing!

Table 12.2 summarizes the HTML tags used today. Remember these points and you can’t

go wrong:

n Use the form element to create your forms.

n Always assign an action to a form.

n Create form controls with the input element or the other form control elements.

n Test your forms extensively.

ptg16476052

366 LESSON 12: Designing Forms

TABLE 12.2 HTML Tags Used in This Lesson

Tag Use

<form> Creates an HTML form. You can have multiple forms within a document,
but you cannot nest the forms.

action An attribute of <form> that indicates the server-side script (with a URL
path) that processes the form data.

enctype An attribute of the <form> tag that specifies how form data is encoded
before being sent to the server.

method An attribute of <form> that defines how the form data is sent to the server.
Possible values are get and post.

<input> A <form> element that creates controls for user input.

<button> Creates a button that can have HTML content.

<textarea> A text-entry field with multiple lines.

<select> A menu or scrolling list of items. Individual items are indicated by the
<option> tag.

<option> Individual items within a <select> element.

<progress> Progress bar to measure the progress of a task.

<meter> Gauge to show a scalar measurement within a known range.

<label> Creates a label associated with a form control.

<fieldset> Organizes form controls into groups.

<legend> Displays a caption for a <fieldset> element.

type An attribute of <input> that indicates the type of form control. Possible
values are shown in the following list:

text Creates a single-line text entry field.

color Creates a color entry field.

date Creates a date picker.

datetime Creates a date and time picker.

datetime-local Creates a local date and time picker.

email Creates an email entry field.

month Creates a month picker.

number Creates a number picker.

range Creates a range slider.

search Creates a search entry field.

ptg16476052

Workshop 367

12

Tag Use

tel Creates a telephone entry field.

url Creates a URL entry field.

week Creates a week picker.

password Creates a single-line text entry field that masks user
input.

submit Creates a Submit button that sends the form data to a
server-side script.

reset Creates a Reset button that resets all form controls to
their initial values.

checkbox Creates a check box.

radio Creates a radio button.

image Creates a button from an image.

button Creates a pushbutton. The three types are Submit,
Reset, and Push, with no default.

hidden Creates a hidden form control that cannot be seen by
the user.

file Creates a file upload control that enables users to select
a file with the form data to upload to the server.

Workshop
If you’ve made it this far, I’m sure that you still have a few questions. I’ve included a

few that I think are interesting. Afterward, test your retention by taking the quiz, and then

expand your knowledge by tackling the exercises.

Q&A
Q Are there security issues associated with including forms on my website?

 A Yes and no. The forms themselves are not a security risk, but the scripts that pro-

cess the form input can expose your site to security problems. Using scripts that

you can download and use on your own site can be particularly risky because mali-

cious people will already know how to exploit any of their bugs. If you are going

to use publicly available scripts, make sure they are approved by your hosting pro-

vider and that you are using the latest release.

ptg16476052

368 LESSON 12: Designing Forms

Q I want to create a form and test it, but I don’t have the script ready. Is there
any way I can make sure that the form is sending the right information with a
working script?

 A I run into this situation all the time! Fortunately, getting around it is very easy.

 Within the opening <form> tag, modify the action attribute and make it a mailto

link to your email address, as in the following:

<form action="mailto:youremailaddress@isp.com" method="post">

 Now you can complete your test form and submit it without having a script ready.

When you submit your form, it will be emailed to you as an attachment. Just open

the attachment in a text editor, and presto! Your form data is present .

Quiz
1. How many forms can you have on a web page?

2. How do you create form controls such as radio buttons and check boxes?

3. Are passwords sent using a password control secure?

4. Explain the benefit of using hidden form controls.

5. What other technology do forms rely on?

Quiz Answers
1. You can have any number of forms on a web page.

2. These form controls are created with the input element. Radio buttons have the

type attribute set to radio, and check boxes are created using the type checkbox.

3. No! Passwords sent using a password control are not secure.

4. Hidden form controls are intended more for you than for the person filling out

the form. By using unique value attributes, you can distinguish between different

forms that may be sent to the same script or sent at different times.

5. For you to process the data submitted via forms, they must be paired with a server-

side script through the action attribute. You can also use JavaScript to process the

form data.

ptg16476052

Workshop 369

12

Exercises
1. Ask your hosting provider for scripts that you can use to process your forms. If you

can use them, ask how the data is processed and which names you should use in

your form controls. If you need to use forms and your hosting provider won’t allow

you to use its scripts, start looking elsewhere for a place to host your website.

2. Visit some sites that might use forms, such as http://www.fedex.com. Look at

which form controls they use and how they arrange them, and peek at the source to

see the HTML code .

http://www.fedex.com

ptg16476052

This page intentionally left blank

ptg16476052

LESSON 13
Structuring a Page
with HTML5

Once you’ve designed a few websites, you begin to notice a pattern. Most
web pages have a similar structure, with a header, footer, navigation, and
sections. The authors of the HTML5 specification added support for addi-
tional structural tags to make it easier for authors to create web pages
with a tag structure that matches the meaning behind those tags. Most of
the new tags in HTML5 are new structural elements.

This lesson will cover the following topics:

n A review of how page layout approaches have evolved over the his-
tory of HTML

n How to lay out a page using HTML5 tags

n An overview of the new structural tags in HTML5

n How the browser creates an outline of a web page

n How to use HTML5 scripts that don’t yet provide HTML5 support

ptg16476052

372 LESSON 13: Structuring a Page with HTML5

A Short History of HTML Page Layout
On the early Web, most pages tended to be a single column of text that ran down the

page from top to bottom, mainly because that was the only option available. Early brows-

ers didn’t even support tables, so you could create paragraphs, lists, and other basic ele-

ments that were laid out left to right and top to bottom.

The first attempts to adjust the layout of pages were done with transparent images. A GIF

image was created that was 1 pixel by 1 pixel and transparent using GIF transparency.

This image was then given a width and height and placed beside text or other images to

push them over on the screen. It was a crude form of layout, but with a lot of effort it got

the job done.

Once tables were added to HTML, they immediately became the best option for creating

page layouts with multiple columns, borders around elements, and other approaches that

moved beyond the normal page flow. This quickly led to unwieldy pages that contained

large numbers of nested tables and often rendered very slowly. This was also the point at

which semantic use of HTML elements was at its lowest ebb. Designers tended to ignore

whatever semantic meaning had been intended for elements and instead used them only

for whatever physical effect they had on the page. For example, designers would fre-

quently wrap entire articles in <blockquote> tags to add wider margins.

Gradually, after CSS was introduced in 1996, styles began to replace HTML tags. As

browser support for CSS improved and more people upgraded to newer browsers, web

developers switched from using HTML tags to CSS. First, style rules gradually replaced

tags that were used for character styles. For example, the tag was one of the

most-used HTML tags for a long time, particularly because some browsers did not inherit

the specification from their parent elements, so you had to include a tag in

every cell of a table. The tag has since been completely replaced by CSS.

As more of the design and layout of pages switched from HTML to CSS, usage of tags

with semantic meaning was replaced by use of the generic container tags <div> and

.

In the days before you could use CSS to control the layout of your pages, it was common

for pages to be laid out entirely within a large table. In fact, pages often consisted of mul-

tiple nested tables that were laid out to create designs.

There were a number of problems with this approach, starting with the fact that tables

have a specific semantic meaning—they are meant to present tabular data—and using

them for everything removed that meaning. Some browsers also ran into performance

problems trying to render pages with all of those nested tables. Finally, all of those table-

related tags were really confusing and made pages difficult to maintain.

ptg16476052

Laying Out a Page in HTML5 373

13

When support for style sheets was widespread enough to be relied upon, table-based lay-

out gradually gave way to layouts based on elements positioned using CSS, and this is

still the current state of the art. Pages are usually structured using nested <div> elements

that are assigned id or class values that represent the structure of the page.

The authors of the HTML5 specification noticed that many of the names people were

assigning to their <div> elements were the same on just about every website and decided

to add elements to describe page structure that have semantic meaning.

Of course, elements like <body>, <p>, <blockquote>, and headings already exist. HTML5

adds elements that represent page headers and footers, navigation sections, and parts of

typical documents, like articles, sections, and asides. As browser support for these new

elements expands, they will gradually come to replace the nested <div> structures that

make up just about every current web page.

Laying Out a Page in HTML5
Before digging into the new elements provided by HTML5, I want to talk about the struc-

ture of a typical web page. Here’s the source code for a sample web page:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>A Typical Website</title>
 </head>
 <body>
 <div id="header">

<h1>A Typical Website </h1>
<div class="nav" id="topmenu">

Home
Products
About
Contact

</div>

 </div>

 <div id="article">
<h2>A Headline</h2>
<p>The text of an article.</p>

<div class="aside">
<p>This is an aside.</p>

</div>
<p>More article text.</p>

 </div>

ptg16476052

374 LESSON 13: Structuring a Page with HTML5

 <div id="footer">
Copyright 2015-2016

 </div>
 </body>
</html>

As you can see, the page is constructed using <div> tags that represent typical sections

included in a web page. I chose the classes and IDs for this page to correspond exactly to

the equivalent tags in HTML5. Using the new elements, here’s how the same page would

be constructed:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>A Typical Website </title>
 </h ead>
 <body>
 <header>

<h1>A Typical Website </h1>
<nav id="topmenu">

Home
Products
About
Contact

</nav>

 </header>

 <article>
<h2>A Headline</h2>
<p>The text of an article.</p>

<aside>
<p>This is an aside.</p>

</aside>
<p>More article text.</p>

 </article>

 <footer>
Copyright 2015-2016

 </footer>
 </body>
</html>

As you can see, this page has no <div> tags. Instead, I’ve used the new top-level ele-

ments in HTML5 to represent the structure of the page. One of the key design goals of

HTML5 was to make HTML better represent the structure of web pages the way devel-

opers are actually building them .

ptg16476052

HTML5 Structural Tags 375

13

HTML5 Structural Tags
Now that you’ve seen a full page built using HTML5, let’s look at the individual struc-

tural tags and which semantics they represent. The new tags don’t provide an advantage

in terms of styling your pages; you can provide the structure you need for styling using

<div> tags, IDs, and classes. The advantage of the new tags is that they provide a stan-

dard vocabulary for describing the structure of a page. This vocabulary makes it easier to

build software that extracts information from structured pages so that it can be presented

in alternate ways. The key, though, is for developers who are using these tags to use them

in the manner consistent with that vocabulary.

Sections
It’s helpful to think of the structure of a web page as an outline. The top-level structural

element of a page is the <html> element. The next level is represented by the <head>

and <body> elements. In HTML4, the only element available for dividing the page into

further sections is the <div> element. HTML5 provides a number of other others, starting

with the <section> element.

As you might expect, the <section> element is used to define a generic section of the

document. The other structural tags in HTML5 are used to define document sections with

more specific semantic meaning. A <section> tag is expected to include a heading tag

for that section. You’ll learn in more detail how headings and document sections interact

a little further on.

Here’s an example of a section:

<section>
 <h1>Board Members</h1>

<p>The board members for 2014 to 2016 term are as follows.</p>

Lis a Smith, Chairman
Joe Brown, President
Sheila Robinso n, Vice President
Wanda Nichols, Treasurer
Ronald Jones, Secretary

</section>

While styles can be applied to the <section> element, it does not alter the appearance

of a page on its own. You can also nest <section> elements on the page to create

subsections. That said, you should use more specific elements when possible to avoid the

<section> tag becoming the new <div> tag.

ptg16476052

376 LESSON 13: Structuring a Page with HTML5

Header
The <header> element, seen in the example HTML5 page that I showed earlier, is a con-

tainer for elements that generally appear at the top of the page and are carried across an

entire site. HTML5 distinguishes between sectioning elements, like <section>, that are

considered part of the document outline, and elements that are removed from the outline,

usually because they are boilerplate that appears on many pages. The <header> element

is excluded from the outline.

The header should contain general content like logos and navigational elements. For

example, Figure 13.1 contains the part of the New York Times home page that should be

enclo sed within a <header> element.

You can also add <header> elements to other sectioning elements or even nest one

<header> within another. So, the <body> element can have a header, and each <section>

can have its own <header>.

All of the HTML5 structural tags, including <header>, have no visible effect on the page.

Footer
The <footer> element is just like the <header> element, except that it’s a footer. It

speaks well of the design of HTML5 that it’s challenging to define the structural tags

without using the name of the tag in the definition. The <footer> contains the footer

material for the nearest sectioning ancestor. What does that mean? If a <footer> element

is nested inside a <section> element, it is considered to be the footer of that section, not

the footer for the page itself.

Like the <header> element, the <footer> element is not considered part of the page out-

line. You can probably imagine the sorts of things you might put in a <footer> element,

and if you can’t, most web pages have footers. They usually contain copyright informa-

tion, contact information for the creator of the page, and often some navigational ele-

ments. The footer for a section of a page may contain information about the author of the

content in that section. Figure 13 .2 contains a typical page footer .

FIGURE 13.1

The header of the
New York Times
website.

ptg16476052

HTML5 Structural Tags 377

13

Navigation
HTML5 also provides a <nav> element , a sectioning element that is intended to contain

groups of navigational links on the page. When should it be used? The specification

says that “the element is primarily intended for sections that consist of major navigation

blocks.” So, it’s a judgment call for the creator of the page. You can use the <nav>

element on all your navigation lists or only on the primary navigation for the page—

whatever makes more sense.

Figure 13.3 shows a typical web page with navigation sections.

The figure shows the types of elements that would best be enclosed in <nav> elements.

You can also assign <nav> elements to specific sections. For example, the article tools

in Figure 13.4 are a typical example of a navigation element associated with a particular

section.

FIGURE 13.2

The footer of a
page on the New
York Times web-
site.

FIGURE 13.3

The navigation sec-
tions on a typical
web page.

ptg16476052

378 LESSON 13: Structuring a Page with HTML5

Here’s how the <nav> element is used in the earlier HTML5 example:

<header>

 <nav id="topmenu">

Home
Products
About
Contact

 </nav>
</header>

A page can contain many <nav> elements, and it’s perfectly fine to add id or class attri-

butes to distinguish them from one another.

Articles
The <article> element is another sectioning element, but unlike <header> and

<footer>, it is included in the document outline. It is equivalent to the <section> ele-

ment, with special semantic meaning. Here’s how the HTML5 specification defines an

article:

“The article element represents a complete, or self-contained, composition in a docu-
ment, page, application, or site and that is, in principle, independently distributable
or reusable, e.g. in syndication. This could be a forum post, a magazine or newspa-
per article, a blog entry, a user-submitted comment, an interactive widget or gadget,
or any other independent item of content.”

One thing to note is that articles can be nested within sections and vice versa. For exam-

ple, a section of the page may contain multiple articles, or an article can contain multiple

sections.

Just like ordinary sections, articles can also contain their own header, footer, or naviga-

tion. They can also contain their set of headers.

FIGURE 13.4

Section-specific
navigation.

ptg16476052

The Page Outline 379

13

Here’s an example of an <article> element in a page:

<article>
 <h2>A Headline</h2>
<p>The text of an article.</p>

<aside>
<p>This is an aside.</p>

 </aside>
<p>More article text.</p>

</article>

Asides
Asides are represented by the aside element. When used inside an article, they are

meant to represent content that is related to the surrounding article but not part of it. For

example, an aside may contain a list of links for further reading, or a glossary list of

terms used in the article, or a sidebar. You can also place advertisements within an aside

element. The aside tag can also be used outside an article to contain content on the page

that is not directly relevant to the main content on the page. However, be sure that you’re

not using an aside tag when you should be using header, footer, or nav.

The aside tag can be used for any content that belongs in a section but isn’t considered

part of the main page flow. That means you can also use it for things like advertisements

that you want to display but wouldn’t want to treat as part of the page’s content.

Here’s an example of an aside for an article:

<article>
 <h2>A Headline</h2>
<p>The text of an article.</p>

<aside>
<p>This is an aside.</p>

 </aside>
<p>More article text.</p>

</article>

The Page Outline
In discussing the various sectioning tags in HTML5, I talked about the page outline

quite a bit. You already know that HTML is structured in a hierarchical fashion—tags

are nested and make up a tree-like structure. That’s one outline, but it’s not the one I’m

talking about. The browser also creates a semantic outline of the page that represents the

structure of the document in terms of the content.

ptg16476052

380 LESSON 13: Structuring a Page with HTML5

Prior to HTML5, sections in a document were defined using the div tag, and the relative

precedence of the content was specified using heading tags. Anytime a new heading tag

was encountered, it was treated as the beginning of a new section, with the precedence

of that section in the document structure indicated by the level of the heading. Here’s an

example:

<h1>Top Level Heading</h1>
<p>Some content.</p>
<h2>Second Level Heading</h2>
<p>More content.</p>
<h3>Third Level Heading</h3>
<p>Even more content.</p>
<h2>Second Level Heading</h2>
<p>Content.</p>

In this case, the outline would read like this:

1. Top Level Heading

1.1 Second Level Heading

 1.1.1 Third Level Heading

 1.2 Second Level Heading

The typical page has a number of divs, headings, and other structural elements, but given

that div has no special semantic meaning, it is impossible to infer an accurate outline

from the structure of a typical page. Instead, the headings were used to define the outline

of the page.

The sectioning elements in HTML5 rectify this situation, enabling Web publishers to

control the page outline precisely. With HTML5, the first heading inside a sectioning

element defines the heading for that section rather than starting a new section. The sub-

sequent headings in a section are considered to start a new section. This is referred to as

 implicit sectioning. If you want to force explicit sectioning, you must place every header

with a corresponding sectioning element.

Why does this matter? Obviously, Web browsers like Chrome and Firefox don’t present

an outline of a web page; they present a rendered web page. That’s not the case, however,

for Web browsers that use assistive technology for visitors with vision impairment. Well

thought-out page structure makes it much easier for such browsers to present the most

important information on the page to users and skip over the parts that are not critical.

The most important difference between HTML5 and previous versions is that HTML5

offers more structural elements than HTML 4 did. The second difference is that HTML5

excludes some structural elements in the document outline, so they are ignored by assis-

tive technology like screen readers.

ptg16476052

Summary 381

13

Elements with Their Own Outlines
Some elements are semantically understood to represent external content. The sectioning

elements nested in these kinds of elements are ignored when the document outline is pro-

duced. These elements are blockquote, details, fieldset, figure, and td.

Using HTML5 Structural Elements
As a creator of web pages, HTML5 structural elements provide a much cleaner and more

semantically useful alternative to plain old div tags for creating web pages. And these

days all modern browsers support them.

Polyfill Scripts
If you have users who are using extremely old browsers like Internet Explorer 7 or 8, you

can still use HTML5 elements, but you might need fallback options. There are scripts,

referred to as polyfills, that provide functionality found in browsers that do not support

that functionality natively.

Modernizr is one such script. It’s a JavaScript library that can be used to automatically

alter web pages and style sheets when they are loaded in Internet Explorer so that they

are displayed properly in the browser.

There are three lessons all about JavaScript starting with Lesson 17, “Introducing

JavaScript.” JavaScript is a programming language that browsers understand how to

interpret and execute. You can load JavaScript libraries on your web pages in basically

the same way you load external style sheets. You can also embed JavaScript in your

pages using the script tag.

You need to download Modernizr to use it. You can get it from the website at

http://modernizr.com/download/. For performance reasons, you can create a custom build

that includes the features that you need, but it’s easiest to start by downloading the whole

thing.

Explaining how Modernizr works is beyond the scope of this lesson, but if you need to

support older browsers with specific HTML5 features, you can use Modernizr to ensure

that users of older browsers see an equivalent experience when they use your page .

Summary
HTML5 provides a new set of tags that enable you to structure pages using tags that pro-

vide sematic meaning about the page, rather than just <div> tags. Not only do these tags

describe the structure of a page, but they also enable you to clearly differentiate between

http://modernizr.com/download/

ptg16476052

382 LESSON 13: Structuring a Page with HTML5

sections of a page that should be treated as page content, and parts that are boilerplate

used across multiple pages like headers, footers, and navigational elements. The structural

elements are combined into a page outline that represents the overall structure of the page

and leaves out the sections that are not part of the page content. In Table 13.1, there’s a

list of the new elements introduced in this lesson. As you’ll see, the descriptions of most

of them include the names of the elements themselves. That was the intention behind the

design of HTML5.

TABLE 13.1 New Tags Discussed in Lesson 13

Tag Description

<header> Represents the header of an HTML document. Excluded from the page out-
line.

<footer> Represents the footer of an HTML document. Excluded from the page outline.

<nav> A section containing navigation elements. Included in the page outline.

<section> Represents a section of a page. Included in the page outline.

<article> An article. Included in the page outline.

<aside> An aside, sidebar, or other supplemental content. Not included in the page
outline.

Workshop
The workshop contains a Q&A section, quiz questions, and activities to help reinforce

what you’ve learned in this lesson. If you get stuck, the answers to the quiz can be found

after the questions.

Q&A
 Q You talk a lot about sematic markup. What are the tangible advantages?

 A For regular desktop browsers, web pages look the same whether they are written in

semantically correct markup or not. That said, proper semantic markup makes web

pages much easier for users with disabilities who use screen readers to browse the

Web. It also makes it easy to process the content of web pages with software and

extract meaning from them. Finally, as a developer, it’s easier to understand how a

web page is constructed when it uses semantically accurate tags.

ptg16476052

Workshop 383

13

 Q How do you decide when to start using HTML5 structural tags?

 A If you’re creating web pages for an audience that uses known browsers, you can

use whichever tags those browsers support. For example, at my job, all of the

employees use Google Chrome, so we can use HTML5 tags whenever we’re work-

ing on internal applications. However, on our public website, we continue to need

to support browsers that do not yet provide HTML5 support. Furthermore, we have

a large web application that was written before HTML5 existed, so we would have

to change all of our pages to use the new tags. These days the majority of websites

are written in HTML5, and if you haven’t upgraded your site yet, you should be

considering it.

Quiz
1. In HTML4, which elements are used to construct the page outline?

2. How does the behavior of a heading tag change when it’s placed within a

<section> tag?

3. How does the <nav> element change the appearance of a page?

4. Does the <div> tag define a new section on a page?

Quiz Answers
1. In HTML4, the page outline is defined based on the headers used on the page.

2. Placing headings in a <section> tag doesn’t change the heading behavior at all. It

just gives the section a title for the outline.

3. This was a trick question. None of the new HTML5 structural elements affect the

layout of the page.

4. The <div> tag does not define a new page section.

Exercise
Take a look at one of your favorite websites and think about how you would organize the

page using HTML5 structural elements.

ptg16476052

This page intentionally left blank

ptg16476052

LESSON 14
Integrating
Multimedia: Video and
Sound

Video and sound are a core part of the modern Web. You can watch tele-
vision online at sites like Hulu, watch movies on demand through Netflix
and Amazon.com, and watch videos uploaded by anyone at sites like
Vimeo and YouTube. Sites that sell downloadable music provide audio
previews of the music they sell. Pandora and Last.fm enable their users
to create their own radio stations starting with the name of a single song.

Understanding how to incorporate video, audio, and Flash into your own
web pages is an important part of building modern websites. In this les-
son you’ll learn how to:

n Embed videos hosted at Vimeo and YouTube in your pages

n Convert video files to common web formats

n Use the HTML5 <video> and <audio> tags

n Embed Flash movies in web pages using the <object> tag

n Use Flash audio and video players

ptg16476052

386 LESSON 14: Integrating Multimedia: Video and Sound

Embedding Video the Simple Way
There’s a lot to be learned about embedding video: tags for embedding video in web

pages, new audio and video elements in HTML5, and browser incompatibilities. First,

however, it’s worth discussing the way the vast majority of videos are embedded in web

pages these days. People upload their video to a website that specializes in video hosting

or use videos that other people have uploaded and then copy and paste the code those

sites provide for embedding the videos in their own sites.

The two most popular video hosting sites, YouTube and Vimeo , provide the code to

embed the videos they host on the web pages for each video. You can see the form that

allows you to generate the embed code for YouTube in Figure 14.1.

If you want to add a video hosted on YouTube, you just click the Share button and then

choose Embed, and the form shown in the figure is displayed. If you want to customize

it, click on the Show More button and choose your customization options. Then copy the

HTML code from the box into your own page. The result is shown in F igure 14.2.

YouTube (and other sites) automatically generates the markup that you can paste into

your own web pages to embed their videos. There’s nothing magic about it; I’ll describe

the tags they use when I discuss embedding video later.

FIGURE 14.1

The embed form on
YouTube.

ptg16476052

Embedding Video the Simple Way 387

14

Advantages and Disadvantages of Hosting Videos on
External Sites
You can upload your own videos to YouTube and embed them in your pages, too. Other

sites, like Vimeo (https://vimeo.com/), also offer free hosting for video. There are a num-

ber of advantages to hosting your videos on an external site rather than on your own web

server. For one thing, video files tend to be rather large, and hosting them on YouTube or

Vimeo means that you don’t have to figure out a place to put them. You also get to take

advantage of their video player, which supports multiple quality levels and full-screen

playback. It’s used by millions of people and is widely tested. There are also applications

for mobile platforms like Apple iOS and Google Android, so videos can be viewed on

them, whereas they cannot be with other Flash players. As you’ll see, another advantage

is that it’s very easy to get started with YouTube or Vimeo. You just upload your video

file, go to the new page for the video, and then copy the embed code and paste it on your

own site to get things working.

Another advantage of hosting your video on an external video site is that you can take

advantage of YouTube’s and Vimeo’s audience in addition to the audience at your own

website. When you upload a video to YouTube and make it public, it shows up in search

results and on the lists of related videos when people watch other videos on the site. So in

the end, using YouTube or Vimeo for video hosting can lead more people to your website

than hosting videos on your own.

FIGURE 14.2

A YouTube video
embedded in a
web page.

https://vimeo.com/

ptg16476052

388 LESSON 14: Integrating Multimedia: Video and Sound

The disadvantages of using external video hosting sites are that you cede some control

over your video and how it is presented. The YouTube player works well, but it’s obvi-

ous to your users that it’s the YouTube player—the same is true of the Vimeo player.

Plus there are restrictions to what you can post to these sites, such as longer videos. There

are also automated systems to check for copyright violations, but there can be false-

positives that may flag your videos and have them automatically removed. Although it’s

important to not post copyrighted videos (or the music in the videos), it can be a hassle to

prove that you have the rights to something if YouTube or Vimeo decide to remove your

content. You may want to host the video yourself if you don’t want your customers to be

distracted by YouTube, you need to host extremely large videos, or you want to use your

own player.

Uploading Videos to YouTube
YouTube provides a number of ways to upload video to the site. You can take video

with your webcam and upload it directly, or even send video taken on a smartphone to

YouTube. In this case, I’m going to upload an existing video file using the web interface.

To start the process, go to https://www.youtube.com/upload and drag a video you want to

upload onto the upload box, as in Figure 14.3.

FIGURE 14.3

The YouTube file
upload page.

YouTube supports a wide variety of video formats, including those
used by most camcorders. Supported formats include MP4, MOV,
AVI, MWV, and FLV.

NOTE

https://www.youtube.com/upload

ptg16476052

Embedding Video the Simple Way 389

14

After you’ve selected a file, you’ll immediately be taken to the video processing page.

The page shows a progress indicator that lets you know how long your video is going

to take to upload and enables you to enter information about the video you’ve uploaded.

Using the form, you can enter a title, description, category, and tags for your video, all of

which are important if you want YouTube users to be able to find your video.

As you can see from the screenshot, you can also choose a privacy setting for your video.

You can choose public, which allows people to find your video through YouTube, or

private, meaning that you can specify exactly who’s allowed to see it. The third option is

unlisted. This option makes the video publicly available, but only to people who know the

URL. It’s useful if you want to embed the video on your own website, but you don’t want

people to find it by browsing YouTube. The scheduled option lets you set a time when

you want the video to be made public on the YouTube servers.

YouTube provides the URL and embed code for your video before it’s even finished

uploading, so you can link to it immediately.

Customizing the Video Player
After you’ve uploaded your video, you can embed it in your own web pages. Embedding

videos of your own is just like embedding other videos found on YouTube; you can just click

the Embed button and copy the code for your own page. However, you can do some things to

customize the embedded playe r. You can see all the embedding options in Figure 14.4.

FIGURE 14.4

Customization
options for embed-
ded YouTube
videos.

ptg16476052

390 LESSON 14: Integrating Multimedia: Video and Sound

As you tweak the embed settings, the page automatically updates the embed code with

your new settings. There are four check boxes you can select. The first allows you to dis-

able the list of related videos that YouTube normally displays when a video finishes play-

ing. You may want to disable these if you want your visitors to stick around on your site

after watching your video instead of wandering off to look at other videos on YouTube.

Enabling Show player controls adds visible controls to the YouTube player (and adjusts

the height and width to accommodate the controls without shrinking the video). This is

useful if your customers have trouble getting videos started with the controls hidden by

default. Show Video Title and Player Actions leaves the title of the video at the top of

the screen along with the watch later and share buttons. Privacy-enhanced mode prevents

YouTube from storing identifying information about the user if he didn't click the player.

After you’ve chosen all of your customization options, you can copy the embed code and

use it in your page.

Other Services
YouTube is the most popular video hosting service, but there are many others, too.

Vimeo (https://vimeo.com/) is a popular video hosting service that’s a lot like YouTube.

YouTube offers unlimited uploads but limits the length of video uploads to 15 minutes.

Vimeo offers a professional (paid) account that enables subscribers to upload videos of

any length.

FIGURE 14.5

Vimeo’s video
player.

https://vimeo.com/

ptg16476052

Hosting Your Own Video 391

14

The process of uploading video files to Vimeo is nearly identical to the process for

YouTube. You just choose your file and information, like the name and description.

Both sites will convert video from nearly any common format to the format used by their

player.

Here’s a list of some other popular video hosting services:

n Dailymotion —http://www.dailymotion.com/

n Flickr —https://www.flickr.com/

n SmugMug —https://www.smugmug.com/

n Viddler —http://www.viddler.com/

n VideoPress —http://videopress.com/

Which video hosting site you choose is a matter of taste. Each site has its own video

player and its own community, and you should choose whichever suits you best. Be sure

to check out the restrictions on video length and video resolution when choosing. For

example, the maximum length of videos on Flickr is 90 seconds, and only users with Pro

accounts are allowed to view them in high definition (HD). There’s also no rule that says

that you can’t upload your videos to more than one site. You may want to upload your

videos to Vimeo for the purpose of embedding them on your own site and upload them to

YouTube to make them available to YouTube’s audience.

Hosting Your Own Video
For any number of reasons, you might want to host video yourself instead of relying on a

third-party service such as Vimeo or YouTube to host it for you. For one thing, you can

use your own player rather than using the one they provide. You also may not want to

include branding or advertising from a third party on your own site, and you might not

want to distract your users with a link to YouTube. As is the case with most third-party

services on the Web, hosting your own video gives you more control over the end result

but requires more work and expertise on your part.

At one time, a wide variety of methods were used to embed video in web pages, each

with its own browser plug-in and file format. These days, just two common methods are

in use. The first is to use a Flash movie to play back the video, and the second is to use

the HTML5 <video> tag to play the video using the browser itself. I’ll explain how to

use both approaches and how to combine the two to support as many browsers and plat-

forms as possible.

http://www.dailymotion.com/
https://www.flickr.com/
https://www.smugmug.com/
http://www.viddler.com/
http://videopress.com/

ptg16476052

392 LESSON 14: Integrating Multimedia: Video and Sound

Before diving into the tags used to publish video on the Web, it’s important to first

explain how to create video files that can be played in a browser. Understanding how to

create video files for the Web is the first step in getting video from your camcorder or

mobile phone onto web pages.

Video and Container Formats
Before discussing how to embed video within a web page, it’s important to discuss video

formats. All video files are compressed using what’s known as a codec, short for coder/

decoder. After a video has been encoded, it must be saved within a container file, and just

as there are a number of codecs, there are a number of container file formats, too. To play

a video, an application must understand how to deal with its container file and be able to

decode whatever codec was used to compress the video. For example, H.264 is one of the

most popular video codecs and is supported by a number of container formats, including

FLV (Flash Video) and MP4.

It’s not uncommon to run into situations in which a video player can open the container

file used to package the video but does not support the codec used to encode the video.

Likewise, if a video player doesn’t recognize the container file used to package the video,

it won’t be able to play it back, regardless of the codec used. Whereas many, many video

codes and container formats exist, only a few are relevant in terms of video on the Web.

The extension for a video file indicates its container format, not the codec of the video in

it. For example, the extension for Apple’s QuickTime container format is .mov, regard-

less of which codec is used to encode the video.

H.264 is a commercial format that is supported natively by Microsoft Internet Explorer 9,

Apple Safari, and Google Chrome. It’s also supported by Flash. The problem with H.264

is that it is patented, and there are license fees associated with the patents. Companies

that implement the codec must pay for a license, as must companies that use the codec to

deliver H.264 video to users. Mozilla held out for a long time and did not support H.264

in Firefox because of the patent licenses required, but as of around version 20 it began

supporting it. H.264 is the most popular format for delivering video content over the Web

by far. It’s also used for satellite and cable television and to encode the video on Blu-Ray

discs.

Most commonly, H.264 video is associated with MP4 (.mp4) containers, or occasionally

Flash Video (.flv) containers. MP4 files are supported by the Flash player and by all the

browsers that support H.264 video, making it the most widely supported container for

distributing video on the Web.

ptg16476052

Hosting Your Own Video 393

14

Theora is an open, freely licensed video codec released by the Xiph.org Foundation.

Mozilla Firefox and Google Chrome offer Theora support, but Apple and Microsoft have

no plans to support it. It’s usually associated with the Ogg container format, and the files

are usually referred to as Ogg Theora files. Ogg files that contain video usually have the

extension .ogv. There’s also an associated audio codec, Vorbis. Ogg Theora audio files

have the extension .oga.

In 2010, Google released a new container format called WebM . WebM files use the VP8

codec for video and the Vorbis codec for audio. VP8 was originally created by a com-

pany called On2, which was acquired by Google, who then released the codec to the pub-

lic without licensing requirements. WebM is supported by Google Chrome and will also

be supported by Mozilla Firefox, Microsoft Internet Explorer, and Adobe Flash.

Currently, if you want to encode your video only once, you can use H.264/MP4 and play

it natively in browsers that support it using the <video> tag. All modern browsers support

this format. Internet Explorer 8 is the only browser that cannot, so if you need to support

Internet Explorer 8, you can play the same video file using a Flash video player.

Converting Video to H.264
One of the nicest features of video hosting services is that they free you from worrying

about codecs and container formats because they do the conversion for you. It’s up to

you to create a video file with the desired resolution, but the hosting service takes it from

there. If you’re hosting video yourself, you’ll need to convert your video to MP4 and per-

haps Flash, too.

A number of tools are available for dealing with video, but when it comes to convert-

ing video from other formats to H.264, there’s only one you need to worry about:

HandBrake. HandBrake is a free, open source application that enables you to convert

video stored in pretty much any format to H.264. There are versions for Windows, OS X,

and Linux that all work basically the same. You can download HandBrake at

http://handbrake.fr/.

If you just want to convert your video to H.264, you can open it in HandBrake and click

Start. However, you’ll probably want to tweak some of the settings to optimize your

video for use on the Web. Check out the interfac e for HandBrake in Figure 14.6. I’ll walk

you through the options you’ll want to set to optimize your video for the Web.

http://handbrake.fr/

ptg16476052

394 LESSON 14: Integrating Multimedia: Video and Sound

First, choose a filename for your video using the Destination field. You’ll also want to

stick with the default output format: MP4. The four tabs at the bottom enable you to

optimize the video output for your purpose. First, though, check the Web Optimized

button for your video. It enables your video to start playing immediately as it’s being

downloaded and makes it easier for players to skip around in the video. The only cost is

slightly longer encoding time. If you think your customers will be using the older iPod

fifth-generation models to play your video, you should select the iPod 5G Support.

Under the video options, the default codec is H.264. Keep that. Under Framerate, the

default is to stick with the framerate in the video you’re converting, but you can choose

another option. The higher the framerate, the larger the resulting file. If you change the

framerate, you can enable two-pass encoding, which causes encoding to take longer (by

adding the additional pass) but results in higher-quality video for a given file size.

Finally, you’ll tweak the Quality settings. Video encoding is all about tradeoffs. The

higher the picture quality, the larger the resulting file. Larger files take up more space

on the server and take longer to download. On the other hand, they look better. You can

change three variables that affect the overall size of the file: the height and width of the

video (a 320×240 video will be much smaller than a 640×480 video), the framerate, and

the quality. If your video will be played in a small box embedded on a web page, you can

afford to lower these settings to create smaller videos. If your video will be played on a

42-inch television, you’ll probably want to raise the quality settings. Bear in mind that

your web pages will be viewed by people using many different size screens, so don’t go

too small or too large.

FIGURE 14.6

The interface for
HandBrake.

ptg16476052

Hosting Your Own Video 395

14

There are three ways to specify the quality for your video, and understanding them

requires that you know about bit rate. The bit rate of a video is the amount of data used

by one second of video. The bigger the number, the more space the video will use. The

default method of specifying quality is “constant quality.” What this means is that the

entire video will be compressed by the same factor. H.264 is like the JPEG image for-

mat in that some data is lost when the video is compressed. The Constant Quality set-

ting applies the same compression factor to the whole video. When you set a video to

Constant Quality, the video uses whatever bit rate is required to provide that quality, so

the bit rate will vary throughout depending on how well the video can be compressed at

the specified quality level.

The Average Bit Rate option varies the quality of the video to satisfy the bit rate that you

specify. Both it and the target file size option are more predictable—the video will be the

size you expect when you get to the end.

Instead of manipulating the settings on your own, you can use one of the presets that

HandBrake provides. To view the presets, click the Toggle Presets button on the upper

right. The list of settings in Figure 14.7 will appear. (I’ve fully expanded the list.) These

presets are already optimized for certain uses. The one that works best for web video is

the iPhone & iPod Touch preset. The simplest approach, if you’re starting out, is to select

it and then click the Web Optimized check box.

You’ll also want to click the Picture Settings button in the toolbar to specify the height

and width of your video. 320×240 is a pretty standard size for smaller videos. 640×480

is also a common setting. For HD video, set the size to at least 1280×720. From Picture

FIGURE 14.7

The list of
HandBrake
presets.

ptg16476052

396 LESSON 14: Integrating Multimedia: Video and Sound

Settings, you can also crop your video or adjust the filter settings. The HandBrake

documentation has more on the filter settings.

One option you have is to create multiple copies of your file and display them using

media queries. This allows you to create responsive versions of your videos. You’ll learn

more about how to do this in Lesson 16, “Using Responsive Web Design.”

After you’ve specified the settings, just click the Start button to encode your video as

H.264. When the encoding is complete, preview the video, preferably in the player you’ll

be using on the Web, to make sure that the quality is sufficient. If it’s not, encode the

video again using different settings. Likewise, if the video file is larger than you’d like,

you may want to encode the video again with the compression turned up. Afterward,

watch the video and make sure that it still looks okay.

Embedding Video Using <video>
The methods used to embed video in web pages have changed a great deal over the years.

In the early days of the Web, to present video, the best approach was just to link to video

files so that users could download them and play them in an application other than their

browser. When browsers added support for plug-ins through the <embed> tag, it became

possible to embed videos directly within web pages. The catch was that to play the video,

the user was required to have the proper plug-in installed.

The tag used to embed plug-ins in pages changed from <embed> to <object>, but the

approach was the same. Plug-ins made embedding videos possible, but they didn’t make

it easy because of the wide variety of video formats and plug-ins available. Publishing

video files that worked for all, or even most, users was still a problem.

In 2002, Adobe added support for video to Flash. Because nearly everyone had Flash

installed, embedding videos in Flash movies became the easiest path to embedding video

in web pages. Later, it became possible to point a generic Flash video player at a properly

encoded movie and play it. As you’ll see later in this lesson, there are some Flash video

players that you can use to play videos that you host, too. With HTML5, browsers have

added native support for video playback through the <video> tag.

The current generation of mobile devices that are capable of video playback (like the

iPhone and phones based on Google’s Android operating system) support the HTML5

<video> tag and do not support Flash. So, the best approach for providing video to the

widest number of users is to use both the <video> tag and a Flash player. After introduc-

ing the <video> tag, I’ll explain how to use it with a Flash movie in such a way that users

only see one video player—the appropriate one for their environm ent.

ptg16476052

Embedding Video Using <video> 397

14

The <video> Tag
The <video> tag is new in HTML5. It embeds a video within a web page and uses the

browser’s native video playback capabilities to do it, as opposed to Flash or some other

plug-in. Here’s a simple vers ion of the <video> tag:

<video src="myvideo.mp4">

If the browser is capable of playing the video at the URL specified in the src attribute, it

will do so. Or, it would, if there were some way of telling the browser to play the video.

In this case, the video will have no controls and won’t start playing automatically. To

take care of that, I need to use some of the attributes of the <video> tag, whi ch are listed

in Table 14.1.

TABLE 14.1 <video> Attributes

Attribute Description

src The URL for the video to be played.

height The height of the element.

width The width of the element.

controls Boolean attribute that indicates that the browser should supply its own controls
for the video. The default is to leave out the controls.

autoplay Boolean attribute that indicates that the video should play immediately when
the page loads.

loop Boolean attribute. If present, the video will loop when it reaches the end,
replaying until the user manually stops the video from playing.

preload Boolean attribute. If present, the browser will begin downloading the video as
soon as the page loads to get it ready to play. Ignored if autoplay is present.

poster Image to show prior to starting playback.

muted Boolean attribute. If present, the video will have no sound.

Because the video above doesn’t have the controls or autoplay attributes, there’s no

way to get it to play. Figure 14.8 shows the video, embedded using the following tag,

with controls in cluded:

<video src="myvideo.mp4" controls>

ptg16476052

398 LESSON 14: Integrating Multimedia: Video and Sound

FIGURE 14.8

A video embedded
using the <video>
tag, with controls.

When embedding a video, make sure that you give users some
way to control the video playback. Be conservative with autoplay
and loop, too. Many users don’t want a video to start playing
immediately when they get to a page. If you include the loop
attribute and you don’t include controls, the user will have to
leave the page to stop the video.

CAUTION

By default, the <video> element will be the same size as the video in the video file. You

can change the size of the element on the page using the height and width attributes,

however, the browser will preserve the aspect ratio of the video file and leave blank

space where needed. For example, my movie was created using a 3:2 aspect ratio. If I

create a <video> element with a 9:5 aspect ratio, the movie will appear centered wi thin

the element, as shown in Figure 14.9:

<video style="background: black;" src="http://www.yo-yo.org/mp4/yu.mp4" controls
width="675" height="375">

I set the background color of the <video> element to black to make it clear where the

browser puts the extra space when the movie’s aspect ratio does not match the aspect

ratio of the element.

ptg16476052

Embedding Video Using <video> 399

14

Finally, if you’re fairly certain that most people who come to your page will want to

view the video, but you want to let them play the video themselves, you may want to

include the preload attribute, which tells the browser to go ahead and download the

video when the page loads but to wait for the user to play the video. Usually this means

users will not have to wait as long to see the video after they try to play it, but the disad-

vantage is that you’ll use bandwidth sending the video to everyone, whether or not they

actually play the movie.

Using the <source> Element
There is one major drawback to using the <video> tag. Not all browsers support the same

video containers or codecs. As you’ve seen, this problem requires you to encode your

videos in multiple formats if you want to reach most browsers, but the good news is that

the <video> element provides a means of dealing with this issue so that your users won’t

notice.

To embed a single video file, you can use the src attribute of the video tag. To provide

videos in multiple formats, use the <source> element nested within your <video> tag.

Here’s an ex ample, the results of which are shown in Figure 14.10:

<video width="320" height="240" preload controls>
 <source src="movie.mp4"
 type='video/mp4; codecs="avc1.42E 01E, mp4a.40.2"'>
 <source src="movie.ogv"
 type='video/ogg; codecs="theora, vorbis"'>
</video>

FIGURE 14.9

A <video> tag with
a different aspect
ratio than the
embedded video
file.

ptg16476052

400 LESSON 14: Integrating Multimedia: Video and Sound

As you can see, in this case I’ve left the src attribute out of my <video> tag. Instead,

I’ve nested two <source> elements within the tag. The src attribute of <source> contains

the URL of a video file, and the type attribute provides information to the browser about

the format of that file. The browser examines the types of each of the movie files and

chooses one that is compatible.

The syntax of the type attribute can be a little bit confusing because of the punctuation.

Here’s the value:

video/ogg; codecs="theora, vorbis"

The first part is the MIME type of the video container. The second part lists the codes

that were used to encode the audio and video portions of the file. So in this case, the con-

tainer type is video/ogg, the video codec is theora, and the audio codec is vorbis. If the

browser supports both the file type and the codecs, it will use that video file. The values

for the type attribute are as follows:

n MP4/H.264—video/mp4; codecs="avc1.42E01E, mp4a.40.2"

n Ogg Theora—video/ogg; codecs="theora, vorbis"

n WebM—video/webm; codecs="vp8, vorbis"

Embedding Flash Using the <object> Tag
The <object> tag is used to embed media of all kinds in web pages. Although it is most

often used to embed Flash movies, it can also be used for audio files, video files, images,

and other media types that require special players. Unlike all the other HTML tags

you’ve learned about so far, the <object> tag works very differently from browser to

browser. The problem is that browsers use different methods to determine which plug-in

should be used to display the media linked to through the <object> tag.

FIGURE 14.10

A video embedded
using the <video>
tag with <source>
tags, with controls.

ptg16476052

Embedding Flash Using the <object> Tag 401

14

First, the version of the <object> tag that works with older versions of Internet Explorer:

<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" width="780"
height="420">
 <param name="movie" value="movie.swf" />
</object>

The height and width attributes are necessary to define how much space the <object>

will take up. The classid attribute identifies the ActiveX control that will be used to

display the content in the browser. That long, random-looking collection of letters and

numbers is the address of the ActiveX control in the Windows Registry. Your best bet is

to find an example of Flash embedding and copy it from there.

When you’re specifying the height and width for a Flash movie, be
sure to take the size of the player into account, too. Some play-
ers include a border, and nearly all of them provide controls for
the video playback. You need to account for these parts of the
window to make sure your video is shown at the resolution you
anticipated.

TIP

The <param> element is used with <object> to provide additional information about the

content being embedded to the plug-in referenced by the <object> tag. The <param> ele-

ment has two attributes: name and value. This <param> element provides the Flash player

with the URL of the movie to be played.

The preceding markup will work in Internet Explorer 8, embedding the Flash mov ie

named movie .swf. Here’s the markup for the <object> tag for other browsers:

<object type="application/x-shockwave-flash" data="myContent.swf" width="780"
height="420">
</object>

For non-Internet Explorer browsers, you specify the plug-in to use with the type attri-

bute, and the URL of the movie to play with the data attribute. As you can see, the

height and width attributes are included here, too. The type attribute is used to provide

an Internet media type (or content type). The browser knows which content types map to

which plug-ins, so it can figure out whether you have the proper plug-in installed. If you

do, it can load it and render the content at the URL specified by the data attribute. In the

sidebar, I explain exactly what Internet media types are.

ptg16476052

402 LESSON 14: Integrating Multimedia: Video and Sound

With most tags, you could just combine all the attributes and wind up with an <object>

that works with all the popular browsers. With <object>, it do esn’t work that way.

However, there’s a way around this problem. Here’s a version that will work:

<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" width="780"
height="420">
 <param name="movie" value="movie.swf" />
 <object type="application/x-shockwave-flash" data="myContent.swf" width="780"
height="420">
 </object>
</object>

In this example, one of the <object> tags is nested inside the other. This works because

browsers ignore tags they don’t understand, so browsers that aren’t Internet Explorer

ignore the outer <object> tag. Internet Explorer ignores tags nested inside an <object>

tag, except for the <param> tag, so it ignores the inner <object>. That’s the simplest

approach to using the <object> tag in a way that works with all browsers. But you’re

even better off just using the <object> tag as a fallback for older browsers (like Internet

Explorer 8) that don’t understand the <video> tag.

Internet Content Types

Internet media types, also referred to as content types or MIME types, are used
to describe the format of a file or resource. They’re a more robust version of a file
extension. For example, a PNG image usually has the extension .png. The MIME
type for PNG files is image/png. Microsoft Word documents have the extension .doc
(or more recently, .docx) and the MIME type application/msword. These types
were originally used to identify the types of email attachments—MIME is short for
Multipurpose Internet Mail Extensions—but these days, they’re used in other cases
where information about file types needs to be exchanged.

In the case of the <object> tag, you specify an Internet media type so that the
browser can determine the best way to render the content referenced by that tag.
The Internet media type for Flash is application/x-shockwave-flash; if that type
is specified, the browser knows to use the Flash plug-in.

There’s one other important use for these types when it comes to video and sound
files. When a web server sends a resource to the Web, it includes a content type.
The browser looks at the content type to determine what to do with the resource.
For example, if the content type is text/html, it treats it as a web page.

When a web server sends files to users, it figures out the Internet media type using
the file extension. So if a user requests index.html, the web server knows that an
extension of .html indicates that the files should have the content type text/html.
Later in this lesson, I discuss how to make sure that your web server sends the
right content types for video and audio files that you use.

ptg16476052

Embedding Flash Using the <object> Tag 403

14

A number of other attributes are supported by the <object> tag, too (see Table 14.2).

TABLE 14.2 <object> Attributes

Attribute Description

data The URL for the data that will be presented in the <object> element. Flash
uses a <param> to specify this instead.

form Enables the element to be associated with a specific form.

height The height of the element.

name A name for the element.

type The MIME type of the content to be displayed in the object.

usemap The URL of a client-side image map to be applied to the object.

width The width of the element.

In HTML5, you may find yourself using the <video> tag rather than the <object> tag

for video files, but the <object> tag will still be used for other Flash movies and for

other multimedia content, such as Microsoft Silverlight.

Alternative Content for the <object> Tag
What happens when a user hasn’t installed the plug-in that the <object> tag requires?

The browser will either display an error message or just display nothing at all. However,

you can provide alternate content that will be displayed if the browser cannot find the

correct plug-in. All you have to do is include the alternate content inside the <object>

tag. If the <object> tag works, it will be ignored. If it doesn’t, it will be displayed. Here

are the nested <object> tags with some alternative content included. You can see alter-

native content displayed in a browser that does not have Flash installed in Figure 14.11.

Here’s the code:

<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000" width="780"
height="420">
 <param name="movie" value="movie.swf" />
 <object type="application/x-shockwave-flash" data="myContent.swf" width="780"
height="420">

<p>You need the Flash player to view this page.
Get Flash.</p>

 </object>
</object>

ptg16476052

404 LESSON 14: Integrating Multimedia: Video and Sound

FIGURE 14.11

Alternative con-
tent displayed in
a browser that
doesn’t support
Flash.

It’s often a good idea to make your alternate content the same
size as the <object> tag to preserve the layout of your page. You
can style your alternate content with CSS or use an image of the
same size as a placeholder for the <object>.

TIP

Remember that it’s better to include an alternative that is equivalent to what they get with

the object element rather than simply suggesting they download Flash or some other

program to get your content. It’s a rare customer who will decide to download and install

a new program because a website said it wouldn’t work without it. Here’s a better alter-

native:

<p>This page works best with Flash
,
but if you can't use Flash, you can download this movie as a
MOV file and watch it on your local machine instead.</p>

Telling people they are using the wrong browser, software, or whatever is not acceptable,

and it just annoys people.

The <embed> Tag
The <embed> element has been added to HTML5, mainly as a recognition of the fact that

it has been in wide use since Netscape created it when they added plug-in support to their

browser. Browsers continue to support it, mainly because many pages out there still use

it.

First, let’s look at the required attributes of the <embed> element:

<embed src="a01607av.avi" height="120" width="160"
 type="application/x-shockwave-flash">

ptg16476052

The <embed> Tag 405

14

The src attribute contains the location of the multimedia file you want to embed in the

web page. The type attribute contains the content type. (It’s the same as the type attri-

bute of the <object> tag.) The height and width attributes specify the dimensions of the

embedded file in pixels.

Table 14.3 summarizes the <embed> attributes that are part of HTML5.

TABLE 14.3 <embed> Attributes

Attribute Description

height The height of the element.

src The URL of the multimedia file.

type The MIME type of the multimedia file indicated by the src attribute.

width The width of the element.

There are also some other attributes that only Internet Explorer supports. If you need to

support older versions of Internet Explorer, consider using the nonconforming attributes

in Table 14.4 to improve embedded videos for that browser.

TABLE 14.4 <embed> Attributes of Internet Explorer

Attribute Description

allowfullscreen Specifies whether the embedded element can occupy the full screen.
Values are true and false.

allowscriptaccess Determines whether the embedded object can communicate with
external scripts or link to external pages. Values are always,
samedomain, and never.

flashvars Used to pass configuration parameters to the Flash player. Only used
if the embedded object is Flash.

plug-inspage The URL of the page where you can download the plug-in used to
view this object.

The bottom line on <embed> is that you shouldn’t use it. I’ve included it here because

you’ll probably see it on other sites, but there are better ways to embed media into a web

page .

ptg16476052

406 LESSON 14: Integrating Multimedia: Video and Sound

Embedding Flash Movies Using
SWFObject
SWFObject is a combination of markup and JavaScript that provides a way to embed

Flash movies in web pages using standards-compliant markup that still supports all

the browsers that are currently in use. JavaScript is a programming language that runs

within the context of a web page, I explain how it works in more detail in Lesson 17,

“Introducing JavaScript.” You don’t need to know how to program in JavaScript to

use SWFObject; you just need to copy and paste some code and fill in a few blanks.

To download SWFObject and read the documentation, go to https://code.google.com/

archive/p/swfobject/.

Aside from providing a reliable way to present Flash movies using standards-compliant

markup, SWFObject also works around a problem that can’t be dealt with using markup

alone. When the version of the Flash player a user has installed is too old to play a

movie, the movie will not be presented, and any alternative content you provided will not

be displayed. The browser hands off the movie to the Flash player assuming it will work

and doesn’t handle things gracefully if it does not. SWFObject uses JavaScript to catch

these errors and show the correct alternative content when they occur.

SWFObject provides two approaches to embedding content; one uses markup augmented

by a bit of JavaScript (called the static publishing method), and the other uses pure

JavaScript (called the dynamic publishing method). Using markup provides better per-

formance and offers some level of functionality if JavaScript is disabled or the content is

republished in an environment where the JavaScript is not included. The dynamic version

is a bit more flexible in that it enables you to configure the embedded player on the fly.

Using SWFObject with markup requires three steps: adding the <object> tags, including

the swfobject.js file in the page, and registering the player with the SWFObject library.

First you should add the JavaScript to the <head> of your document:

<script src="swfobject.js"></script>

This loads the external JavaScript to the page. You’ll need to make sure that the src

attribute points to the correct location for your copy of swfobject.js. You’ll learn more

about JavaScript and external JavaScript files in Lesson 17.

Then you should embed your Flash player. Here’s the code:

<object id="myId" classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
width="780" height="420">
 <param name="movie" value="mymovie.swf" />
 <!--[if !IE]>-->
 <object type="application/x-shockwave-flash" data="mymovie.swf" width="780"
height="420">

https://code.google.com/archive/p/swfobject/
https://code.google.com/archive/p/swfobject/

ptg16476052

Embedding Flash Movies Using SWFObject 407

14

 <!--<![endif]-->
<p>Alternative content</p>

 <!--[if !IE]>-->
 </object>
 <!--<![endif]-->
</object>

The next three lines are some JavaScript code that’s embedded within the page:

<script>
 swfobject.registerObject("myId", "9.0.115", "mymovie.swf");
</script>

The italicized text represents placeholders for the values that you need to plug in to regis-

ter SWFObject. As you can see, SWFObject requires the ID of the <object> tag (myId),

the version of Flash that your movie requires (9.0.115), and the URL of the movie to be

played (mymovie.swf).

The other option is to use dynamic publishing. First put the JavaScript in the <head> of

your document as before:

<script src="swfobject.js"></script>

Then embed your SWF file and include alternative content:

<script>
 swfobject.embedSWF("myContent.swf", "myContent", "300", "120", "9.0.115");
</script>
<div id="myContent">
<p>Alternative content</p>

</div>

As you can see, the main difference is that the <object> tags are gone entirely. Instead,

I’ve got a <div> tag that serves as the container for the Flash movie. The alternate con-

tent that will be displayed if the Flash player is not present or does not satisfy the version

requirement is placed within the <div>. The JavaScript call to dynamically publish Flash

movies is a bit different from the one used in the static publishing method:

swfobject.embedSWF(movie URL, ID of the target div, width, height, required Flash
version);

Many Flash movies enable configuration through a parameter named FlashVars. You can

specify them using the <param> tag:

<param name="FlashVars" value="controls=on">

ptg16476052

408 LESSON 14: Integrating Multimedia: Video and Sound

The configuration variables that are available depend entirely on the Flash movie

that you’re using. You can also configure the movie through the dynamic publishing

approach, but it requires a bit more knowledge of JavaScript. For more information,

check out the online documentation for SWFObject after the JavaScript lessons.

In the next section, I talk about some specific Flash video players, both of which can be

embedded in a page using SWFObject.

Flash Video Players
You’ve learned how to embed video in pages with the <video> tag and how to embed

Flash content in pages. Next I introduce some Flash players that can play the same videos

you created for use with the <video> tag. These players are useful because they enable

anyone who has Flash to view your videos. A number of such video players are available.

In this section, I discuss two of them: JW Player and Flowplayer.

JW Player
JW Player is a popular Flash video (and audio) player. It is licensed under a Creative

Commons noncommercial license, so it’s free to use so long as it’s not for a commer-

cial purpose. It also requires you to attribute the work to its creator when you use it; in

other words, you have to link back to the JW Player website when you embed the player.

There’s also a commercial version available that you can use for any purpose without

the link to the JW Player website. If your website includes advertising, you must use the

commercial version of JW Player.

To download JW Player, go to https://github.com/jwplayer/jwplayer.

After you’ve downloaded the player, you’ll need your video file as well as the Flash

player itself: player.swf. JW Player includes a sample file that uses the <object>

and <embed> tags, but you should use a standards-complaint approach. You can use

SWFObject to embed JW Player, as shown in Figure 14.12 using the following code :

<script src="swfobject.js"></script>
<script>
 swfobject.registerObject("myId", "9", "expressInstall.swf");
</script>
<div>
 <object id="myId" classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
width="400" height="315">
 <param name="movie" value="player.swf" />
 <param name="flashvars" value="file=video.mp4" />
 <!--[if !IE]>-->

<object type="application/x-shockwave-flash" data="player.swf"
width="400" height="315">

https://github.com/jwplayer/jwplayer

ptg16476052

Flash Video Players 409

14

<param name="flashvars" value="file=video.mp4" />
 <!--<![endif]-->
 <div>

<!-- Alternative content -->
<p>Download Flash</p>

 </div>
 <!--[if !IE]>-->

</object>
 <!--<![endif]-->
 </object>
</div>

The code starts with the <script> tags used to include the SWFObject script and register

the player. If you look at the line that registers the player, you’ll see that I’m register-

ing the <object> tag with the ID myId and that I’m specifying that version 9 of Flash

is required because that’s the first version of Flash that supported MP4 and H.264.

Finally, there’s a reference to expressInstall.swf, a Flash movie that’s included with

SWFObject that enables users to upgrade their Flash player in place if it’s out-of-date.

Both the <object> tag for Internet Explorer and the nested <object> tag for other brows-

ers refer to the JW Player Flash file, player.swf. They also both use the flashvars

param to point to the video file, video.mp4. I’ve included some alternate content that

points the user to the Flash download site if they don’t have Flash installed.

JW Player is highly customizable. There’s a detailed list of the configuration parameters

in the documentation at the JW Player website. All the configuration options are specified

FIGURE 14.12

A video played
using JW Player.

ptg16476052

410 LESSON 14: Integrating Multimedia: Video and Sound

in the flashvars parameter. Figure 14.13 shows an example that moves the control bar

to the top of the player:

<param name="flashvars" value="file=video.flv&controlbar=top">

There are two configuration parameters in that <param> tag: file and controlbar. Each

is separated from its value by an equals sign, and the two parameters are separated by

an encoded ampersand (&). The flashvars is formatted in the same way as a URL

query string, the same format used for encoding form parameters when they’re sent to

the server. For more information about how to format query strings , take a look at the

Wikipedia article at http://en.wikipedia.org/wiki/Query_string.

Using Flowplayer
Flowplayer is another popular Flash-based video player. The base version is free and

open source and can be used on commercial sites. The only catches are that the base ver-

sion displays the Flowplayer logo at the end of the video and you can only have a maxi-

mum of 4 minutes per video. If you want to get rid of the branding or display your own

logo, you can purchase a commercial version of Flowplayer. The price is based on the

number of domains on which you want to use the player. You can download it at http://

flowplayer.org/.

Flowplayer is used similarly to dynamic publishing with SWFObject. To embed a video

in a page using Flowplayer, you must include the custom JavaScript file supplied with

Flowplayer, using a <script> tag:

<script src="path/to/the/flowplayer-3.2.2.min.js"></script>

FIGURE 14.13

JW Player with the
control bar moved
to the top.

http://en.wikipedia.org/wiki/Query_string
http://flowplayer.org/
http://flowplayer.org/

ptg16476052

Flash Video Players 411

14

Then you have to add a container to the page in which the video will appear:

<a href="myvideo.mp4"
 style="display: block; width: 425px; height: 300px;"
 id="player">Download video

And finally, you need to install the player in the target element:

<script>
flowplayer("player", "path/to/the/flowplayer-3.2.2.swf");
</script>

Instead of using the <object> tag or using a <div> as the container for the player,

Flowplayer recommends using the <a> tag. The player will play the video referenced in

the href attribute of the <a> tag. Here’s the full example page, which is shown in Figure

14.14:

<!DOCTYPE html>
<html>
<head>
 <script src="flowplayer-3.2.2.min.js"></script>
</head>
<body>
 <a href="http://e1h13.simplecdn.net/flowplayer/flowplayer.flv"
 style="display:block; width:520px; height:330px"

id="player">
 <script>
 flowplayer("player", "flowplayer-3.2.2.swf");
 </script>
</body>
</html>

FIGURE 14.14

A video played
using Flowplayer.

ptg16476052

412 LESSON 14: Integrating Multimedia: Video and Sound

There are a number of customization options for Flowplayer. The easiest way to change

them is to use Flowplayer’s Setup application, available at https://flowplayer.org/

designer/. You can also configure Flowplayer yourself, using JavaScript. There’s a full

list of configuration options on the Flowplayer website at http://flowplayer.org/

documentation/configuration/.

Using the <object> Tag with the <video> Tag
The <object> tag can be used as an alternative for presenting video for browsers like

Internet Explorer 8 that don’t support the <video> tag. All that you need to do is include

a proper <object> tag inside your <video> tag. The way HTML support works in brows-

ers ensures that this works. Browsers ignore tags that they don’t recognize, so Internet

Explorer will ignore your <video> tag. Browsers that do support the <video> tag will

ignore any <object> tags that are nested within them, recognizing that they are included

as an alternative means of presenting the video.

So when you use them together, you wind up with markup that looks like this:

 <video width="320" height="240" controls>
 <source src="path/to/movie.mp4"
 type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'>
 <source src="path/to/movie.ogv"
 type='video/ogg; codecs="theora, vorbis"'>
 <object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"

width="320" height="240">
<param name="movie" value="/movie.mp4">

 </object>
</video>

The <video> tag with its <source> elements will present video in browsers that support

it, and for those that don’t, the <object> element is included to present the video using

Flash.

You can even further nest tags, including the <object> tags used by both Internet

Explorer and other browsers as children of the <video> tag:

<video width="320" height="240" controls>
 <source src="path/to/movie.mp4"
 type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'>
 <source src="path/to/movie.ogv"
 type='video/ogg; codecs="theora, vorbis"'>
 <object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"

width="320" height="240">
<param name="movie" value="/movie.mp4">
<object type="application/x-shockwave-flash" data="myContent.swf"

width="780" height="420">
<p>You need the Flash player to view this page.

https://flowplayer.org/designer/
http://flowplayer.org/documentation/configuration/
https://flowplayer.org/designer/
http://flowplayer.org/documentation/configuration/

ptg16476052

Embedding Audio in Your Pages 413

14

Get Flash.</p>
</object>

 </object>
</video>

In this case, browsers that support the native <video> tag will use it. Then Internet

Explorer will use the nested <object> tag. Finally, other browsers will use the inner

<object> tag .

Embedding Audio in Your Pages
The nice thing about embedding audio is that it’s similar to embedding video. HTML5

provides an <audio> tag that works almost identically to the <video> tag. The <embed>

tag can also be used with audio, but you should use the <audio> and <object> tags

instead.

Four main file formats and codecs are used for audio on the Web: MP3, Ogg Vorbis,

AAC, and WAV. MP3 is supported natively by Internet Explorer 9+, Firefox, Opera,

iOS, Android, Safari, and Chrome and can be played using Flash-based players. The

WAV format is supported by all browsers except Internet Explorer. Ogg Vorbis, the open

format, is supported by Firefox, Opera, Android, and Chrome. AAC is the format used by

iTunes when you rip CDs. It is supported natively by all browsers but Firefox and also by

Flash. Firefox only supports it in an MP4 container.

Your best bet for reaching the largest audience is to use the <audio> tag with MP3 files

for browsers that support it, including mobile browsers that support HTML5 but not

Flash, and then use a Flash-based player to play the MP3 files for those users whose

browsers do not support HTML5 or don’t support the MP3 format.

The <audio> Tag
The <audio> tag is similar to the <video> tag. It attempts to use the native capabilities

of the browser to play an audio file. Its attributes are the same as the <video> tag, except

that the height and width attributes are not used. Here’s an example of the <audio> tag:

<audio src="song.mp3" controls>

If the browser is capable of playing the video at the URL specified in the src attribute, it

will present the audio, which you can use to control playback. The audio player appears

in Figure 14.1 5.

ptg16476052

414 LESSON 14: Integrating Multimedia: Video and Sound

Table 14.5 lists the attributes of the <audio> tag.

TABLE 14.5 <audio> Attributes

Attribute Description

src The URL for the audio to be played.

controls Boolean attribute that indicates that the browser should supply its own con-
trols for the file. The default is to leave out the controls.

autoplay Boolean attribute that indicates that the audio should play immediately when
the page loads.

loop Boolean attribute. If present, the audio will loop when it reaches the end,
replaying until the user manually stops the file from playing.

mediagroup Groups media elements with an implicit media controller.

muted Boolean attribute. If present, the audio file will be silent.

preload Boolean attribute. If present, the browser will begin downloading the video
as soon as the page loads to get it ready to play. Ignored if autoplay is
present.

To provide background music for the page, you can add the autoplay and loop attributes

to the tag. Chances are, if you use autoplay, or even worse, autoplay and loop without

also providing controls for the audio, your users will leave in a hurry.

Flash Audio Players
Embedding Flash audio players is the same as embedding Flash video players in a page.

You can use the <object> tag, nested <object> tags, or SWFObject to embed your Flash

FIGURE 14.15

An embedded
audio player.

ptg16476052

Embedding Audio in Your Pages 415

14

movie. You can also nest <object> tags within <audio> tags to maximize browser sup-

port.

Both JW Player and Flowplayer can play audio as well as video files. To do so, supply

the path to an MP3 file rather than to a video file. A number of Flash players are just for

audio.

One popular Flash audio player is called WordPress Audio Player. You’ll want to down-

load the standalone version from http://wpaudioplayer.com/. It is also available as a plug-

in for the WordPress blogging tool; be sure not to download that version.

After you’ve downloaded it, copy the audio-player.js and player.swf files to your

website. Then set up the audio player, as shown in this example page, which appears in

Figure 14.16:

<!DOCTYPE html>
<html>
 <head>
 <title>Audio Player</title>
 <script src="audio-player.js"></script>
 <script>

AudioPlayer.setup("player.swf", {
width: 325

});
 </script>
 </head>
 <body>
 <p id="myaudio">Download MP3 file</p>
 <script>

AudioPlayer.embed("myaudio", {soundFile: "song.mp3"});
 </script>
 </body>
</html>

FIGURE 14.16

An embedded
audio player.

http://wpaudioplayer.com/

ptg16476052

416 LESSON 14: Integrating Multimedia: Video and Sound

Audio Player uses JavaScript to embed the player in a target element using a technique

similar to the SWFObject dynamic publishing technique. In the header of the page, I

included the JavaScript file provided with Audio Player and then set up the player in the

next <script> tag. Copy that code and replace the size with the size that works for you.

(The player in my example is set to be 325 pixels wide.)

Then in the body of the page, I included a <p> tag that will contain the player. My alter-

nate content goes inside the <p> tag. It’s replaced when the JavaScript that follows adds

the player to the page. In this case, I added a link that points to the MP3 file that the

player is going to play. Finally, I embedded the player using JavaScript. For it to work, I

specified the ID of the element that will contain the player and specified the location of

the audio file. In this case, it’s song.mp3, found in the same directory as the page.

Summary
In this lesson, you learned about the wide world of tags, codecs , and file formats associ-

ated with publishing audio and video on the Web. First, you learned how to upload your

video files to YouTube and publish them on your site. You also learned about some alter-

native sites, such as Vimeo , that provide video hosting. Then you learned about the file

formats associated with video on the Web and how to convert videos to those formats.

You learned a lot about the limitations of the various browsers in terms of the tags and

formats they support, and you discovered how to work around those limitations to deliver

your video and audio content to as many users as possible.

Next, I discussed the option of hosting your own videos. You learned how to embed

video in web pages using the <video> tag and the <object> tag and how to combine

them to support the largest number of browsers. You also learned about SWFObject, a

tool that makes it easier to embed Flash movies in your pages in a standards-compliant

way. The lesson also covered two Flash movies that can used to embed video or audio

files in your web pages. Finally, I discussed audio embedding and the <audio> tag.

Table 14.6 shows a summary of the tags you learned about in this lesson.

TABLE 14.6 Tags for Embedding Video and Audio

Tag Use

<audio> Embeds audio files into web pages for native playback by the
browser.

<embed> Embeds objects into web pages.

<object>...<object> Embeds objects into web pages.

ptg16476052

Workshop 417

14

Tag Use

<param>...</param> Specifies parameters to be passed to the embedded object. Used
in the object element.

<source> Points to a source audio or video file to be played by an <audio>
or <video> tag.

<video> Embeds an audio file into a web page for native playback.

Workshop
The following workshop includes questions you might ask about embedding video and

audio in your web pages, questions to test your knowledge, and three exercises.

Q&A
Q What’s the quickest way to get started adding video to my site?

 A The quickest way is to use a site like YouTube or Vimeo that makes it easy to

upload your video files and then embed them using the code provided. For most

publishers, using sites such as these is all that’s needed to provide video to users.

Going the extra mile to host your own video is probably not worth it for the vast

majority of applications, especially when you can subscribe to a site such as Vimeo

for a nominal fee and publish videos hosted there without linking back to them.

Q Should I be worried about web browser compatibility and standards compli-
ance when it comes to audio and video?

 A Unfortunately , yes. When it comes to video and audio, it’s easy to wind up writ-

ing markup that isn’t standards compliant or to leave out part of your audience by

using markup that won’t work with their browser. Fortunately, as long as you use

the techniques listed in this lesson, you can embed video or audio in your pages in

a standards-compliant way that supports all the browsers that are currently in use.

Q What is the difference between H.264 and Ogg Theora?

 A H.264 and Ogg Theora are both video codecs. They are slightly different in terms

of performance, but the main difference is in how they are licensed. Ogg Theora is

an open technology that can be implemented by anyone without restraint. To use

the <video> tag and reach the widest number of users, you should make your vid-

eos available in both formats.

ptg16476052

418 LESSON 14: Integrating Multimedia: Video and Sound

Quiz
1. How do you accommodate users whose browsers do not support the <video> tag

and do not have Flash installed?

2. Why is SWFObject a more robust approach to embedding Flash than just using the

<object> tag?

3. Why are two <object> tags required to embed Flash movies in pages that work in

most browsers?

4. Which video format is supported by all web browsers that support the <video>

tag?

Quiz Answers
1. The key to accommodating users who cannot view your video because of the

browser they’re using or because they don’t have the proper plug-in installed is to

use alternate content. Content placed inside the <video> tag or <object> tag will be

ignored by browsers that understand those tags, and displayed by those that don’t.

You can include a link to the proper plug-in, a new browser, or even a direct link to

the video itself so that the user can download it and play it with an application on

his computer.

2. The two main advantages of SWFObject are that it enables you to create valid

markup that still supports a wide variety of browsers, and that it gracefully handles

cases in which the user is missing the Flash plug-in or the version of the Flash

plug-in she has installed is out of date.

3. Two <object> tags are required because one set of attributes works with Internet

Explorer and another set of attributes works with other browsers, like Firefox and

Safari.

4. This is a trick question. No one container format or codec is supported by all

browsers and browser versions. To reach your entire audience, you must encode

your video in multiple formats and use Flash for browsers without native support

for the video tag.

ptg16476052

Workshop 419

14

Exercises
1. Upload a video to YouTube or Vimeo, and then create a web page with that video

embedded in it.

2. Use one of the two video players listed in this chapter, JW Player or Flowplayer, to

embed a video in a web page. Look into the configuration options and try changing

the appearance of the player.

3. Try rewriting the YouTube embed code for a video on the site in a standards-

compliant fashion. There’s no reason why you must use YouTube’s non-standards-

compliant code to embed their movies in your pages.

ptg16476052

This page intentionally left blank

ptg16476052

LESSON 15
 Advanced CSS: Page
Layout in CSS

One of the major draws of modern CSS is the freedom to replace clunky
HTML with structured HTML markup, styled by CSS rules. In Lesson 8,
“Using CSS to Style a Site,” you learned how to place individual portions
of your web page in specific locations using absolute positioning or float-
ing content. You can use the same types of style rules to build the visual
structure of the page.

In this lesson, you’ll learn about the following:

n The different strategies for laying out a page in CSS

n Why it’s a bad idea to use <table> for page layout

n The steps to replacing a table-based layout with a CSS-based
structure

n How to write HTML code for CSS-based layouts

n How to use positioned content to lay out a page

n How to use floating columns to lay out a page

n Which questions you need to ask yourself before starting on a
style sheet

n How to organize your style sheets to make them easier to use and
edit

ptg16476052

422 LESSON 15: Advanced CSS: Page Layout in CSS

Laying Out the Page
This lesson brings together many of the techniques you’ve learned in previous lessons for

using Cascading Style Sheets (CSS) properties to lay out an entire page or even an entire

website.

The examples in this lesson use a redesigned version of the website for the Dunbar

Project in Tucson, Arizona. The site as it appeared before the makeover is shown in

Figure 15.1. It is mostly a dark purple color, and although it’s not bad, it could be

improved through the use of CSS, as you’ll see.

The Problems with Layout Tables
Figure 15.2 shows the source view for the original version of the Dunbar Project website,

which was not designed with CSS. Instead, multiple nested <table> tags provide the

page layout, and is used extensively.

Tables for layout are problematic for a number of reasons. HTML purists argue against

tables on principle: The <table> tag is meant to identify data in rows and columns of

information and is not intended for page layout. Accessibility mavens will tell you that

screen readers employed by visually impaired users struggle with table layout.

Table-based layouts are often more difficult to maintain than CSS-based layouts, requir-

ing extensive rewriting of HTML tags to make simple changes. Later this lesson, you’ll

see how a few CSS rules can easily move entire sections around without touching the

HTML document at all.

FIGURE 15.1

The Dunbar
Project’s original
website.

ptg16476052

Laying Out the Page 423

15

CSS-based layouts make it easier to maintain your HTML pages without cluttering them

up with <tr> and <td> tags and make for simpler transitions to new layouts by just

swapping in a new style sheet. Your web pages laid out with CSS will be smaller (and

thus load more quickly) than table-based pages. You can write web pages with the main

content first in the HTML source and the navigation and footer information after, making

your page friendlier to screen readers and search engines.

FIGURE 15.2

Table-based layout
can be very convo-
luted.

While it’s very important, as you’ve just learned, to not use tables
for layout, HTML5 has declared that it is still a valid use of the
tag. The important thing is to make it clear to browsers and user
agents that the table is used for layout. The best way to do this
is to include the role=presentation attribute on the table tag.
This attribute tells the browser explicitly that the table is intended
for layout.

NOTE

Writing HTML with Structure
The first step to laying out a page is to start with well-written HTML that is divided into

sections for styling. This is done with HTML5 structural elements you learned in Lesson

13, “Structuring a Page with HTML5,” that correspond to the different sections of the

page. If you have an area of the page that doesn’t fit with those elements, you can use the

<div> tags to provide additional layout structure.

ptg16476052

424 LESSON 15: Advanced CSS: Page Layout in CSS

In Listing 15.1, you can see a redesign of the Dunbar Project home page, which uses

simple markup to store the site navigation, the content, the side navigation links, and the

page footer.

LISTING 15.1 Using HTML5 Sectioning Tags to Create Sections for Positioning

<!doctype html>
<!-- dunbar-15.1.html -->
<html>
 <head>
 <meta charset="utf-8">
 <title>The Dunbar Project</title>
 </head>
 <body>
 <header>

<h1>The Dunbar Project</h1>
<h2>In the Shadow of Downtown Tucson</h2>
<nav id="sitenav">
Home

About the Dunbar Project
Photo Galleries
Donate
Contact

</nav> <!-- sitenav -->
 </header> <!-- header -->
 <div id="main">

<article id="content">
<h3>Welcome to The Dunbar Project Website</h3>

<p>Dunbar School was completed in January 1918, for the

purpose of educating Tucson's African-American students.
The school was named after Paul
Laurence Dunbar, a renowned African-American poet.
African-American children in first through ninth grades
attended Dunbar until 1951, when de jure segregation was
eliminated from the school systems of Arizona. When
segregation in Arizona was eliminated, Dunbar School
became the non-segregated John Spring Junior High School,
and continued as such until 1978 when the school was
closed permanently.</p>

<!-- ... more content omitted ... -->
</article> <!-- content -->
<aside id="sidebar">
<h3>Dunbar Project</h3>
The Dunbar Site Plan

Dunbar Auditorium
School History
Project Proposal
Dunbar Donors

ptg16476052

Laying Out the Page 425

15

About Paul Laurence Dunbar,
Poet

Related Links
<h3>Coalition Partners</h3>
The Tucson Urban League

The Dunbar Alumni Association
The Dunbar/Spring Neighborhood Association
The Juneteenth Festival Committee

<h3>Individual Members</h3>
 <!-- ... list of donors omitted ... -->

</aside> <!-- sidebar -->
<footer>
<p id="note501c3">The Dunbar Project is a 501c(3)

organization, and your contributions are tax
deductible.</p>

<p id="copyright">Copyright © 2006 by the Dunbar
Project. Questions?
<a href="mailto:webmaster@thedunbarproject.com"
>Mail the Webmaster.</p>

</footer> <!-- footer -->
 </div> <!-- main -->
 </body>
</html>

The structure of this page is defined by the HTML5 tags with id attributes. The general

skeleton (with conte nt omitted) consists of the following:

<header>
 <nav id="sitenav"></nav>
</header>
<div id="main">
 <article id="content"></article>
 <aside id="sidebar"></aside>
 <footer></footer>
</div>

Comments are used with the closing tags as reminders about which section is being

closed; it makes the page easier to edit later.

The page is constructed of two sections: a header and a main body. Each of these has one

or more subsections. This structure provides what’s needed to redesign and lay out the

page.

Why this particular structure? There are actually many ways you could structure such

the page, inserting tags appropriately. This skeleton is simply the method chosen for this

example, to get the specific styles used later on. During the web development process,

you might go back to your HTML and add or remove tags while styling to give more

flexibility when creating page layouts.

ptg16476052

426 LESSON 15: Advanced CSS: Page Layout in CSS

Remember to use the HTML5 sectioning elements for parts of the page that have that

particular meaning (section, article, aside, header, footer, and nav). If you just need to

add an HTML tag to hook your CSS styles to, that is when you should use the <div> tag,

which has no semantic meaning.

Figure 15.3 shows the new HTML page without styles applied.

Writing a Layout Style Sheet
With an HTML page ready for styling, the next step is to write the style sheet. There are

several questions to consider regarding how to lay out the page.

The first is a technical question: Will you use absolute positioning for layout, or will you

use floated columns? You can get the same general layout effects from both techniques.

Absolute positioning is a little bit easier to grasp, at first, so this example uses absolute

positioning. Later this lesson, however, you’ll learn how to lay out the same HTML page

with the float property.

You need to figure out how many columns you want. There’s a slight increase in com-

plexity when you have more columns, but the specific techniques remain the same

whether you’re using two columns, three columns, or more. In this redesign, two columns

are used to avoid making the example overly complex.

Finally, you need to determine whether you are using a fixed layout or a liquid lay-

out. A fixed layout is one that defines a specific width for an entire page; for example,

it may be always 700 pixels across, and excess space in the browser simply becomes

FIGURE 15.3

An unstyled page,
ready for layout.

ptg16476052

Laying Out the Page 427

15

wider margins. A liquid layout is one that grows larger (or smaller) based on the user’s

screen resolution and browser window size. There is a greater variety of devices used

to access the Web these days, and there’s also the challenge of presenting your site well

on all of those devices. You’ll learn about some techniques to help with that in Lesson

21, “Designing for the Mobile Web,” and how to change your layout depending on the

device viewing it in Lesson 16, “Using Responsive Web Design.”

There are advantages and disadvantages to both fixed and liquid layouts. A fixed layout

may be easier to create and easier to read on larger monitors; a liquid layout is more

adaptable but could result in overly long lines, which are harder to read. In this example,

the Dunbar Project site will use a liquid design with margin size based on em units.

Listing 15.2 is a style sheet that starts to set up the layout choices.

LISTING 15.2 A Style Sheet for Page Layout

body { margin: 0; padding: 0;
background-color: silver; }

header { background-color: black; color: white; }
#sitenav ol { padding: 0; margin: 0;

display: inline; }
#sitenav li { display: inline; padding-left: 1em;

margin-left: 1em;
border-left: 1px solid black; }

#sitenav li:first-child
{ padding-left: 0; border-left: none;
margin-left: 0; }

#sitenav li a { color: white; }
#main { padding: 0 12em 2em 2em;

position: relative;
background-color: gray; }

#content { background-color: white; }
#sidebar { position: absolute; width: 10em;

right: 1em; top: 1em; }
#sidebar h3 { color: white;

background-color: black; }
#sidebar ol { margin: 0 0 1em 0;

background-color: white;
border: 2px solid black; }

footer { background-color: white; }

This style sheet is deliberately plain and simple, with colors of black, gray, silver, and

white to make it easier for you to identify the various sections of the page.

ptg16476052

428 LESSON 15: Advanced CSS: Page Layout in CSS

So what’s happening here?

n The first rule sets the margin and padding of the <body> to 0. This is an important

first rule for layout because browsers typically add one or the other (or both) to any

web page.

n The #sitenav rules in Listing 15.2 are used to turn the ordered list of links into a

horizontal navigation bar.

n The #main section is set to position: relative to become the containing block

around the #content, #sidebar, and footer sections.

n The #main section is also given a large padding on the right, 12em. This is where

the #sidebar will be located.

n Absolute positioning is used to move the #sidebar into the margin, out of its place

in the normal flow of content. It is positioned 1 em to the left of the right edge of

its containing block (#main) by right: 1em, and 1 em down from the top edge of

the containing block by top: 1em.

Figure 15.4 shows the results of linking this style sheet to the HTML file from Listing

15.1.

It’s still quite rough, but you can see the different sections moved into place. You should

note the silver bars above and below the header. Where did they come from, and why?

The silver bars are the result of the background color set on the <body> showing through.

They are formed because of the default margin properties set on the <h1> and <h3>

FIGURE 15.4

Positioning proper-
ties define the
rough outline of the
page.

ptg16476052

Laying Out the Page 429

15

headings used on the page. Remember that margins are outside of the border of an ele-

ment’s box, and the background-color property on a box colors only the interior content,

not the margin. This applies even when you have a <header> wrapped around a heading,

such as <h1>. The margin extends beyond the edge of the <header>’s background-color.

To fix this, we explicitly set the heading margins to zero on the heading tags. Listing

15.3 is a style sheet that not only does that, but also assigns colors, fonts, and other styles

on the site. The teal, purple, white, and yellow colors were chosen to reflect the original

design of the website, and the actual colors used at the Dunbar school auditorium.

LISTING 15.3 A Style Sheet for Colors and Fonts

body { font-family: Optima, sans-serif; }
a:link { color: #055; }
a:visited { color: #404; }

header { text-align: center;
color: white; background-color: #055; }

header h1, header h2
{ margin: 0; }

header h1 { color: #FFFF00; font-size: 250%; }
header h2 { font-weight: normal; font-style: italic; }

#sitenav { color: white; background-color: #404; }
#sitenav ol { font-size: 90%; text-align: center; }
#sitenav li { margin-left: 1em;

border-left: 1px solid #DD0; }
#sitenav li a:link, #sitenav li a:visited

{ color: white; text-decoration: none; }
#sitenav li a:hover

{ color: #DDDD00; }

#main { background-color: #055; }

#content { background-color: white; padding: 1em 5em; }
#content h3 { margin-top: 0; }
#content p { font-size: 90%; line-height: 1.4; }

#sidebar h3 { font-size: 100%; color: white; margin: 0;
font-weight: normal; padding: 0.125em 0.25em;
background-color: #404; }

#sidebar ol { background-color: white; border: 2px solid #404;
border-top: 0; margin: 0 0 1em 0;
padding: 0.125em 0.25em; }

#sidebar li { font-size: 85%;
display: block; padding: 0.125em 0; }

ptg16476052

430 LESSON 15: Advanced CSS: Page Layout in CSS

#sidebar li a:link, #sidebar li a:visited
{ text-decoration: none; color: #055; }

#sidebar li a:hover { color: #404; }

footer { background-color: #404; color: white;
padding: 0.5em 5em; }

footer p { margin: 0em; font-size: 85%; }
footer p a:link, footer p a:visited

{ color: #DDDD00; }

Figure 15.5 shows the HTML file from Listing 15.1 with both the layout style sheet from

Listing 15.2 and the colors and fonts style sheet from Listing 15.3.

As you can see , the styled page in Figure 15.5 looks quite different from the unstyled

version in Figure 15.3.

Reordering Sections with Positioning Styles
The page in Figure 15.5 looks okay, but let’s say that you got this far into the web design

process and you suddenly decide that you want to have the site navigation bar located

above the headline, rather than below it.

You could go in and change your HTML source around. This would work, but it would

introduce a problem. The order of the HTML in Listing 15.1 is sensible—the name of the

site is given first, and then the navigation menu. This is how users of non-CSS browsers

FIGURE 15.5

Fonts and colors
help define the
website’s look.

ptg16476052

Laying Out the Page 431

15

such as Lynx will read your page, and also how search engines and screen readers will

understand it. Moving the title of the page after the list of links doesn’t make much sense.

Instead, you can use CSS positioning properties to reformat the page without touching

the HTML file. Listing 15.4 is a style sheet to do exactly that.

LISTING 15.4 Moving One Section Before Another

/* dunbar-move-15.4.css */

header { padding: 1.25em 0 0.25em 0;
position: relative;
background-color: #404; }

#sitenav { position: absolute;
top: 0; right: 0;
border-bottom: 1px solid #DDDD00;
width: 100%;
background-color: #055; }

What’s happening here?

n The header section encloses the #sitenav in the HTML source, so by setting it to

position: relative, it now becomes the containing block for the site navigation

links.

n Padding is added to the top of the #header section. This is where subsequent rules

will place the site navigation menu; the padding reserves the space for it.

n Absolute positioning properties align the top-right corner of the #sitenav section

with the top-right corner of its containing block, the #header.

n Giving a width of 100% to the #sitenav ensures it will reach across the full width

of its containing block, which is, in this case, as wide as the browser display win-

dow.

n Finally, colors are swapped on the #header and the #sitenav to make them fit in

better with the overall design in their new locations, and a yellow border is added

to the bottom of the navigation links.

Figure 15.6 shows the effects of these changes .

ptg16476052

432 LESSON 15: Advanced CSS: Page Layout in CSS

▼ Exercise 15.1: Redesign the Layout of a Page

You just learned how to move the site navigation menu around. What if you want to

make further changes to the page? Try these steps to get familiar with how easy it is to

change the layout with CSS:

1. Download a copy of the source code for editing. The file dunbar.html contains the

complete HTML page, and dunbar-full.css has all the style rules listed in this

chapter combined into a single style sheet.

2. Move the sidebar to the left side of the page instead of the right. To do this, you

need to make space for it in the left gutter by changing the padding rule on the

#main section to

#main { padding: 0 2em 2em 12em; }

3. Then change the positioning offset properties on the #sidebar. You don’t even

have to change the rule for the top property; just replace the property name right

with left.

4. Reload the page. You should now see the menu bar on the left side of the screen.

FIGURE 15.6

The navigation
menu is now above
the page headline.

▼

ptg16476052

Laying Out the Page 433

15

5. Next, move the footer section. Even though it is semantically the footer, there’s noth-

ing magical about that name that means it needs to be at the bottom of the page. Place

it on the right side, where the sidebar used to be located. First clear some space:

#main { padding: 0 12em 2em 12em; }

6. Then reposition the fo oter with these rules:

footer { position: absolute;
top: 1em; right: 1em;
width: 10em;
padding: 0; }

footer p { padding: 0.5em; }

7. Reload the page. The footer is now no longer a footer, but a third column on the

right side of the page.

The Floated Columns Layout Technique
You can also lay out a web page by using the float property rather than positioning

properties. This method is a little bit more complex but is favored by some designers who

prefer the versatility. In addition, floated columns deal better with side columns that are

shorter than the main text in some cases.

Listing 15.5 is a style sheet demonstrating how you can float entire columns on a page

with CSS. This is a replacement for the dunbar-layout-15.2.css style sheet in Listing

15.2. The new style sheet places the menu bar on the left instead of the right, just for

variety’s sake; there’s nothing inherently left-biased about floated columns (or right-

biased about positioning).

LISTING 15.5 Float-Based Layouts in CSS

/* dunbar-float-15.5.css */

body { margin: 0; padding: 0; }
#sitenav ol { padding: 0; margin: 0;

display: inline; }
#sitenav li { display: inline; padding-left: 1em;

margin-left: 1em; border-left: 1px
solid black; }

#sitenav li:first-child
{ padding-left: 0; border-left: none;
margin-left: 0; }

/* This is what positions the sidebar: */
#main { padding: 0 2em 2em 12em; }
#content { float: left; }
#sidebar { float: left; width: 10em;

position: relative;

▼

▲

ptg16476052

434 LESSON 15: Advanced CSS: Page Layout in CSS

right: 11em; top: 1em;
margin-left: -100%; }

#sidebar ol { margin: 0 0 1em 0; }

What does this style sheet do?

n The first section just duplicates the site navigation bar code from Listing 15.2 so

that the entire style sheet can be replaced by this one.

n Starting at the second comment, the code for positioning the columns appears. The

first rule sets the #main section to have a wide gutter on the left, which is where we

will be placing the sidebar.

n Both the #content and #sidebar sections are set to float. This means that they line

up on the left side of the #main section, just inside the padding.

n A width is given to the #sidebar of 10em.The size was chosen because that allows

1 em of space around it, after it is placed inside the 12 em gutter set by the padding

rule on #main.

n A negative margin is set on the left side of the #sidebar, which actually makes it

overlay the #content section. Relative positioning is then used, via the right and

top rules, to push the sidebar into the correct place in the gutter.

Figure 15.7 shows this style sheet applied to the HTML file in Listing 15.1, along with

the colors and fonts style sheet in Listing 15.3 and the style sheet from Listing 15.4,

which relocated the site navigation menu.

FIGURE 15.7

The sidebar is posi-
tioned as floating
content.

ptg16476052

The Role of CSS in Web Design 435

15

The Role of CSS in Web Design
As a web developer, skilled in HTML, CSS, and possibly other web languages and tech-

nologies, you have a web development process. Even if you haven’t planned it out for-

mally, you’ve got a method that works for you, whether it’s as simple as sitting down and

designing whatever strikes your fancy or as complex as working on a team with multiple

developers, each with their own responsibilities.

Adding CSS to your repertoire has made you an even better web developer than before;

your skill set has expanded, and the types of designs you can create are nearly limitless.

The next step is to integrate your CSS skills into your web development process. I’m not

going to tell you exactly how you’ll do that—people have their own methods—but I’ll

help you think about how you can go about using CSS in your web designs.

In a few cases, you might be able to develop your style sheets completely separately from

your HTML pages. More commonly, you’ll use an iterative process, in which you make

changes to the style sheet, then changes to the HTML page, and then go back to the style

sheet for a few more tweaks until you’re satisfied with the results. The adaptive nature

of style sheets makes it easy to create these kinds of changes, and you may find yourself

continuing to perfect your styles even after you post your content on the Web.

You might not be starting with a blank slate and an uncreated
website when you begin using CSS. Redesigns are common in
web development, and you may want to take advantage of a
new site design to convert to a CSS-based presentation. It can
sometimes be harder, but it’s certainly possible to keep the
same look and feel of your site when converting it to use CSS. If
you’re using a content management system (CMS) that automati-
cally generates your website from a database, converting to style
sheets may be a snap. CSS is very compatible, on a conceptual
level, with the idea of templates as used by content management
systems.

NOTE

As mentioned at the start of this lesson, CSS design involves balancing a number of fac-

tors to arrive at the best compromise for your site and its users. Questions will arise as

you work with CSS on any site, and you’ll need to answer them before you go on. Here

are several of these key questions to help you plan your site:

n Which browsers will you support? By “support,” I mean investing the effort to

work around the quirks of certain older browsers. There are a number of work-

arounds for these temperamental browsers, plus ways to exclude certain browsers

ptg16476052

436 LESSON 15: Advanced CSS: Page Layout in CSS

from viewing styles. But if you are designing just for CSS-enabled browsers, such

as recent Chrome, Firefox, Safari, or Opera versions, those workarounds become

less important. Even the latest versions of Internet Explorer have good support for

HTML5 and CSS3.

n Are you using positioning CSS for layout? It’s relatively easy to use CSS for

formatting text, controlling fonts, and setting colors. Using it for layout is trickier,

especially with inconsistent browser support among some of the older versions.

n Will you use embedded or linked style sheets? Here, I’ll give you advice: Use

linked style sheets whenever you can. Some of the examples in this book may use

embedded style sheets, but that’s mainly because it’s easier to give you one listing

than two.

The preceding list isn’t exhaustive; you’ll encounter more choices to make when design-

ing and using CSS, but you should have learned enough by now to answer them.

Style Sheet Organization
The way you organize your style sheet can affect how easy it is for you to use and main-

tain your CSS, even if the effects are not evident in the presentation. This becomes even

more critical if you’re in a situation whereby someone else may have to use your styles in

the future. You may work with an organization in which multiple people will be working

on the same site, or perhaps when you move on to another job your successor will inherit

your style sheets.

To make a great style sheet, be organized and clear in what you’re doing, and above

all, use comments. Web developers often overlook comments in CSS, but if you have

to come back later and try to figure out why you did something, they’re invaluable.

Comments can also be used to group related styles into sections.

A comment in CSS is written /*, then the text of your comment, and then */ to close it.

You can enclose entire blocks of CSS inside a comment if you want to prevent it from

being used.

Reasonable names for class and id attributes can make your style sheet easier to read;

choose names for these important selectors that reflect the functions of the elements. If

you can, avoid selectors based solely on appearance characteristics, such as the boldtext

or redbox classes. Instead, try something descriptive of why you’ve chosen those styles,

such as definition or sidebar. That way, if you change your page styles later, you

won’t have to rewrite your HTML. There are few things as confusing as a rule, like the

following:

.redbox { color: blue; background-color: white; }

ptg16476052

The Role of CSS in Web Design 437

15

In what way is that box red? Well, it probably was red in some prior incarnation of the

style rules, but not now.

When you list your rules in your style sheet, do them in a sensible order. Generally

speaking, it’s best to start with the body rules first and then proceed down from there, but

because the cascade order matters only in case of conflict, it’s not strictly necessary to

mirror the page hierarchy. What’s more important is that you are able to locate the rules

that apply to a given selector and to discern which styles should be applied.

An example of bad style sheet organization is shown in Listing 15.6. This is part of the

style sheet from a high-quality website but with the rules in a scrambled order. How hard

is it for you to figure out what is going on here?

LISTING 15.6 A Randomly Organized Style Sheet

#sidebar0 .section, #sidebar1 .section { font-size: smaller;
border: 0px solid lime; text-transform: lowercase;
margin-bottom: 1em; }
gnav a:link, #nav a:visited, #footer a:link, #footer
a:visited { text-decoration: none; color: #CCCCCC; }
#nav .section, #nav .shead, #nav .sitem, #nav h1 { display:
inline; }
#sidebar1 { position: absolute; right: 2em; top: 3em;
width: 9em; } a:link { color: #DD8800; text-decoration: none; }
#main { } a:hover { color: lime; }
#nav .shead, #nav .sitem { padding-left: 1em; padding-right:
1em; }
#nav { position: fixed; top: 0px; left: 0px; padding-top:
3px; padding-bottom: 3px; background-color: #333333; color:
white; width: 100%; text-align: center; text-transform:
lowercase; }
#nav .section { font-size: 90%; } #layout { padding: 1em; }
body { background-color: white; color: #333333; font-family:
Verdana, sans-serif; margin: 0; padding: 0; }
#nav h1 { font-size: 1em; background-color: #333333; color:
white; } a:visited { color: #CC8866; text-decoration: none; }
#nav { border-bottom: 1px solid lime; } #main { margin-left:
11.5em; margin-right: 11.5em; border: 0px solid lime;
margin-bottom: 1.5em; margin-top: 1.5em; }
#nav a:hover, #footer a:hover { color: lime; }
#sidebar0 { position: absolute; left: 2em; top: 3em;
width: 9em; text-align: right; }

If that was hard to follow, don’t feel bad; the difficulty was intentional. CSS rules are

easily obfuscated if you’re not careful. Most style sheets grow organically as piecemeal

additions are made; discipline is necessary to keep the style sheet readable.

ptg16476052

438 LESSON 15: Advanced CSS: Page Layout in CSS

The style sheet in Listing 15.7 is really the same style sheet as in Listing 15.6. Both are

valid style sheets, and both produce the same results when applied to the web page, but

the second one is easier to understand. Comments make clearer what each section of the

style sheet does, indentation and whitespace are used effectively, and the order is much

easier to follow.

LISTING 15.7 A Better-Organized Style Sheet

/* default styles for the page */
body { background-color: white;

color: #333333;
font-family: Verdana, sans-serif;
margin: 0;
padding: 0; }

a:link { color: #DD8800; text-decoration: none; }
a:visited { color: #CC8866; text-decoration: none; }
a:hover { color: lime; }

/* layout superstructure */
#layout { padding: 1em; }

/* top navigation bar */
#nav { position: fixed;

top: 0px; left: 0px;
color: white; width: 100%;
padding-top: 3px; padding-bottom: 3px;
background-color: #333333;
text-align: center;
text-transform: lowercase; }
border-bottom: 1px solid lime; }

#nav .section, #nav .shead, #nav .sitem, #nav h1
{ display: inline; }

#nav .section
{ font-size: 90%; }

#nav .shead, #nav .sitem
{ padding-left: 1em; padding-right: 1em; }

#nav h1 { font-size: 1em;
background-color: #333333; color: white; }

#nav a:hover, #footer a:hover
{ color: lime; }

#nav a:link, #nav a:visited,
#footer a:link, #footer a:visited

{ text-decoration: none; color: #CCCCCC; }

/* main content section */
#main { margin-left: 11.5em; margin-right: 11.5em;

margin-bottom: 1.5em; margin-top: 1.5em;
border: 0px solid lime; }

ptg16476052

Summary 439

15

/* two sidebars, absolutely positioned */
#sidebar1 { position: absolute;

right: 2em; top: 3em; width: 9em; }
#sidebar0 { position: absolute;

left: 2em; top: 3em; width: 9em;
text-align: right; }

#sidebar0 .section, #sidebar1 .section
{ font-size: smaller;
border: 0px solid lime;
text-transform: lowercase;
margin-bottom: 1em; }

Site-Wide Style Sheets
The style sheet given in Listing 15.7 was created to be used on the entire site, not just on

one page. Linking to an external style sheet is an easy way for you to apply style sheets

over your entire set. You just use the <link> tag on every page, with the href attribute

set to the location of your site-wide style sheet.

A site-wide style sheet can be used to enforce a consistent appearance on the website,

even if you have multiple web developers working on different parts of the same site.

Additional styles can be added in embedded style sheets or in additional linked CSS files

that are created for each department or business unit. For example, each department at a

school may use the school’s global style sheet for design elements common to the entire

site, and individual departmental style sheets for that department’s unique color, layout,

and font choices.

Summary
Tables have long been used in web design to lay out a web page. However, this use of

<table> markup introduces a plethora of complications, from accessibility concerns to

complexity problems. Using CSS for layout can clean up your HTML code and produce

flexible designs that can be updated easily to new styles.

Laying out a page with CSS starts with adding sections to the HTML, using HTML5 sec-

tioning elements. These are then arranged in vertical columns, through the use of either

positioning rules or the float property. With CSS layouts, it’s not difficult to reorder and

reshape the page simply by changing the style sheet.

ptg16476052

440 LESSON 15: Advanced CSS: Page Layout in CSS

Workshop
The workshop contains a Q&A section, quiz questions, and activities to help reinforce

what you’ve learned in this lesson. If you get stuck, the answers to the quiz can be found

after the questions.

Q&A
 Q Is it ever okay to use tables for layout?

 A CSS layouts generally are more efficient and versatile than <table>-based

code, but if you are careful to test your layout tables in a browser such as

Lynx to make sure that the site is usable without tables and you always use the

role=presentation attribute, you can probably get away with it. Tables aren’t

awful for laying out a page, and CSS can be tricky when you’re dealing with grid-

based designs. In general, though, you’re better off using CSS whenever you can.

 Q Which are better measurements for layouts, pixels or percentages?

 A Some web designers, especially those from a print background or who have picky

clients to please, swear by pixels. With some patience, you can get close to pixel-

perfect designs in CSS. Other designers like percentage measurements, which scale

with the size of the text window. There’s no clear-cut advantage to any approach,

however; all have their pros and cons. You can experiment with a variety of mea-

surement types, and don’t be afraid to mix and match them sensibly on your site—

for example, designating column widths in percentages but also setting pixel-based

min-width and max-width values.

 Q Are there problems with using ems for layout?

 A Only if you’re not careful. The biggest problems result from setting margins, pad-

ding, or positioning properties based on em values and then changing the font size

of those values. For example, you might overlook the effects of the font-size rule

buried in these declarations:

#sidebar { right: 1em; top: 1em;
text-align: right; color: white;
font-family: Verdana, sans-serif;
font-size: 50%; }

 This won’t actually be located 1 em in each direction from the corner of its contain-

ing block; it will be 0.5 em from the right and 0.5 em from the top. If you are going

to change the font size within a section that uses ems for dimensions or placement,

set the font-size rules on the contents of the box, as done in this chapter’s style

sheets with #sidebar h3 { ... } and #sidebar ol { ... } rules. You could

also add an extra <div> inside the sidebar and set the font-size rule on that <div>.

ptg16476052

Workshop 441

15

Quiz
1. Which property tells the text to start flowing normally again, after a floated col-

umn?

2. How do you designate the containing block for an absolutely positioned element?

3. What kind of rules would you write to change an ordered list of navigation links

into a horizontal navigation bar?

Quiz Answers
1. The clear property can be used after floated columns—for example, if you want a

footer to reach across the entire browser window below the floated columns.

2. You set the containing block by changing the position property, usually to a value

of relative (with no offset properties designated).

3. Listing 15.7 has an example of a style sheet with rules to do that, using the display

property.

Exercises
1. What kind of layouts can you create with CSS? Choose your favorite sites—either

your own or some you enjoy using—and duplicate their layout styles with CSS.

Existing sites make good models for doing your own practice, but keep in mind

that unless you get permission, you shouldn’t just steal someone else’s code. Start

with the visual appearance as you see it on the screen, and draw out boxes on paper

as guidelines showing you where various columns are located. Use that as your

model to write the HTML and CSS for building a similar layout.

2. Try both of the techniques described in this lesson—using absolutely positioned

content and using floating columns. Start with one version and convert it over to

the other. Find a style of page that looks right to you and the CSS code that you

think is easiest to understand, apply, and modify consistently.

ptg16476052

This page intentionally left blank

ptg16476052

LESSON 16
Using Responsive Web
Design

Responsive web design, or RWD, is a way of thinking about web pages
that assumes that every person, every browser, every device that views
the page is different, and yet they should all get access to the same
content. This is a step away from how web pages were built in the past,
when web designers often expected their users to use the same browser,
operating system, and sometimes even monitor to view the page.

In this lesson, you will take the HTML and CSS you’ve studied in earlier
lessons and learn how to use that to make your sites change depending
on what type of device or browser is viewing it. You will learn the
following:

n How theories of web design like Mobile First work with RWD

n How to plan a responsive website

n How to build media queries

n Tips for making elements like images, videos, and tables
responsive

n Best practices for designing a responsive site

ptg16476052

444 LESSON 16: Using Responsive Web Design

What Is Responsive Web Design?
RWD is an approach to web design that attempts to adapt a site’s design to look as good

as possible on whatever device is displaying it. The ultimate goal of a responsive site is

that it has one codebase of HTML, CSS, and JavaScript that can then be displayed on any

device that wants to view it. This means that the same HTML document could be viewed

on a small cell phone and then a large 5K monitor, and while it might not look identical,

it would be functional in both places.

History of Responsive Web Design
In the 1990s, when web pages were first starting to be built, programmers built them

rather than designers. Those builders cared a lot less about how the pages looked and

more about whether they displayed at all. This may be dating myself, but I remember

when images first got added to web pages. Everyone in my office gathered around the

desk of a co-worker who had just found this wonderful browser, NCSA Mosaic, that

could display images. Up until that point, we’d been using Lynx, which was a text-only

web browser. Along with images came color, and along with those features came design-

ers and their desire to change how a site looks.

Then CSS came around giving designers more and more control over the pages. At first

there was a lot of difference in how a page looked when it came to different browsers.

And the smartphone was still a few years off. So it was more convenient to write a web

page that looked great in the browser that you preferred (or your boss preferred) and just

tell others to go download that one. More progressive designers would attempt to write

hacks to make their pages look the same on different browsers. But that was difficult too,

as there were a lot of browsers.

But once mobile devices grew in popularity, that became more and more difficult.

Netscape Navigator might be available for Windows and Macintosh, but it wouldn’t run

on cell phones. And while cell phones quickly gave rise to smartphones and tablets, by

that time there were so many different devices and browsers that it was impossible to

design for every possible combination, and you couldn’t tell people what browser to get

because it probably wouldn’t run on their phone anyway.

The other thing that was different with smartphone and tablet devices was that they were

not as big as the desktop computers that most designers worked on. A page that would

look great on a browser maximized on a 5K screen would be completely unusable on a

small phone screen. Ethan Marcotte coined the term responsive web design as a way to

design pages and sites that responded to the device viewing it and changed to meet the

needs of that device.

ptg16476052

Mobile Devices Should Come First 445

16

Why RWD Is Important
RWD is important because the number of browsers and devices capable of viewing web

pages is only growing. And every time a new device joins the market it adds new features

to support and often changes the way it supports existing features. A designer of a cook-

ing website might have his pages shown in a 5K monitor at one house and a touchpad

screen on a refrigerator at another. And the smart designer wants the pages to work well

in both places.

RWD Is More Than Just Changing the Number of
Columns
It’s very common to see people dismiss RWD as a form of layout adjustment. And often

the most striking changes to a design come from how the pages are presented on a desk-

top screen versus a mobile screen. But good RWD does more than that. Good RWD

includes the following:

n Adjusting the content to put the important things first for each device

n Recognizing what the critical content is for a page, and making sure that everyone

who visits can see and access it

n Providing alternatives for elements that don’t work on smaller screens

n Keeping bandwidth costs in mind when designing a page

n Using technology that is appropriate and providing fallback options for critical

features

Mobile Devices Should Come First
As I mentioned previously, it used to be very common for web designers to use the most

modern, up-to-date browsers on huge monitors. Their web pages would look amazing

at 5120 pixels wide on the latest nightly of Chromium, but anyone viewing on a smaller

screen or with an older browser was out of luck. But what these designers forgot is that

they are not their customers. When I bought my first 4K monitor, my mother was still

browsing the Web on a 12-inch screen. Her monitor was about the same size or a little

smaller than my tablet! And before you dismiss my mother as a Luddite, as of January

2015 over 50% of visitors to W3Schools had a resolution of 1366×768 or lower (see

http://www.w3schools.com/browsers/browsers_display.asp).

But resolution is only part of the picture. More and more people are moving to tablet

and mobile phones. In fact, in 2015 Google began penalizing sites that were not mobile

http://www.w3schools.com/browsers/browsers_display.asp

ptg16476052

446 LESSON 16: Using Responsive Web Design

friendly. That means that in order to get decent placement in one of the largest search

engines in the world, your site needs to work on mobile devices.

Mobile First
Instead of focusing on the desktop and how your website looks on your personal browser,

you should start by building a website that looks amazing on a mobile device. When

you design first for mobile devices, you have to focus on what the content is for the site.

Phones are small and don’t have a lot of room for extraneous bells and whistles. Instead,

you need to develop a laser focus determining what content the customers really need and

what is only nice to have. Mobile first websites make sure that everyone can see the criti-

cal content.

I’ll go into more details about what makes a site mobile friendly in Lesson 21,

“Designing for the Mobile Web,” but there are a few things you should remember:

n Limit your designs to one column. Feature phones can only effectively view one

column, and even smartphones work better if the layout is simple.

n Limit the navigation choices. This doesn’t mean you limit your mobile site—the

best sites let their customers get to any of the content. But the navigation should be

simple. What are the three or four most important (to mobile customers, at least)

pages? Those are the ones that should be in your navigation.

n Limit the file size. Mobile phones can download quickly, but even on the most

advanced mobile networks, a page that takes too long to download is a page no one

will visit. But more importantly, many mobile users have data limits that can result

in large charges if they go over. No one wants to visit a site if they think it will cost

them a lot of money.

n Limit URL lengths while making links longer. Typing in a long URL on a phone

is difficult, and so is tapping on a tiny link. People don’t do things that are difficult.

n Limit your use of frames, Flash, and tables. Frames are not valid in HTML5

(except, of course, inline frames), and they don’t work well on smaller screens.

Flash isn’t supported on most mobile operating systems. And tables are hard to

read on most small screens; some mobile phones won’t display them at all.

n Do not limit your testing. The one thing you should not limit is your testing. Test

on actual devices, if you can, not just emulators. And test on as many devices as

you can.

ptg16476052

Mobile Devices Should Come First 447

16

Affecting the Viewport
The first thing you should do to your web pages to help them look better on mobile

devices is to set viewport settings. The viewport is the rectangular shape that web brows-

ers display in. On mobile phones and tablets the viewport is typically the full screen of

the device. On a desktop the viewport is the width and height of the browser window.

It’s important to understand the viewport because mobile devices display web content

differently depending upon how the viewport is configured. But as a web designer you

can affect how you want mobile browsers to render your pages. As you can see in Figure

16.1, if you don’t configure the viewport, your page can look very different, even for a

very simple page.

Here is the HTML for the page without the viewport configured:

<!doctype html>
<html>
<head>
<meta charset="UTF-8">
<title>Testing Viewport</title>
<style>
html, body, * { margin: 0; }
body { width: 600px; }

FIGURE 16.1

The same page on
an iPhone 6 dis-
played with (right)
and without (left)
the viewport con-
figured.

ptg16476052

448 LESSON 16: Using Responsive Web Design

</style>
</head>
<body>
<h1>Testing Viewport</h1>

</body>
</html>

There is just a style sheet to remove the margins and set the width of the page to 600px.

Then I’ve got a headline and a picture. If you were to preview this page in your web

browser, both the headline and the image would be fairly big. The image is 320 pixels

wide. The iPhone has an approximate width of 375 pixels, but it is a Retina display, so

it displays at double that resolution, or around 750 pixels wide. When you view the page

without viewport configuration, the headline and the tomato are small and don’t fill the

screen.

This is a very simplified explanation of how Retina screens work.
But explaining Retina is beyond the scope of this book. For more
accurate information, check out the Apple website.

NOTE

To make this page more usable on the iPhone and other mobile devices, you just need to

add one line of HTML to the head of your document:

<meta name="viewport" content="width=device-width">

This tells the browser to display the viewport as if the width were the same as the actual

device width, or around 375 pixels. Then the tomato photo takes up a larger chunk of the

window and the headline is legible. If you extrapolate this out to full sites, you can see

where a site might have been very difficult to read and tap on without the viewport meta

tag.

Previously in this lesson, I mentioned that Google penalizes sites that aren’t mobile

friendly. But just adding this one line can get your site back into the search engine giant’s

good graces.

Here’s the full HTML:

Input ▼
<!doctype html>
<html>
<head>
<meta charset="UTF-8">

ptg16476052

Planning a Responsive Website 449

16

<meta name="viewport" content="width=device-width">
<title>Testing Viewport</title>
<style>
html, body, * { margin: 0; }
body { width: 600px; }
</style>
</head>
<body>
<h1>Testing Viewport</h1>

</body>
</html>

Planning a Responsive Website
Planning how you’re going to make your website responsive is an important first step

before you jump right in and start writing HTML and CSS. By planning what you need

to do you can avoid problems later.

Check Your Analytics
First you should check your website analytics. If your site is brand new, this will be dif-

ficult or impossible, but if it’s been live for even a few weeks you can get a sense of what

types of people are currently visiting your website.

Don’t assume that your site must be responsive. Sometimes just adding the viewport tag

listed previously is enough to support your mobile customers. But you won’t know how

many mobile customers you have until you look at your stats. You’ll learn more about

site analytics in Lesson 23, “How to Publish Your Site.”

Try the Site with Your Own Phone
If you have a low number of mobile viewers to your site, you might think that you don’t

need to make your site responsive. But if your site doesn’t work well on a mobile device,

then mobile customers won’t stick around and won’t come back. So the second step you

should do when planning is find a smartphone or other mobile device and go visit your

website. How does it look? Is it easy to use? Can you tap on the links and the navigation?

If you can, talk to some of your customers and get their thoughts on how your site works

on their mobile devices.

Decide What Content Is Critical
Once you know how important mobile users are to your site and how your site looks on

mobile devices, think about the content your site has. Is there content that is going to be

ptg16476052

450 LESSON 16: Using Responsive Web Design

more useful for mobile customers than for desktop customers? For example, a restaurant

website will want to show mobile customers their address right away, as someone brows-

ing on his phone is probably looking for a place to eat lunch.

But remember that mobile customers are the same people whether they are on their phone

or their laptop. If you have your menu on your website for computer browsers, it should

be available for mobile browsers as well. You don’t want to limit your customers; you

just want to make what they typically want to do as easy as possible.

Writing Media Queries
Media queries are what most people think of when they think of RWD. A CSS media

query is a logical expression that is either true or false. If the expression evaluates as

true, the browser should use that CSS, and if it evaluates as false, it should not. They

are called media queries because they originally checked the media type of the device

viewing the page. Media types were introduced in CSS2, and they were used to check

whether a device was a screen or if it was print, among other things. CSS3 introduced

media queries, and they got more sophisticated allowing designers to check things like

device width, aspect ratio, resolution and even if a screen was a Retina display or not.

Media Types
There are 10 media types you can test for with CSS media queries:

n all—All media

n braille—Braille and tactile feedback devices

n embossed—Paged Braille printers

n handheld—Small-screen, low-bandwidth handheld devices

n print—Paged media and documents in print preview mode

n projection—Projected presentations

n screen—Color computer screens

n speech—Speech synthesizers

n tty—Teletypes and media with a fixed-pitch character grid

n tv—Television

You can set the media type with the media attribute on the <style> tag:

<style media="print">

ptg16476052

Writing Media Queries 451

16

You can also add it to the <link> tag when you link an external style sheet:

<link href="styles.css" media="screen">

You can add media query expressions to existing style sheets with the @media attribute:

@media all { ... }

Media Features
Media features are what make media queries interesting. There are 13 media features you

can test for:

n aspect-ratio—A ratio of the width of the device to the height.

n color—The number of bits per color component.

n color-index—The number of colors in the device’s color input title.

n device-aspect-ratio—The ratio of the device width to the device height.

n device-height—The height of the rendering surface.

n device-width—The width of the rendering surface.

n grid—If the device is a grid (such as TTY devices or phones with only one font)

or bitmap.

n height—The height of the display area.

n monochrome—The number of bits per pixel in monochrome devices. If the device

isn’t monochrome, the value will be 0.

n orientation—Whether the device is in portrait or landscape mode.

n resolution—The pixel density of the device; in print, this would be the dots per

inch or dpi of the printer.

n scan—The scanning process of TV output devices; for example, progressive

scanning.

n width—The width of the display area.

Along with these features, there are two prefixes you can add to them: min- and max-.

For example, to set a style sheet for all devices with at least a width of 320 pixels:

@media (min-width: 320px) { ... }

And to style devices that are narrower than 1024 pixels:

@media (max-width: 1024px) { ... }

ptg16476052

452 LESSON 16: Using Responsive Web Design

You can combine them with the keyword and. For example, to add styles to any browser

that is wider than 320 pixels and narrower than 1024 pixels:

@media (min-width: 320px and max-width: 1024px) { ... }

Breakpoints
A CSS breakpoint is a media query to separate the style sheet into two parts: the part

outside the query and the part inside. Breakpoints are typically based on the browser’s

width, but they don’t have to be. You can set them to any media feature or combination

you would like. The thing to remember is that for every breakpoint there will be one

additional design. In other words, one breakpoint equals two designs, two breakpoints

equals three designs, and so on.

Here is the HTML and CSS to make a page with two breakpoints. As you can see, there

are two media queries, so there will be three possible designs:

Input ▼
<!doctype html>
<html>
<head>
<meta charset="UTF-8">
<title>Two Breakpoints</title>
<style>
body {
 color: blue;
 font-family: "Handwriting - Dakota", "Lucida Calligraphy Italic", Papyrus;
}
@media all and (min-width:480px) and (max-width:800px){
 body { color: red; }
}
@media screen and (min-width:801px){
 body { color: green; }
}
</style>
</head>

<body>
<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam id purus nec
eros semper luctus. Proin nisl lectus, ullamcorper ultrices leo in, tristique
rutrum risus. Morbi congue diam tempor lorem semper, congue tempor turpis
pretium. Nunc eget dui ut lorem auctor ornare. Vivamus lectus purus, vehicula eu
velit eu, iaculis ultrices dui. Aliquam consectetur risus non ligula blandit, et
gravida lectus bibendum. Etiam laoreet luctus nibh. Nulla sit amet lorem quis
arcu accumsan mollis.</p>

</body>
</html>

ptg16476052

Writing Media Queries 453

16

Figure 16.2 shows how the colors change depending upon how wide the screen is.

Output ▼

FIGURE 16.2

The same page
previewed in
Dreamweaver at
320×480 and
768×1024.

ptg16476052

454 LESSON 16: Using Responsive Web Design

Building a Style Sheet with Media Queries
As mentioned previously, you should start by designing for mobile devices first. And the

easiest way to do that is to start writing your style sheet for mobile devices without media

queries. This will be the basic design for your site, so you should stick to one column and

add all the colors, typography, and iconography you want everyone to see. Because this

is not inside a query, it will be applied to every browser regardless of the specifications.

Once you have your site designed for mobile devices, you should start adding your media

queries to affect larger screen devices. Most designers immediately want to know what

widths they should set for their breakpoints. Is it better to use 800px to target smart-

phones, or should you aim higher to design for tablets? But this is the wrong question.

Instead of asking what widths you should set to target specific devices, you should ask at

what widths your design starts falling apart.

For instance, with a single column design, there comes a point where it gets too wide for

the text to be readable. How wide is that? That is the point where you might set a break-

point and divide your page into two columns.

Understanding the Mechanics of RWD
When you start working with media queries and RWD, there are a lot of things you can

adjust. Whatever you can change with CSS, you can also modify with media queries and

CSS inside them.

Adjusting the Layout
The layout is the most common adjustment you’ll see with RWD. A typical two-

breakpoint design might have one column for small screens, two columns for medium-

sized screens, and three columns for large screens. There are many ways to do web

layout. But the three most common types are fixed width layout, fluid or liquid layout,

elastic layout, and hybrid layouts that use aspects of fixed and liquid or elastic layouts.

It is possible to create a responsive design using any of these layout types. So choose the

method you prefer. Lesson 11, “Using CSS to Position Elements on the Page” covered

how to do basic positioning, and then you learned more advanced page layout in Lesson

15, “Advanced CSS: Page Layout in CSS.”

I’ve found that it’s best to create a wireframe or mockup of how you want the site to look

two or three device sizes. Then you can use CSS media queries to adjust your layout to

match those.

ptg16476052

Understanding the Mechanics of RWD 455

16

One fun way to create columns of your page is to use the new CSS3 columns properties.

There are 13 new properties in CSS3 to help you create columns:

n column-width—Defines the width of each column

n column-count—Defines the number of columns

n columns—A shorthand property to define the column width and count

n column-gap—Defines the length of the gap between columns

n column-rule-color—Defines the color of the line between columns

n column-rule-style—Defines the style (like solid, dashed, or dotted) of the line

between the columns

n column-rule-width—Defines the width of the line between columns

n column-rule—A shorthand property to define the width, style, and color of the line

between columns

n break-before, break-after, and break-inside—All define the page or column

break behavior before, after or inside the box

n column-span—Defines how many columns the element should span across

n column-fill—Defines how to fill the columns either balanced between the col-

umns (balance) or filled sequentially (auto)

In the previous lesson, we modified the Dunbar Project website to have multiple col-

umns. But what if I want small devices to have one column and then larger devices have

the content show in newspaper style columns? That is easy if you start with the HTML I

showed you back in Lesson 15:

Input ▼
<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <title>The Dunbar Project</title>
 <meta name="viewport" content="width=device-width">
 </head>
 <body>
 <header>

<h1>The Dunbar Project</h1>
<h2>In the Shadow of Downtown Tucson</h2>
<nav id="sitenav">
Home

About the Dunbar Project
Photo Galleries

ptg16476052

456 LESSON 16: Using Responsive Web Design

Donate
Contact

</nav> <!-- sitenav -->
 </header> <!-- header -->
 <div id="main">

<article id="content">
<h3>Welcome to The Dunbar Project Website</h3>
<p>Dunbar School was completed in January 1918, for the

purpose of educating Tucson's African-American students.
The school was named after Paul
Laurence Dunbar, a renowned African-American poet.
African-American children in first through ninth grades
attended Dunbar until 1951, when de jure segregation was
eliminated from the school systems of Arizona. When
segregation in Arizona was eliminated, Dunbar School
became the non-segregated John Spring Junior High School,
and continued as such until 1978 when the school was
closed permanently.</p>

<!-- ... more content omitted ... -->
</article> <!-- content -->
<aside id="sidebar">
<h3>Dunbar Project</h3>
The Dunbar Site Plan

Dunbar Auditorium
School History
Project Proposal
Dunbar Donors
About Paul Laurence Dunbar,

Poet
Related Links

<h3>Coalition Partners</h3>
The Tucson Urban League

The Dunbar Alumni Association
The Dunbar/Spring Neighborhood Association
The Juneteenth Festival Committee

<h3>Individual Members</h3>
 <!-- ... list of donors omitted ... -->

</aside> <!-- sidebar -->
 </div> <!-- main -->
 <footer>

<p id="note501c3">The Dunbar Project is a 501c(3)
organization, and your contributions are tax
deductible.</p>

<p id="copyright">Copyright © 2006 by the Dunbar
Project. Questions?
<a href="mailto:webmaster@thedunbarproject.com"
>Mail the Webmaster.</p>

 </footer> <!-- footer -->
</body>
</html>

ptg16476052

Understanding the Mechanics of RWD 457

16

I removed the image so that we could focus on just the layout for the site. Figure 16.3

shows how this would look on a small-screen device.

Output ▼

I then will add a style sheet to the document to create the styles for larger-screen devices.

Input ▼
<style>
 #main {
 -moz-column-count: 2;

-webkit-column-count: 2;
column-count: 2;

 }
 aside {
 -webkit-column-break-before: always;
 break-before: always;
 }
</style>

FIGURE 16.3

An iPhone showing
a single-column
layout.

ptg16476052

458 LESSON 16: Using Responsive Web Design

This style sheet makes the section with the id of main have a column count of two.

And then I set it so there is always a column break before aside tags. As you can

see, I used browser prefixes (-moz-column-count, -webkit-column-count, and

–webkit-column-break-before) to help browsers provide the styling I want.

Even if there are browser prefixes, there is no guarantee that the
browsers will work with the styles. In my example, Firefox version
40 does not implement the break-before property. Always make
sure to test in as many devices and browsers as you can.

CAUTION

Figure 16.4 shows how these styles affect the page.

Output ▼

FIGURE 16.4

An iPhone showing
the layout with two
columns.

ptg16476052

Understanding the Mechanics of RWD 459

16

As you can see, there are now two columns, but they are very narrow and hard to read.

So this is a candidate for a breakpoint. We know that having no styles looks fine on the

iPhone as far as the layout goes, so our breakpoint needs to be around 400 pixels:

Input ▼
@media (min-width: 400px) {
 #main {
 -moz-column-count: 2;

-webkit-column-count: 2;
column-count: 2;

 }
 aside {
 -webkit-column-break-before: always;
 break-before: always;
 }
}

Figure 16.5 shows how this style sheet looks on a desktop browser.

Output ▼

And Figure 16.6 shows how it appears on an iPhone.

FIGURE 16.5

The layout in
Chrome has two
columns.

ptg16476052

460 LESSON 16: Using Responsive Web Design

Output ▼

Making Images and Videos Responsive
Images and videos can be difficult to make responsive because they can end up being

huge and thus slow to download. Plus, most HTML instructions say that you should

always define the height and width of your images and never let the browser resize them

for you. Thus, making a responsive design means making a few choices; no matter what

you choose, there will be someone who loses out. There are three ways you can deal with

images in a responsive web design:

n Use the images as you normally would, defining the width and height and creating

images that are the right size for your standard design.

n Set the image width to something flexible, and save the image in a large file size so

that it can flex to fit large and small screens.

n Change the images that display depending upon the device that is viewing it.

With the first method, the losers are typically small screen devices because web design-

ers usually build their pages to look good on desktop machines. So, the images are either

FIGURE 16.6

The layout on the
iPhone has one
column again.

ptg16476052

Understanding the Mechanics of RWD 461

16

too big to fit in the window or too big to download quickly. Either way, the website is the

ultimate loser because Google frowns on images not optimized for mobile devices, and

mobile users simply leave the site.

The second method is appealing because it ensures that the image will fit on both mobile

and desktop machines. But if the images are too big, they take too long to download on

smartphones, and if they are too small, they look awful if they are resized above their

absolute limit.

The third method attempts to solve both the download size and the dimension problems.

By serving different images to different devices, you can ensure that customers on mobile

devices get small images that download quickly, while customers on large screen 5K

monitors get gorgeous gigantic images. The problem is you need to have a web server

that can run the programs required to test for devices, and you need a tool like WURFL

that can be used to test against.

WURFL stands for Wireless Universal Resource File. It is a
community-based effort to do mobile device detection. You can
learn more about WURFL at http://wurfl.sourceforge.net/.

NOTE

Most responsive websites use the second method, but if you have to have really large

images, you can use the third .

Making the images flexible is a great method for most RWD websites because it’s almost

as easy as doing nothing at all. But your images will flex to fit the width of the browser

or the width of the container. All you need to do in your style sheet is set the width to

100%, the height to auto, and the max-width to the absolute width of your images. For

example, you might have a large picture of a dog that is 1920×1142 pixels in dimensions.

If you put that straight into your web page, it would be way too wide for nearly any

mobile browser. But if you view it in a window that is wider than 2000 pixels, the image

will start to distort and look bad. You don’t want it to resize to larger than 1920, so that’s

what you set the maximum width to be. Here is the HTML I used:

Input ▼
<!doctype html>
<html>
 <head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width">

http://wurfl.sourceforge.net/

ptg16476052

462 LESSON 16: Using Responsive Web Design

 <title>Flexible Width Images</title>
 <style>
img {
 width: 100%;
 height: auto;
 max-width: 1920px;
}
 </style>
 </head>

 <body>
 <article>

<h1>Flexible Width Images</h1>
<figure>

<figcaption> Image courtesy Pixabay</figcaption>

</figure>
 </article>
 </body>
</html>

And as you can see in Figure 16.7, it fills up the screen on an iPhone in landscape mode.

Output ▼

In many ways, making videos responsive is even easier than images. This is because the

HTML5 video tag allows you to embed multiple source files. Absent any other informa-

tion, the browser will use the source file that is best for it. But media queries let you pro-

vide even more information. Here is the HTML for adding a video:

<video controls>
 <source src="video.mp4">
</video>

FIGURE 16.7

The image fills up
the screen on an
iPhone.

ptg16476052

Understanding the Mechanics of RWD 463

16

The video.mp4 file was shot at 1920×1080, and although it will look fine on some

devices, it might be too big or too small for others. So, you can add in another video

recorded at 720×480 for smaller screens. To display the small version on small screens,

you use a media query right on the source tag:

<source src="video-small.mp4" media="(max-width:480px)">

Any browser that is wider than 480 pixels will automatically load and play the larger file

instead of the smaller one.

Building Responsive Tables
Data tables are a sensitive subject for responsive web designers because they are often

very big and can thus be difficult to handle on smaller screens. It can be tempting to add

display: none; to tables and only display them on larger screen sizes (by setting the

display back to table: display: table; inside the media queries), but that isn’t an option

if the table is required content.

Designers typically handle tables in RWD in three ways:

n Resize the cells.

n Rearrange the table.

n Remove or hide the content.

Resizing the cells is the easiest way to handle tables because it’s the way that tables rear-

range themselves by default. First you should make the main table tag 100% in width:

<table style="width:100%;" border="1">

This will help the table flex to fit various size devices. But what about tables with wide

columns, like this HTML?

Input ▼
<!doctype html>
<html>
 <head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width">
 <title>Responsive Tables</title>
 <style>

 </style>
 </head>

 <body>
 <article>

ptg16476052

464 LESSON 16: Using Responsive Web Design

<h1>Responsive Tables</h1>
<table style="width:100%;" border="1">
 <thead>
 <tr>

<th>Name</th>
<th>URL</th>
<th>RWD?</th>
<th>Windows</th>
<th>Macintosh</th>

 </tr>
 </thead>
 <tbody>
 <tr>

<td>Adobe Dreamweaver</td>
<td>http://www.adobe.com/products/dreamweaver.html</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>

 </tr>
 <tr>

<td>Macaw</td>
<td>http://macaw.co/</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>

 </tr>
 <tr>

<td>Coffee Cup Responsive Layout Maker Pro</td>
<td>http://www.coffeecup.com/responsive-layout-maker-pro/</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>

 </tr>
 <tr>

<td>Microsoft Notepad</td>
<td>http://www.notepad.org/</td>
<td>no</td>
<td>yes</td>
<td>no</td>

 </tr>
 <tr>

<td>Tummult Hype</td>
<td>http://tumult.com/hype/</td>
<td>no</td>
<td>no</td>
<td>yes</td>

 </tr>
 </tbody>
</table>
 </article>
 </body>
</html>

ptg16476052

Understanding the Mechanics of RWD 465

16

If you view that on a smartphone, it would be too large for the screen and require hori-

zontal scrolling. But by resizing the text inside the table, you can help it fit better. Here is

the CSS I added:

/* styles for all devices */
table { border-collapse: collapse; font-size: 14px; }
/* zebra stripe the table */
table tr:nth-child(2n+1) { background-color: #dfdfdf; }
/* styles for devices larger than 650px wide */
@media screen and (min-width:651px) {
 table { font-size: 16px; }
}

Figure 16.8 shows that there is no horizontal scrollbar on an iPhone.

Output ▼

FIGURE 16.8

No horizontal
scrolling to see the
table on an iPhone.

ptg16476052

466 LESSON 16: Using Responsive Web Design

While there is no horizontal scrolling, the table is very difficult to read on the iPhone

without zooming. So instead of making the font size smaller, you could rearrange the

table when it’s displaying on a small screen. If you replace the CSS in the table with this:

Input ▼
/* styles for all devices */
table { border-collapse: collapse; }

/* styles for small devices */
@media (max-width:720px){
 table { border: none; }
 /* display the whole table as a block */
 table, thead, tbody, th, td, tr { display: block; }
 /* Hide the headers */
 thead tr { position: absolute; top: -9999px; left: -9999px; }
 tr { border: 1px solid #ccc; margin-bottom: 1em; }
 tr:nth-of-type(odd) { background: #eee; }
 td {
 /* Behave like a "row" */
 border: none;
 border-bottom: 1px solid #eee;
 position: relative;
 padding-left: 20%;
 }
 td:before {
 /* Now like a table header */
 position: absolute;
 /* Top/left values mimic padding */
 top: 1px;
 left: 2px;
 width: 45%;
 padding-right: 10px;
 white-space: nowrap;
 }
 /* Label the data */
 td:nth-of-type(1):before { content: "Name "; }
 td:nth-of-type(2):before { content: "URL "; }
 td:nth-of-type(3):before { content: "RWD? " ; }
 td:nth-of-type(4):before { content: "Win "; }
 td:nth-of-type(5):before { content: "Mac "; }
}

/* styles for larger devices */
@media (min-width:721px) {
 tr:nth-child(2n+1) { background-color: #80C5F5; }
 table thead tr:nth-child(n) { background-color: #3d447e; color: #dfdfdf; }
}

ptg16476052

Responsive Web Design Best Practices 467

16

That will make your table look better on the iPhone, as you can see in Figure 16.9.

Output ▼

As you can see, the first URL still scrolls off the screen, but it is much easier to read than

the initial version. But if this were a problem, you could remove that column either with

JavaScript or by using the display: none; property. But this is a bad solution because

it removes content from mobile customers. It’s better to work with your tables, changing

either the size or the arrangement so that they best fit on the screen of mobile devices .

Responsive Web Design Best Practices
Methods of doing responsive web design are changing all the time, so it’s always a good

idea to read what other web developers are coming up with. But there are a few things

you can do to make your site work out the best.

Give Everyone the Best Experience
Make sure that your site is as accessible and inclusive as you can make it. It’s very easy,

as a web designer, to get hung up on the way that you’re used to viewing the Web, but

FIGURE 16.9

The format of the
table changes on
the iPhone.

ptg16476052

468 LESSON 16: Using Responsive Web Design

there are lots of other ways. Here are some ways you can improve the experience of your

site for everyone:

n Think mobile first.

n Write semantic HTML.

n Use HTML5 and CSS3.

Use the Best Breakpoints for Your Website, Not for
Devices
Focus your breakpoints on where your design starts to fail rather than worrying about

specific devices or widths. It’s also a good idea to strive for as few breakpoints as your

design can handle and not be broken.

Be Flexible But Think Small
Web design is a lot more flexible than print design because there’s no way to really con-

trol how your pages will look on every device that views them. But you want to make

sure of the following:

n Your layouts should fit the screen they are on.

n Images should fit the screen, too.

n Video needs to be small so that it downloads quickly.

n Compress everything that you can.

n Don’t use more than two or three external resources (like web fonts).

If you keep these best practices in mind, you will create a really great, responsive website.

Summary
Responsive web design covers a lot of areas of web design, from designing for mobile

devices through images and optimization and even into how your pages display on vari-

ous devices.

When you’re building a responsive website, first you need to plan your site so that you

know what it’s going to need and what the customers want. Then you can create a layout

and add multiple columns to larger screen devices. Responsive images and videos flex

with the width of the container but are never larger than their source file. And the best

responsive designs try to stay small so that they load quickly no matter who is viewing

them.

ptg16476052

Workshop 469

16

Workshop
Put on your thinking cap again because it’s time for another review. These questions,

quizzes, and exercises will remind you about the items that you should (or should not)

include on your pages.

Q&A
 Q Are there other areas I should focus on when doing RWD?

 A Just about any aspect of your site can be made responsive. You can change the

fonts and typography depending on the device viewing your page. You can adjust

what fields show up in a form. The two places I would focus on next if you want to

go further with RWD are typography and navigation. Both of these can impact your

site significantly, and RWD can make them even more impressive.

 Q Are there websites that focus just on mobile devices and ignore the desktop?

 A Like Mobile First, there is also a Mobile Only movement. These people believe that

mobile is the future and that web designers should focus on building their sites first

and only for mobile (and desktop users can view it without much issue). There is

a huge benefit to this type of thinking; your site will be much more likely to take

advantage of some of the features like GeoLocation that are only truly useful on

mobile devices.

Quiz
1. Why is RWD important?

2. What does the column-rule property do?

3. Why should you use responsive images?

4. What attribute can you use to make videos responsive?

Quiz Answers
1. Responsive web design, or RWD, helps designers focus on making their sites

accessible and available to every device or person who visits. This is important

for the site owner because he gets more pageviews. And it’s important for the web

community as a whole because it helps make the Web easier to use for everyone.

2. The column-rule property is a CSS3 property that defines the width, color, and

style of lines between columns.

ptg16476052

470 LESSON 16: Using Responsive Web Design

3. You should use responsive images so that your images flex with your designs and

don’t look too large on small screens or too small on large screens.

4. You can use the media attribute on the source tag to define video (and audio)

source files specific to a certain media query.

Exercises
1. Come up with a mockup for two designs for your website: one for small screens

that is one column wide and one for larger screens that is two or three columns

wide.

2. Once you are satisfied with your mockup, build it with CSS media queries.

ptg16476052

LESSON 17
Introducing JavaScript

JavaScript is a programming language that’s used to turn web pages into
applications. JavaScript is used to manipulate the contents of a web page
and to allow users to interact with web pages without reloading the page.

This is the first of three lessons in a row on JavaScript. In this lesson, I
explain how JavaScript works and how to use it in your pages. In the next
lesson, “Using jQuery,” I discuss jQuery, a library that makes it much sim-
pler to work with JavaScript, and then in the following lesson, “JavaScript
Examples,” I’ll walk you through some real world examples. In this lesson,
you learn about the basics of JavaScript by exploring the following topics:

n What JavaScript is

n Why you would want to use JavaScript

n The <script> tag

n An overview of the JavaScript language

n The browser as a programming environment

n Using JavaScript to handle browser events

ptg16476052

472 LESSON 17: Introducing JavaScript

Why Would You Want to Use JavaScript?
JavaScript changes the browser from an application for displaying documents to a plat-

form for writing applications. It’s useful because it enables the developer to manipulate

the contents of a web page after it has loaded, making it possible to provide users with

instant feedback when they make a change in a form, loading resources on demand for

performance reasons, or building full-blown user interfaces that resemble desktop appli-

cations.

JavaScript is useful because it’s deeply integrated with the browser. This integration

allows programmers to manipulate various aspects of the browser behavior, as well as

objects included on the page. JavaScript uses what’s referred to as an event-driven model
of execution. When you embed JavaScript code in a web page, it isn’t run until the event

it’s associated with is triggered.

The types of events that can call JavaScript include loading the page, leaving the page,

interacting with a form element in some way, clicking a link, or even just scrolling up or

down. Plenty of other events are available, too. Often these events are utilized in what

most users would consider to be annoying ways. For example, many sites open an addi-

tional window containing an advertisement when you navigate to one of their pages. This

is accomplished using JavaScript and the page load event. Other sites open additional

windows when you leave them; this is also accomplished using JavaScript triggered by

the page unload event. Less annoying applications include validating forms before they

are submitted or displaying extra information on a page when a user clicks a link without

requiring a complete page refresh.

This introduction will by necessity be briskly paced. There are
many books written about JavaScript alone. The goal of these les-
sons is to introduce you to JavaScript, enable you to get started
accomplishing tasks, and hopefully kindle your interest to dig into
the language more deeply.

NOTE

JavaScript enables you to manipulate web pages without sending a request back to the

server or to send a request to the server to retrieve information without leaving the page

that the user is on. Using these capabilities, you can change the contents of a page,

change the style of elements on a page, validate user input before a user submits a form,

and modify the behavior of the browser—all by using scripts embedded within your web

pages. Let’s look at some of the advantages of using JavaScript to enhance your web

pages.

ptg16476052

The <script> Tag 473

17

Ease of Use
JavaScript is a real programming language and is regularly used to build large, com-

plex applications, including some you’ve probably seen, like Google Maps. At the same

time, compared to many other programming languages, it’s very easy to get started with

JavaScript. You can add useful behavior to a web page with just a little bit of JavaScript

added to the onclick attribute of a link or to a script tag at the top of an HTML docu-

ment. And as you’ll learn in Lesson 18, jQuery makes it easy to add functionality to a

page using just a few lines of code. The point is, don’t be intimidated by JavaScript. You

can start accomplishing things almost immediately.

Improving Performance
One of the main advantages of JavaScript is that it can provide user feedback instantly.

Instead of requiring users to submit a form to see if their input was valid, you can let

them know in real time. Not only can this improve user experience, but it can also make

life easier for your server by preventing unnecessary form processing on the server. You

can also use JavaScript to load resources when they’re needed rather than when the page

first loads. For example, you can load images that are not displayed immediately after the

page loads to display the site more quickly. You can also use JavaScript to alter only the

parts of the page that need to change when users interact with it. For example, you can

process a search form using JavaScript and display the results on the same page so that a

page reload isn’t required.

Integration with the Browser
JavaScript enables you to manipulate objects on the page, such as links, images, and

styles. You can also use JavaScript to control the browser itself by changing the size of

the browser window, moving the browser window around the screen, and activating or

deactivating elements of the interface. Technologies like Flash can provide an interactive

interface, but they are not integrated into the browser in the same way that JavaScript is.

The <script> Tag
The <script> tag is used to include a JavaScript script in a web page, in much the same

way that the <style> tag is used to add a style sheet to a page. The contents of the

<script> tag are expected to be JavaScript source code. There are a couple of other ways

to use JavaScript in your pages, too, but the <script> tag is a good place to start.

For the best results across all browsers, you should include the type attribute in the script

tag, which specifies the type of content that the tag contains. For JavaScript, use text/

javascript. HTML5 uses text/javascript as the default value for the type attribute,

so if that is the type your script uses, you can leave it off.

ptg16476052

474 LESSON 17: Introducing JavaScript

The Structure of a JavaScript Script
When you include any JavaScript code in an HTML document (apart from using the

<script> tag), you should also follow a few other conventions:

n HTML standards prior to HTML5 required that the <script> tag be placed

between the <head> and </head> tags at the start of your document, not inside the

<body> tag. However, for performance reasons, it’s almost always a better idea to

put your <script> tags at the bottom of the page. I’ll discuss the reasons why later

on.

n Unlike HTML, which uses the <!-- comment tag -->, comments inside

JavaScript code use the // symbol at the start of a line. Any line of JavaScript code

that starts with these characters will be treated as a comment and ignored.

Taking these three points into consideration, here’s how the <script> tag is normally

used:

<html>
<head>
<title>Test script</title>
</head>
<body>
 Your Web content goes here
<script>
// Your JavaScript code goes here
</script>
</body>
</html >

You can place your <script> tag in either the head or the body of your document. But

because JavaScript forces the browser to load it as a single thread, it’s best to place it at

the bottom of your pages, right before the closing </body> tag. This ensures that your

pages load as quickly as possible.

The src Attribute
Besides the language attribute, the <script> tag can also include an src attribute, which

allows a JavaScript script stored in a separate file to be included as part of the current

web page. This feature enables you to share JavaScript code across an entire website, just

as you can share a single style sheet among many pages.

When used this way, the <script> tag takes the following form:

<script src="http://www.example.com/script.js">

ptg16476052

JavaScript and the Chrome Development Tools 475

17

The src attribute will accept any valid URL, on the same server or on another. Naming

your JavaScript files with the extension .js is customary.

JavaScript and the Chrome Development
Tools
You’ve already seen how useful the Chrome Development Tools are when it comes

to inspecting the source code of a page and diagnosing CSS issues on a web page.

Developer tools like these were originally introduced to help people who were writ-

ing JavaScript. There are two incredibly useful features for JavaScript developers in the

Developer Tools. The first is the JavaScript Debugger, which I’ll discuss a bit later on.

The second is the JavaScript Console, which provides a place to enter JavaScript code,

execute it, and view the results interactively.

As I walk you through the JavaScript language, you can use the Console of the Chrome

Development Tools (or the JavaScript Console in whichever browser you prefer) to run

the examples. JavaScript errors that occur as you interact with the page are also printed in

the Console, so when you’re adding JavaScript to your own pages, you’ll use it to inves-

tigate the bugs that inevitably crop up as you write your own JavaScript. You can see

what the Console loo ks like in Figure 17.1.

To view the Console, you open the Developer Tools and click on the Console tab. The >

prompt is where you enter your JavaScript code to be evaluated. The Console is what’s

known as a REPL, which is short for Read-eval-print Loop. That’s because it reads the

code you enter, evaluates it, and then prints the results. It’s a place you can experiment

more easily than editing the JavaScript on a page, loading it in a browser, and then view-

ing the results.

To see how it works, open the Console and type "1 + 1" at the prompt. On the next line,

you’ll see the number 2, the results of that mathematical expression. That expression

FIGURE 17.1

The Chrome
Developer Tools
JavaScript Console.

ptg16476052

476 LESSON 17: Introducing JavaScript

happens to be valid JavaScript, and the Console automatically evaluates it and prints the

results for you. Now try this:

alert(1 + 1);

You can see what the results look like in Figure 17.2.

When you enter that line, an alert dialog will pop up containing the number 2. As you

can see, you can affect the browser environment using the Console. The word undefined

is printed in the Console. alert, which I’ll discuss further later, opens the dialog box.

It is also an expression, just like 1 + 1, and the results of evaluating that expression are

printed in the Console window. In this case, the expression’s result is undefined, which

is why that’s printed. That’s what any expression that does not return a useful value

returns in JavaScript. If you’re not already a programmer, you may be wondering what an

expression is at all. I’ll get into that a bit later as well.

The JavaScript Language
When JavaScript is included in a page, the browser executes that JavaScript as soon as it

is read. Here’s a simple page that includes a script; the output is included in Figure 17.3 :

Input ▼
<!DOCTYPE html>
<html>
<head>
 <title>A Simple JavaScript Example</title>
</head>
<body>

<p>Printed before JavaScript is run.</p>

<p>
<script>
 document.write("Printed by JavaScript.");

FIGURE 17.2

Expressions evalu-
ated using the
Console.

ptg16476052

The JavaScript Language 477

17

</script>
</p>

<p>Printed after JavaScript is run.</p>

</body>
</html>

 Output ▼

The page includes a single line of JavaScript, which writes the “Printed by JavaScript” on

the page. The text is printed between the other two paragraphs on the page, demonstrat-

ing that the browser executed the JavaScript as soon as it got to it.

Before I start talking about what this code does, let me talk for just a moment about its

structure. JavaScript programs are made up of individual statements, which are termi-

nated by a semicolon. This program consists of a single statement or line of code.

As you can see, this line adds text to the page. Let me break down what this does,

exactly. First, you might notice that document.write() and window.alert(), which I

use earlier, look similar. Both window and document are things. write and alert are mes-

sages that you can send to those things. In both cases, you need content for those mes-

sages. In the latter example, the content of the write message is “Printed by JavaScript.”

In programming, the term used for things is objects, and the term used for the messages

is methods. The content of the message is said to be passed to the method and is referred

to as the method’s argument. So in programmer jargon, I’d say that I called the write

method of the document object with the argument “Printed by JavaScript.” The document

and window objects are provided by the browser—the environment in which JavaScript

runs. You can also declare objects of your own; they’ll be discussed further along.

FIGURE 17.3

The results of a
simple script.

ptg16476052

478 LESSON 17: Introducing JavaScript

The document object is a representation of the current page that is accessible by

JavaScript. Whenever you manipulate the page using JavaScript, you do so by calling

methods of the document object.

The bit of text that I passed to the document.write() method in the previous example

is called a string in the vocabulary of programming. The document.write() method

expects a string argument, which it then adds to the source of the document. Some pro-

gramming languages are strict about data types, so if a method expects you to give it a

string as an argument and you give it a number instead, an error will occur. JavaScript

isn’t like that. If you pass a string to the document.write() method, it will print it out

unchanged. If you pass it some other kind of thing, it will do its best to convert it to a

string and print it out.

So, for example , you can give it a number:

<script>
document.write(500);

</script>

It will convert the number to a string and print it on the page. Or you can even pass it an

object, like this:

<script>
document.write(document);

</script>

Th e results are in Figure 17.4.

Output ▼

FIGURE 17.4

Attempting to write
an object to the
page.

ptg16476052

The JavaScript Language 479

17

That’s the string representation of the document object. Many programming languages

would print an error if you tried to use an object like document with a method that

accepts a string. Not JavaScript. It makes do with what you give it.

Operators and Expressions
In my introduction to the JavaScript Console in the Chrome Web Developer Tools, I

talked a bit about expressions. An expression is a snippet of code that can be evaluated

to return a result. You may recognize the term expression from math, and indeed, many

expressions are mathematical expressions. Here’s a simple mathematical expression that

you can enter in the Console:

10 * 50

In this case, JavaScript will multiply 10 by 50. That’s an expression. There are also string

expressions. For example, you can use the + operator to join strings together, like this:

"The bird a nest," + " the spider a web," + " man friendship."

Expressions are built using operators. You’ve already seen a couple: * for multiplication

and + for combining strings or adding numbers. Table 17.1 lists more operators provided

by JavaScript, along with examples. (For a full list of all the supported operators, refer t o

the online JavaScript documentation.)

TABLE 17.1 JavaScript Operators and Expressions

Operator Example Description

+ 5 + 5 Adds the two numeric values; the result is 10.

+ "Java" + "Script" Combines the two string values; the result is JavaScript.

- 10 - 5 Subtracts the second value from the first; the result is 5.

* 5 * 5 Multiplies the two values; the result is 25.

/ 25 / 5 Divides the value on the left by the value on the right; the
result is 5.

% 26 % 5 Obtains the modulus of 26 when it’s divided by 5. (Note:
A modulus is a function that returns the remainder.) The
result is 1.

There are many other operators, too. All the examples here used literal values in the

expressions, but there are other options as well. You can use values returned by methods

in expressions if you choose, as in the following example:

 Math.sqrt(25) - Math.sqrt(16)

ptg16476052

480 LESSON 17: Introducing JavaScript

This example uses the Math object, another object built in to JavaScript. It provides a

number of methods that perform a variety of mathematical operations so that you don’t

have to write the code to perform them yourself. Math.sqrt() is a method that returns

the square root of a number. In this case, I subtracted the square root of 16 from the

square root of 25. You can enter any of these expressions in the Console and see the

results.

Variables
Thus far, I’ve been manipulating values and printing them directly to the page. The next

fundamental building block of writing scripts is temporary storage of those values so that

they can be reused. Like all programming languages, JavaScript supports the use of vari-

ables. A variable is a user-defined container that can hold a number, text, or an object.

Creating variables and retrieving their values is simple in the Console, as shown in Figure

17.5.

Input ▼
var message = "Message"
 message

Output ▼

In that example, I created a variable called message and then printed its value by entering

it as an expression in the Console. You can also assign the results of an expression to a

 variable:

var sum = 5 + 5;

And you can use variables in your exp ressions:

var firstName = "George";
var lastName = "Washington";
var name = firstName + " " + lastName;

FIGURE 17.5

A variable declara-
tion in the console.

ptg16476052

The JavaScript Language 481

17

Let’s break down a variable declaration into pieces. Here’s a declaration:

var message = "My message";

The line begins with var, which indicates that this is a variable declaration. The name

of this variable is message. There are a number of rules that apply to naming variables,

which I will list shortly. The assignment operator (=) is used to assign a value to the

variable when it’s declared. The value returned by the expression on the right side of the

operator is assigned to the newly declared variable.

Variable names must conform to the following rules:

n Variable names can include only letters, numbers, and the underscore (_) or dollar

sign ($) character.

n Variable names cannot start with a number.

n You cannot use reserved words as a variable name. Reserved words are words that

have a specific meaning for the JavaScript interpreter. For example, naming a vari-

able var won’t work. Table 17.2 contains a full list of JavaScript reserved words.

n As a matter of style, JavaScript variables begin with a lowercase letter. If a variable

name contains multiple words, usually an underscore is used to join the two words,

or the first letter of the second word is uppercase. So you would write my_variable

or myVariable.

TABLE 17.2 JavaScript Reserved Words

abstract final return

arguments finally short

boolean float static

break for super

byte function switch

case goto synchronized

catch if this

char implements throw

class import throws

const in transient

continue instanceof true

debugger int try

default interface typeof

delete let var

ptg16476052

482 LESSON 17: Introducing JavaScript

do long void

double native volatile

else new while

enum null with

eval package yield

export private

extends protected

false public

Not all the reserved words in Table 17.2 are currently used in JavaScript; some have been

placed off limits because they might be added to the language in the future.

Here are a couple of additional notes on variable assignment. You don’t have to assign a

value to a variable when you declare it. You can declare the variable without an assign-

ment so that it can be used later. For example:

var myVariable;

If you entered myVariable in the console as an expression, it would be evaluated to unde-

fined because nothing has been assigned to it. However, if you enter the name of an as

yet undeclared variable (like myNewVariable), you’ll see an error message.

You can also assign new values to variables after they’ve been declared, as follows:

myVariable = "My value";

Control Structures
To get your scripts to actually do something, you’ll need control structures, which come

in two main varieties. There are conditional statements, which are used to make deci-

sions, and loops, which enable you to repeat the same statements more than once.

The if Statement
The main conditional statement you’ll use is the if statement. The statements inside an

if statement are executed only if the condition in the if statement is true. If you were

writing code in English rather than JavaScript, an if statement would read like this: “If

the background of this element is blue, turn it red.” There’s also an else clause associ-

ated with if. The statements in the else clause are executed if the if statement’s condi-

tion is false. An if statement with an else clause reads like this: “If the value of this

variable is blue, change it to red; otherwise, change it to blue.”

ptg16476052

The JavaScript Language 483

17

Let’s look at a simple example, which will work in the Console:

var colo r = "red";
if (color == "blue") {
 color = "red";
} else {
 color = "blue";
}
color;

In this example, I’ve created a variable named color and use that in my if statement.

Later, I’ll explain how to retrieve information from the page, style sheets, and form ele-

ments in your JavaScript code and make changes to them. For now, it’s easier to explain

the conditional statements with hard-coded values. The statement begins with the if

keyword, followed by the condition enclosed within parentheses. The statements to be

executed if the condition is true are placed within curly braces. In this case, I’ve also

included an else clause. The statement associated with it is also enclosed in curly braces.

Finally, let’s look at the condition. It is true if the variable color is equal to the value

"blue". In this case, the condition is false, so the else clause will be executed.

The == operator tests for equality and is but one of several conditional operators available

in JavaScript. Table 17.3 contains all the conditional operators.

TABLE 17.3 JavaScript Comparison Operators

Operator Operator Description Notes

== Equal to a == b tests to see whether a equals b.

!= Not equal to a != b tests to see whether a does not equal b.

< Less than a < b tests to see whether a is less than b.

<= Less than or equal to -a <= b tests to see whether a is less than or equal
to b.

>= Greater than or equal to -a >= b tests to see whether a is greater than or
equal to b.

> Greater than a > b tests to see whether a is greater than b.

You can also enter conditional expressions in the Console to see their results. As you’ll

see, they all return either true or false. For example, 1 == 2 will evaluate as false, and

5 > 3 will evaluate as true. If you’re curious about the result of a conditional expres-

sion, you can always test it there.

ptg16476052

484 LESSON 17: Introducing JavaScript

You can also use the ! operator, which reads as “not,” to negate any Boolean expression.

For example, if you enter !true in the Console, the result of the expression will be false.

If you want to negate an expression that uses a conditional operator, you’ll need to use

parentheses. For example, try this expression in the Console:

!(1 == 2)

The result will be true.

Loops
You’ll occasionally want a group of statements to be executed more than once. JavaScript

supports two kinds of loops. The first, the for loop, is ideal for situations in which you

want to execute a group of statements a specific number of times. The second, the while

loop, is useful when you want a set of statements to be executed until a condition is satis-

fied.

for Loops Here’s a for loop:

for (var count = 1; count <= 10; count++) {
 console.log("Iteration number " + count);
}

The loop starts with the for keyword, followed by all the information needed to specify

how many times the loop body will be executed. (Trips through a loop are referred to as

iterations .) Three expressions are used to define a for loop. First, a variable is declared

to keep track of the loop iterations. The second is a Boolean expression (evaluates to true

or false) that terminates the loop when it is false. The third is an expression that incre-

ments the loop counter so that the loop condition will eventually be satisfied. In the pre-

ceding example, I declared the variable count with an initial value of 1. I specified that

the loop will execute until the value of count is no longer less than or equal to 10. Then I

used an operator you haven’t seen, ++, to increment the value of count by one each time

through the loop.

The body of the loop uses console.log to print out a message in the console every time

the loop executes . The console object refers to the Console in the web developer tools,

and the log method prints whatever is passed as an argument to the console directly. It’s

useful for debugging, especially when you add it to your scripts within pages to get a

sense of the state of your scripts while they’re running.

As you can see, the for statement is self-contained. The count
variable is declared, tested, and incremented within that state-
ment. You shouldn’t modify the value of count within the body of
your loop unless you’re absolutely sure of what you’re doing.

CAUTION

ptg16476052

The JavaScript Language 485

17

while Loops The basic structure of a while loop looks like this :

var color = 'blue';
while (color == 'blue') {
 console.log("Color is still blue.");
 if (Math.random() > 0.5) {

color = 'not blue';
 }
}

One thing you may notice when you’re entering code in the
Console is that multiline statements will return an error if you
enter part of the statement and press Return. To enter multiline
statements yourself, you can either paste them into the Console
instead of typing them, or you can press Shift-Return at the end
of the lines to indicate that they are part of a multiline block.
When you press the Return key at the end, all the lines will be
evaluated together.

TIP

The while loop uses only a condition. The programmer is responsible for creating the

condition that will eventually cause the loop to terminate somewhere inside the body of

the loop. It might help you to think of a while loop as an if statement that’s executed

repeatedly until a condition is satisfied. As long as the while expression is true, the state-

ments inside the braces following the while loop continue to run forever—or at least

until you close your web browser.

In the preceding example, I declare a variable, color, and set its value to "blue". The

while loop will execute until it is no longer true that color is set to "blue". Inside

the loop, I print a message indicating that the color is still blue, and then I use an if

statement that may set the color variable to a different value. The condition in the if

statement uses Math.random(), another method of the Math object that returns a value

between 0 and 1. In this case, if it’s greater than 0.5, I switch the value so that the loop

terminates.

If you prefer, you can write while loops with the condition at the end, which ensures that

they always run once. These are called do ... while loops and look like this:

var color = "blue";
do {
 // some stuff
}
while (color != "blue");

ptg16476052

486 LESSON 17: Introducing JavaScript

Even though the test in the loop will not pass , it will still run once because the condition

is checked after the first time the body of the loop runs .

When you’re using while loops, avoid creating infinite loops. This
means that you must manipulate one of the values in the looping
condition within the body of your loop. If you do manage to create
an endless loop, about the only option you have is to shut down
the web browser. If you’re going to iterate a specific number of
times using a counter, it’s usually best to just use a for loop.

CAUTION

Functions
Functions are a means of grouping code together so that it can be called whenever you

like. To create a function, you declare it . The following code includes a function declara-

tion :

function writeParagraph(myString) {
 document.write("<p>" + myString + "</p>");
}

A function declaration consists of the function keyword, a function name, a list of

parameters the function accepts (in parentheses), and the body of the function (enclosed

in curly braces). This function is named writeParagraph , and it accepts a single param-

eter, myString . Function parameters are variables that are accessible within the body of

the function. As you can see, this function prints out the value passed in as an argument

inside a <p> tag. After I’ve declared this function, I can then use the following code later

in the page:

writeParagraph("This is my paragraph.");

It will produce the output:

<p>This is my paragraph.</p>

When it comes to the values passed to functions, you’ll see them
referred to as parameters or as arguments. Technically, the vari-
ables listed in the function declaration are parameters, and the
values passed to the function when it is called are arguments.

NOTE

ptg16476052

The JavaScript Language 487

17

Functions can be writ ten to accept multiple arguments. Let’s look at another function:

function writeTag(tag, contents) {
 document.write("<" + tag + ">" + contents + "</" + tag + ">");
}

This function accepts two arguments: a tag name and the contents of that tag. There’s one

special statement that’s specific to functions: the return statement. It is used to specify

the return value of the function. You can use the value returned by a function in a condi-

tional statement, assign it to a variable, or pass it to another function. Here’s a function

with a return value:

function addThese(value1, value2) {
 return value1 + value2;
}

Here are a couple of examples of how you might use that function:

if (addThese(1, 2) > 10) {
 document.write("Sum is greater than 10.");
}
var sum = addThese(1, 2);

One other thing to note is that the values passed to function as arguments are copies of

those values unless the arguments are objects.

Here’s one more examp le, and the results are shown in Figure 17.6:

Input ▼
<script language="JavaScript">
function modifyValue(myValue) {
 document.write(myValue + "
");
 myValue = "new value";
 document.write(myValue + "
");
}

var value = "old value";
modifyValue(value) ;
document.write(value + "
");
</script>

ptg16476052

488 LESSON 17: Introducing JavaScript

Output ▼

Functions are called using the function name, followed by parentheses. If you are pass-

ing arguments to a function, they are included in the parentheses in a comma-separated

list. Even if you’re not using arguments, the parentheses are still required. This is true

whether you’re calling a function you wrote yourself or a function that’s built in to

JavaScript.

Data Types
I’ve mentioned JavaScript’s type system, but I haven’t talked much about JavaScript data

types. JavaScript supports the following types of values:

n Strings, like "Teach Yourself Web Publishing".

n Boolean values (true or false).

n Numbers, integer or decimal.

n null, which is used to represent an unknown or missing value.

n undefined, the value associated with variables that have been declared but have not

yet had a value assigned to them. Also the return value of methods that don’t return

anything.

This is the full set of primitive data types that JavaScript supports. JavaScript attempts to

convert data to whatever type it needs in a given context. So if you take a Boolean value

and use it in a context where a string is expected, JavaScript will convert it to a string.

In some cases, this automatic conversion process can lead to odd results. For example,

if you try to use a value that’s not a number in a context where a number is expected,

Ja vaScript will return a special value, NaN, which is short for “not a number”:

Math.sqrt("a string"); // The value of squareRoot is NaN

FIGURE 17.6

Values passed
to functions are
copies.

ptg16476052

The JavaScript Language 489

17

Boolean values represent a state of either true or false. You’ve already seen some exam-

ples that involve Boolean values. For example, if statements and while loops require

conditional expressions that return a Boolean value. Any JavaScript value or expression

can ultimately be converted to a Boolean. The values that are treated as false are the

number zero, empty strings, null, undefined, and NaN. Everything else is true.

To explicitly convert data from one type to another, you can type casting functions. They

are Number(), Boolean(), and String(). Type casts to Boolean are the most interesting

because they allow you to see the Booelan value of an expression. For exam ple, to con-

firm that NaN is false, you could type the following in the Console:

Boolean(Math.sqrt("a"))

Arrays
Arrays are lists of things. They can be lists of values, lists of objects, or even lists of lists.

There are a couple of ways to declare arrays. The first is to create your own Array object,

like this:

var list = new Array(10);

That declares an array with 10 slots. Arrays are numbered (or indexed) starting at 0, so

an array with ten elements has indexes from 0 to 9. You can refer to a specific item in an

array by placing the index inside square brackets after the array name. So, to assign the

first element in the array, you use the following syntax:

list[0] = "Element 1";

If you want to add elements to your array when you declare it, you can use what’s called

an array literal, like this:

var list = ["red", "green", "blue"];

To find out how many elements are in an array, you can use a property of the array called

length. Here’s an example :

listLength = list.length

Objects
You’ve already been introduced to a few objects—most recently, the Array object.

JavaScript features a number of built-in objects, and the browser supplies even more (as

discussed in the next section). The first thing you need to know about objects is that they

have properties. You just saw one property: the length property of the Array object.

ptg16476052

490 LESSON 17: Introducing JavaScript

Object properties are accessed through what’s known as dot notation. You can also

access properties as though they are array indexes. For example, if you have an object

named car with a property named color, you can access that property in two ways:

car.color = "blue";
car["color"] = "red";

You can also add your own properties to an object. To add a new property to the car

object, I just have to declare it:

car.numberOfDoors = 4;

There are a number of ways to create objects, but you should stick to the best one. To

create an object, you can use an object literal, which is similar to the array literal I just

described:

var car = { color: "blue", numberOfDoors: 4, interior: "leather" };

That defines an object that has three properties. As long as the properties of the object

follow the rules for variable names, there’s no need to put them in quotation marks. The

values require quotation marks if their data type dictates that they do. You can name

properties whatever you like, though, as long as you use quotation marks.

In addition to properties, objects can have methods. Methods are just functions associated

with the object in question. This may seem a bit odd, but methods are properties of an

object that contain a function (as opposed to a string or a number). Here’s an example:

car.description = function() {
return color + ' car ' + ' with '

+ numberOfDoors + ' and a ' + interior + ' interior';
}

As you can see, this is a bit different from the function declarations you’ve seen before.

When you declare a method, instead of specifying the function name in the function

statement, you assign an anonymous function to a property on your object. You can spec-

ify parameters for your methods just as you specify them for functions.

After you’ve added a method to an object, you can call it in the same way the methods of

built-in objects are called. Here’s how it works:

document.write(car.description());

The core JavaScript language contains lot of built-in objects—too
many to cover here. For more information about these objects,
look at the JavaScript documentation provided by Mozilla or
Microsoft.

NOTE

ptg16476052

Events 491

17

The JavaScript Environment
I’ve taken you on a very brief tour of the JavaScript language, but beyond the basic lan-

guage syntax, which involves declarations, control structures, data types, and even core

objects that are part of the JavaScript language, there’s also the browser environment.

When your scripts run, they have access to the contents of the current page, to other

pages that are open, and even to the browser itself. I’ve mentioned the document object,

which provides access to the contents of the current page.

Now let’s look at a specific object. The top-level object in the browser environment is

called window. The window object ’s children provide information about the various ele-

ments of a web page. Here are some of the most commonly used children of window:

location Contains information about the location of the current web document,
including the URL and components of the URL, such as the protocol,
domain name, path, and port.

history Holds a list of all the sites that a web browser has visited during the cur-
rent session and gives you access to built-in functions that enable you to
send the user forward or back within the history.

document Contains the complete details of the current web page. All the tags and
content on the page are included in a hierarchy under document. Not only
can you examine the contents of the page by way of the document object,
but you can also manipulate the page’s content s, too.

You can find a complete list of the available objects in the Mozilla JavaScript documen-

tation at https://developer.mozilla.org/en-US/docs/Web/JavaScript.

Because the entire browser environment is accessible through this hierarchical set of

objects, you can access anything as long as you know where it lives in the hierarchy. For

example, all the links on the current page are stored in the property document.links,

which contains an array. Each of the elements in the array has its own properties as

well, so to get the location to which the first link in the document points, you use

document.links[0].href.

Events
All the examples you’ve seen so far are executed as soon as the page loads. JavaScript

is about making your pages more interactive, which means writing scripts that function

based on user input and user activity. To add this interactivity, you need to bind your

https://developer.mozilla.org/en-US/docs/Web/JavaScript

ptg16476052

492 LESSON 17: Introducing JavaScript

JavaScript code to events. The JavaScript environment monitors user activity and pro-

vides the opportunity for you to specify that code will be executed when certain events

occur.

There are three ways to bind JavaScript code to an event handler. The first is to use an

HTML attribute. For example, if you want to display an alert when a user clicks a link,

you could bind the event like this:

Link

The disadvantage of this approach is that it makes your JavaScript hard to maintain. You

wind up with JavaScript scattered throughout your documents, and it makes it difficult to

reuse the same JavaScript code on many pages. You should not use this approach for any

but the simplest things.

The second is to bind the event to the appropriate property of the element. If you have a

reference to a link called myLink in JavaScript, you can add a click event like this:

myLink.onclick = function(event) { alert('Be careful'); };

This approach enables you to separate your JavaScript from your HTML, but it allows

you to bind only one function to the click event of the link. This can come back to bite

you in the future or cause problems if you include other JavaScript code on your page

that might also need to bind an event to the click event of that link.

Finally, you can use the addEventListener() method to attach an event handler to an

event on an element. Here’s an example:

myButton.addEventListener('click', function(){ alert('Be careful!'); }, false);

You can use addEventListener() to attach any number of event handlers to the same

event on the same element. It’s the preferred method for event binding currently. If you

need to support older browsers like Internet Explorer 8, there are a number of JavaScript

libraries that will handle the binding of event handlers to events in a safe, cross-platform

way. In the next lesson, you will learn how to use one of the most popular libraries,

jQuery.

Table 17.4 provides a list of the event handlers that JavaScript provides.

TABLE 17.4 JavaScript Event Handlers

Event Handler When It’s Called

onblur Whenever a visitor leaves a specified form field

onchange Whenever a visitor changes the contents of a specified form field

onclick Whenever a visitor clicks a specified element

ptg16476052

Events 493

17

Event Handler When It’s Called

onfocus Whenever a visitor enters a specified form field

onload Whenever a page and all of its images have finished loading

onmouseover Whenever a visitor places the mouse cursor over a specified object

onselect Whenever a visitor selects the contents of a specified field

onsubmit Whenever a visitor submits a specified form

onunload Whenever the current web page is changed

First, let me explain how to bind an event using HTML attributes. All the event handlers

listed in Table 17.4 can be used as attributes for tags that respond to them. For example,

the onload handler is associated with the body tag. As you know, JavaScript code is

executed as soon as it is encountered. Suppose you want to write a script that modifies all

the links on a page. If that script is executed before all the links have been loaded, it will

miss some of the links. Fortunately, there’s a solution to this problem. The onload event

does not occur until the entire page has loaded, so you can put the code that modifies the

links into a function and then bind it to the page’s onload event. Here’s a page that uses

onload:

<!DOCTYPE html>
<html>
<head>
 <title>Modifying Links with JavaScript</title>
</head >
<body onload="linkModifier()">

Google
New York Times

 <script type="text/javascript">

function linkModifier() {
for (var i = 0; i < document.links.length; i++) {

document.links[i].href = "http://example.com";
}

}
 </script>
</body>
</html>

This page contains a script tag, and that script tag contains a single function declaration.

The function, linkModifier(), changes the href attribute of all the links on the page to

http://example.com/. To access the links, it uses document.links, which is a reference

http://example.com/

ptg16476052

494 LESSON 17: Introducing JavaScript

to an array of all the links in the document. It iterates over each of those links, changing

their href properties from the values specified in the HTML to the new URL. The main

point of this example, though, is the onload attribute in the body tag, which contains the

call to linkModifier(). It’s important to associate that call with the onload event so that

all the links on the page have been processed before the function is called. If I’d put the

function call inside the <script> tag, the function call might have occurred before the

page was loaded.

Most often, when using attributes to bind events, function calls are used, but the value of

the attributes can be any JavaScript code, even multiple statements, separated by semico-

lons. Here’s an example that uses the onclick attribute on a link:

Google

In this example, the value of the onclick attribute contains two statements. The first uses

the built-in alert() function to display the value in the href attribute of the link. The sec-

ond prevents the link from taking the user to a new page. So clicking the link will display

the alert message in Figure 17.7 and do nothing after the user acknowledges the alert.

Whether you’re writing code in your event binding attribute or writing a function

that will be used as an event handler, returning false will prevent the default browser

action for that event. In this case, it prevents the browser from following the link. If the

onsubmit action for a form returns false, the form will not be submitted.

FIGURE 17.7

A JavaScript alert
message.

The Meaning of this

You might be a bit puzzled by the use of this as a variable name in an event han-
dler. Here, this is shorthand for the current object. When you’re using an event
handler in a tag, this refers to the object represented by that tag. In the previous
example, it refers to the link that the user clicked on. The advantage of using this
is that it places the event in a useful context. I could use the same attribute value
with any link and the code would still work as expected. It’s particularly useful when
you’re using functions as event handlers and you want to make them easy to reuse.

ptg16476052

Workshop 495

17

At one time, using event-handler attributes to bind functions to events was the most com-

mon approach, but these days, it’s more common to bind events to elements in other

ways. It’s considered poor style to include JavaScript throughout your web pages, and

using the event-handler attributes can override event bindings that are applied from

JavaScript rather than in the HTML. In Lesson 18, I explain how to bind events to ele-

ments without changing your markup.

Learning More About JavaScript

The list of statements, functions, and options included in this lesson represents
only part of the potential offered by JavaScript.

For this reason, I cannot overemphasize the importance of the online documenta-
tion provided by Mozilla. All the latest JavaScript enhancements and features will be
doc umented first at https://developer.mozilla.org/en-US/docs/Web/JavaScript.

Summary
JavaScript enables HTML publishers to include simple programs or scripts within a web

page without having to deal with the many difficulties associated with programming in

high-level languages such as Java or C++.

In this lesson, you learned about the <script> tag and how it’s used to embed JavaScript

scripts into an HTML document. In addition, you explored the basic structure of the

JavaScript language and how to use JavaScript in the browser environment.

With this basic knowledge behind you, in the next lesson, you’ll explore some real-world

examples of JavaScript and learn more about the concepts involved in JavaScript pro-

gramming.

Workshop
The following workshop includes questions, a quiz, and exercises related to JavaScript.

Q&A
Q Don’t I need a development environment to work with JavaScript?

 A Nope. As with HTML, all you need is a text editor and a browser that supports

JavaScript. You might be confusing JavaScript with Java, a more comprehen-

sive programming language that needs at least a compiler for its programs to run.

However, tools like the Chrome Developer Tools, FireBug for Firefox, and Safari’s

Web Inspector can make your life easier. Consult the documentation on those tools

to learn more about their JavaScript features.

https://developer.mozilla.org/en-US/docs/Web/JavaScript

ptg16476052

496 LESSON 17: Introducing JavaScript

Q What is AJAX?

 A One topic we haven’t covered yet is AJAX. AJAX is a term used to describe scripts

that communicate with the server without requiring a web page to be fully reloaded.

For example, you can use it to fetch information and display it on the page or to

submit a form for processing, all without changing the full page in the browser.

Q When I use JavaScript, do I need to accommodate users whose browsers may
not support JavaScript or who have disabled it?

 A Some estimates indicate that over 95% of web users have JavaScript enabled.

However, unless you have a really good reason not to, you should make accom-

modations for users without JavaScript. You need not offer users who don’t have

JavaScript an identical experience to those who have it, but they should be able to

access your site. For example, if you run an online store, do you really want to shut

out users because of their browser configuration?

Q In Java and C++, I previously defined variables with statements such as int,
char, and String. Why can’t I do this in JavaScript?

 A As I mentioned previously, JavaScript is a loosely typed language. This means that

all variables can take any form and can even be changed on-the-fly. As a result, the

context in which the variable is used determines its type.

Quiz
1. What HTML tag is used to embed JavaScript scripts in a page?

2. What are events? What can JavaScript do with them?

3. Is an expression that evaluates to the value 0 true or false? How about the string

"false" inside quotation marks?

4. How do you make sure that a variable you create in a function is only visible

locally in that function?

5. How are functions different from methods?

Quiz Answers
1. To accommodate the inclusion of JavaScript programs in a normal HTML docu-

ment, Netscape introduced the <script> tag. By placing a <script> tag in a docu-

ment, you tell the web browser to treat any lines of text inside the tag as script

rather than as content for the web page.

ptg16476052

Workshop 497

17

2. Events are special actions triggered by things happening in the system (windows

opening, pages being loaded, forms being submitted) or by reader input (text being

entered, links being followed, check boxes being selected). Using JavaScript, you

can perform different operations in response to these events.

3. The number 0 is false, and the string "false" is true. The only false values are

0, null, an empty string, undefined, NaN (not a number), and the Boolean value

false itself.

4. The var statement is used to define a local variable inside a function.

5. Methods are associated with a specific object, and functions are standalone routines

that operate outside the bounds of an object.

Exercises
1. If you haven’t done so already, take a few minutes to explore the documentation

for JavaScript at https://developer.mozilla.org/en-US/docs/Web/JavaScript. See

whether you can find out what enhancements were included in the latest version of

JavaScript that weren’t included in earlier versions.

2. Find a simple JavaScript script somewhere on the Web—either in use in a web

page or in an archive of scripts. Look at the source code and see whether you can

decode its logic and how it works .

https://developer.mozilla.org/en-US/docs/Web/JavaScript

ptg16476052

This page intentionally left blank

ptg16476052

LESSON 18
Using jQuery

JavaScript is a programming language that makes it possible to manipu-
late the contents of web pages after they have loaded. jQuery and other
JavaScript libraries make it much easier to take advantage of JavaScript.
jQuery enables JavaScript programmers to code without worrying about
differences among browsers. It also provides a number of other features
that make it easy to build powerful JavaScript features without writing very
much code. In this lesson, you’ll learn about the following:

n What JavaScript libraries are and why you might want to use one

n How to use the jQuery library in your pages

n How to select elements on a page with jQuery

n How to bind events using jQuery

n How to manipulate styles on a page

n How to change the content of a page

n How to fetch content from an external source using AJAX

ptg16476052

500 LESSON 18: Using jQuery

What Are JavaScript Libraries?
 In this book, I’ve talked about browsers and incompatibilities between them. The popular

browsers differ in their support for HTML and CSS and in their support for JavaScript.

Unlike CSS and HTML, though, JavaScript can actually be used to solve the problem of

incompatibilities in JavaScript implementations. You can write code that detects which

browser is being used or even the specific capabilities of the browser and then add logic

to make sure the program works correctly for whatever environment that it’s in.

For example, some browsers allow you to retrieve elements from the document by class

name using the getElementsByClassName() method , and others do not. If your script

depends on that method, it will break in some browsers. You can work around the prob-

lem by checking to see whether the method exists before you use it, and if it doesn’t,

using another technique that works in the browsers that don’t support it.

JavaScript libraries were created by people who had to do this sort of thing too many

times and decided to package up all of these kinds of workarounds to create a simpler

interface to common functionality that hides all the incompatibilities of the various

browsers. In doing so, the authors also added many other features to make life more con-

venient for JavaScript developers. The most popular JavaScript libraries make it easier

to bind code to events, select elements on the page to act on in your programs, and even

make calls to the server from JavaScript to dynamically change elements on the page,

using a technique referred to as AJAX.

You might have noticed that I am referring to JavaScript libraries as a group. That’s

because there are a number of libraries that provide roughly the same set of features.

They were all independently developed and work differently from one another, and each

has its own set of advantages and disadvantages. If you’re starting from scratch, choosing

between them is a matter of taste.

Getting Started with jQuery
Entire books are published about each of the popular JavaScript libraries, so it would be

foolish to try to cover them all in this lesson. Instead, I’m going to focus on introducing

jQuery. I’ve chosen it mainly because it’s the easiest library to get started with, especially

if you already know CSS. Even if you don’t wind up using jQuery, you’ll still get an idea

of how JavaScript libraries work by reading this section. You’ll just have to follow up by

digging into the documentation to learn how to apply the same concepts with the library

that you use instead.

ptg16476052

Your First jQuery Script 501

18

jQuery is a regular JavaScript file that you can include in your page using the <script>

tag. To get started, download your own copy at http://jquery.com/. After you’ve down-

loaded jQuery, you can start using it in your pages. The easiest way to include it in a

page, especially for local testing, is to rename the downloaded file to jquery.js and put

it in the same directory as the HTML page:

<script type="text/javascript" src="jquery.js"></script>

The file you download will have a different name than jquery.js
because it will include the jQuery version number. You’ll have to
rename it as jquery.js or use the full filename in your <script>
tag. You can download jQuery in production or development
configurations. The production configuration is “minified”—
compressed so that it downloads as quickly as possible.
Unfortunately, the minified file is unreadable by humans; so if you
think you may need to look at the jQuery source, download the
development version. Just be sure to replace it with the minified
version when you make your site live.

NOTE

Your First jQuery Script
jQuery is built around the idea of selecting objects on the page and then performing

actions on them. In some ways, it’s very similar to CSS. You use a selector to define an

element or set of elements, and then you write some code that is applied to those ele-

ments. Here’s an example of a page that includes a simple jQuery script:

<!DOCTYPE html>
<html>
<head>
 <title>jQuery Example</title>
</head>
<body>
 A link
 <script src="jquery.js"></script>
 <script>
 $(document).ready(function() {

$("a").click(function(event) {
alert("You clicked on a link to " + this.href);

});
 });
 </script>
</body>
</html>

http://jquery.com/

ptg16476052

502 LESSON 18: Using jQuery

The first <script> tag loads the external jQuery script. The second contains the script I

wrote. This script causes an alert to be displayed whenever a user clicks a link. I’ll break

it down line by line.

The first line is important because you’ll see it or a variation of it in nearly every jQuery

script:

$(document).ready(function() {

First, $ is the name of a function declared by jQuery, and document is an argument to

that function. The $ function selects the set of elements matched by the selector provided

as an argument. In this case, I’ve passed document as the argument, and it matches the

document object—the root object of the page’s document object model. Usually, the

selector is a CSS selector, but the document object is an alternative that you can use, as

well.

To the right, you’ll see a call to the ready method, which is applied to the elements that

the selector matches. In this case, it’s the document object. jQuery provides convenient

methods for binding events to objects or elements, and in this case, it will be used to bind

an anonymous function to the document’s ready event. The “ready” event is provided by

jQuery.

The window object supports the onload event, which is what’s normally used to execute

JavaScript when the page is displayed. The window.onload event doesn’t “fire” (call any

methods that are bound to it) until the page has fully loaded. This can be a problem for

pages that contain large images, for example. The JavaScript code won’t run until the

images load, and that could lead to strange behavior for users.

jQuery’s document.ready event, however, fires when the page has been fully con-

structed. This can cause the JavaScript to run a bit earlier in the process, while images are

being downloaded. With jQuery it’s customary to perform all the work you want to occur

when the page loads within an anonymous function bound to the document.ready event.

It’s so common, in fact, that a shortcut is provided to make doing so even easier. The line

above can be rewritten as follows:

$(function() {

jQuery knows that you intend to bind the function to the document.ready event. Here’s

the code that’s bound to the event:

$("a").click(f unction(event) {
 alert("You clicked on a link to " + this.href);
});

This code binds a function that prints an alert message containing the URL of the link

that the user clicked on to every link on the page. In this case, I use "a" as the selector

ptg16476052

Selecting Elements from the Document 503

18

I pass to jQuery, and it works exactly as it does with CSS. The click() method binds a

function to the onclick event for all the elements matched by the selector it’s called on,

in this case, all the <a> tags on the page.

Selecting Elements from the Document
In the previous example, I used a jQuery selector to bind an event handler to all the links

on a page. The important thing to know about jQuery is that jQuery selectors are a super-

set of CSS selectors; pretty much any selector you can use with CSS can also be used

with jQuery. This is a fantastic shortcut, but it’s worth discussing what happens behind

the scenes a bit as well.

When a web page is loaded in the browser, the browser creates a programmatic repre-

sentation of the page structure called the Document Object Model. This representation of

the page is what’s shown in the Elements tab of the Developer Tools. You’ll notice that

implied tags (like tbody for tables) are included and that broken HTML is repaired in this

representation.

In JavaScript, the built-in document object is the entry point for manipulating the DOM.

It provides methods like getElementById, getElementByName, and getElementByTagName

to enable you to query the DOM directly from JavaScript. There are also methods that

enable developers to add and remove elements from the DOM and to modify them.

However, using these methods is much more cumbersome than using jQuery. For

example, here’s some JavaScript code that accomplishes the same thing as the jQuery

code above a ccessing the DOM directly:

<script>
 window.addEventListener('load', function() {
 var links = document.getElementsByTagName("a");

 for (var i = 0; i < links.length; i++) {
links[i].addEventListener('click', function() {
alert("You clicked on a link to " + this.href);

});
 }
 });
</script>

As you can see, that’s an awful lot more code than I wrote for the jQuery example. The

other problem is that this code does not take browser incompatibilities into account.

It works in most browsers, but not all of them. Most of the incompatibilities between

browsers are in their DOM implementations. So if you write code to manipulate the

DOM from scratch, you have to account for these differences. That would entail writing

even more code.

ptg16476052

504 LESSON 18: Using jQuery

jQuery translates the selectors that developers use into the calls it needs to make on the

document object to retrieve the proper list of elements. Thus, you can use a selector like a

to find all the links on a page or a.archives to find all the links with the class archives,

and jQuery will access the DOM in whatever way works with the user’s browser and

return the list of elements they selected.

Binding Events
Most JavaScript development involves binding event handlers to events. Whether it’s

making sure that JavaScript code that initializes things loads at the right time, or adding

interactivity by associating code with actions the user takes on the page, you’re dealing

with event binding.

jQuery properly binds events so that multiple handlers can be bound to the same event,

across all browsers. If you bind your events using jQuery, you never have to worry about

overriding events bound in another script. Also, as you saw in the previous example,

jQuery makes it easy to bind handlers to multiple elements at once. For example, the fol-

lowing code would dis able all the links on the page:

$("a").click(function(event) { event.preventDefault(); }

jQuery enables you to refer to the object representing the event itself in your handler. To

do so, add the event parameter to the anonymous function representing the event handler.

You can name the parameter whatever you like, in this case. I named it event. I then call

the preventDefault method on the event. That method, provided by jQuery, indicates

that the default action associated with the event should not be performed. The default

action of a link is to change the browser’s location to the URL in the link, but this event

handler prevents that from happening.

Here’s a more useful example. Let’s say that I want links to external sites to open in a

new window, and all the links to external sites use a fully qualified URL whereas local

links do not. I could use the following event handler:

$(function () {
 $("a").click(function (event) {
 if (null != this.href && this.href.length > 4

&& this.href.substring(0, 4) == "http") {
event.preventDefault();
window.open(this.href);

 }
 });
});

ptg16476052

Modifying Styles on the Page 505

18

The if statement tests whether the href attribute of the link starts with “http.” The other

tests in the if statement are checks that prevent the substring method from raising an

error if the URL is not present or is too short. If the URL does start with “http,” I open a

new window for that URL and prevent the default action. If it doesn’t, the default action

is allowed to continue. Instead of adding special classes to external links on the page or

using the onclick attribute for each of them to open new windows, I just used jQuery’s

selector functionality and a bit of programming to take care of it for me.

If you can’t get the previous script to work correctly, make sure
that the if statement is all on one line: if (null != this.href
&& this.href.length > 4 && this.href.substring(0,
4) == "http") {. Some browsers don’t like whitespace in the
middle of if statements.

CAUTION

jQuery provides methods for binding most events to jQuery objects. For more a full list

of events jQuery supports, see http://api.jquery.com/bind/.

Modifying Styles on the Page
Another powerful feature of jQuery is that it enables you to modify styles on the page

on-the-fly. jQuery enables you to modify the page styles indirectly through convenience

methods that hide and show elements, for example, and enables you to change styles

directly.

Hiding and Showing Elements
For example, you can hide and show elements easily based on activity by the user. Here’s

a sample page tha t swaps out two elements whenever they are clicked :

<!DOCTYPE html>
<html>
<head>
 <title>Anchors</title>
</head>
<body>

 <div id="open" style="padding: 1em; border: 3px solid black;
 font-size: 300%;">We are open</div>

 <div id="closed" style="padding: 1em; border: 3px solid black;
 font-size: 300%;">We are closed</div>

http://api.jquery.com/bind/

ptg16476052

506 LESSON 18: Using jQuery

 <script src="jquery.js"></script>
 <script type="text/javascript" charset="utf-8">
 $(function () {
 $("#closed").hide();
 $("#open, #closed").click(function (event) {

$("#open, #closed").toggle();
 });
 });
 </script>
</body>
</html>

The page contains two <div>s, one containing the text “We are closed” and one contain-

ing the text “We are open.” In the event handler for the document’s ready state, I hide the

<div> with the ID closed:

$("#closed").hide();

That method sets the display style of the elements matched by the selector to none so

that when the page finishes loadi ng, that <div> will no t be visible, as shown in Figure

18.1.

Then I bind an event handler to the onclick event of those <div>s containing the follow-

ing code:

$("#open, #closed").toggle();

As you can see, this selector matches both the IDs open and closed and calls the

toggle() method on each of them. That method, provided by jQuery, displays hidden

items and hides items that are being displayed. So, clicking the <div> will cause the other

<div> to appear and hide the one you clicked. After you click the <div> and the two

elements have been toggled, the page appears, as shown in Figure 18.2.

FIGURE 18.1

The initial state of
the page. “We are
closed” is hidden.

ptg16476052

Modifying Styles on the Page 507

18

Retrieving and Changing Style Sheet Properties
You can also modify styles on the page directly. If I change the event handler in the pre-

vious example to contain the following co de, the text will be underlined when the user

clicks the <div>, as shown in Figure 18.3:

$(this).css("text-decoration", "underline");

jQuery enables you to manipulate any styles on the page in this fashion. You can also

retrieve the values of CSS properties using the css() method; just don’t leave out the

argument. If I instead change the body of the event handler to the following, the browser

will display the current font size used in the <div> that the user clicked:

 alert("The font size is " + $(this).css("font-size"));

A browser window with the alert displayed appears in Figure 18.4.

FIGURE 18.2

The state of the
page after the ele-
ment has been
clicked.

FIGURE 18.3

The text is under-
lined after the
user clicks on the
<div>.

ptg16476052

508 LESSON 18: Using jQuery

Using these techniques, you can build pages with expanding and collapsing lists, add bor-

ders to links when users mouse over them, or allow users to change the color scheme of

the page on-the-fly.

Modifying Content on the Page
Not only can you modify the styles on the page using jQuery, but you can also modify

the content of the page itself. It provides methods that enable you to remove content from

the page, add new content, and modify existing elements.

Manipulating Classes
jQuery provides a number of methods for manipulating the classes associated with ele-

ments. If your page already has a style sheet, you might want to add or remove classes

from elements on-the-fly to change their appearance. In the following example page,

shown in Figure 18.5, the class highlighted is added to paragraphs when the mouse is

moved over them, and it’s removed when the mouse moves out:

<!DOCTYPE html>
<html>
<head>
 <title>Altering Classes on the Fly</title>
 <style>
 p { padding: .5em;}

p.highlighted { background: #666666; }
 </style>
</head>
<body>

<p>This is the first paragraph on the page.</p>
<p>This is the second paragraph on the page.</p>

 <script src="jquery.js"></script>
 <script type="text/javascript">

 $(function () {
$("p").mouseenter(function () {
$(this).addClass("highlighted");

});

$("p").mouseleave(function () {

FIGURE 18.4

An alert box dis-
playing the value of
a CSS property.

ptg16476052

Modifying Content on the Page 509

18

$(this).removeClass("highlighted");
});

 })
 </script>
</body>
</html>

On this page, I have two paragraphs that have no classes assigned to them by default.

I also have a style sheet that applies a gray background to any paragraph with the class

highlighted. Most important, I have the following two event handlers:

$("p").mouseenter(function () {
 $(this).addClass("highlighted");
});
$("p").mouseleave(function () {
 $(this).removeClass("highlighted");
});

In this example, I use the jQuery mouseenter and mouseleave events to fire events when-

ever the user moves his mouse over or away from a paragraph. As you can see in Figure

18.6, when the user’s mouse is over the paragraph, the class highlighted is applied to it.

When the mou se moves away, the class is removed.

FIGURE 18.5

No paragraphs are
highlighted initially.

FIGURE 18.6

Paragraphs are
highlighted when
the mouse is over
them.

ptg16476052

510 LESSON 18: Using jQuery

You can use jQuery’s toggleClass() method to reverse the state of a particular class

on an element. In the following example, the elements in the list are highlighted the first

time the user clicks them, and the highlighting is removed the next time the user clicks

them. All that’s required is to toggle the highlighted class with each click:

<!DOCTYPE html>
<html>
<head>
 <title>Altering Classes on the Fly</title>
 <style>

li.highlighted { background: yellow; }
 </style>
</head>
<body>

One
Two
Three
Four

 <script src="jquery.js"></script>
 <script type="text/javascript" charset="utf-8">
 $(function () {

$("li").click(function () {
$(this).toggleClass("highlighted");

});
 });
 </script>
</body>
</html>

Finally, jQuery can check for the presence of a class using the hasClass() method. If

I change the body of the event handler in the previous example to the following func-

tion, the first time the user clicks a list item, the highlighted class will be applied. The

second time, an alert (shown in Figure 18.7) will be di splayed indicating that the item is

already highlighted:

$("li").click(function () {
 if (!$(this).hasClass("highlighted")) {
 $(this).addClass("highlighted");
 }
 else {
 alert("This list item is already highlighted.");
 }
});

ptg16476052

Modifying Content on the Page 511

18

In this example, I use the hasClass() method to determine whether the class is already

present. If it isn’t, I add it. If it is, I display the alert.

Manipulating Form Values
You can also use jQuery to modify the contents of form fields. The val() method can be

used to both retrieve the value of form fields and modify them. In many cases, websites

put an example of the input that should be entered into a form field in the field until the

user enters data. In the following example, the form starts with sample data in the field,

but it’s removed automatically when the user focuses on the field. If the user doesn’t

enter data, the sample data is restored. Figure 18.8 shows the initial state of the page.

<!DOCTYPE html>
<html>
<head>
 <title>Altering Form Values</title>
 <style>
 input[name="email"] { color: #999; }
 </style>
</head>
<body>
 <form>

FIGURE 18.7

An alert is dis-
played when users
click a paragraph
the second time.

FI GURE 18.8

When the page
loads, the sample
content appears in
the form field.

ptg16476052

512 LESSON 18: Using jQuery

 <label>Email address: <input name="email" value="person@example.com"
size="40" /></label>
 </form>

 <script src="jquery.js"></script>
 <script type="text/javascript" charset="utf-8">
 $(function () {
 $("input[name='email']").focus(function () {

if ($(this).val() == "person@example.com") {
$(this).val("");
$(this).css("color", "black");

}
 });

 $("input[name='email']").blur(function () {
if ($(this).val() == "") {
$(this).val("person@example.com");
$(this).css("color", "#999");

}
 });
 });
 </script>
</body>
</html>

Again , I use two event handlers in this example. The event handlers are new, as is the

selector. Here’s one of them:

$("input[name='email']").focus(function () {

In this case, I’m using a selector that’s based on an attribute value. It matches an input

field in which the name attribute is set to email, and it binds to the focus event. This

event fires when the user places the cursor in that field. The event handler for the focus

event does two things: sets the value of the field to an empty string, and changes the

color from gray to black, but only if the value is person@example.com. If it’s something

else, it’s a value the user entered and should be left alone. Figure 18.9 shows what the

form looks like when the user initially clicks in the field.

The other event handler is bound to the blur event, which fires when the cursor leaves

the field. If the field has no value, it changes the color back to gray and puts the example

input back into the field.

ptg16476052

Modifying Content on the Page 513

18

Manipulating Attributes Directly
You can also use jQuery to manipulate the attributes of elements directly. For example,

disabling a form field entirely requires you to modify the disabled attribute of that field.

I’ve added a Submit button to the form from the previous example and set it to disabled.

Here’s the new form:

<form>
 <label>Email address: <input name="email" value="person@example.com" size="40">
 <input id="emailFormSubmit" type="submi t" disabled>
</form>

Figure 18.10 shows the form with the sample content and the disabled Submit button.

FIGURE 18.9

The contents of
the email field are
removed when the
user clicks in it.

FIGURE 18.10

This form contains
sample content,
and the Submit
button is disabled.

ptg16476052

514 LESSON 18: Using jQuery

I only want to let users click the Submit button if they’ve already entered an e mail

address. To add that check, I need to add a bit of code to the blur event for the email

field, as shown:

$("input[name='email']").blur(function () {
 if ($(this).val() == "") {
 $(this).val("person@example.com");
 $(this).css("color", "#999");
 $("#emailFormSubmit").attr("disabled", "disabled");
 }
 else {
 $("#emailFormSubmit").removeAttr("disabled");
 }
});

If the user leaves the field having set a value, the disabled attribute is removed from

the Submit button, as shown in Figure 18.11. If the user leaves th e field without having

entered anything, the disabled attribute is added, just in case it was previously removed.

Adding and Removing Content
jQuery provides a number of methods that can be used to manipulate the content on

the page directly. Here’s a more complex example that demonstrates several ways of

manipulating the content on a page—users can add new content to the page, remove co n-

tent from the page, and even wipe out all the content inside an element in one click. The

initial page appears in Figure 18.12.

FIGURE 18.11

The Submit but-
ton is no longer
disabled after an
email address is
entered.

ptg16476052

Modifying Content on the Page 515

18

I’ll start with the markup for the page . First, I need a list. In this example, the user will be

able to add elements to the list and remove elements from the list. All I need is an empty

list with an ID:

<ul id="editable">

Next, I have a form that enables users to add a new item to the end of the list. It has a

text input field and a Submit button:

<form id="addElement">
 <label>New list item: <input name="liContent" size="60" /></label>
 <input type="submit" value="Add Item" />
</form>

Finally, I’ve added a link that removes all the elements the user has added to the list:

<p>Clear List</p>

The action is on the JavaScript side. Let’s look at each of the event handlers for the page

one at a time. First, here’s the event handler for the Clear List link:

$("#clearList").click(function (event) {
 event.preventDefault();
 $("#editable").empty();
});

This event handler prevents the default action of the link (which would normally return

the user to the top of the page) and calls the empty() method on the list, identified by

selecting its ID. The empty() method removes the contents of an element.

FIGURE 18.12

A page that allows
you to add and
remove content on
the fly.

ptg16476052

516 LESSON 18: Using jQuery

Next is the event handler for the form, which enables users to add new items to the list:

$("#addElement").submit(function (event) {
 event.preventDefault();
 $("#editable").append(""

+ $("#addElement input[name='liContent']").val() + "");
 $("#addElement input[name='liContent']").val("");
});

I bind this handler to the submit event for the form, just as I did in the previous example.

First, it prevents the form submission from completing its default action—submitting the

form to the server. Then I append the content to the list. I select the list using its ID, and

then I call the append() method, which adds the content in the argument just inside the

closing tag for the elements that match the selector. In this case, I put the value in the text

field, which I obtain using the val() method that you’ve already seen, inside an opening

and closing tag, and pass that to the append() method. I also remove the content

from the text field because it has been appended to the list. Figure 18.13 shows the list

once a few elements have been added.

Finally, I allow users to remove items from the list by clicking them. There’s one trick

here. As you’ve seen, to do so I’ll need to use the click handler for the elements in

the list. In this case, there’s a catch. When the page loads and the document.ready event

for the page initially fires, there are no elements in the list to bind eve nts to. Fortunately,

jQuery provides a way to set up an event handler so that it’s automatically bound to

newly created elements on the page. Here’s the code:

$(document).on('click', "#editable li", function () {
 $(this).remove();
});

FIGURE 18.13

A page with items
added by a user.

ptg16476052

Modifying Content on the Page 517

18

As you can see, the event binding is slightly different here. Instead of using the click()

method, I’ve used the on() method with document as the selector. This indicates that I

want to monitor changes to the page and perform the event binding that follows any time

an element matching the selector (the second argument) is added. The first argument is

the name of the event to bind—it’s the name of the event to be bound, placed in quota-

tion marks. The second argument is the selector to match. The third is the event handler

as it would normally be written. The on() method is one of the most powerful features of

jQuery because it enables you to automatically treat dynamically generated content the

same way you’d treat content that’s on the page at the time that it loads.

Here’s the full source for the page:

 <!DOCTYPE html>
<html>
<head>
 <title>Altering Form Values</title>
</head>
<body>
 <ul id="editable">

 <form id="addElement">
 <label>New list item: <input name="liContent" size="60" /></label>
 <input type="submit" value="Add Item" />
 </form>
 <p>Clear List</p>

 <script src="jquery.js"></script>
 <script type="text/javascript" charset="utf-8">
 $(function () {
 $("#clearList").click(function (event) {

event.preventDefault();
$("#editable").empty();

 });
 $("#addElement").submit(function (event) {

event.preventDefault();
$("#editable").append(""
+ $("#addElement input[name='liContent']").val() + "");

$("#addElement input[name='liContent']").val("");
 });
 $(document).on('click', "#editable li", function () {

$(this).remove();
 });
 });
 </script>
</body>
</html>

ptg16476052

518 LESSON 18: Using jQuery

There are other methods for adding content in different locations in relation to a selected

element. For example, if I change the append() call to prepend(), new items will be

added to the top of the list rather than the bottom. You can also use the before() method

to add content before another element, and the after() element to add it after. The

difference is that when you use those methods, the content is placed outside the tags

matched by the selector, rather than inside those tags.

Special Effects
It can be a little jarring when elements just appear or disappear instantly. Most JavaScript

libraries, including jQuery, provide a library of effects that enable you to animate transi-

tions on the page when items appear, disappear, or move. jQuery has a few basic effects

built in to the core library. Supplemental effects are also available as part of jQuery UI,

which you can obtain at http://jqueryui.com/.

The four effects that are part of jQuery are fade in, fade out, slide up, and slide down. I’m

going to build on the previous example to show you how they can be used to soften the

transitions when you add items to the page or remove items from it. Adding the effects to

the page just requires a few small tweaks to the event handlers that I already created.

The first effect I added applies the fade-out effect when users click a list item to remove

it. To cause an element to fade out, you call the fadeOut() method on the results of a

selector that matches that element. Here’s the code:

$(document).on('click', "#editable li", function () {
 $(this).fadeOut('slow', function() { $(this).remove() });
});

When you call fadeOut(), it sets the display property for the element to none—

essentially, it’s a fancy replacement for hide(). Figure 18.14 shows a list item that’s in

the pro cess of fading out.

In this case, I want to actually remove the element from the page entirely. To do so, I

need a callback, which is included as the second argument to fadeOut(). The callback is

run whenever the animation is complete, and in this case, it removes the element from the

page. The first argument is used to specify the speed of the animation. Setting it to slow

means that it will take 600 milliseconds to complete. By default, the animation takes 400

milliseconds. You can also set it to fast (200 milliseconds), or you can enter a number

of milliseconds yourself.

http://jqueryui.com/

ptg16476052

Special Effects 519

18

I’ve also updated the event handler for the Clear List link. In this case, I use the slide-up

effect, shown in Figure 18.15, when the list is cleared. Here’s th e updated event handler:

$("#clearList").click(function (event) {
 event.preventDefault();
 $("#editable").slideUp('slow', function () {

$("#editable").empty()
$("#editable").show();

 });
});

The changes here are similar to those for the previous event handler. After the animation

is complete and the list is hidden, I call the empty() method to remove the contents of the

list and then call show() on the now hidden list so that when the user adds new elements

to it, the list will be visible.

FIGURE 18.14

The jQuery fade-out
effect in progress.

FIGURE 18.15

The jQuery slide-up
effect.

ptg16476052

520 LESSON 18: Using jQuery

Finally, I want the new items I add to the list to fade in rather than just appearing. Here’s

the updated event handler with the fadeIn() call included:

$("#addElement").submit(function (event) {
event.preventDefault();
var content = "" + $("#addElement input[name='liContent']").val() +

"";
$(content).hide().appendT o("#editable").fadeIn('slow').css("display",

"list-item");
$("#addElement input[name='liContent']").val("").focus();

 });

This event handler is a little bit more complex. First, I initialize a new variable with the

content to add to the page, just to make the code a little more readable. Then I go through

all the steps required to fade the new content in. At this point, I should explain one of the

other nifty features of jQuery—method chaining. Nearly all jQuery methods return the

object of the method. So if I use hide() to hide something, the method returns whatever

it was that I hid. This makes it convenient to call multiple methods on the same object in

succession.

In this case, I call hide(), appendTo(), fadeIn(), and css() on the jQuery object rep-

resenting the new content that I created. First, I pass the content variable to $(), which

allows me to call jQuery’s methods on the content. Then I call hide() on it so that it

doesn’t appear instantly when I append it to the list.

After that, I use appendTo() to append it to the list. The difference between append()

and appendTo() is that with append(), the object of the method is the selector that rep-

resents the container, and the method parameter is the content to be appended, whereas

with appendTo(), the content to be appended is the object and the selector for the con-

tainer is the method parameter. In this case, using appendTo() makes it easier to chain all

of these method calls.

After I’ve appended the hidden content to the list, I call fadeIn('slow') to make it grad-

ually appear. Then, finally, I call css("display", "list-item") on the new content.

When fadeIn() is done, it sets the display property for the list item to block, which

causes the bullet for the list item not to appear in some browsers. Setting the display

property to list-item ensures that a bullet is displayed.

AJAX and jQuery
One of the primary reasons programmers started adopting JavaScript libraries was that

they made it much easier to use AJAX techniques on their websites and applications.

What’s AJAX? It’s a description for functionality that uses a JavaScript feature called

ptg16476052

AJAX and jQuery 521

18

XmlHttpRequest to make requests to the server in the background and use the results

within the page.

The Web is based around the concept of pages. When you click a link or submit a form,

usually you leave the page that you’re on and go to a new page with a different URL (or

refresh the current page). AJAX is about retrieving content from the server and then plac-

ing it on the page using JavaScript.

The previous example demonstrated how to use JavaScript to process data entered in a

form and add it to a page instantly. Using AJAX, you can use the same techniques to

retrieve data from the server and add it to the page. It’s possible to write the code neces-

sary to do this sort of thing from scratch, but jQuery makes it a whole lot easier.

Usually, AJAX is associated with server-side applications. For example, you can create a

search engine and then use AJAX to retrieve search results and present them without ever

leaving the current page. Unfortunately, there’s not enough space in this book to teach

you how to create a search engine. jQuery also provides the ability to retrieve informa-

tion from a different static page using AJAX and present it in the current page. I’m going

to present an example that takes advantage of that feature to show you how AJAX can be

used.

Using AJAX to Load External Data
I’ve created a simple page, shown in Figure 18.16, that allows users to look up informa-

tion about South American countries. When a user clicks one of the links, the information

about that country is retrieved from the server and displayed inline on the page.

Because of the way AJAX works, this example will only work if
it’s deployed on a web server. If you load the files directly in your
browser, the JavaScript code that retrieves the information won’t
work. This is because browsers have a security feature that pre-
vents JavaScript on one server from loading content from another
server.

NOTE

The sample consists of two files. The first is the page shown in Figure 18.16, which loads

the da ta from the second page.

ptg16476052

522 LESSON 18: Using jQuery

The second is the page containing the information about the countries. Here’s the source

for the second page, countri es.html, which contains information about the countries:

<!DOCTYPE html>
<html>
<head>
 <title>South American Countries</title>
</head>
<body>
<div id="uruguay">
 <h2>Uruguay</h2>

<p>Uruguay, officially the Oriental Republic of Uruguay, is a country located
in the southeastern part of South America. It is home to some 3.5 million people,
of whom 1.4 million live in the capital Montevideo and its metropolitan area. An
estimated 88% of the population are of European descent.</p>
<p>Uruguay's only land border is with Rio Grande do Sul, Brazil, to the north.

To the west lies the Uruguay River, to the southwest lies the estuary of Rio de
la Plata, with Argentina only a short commute across the banks of either of these
bodies of water, while to the southeast lies the southern part of the Atlantic
Ocean. Uruguay, with an area of approximately 176 thousand km2, is the second
smallest nation of South America in area after Suriname.</p>
</div>

<div id="paraguay">
 <h2>Paraguay</h2>
<p>Paraguay, officially the Republic of Paraguay, is a landlocked country in

South America. It is bordered by Argentina to the south and southwest, Brazil to
the east and northeast, and Bolivia to the northwest. Paraguay lies on both banks
of the Paraguay River, which runs through the center of the country from north to
south. Because of its central location in South America, is sometimes referred to

FIGURE 18.16

A page that loads
data from an exter-
nal source using
AJAX.

ptg16476052

AJAX and jQuery 523

18

as Corazon de America, or the Heart of America.</p>
<p>As of 2009 the population was estimated at 6.3 million. The capital and

largest city is Asuncion. The official languages are Spanish and Guarani, both
being widely spoken in the country. Most of the population are mestizos.</p>
</div>
</body>
</html>

For a real application, instead of this simple page, you’d have a more robust service that

could return lots of information about every country in South America on demand. This

sample page illustrates the concept without requiring knowledge of server-side program-

ming.

Now that the raw information is in place to be used on the page, I’ll explain how the page

works. When a link is clicked, the information is retrieved from countries.html and dis-

played on the initial page, as shown in Figure 18.17.

First, let’s look at the two links:

<p class="countryOption">Uruguay</p>
<p class="countryOption">Paraguay</p>

They almost look like regular links. The one difference is that I’ve included a space

between the filename and the anchor in the URL. That’s because it’s not really an anchor;

it’s the ID of a <div> on the countries.html page.

FIGURE 18.17

The information
about Uruguay was
loaded from an
external source.

ptg16476052

524 LESSON 18: Using jQuery

Here’s the event handler for the click event for the links:

$("p.countryOption a").click(function (event) {
 event.preventDefault();
 $("p.countryOption").fadeOut();
 $("#country").load($(this).attr('href'));
 $("#country").fadeIn();
});

You should be used to most of this by now. The first line prevents the link from actually

taking you to the link referenced in the href attribute. The second line fades out the links,

because they’ll be replaced by the country data.

The third line actually performs the AJAX request. It instructs jQuery to load whatever is

in the href of the link the user clicked on into the element with the ID “country.” In this

case, the links refer to jQuery selectors of sorts. Remember the URLs in the links? They

consist of two parts, the first being the file to load, and the second being a jQuery selec-

tor, in this case, the ID of the country that I’ll be displaying information about. jQuery

loads the entire page, and then applies the selector to it to extract the information I care

about.

Here’s the full source code for the page:

<!DOCTYPE html>
<html>
 <head>
 <title>Learn More About South America</title>

<style>
#country { border: 1px solid black; padding: 15px; }
p.question { font-size: 200%; }

</style>
 </head>
<body>
<p class="question">
 Which country would you like to know more about?
</p>

<div id="country">Foo</div>

<p class="countryOption">Uruguay</p>
<p class="countryOption">Paraguay</p>

 <script src="jquery.js"></script>
 <script type="text/javascript" charset="utf-8">
 $(function () {

$("#country").hide();

$("p.countryOption a").click(function (event) {
event.preventDefault();
$("p.countryOption").fadeOut();

ptg16476052

Workshop 525

18

$("#country").load($(this).attr('href'));
$("#country").fadeIn();

});
 });
 </script>
</body>
</html>

To read about other AJAX-related methods offered by jQuery, take a look at the jQuery

API documentation. Most of the other jQuery methods are more suitable to application

development , but they essentially work in a similar fashion to the load() method that

you saw here.

Summary
In this lesson, I explored some of the powerful features common to most JavaScript

libraries using jQuery. You learned which JavaScript libraries are available and why you

might want to use them. You also learned how to include jQuery in a web page and take

advantage of its functionality through the document.ready() event. I explained how

event binding works with jQuery and how to dynamically modify the styles on a page as

well as the content of a page itself. Finally, I explained what AJAX is and how jQuery

and other JavaScript libraries enable you to make requests to external data sources from

within a web page.

Workshop
As always, we wrap up the lesson with a few questions, quizzes, and exercises. Here are

some questions and exercises that should refresh what you’ve learned about jQuery.

Q&A
Q Won’t adding jQuery cause my pages to load more slowly?

 A Yes, adding any JavaScript library will add to your overall page size. However, the

browser will cache the external JavaScript file, so users should only have to down-

load it once, when they get to the first page of your site. When they go to subse-

quent pages, the JavaScript library will already be in the cache.

 Another option to help speed up your pages that use jQuery is to use a content

delivery network or CDN. These are repositories of many different JavaScript

libraries that you can link to in your web pages to take advantage of the global

cache. Chances are your customers have already visited a page that uses a CDN

for jQuery so it’s already in their cache and you can take advantage of that. The

CDN I use for jQuery is at https://code.jquery.com/. Simply link to the version of

https://code.jquery.com/

ptg16476052

526 LESSON 18: Using jQuery

jQuery you want to use on your site the way you would any other script file. For

example, to link to the 2.1.4 version you would write: <script src="https://

code.jquery.com/jquery-2.1.4.min.js"></script>.

Q What about users who don’t have JavaScript enabled?

 A It’s generally agreed that less than 3% of users have JavaScript disabled these days.

However, that is still a lot of people, so you’ll want to make sure that essential

functionality still works for users who don’t have JavaScript access. That’s one of

the big advantages of the unobtrusive JavaScript approach that jQuery reinforces.

The markup should work fine without the JavaScript, which enhances the experi-

ence but is not essential to making the pages work.

Quiz
1. What is the purpose of jQuery’s document.ready() handler?

2. How do I select an item with the ID navigationLink in jQuery?

3. What does the variable this refer to in an event-handling function?

Quiz Answers
1. The document.ready() event, provided by jQuery, fires when the HTML docu-

ment is fully constructed and before resources like images are loaded. It’s generally

a safe point at which you can begin initializing JavaScript for a page.

2. jQuery uses CSS-style selectors. So to select an item with the ID navigationLink,

you’d use $("#navigationLink").

3. In an event handler, this refers to the object that the event was fired from. So if

it’s a click event on a link, this refers to the link that was clicked.

Exercises
1. Download jQuery and use the <script> tag to load it in a web page.

2. Use jQuery to disable all the links on a web page.

3. Use jQuery to cause a border to appear around all the links on a web page when the

user mouses over them. Make sure to remove the borders when the user moves the

pointer away from the link.

4. Try to add a link to a web page that uses AJAX to retrieve the local temperature

from a weather site for your city. You’ll need to find the URL for a page with your

city’s weather on it and then create the correct selector to extract only the informa-

tion you want from that page. After you find the weather page, view the source on

it to figure out how to extract the information using a jQuery selector.

ptg16476052

LESSON 19
Using JavaScript in
Your Pages

Now that you have some understanding of what JavaScript is all about,
you’re ready to look at some practical applications of JavaScript.

In this lesson, you’ll learn how to complete the following tasks:

n Validate the contents of a form

n Create a list that expands and collapses

n Add new content to a web page

ptg16476052

528 LESSON 19: Using JavaScript in Your Pages

Validating Forms with JavaScript
Remember the sample form that you created back in Lesson 12, “Designing Forms”? It’s

shown again in Figure 19.1. It’s a typical registration form for a website, with several

required f ields.

What happens when this form is submitted? In the real world, a script on the server side

validates the data that the visitor entered, stores it in a database, and then thanks the visi-

tor for her time.

But what happens if a visitor doesn’t fill out the form correctly—for example, she doesn’t

enter her name or choose a value for gender? The script can check all that informa-

tion and return an error. The good thing about server-side validation is that it’s reliable.

The web developer can be completely certain that the user’s input has been validated

before the script tries to store it in the database. However, validating the form input in

the browser before it’s submitted has some advantages as well. The validation can be

designed to occur when it makes the most sense for the form in question, as opposed to

waiting for the user to click the Submit button. Furthermore, saving round trips to the

server conserves resources and offers better performance for users.

FIGURE 19.1

The registration
form.

ptg16476052

Validating Forms with JavaScript 529

19

▼Exercise 19.1: Form Validation

Now take a look at how the registration form is validated with JavaScript. Whenever you

click the Submit button on a form, two events are triggered: the onclick event for the

button and the onsubmit button for the form. For form validation, onsubmit is the better

choice because some forms can be submitted without clicking the Submit button. When

the onsubmit event is fired, the validation function is called.

First open the HTML for your form. It looks like this:

<!DOCTYPE html>
<html>
<head>
<title>Registration Form</title>
<style type="text/css" media="screen">
 form div {

margin-bottom: 1em;
 }

div.submit input {
margin-left: 165px;

 }

 label.field {
display: block;
float: left;
margin-right: 15px;
width: 150px;
text-align: right;

 }

 input[type="text"], select, textarea {
width: 300px;
font: 18px Verdana;
border: solid 2px #666;
background-color: #ada;

 }

div.required label.field {
font-weight: bold;

 }

div.required input, div.required select {
background-color: #6a6;
border: solid 2px #000;

font-weight: bold;
 }
</style>
</head>
<body> ▼

ptg16476052

530 LESSON 19: Using JavaScript in Your Pages

<h1>Registration Form</h1>

<p>Please fill out the form below to register for our site. Fields
with bold labels are required.</p>

<form action="/register" method="post" enctype="multipart/form-data"
id="registrationForm">

 <div class="required">
 <label class="field" for="name">Name</label>
 <input name="name" type="text" />
 </div>

 <div class="required">
 <label class="field">Gender</label>
 <label><input type="radio" name="gender" value="male" /> male</label>
 <label><input type="radio" name="gender" value="female" /> female</label>
 </div>

 <div class="required">
 <label class="field">Operating System</label>
 <select name="os">

<option value="windows">Windows</option>
<option value="macos">Mac OS</option>
<option value="linux">Linux</option>
<option value="other">Other ...</option>

 </select>
 </div>

 <div>
 <label class="field">Toys</label>
 <label><input type="checkbox" name="toy" value="digicam" /> Digital Camera
</label>
 <label><input type="checkbox" name="toy" value="mp3" /> MP3 Player</label>
 <label><input type="checkbox" name="toy" value="wlan" /> Wireless LAN</label>
 </div>

 <div>
 <label class="field">Portrait</label>
 <input type="file" name="portrait" />
 </div>

 <div>
 <label class="field">Mini Biography</label>
 <textarea name="bio" rows="6" cols="40"></textarea>
 </div>

 <div class="submit">
 <input type="submit" value="register" />
 </div>
</form>

▼

▼

ptg16476052

Validating Forms with JavaScript 531

19

</body>
</html>

I’ll be using jQuery to write the form validation code. So, I’ll add the following code to

the page right above the closing </body> tag:

<script src="https://code.jquery.com/jquery-2.1.4.min.js"></script>

This loads jQuery from a CDN so that your page will load faster.

Then load the form.js script. I placed mine in the scripts subdirectory, like this:

<script src="scripts/form.js"></script>

In this script I use jQuery’s document.ready handler to bind an anonymous function to

the submit event of the form, which has the ID registrationForm:

$(function() {
 $("#registrationForm").submit(function (event) {
 alert("Form submitted");
 event.preventDefault();
 });
});

The Validation Function When you write an event-handling function for jQuery,

you can specify that the function accepts an argument, which represents the event that the

handler is handling. In this case, I named the argument event for simplicity. In the han-

dler, I display an alert, just to demonstrate that the JavaScript is working, and I call the

event.preventDefault() method. This is a special method provided by jQuery that indi-

cates that the default behavior associated with the event should not occur. In the case of a

form submission, it prevents the form from being submitted. When the form validation is

complete, the default action will only be prevented when the form input is not valid.

Testing For Required Fields The form has three required fields: Name, Gender,

and Operating System. The validation function is responsible for checking that they each

contain a value. The name field is a text input field. Here’s the markup for the field:

<input name="name" type="text" />

Before writing the test to verify that the form field is not empty, the trick is accessing the

value in the field. I’ve updated my event handler to look like this:

$("#registrationForm").submit(function (event) {
 event.preventDefaul t();
 console.log($(this.name).val());
});

▼

▼

ptg16476052

532 LESSON 19: Using JavaScript in Your Pages

I’m still preventing the form’s submission, and now I’m using the console.log()

method to log the value of $(this.name).val(). The console.log() method is pro-

vided as a convenience so that you can print out your own messages to the Console tab

in the Development Tools window. In this case, I want to print out the value of the form

field. Remember that this is an object representing the form. The form object has prop-

erties representing each of its fields, so I can access a field with the name “name” using

this.name. jQuery provides the val() method to normalize accessing the values of form

fields. So, $(this.name).val() returns the current value of the field named “name” in

the form. That line prints it on the console.

Using this information and an if statement, you can test the contents of name to see

whether a na me has been entered:

if (!$(this.name).val()) {
 event.preventDefault();
 alert("You must enter a name.");
}

The expression in the if statement evaluates the value of the form field in a Boolean con-

text. So if the field’s value is null or an empty string, the expression will be false. In that

case, the function displays an error message and prevents the form from being submitted.

If the name is valid, the next step is to validate the gender radio button group. Validation

of these fields differs slightly because radio button groups consist of multiple fields with

the same name. So in this case, I need to alter my selector to access the value of the radio

button field. Remember that only one element in a set of radio buttons can be selected. I

can use the CSS selector for attribute values to locate the selected radio button. The code

to validate the radio button looks like this:

if (!$(this).find("input[name='gender']:checked").length) {
 event.preventDefault();
 alert("You must select your gender.");
}

I access the Gender field on the form the same way I accessed the Name field. Then I

used the jQuery find method to search for elements with the “checked” attribute checked

using the :checked selector. I could also pass the context for a jQuery query as a second

argument to the jQuery method, like this:

$("input[name='gender']:checked", this)

If neither radio button is selected, the length of the matched set will be zero and therefore

be false in the context of the if statement, and the error message will be displayed.

▼

▼

ptg16476052

Validating Forms with JavaScript 533

19

The form indicates that the Operating System field is also required, but because it’s

impossible to not select an item in that list, there’s no need to validate it.

You can use the JavaScript debugger built in to Chrome (or whichever browser you’re

using) to inspect this function further. In Chrome, open the Developer Tools and click

on the Sources button. Then click the button on the upper left, just below the toolbar,

to view a list of the scripts on the page. From there, select form.js from the list. You

should see a view like the one in Figure 19.2.

In the middle pane, you can see the source code for the script. Each line of the script is

numbered. If you click the line number for line 3, an arrow will appear. This sets what’s

called a breakpoint. Before the browser executes this line of the script, it will stop execu-

tion and let you inspect the inner workings of the script as it runs. This is incredibly use-

ful when you’re looking into problems in your scripts. You can see which variables are

set and what their values are, and you can control execution of the script from that point

on, resuming execution or proceeding one line at a time. After you’ve set the breakpoint

on line 3, click the Submit button on the form. The Developer Tools window will be

updated to look as it does in Figure 19.3.

FIGURE 19.2

The Chrome
Developer Tool
Sources view.

FIGURE 19.3

Running a script in
the debugger.

▼

▼

ptg16476052

534 LESSON 19: Using JavaScript in Your Pages

The blue arrow next to the line number for line 3 indicates that it is the where the debug-

ger is stopped. The buttons above the right pane allow you to control execution from

there. The buttons, from left to right, are Resume, Step Over, Step Into, Step Out, and

Deactivate Breakpoints. The Deactivate button causes subsequent breakpoints to be

ignored. The Resume button continues execution until the script finishes or it hits another

breakpoint. Step Over moves to the next statement in the current function, and Step Into

debugs whatever function is being called from the current line (if there is a function call

on that line). Step Out executes the remainder of the current function and resumes debug-

ging in the calling function. You should experiment with all of these to get a feel for how

the debugger works.

You’ll find three pieces of information in the right pane useful immediately. The first is

the Call Stack. It shows which function calls led to the current statement being called.

When you click Step Out, the debugger moves up to the next statement in the call stack.

The next is Scope Variables, which enables you to inspect any variables that are cur-

rently in scope. In this case, there’s event, which is the parameter of your event handler,

and this, which is set to the element that the event handler is bound to. If you inspect

it, you’ll see that in this context, this is the form that’s been submitted. You’ll need to

access it to validate the user input in the form. Finally, the Breakpoints section shows

all of the breakpoints that have been set. Sometimes it’s hard to remember which break-

points you’ve set and where you set them. You can use the Breakpoints list to unset

them. You should definitely experiment with the debugger. Being able to use it effec-

tively makes it very easy to track down many kinds of bugs.

The Completed Registration Form with JavaScript Validation When the

JavaScript script that you just created is integrated with the original registration form

document from Lesson 12, the result is a web form that tests its contents before they’re

transmitted to the server for further processing. This way, no data is sent to the server

until everything is correct. If a problem occurs, the browser informs the user (see Figure

19.4).

FIGURE 19.4

An alert message.

▼

▼

ptg16476052

Validating Forms with JavaScript 535

19

There was no need to change the source code for the page at all other than to add the

JavaScript tags to load the jQuery library and the custom script for the page, as men-

tioned previously.

Then there’s the custom script itself. Here are the full contents:

$(function() {
 $("#registrationForm").submit(function (event) {
 if (!$(this.name).val()) {

event.preventDefault();
alert("You must enter a name.");

 }
 if (!$(this).find("input[name='gender']:checked").length) {

event.preventDefault();
alert("You must select your gender.");

 }
 console.log($(this.name).val());
 });
});

Improving Form Validation The form validation code in this exercise works, but it

could be better. The biggest problem is that it shows an alert for each field with an error.

A better approach is to show an error on the page and highlight the fields that need to be

corrected before the page can be submitted. The validation code is the same; what’s dif-

ferent is what happens when errors are found.

In this case, I’m going to print an error message above the form, and I’m going to mark

each field with invalid input to indicate that it needs to be corrected. Before I get to the

JavaScript, I’m going to add a few styles to the style sheet that will be used for the vali-

dation messages. Here are the new styles:

div.error label {
color: red;

}

div.errors {
border: 2px solid red;
color: red;
width: 50%;
padding: 10px;

}

The first style is applied to labels inside div elements with the error class. The second

style is applied to a div with the class errors. This should provide some insight into how

the validation code will work. When a field is found to have invalid input, an error mes-

sage will be saved so that it can be placed in the errors div, and the class error will be

applied to the div containing that field.

▼

▼

ptg16476052

536 LESSON 19: Using JavaScript in Your Pages

The conditional code in the validation JavaScript is the same. The first change I’m mak-

ing is to get rid of the lines that display the alert box and replace them with the lines that

add the appropriate class to the document. The updated JavaScript looks like this:

$(function() {
 $("#registrationForm").submit(function (event) {
 if (!$(this.name).val()) {

$(this.name).parents("div.required").addClass("error");
event.preventDefault();

 }

 if (!$("input[name='gender']:checked", this).length) {
$("input[name='gender']", this).parents("div.required").addClass("error");
event.preventDefault();

 }
 });
});

The trick here is to write the proper selectors to add the error class to the appropriate

element. First, here’s the line that adds the error class to the enclosing div for the Name

field:

$(this.name).parents("div.required").addClass("error");

I start by selecting the Name field. Then I use jQuery’s parents() method to apply the

div.required selector to all the ancestors of the form field. It matches the appropriate

element, and then I use the addClass() method to apply the error class to the div. If

you try this out, you’ll see that when you submit invalid data the labels for the invalid

fields suddenly turn red.

Now let’s look at printing a proper error message on the page. First, I declare a variable

in which to collect the error messages for each field. If a field is invalid, the error mes-

sage is appended to the list. Once all the fields have been validated, if there are any error

messages in the list, the div containing the error messages is formatted and printed at the

top of the form. Here’s the script:

$(function() {
 $("#registrationForm").submit(function (event) {
 var errors = [];

 if (!$(this.name).val()) {
errors.push("You must enter a name.");
$(this.name).parents("div.required").addClass("error");
event.preventDefault();

 }

 if (!$("input[name='gender']:checked", this).length) {
errors.push("You must select a gender.");
$("input[name='gender']", this).parents("div.required").addClass("error");
event.preventDefault();

▼

▼

ptg16476052

Validating Forms with JavaScript 537

19

 }

 if (errors.length > 0) {
$(this).prepend("<div class='errors'>You must "

+ "correct the following errors:"
+ errors.join("") + "</div>");

 }
 });
});

If you include this code in your page and test it, you’ll see that when you submit an

invalid form, it properly marks the labels of invalid fields, prints the error message at

the top form, and prevents the form from being submitted. However, one bug should be

fixed. What happens when you submit the form with invalid input a second time? As

you’ll see, a second set of error messages will be printed at the top of the page. To fix

this bug, I just need to add the following line to the event handler:

$("div.errors", this).remove();

I added it right before the if statement that checks whether to print the error messages. It

uses the jQuery remove() method to remove any elements that match the selector.

The final form with all of the error messages for invalid input displayed appears in Figure

19.5.

FIGURE 19.5

An alert message
for multiple fields.

▼

▲

ptg16476052

538 LESSON 19: Using JavaScript in Your Pages

▼

Hiding and Showing Content
One way to help users deal with a lot of information presented on a single page is to hide

some of it when the page loads and to provide controls to let them view the information

that interests them. In this example, I create a frequently asked questions page. On this

page, the questions will be organized in sections. Each section will start out collapsed,

and the answers to the questions will be hidden as well. Users can display the answers by

clicking the corresponding questions.

In this example, I apply an approach referred to as unobtrusive JavaScript. The phi-

losophy behind it is that the behavior added by JavaScript should be clearly separated

from the presentation applied using HTML and Cascading Style Sheets (CSS). The page

should work and be presentable without JavaScript, and JavaScript code should not be

mixed with the markup on the page.

In practice, what this means is that event handlers should be specified in scripts instead

of HTML attributes. Also, in this example, using JavaScript unobtrusively means that if

the user has JavaScript turned off, she will see all the questions and answers by default,

rather than seeing a page with the questions hidden and no means of displaying them.

In the previous lesson, you learned how to hide and show content using jQuery. In this

example, I’m going to explain how to accomplish the same thing using plain JavaScript,

and then provide the jQuery version as a comparison. jQuery is a convenience, but it’s

not necessary for building things with JavaScript, as you’ll see.

Exercise 19.2: Hiding and Showing Content

The exercise starts with a web page that doesn't include JavaScript and that displays the

frequently asked questions. Here’s the source for the page. Figure 19.6 shows the page in

a browser.

Input ▼
<!DOCTYPE html>
<html>
<head>
 <title>Frequently Asked Questions</title>
 <style type="text/css" media="screen">

dt { margin-bottom: .5em; font-size: 125%;}
dd { margin-bottom: 1em;}

 </style>
</head>
<body>
<h1>Frequently Asked Questions</h1>▼

ptg16476052

Hiding and Showing Content 539

19

<dl id="faq">
 <dt>Don't I need a development environment to work with JavaScript?</dt>

<dd>Nope. As with HTML, all you need is a text editor and a browser that sup-
ports JavaScript. You might be confusing JavaScript with Java, a more comprehen-
sive programming language that needs at least a compiler for its programs to run.
However, tools like FireBug for Firefox, the Internet Explorer Developer Toolbar,
and Safari's Web Inspector can make your life easier. Consult the documentation
on those tools to learn more about their JavaScript features.</dd>
 <dt>What is AJAX?</dt>

<dd>One topic we haven't covered yet is AJAX. AJAX is a term used to describe
scripts that communicate with the server without requiring a Web page to be
fully reloaded. For example, you can use it to fetch information and display it
on the page, or to submit a form for processing, all without changing the full
page in the browser. I'll discuss AJAX in detail in Lesson 16, "Using JavaScript
Libraries."</dd>
 <dt>When I use JavaScript, do I need to accommodate users whose browsers may
not support JavaScript or who have disabled it?</dt>

<dd>Some estimates indicate that over 90% of Web users have JavaScript
enabled. However, unless you have a really good reason not to, you should make
accommodations for users without JavaScript. You need not offer users who don't
have JavaScript an identical experience to those who have it, but they should be
able to access your site. For example, if you run an online store, do you really
want to shut out users because of their browser configuration? </dd>
</dl>
</body >
</html>

Output ▼

FIGURE 19.6

The FAQ page.

▼

▼

ptg16476052

540 LESSON 19: Using JavaScript in Your Pages

The page is designed so that it works perfectly well without JavaScript; all the ques-

tions and answers are displayed so that the user can read them. This is what unobtrusive

JavaScript is all about.

Adding the Script After the page has been created and you’ve confirmed that it’s

working correctly, the next step is to add JavaScript into the mix. To include the script on

the page, I just need to add the link to the external script to the header:

<script type="text/javascript" src="faq.js"></script>

That <script> tag loads and executes the script in the file faq.js. After the JavaScript

has been added, the answers to the questions are hidden, as shown i n Figure 19.7.

Here’s the JavaScript contained in the faq.js file:

window.onload = function() {
 var faqList, answers, questionLinks, questions, curr entNode, i, j;

 faqList = document.getElementById("faq");
 answers = faqList.getElementsBy TagName("dd");

 for (i = 0; i < answers.length; i++) {
answers[i].style.display = 'none';

 }

 questions = faqList.getElementsByTagName("dt");

 for (i = 0; i < questions.length; i++) {
que stions[i].onclick = function() {

currentNode = this.nextSibling;
while (currentNode) {

if (currentNode.nodeType == "1" && currentNode.tagName == "DD") {
if (currentNode.style.display == 'none') {

FIGURE 19.7

The FAQ page with
the JavaScript
included.

▼

▼

ptg16476052

Hiding and Showing Content 541

19

currentNode.style.display = 'block';
}
else {

currentNode.style.display = 'none';
}

break;
}

currentNode = currentNode.nextSibling;
}

return false;
};

 }
}

This JavaScript code is significantly more complex than any used previously in the book.

Take a look at the first line, which is repeated here:

window.onload = function() {

This is where the unobtrusiveness comes in. Instead of calling a function using the

onload attribute of the <body> tag to start up the JavaScript for the page, I assign an

anonymous function to the onload property of the window object. The code inside the

function will run when the onload event for the window is fired by the browser. Setting

up my JavaScript this way allows me to include this JavaScript on any page without

modifying the markup to bind it to an event. That’s handled here.

This is the method for binding functions to events programmatically. Each element has

properties for the events it supports. To bind an event handler to them, you assign the

function to that property. You can do so by declaring an anonymous function in the

assignment statement, as I did in this example, or you can assign the function by name,

like this:

function doStuff() {
 // Does stuff
}
window.onload = doStuff;

In this case, I intentionally left the parentheses out when I used the function name. That’s

because I’m assigning the function itself to the onload property, as opposed to assigning

the value returned by doStuff() to that property.

▼

▼

ptg16476052

542 LESSON 19: Using JavaScript in Your Pages

On the next line, I declare all the variables I use in this function. JavaScript is a bit

different from many other languages in that variables cannot have “block” scope. For

example, in most languages, if you declare a variable inside the body of an if statement,

that variable will go away once the if statement is finished. Not so in JavaScript. A vari-

able declared anywhere inside a function will be accessible from that point onward in the

function, regardless of where it was declared. For that reason, declaring all your variables

at the top of the function is one way to avoid confusing bugs.

Looking Up Elements in the Document The preceding lesson discussed the

document object a little bit and mentioned that it provides access to the full contents of

the web page. The representation of the page that is accessible via JavaScript is referred

to as the Document Object Model, or DOM. The entire page is represented as a tree,

starting at the root element, represented by the <html> tag. If you leave out the <html>

tag, the browser will add it to the DOM when it renders the page. The DOM f or this page

is shown in Figure 19.8.

FIGURE 19.8

The DOM for the
FAQ page, shown
in the Chrome
Developer Tools.

When you declare an anonymous function in an assignment state-
ment, you must make sure to include the semicolon after the
closing brace. Normally when you declare functions, a semicolon
is not needed, but because the function declaration is part of the
assignment statement, that statement has to be terminated with
a semicolon or you’ll get a syntax error when the browser tries to
interpret the JavaScript.

NOTE

▼

▼

ptg16476052

Hiding and Showing Content 543

19

There are a number of ways to dig into the DOM. The browser provides access to the

parent of each element, as well as its siblings and children, so you can reach any element

that way. However, navigating your way to elements in the page that way is tedious.

Fortunately, there are some shortcuts available.

These shortcuts, methods that can be called on the document object, are listed in Table

19.1.

TABLE 19.1 Methods for Accessing the DOM

Method Description

getElementsByTagName(name) Retrieves a list of elements with the supplied tag name.
This can also be called on a specific element, and it will
return a list of the descendants of that element with the
specified tag name.

getElementById(id) Retrieves the element with the specified ID. IDs are
assigned using the id attribute. This is one of the areas
in which JavaScript intersects with CSS.

getElementByName(name) Retrieves elements with the specified value as their name
attribute. Usually used with forms or form fields, both of
which use the name attribute.

To set up the expanding and collapsing properly, I must hide the answers to the questions

and bind an event to the questions that expands them when users click them. First, I need

to look up the elements I want to modify in the DOM.

faqList = document.getElementById("faq");
answers = faqList.getElementsByTagName("dd");

The first line gets the element with the ID faq. That’s the ID I assigned to my definition

list in the markup. Then the next line returns a list of all the dd elements that are chil-

dren of the element now assigned to faqList. I could skip the step of looking up the faq

list first, but then if this page included multiple definition lists, the behavior would be

applied to all of them rather than just the faq. This is also a useful precaution in case this

JavaScript file is included on more than one page. In the end, I have a list of dd elements.

Changing Styles I grabbed the list of dd elements so that they can be hidden when

the page loads. I could have hidden them using a style sheet or the style attribute of each

of the dd elements, but that wouldn’t be unobtrusive. If a user without JavaScript visited

the page, the answers to the questions would be hidden and there wouldn’t be any way to

reveal the answers. It’s better to hide them with JavaScript.

▼

▼

ptg16476052

544 LESSON 19: Using JavaScript in Your Pages

There are two ways to hide elements with CSS: you can set the display property to none

or the visibility property to hidden. Using the display property will hide the element

completely and remove it from the DOM. The visibility property hides the content in

the element but leaves the space it takes up empty. So for this case, using the display

property makes more sense. Every element in the document has a style property, and

that property has its own properties for each CSS property. Here’s the code that hides

each of the dd elements:

for (i = 0; i < answers.length; i++) {
answers[i].style.display = 'none';

 }

The for loop iterates over each of the elements, and inside the loop, I set the display

property to none. Once the page loads, the answers will be hidden.

Traversing the Document The final step is to bind the event that toggles the display

of the answers to each of the questions. This is the most complex bit of code on the page.

First, let me explain how the event handler works:

function() {
 currentNode = this.nextSibling;
 while (currentNode) {

if (currentNode.nodeType == "1" && currentNode.tagName == "DD") {
if (currentNode.style.display == 'none') {

currentNode.style.display = 'block';
}
else {

currentNode.style.display = 'none';
}
break;

}
currentNode = currentNode.nextSibling;

 }

 return false;
};

That’s the function that will be used as the onclick handler for each of the questions. As

you may remember, in the context of an event handler, this is the element associated

with the event. The main challenge in this function is locating the answer associated with

the question the user clicked on, and displaying it.

To do so, the function will navigate through the DOM to find the next DD element

in the DOM tree following the DT element that the user clicked on. First, I use the

nextSibling property of this, and then I start a while loop that will iterate over each of

the siblings of that element. The while condition ensures that the loop will run until this

runs out of siblings.

▼

▼

ptg16476052

Hiding and Showing Content 545

19

The nextSibling property is a reference to the next node in the DOM tree. A node is

different from an element. HTML elements are nodes, but the whitespace between tags

is a node, as is the text inside a tag. So the nextSibling of a node might very well be

the return character at the end of the line following the tag. There are a number of other

properties associated with nodes as well that can be used to traverse the document . Some

are listed in Table 19.2.

TABLE 19.2 Node Properties for Navigating the DOM

Method Description

childNodes An array of all the children of a node.

 firstChild The first child node of a node.

innerHTML The markup and content inside a node. You can set this property to
change the contents of a node.

lastChild The last child of a node.

nextSibling The next sibling of the node (at the same level of the DOM tree).

parentNode The parent of the current node.

previousSibling The node that precedes the current node at the same level of the tree.

All the properties in the table are null if it’s not possible to traverse the DOM in that

direction. For example, if a node has no child nodes, its lastChild property will be null.

Here’s what happens when a user clicks one of the questions. As mentioned, a while

loop will iterate over the siblings of the question. Inside the while loop, I check the

nodeType and tagName of the current node.

The nodeType property contains a number that identifies what type of node is being pro-

cessed. Element nodes have a node type of 1. Attributes are node type 2, and text nodes

are type 3. There are 12 total node types, but those three are the main ones you’ll use.

In this function, I’m searching for the <dd> tag that follows the DT tag that contains the

question. I have to check the node type before checking the tagName property because

only elements (that have node type 1) support the tagName property. If I didn’t check the

node type first, other node types would cause errors.

Each sibling node that follows the original <dt> is tested, and as soon as a <dd> element

is found, the script toggles the visibility of that element. It then uses the break statement

to stop executing the loop. If the node is not a <dd> element, then the next sibling of cur-

rentNode is assigned to the currentNode variable, and the loop is executed again. If the

<dd> element is never found, then when there are no more siblings, the currentNode

variable will be set to null, and execution of the loop will stop .

▼

▼

ptg16476052

546 LESSON 19: Using JavaScript in Your Pages

At the end, the function returns false:

questions = faqList.getElementsByTagName("dt");
for (i = 0; i < questions.length; i++) {
 questions[i].onclick = function() {

// The actual event handling code goes here.
 }
}

First, I use getElementsByTagName() to get a list of all the <dt> tags that are children of

faqList. Then I use a for loop to iterate over them and bind the function described pre-

viously to their onclick event.

The Same Code with jQuery
Now here’s a look at code that achieves the same results using jQuery. There are some

flaws in the previous code as well that this solution gets around. For example, for reasons

of simplicity and cross-browser compatibility, I specified the click event handler, attach-

ing it directly to the onclick property of the relevant element. I did the same thing with

the body.onload handler. As you know, this approach can interfere with other scripts you

might want to use on the page.

First I load jQuery from the CDN with this line of HTML:

<script src="https://code.jquery.com/jquery-2.1.4.min.js"></script>

Here’s the new faq.js script:

$(function() {
 $("#faq dd").hide();
 $("#faq dt").click(function(event) {

event.preventDefault();
$(this).next("dd").toggle();

 });
});

As you can see, the libraries enable me to accomplish a lot more than I could writing raw

JavaScript with just a few lines of code.

Adding New Content to a Page
The last example demonstrated how to modify styles on a page. In this example, I explain

how to modify the content on a page using JavaScript. You can create new elements in

JavaScript and then attach them to the document in any location that you choose. You

can also modify elements that are already on the page or remove elements if you need to

do so.

▼

▲

ptg16476052

Adding New Content to a Page 547

19

▼Exercise 19.3: Add an Expand All/Collapse All Link to the FAQ

In this example, I’ll be adding a new feature to the FAQ page presented in the previous

example. In that example, I illustrated how to add new features to a page using JavaScript

without modifying the markup in any way. This example will continue along those lines.

In fact, I won’t be making any changes to the markup on the page; all the changes will

take place inside the JavaScript file.

In this example, I add a link to the page that expands all the questions in the FAQ, or, if

all the questions are already expanded, will collapse all the questions. The label on the

link will change depending on its behavior, and the function of the link will change if the

user individually collapses or expands all the questions.

Adding the Link to the Page Because the link only functions if the user has

JavaScript enabled, I am going to add it dynamically using JavaScript. I’ve added a new

function to the JavaScript file that takes care of adding the link, which I call from the

onload handler for the page. The function adds more than just a link to the page. It adds

a link, a <div> containing the link, and the onclick handler for the link. Here’s the func-

tion, which I’ve n amed addExpandAllLink():

function addExpandAllLink() {
 var expandAllDiv, expandAllLink, faq;

 expandAllDiv = document.createElement("div");
 expandAllDiv.setAttribute("id", "expandAll");

 expandAllLink = document.createElement("a");
 expandAllLink.setAttribute("href", "#");
 expandAllLink.setAttribute("id", "expandAllLink");
 expandAllLink.appendChild(document.createTextNode("Expand All"));

 expandAllDiv.appendChild(expandAllLink);

 expandAllLink.onclick = function() {
 var faqList, answers;
 faqList = document.getElementById("faq");
 answers = faqList.getElementsByTagName("dd");

 if (this.innerHTML == "Expand All") {
for (i = 0; i < answers.length; i++) {

answers[i].style.display = 'block';
}
this.innerHTML = "Collapse All";

 }
 else {

for (i = 0; i < answers.length; i++) {
answers[i].style.display = 'none'; ▼

ptg16476052

548 LESSON 19: Using JavaScript in Your Pages

}
this.innerHTML = "Expand All";

 }
 return false;
 };

 faq = document.getElementById("faq");
 faq.insertBefore(expandAllDiv, faq.firstChild);
}

First , I declare the variables I use in the function, and then I start creating the elements.

The createElement() method of the document object is used to create an element. It

accepts the element name as the argument. I create the <div> element and then call the

setAttribute() method to add the id attribute to that element. The setAttribute()

method takes two arguments: the attribute name and the value for that attribute. Then I

create the link by creating a new <a> element. I set the href attribute to #, because the

event handler for the link’s onclick event will return false anyway, and I add an id for

the link, too. To add the link text, I call the document.createTextNode() method:

expandAllLink.appendChild(document.createTextNode("Expand All"));

I pass the results of that method call to the appendChild() method of expandAllLink,

which results in the text node being placed inside the <a> tag. Then on the next line I

append the link to the <div>, again using appendChild(). The last thing to do before

appending the <div> to an element that’s already on the page (causing it to appear) is to

add the onclick handler to the link.

I’m again attaching the onclick handler using an anonymous function, as I did in the

previous example. In this case, I use the same technique I did in the previous example,

obtaining a reference to the <div> with the ID faq and then retrieving a list of <dd> ele-

ments inside it.

At that point, I inspect the contents of this.innerHTML. In an event handler, this is a

reference to the element upon which the event was called, so in this case, it’s the link.

The innerHTML property contains whatever is inside that element—in this case, the link

text. If the link text is “Expand All,” I iterate over each of the answers and set their

display property to block. Then I modify the this.innerHTML to read "Collapse All".

That changes the link text to Collapse All, which not only alters the display but causes

the same function to hide all the answers when the user clicks on the link again. Then the

function returns false so that the link itself is not processed.

Once the onclick handler is set up, I add the link to the document. I want to insert the

link immediately before the list of frequently asked questions. To do so, I get a reference

▼

▼

ptg16476052

Adding New Content to a Page 549

19

to its <div> using getElementById() and then use insertBefore() to put it in the right

place:

faq = document.getElementById("faq");
faq.insertBefore(expandAllDiv, faq.firstChild);

Table 19.3 contains a list of methods that can be used to modify the document . All of

them are methods of elements.

TABLE 19.3 Methods for Accessing the DOM

Method Description

appendChild(element) Adds the element to the page as a child of the method’s
target

insertBefore(new, ref) Inserts the element new before the element ref on the list
of children of the method’s target

removeAttribute(name) Removes the attribute with the supplied name from the
method’s target

removeChild(element) Removes the child of the method’s target passed in as an
argument

replaceChild(inserted,
replaced)

Replaces the child element of the method’s target passed
as the inserted argument with the element passed as the
parameter replaced

setAttribute(name, value) Sets an attribute on the method target with the name and
value passed in as arguments

There’s one other big change I made to the scripts for the page. I added a call to a new

function in the handler for the click event for the questions on the page:

updateExpandAllLink();

That’s a call to a new function I wrote, which switches the Expand All / Collapse All

link if the user manually collapses or expands all the questions. When the page is opened,

all the questions are collapsed, and the link expands them all. After the user has expanded

them all one at a time, this function will switch the link to Collapse All. The function

is called every time the user clicks on a question. It inspects the answers to determine

whether they are all collapsed or all expanded, and it adjusts the link text accordingly.

Here’s the source for that functio n:

function updateExpandAllLink() {
 var faqList, answers, expandAllLink, switchLink;

▼

▼

ptg16476052

550 LESSON 19: Using JavaScript in Your Pages

 faqList = document.getElementById("faq");
 answers = faqList.getElementsByTagName("dd");
 expandAllLink = document.getElementById("expandAllLink");
 switchLink = true;

 if (expandAllLink.innerHTML == "Expand All") {
 for (i = 0; i < answers.length; i++) {

if (answers[i].style.display == 'none') {
switchLink = false;

}
 }

 if (switchLink) {
expandAllLink.innerHTML = "Collapse All";

 }
 }
 else {
 for (i = 0; i < answers.length; i++) {

if (answers[i].style.display == 'block') {
switchLink = false;

}
 }

 if (switchLink) {
expandAllLink.innerHTML = "Expand All";

 }
 }
}

This function starts with some setup. I declare the variables I will be using and retrieve

the elements I need to access from the DOM. I also set the variable switchLink to true.

This variable is used to track whether I need to switch the link text in the Expand All

link. Once everything is set up, I use an if statement to test the state of the link. If the

link text is set to Expand All, it checks each of the answers. If any of them are hidden,

it leaves the link as is. If all of them are displayed, it changes the link text to Collapse

All. If the link text is already Collapse All, the test is the opposite. It switches the link

text to Expand All if all the questions are hidden.

Now let’s look at how I could accomplish the same thing using jQuery. Inside the main

ready function, I add the following code:

$("Expand All").insertAfter("h1");

$("#expandAll").click(function (event) {
 event.preventDefault();

 if ($(this).html() == "Expand All") {
$("#faq dd").show();

▼

▼

ptg16476052

Workshop 551

19

$(this).html("Collapse All");
 } else {

$("#faq dd").hide();
$(this).html("Expand All");

 }
});

First, I add the new link to the page. I use the jQuery insertAfter() method, which adds

the content specified after the selector passed to it. Had the selector matched multiple ele-

ments, the content would have been appended after each of them.

After I add the new element to the page, I add a click handler for the link. It performs the

same functions as does the non-jQuery version I presented previously, but it uses jQuery

methods to accomplish the same thing with less code.

Summary
This lesson demonstrated a number of common tasks associated with programming in

JavaScript. It illustrated how to access the values in forms and check them for errors. It

also explained how you can manipulate the styles on a page and even the contents of a

page using JavaScript. The final two examples were written in a style referred to as unob-

trusive JavaScript, which involves writing JavaScript in such a way that the page still

works even if the user has disabled JavaScript or his browser does not offer JavaScript

support. JavaScript is used to enhance the user’s experience, but the functionality of the

page is not dependent on JavaScript. This approach is generally favored as the preferable

way to write JavaScript these days. It separates JavaScript code from the markup on the

page and ensures support for the largest number of users, including users with mobile

browsers that may not support JavaScript functionality.

Workshop
The following workshop includes questions, a quiz, and exercises related to the uses of

JavaScript.

Q&A
Q Can you point me in the direction of more scripts that I can integrate with my

pages?

 A A number of sites provide JavaScript you can copy and paste for use on your own

pages, but this approach has fallen out of favor. Given the simplicity of building

functionality with jQuery and other libraries, the best bet is to find libraries that

provide the building blocks you need to write your own scripts and then put the

pieces together to accomplish your goals.

▼

▲

ptg16476052

552 LESSON 19: Using JavaScript in Your Pages

Q In what cases might you want to use JavaScript without a library like
JavaScript?

 A If your JavaScript is very simple, it may be worth it to leave out supporting librar-

ies. But for most web developers, starting with a tool that accounts for differ-

ences between browsers is a great way to avoid bugs and get things done quickly

and simply. It’s generally better to make use of these sorts of libraries to write

JavaScript from scratch. It’s a good idea to know how to write JavaScript without

libraries, but using them almost always makes sense.

Quiz
1. What happens whenever a user clicks a link, button, or form element on a web

page?

2. In an event handler, what does this refer to?

3. What kinds of nodes on a page can be associated with properties like nextChild

and previousChild?

4. How does form validation with JavaScript conserve server resources?

Quiz Answers
1. Whenever a user clicks a link, a button, or any form element, the browser generates

an event signal that can be captured by one of the event handlers mentioned in the

previous lesson.

2. In event handlers, this is a reference to the element on which the event was called.

So in an event handler for the onclick event of a link, this would refer to the link

that the user clicked on.

3. Nodes in the DOM can include HTML elements, text inside HTML elements, and

even whitespace between elements.

4. JavaScript enables you to do error checking in forms on the browser side before

the form is ever submitted to the server. A script must access the server before

it can determine the validity of the entries on a form. (Note that even if you use

JavaScript form validation, you must validate user input on the server, too, because

users can bypass the JavaScript if they choose.)

ptg16476052

Workshop 553

19

Exercises
1. Change the HTML validation example to add error messages to the page above the

form when validation fails.

2. Add a Preview button to the form validation example that displays the values the

user entered below the form.

3. Modify the FAQ example so that users can click a link for each question to remove

that question from the page entirely.

ptg16476052

This page intentionally left blank

ptg16476052

LESSON 20
Working with Frames
and Linked Windows

In the early days of the Web, two significant limitations of web browsers
were that they could only display one document in a browser window at a
time and that sites couldn’t open more browser windows if needed. The
Web has evolved to enable developers to combine web pages in browser
windows in all sorts of ways. Inline frames enable you to embed web
pages within other pages in the same way you would an image, and linked
windows enable you to create links that open pages in new browser win-
dows. These tools offer a lot of power, but improper usage can make your
sites far less usable. It’s important to learn not only how to use them, but
when to use them. You’ll learn all about the following topics:

n What inline frames are and how they can affect your layout

n How to work with linked windows

n What happened to frames

ptg16476052

556 LESSON 20: Working with Frames and Linked Windows

What Are Frames?
HTML5 enables you to embed a second document into an existing page using what’s

called an inline frame. Inline frames are like images or video players; they can be

included anywhere within a page. Over time, inline frames became more commonly used,

and frames created using framesets were made obsolete. HTML5 does not include sup-

port for frames created using framesets, leaving only inline frames.

Why Were Frames Removed from HTML5?
Frames were removed from the HTML specification for several reasons. The primary

reason that they were removed was because the <frameset> tag replaces the <body> tag.

This can cause problems with some assistive technology as they are built to expect a

body on any web page.

But there are other reasons why frames caused problems. Frames prevent customers from

correctly bookmarking web pages. You visit a frame site and then click some links, but

when you try to bookmark the internal pages, your bookmark records only the top-level

page. Some designers tried to solve this problem with JavaScript, but that simply added

to the complexity of the pages and made them even more difficult for screen readers to

use.

Printing pages in frames is also difficult. Although most browsers will print the first page

or screen, they struggle with getting all the content. Plus, if the frameset doesn’t fit on the

page, it can result in some strange use of paper.

Linking to frames from external sites can be difficult. Often you have the choice of link-

ing to the front page or to an internal framed page that is missing navigation and other

elements contained in the frameset. This means that a framed page that is referenced in

search engine results could end up being displayed with no navigation or any site refer-

ences. This is not a good user experience, and most designers want their site logo and

navigation to appear on every page.

What About Iframes?
Iframes are different from frames because they are simply embedded into the web page,

just like an image or other multimedia. Iframes add all the benefits of frames with none

of the drawbacks. You can embed content from other parts of your website or completely

different websites right inside your web pages.

HTML5 adds a few new features to the <iframe> tag to add security and flexibility to

your frames. I will discuss those features later in this lesson.

ptg16476052

Working with Linked Windows 557

20

Working with Linked Windows
Before you learn how to use iframes, you need to learn about the target attribute of the

<a> tag. It enables you to direct a link to open a page in an inline frame or a new win-

dow. This attribute takes the following form:

target="browsing_context"

To drop a bit of jargon on you, the value of the target attribute is the name of a brows-

ing context. Usually, when you click a hyperlink, the page to which you’re linking

replaces the current page in the browser window. When you use the target attribute, you

can open links in new windows, or in existing windows other than the one that the link is

in. With frames, you can use the target attribute to display the linked page in a different

frame. There are also some keywords you can use that represent browsing contexts by

function rather than name.

When you use the target attribute inside an <a> tag, the browser first checks whether a

browsing context with the name that matches the value of the attribute exists. If it does,

the document pointed to by the hyperlink replaces the current contents of that browsing

context. On the other hand, if the named browsing context does not exist, a new browser

window or tab opens with that name assigned to it. Then the document pointed to by the

hyperlink is loaded into the newly created window.

Browsing Context Keywords
The target attribute works not only with window names but also with keywords that

represent a type of context. All of these keywords are case sensitive and begin with an

underscore (_) character. They enable you to target links at specific browsing context

relative to the current browsing context.

Table 20.1 lists the browsing context keywords and describes their use.

TABLE 20.1 Magic target Names

target Name Description

target="_blank" Forces the document referenced by the <a> tag to be loaded into a
new unnamed window.

target="_self" Causes the document referenced by the <a> tag to be loaded into the
current browsing context—the window or frame that contains the <a>
tag. This is the default behavior of links.

target="_parent" Specifically for use with frames. Forces the link to load into the par-
ent of the current browsing context. If the current document has no
parent, however, target="_self" will be used.

ptg16476052

558 LESSON 20: Working with Frames and Linked Windows

▼

target Name Description

target="_top" Forces the link to load into the full web browser window, replacing the
current page entirely. If the current document is already at the top,
however, target="_self" will be used. More often than not, when
you create links to other sites on the Web, you don’t want them to
open within a frame. Adding target="_top" to the link will prevent
this from occurring.

Exercise 20.1: Working with Windows

Each of the hyperlinks in the following exercise uses the target attribute to open a web

page in a different browser window. The concepts you’ll learn here will help you under-

stand later how targeted hyperlinks work with frames.

In this exercise, you create four separate HTML documents that use hyperlinks, including

the target attribute. You use these hyperlinks to open two new windows, called

yellow_page and blue_page, as shown in Figure 20.1. The top window is the original

web browser window (the red page), yellow_page is at the bottom right, and blue_page

is at the bottom left.

FIGURE 20.1

Using the target
attribute indicates
that links should
open new windows.

▼

ptg16476052

Working with Linked Windows 559

20

First, create the document to be displayed by the main web browser window, shown in

Figure 20.2, by opening your text editor of choice and entering the following lines of

code:

Input ▼
<!DOCTYPE html>
<html>
<head>
<title>Parent Window - Red</title>
</head>
<body style="background-color: #ff9999;">
 <h1>Parent Window - Red< /h1>
 <p>Open the Yellow Page in a
new window.</p>
 <p>Open the Blue Page in a new
window.</p>
 <p>Replace the yellow page with
the Green Page.</p>
</body>
</html>

Output ▼

This creates a light-red page that links to the other three pages. Save this HTML source

as parent.html.

FIGURE 20.2

The parent window
(the red page).

▼

▼

ptg16476052

560 LESSON 20: Working with Frames and Linked Windows

Next, create a document called yellow.html (see Figure 20.3) by entering the following

code:

Input ▼
<!DOCTYPE html>
<html>
<head>
<title>Yellow Page</title>
</head>
<body style="background-color: #ffff33;">
 <h1>Yellow Page</h1>

<p>This is the first target page. Its target is yellow_page.</p>
</body>
</html>

Output ▼

After saving yellow.html, create another document called blue.html (see Figure 20.4)

by entering the following code:

Input ▼
<!DOCTYPE html>
<html>
<head>
<title>Blue Page</title>
</head>
<body style="background-color: #99ccff;">
 <h1>Blue Page</h1>

<p>This is the second target page. Its target is blue_page.</p>
</body>
</html>

FIGURE 20.3

yellow.html web
browser window
named yellow_
page.

▼

▼

ptg16476052

Working with Linked Windows 561

20

Output ▼

Next, create a fourth document called green.html, which looks like the following:

<!DOCTYPE html>
<html>
<head>
<title>Green Page</title>
</head>
<body style="background-color: #ccffcc;">
 <h1>Green Page</h1>

<p>This is the third target page. Its target is yellow_page. It should
replace the yellow page in the browser.</p>

</body>
</html>

To complete the exercise, load parent.html (the red page) into your web browser. Click

the first hyperlink to open the yellow page in a second browser window. This happens

because the first hyperlink contains the attribute target="yellow_page", as the following

code from parent.html demonstrates:

<p>Open the Yellow Page in a new
window.</p>

Now return to the red page and click the second link. The blue page opens in a third

browser window. Note that the new windows won’t be laid out like the ones shown

in Figure 20.1; modern browsers open new windows as new tabs. The following

target="blue_page" statement in the parent.html page is what causes the new window

to open:

Open the Blue Page in a new window.
</p>

FIGURE 20.4

blue.html
displayed in the
web browser
window named
blue_window.

▼

▼

ptg16476052

562 LESSON 20: Working with Frames and Linked Windows

The previous two examples opened each of the web pages in a new browser window. The

third link, however, uses the target="yellow_page" statement to open the green page

in the window named yellow_page. You accomplish this using the following code in

parent.html:

<p>Replace the yellow page
 with the Green Page.</p>

Because you already opened the yellow_page window when you clicked the link for

the yellow page, the green page should replace the page that’s already in it. To verify

this, click the third hyperlink on the red page. This replaces the contents of the yellow

page (with the yellow_page target name) with the green page (green.html), as shown in

Figure 20.5.

The <base> Tag
When you’re using the target attribute with links, you’ll sometimes find that all or most

of the hyperlinks on a web page should point to the same browsing context. For example,

you might want all the links on a page to open in a new window, so customers don’t for-

get about your home page.

In such cases, instead of including a target attribute for each <a> tag, you can use

another tag, <base>, to define a global target for all the links on a web page. The <base>

tag is used as follows:

<base target="window_name">

If you include the <base> tag in the <head>...</head> block of a document, every

<a> tag that doesn’t have a target attribute will use the value of the base tag’s target

attribute as its default target . For example, if you had included the tag

FIGURE 20.5

green.html dis-
played in the web
browser window
named green_
page.

▼

▲

ptg16476052

Inline Frames 563

20

<base target="yellow_page"> in the HTML source for parent.html, the three

hyperlinks could have been written as follows:

<!DOCTYPE html>
<html>
<head>
<title>Parent Window - Red</title>
<base target="yellow_page"> <!-- add base target="value" here -->
</head>
<body style="background-color: #ff9999">
 <h1>Parent Window - Red</h1>

 <p>Open
 <!-- no need to include a target -->

the Yellow Page in a new window.</p>
 <p>Open the Blue Page in a new
window.</p>
 <p>Replace
 <!-- no need to include a target -->

the yellow page with the Green Page.</p>
</body>
</html>

In this case, yellow.html and green.html load into the default window assigned by the

<base> tag (yellow_page); blue.html overrides the default by defining its own target

window of blue_page.

You also can override the window assigned with the <base> tag by using one of two spe-

cial window names. If you use target="_blank" in a hyperlink, it opens a new browser

window that doesn’t have a name associated with it. Alternatively, if you use target="_

self", the current window is used rather than the one defined by the <base> tag.

If you don’t provide a target using the <base> tag and you don’t
indicate a target in a link’s <a> tag, the link will load the new
document in the same window as the link.

NOTE

Inline Frames
The main advantage of inline frames is that you can position them anywhere on a web

page, just as you can other elements like images or movies. You can incorporate content

from another page or even another site into a page in a seamless way through the use of

inline frames. In fact, inline frames, which are specified using the <iframe> tag , are very

commonly the means by which “widgets” offered by popular websites are incorporated

ptg16476052

564 LESSON 20: Working with Frames and Linked Windows

into other websites. For example, sites like Twitter and Facebook offer widgets that you

can incorporate into your own site that are implemented using inline frames. The embed

code that YouTube provides uses an iframe for the movie.

Here’s a brief run-through of how to create inline frames. First, you define them using

the <iframe> tag. Like images, these frames appear within the normal flow of an HTML

document (hence the i for inline). The <iframe> tag supports attributes like src, which

contains the URL of the document to be displayed in the frame, and height and width,

which control the size of the frame.

Table 20.2 lists the attributes of the <iframe> element.

TABLE 20.2 Key Attributes

Attribute Description

width Specifies the width, in pixels, of the floating frame that will hold the HTML docu-
ment.

height Specifies the height, in pixels, of the floating frame that will hold the HTML
document.

src Specifies the URL of the HTML document to be displayed in the frame.

srcdoc Specifies HTML content to be displayed in the frame. This is new in HTML5.

name Specifies the name of the frame for the purpose of linking and targeting.

sandbox Enables extra restrictions for the content of an iframe. This is new in HTML5.

Because you know how to use inline images, using the <iframe> tag is fairly easy. The

following code displays one way to use the Away from My Desk pages in conjunction

with an inline frame. In this example, you begin by creating a page with a red back-

ground. The links that the user clicks appear on a single line, centered above the iframe.

For clarity, I’ve placed each of the links on a separate line of code.

Following the links (which target the inline frame named reason), the code for the frame

appears within a centered <div> element. As you can see in the following HTML, the

floating frame will be centered on the page and will measure 450 pixels wide by 105 pix-

els high:

 Input ▼
<!DOCTYPE html>
<html>
 <head>
 <title>I'm Away From My Desk</title>

ptg16476052

Inline Frames 565

20

 <style>
body { background-color: #ffcc99; }

 </style>
 </head>
 <body>
 <h1>I'm away from my desk because ...</h1>
 <p style="text-align: center;">

Reason 1 |
Reason 2 |
Reason 3 |
Reason 4 |
Reason 5 |
Reason 6

 </p>

 <div style="margin: 0 auto; width: 450px;">
<iframe name="reason" src="reason1.html" style="width: 450px; height:

105px;"></iframe>
 </div>
 </body>
</html>

Figure 20.6 shows the result.

Output ▼

You then create the reasons in separate HTML documents named reason1.html,

reason2.html, reason3.html, and so on. These can be complete HTML documents with

FIGURE 20.6

An inline frame.

ptg16476052

566 LESSON 20: Working with Frames and Linked Windows

everything you might expect from a web page. But I made the reasons very simple. For

example, here is the HTML for reason2.html:

<!doctype html>
<html>
 <head>
 <title>Reason 2</title>
 </head>
 <body>

<p>I knew you were coming, so I'm baking a cake</p>
 </body>
</html>

This page is really simple and seems like a lot of work to change the text of the iframe.

But with the new attribute srcdoc, you can place the HTML you want to display in the

frame right in the iframe tag. Instead of referencing an entire page, the browser will load

the HTML you specify. Here’s how to set reason 1 as the default source document:

<iframe name="reason" src="reason1.html"
 srcdoc="<p>My chair is trying to kill me</p>"
 style="width: 450px; height: 105px"></iframe>

You don’t need a complete HTML document inside the srcdoc
attribute. If the browser doesn’t support the srcdoc attribute,
however, it will show the HTML in the src attribute instead. So,
don’t leave that out. As of this writing, only Internet Explorer,
Edge, and Opera Mini don’t support the srcdoc attribute.

NOTE

HTML5 also adds a security feature to iframes: the sandbox attribute. If you include this

on your iframes, it will load them with extra restrictions. You can load your frames with

all the restrictions by just in cluding the attribute on your iframe tag like this:

<iframe src="frame.html" sandbox></iframe>

This will add the following security features to your framed content:

n The content will be treated as if it’s coming from a foreign domain, even if it’s not.

n Forms cannot be submitted from within the iframe.

n Scripts cannot be executed in the iframe.

n APIs are disabled.

n Links cannot target other browser contexts.

n Content cannot use embedded content, such as through the <object> or <embed>

tags.

ptg16476052

Opening Linked Windows with JavaScript 567

20

n Content cannot navigate to the top-level browsing context.

n Autoplay features such as video or form focus controls are blocked.

These features allow web designers to point to untrusted source material with less worry

that a malicious script could be run on their web server. But the sandbox attribute also

lets you open up the security for trusted sites with space-separated values of the sandbox

attribute. These values are explained in Table 20.3.

TABLE 20.3 Sandbox Values

Attribute Description

allow-forms Enables form submission

allow-pointer-lock Enables APIs

allow-popups Enables pop-ups

allow-same-origin Allows the iframe content to be treated as being from the same
origin

allow-scripts Enables scripts

allow-top-navigation Allows the iframe content to navigate its top-level browsing con-
text

If you use inline frames to point to pages on websites you don’t control, you should

always sandbox them as much as possible. This will keep both your website and your

customers more secure.

Opening Linked Windows with JavaScript
Pop-up windows are used all over the Web. They are often used to display advertise-

ments, but they can be used for all sorts of other things as well, such as creating a sepa-

rate window to show help text in an application or to display a larger version of a graph

that’s embedded in a document. You’ve seen how you can use the target attribute to

open a link in a new window, but that approach isn’t very flexible. You can’t control the

size of the window being displayed, nor which browser window controls are displayed.

Fortunately, with JavaScript you can take more control of the process of creating new

windows. You’ve already learned that one of the objects supported by JavaScript is

window. It refers to the window that’s executing the script. To open a new window, you

ptg16476052

568 LESSON 20: Working with Frames and Linked Windows

use the open method of the window object. Here’s a JavaScript function that opens a

window:

function popup(url) {
 mywindow = window.open(url, 'name', 'height=200,width=400');
 return false;
}

The function accepts the URL for the document to be displayed in the new window as an

argument. It creates a new window using the window.open function and assigns that new

window to a variable named mywindow. (I explain why we assign the new window to a

variable in a bit.)

The three arguments to the function are the URL to be displayed in the window, the name

for the window, and a list of settings for the window. In this case, I indicate that I want

the window to be 400 pixels wide and 200 pixels tall. The name is important because if

other links target a window with the same name, either via the window.open() function

or the target attribute, they’ll appear in that window.

At the end of the function, I return false. That’s necessary so that the event handler used

to call the function is stopped. To illustrate what I mean, it’s necessary to explain how

this function is called. Instead of using the target attribute in the <a> tag, the onclick

handler can be used, as follows:

Pop up

Of course, it’s preferable to use unobtrusive JavaScript and add an appropriate event han-

dler in a script tag. However, this works for the purposes of an example.

Ordinarily, when a user clicks the link, the browser calls the function and then goes right

back to whatever it was doing before, navigating to the document specified in the href

attribute. Returning false in the popup() function tells the browser not to continue what

it was doing, so the new window is opened by the function, and the browser doesn’t

follow the link. If a user who had JavaScript turned off visited the page, the link to

whatever.html would still open in a new window because I included the target attribute,

too.

In the preceding example, I specified the height and width settings for the new window.

There are several more options available as well, which are listed in Table 20.4 .

ptg16476052

Opening Linked Windows with JavaScript 569

20

TABLE 20.4 Settings for Pop-Up Windows

Setting Purpose

height Height of the window in pixels.

width Width of the window in pixels.

resizable Enable window resizing.

scrollbars Display scrollbars.

status Display the browser status bar.

toolbar Display the browser toolbar.

location Display the browser’s location bar.

menubar Display the browser’s menu bar (not applicable on Mac OS X).

left Left coordinate of the new window onscreen (in pixels). By default, pop-up
windows are placed slightly to the right of the spawning window.

top Top coordinate of the new window onscreen (in pixels). By default, pop-up
windows are placed slightly below the top of the spawning window.

When you specify the settings for a window, you must include them in a comma-

separated list, with no spaces anywhere. For the settings that allow you to enable or

disable a browser interface component, the valid values are on or off. Here’s a valid list

of settings:

status=off,toolbar=off,location=off,left=200,top=100,width=300,height=300

Here’s an invalid list of settings:

status=off, toolbar=off, location=false, top=100

Including spaces (or carriage returns) anywhere in your list will cause problems. It’s also

worth noting that when you provide settings for a new window, the browser automati-

cally assumes a default of off for any on/off settings that you don’t include. So, you can

leave out anything you want to turn off.

Here’s a complete example that uses JavaScript to create a new window:

<!DOCTYPE html>
<html>
 <head>
 <title>Popup example</title>
 </head>
 <body>
 <h1>Popup Example</h1>
 <p>

Launch popup

ptg16476052

570 LESSON 20: Working with Frames and Linked Windows

 </p>
 <script>

function popup(url) {
var mywindow = window.open(url, 'name', 'height=200,width=400');
return false;

}
 </script>
 </body>
</html>

When a user clicks the Launch pop-up link, a new 200×400 pixel window appears with

the contents of popup.html .

The unobtrusive approach is to skip the onclick attribute entirely and bind the popup()

function to the link in your JavaScript code. First, change the link on the page to look

like this :

Launch popup

Then you should edit the <script> tag so that it looks like this:

<script>
 function popup(url) {

var mywindow = window.open(url, 'name', 'height=200,width=400');
return false;

 }
 window.onload = function () {
 var link = document.getElementById(“launchpopup");
 link.onclick = function () {

return popup(this.href);
 }
 }
</script>

In this case, when the page loads, I retrieve the link by its ID and then bind a new anony-

mous function to it that calls the original popup() function. Instead of hard coding the

URL, I pass this.href to the popup() function so that it opens the URL in the link.

Using a library like jQuery can make things even easier. Suppose you want any link

tag with the class popup to open a new window with the URL associated with the link.

Here’s the code:

<script>
$(document).ready(function () {
 $(“a.popup").click(function (event) {

var mywindow = window.open(this.href, 'newwindow',
'height=200,width=400');

event.preventDefault();

ptg16476052

Summary 571

20

 });
});
</script>

When the page is ready, I apply the same onclick handler to all the links on the page

with the class popup. The anonymous event handler opens a new window with the URL

stored in this.href, which returns the URL in the link that the user clicked. It then calls

the preventDefault() method on the event. It’s used instead of just returning false

because it doesn’t disrupt other event handlers that may be fired in addition to this one.

Summary
In this lesson, you learned how to link a document to a new or existing window. In addi-

tion, you learned how to create inline frames and link them by using the tags listed in

Ta ble 20.5.

TABLE 20.5 New Tags Discussed in Lesson 20

Tag Attribute Description

<base target="window"> Sets the global link window for a document.

<iframe> Defines an inline frame.

src Indicates the URL of the document to be dis-
played in the frame.

srcdoc Provides the HTML source to be displayed in the
frame.

name Indicates the name of the frame for the purpose
of linking and targeting.

width Indicates the width of the frame in pixels.

height Indicates the height of the frame in pixels.

sandbox Enables extra restrictions for the content of the
frame. Possible values include allow-forms,
allow-pointer-lock, allow-popups, allow-
same-origin, allow-scripts, and allow-
top-navigation. If none are listed, all
restrictions apply.

ptg16476052

572 LESSON 20: Working with Frames and Linked Windows

Workshop
As if you haven’t had enough already, here’s a refresher course of questions, quizzes, and

exercises that will help you remember some of the most important points you learned in

this lesson.

Q&A
Q Is there any reason why you should sandbox iframe content from your own

server?

 A The decision to sandbox content shouldn’t be made based on where the content is

coming from, but rather how reliable and trustworthy you find the source. If you

are posting your pages to a shared domain, you might have no knowledge of the

designers of another site on that domain. Sandboxing helps you maintain security.

Q What if I use the <frame> tag anyway?

 A Most browsers still support frames, so your content will still work. However, it is

considered poor form. And with iframes and CSS, there are many options that don’t

have the drawbacks of frames while providing the same functionality.

Quiz
1. Where does the keyword _self take readers if they click a link with that target?

2. If you want a link to open in a named iframe, what attribute do you need to use?

3. When a web page includes the <frameset> element, what element cannot be used

at the beginning of the HTML document?

4. What attribute of the <iframe> tag provides security for the reader and the website

loading the content?

Quiz Answers
1. The _self target is the default action for a link. The link will open in the same

browser context as the link itself.

2. The target attribute of the <a> tag directs linked pages to load into the appropriate

iframe.

3. When a web page includes the <frameset> element, it cannot include the <body>

element at the beginning of the page. They’re mutually exclusive. And this is why

frames are no longer part of HTML5.

4. The sandbox attribute provides some security for the reader and the website by put-

ting restrictions on what the iframe content can do.

ptg16476052

Workshop 573

20

Exercises
1. Create an iframe that links to another page on your website. Size it so that it fits in

the main content area of your page.

2. For the preceding frameset, create a page that you will use for a table of contents

beside the frame. Create two links in the table of contents that open in the inline

frame.

ptg16476052

This page intentionally left blank

ptg16476052

LESSON 21
Designing for the
Mobile Web

In this lesson we will move away from the desktop computer that you
are used to using and look at how your customers are using web pages
on mobile devices. As you learned in Lesson 16, “Using Responsive
Web Design,” more and more people are moving to mobile to consume
Web-based content. And if your designs are stuck in the 20th century—
focused on desktop computers—your customers will find some other site
to visit that better meets their needs.

With everything you’ve learned in this book so far, you could easily
set it down and start building an amazing website. Your site would be
responsive to mobile customers, have beautiful CSS layouts, and be
well designed using the most up-to-date HTML tags and attributes. But
if you continue reading, you will learn the techniques and tricks that the
best Web designers know—the ones that make a site not just good but
amazing.

This lesson covers mobile Web design best practices, including the
following:

n How browsing habits on mobile differ from desktop

n Standards for writing mobile web pages

n How to write for mobile and online customers

n Designing pages and layout for mobile

n Optimizing your content

n Other habits you should get into for mobile web design

ptg16476052

576 LESSON 21: Designing for the Mobile Web

People Browse Differently on Mobile
Phones
The first thing you should be aware of when considering designing for mobile devices is

that the way people browse the Web on mobile phones is very different from how they

browse the Web on their computers. They are more likely to know exactly what they are

looking for, and once they find it they will take action. Consumers use mobile to access

local information, stay up-to-date, buy products, and purchase music and video. If you

think about how you use your phone, that is probably true for you as well. I know that

it’s definitely true for me.

In a study from Google, it was found:

n Mobile users visited search engines, social networking, retail, and video sharing

sites.

n Nine out of ten smartphone searches ended with them either buying something or

visiting a business.

n Nearly 80% of smartphone consumers use their phones to help with shopping.

n More than 90% of all smartphone users have searched for local information.

n And after searching, most take action within one day.

This study was done in 2011, but the numbers continue to rise. What you should consider

is that mobile customers are task oriented. They usually have come to your site for a spe-

cific purpose. And unlike desktop browsers, that task is often to buy something. If they

can’t make that task happen, they will quickly go elsewhere.

That means that your site needs to be optimized for mobile customers. You want to give

them what they want as quickly and painlessly as you can so they never feel the need to

go to some other site.

The only caveat to this is location. If your business runs out of a country where mobile

device usage is even more prevalent than it is in the United States, then you will have

even more need to create a site that works well on mobile. Ultimately, whether your site

is based in the United States, Australia, Africa, or somewhere else, mobile devices are

growing more and more popular, and your website will suffer if it doesn’t cater to them.

ptg16476052

Standards Compliance and the Mobile Web 577

21

Standards Compliance and the Mobile
Web
You might think you don’t need to worry about standards compliance. After all, most

people use a modern web browser, and mobile users upgrade their phones every 1 to 2

years, right? To some extent, that is true. The standards have come together in a way they

never had in the past, with browser makers working together along with web designers to

develop techniques that actually work—both for the browsers and the people building the

pages.

Currently, browser makers are working together to a greater extent than ever before. The

current versions of Internet Explorer/Edge, Firefox, Safari, Chrome, and Opera all offer

strong standards support, and the browsers for popular mobile phones are based on the

same codebase as their desktop brethren. Given the strong standards support in current

browsers, the biggest question most developers face is how they want to deal with older

feature phones that don’t display web pages very well.

And even though most mobile browsers support the same HTML and CSS as desktop

browsers, they still differ in terms of capabilities. The most obvious example is the size.

Even the largest tablet, phablet, or oversized phone screen is smaller than most desktop

monitors. But mobile devices aren’t more limited than desktop or tablet computers. Their

capabilities are different. For example, most desktop computers don’t offer geolocation,

and even if they do, it’s not particularly useful, as you don’t see people lugging 30-inch

screens around with them. The ability to “click to call” is starting to get implemented on

some computers with the use of Skype and other Internet calling services. But in general

that is a phone-only feature.

Progressive Enhancement
Progressive enhancement is a popular approach to creating web pages. It describes an

approach that enables web designers to use the latest and greatest technology available

without leaving people using browsers with different capabilities behind. The idea is that

you start with simple but completely functional web pages and then layer on enhance-

ments that add to the experience. This should also help you stop considering mobile

devices as somehow inferior to computers. After all, if you’re building a web scavenger

hunt game, the person with the desktop computer will be at more of a disadvantage than

the one with the smartphone in her pocket.

You’ll want to start with valid, standards-compliant HTML when you’re creating web

pages. This means HTML5. Your initial pages should consist only of HTML markup

with no JavaScript or CSS, and they should look fine and work properly. All of your

ptg16476052

578 LESSON 21: Designing for the Mobile Web

navigation should be present and should work properly, but it won’t be pretty (no CSS,

remember?). Your main page content should be visible. In other words, you should start

out with a fully functional, very plain website. This ensures that your site will work for

even the most rudimentary browsers and for assistive technology like screen readers.

Taking this approach also ensures that your markup reflects the content of your site rather

than how you want to present it.

Once that is complete, you can start layering on the more advanced functionality. First,

implement the visual design for your website using CSS. As you learned in Lesson 16,

you should focus on mobile-first designs and use media queries to affect how the pages

are displayed to different size devices. Later on in this lesson I’ll go into the specifics for

designing things like layout, where to place navigation, and dealing with images and text.

Given the robust support for CSS in the current browsers, there should be no need to

use HTML to define the appearance of your website. You might find you need to add

container elements to your page that provide the necessary structure for your styles. For

example, if your page layout is split into columns for larger screens, it will be necessary

to add <div> tags for the contents of each column. Fortunately, such tags do not create

visual differences unless they are styled, so your page’s appearance will not be altered for

users who don’t have CSS support.

Finally, add dynamic technology like JavaScript or Flash. Back in Lesson 19, “Using

JavaScript in Your Pages,” I discussed unobtrusive JavaScript. That approach comple-

ments progressive enhancement. When you add JavaScript to the page, make sure the

page provides some minimum level of functionality without the JavaScript, and then use

JavaScript to enhance that baseline functionality. For example, if your page includes col-

lapsed elements that can be expanded with JavaScript, make sure to start out with them

expanded on the page, and then collapse them when the page loads using JavaScript. That

way, content will not be permanently hidden from users who don’t have JavaScript.

This is what progressive enhancement is all about. It ensures that everyone with a

browser of any kind will be able to view your site, while the site still provides an

enhanced experience for those who can benefit from it.

Validating Your Pages
One way to be sure that your pages will have a good base for mobile devices is to make

sure that the HTML (and CSS and JavaScript) is written well, or valid. This removes one

place where your pages might get into trouble—if you know the HTML is valid, then you

 can look elsewhere to figure out why something isn’t working.

It’s all well and good to attempt to write valid pages, but how do you know whether

you’ve succeeded? It’s easy enough to determine whether your pages look okay in your

ptg16476052

Standards Compliance and the Mobile Web 579

21

browser, but verifying that they’re valid is another matter. Fortunately, the W3C, which

is responsible for managing the HTML recommendations , also provides a service to

validate your pages. It’s a web application that enables you to upload an HTML file

or to validate a specific URL to any W3C recommendation. The URL is http://

validator.w3.org/.

Figure 21.1 is a screenshot of the validator in action. I’ve sent it off to validate https://

www.pearson.com/.

When I validate the page, I can see that there are ten messages from the validator: two

info messages, four warnings, and four errors. The first two messages tell me about how

the validator is working. I learn that it used the HTML parser because it detected the

page was in HTML. Then I learned that it was using the schema for HTML with support

for a few other languages like MathML and SVG. The warnings are messages that indi-

cate lines in your code that you should be aware of. They are not saying that your code

is wrong or that you should rewrite it, but rather that you might be using an unnecessary

attribute or something similar.

The messages you want to pay attention to are the errors. Figure 21.2 shows the sixth

message, an error, on the Pearson site validation .

FIGURE 21.1

The W3C Validator
validating
Pearson.com.

http://validator.w3.org/
http://validator.w3.org/
https://www.pearson.com/
https://www.pearson.com/

ptg16476052

580 LESSON 21: Designing for the Mobile Web

As you can see, the first line is the error. In this case, it’s that the button tag has an

illegal attribute, href, assigned to it. Then the validator gives you the line number in the

HTML and even the column number where the error was found. Below that the problem

tag is highlighted in yellow. Finally, if possible, the validator shows you the relevant

part of the specification—in this case, listing the attributes that are valid on the button

tag. This makes it easy to go through your page line by line and fix the problems that are

found.

After you’ve fixed all the errors, the only messages your site will get will be the two

informational messages, as you can see in Figure 21.3.

FIGURE 21.2

The W3C Validator
validating
Pearson.com.

ptg16476052

Writing for the Mobile Web 581

21

Writing for the Mobile Web
Writing on the mobile Web is no different from writing in the real world. Although it’s

not committed to hard copy, it’s still published and is still a reflection of you and your

work. In fact, because your writing is online and your visitors have many other options

when it comes to finding something to read, you’ll have to follow the rules of good writ-

ing that much more closely.

Because of the vast quantities of information available on the Web, your visitors aren’t

going to have much patience if your web page is poorly organized or full of spelling

errors. They’re likely to give up after the first couple of sentences and move on to some-

one else’s page. After all, there are several million pages out there. No one has time to

waste on bad pages.

I don’t mean that you have to go out and become a professional writer to create a good

web page, but I give you a few hints for making your web page easier to read and under-

stand as well as some tips for optimizing your writing for mobile devices.

FIGURE 21.3

The W3 Validator
acknowledges a job
well done.

ptg16476052

582 LESSON 21: Designing for the Mobile Web

Write Clearly and Be Brief
Unless you’re writing the Great American Web Novel, your visitors aren’t going to linger

lovingly over your words. You should write as clearly and concisely as you possibly can,

present your points, and then stop. Obscuring what you want to say with extra words just

makes figuring out your point more difficult.

Mobile readers don’t have a large screen to read from, and they often don’t have a lot of

time to read long form content, nor do they typically have the desire. Web pages written

for mobile customers need to be as short as possible. Think in terms of screen chunks.

Try to get the majority of your point across in the first screen worth of text—this could

be the first 200 words or fewer.

If you don’t have a copy of Strunk and White’s The Elements of Style , put down this

book right now and go buy that book. Read it, reread it, memorize it, inhale it, sleep with

it under your pillow, show it to all your friends, quote it at parties, and make it your life.

You’ll find no better guide to the art of good, clear writing than The Elements of Style.

Organize Your Pages for Quick Scanning
Even if you write the clearest, briefest, most scintillating prose ever seen on the Web,

chances are good that your visitors won’t start at the top of your web page and carefully

read every word down to the bottom.

In this context, scanning is the first quick look your visitors give to each page to get the

general gist of the content. Depending on what your users want out of your pages, they

may scan the parts that jump out at them (headings, links, other emphasized words),

perhaps read a few contextual paragraphs, and then move on. By writing and organizing

your pages for easy “scannability,” you can help your visitors get the information they

need as quickly as possible.

To improve the scannability of your web pages, follow these guidelines:

n Don’t bury important information in text—If you have a point to make, make

it close to the top of the page or at the beginning of a paragraph. Forcing readers

to sift through a lot of information before they get to what’s important means that

many of them won’t see the important stuff at all.

n Use headings to summarize topics—Note that this book has headings and sub-

headings . You can flip through quickly and find the parts that interest you. The

same concept applies to web pages.

n Use lists—Lists are wonderful for summarizing related items. Every time you

find yourself saying something like “each widget has four elements” or “use the

following steps to do this,” the content after that phrase should be in an ordered or

unordered list.

ptg16476052

Writing for the Mobile Web 583

21

n Don’t forget link menus—As a type of list, the link menu has all the same advan-

tages of lists for scannability, and it doubles as an excellent navigation tool.

n Write short, clear paragraphs—Long paragraphs are harder to read and make

gleaning the information more difficult. The further into the paragraph you put your

point, the less likely it is that anybody will read it.

The most important thing to remember when writing for mobile is the first guideline. Put

the most important information first. Mobile readers won’t sift through, and they aren’t

very likely to even scroll to scan the whole page. If they don’t find what they are looking

for on the first screen full of text, they will hit the back button and be gone.

Make Each Page Stand on Its Own
As you write, keep in mind that your visitors could jump to any of your web pages from

anywhere. For example, you can structure a page so that section four distinctly follows

section three and has no other links to it. Then someone you don’t even know might cre-

ate a link to the page starting at section four. From then on, visitors could find themselves

at section four without even knowing that section three exists.

Be careful to write each page so that it stands on its own. The following guidelines will

help:

n Use descriptive titles—The title should provide not only the direct subject of this

page, but also its relationship to the rest of the pages on the site.

n Provide a navigational link—If a page depends on the one before it, provide a

navigational link back to that page (and a link up to the top level, preferably).

n Avoid initial sentences such as the following—“You can get around these prob-

lems by…,” “After you’re done with that, do this…,” and “The advantages to this

method are….” The information referred to by these, that, and this are off on some

other page. If these sentences are the first words your visitors see, they’re going to

be confused.

As I’ve said previously, you should also focus on keeping the first screen full of content

the most relevant. In other words, to optimize your content for mobile, you should focus

on making each section of each page standalone. And the first part of any page is the

most important.

Be Careful with Emphasis
Use emphasis sparingly in your text. Paragraphs with a whole lot of words in boldface or

italics or ALL CAPS are hard to read, whether you use them several times in a paragraph

or to emphasize long strings of text.

ptg16476052

584 LESSON 21: Designing for the Mobile Web

Link text also is a form of emphasis . Use short phrases for link text, but as you’ll see

later in this lesson, avoid making links too short—two to three words is best. By remov-

ing some of the boldface and using less text for your links, you can considerably reduce

the amount of clutter on your pages.

Be especially careful of emphasis that moves or changes, such as marquees, blinking text,

or animation. Unless the animation is the primary focus of the page, use movement and

sound sparingly.

Don’t Use Browser-Specific Terminology
Avoid references in your text to specific features of specific browsers. For example, don’t

use the following wording:

n “Click here”—Users of smartphones and tablets tap on links. A more generic

phrase is “Follow this link.”

n “To save this page, pull down the File menu and select Save”—Most mobile

devices don’t work that way, and some don’t even allow you to save files to the

device. Even desktop browsers have different menus and different ways of accom-

plishing the same actions. If at all possible, do not refer to specifics of browser

operation in your web pages.

n “Use the Back button to return to the previous page”—Each browser has a dif-

ferent set of buttons and different methods for going back. If you want your visitors

to be able to go back to a previous page or to any specific page, link those pages.

It’s also not a good idea to assume you know what mobile device they are using. Many

Android users get offended i f a website assumes they are on an iPhone and vice versa.

Many smartphones have such large resolutions they appear to be tablets, and many tab-

lets masquerade as laptop computers. By avoiding any reference to specific technology in

your writing, you avoid the mistakes that would come with that.

Spell Check and Proofread Your Pages
Spell checking and proofreading may seem like obvious suggestions, but they bear

mentioning given the number of pages I’ve seen on the Web that obviously haven’t had

either .

The process of designing a set of web pages and making them available on the Web is

like publishing a book, producing a magazine, or releasing a product. Publishing web

pages is considerably easier than publishing books, magazines, or other products, of

course, but just because the task is easy doesn’t mean your product should be sloppy.

ptg16476052

Design and Page Layout 585

21

Thousands of people may be reading and exploring the content you provide. Spelling

errors and bad grammar reflect badly on you, on your work, and on the content you’re

describing. It may be irritating enough that your visitors won’t bother to delve any deeper

than your home page, even if the subject you’re writing about is fascinating. If you don’t

believe me, just do a quick Internet search on annoying grammar mistakes to see how

many people complain about grammar errors online.

Proofread and spell check each of your web pages. Remember that the spelling and gram-

mar checking tools available aren’t perfect. It’s common to see homophones—words that

sound the same but are spelled differently—used on web pages incorrectly. If possible,

have someone else read your writing. Often other people can pick up errors that you, the

writer, can’t see. Even a simple edit can greatly improve many pages and make them

 easier to read and navigate.

Design and Page Layout
Probably the best rule of web design to follow at all times is this: Keep the design of each
page as simple as possible. Reduce the number of elements (images, headings, and para-

graphs), and make sure that visitors’ eyes are drawn to the most important parts of the

page first.

Remember that mobile devices come in all different shapes and sizes with different levels

of quality and different resolutions. Some devices support zooming in and out on content,

and some don’t. Many feature phones can access the Web but cannot scroll horizontally.

By keeping your design simple, more devices will be able to view your pages.

Keep this cardinal rule in mind as you read the next sections, which offer some other sug-

gestions for basic design and layout of web pages.

Use Headings as Headings
Headings tend to be rendered in larger or bolder fonts in graphical browsers. Therefore,

using a heading tag to provide some sort of warning, note, or emphasis in regular text can

be tempting, but this is just another form of emphasis.

Headings stand out from the text and signal the start of new topics, so they should be

used only as headings. Some mobile devices and many assistive devices use the headlines

as a page outline. If you really want to emphasize a particular section of text, consider

using CSS to change the background color, add a border, or add a shadow. Remember

that you can use CSS to change the color, background color, font size, font face, and bor-

der for a block of text.

ptg16476052

586 LESSON 21: Designing for the Mobile Web

Group Related Information Visually
Grouping related information within a page is a task for both writing and design. As I

suggested in the “Writing for the Mobile Web” section, grouping related information

under headings improves the scannability of that information. Visually separating each

section from the others helps to make it distinct and emphasizes the relatedness of the

information.

If a web page contains several sections, find a way to separate those sections visually—

for example, with a heading, a border, or tables.

Use a Consistent Layout
When you’re reading a book, each page or section usually has the same layout. The page

numbers are placed where you expect them, and the first word on each page starts in the

same place.

The same sort of consistent layout works equally well on web pages. Having a single

look and feel for each page on your website is comforting to your visitors. After two or

three pages, they’ll know what the elements of each page are and where to find them.

If you create a consistent design, your visitors can find the information they need and

navigate through your pages without having to stop at every page and try to find where

certain elements are located.

Consistent layout can include the following:

n Consistent page elements—If you use second-level headings (<h2>) on one page

to indicate major topics, use second-level headings for major topics on all your

pages. If you have a heading and a rule line at the top of your page, use that same

layout on all your pages.

n Consistent forms of navigation—Put your navigation menus in the same place on

every page (usually the top or the bottom of the page, or even both), and use the

same number of them. If you’re going to use navigation icons, make sure that you

use the same icons in the same order for every page.

n The use of external style sheets—You should create a master style sheet that

defines background properties, text and link colors, font selections and sizes, mar-

gins, and more. The appearance of your pages maintains consistency throughout

your site.

But remember that consistency doesn’t mean identical. If you have a pull-out navigation

for mobile devices, that doesn’t mean that larger screens must also have a pull-out navi-

gation. But the navigation that small screens see should have access to the same informa-

tion that the larger screen navigation has.

ptg16476052

Using Links 587

21

Using Links
Without links, web pages would be really dull, and finding anything interesting on the

Web would be close to impossible. In many ways, the quality of your links can be as

important as the writing and design of your actual pages. Here’s some friendly advice on

creating and using links for mobile design.

Mobile Users Tap; They Don’t Click
This is an important distinction when you’re working on your links, for more than just

the words you use, as I mentioned previously. Tapping a screen is a different action than

clicking and can have different results. For example, it’s difficult to “click and drag” on a

smartphone. And “tap and drag,” if it does anything, often does something different. You

also can’t “right-click” a smartphone.

But more important, tapping requires that people use their fingers or a stylus to touch

your web page. If the items they touch are too difficult, this can result in a lot of frustra-

tion. Some of the most frustrating things a Web designer can do with his links include the

following:

n Put too many links too close together. The closer links are to one another, the more

likely it is that the customer will tap on the wrong item.

n Linking just one word. When the links are small, they are also hard to tap, and

single-word links, although they might look more interesting on the page, are

difficult for mobile users to tap.

n Links that move. As I’ve said before, mobile users are coming to your site to take

some form of action. When they see the link they want, they tap it immediately. If

the link moves for any reason—such as if the page continues to load content above

it—they may end up tapping on something they didn’t expect.

Test your web pages in a mobile device, not just an emulator. This will give you a better

idea of how tappable your links are.

Use Link Menus with Descriptive Text
As I’ve noted throughout this book, using link menus is a great way of organizing your

content and the links on a page. If you organize your links into lists or other menu-like

structures, your visitors can scan their options for the page quickly and easily.

Just organizing your links into menus might not be enough, however. Make sure that

your descriptions aren’t too short. For example, using menus of filenames or other mar-

ginally descriptive links in menus can be tempting, but if your readers don’t know what

ptg16476052

588 LESSON 21: Designing for the Mobile Web

they are going to get, they aren’t going to tap on the link. A better plan is to provide

some extra text describing where the link goes.

Use Links in Text
The best way to provide links in text is to first write the text as if it isn’t going to have

links at all—for example, as if you were writing it for hard copy. Then you can highlight

the appropriate words that will link to other pages. Make sure that you don’t interrupt

the flow of the page when you include a link. Once the text is linked, it will stand on its

own in most designs. That way, the links provide additional or tangential information that

your visitors can choose to follow or ignore at their own whim. Don’t be shy about what

you link; longer links are much easier to tap than shorter ones.

Probably the easiest way to figure out whether you’re creating links within text properly

is to print out the formatted web page from your browser. In hard copy, without hyper-

text, does the paragraph still make sense? If the page reads funny on paper, it’ll read

funny online, too.

Avoid the “Here” Syndrome
A common mistake that many web authors make when creating links in body text is

using the “here” syndrome. This is the tendency to create links with a single highlighted

word (here) and to describe the links somewhere else in the text. Look at the following

examples, with underlining to indicate link text:

Information about ostrich socialization is contained here.
Follow this link for a tutorial on the internal combustion engine.

Because links are highlighted on the web page, the links visually pop out more than the

surrounding text (or draw the eye, in graphic design lingo). Your visitors will see the link

before reading the text.

So the first thing they see in those two lines are “here” and “link.” Because “here” says

nothing about what the link is used for, your poor visitors have to search the text before

and after the link itself to find out what’s supposed to be “here.” In paragraphs that have

many occurrences of here or other nondescriptive links, matching up the links with what

they’re supposed to link to becomes difficult. This forces your visitors to work harder to

figure out what you mean.

Plus, these links are just one word long. As mentioned several times, short links are dif-

ficult to tap. Here is an example of how you could rewrite those lines to make the links

more mobile friendly and easier to understand:

Get more information about ostrich socialization.
This is a great tutorial on the internal combustion engine.

ptg16476052

Using Links 589

21

Both of these links are longer, which makes them easier to tap. They are also more

descriptive, which gives the user a better understanding of where they are going to go.

To Link or Not to Link
Just as with graphics, every time you create a link, consider why you’re linking two

pages or sections. Is the link useful? Does it give your visitors more information or bring

them closer to their goal? Is the link relevant in some way to the current content?

Each link should serve a purpose. Just because you mention the word coffee on a page

about some other topic, you don’t have to link that word to the coffee home page.

Creating such a link may seem cute, but if a link has no relevance to the current content,

it just confuses your visitors.

The following list describes some of the categories of useful links in web pages. If your

links don’t fall into one of these categories, consider the reasons why you’re including

them in your page:

n Explicit navigation links indicate the specific paths that visitors can take through

your web pages: forward, back, up, and home. These links are often indicated by

navigation icons, as shown in Figure 21.4.

n Implicit navigation links (see Figure 21.5) are different from explicit naviga-

tion links because the link text implies, but does not directly indicate, navigation

between pages. Link menus are the best example of this type of link. The highlight-

ing of the link text makes it apparent that you’ll get more information on this topic

by selecting the link, but the text itself doesn’t necessarily say so. Note the major

difference between explicit and implicit navigation links: If you print a page con-

taining both, you won’t be able to pick out the implicit links.

Implicit navigation links also can include tables of contents or other overviews

made up entirely of links.

FIGURE 21.4

Explicit navigation
links.

ptg16476052

590 LESSON 21: Designing for the Mobile Web

n Definitions of words or concepts make excellent links, particularly if you’re creat-

ing large networks of pages that include glossaries. By linking the first instance of

a word to its definition, you can explain the meaning of that word to visitors who

don’t know what it means without distracting those who do. Figure 21.6 shows an

example of this type of link.

n Finally, links to tangents and related information are valuable when the text content

will distract from the main purpose of the page. Think of tangent links as footnotes

or endnotes in printed text (see Figure 21.7). They can refer to citations to other

works or to additional information that’s interesting but isn’t necessarily directly

relevant to the point you’re trying to make.

FIGURE 21.5

Implicit navigation
links.

FIGURE 21.6

Definition links.

FIGURE 21.7

Footnote links.

ptg16476052

Using Images and Multimedia 591

21

Be careful that you don’t get carried away with definitions and tangent links. You might

create so many tangents that your visitors spend too much time following links elsewhere

to get the point of your original text. Resist the urge to link every time you possibly can,

and link only to tangents that are relevant to your own text. Also, avoid duplicating the

same tangent—for example, linking every instance of the letters WWW on your page to

the WWW Consortium’s home page. If you’re linking twice or more to the same location

on one page, consider removing most of the extra links. Your visitors can select one of

the other links if they’re interested in the information.

Using Images and Multimedia
In Lesson 9, “Using Images on Your Web Pages,” you learned all about creating and

using images in web pages. And in Lesson 14, “Integrating Multimedia: Video and

Sound,” you learned all about how to add video and audio files into your web pages. This

section summarizes many of those hints and gives suggestions for optimizing them for

mobile users.

Don’t Overuse Images
Be careful about including a large number of images on your web page. Besides the fact

that each image adds to the amount of time it takes to load the page, having too many

images on the same page makes it look cluttered and distracts from the point you’re try-

ing to get across. This is especially true for mobile customers. Sometimes, though, people

think that the more images they include on a page, the better it is. Remember the hints I

gave you in Lesson 9. Consider how important each image really is before you put it on

the page. If an image doesn’t directly contribute to the content, consider leaving it out.

Often one feature image per page is enough to get the point across.

Keep Images Small
Keep in mind that each image you use is a separate network connection and takes time

to load over a network. This means that each image adds to the total time it takes to view

the page, and data minutes deducted from your mobile customers’ download limits. Try

to reduce the number of images on the page, and keep them small both in file size and in

actual dimensions. In particular, keep the following hints in mind:

n For larger images, consider using thumbnails on your main page and then linking to

the images rather than putting them inline.

n Save your image in both the PNG and GIF formats to see which creates a smaller

file for the type of image you’re using. You might also want to increase the level of

compression for your JPEG images or reduce the number of colors in the palette of

ptg16476052

592 LESSON 21: Designing for the Mobile Web

the GIF images to see whether you can save a significant amount of space without

adversely affecting image quality.

n You can reduce the physical size of your images by cropping them (using a smaller

portion of the overall image) or scaling (shrinking) them. When you scale an

image, you might lose some of the detail.

Remember that reducing the size of your images using the height
and width CSS properties or the height and width attributes of
the tag only makes them take up less space on the page;
it doesn’t affect the size of the image file or the download speed .

CAUTION

Watch Out for Assumptions About Your Visitors’
Hardware
Many web designers create problems for their visitors by making a couple of careless

assumptions about their hardware. When you’re developing web pages, be kind and

remember that not everyone has the same screen and browser dimensions as you do.

Just because that huge image you created is narrow enough to fit in your browser doesn’t

mean that it’ll fit in someone else’s. An image that’s too wide is annoying because the

visitors need to resize their windows or scroll sideways.

Most developers limit the overall width of their pages to 750 pixels or 950 pixels, and

for the sake of readability, limit the width of containers used to display text to 500 or 600

pixels. Pages meant to be displayed on mobile devices need to be even smaller.

Don’t Make Your Videos Annoying
The same rules about file sizes and download times apply to videos and other multimedia

just as much as images. While you might want to film your videos in HD or 4K or some

huge resolution, most of your mobile customers will just find it annoying if you expect

them to download a gigantic file on their data plan.

But there are other so-called features that web designers often add to their videos that

are particularly annoying to mobile users. Setting a video to play automatically when the

page loads annoys just about everyone who comes to the page. This is especially true if

the sound is turned on. That means that that wonderful sound file you added as “back-

ground music” to your web page does more than set the mood—it drives people away.

But multimedia can also annoy mobile users when you try to speed things up for them

by preloading the files. This is a very tempting technique because many Web designers

ptg16476052

Making the Most of CSS and JavaScript 593

21

believe that if the video doesn’t start within a few seconds the customer will disappear.

That might be true for nonmobile customers, but it’s not true for mobile. For one thing,

most mobile customers know that they will have to wait at least a short time to watch

videos on their devices. But also, when you start downloading a video that they haven’t

requested, you are, in effect, stealing their bandwidth. You are forcing them to use data

minutes for a file they might not even want.

One popular technique on the Web right now is a video background. And while you can

do that with CSS, you risk driving away your customers if your page is too distracting.

But more important, this is also downloading a video file that your mobile customers then

have to pay for without requesting it. There’s nothing stopping you from creating a video

background, but they can annoy your customers, and annoying your customers turns them

into ex-customers.

Avoid Flash
Depending upon who you ask, Flash is either the best thing to ever happen to the Web

or the worst. Regardless of which side of the fence you fall on, you should be aware that

mobile and Flash simply don’t mix.

Apple has never supported Flash on its iOS devices, and Google stopped doing much

with it for its Android devices after a year or two. The final nail in the coffin came when

Adobe, the makers of Flash, announced in 2011 that it was no longer adapting Flash

Player for mobile devices.

The majority of mobile devices can’t use Flash, so you should not use Flash either.

Making the Most of CSS and JavaScript
Web design these days is about minimal markup, styled using CSS. Sticking with the

following rules of thumb will make sure that your sites load quickly and efficiently on

mobile devices as well as computers.

Put Your CSS and JavaScript in External Files
Nearly all browsers maintain a cache of recently loaded content. The more content on

your site that can be cached, the more quickly pages on your site after the first one will

load. You should put your styles in external style sheets and your JavaScript in linked

scripts whenever you can. Linked files will be cached when users first visit your site and

then will be retrieved from the cache on subsequent page views.

There are also advantages to this approach in terms of saving you time. If the styles for

each page on your site live in <style> tags on those pages, you have to update every

ptg16476052

594 LESSON 21: Designing for the Mobile Web

page when you decide to make a change. It’s much easier to make those changes in an

external style sheet.

You can even include styles for specific pages in a single external style sheet if you use

the class and id attributes cleverly. The <body> tag for a page can have a class or id, just

like any other element. So if you want the pages in the news section of your site to have

one background color and the pages in the “about us” section to have another, you could

use this <body> tag for “about us”:

<body class="aboutus">

For news, you’d use this one:

<body class="news">

And then in your style sheet, you’d include the following styles:

body.aboutus { background-color: black; }
body.news { background-color: grey; }

The same rule applies to JavaScript, too. If you’d use unobtrusive JavaScript, discussed

in Lesson 19, you can often put all the JavaScript for a site in a single file.

Location Matters
HTML5 requires links to external style sheets and the <style> tag to reside within the

<head> element. You should be sure to follow this rule, because placing style sheets

elsewhere in your document can cause your pages to take longer to display. By the same

token, whenever possible, it’s best to put <script> tags at the bottom of your document,

just before the closing </body> tag. JavaScript loads in a single thread, which means

when browsers are downloading an external script file, they don’t try to download other

page elements. This can slow down overall page loading time. Putting the scripts last on

the page enables JavaScript to download everything else on the page in parallel before it

gets to the scripts. It can make your pages load a bit more quickly.

Shrink Your CSS and JavaScript
Once you’re done writing your CSS and JavaScript, it’s a good idea to compress them so

that they download more quickly. Yahoo! has created a tool called the YUI Compressor

that shrinks JavaScript and CSS to the smallest size possible. The resulting files aren’t

really readable by humans, but browsers understand them just fine. You’ll work on your

files in the human-readable form, but shrink them before putting them on the server.

Shrinking these files can save on download time. This shrinking is sometimes referred

to as minifying. You can download the YUI Compressor from http://yui.github.io/

yuicompressor/.

http://yui.github.io/yuicompressor/
http://yui.github.io/yuicompressor/

ptg16476052

Take Advantage of Mobile Features 595

21

If you use third-party libraries like jQuery, be sure to deploy the minified versions. Your

JavaScript files and style sheets might not be very big, but these libraries can be quite

large. For example, the regular version of jQuery 1.4.2 is 160k, and the minified version

is 70.5k. Most JavaScript libraries can be downloaded in either the regular or the minified

form.

Google hosts versions of the popular AJAX libraries (like jQuery, Dojo, and YUI) so that

you don’t have to host them on your own server. This provides a number of advantages.

The first is that you don’t have to keep your own copy around. The second is that Google’s

infrastructure speeds up the delivery of these files. And third, if one of your users has

already visited a site that is using the Google-hosted version of the file you’re using, it’s

probably already cached so that the browser won’t have to download it at all. You can find

out how to use Google’s copies of the files at https://developers.google.com/speed/

libraries/.

Take Advantage of Mobile Features
Mobile devices are not inferior Web browsers; they are different web browsers. And as

such, they have features that are not available on computer web browsers. When you

write for the mobile Web, you should take advantage of these features as much as you

can.

Geolocation
Geolocation lets users share their location with websites they trust. This is a feature of

mobile devices that, while available on nonmobile devices, doesn’t make a lot of sense

there. HTML5 includes a geolocation application programming interface (API) to let

web designers detect where a user is when he accesses the website. You can then use that

information to provide more help to your customers.

As mentioned previously in this lesson, most mobile users use their smartphones to look

up local information. This often means that they want to know where a local business is

or find out whether there are special deals near where they currently are.

You can use geolocation on your website to do the following:

n Set up check-in links for your customers to connect to social media sites.

n Send notifications to customers when they are near your store.

n Provide maps to and from your business.

But while most desktop computers don’t move around a lot, you shouldn’t discount them

when building your web applications. Getting their location could be helpful, even if they

https://developers.google.com/speed/libraries/
https://developers.google.com/speed/libraries/

ptg16476052

596 LESSON 21: Designing for the Mobile Web

never move. For example, in the near future a Web-enabled refrigerator might be able to

connect to your site, place an order for more milk, and send you its location using geolo-

cation.

Make Phone Calls
While the first mobile devices were really PDAs or palmtops (my dad and I both had HP

200LX palmtop computers back in the 1980s), most people think of cell phones as the

first mobile devices. And phones are how most people get to the mobile Web. Of course,

a feature of phones is that they can make phone calls. And, as a mobile web designer,

you can add phone numbers to your website and make them work. This is called click to
call.

You write a link like you would any other link, but instead of linking to a URL or web

page address, you link to a phone number:

On mobile phones, when customers tap the link, they are asked if they want to make a

call, as in Figure 21.8.

FIGURE 21.8

Click to call.

ptg16476052

Other Good Habits and Hints for Mobile Web Design 597

21

Of course, desktop browsers are catching up with this feature as well. Apple will open

Facetime (voice) when presented with a click to call link. And other computers can link

to Skype and other Internet phone services. So maybe nonmobile will be catching up

soon.

SMS
One advantage that mobile devices have over computers is that mobile phones can also

send SMS or text messages, but most nonmobile devices cannot.

Apple has connected all its machines, but if you don’t have an
iPhone on the same network as your Mac, you can’t send SMS
text messages using it.

NOTE

But as a mobile web designer, you can give your mobile customers a link to send you a

text message. It works the same way as the phone links:

When a user clicks on the link, she is taken to her messaging app with the phone number

as the recipient.

Other Good Habits and Hints for Mobile
Web Design
In this section, I’ve gathered several other miscellaneous hints and advice about building

mobile websites.

Link Back to Home
Consider linking back to the top level or home page on every page of your site. This link

will give visitors a quick escape from the depths of your site. Using a home link is much

easier than trying to navigate backward through a hierarchy or repeatedly clicking the

back button. This is especially important because visitors to most sites are directed there

by search engines. If a search engine leads users to an internal page on your site, you’ll

want to give them a way to find their way to the top. The easiest way to do this is to link

your logo to the home page. People tend to tap on images anyway, so if your logo image

takes them to your home page, you haven’t lost them.

ptg16476052

598 LESSON 21: Designing for the Mobile Web

Don’t Split Topics Across Pages
Each web page works best if it covers a single topic in its entirety. Don’t split topics

across pages; even if you link between them, the transition can be confusing. It will

be even more confusing if someone jumps in on the second or third page and wonders

what’s going on.

Plus, it’s really common to see long documents or search results pages or the like with

links that are single-digit numbers. These are way too short to tap on a mobile device. If

you must have this type of pagination on a site, make the links large with CSS padding

and then set the entire link to display:block; or display:inline-block;. This will tell

the browser to make the entire box, including padding, tappable on smaller screens.

If you think that one topic is becoming too large for a single page, consider reorganizing

the page so that you can break up the topic into subtopics. This tip works especially well

in hierarchical organizations. It enables you to determine the exact level of detail that

each level of the hierarchy should go and exactly how big and complete each page should

be. You can then make the links out of the subtopic titles as long as they are at least two

words long.

Sign Your Pages
Each page should contain some sort of information at the bottom to act as the signature.

I mentioned this tip briefly in Lesson 7, “Formatting Text with HTML and CSS,” as part

of the description of the <address> tag. That particular tag was intended for just this

purpose.

Consider putting the following useful information in the <address> tag on each page:

n Contact information for the person who created this web page or who is responsible

for it. This information should include the person’s name and an email address, at

the least.

n The status of the page. Is it complete? Is it a work in progress? Is it intentionally

left blank?

n The date this page was most recently revised. This information is particularly

important for pages that change often or are time sensitive. Include a date on each

page so that people know how old it is.

n Copyright or trademark information, if it applies.

ptg16476052

Summary 599

21

Another nice touch is to link a Mailto URL to the text containing the email address of the

site owner, as in the following:

<address>
Laura Lemay lemay@lne.com
</address>

This way, the visitors can simply select the link and send mail to the person responsible

for the page without having to retype the address into their mail programs.

One downside of putting your email address on your web page is
that there are programs that search websites for email addresses
and add them to lists that are sold to spammers. You’ll want to
consider that risk before posting your email address on a public
web page.

CAUTION

Finally, if you don’t want to clutter each page with a lot of personal contact information

or boilerplate copyright info, a simple solution is to create a separate page for the extra

information and then link the signature to that page. Here’s an example:

<address>
Copyright and
contact information is available.
</address>

One Final Secret to Mobile Web Design
For the end of this lesson I will let you in on a little secret about mobile web design: It is
not all that different from nonmobile web design. You can apply all of these techniques to

your web pages even if you never have a mobile customer. Your desktop customers will

also benefit. The great thing about focusing on mobile web design is that you are making

your pages easier for everyone to use, not just mobile customers. And that is a good thing

for everyone.

Summary
The main Do’s and Don’ts for mobile web page design are as follows:

n Do use HTML standards like HTML5 and CSS3 when designing for the mobile

Web.

n Do provide fallback options for any feature that might not be supported.

ptg16476052

600 LESSON 21: Designing for the Mobile Web

n Do test your pages in multiple devices.

n Do write your pages clearly and concisely.

n Do organize the text of your page so that your visitors can scan for important infor-

mation.

n Do put the most important information first.

n Do validate your HTML and CSS, and check your JavaScript for errors.

n Do spell check and proofread your pages.

n Do group related information both semantically (through the organization of the

content) and visually (by using headings or separating sections CSS features).

n Do use a consistent layout across all your pages.

n Do use descriptive links.

n Do have good reasons for using links.

n Do make your links large and tappable.

n Do keep your layout simple.

n Do provide alternatives to images for text-only browsers.

n Do use features like geolocation and click to talk that are only available on mobile

devices.

n Do try to keep your images and multimedia small so that they load faster over the

network.

n Do use external CSS and JavaScript files whenever possible.

n Do provide a link back to your home page.

n Do match topics with pages.

n Do provide a signature block or link to contact information at the bottom of each

page.

n Do write context-independent pages.

n Don’t link to irrelevant material.

n Don’t overuse emphasis (such as boldface, italic, all caps, link text, blink, or

marquees).

n Don’t use terminology that’s specific to any one browser or device (“click here,”

“use the Back button,” and so on).

n Don’t use heading tags to provide emphasis.

n Don’t fall victim to the “here” syndrome with your links.

n Don’t autoplay or preload videos or audio files.

ptg16476052

Workshop 601

21

n Don’t link repeatedly to the same site on the same page.

n Don’t clutter the page with a large number of pretty but unnecessary images.

n Don’t split individual topics across pages.

Workshop
Put on your thinking cap again because it’s time for another review. These questions,

quizzes, and exercises will remind you about the items that you should (or should not)

include on your pages.

Q&A
 Q I’ve been creating pages, and they work when I test them in the browser. Is it

really important to validate them?

 A It’s impossible to test your web pages in all of the browsers on all the mobile

devices people are using, and making sure that they validate provides a baseline

level of assurance that your pages are built correctly and that they’ll work in situa-

tions that you haven’t personally tested them with.

 Q I’m converting existing documents into web pages. These documents are text
heavy and are intended to be read from start to finish instead of being scanned
quickly. I can’t restructure or redesign the content to better follow the guide-
lines you’ve suggested—that’s not my job. What can I do?

 A All is not lost. You can still improve the overall presentation of these documents by

providing reasonable indexes to the content (summaries, tables of contents pages,

subject indexes, and so on) and including standard navigation links. In other words,

you can create an easily navigable framework around the documents themselves.

This can go a long way toward improving content that’s otherwise difficult to read

online. But if it really isn’t your job to restructure the content for the mobile Web,

you should provide feedback to the content creators. They need to know that the

format they are providing you won’t work well for mobile Web customers. You

can even suggest they get this book so they better understand what they should be

doing.

ptg16476052

602 LESSON 21: Designing for the Mobile Web

 Q I have a standard signature block that contains my name and email address,
revision information for the page, and a couple of lines of copyright informa-
tion that my company’s lawyers insisted on. It’s a little imposing, particularly
on small pages. Sometimes the signature is bigger than the page itself! How do
I integrate it into my site so that it isn’t so obtrusive?

 A If your company’s lawyers agree, consider putting all your contact and copyright

information on a separate page and then linking to it on every page rather than

duplicating it every time. This way, your pages won’t be overwhelmed by the legal

stuff. Also, if the signature changes, you won’t have to change it on every page.

Failing that, you can always just reduce the font size for that block and perhaps

change the font color to something with less contrast to the background of the page.

This indicates to users that they’re looking at fine print.

Quiz
1. What are some ways you can organize your pages so that visitors can scan them

more easily?

2. True or false: Headings are useful when you want information to stand out because

they make the text large and bold.

3. True or false: Mobile web design applies only to mobile devices.

4. True or false: You can reduce the download time of an image by using the width

and height style properties on the tag to scale down the image.

5. Why does it improve performance to put your CSS in a linked style sheet rather

than including it on the page?

Quiz Answers
1. You can use headings to summarize topics, lists to organize and display informa-

tion, and link menus for navigation, and you can separate long paragraphs with

important information into shorter paragraphs.

2. False. You should use headings as headings and nothing else. You can emphasize

text in other ways or use a graphic to draw attention to an important point.

3. False. Mobile web design improves your web pages for everyone who views them,

not just mobile customers.

ptg16476052

Workshop 603

21

4. False. When you use the width and height style properties to make a large image

appear smaller on your page, it may reduce the dimensions of the file on the screen,

but it won’t decrease the download time. The visitor still downloads the same

image, but the browser just fits it into a smaller space.

5. Putting your CSS in an external file enables the browser to cache the file so that it

doesn’t have to download the same information as the user moves from one page

on the site to another.

Exercises
1. Go visit several of your favorite sites using a mobile device, preferably a small

smartphone. How do they look? Do they break any of the rules you learned in this

lesson? What do they do right?

2. How would you improve the sites that you visited in exercise 1 for mobile devices?

ptg16476052

This page intentionally left blank

ptg16476052

LESSON 22
Designing for User
Experience

In previous lessons, you learned about what you should and shouldn’t
do when you plan your website and design your pages. You learned how
to design for mobile first and some best practices around designing for
mobile users. But there is more to the web design universe than just
mobile users, and the best designers try to be as inclusive as possible.

You should already know that the real world consists of many different
users with many different computer systems who use many different
browsers. Some of the things we haven’t yet addressed, however, are the
many different preferences and experience levels that the visitors to your
site will have. By anticipating these real-world needs, you can better judge
how you should design your pages. I also explain how you can make sure
that your websites are usable for people who are disabled and must use
accessibility technologies to browse the Web.

In this lesson, you’ll learn some ways that you can anticipate these
needs, as well as the following:

n Things to consider when you’re trying to determine the preferences
of your audience

n Various ways of helping users find their way around your site

n HTML code that displays the same web page in each of the XHTML
1.0 specifications (Transitional, Frameset, and Strict)

n What accessibility is, and how to design accessible sites

n Using an accessibility validator

ptg16476052

606 LESSON 22: Designing for User Experience

Considering User Experience Level
The people viewing your website have varying levels of experience. Although most peo-

ple visiting your site will be interested in the Web, some of them might have barely used

a web browser, while others might have been browsing the Web for 20 years. When you

design your site, consider that the people who visit it might have varying levels of experi-

ence and browsing requirements.

Will the topics that you discuss on your site be of interest to people with different levels

of experience? If so, you might want to build in some features that help them find their

way around more easily. The key, of course, is to make your navigation as intuitive as

possible. By keeping your navigation scheme consistent from page to page throughout

the site, you’ll do a favor for users of all experience levels. There are a number of fea-

tures you can add to your site that will improve its usability for everyone.

Add a Search Engine
Many users go straight to the search engine when they want to find something on a site.

No matter how much time and effort you put into building a clear, obvious navigation

scheme, someone looking for information about Frisbees is going to look for a box on

your page where she can type in the word Frisbee and get back a list of the pages where

you talk about them.

Unfortunately, locating a good search engine package and setting it up can be an awful

lot of work, and difficult to maintain. On the other hand, there are some alternatives.

Some search engines enable you to search a specific site for information. You can add a

link to them from your site. Some search engines even allow you to set things up so that

you can add their search engine to your site, such as Googl e:

http://www.google.com/cse/

By signing up, you can add a search box to your site that enables your users to search

only pages on your own site for information. For a list of other ways to add search func-

tionality to your site, see the following page in the Open Directory Pro ject:

http://www.dmoz.org/Computers/Software/Internet/Servers/Search/

Use Concise, Sensible URLs
One common mistake made by web designers is not considering how users share URLs.

If your site is interesting at all, people are going to email the URL to their friends, paste

it into instant messaging conversations, and talk about it around the water cooler. Making

your URLs short and easy to remember makes them that much easier for people to share.

There’s a reason why people have paid huge sums for domain names like business.com

http://www.google.com/cse/
http://www.dmoz.org/Computers/Software/Internet/Servers/Search/

ptg16476052

Considering User Experience Level 607

22

and computers.com in the past. They’re easy to remember, and you don’t have to spell

them out when you tell them to people.

You might not have control over your domain name, but you can exercise control over

the rest of your URLs. Say that you have a section of your site called “Products and

Services.” All the pages in that section are stored in their own directory. You could call it

any one of the following:

/ps
/prdsvcs
/products
/products_services
/products_and_services

There are plenty of other options, too (you could call it /massapequa if you wanted to),

but the preceding list seems like a reasonable group of options. Of the list, a few stand

out to me as being poor choices. /products_service and /products_and_services just

seem too verbose. If the pages under those directories have long names at all, you’re sud-

denly in very long URL territory, which isn’t conducive to sharing. However, /prdsvcs

may be short, but it’s also difficult to remember and almost certainly has to be spelled out

if you tell it to anyone. It’s probably no good. That leaves two remaining choices:

/ps and /products. The first, /ps, is nice and short and probably easy to remember.

Using it would be fine. However, there’s one other principle of URLs that I want to talk

about: guessability.

Chances are that most of the people who visit your website have been using the Web

for awhile. There’s some chance that they might just assume that they know where to

go on your site based on experience. If they want to read about your products, they may

guess—based on their experience with other sites they’ve visited—that your products will

be listed at http://www.your-url.com/products. Any time you can put your content where

your users will assume it to be, you’re doing them a favor. Using standard directory

names such as /about, /contact, and /products can make things ever so slightly easier

for your users at no cost to you.

Several URL shortening services are available that you can use
to help your readers when your URLs get too long. My favorite is
https://bitly.com/.

TIP

http://www.your-url.com/products
https://bitly.com/

ptg16476052

608 LESSON 22: Designing for User Experience

My final bit of advice on URLs is to make sure that they reflect the structure of your

site. One time, I worked on a site that consisted of hundreds of files, all in a single direc-

tory. The site itself had structure, but the files were not organized based on that structure.

Whether the user was on the home page or five levels deep within the site, the URL was

still just a filename tagged onto the hostname of the server. Not only did this make the

site hard to work on, but it also kept some useful information away from users.

Suppose you have a site about cars, and you want users to get the latest information about

the Honda Fit. What’s more useful to your users?

http://www.example.com/fit.html

or

http://www.example.com/cars/honda/2016/fit.html

The second URL provides a lot more information to the user than the first one does. As

an added bonus, you can set up your site so that the user can take fit.html off the end

and get a list of all Honda models for 2016. He can also remove 2016/fit.html to dis-

play all the Honda model years your site covers or take honda/2016/fit.html off the

end and get a list of all car makes discussed on the site. This URL would be very useful

to someone with a lot of experience on the Web.

While veteran web users are accustomed to dealing with URLs, newcomers might not be

as comfortable with a long, complicated URL. One way to solve this is to set up redirects

on your web server to make shorter URLs point to their longer, more fleshed-out destina-

tions. In other words, you could make http://www.example.com/fit.html point to http://

www.example.com/cars/honda/2016/fit.html. Most web hosting services offer redirection

help. Contact their support if you don’t know how to do it on your website.

Navigation Provides Context
The key purpose of navigation is obviously to enable your users to get from one place

to another within your site. However, its secondary purpose is to let your users know

where they are within the site. This is something that “breadcrumb” navigation provides

to users—a sense of location. Take a look at the screenshot from the DMOZ directory in

Figure 22.1.

Just below the search box, you can see a list of links that start at the top of the directory

and lead down to the page that I’m actually on. The first thing it does is give me the abil-

ity to go back to any level of the directory between the home page (called “Top”) and the

Cats page that I’m actually on. The second thing it does is let me know that I’m six levels

into the directory; the page I’m on is part of the Shopping category of the directory and

all the subcategories between that category and the page that I’m on. That’s a lot of util-

ity packed into a small feature.

http://www.example.com/fit.html
http://www.example.com/cars/honda/2016/fit.html
http://www.example.com/fit.html
http://www.example.com/cars/honda/2016/fit.html
http://www.example.com/cars/honda/2016/fit.html

ptg16476052

Considering User Experience Level 609

22

Not all sites have as large and complex a structure as DMOZ, but you can still provide

context for your users through your navigation scheme. By altering your navigational

elements based on the page that the user is on, you can indicate to them not only where

she can go but also where she is. This is also particularly helpful to users who arrive at

your site not via the home page, but from an external link. Enabling users to immediately

deduce where they are in the larger scheme of things makes it more likely that they’ll

take in more of your site.

Are Your Users Tourists or Regulars?
When you’re designing a site, one of the things you need to remember is that your users

are generally either tourists or regulars. If many of your users are tourists, which means

that they don’t use your site very often or will probably only ever use it one time, you

should design your site so that the first-timer can easily figure out what he should be

doing and where he needs to go.

However, if your site is normally used by the same existing group of users who come

back once a day or once a week, your emphasis should be on providing shortcuts and

conveniences that enable them to use your site as efficiently as possible. It’s okay if it

takes a bit of work to learn about the conveniences because it’s worth your users’ time.

Clearly, the secret is to strike a balance for two reasons: You want to continue to grow

your user base, and that means constantly getting new users. And, you want to make sure

that your existing customers get what they need as quickly and easily as possible. The

holy grail is a site that’s obvious and clear to new users but also provides the features that

FIGURE 22.1

A page from the
DMOZ directory.

ptg16476052

610 LESSON 22: Designing for User Experience

repeat users crave. However, understanding what sort of audience you have can help you

determine how to assign your resources.

Determining User Preferences
In addition to the various levels of experience that visitors have, everyone has his own

preferences for how he wants to view your web pages. How do you please users? The

truth is, you can’t. But you can give it your best shot. Part of good web design is antici-

pating what visitors want to see on your site. This becomes more difficult if the topics

you discuss on your site are of interest to a wider audience.

Everyone sees the Web differently. Sometimes this is due to user interests, but other

times it’s because of special needs. Therein lies the key to anticipating what your custom-

ers need on your web pages.

A topic such as “Timing the Sparkplugs on Your 300cc Motorcycle Engine” is of interest

to a more select audience. It will attract only those who are interested in motorcycles—

more specifically, those who want to repair their own motorcycles. It should be relatively

easy to anticipate the types of things these visitors would like to see on your site. Step-

by-step instructions can guide them through each process, while images or multimedia

can display techniques that are difficult to describe using text alone.

“The Seven Wonders of the Ancient World,” however, will attract students of all ages as

well as their teachers. Archaeologists, historians, and others with an interest in ancient

history also might visit the site. Now you have a wider audience, a wider age range, and a

wider range of educational levels. It won’t be quite as easy to build a site that will please

them all.

In cases such as this, it might help to narrow your focus a bit. One way is to design your

site for a specific user group, such as the following:

n Elementary school students and their teachers—This site requires a basic navi-

gation system that’s easy to follow. Content should be simple and easy to read.

Bright, colorful images and animations can help keep the attention of young visi-

tors.

n High school students and their teachers—You can use a slightly more advanced

navigation system. Multimedia and the latest in web technology will keep these stu-

dents coming back for more.

n College students and their professors—A higher level of content is necessary,

whereas multimedia may be less important. Properly citing the sources for your

information will be important.

ptg16476052

What Is Accessibility? 611

22

n Professional researchers and historians—This type of site probably requires

pages that are heavier in text content than multimedia.

Not all websites are focused on education. For instance, a site
dedicated to college student parties might need to be all videos
and pictures and no citations of any kind.

NOTE

It’s not always possible to define user groups for your website, so you’ll need to start

with your own preferences. Survey other sites that include similar content. As you browse

through them, ask yourself what you hope to see there. Is the information displayed well?

Is there enough help on the site? Does the site have too much or too little multimedia? If

you can get a friend or two to do the survey along with you, it helps you get additional

feedback before you start your own site. Take notes and incorporate those ideas into your

own web pages.

After you design some initial pages, ask your friends, family members, and associates to

browse through your site and pick it apart. Even better is if you can find a few people in

your target market to check out your beta site. Keep in mind that when you ask others for

constructive criticism, you might hear some things that you don’t want to hear. However,

this process is important because you’ll often get many new ideas on how to improve

your site even more.

What Is Accessibility?
Accessibility is basically the effort to make websites as usable as possible for people with

disabilities. This involves the creation of software and hardware that enables people with

various disabilities to use computers and the Web. It also means addressing accessibil-

ity concerns in the design of HTML as a markup language and efforts on the part of web

designers to incorporate accessibility into their websites. When a person with impaired

vision uses a screen reader to visit a website, there are things the site’s author can do to

make that experience as rich and fulfilling as possible given the user’s disability.

The good news is, because you already design with a Mobile First mindset, making your

inclusive site accessible will be a breeze.

Common Myths Regarding Accessibility
Historically, there has been some resistance among web designers toward building web-

sites in an accessible manner. This resistance has arisen not due to a want to discriminate

against people who might benefit from accessible design, but rather from a fear that

ptg16476052

612 LESSON 22: Designing for User Experience

accessibility will limit designers’ options in how they create their sites. There’s also the

fact that accessibility seems like it will add additional work, and most people have too

much to do already.

For a long time, many people thought that accessible was a code word for all text. It was

believed that adding accessibility meant putting all of your content in a single column

running straight down the page and avoiding the bells and whistles that many people

believe are necessary for an attractive website. The fact is that this couldn’t be further

from the truth. Although some common techniques can interfere with accessibility, that

doesn’t mean that you must remove any images, sounds, or multimedia from your web-

site. Nor does it dictate that your layout be simplified.

The demand that accessibility places on designers is that they write clean, standards-com-

pliant markup, take advantage of HTML features that improve accessibility, and use tags

as they are intended to be used in the specification rather than based on how they make

your pages look in the browser. If you’ve been following along with the lessons in this

book, you’re already doing these things.

The other common misapprehension with regard to accessibility is that it will require a

lot of extra work on your part. The fact is that it does require some extra work—creating

your pages so that they take advantage of accessibility features in HTML is more work

than leaving them out. However, in many cases, coding for accessibility will help all of

your users, not just those using alternative browsers.

Section 508
Section 508 is a government regulation specifying that U.S. federal government agen-

cies must provide access for all users, including those with disabilities, to electronic and

information technology resources. It requires that federal agencies consider the needs

of disabled users when they spend money on computer equipment or other computer

resources. What this boils down to is that federal websites must be designed in an acces-

sible fashion.

Not only did Section 508 change the rules of the game for many web designers (any-

one involved with federal websites), but it raised the profile of accessibility in general.

Thanks in part to the fact that people didn’t really understand the implications of Section

508 at first, people started thinking a lot about accessibility and what it meant for the

 Web.

For more information on Section 508, see http://
www.section508.gov/.

NOTE

http://www.section508.gov/
http://www.section508.gov/

ptg16476052

Writing Accessible HTML 613

22

Alternative Browsers
Just as there are a number of disabilities that can make it more challenging for people to

use the Web, there are a number of browsers and assistive technologies that are designed

to level the playing field to a certain degree. I discuss some common types of assistive

technologies here so that when you design your web pages you can consider how they’ll

be used by people with disabilities.

Disabled users access the Web in a variety of ways, depending on their degree and type

of disability. For example, some users just need to use extra large fonts on their com-

puter, whereas others require a completely different interface from the standard used by

most people.

Let’s look at some of the kinds of browsers specifically designed for disabled users. For

users who read Braille, a number of browsers provide Braille output. Screen readers are

also common. Instead of displaying the page on the screen (or in addition to displaying

it), screen readers attempt to organize the contents of a page in a linear fashion and use a

voice synthesizer to speak the page’s contents. Some browsers also accept audio input—

users who are uncomfortable using a mouse and keyboard can use speech recognition to

navigate the Web.

Another common type of assistive technology (AT) is a screen magnifier. Screen mag-

nifiers enlarge the section of the screen where the user is working to make it easier for

users with vision problems to use the computer. More and more touch screen devices

make it trivial to pinch to zoom in on a web page and make the text and images larger.

Most standard web browsers support zooming with a keyboard shortcut like Ctrl-+ to

zoom in and Ctrl-- to zoom out (use the Cmd key on a Mac).

One type of AT that almost everyone has experienced is closed-captioning for the hear-

ing impaired. You see this at loud restaurants and airports when it’s impossible to hear

the overhead TVs. And although most web pages rely on text and images, which don’t

impact the hearing impaired, if you use video or audio your site will become inaccessible

to them unless you include captioning.

Writing Accessible HTML
When it comes to writing accessible HTML, there are two steps to follow. The first step

is to use the same tags you normally use as they were intended. The second step is to take

advantage of HTML features specifically designed to improve accessibility. I’ve already

mentioned a number of times that tags should be used based on their semantic meaning

rather than how they’re rendered in browsers. For example, if you want to print some

bold text in a standard size font, <h4> will work, except that it not only boldfaces the text,

ptg16476052

614 LESSON 22: Designing for User Experience

it also indicates that it’s a level 4 heading. In screen readers or other alternative browsers,

that might cause confusion for your users. So if all you need is the text to be bold, use the

CSS font-weight property.

Tables
Accessibility issues are particularly difficult when it comes to tables. I’ve already men-

tioned that it’s not a good idea to use tables for page layout when you’re designing for

accessibility. Alternative browsers must generally indicate to users that a table has been

encountered and then unwind the tables so that the information can be presented to the

user in a linear fashion. To make things easier on these users, you should use tables for

tabular data where you can. If you can’t avoid using tables to lay out your page, make

sure to indicate it’s a presentation table with the role="presentation" attribute and be

aware of how the table will be presented to users.

When you’re presenting real tabular data, it’s worthwhile to use all the supplemental tags

for tables that are all too often ignored. When you’re inserting row and column headings,

use the <th> tag. If the default alignment or text presentation is not to your liking, use

CSS to modify it. Some browsers will indicate to users that the table headings are distinct

from the table data. Furthermore, if you label your table, using the <caption> tag is a

better choice than just inserting a paragraph of text before or after the table. Some brows-

ers indicate that the text is a table caption.

Here’s an example of a table that’s designed for accessibility:

<p>This is the famous Boston Consulting Group Product
Portfolio Matrix. It's a two by two matrix with labels.</p>
<table border="1" cellpadding="12">
 <caption>Boston Consulting Group Product Portfolio Matrix</caption>
 <tr>
 <td colspan="2" rowspan="2">
</td>
 <th colspan="2">Market Share</th>
 </tr>
 <tr>
 <th>High</th>
 <th>Low</th>
 </tr>
 <tr>
 <th rowspan="2">Market Growth</th>
 <th>High</th>
 <td align="center">Star</td>
 <td align="center">Problem Child</td>
 </tr>
 <tr>
 <th>Low</th>
 <td align="center">Cash Cow</td>
 <td align="center">Dog</td>
 </tr>
</table>

ptg16476052

Writing Accessible HTML 615

22

Links
As mentioned in Lesson 21, “Designing for the Mobile Web,” avoiding the “here” syn-

drome is imperative for mobile design, but it’s also important when it comes to acces-

sibility. Having all the links on your page described as “click here” or “here” isn’t very

helpful to disabled users (or any others). Just thinking carefully about the text you place

inside a link to make it descriptive of the link destination is a good start.

To make your links even more usable, you can use the title attribute. The title attri-

bute is used to associate some descriptive text with a link. It is used not only by alterna-

tive browsers, but many standard browsers will display a tool tip with the link title when

the user holds her mouse pointer over it. Here are some examples:

DMOZ
Special Report

Navigational links are a special case because they usually come in sizable groups. Many

pages have a nice navigation bar right across the top that’s useful to regular users who

are able to skim the page and go directly to the content they want. Users who use screen

readers with their browsers and other assistive technologies aren’t so lucky. You can

imagine what it would be like to visit a site that has 10 navigational links across the top

of the page if you relied on every page being read to you. Every time you move from one

page to the next, the navigation links would have to be read over again.

There are a few ways around this that vary in elegance. If you’re using CSS to position

elements on your page, it can make sense to place the navigational elements after your

main content in your HTML file but use CSS to position them wherever you like. When

a user with a screen reader visits the site, he’ll get the content before getting the naviga-

tion. You can then include a link that skips to the navigation at the top of the page and

hide it using CSS. Users with screen readers can jump to the navigation if they need to

but won’t be required to listen to it on every page.

It’s worth remembering that many disabled users rely on key-
boards to access the Web. You can make things easier on them
by using the accesskey and tabindex attributes of the <a> tag
to enable them to step through the links on your page in a logical
order. This proves particularly useful if you also include forms on
your page. For example, if you have a form that has links inter-
spersed in the form, setting up the tabindex order so that the
user can tab through the form completely before he runs into any
links can save him a lot of aggravation. This is the sort of conve-
nience that all of your users will appreciate, too.

TIP

ptg16476052

616 LESSON 22: Designing for User Experience

Images and Multimedia
Images are a sticky point when it comes to accessibility. Users with impaired vision

might not be able to appreciate your images or videos. Users with bad hearing might not

enjoy your audio files and find videos without captioning annoying. However, clever

design and usage of the tools provided by HTML can, to a certain degree, minimize the

problems multimedia cause.

Images are known for having probably the best-known accessibility feature of any HTML

element. The alt attribute has been around as long as the tag and provides text

that can stand in for an image if the user has a text-only browser or the image wasn’t

downloaded for some reason. Back when everybody used slow dialup connections to

the Internet, it was easy to become intimately familiar with alt text because it displayed

while the images on a page downloaded. Later, some browsers started showing alt text

as a tool tip when the user let her mouse pointer hover over an image.

Despite the fact that alt text is useful, easy to add, and required by the HTML5 speci-

fication, many pages on the Internet still lack meaningful alternative text for most (if

not all) of their images. Taking a few extra minutes to enter alt text for your images is

a must for anyone who uses HTML that includes images. Also bear in mind that while

using alt="" is perfectly valid, it is a bad idea. If you have images that don’t need alter-

native text, put them as background images in your CSS. Text-based browsers will, in the

absence of alt text, generally display something like [IMAGE] on the page. If the image is

a design feature rather than actual content, this can make the page more difficult to com-

prehend when the screen reader simply says “image” in the middle of a paragraph.

There’s one final area to discuss when it comes to images: the marriage of images and

links in the form of image maps. As you might imagine, image maps can be an acces-

sibility issue. But you can use the alt attribute on your <area> tags in the same way as

you would use it on your tags to provide alternate text for each link area:

<area shape="rect" coords="50,50,100,100" alt="square box" href="box.html">

Many browsers also provide tool tips for alternate text on image maps for non-AT brows-

ers, which makes it more useful for all your users.

With video and audio, it’s even easier to provide fallback options for users who can’t

view or hear them. The first thing you do is include HTML inside the <video> or

<audio> tags that provides fallback information. This might be a text description of the

video, links to alternative text or other versions of the video, or even a full written tran-

script of the audio file.

HTML5 provides another tag to help make audio and video more accessible: <track>.

Although this tag doesn’t have widespread support—as of this writing only Internet

ptg16476052

Designing for Accessibility 617

22

Explorer 10 and Safari/iOS browsers support it—it’s still a good idea to start at least

thinking about it. The track tag lets you provide multiple audio tracks to make your

media more accessible. You place it in your HTML inside the video or audio tags and

give it a label that is human readable explaining what the track is for. The last attribute

you need is the kind attribute that indicates what type of track it is. To caption a video

with English text you might write the following:

<track kind="captions" src="brave.en.hoh.vtt"
srclang="en" label="English for the Hard of Hearing">

You can use several kinds of tracks with HTML5. Table 22.1 explains them.

TABLE 22.1 Keywords for the kind Attribute of the track Tag

Keyword Description

subtitles Transcription of the dialog. Typically overlaid on video.

captions Transcription of dialog, sound effects, relevant musical cues, and other
audio information. Typically overlaid on video.

descriptions Text descriptions of the video portion of a media element. Typically syn-
thesized as audio.

chapters Chapter titles used as navigating within the media file. Typically displayed
as an interactive list.

metadata Tracks intended for use from script. Not typically shown to the end user.

Designing for Accessibility
Just as important as taking advantage of the HTML features provided specifically for

accessibility is taking care to design your pages in a manner that’s as accommodating as

possible for users who are in need of assistance. Most of these techniques are relevant to

all users, not just those using alternative browsers or assistive technologies.

Using Color
A common pitfall designers fall into is using color to confer meaning to users. For exam-

ple, they print an error on the page and change the font color to red to indicate that some-

thing went wrong. Unfortunately, visually impaired users won’t be able to distinguish

your error message from the rest of the text on the page without reading it. Needless to

say, putting two elements on the page that are the same except for color (such as using

ptg16476052

618 LESSON 22: Designing for User Experience

colors to indicate the status of something) is not accessible. The best alternative is to

label them with text. For example, you might display an error message this way:

<p class="error">ERROR: You must enter your full name.</p>

Remember, too, that color impacts not just people who cannot see, but also people who

are color blind. If you have content on your page that relies on a difference between two

colors, your page will not be accessible. It will have the problem of using color I just

mentioned, but it may also run the risk of looking like two identical colors to a color

blind person.

You can also cause difficulty reading your page if the colors don’t contrast enough, espe-

cially your text and background colors. There is a reason that most word processors use

black text on white or pale backgrounds: The high contrast makes them easy to read, and

that makes it accessible to everyone.

Fonts
When you specify fonts on your pages, you can cause accessibility problems if you’re not

careful. In some cases, font specification doesn’t matter at all because the user accesses

your site with a screen reader or alternative browser that completely ignores your font

settings. However, users who simply see poorly can have an unpleasant experience if you

set your fonts to an absolute size—particularly if you choose a small size. If a user has

set his browser’s default font to be larger than normal, and your pages are hard coded to

use 9-point text, that user will probably dump your site altogether.

In many cases, it makes sense to leave the default font specification alone for most of the

text on your site. That way, users can set their fonts as they choose, and you won’t inter-

fere with their personal preferences. If you do modify the fonts on the page, make sure

that the fonts scale with the user’s settings so that the user can see the text at a comfort-

able size.

Be sure to test your pages with a variety of text size settings when
you do browser testing. Many users increase the size of fonts in
the browser to make them easier to read, and you should make
sure that if users have done so, your pages still work for them.
And, as mentioned previously, zooming on mobile devices is just a
pinch away.

CAUTION

ptg16476052

Designing for Accessibility 619

22

Take Advantage of All HTML Tags
It’s easy to fall into the trap of using <i> or rather than more specific tags when you

need to add emphasis to something. For example, suppose you’re citing a passage from

a book. When you enter the book title, you could indicate to your users that it’s a proper

title by putting it inside the <i> tag, or you could use the <cite> tag. There are plenty of

other underutilized tags, as well, all of which provide some semantic meaning in addition

to the text formatting they’re associated with.

Even in cases in which you really just want to emphasize text, it’s preferable to use

and over <i> and . These tags provide a lot more meaning than the basic

text formatting tags that are often used. Not all alternative browsers will take advantage

of any or all of these tags, but conveying as much meaning as possible through your

choice of tags won’t hurt accessibility for sure, and will help some now and could help

more in the future. There’s no downside to taking this approach, either.

Frames
Frames are, to put it bluntly, not accessible. That is why they were removed from

HTML5. This doesn’t exactly apply to inline frames, but they are still difficult for most

AT to use. This is especially true if you put an entirely different site inside your iframe.

In this case, the site you’re framing needs to be accessible as well, and that’s not a guar-

antee. My recommendation is to avoid even inline frames unless you absolutely must use

them, and provide alternative content—like links to the framed content—when you do.

Forms
Forms present another thorny accessibility issue. Nearly all web applications are based on

forms, and failure to make them accessible can cost you users. For example, large online

stores have a serious financial interest in focusing on form accessibility. How many sales

would Amazon or eBay lose if their sites weren’t accessible? Some work on making sure

the forms that enable you to purchase items are accessible can really pay off.

One key thing to remember is that disabled users often navigate using only the keyboard.

As I mentioned when talking about links, assigning sensible tabindex values to your

form fields can really increase both the usability and the accessibility of your forms. The

other advanced form tags, such as fieldset, optgroup, and label, can be beneficial in

terms of usability, too.

ptg16476052

620 LESSON 22: Designing for User Experience

Validating Your Sites for Accessibility
There’s no reason to rely on luck when it comes to determining whether your site mea-

sures up when it comes to accessibility. Just as you can use the W3C validator to verify

that your HTML files are standards compliant, you can use a number of validators to

check your site for accessibility problems. Cynthia Says is one such validator, and you

can find it at http://cynthiasays.com/. It can validate a site against the Section 508 guide-

lines mentioned earlier or against the Web Content Accessibility Guidelines developed by

the W3C.

Its operation is nearly identical to that of the HTML validator provided by the W3C. If

you submit your page to the validator, it generates a report that indicates which areas of

your page need improvement, and it provides general tips that can be applied to any page.

Figure 22.2 shows a Cynthia Says report for InformIT.

If you don’t want to do a full-scale validation, you can use the WCAG (Web Content

Accessibility Guidelines) conformance levels to evaluate your site yourself. You can read

more about the conformance levels at the W3C: http://www.w3.org/TR/WCAG20/.

FIGURE 22.2

An accessibility
report generated by
Cynthia Says.

http://cynthiasays.com/
http://www.w3.org/TR/WCAG20/

ptg16476052

Workshop 621

22

Summary
I hope you now realize that the needs of your visitors should affect the approach you use

in your website design. The key is to anticipate those needs and try to address them as

broadly as possible. Not every site has to be filled with multimedia that implements the

latest and greatest web technologies. On the other hand, certain topics almost demand

higher levels of page design. Listen to the needs of your visitors when you design your

pages, and you’ll keep them coming back.

Even though accessibility issues ostensibly affect only a small percentage of web users,

they should not be ignored. Many accessibility-related improvements actually improve

the web experience for most users. Leaving out disabled users by not accounting for them

in your designs is inconsiderate and can often be a poor business decision. Adding acces-

sibility features to an existing site can be challenging, but when you build new sites from

scratch, making them accessible can often be done with little additional effort. If I’ve

convinced you of the importance of accessibility in this lesson, you’ll probably want to

dig into the resources listed previously for more information.

Workshop
As if you haven’t had enough already, here’s a refresher course. As always, there are

questions, quizzes, and exercises that will help you remember some of the most important

points in this lesson.

Further Reading

This lesson is really the tip of the iceberg when it comes to handling accessibility on
websites. If you’re going to make a commitment to creating an accessible site, you’ll
probably want to research the issue further. Your first stop should be online acces-
sibility resources. The W3C provides a huge body of information on accessibility as
part of their Web Access ibility Initiative. The home page is http://www.w3.org/WAI/.

If you maintain a personal site, you might also find Mark Pilgrim’s online book, Dive
into Accessibility (http://diveintoaccessibility.info/), to be a useful resource.

There have also been several books written on web accessibility. Joe Clark’s
 Building Accessible Websites is very well regarded. You can fin d out more about the
book at the book’s website: http://joeclark.org/book/.

http://www.w3.org/WAI/
http://diveintoaccessibility.info/
http://joeclark.org/book/

ptg16476052

622 LESSON 22: Designing for User Experience

Q&A
 Q Feedback from visitors to my site varies a lot. Some want my pages to use less

multimedia, whereas others want more. Is there an easy way to satisfy both of
them?

 A You’ve already learned that you can provide links to external multimedia files. This

is the best approach for visitors who want less multimedia because they won’t see

it unless they click the link. Often the objections to multimedia have less to do with

the videos being on the site than with how you implement them. For example, most

people find autoplaying videos and sound files to be annoying but don’t mind if

there’s just a box with a triangle in the middle of it. As you learned in Lesson 21,

setting up autoplay is bad for mobile usability, and it affects accessibility and user

experience for nonmobile customers.

 Q I use a lot of external files on my website, and they can be downloaded from
several different pages. Wouldn’t it be more efficient to include a link to the
correct readers or viewers on the pages where the external files appear?

 A Although it’s much easier for the visitor to download an external file and the appro-

priate reader or helper application from the same page, it might be more difficult

for you to maintain your pages when the URLs for the helper applications change.

A good compromise is to include a Download page on your website with links to

all the helper applications that the visitor will need. After the visitor downloads the

external file, she can then navigate to your Download page to get the helper appli-

cation she needs to view that file.

 Q If I don’t make my site accessible, what percentage of my audience will I lose?

 A Even if you weren’t wondering about this yourself, there’s a good chance your boss

probably wants to know. Unfortunately, there’s no hard-and-fast number. I’ve seen

it reported that 10% of the population has disabilities, but not all of those disabili-

ties affect one’s ability to access the Web. And you have to remember that a lot of

things you do to make your site accessible will help your nondisabled customers as

well. Older customers generally need larger font sizes and zooming, many people

are color blind, and lots of companies don’t allow sound cards on their company

computers. By making your site accessible to blind and deaf people, you help those

others as well.

 Q Can I run into legal trouble if I don’t bother with making my site accessible?

 A If you’re in the United States, the answer to this question is no, unless you’re work-

ing on a site for the federal government and are bound by Section 508. This may be

different in other countries, especially in Europe. Contact a legal advisor if you are

concerned.

ptg16476052

Workshop 623

22

Quiz
1. How do real-world user needs vary?

2. What are some important things to include on your site to help those who are new

to computers or the Internet?

3. True or false: It’s better to have a lot of frames in a frameset because you can keep

more information in the browser window at the same time.

4. True or false: To make a site truly accessible, no images can be used for navigation

or links.

5. What should you do with images that are part of the design and don’t have alterna-

tive text?

6. How should navigation be placed on a page to make it most accessible?

7. Name attributes of tags aimed specifically at accessibility.

Quiz Answers
1. Different users will have different levels of experience. Browser preferences will

vary. Some want to see a lot of multimedia, whereas others prefer none at all. Some

prefer images and multimedia that are interactive, whereas others prefer simpler

pictures that demonstrate a process or technique on how to do something. Other

preferences are more specific to the interests of the visitors.

2. Include pages on your site that help visitors find the information they're looking

for. Also include pages that help them find their way around the site.

3. False. This was a trick question. Frames are no longer part of HTML, and you

shouldn’t use them. The only exception is the iframe tag, and you should avoid

using it because it’s still not as accessible as plain HTML.

4. False; however, you must use the images in an accessible manner, specifically by

including alternative text.

5. Images that are part of the design should be loaded using CSS to avoid them

appearing as content to screen readers.

6. Navigation should be placed after the main content on a page to make it accessible

with users who must navigate the page in a linear fashion.

7. Some attributes designed to improve accessibility are the title attribute of the <a>

tag and the alt attribute of the and <area> tags .

ptg16476052

624 LESSON 22: Designing for User Experience

Exercises
1. Design a simple navigation system for a website and describe it in a manner that

makes sense to you. Then ask others to review it and verify that your explanations

are clear to them.

2. Make a list of the topics that you want to discuss on your website. Go through the

list a second time and see whether you can anticipate the types of people who will

be interested in those topics. Finally, review the list a third time and list the special

needs that you should consider for each user group.

3. Visit Cynthia Says, the accessibility validator, and see how your site rates against

the accessibility guidelines.

4. Make sure that all the tags on your site have alt attributes. It’s a good first

step toward accessibility .

ptg16476052

LESSON 23
How to Publish Your
Site

Just uploading your site to a web server somewhere doesn’t mean that
you’ll attract many visitors. In fact, with millions of sites online already,
you’ll need to promote your site if you want to build an audience.

So, how do you entice people to come to your site? This lesson shows
you some of the ways, including the following:

n Learning what a web server does and why you need one

n Finding web hosting

n Deploying your website

n Determining your URL

n Testing and troubleshooting your web pages

n Advertising your site

n Submitting your site to search engines

n Using business cards, letterheads, and brochures

n Promoting your site on social networks

n Using analytics to find out who’s viewing your pages

ptg16476052

626 LESSON 23: How to Publish Your Site

What Does a Web Server Do?
To publish web pages, you need a web server. The server listens for requests from web

browsers and returns the resources specified in the URL in those requests. Web servers

and web browsers communicate using the Hypertext Transfer Protocol (HTTP), a proto-

col created specifically for the request and transfer of hypertext documents over the Web.

Because of this use, web servers often are called HTTP servers.

Other Things Web Servers Do
Although the web server’s primary purpose is to answer requests from browsers, it’s

responsible for several other tasks. You’ll learn about some of them in the following

sections.

File and Media Type Determination
In Lesson 14, “Integrating Multimedia: Video and Sound,” you learned about content

types and how browsers and servers use file extensions to determine file types. Servers

are responsible for telling the browsers what kinds of content the files contain. Web

servers are configured so that they know which media types to assign to files that are

requested so that the browser can tell audio files from HTML pages from style sheets.

File Management
The web server also is responsible for rudimentary file management—mostly in deter-

mining how to translate URLs into the locations of files on the server. If a browser

requests a file that doesn’t exist, the web server returns the HTTP error code 404 and

sends an error page to the browser. You can configure the web server to redirect from

one URL to another, automatically pointing the browser to a new location if resources

move or if you want to retire them. Servers can also be set up to return a particular file if

a URL refers to a directory on a server without specifying a filename.

Finally, servers keep log files for information on how many times each URL on the site

has been accessed, including the address of the computer that accessed it, the date and,

optionally, which browser they used, and the URL of the page that referred them to your

page. Web servers also keep a log of any errors that occur when browsers submit requests

so that you can track them down and fix them.

Server-Side Scripts and Forms Processing
In addition to serving up static documents such as HTML files and images, most web

servers offer the option of running scripts or programs that generate documents on-the-

fly. These scripts can be used to create catalogs and shopping carts, discussion boards,

clients to read email, or content management systems to publish documents dynamically.

ptg16476052

How to Find Web Hosting 627

23

In fact, any website that you find that does more than just publish plain old documents

is running some kind of script or program on the server. A number of popular scripting

platforms are available for writing web applications. Which one is available for your

use depends in part on which web server you’re using. PHP is the most popular choice.

It’s easy to get started with and runs on most servers. Other popular choices include

Microsoft .NET, which runs on Windows, or Java Server Pages (JSP), which can run on

most servers. Newer choices include Go, R, Ruby on Rails, and Django, all of which can

be used to build web applications.

Server-Side File Processing
Some servers can process files before they send them along to the browsers. On a simple

level, there are server-side includes, which can insert a date or a chunk of boilerplate text

into each page, or run a program. Also, you can use server-side processing in much more

sophisticated ways to modify files on-the-fly for different browsers or to execute small

bits of code embedded in your pages.

Authentication and Security
 Password protection is provided out of the box by most web servers. Using authentica-

tion, you can create users and assign passwords to them, and you can restrict access to

certain files and directories. You can also restrict access to files or to an entire site based

on site names or IP addresses. For example, you can prevent anyone outside your com-

pany from viewing files that are intended for employees. It’s common for people to build

custom authentication systems using server-side scripts, too.

For security, some servers also provide a mechanism for encrypted connections and

transactions using the Secure Sockets Layer (SSL) protocol. SSL allows the browser to

authenticate the server, proving that the server is who it says it is, and an encrypted con-

nection between the browser and the server so that sensitive information between the two

cannot be understood if it is intercepted. SSL is becoming more and more important to

search engines as well; they use them to assign authority to websites that are secured and

identified.

How to Find Web Hosting
Before you can put your site on the Web, you must find a web server. How easy this is

depends on how you get your access to the Internet.

Using a Web Server Provided by Your School or Work
If you get your Internet connection through school or work, that organization might allow

you to publish web pages on its own web server. Given that these organizations usually

ptg16476052

628 LESSON 23: How to Publish Your Site

have fast connections to the Internet and people to administer the site for you, this situa-

tion is ideal.

You’ll have to ask your system administrator, computer consultant, webmaster, or net-

work provider whether a web server is available and, if so, what the procedures are for

putting up your pages. You’ll learn more about what to ask later in this lesson.

Using a Commercial Web Host
You may pay for your Internet access through an Internet service provider (ISP), or a

commercial online service. Many of these services allow you to publish your web pages,

although it may cost you extra. Restrictions might apply as to the kinds of pages you can

publish or whether you can run server-side scripts. You can probably find out more about

the web hosting options offered by your Internet service provider on the support section

of their website.

 Many companies specialize in web hosting. These services, most commonly known as

web hosts, usually provide a way for you to transfer your files to their server (usually a

web-based tool, but sometimes FTP or Secure FTP too). They also usually supply the

disk space and the actual web server software that provides access to your files. In addi-

tion, they have professional systems administrators onsite to make sure the servers are

running well at all times.

Generally, you’re charged a flat monthly rate, with added charges if you use too much

disk space or network bandwidth. Many web hosts provide support for server-side scripts

written in PHP and often install some commonly used scripts so that you don’t even

have to set them up for yourself. Most also enable you to set up your site with your own

domain name, and some even provide a facility for registering domain names. These fea-

tures can make using commercial web hosting providers an especially attractive option.

Some popular commercial web hosts include BlueHost (http://www.bluehost.com/),

DreamHost (https://www.dreamhost.com/), and MediaTemple (https://mediatemple.net/).

Make sure that when you register your domains, they are regis-
tered in your name rather than in the name of the hosting provider
or domain registrar who registers them on your behalf. You want
to make sure that you own the domain names you register.

CAUTION

To get your own domain name, you need to register it with an authorized registrar.

The initial cost to register and acquire your domain name can be as low as $2 per year.

Thereafter, an annual fee keeps your domain name active. After you have your own

domain name, you can set it up at your hosting provider so that you can use it in your

http://www.bluehost.com/
https://www.dreamhost.com/
https://mediatemple.net/

ptg16476052

How to Find Web Hosting 629

23

URLs and receive email at that domain. Your site will have an address such as http://

www.example.com/.

Many ISPs and web hosts can assist you in registering your domain name. You can

register your domain directly with an authorized registrar such as Network Solutions

(http://www.networksolutions.com/), Register.com , dotster.com , or Google Domains

(https://domains.google.com/about/) . Most of these services also offer domain parking ,
a service that allows you to host your domain with them temporarily until you choose

a hosting provider or set up your own server. The prices vary, so shop around before

registering your domain.

Commercial Web Builders
A new area that is becoming more popular in the web hosting space is web builders.

These are companies that offer hosting, building, and management software all in one

package. The advantage of these tools is that they offer sophisticated sites and site tem-

plates without requiring the work involved in building and maintaining it yourself.

These tools are especially popular with small business owners who want to maintain their

own website but don’t want to learn a lot about web design or building web pages. If

you’ve gotten this far in the book, you already know more about building web pages than

you need to use these services. But they are a quick, and sometimes free, way to get a

website up quickly. Some of the best of these include Weebly (http://www.weebly.com/),

Squarespace (http://squarespace.com/), and Webs (http://www.webs.com/).

Setting Up Your Own Server
If you’re really courageous and want the ultimate in web publishing, running your own

website is the way to go. You can publish as much as you want and include any kind of

content you want. You’ll also be able to use forms, scripts, streaming multimedia, and

other options that aren’t available to people who don’t have their own servers. Other web

hosts might not let you use these kinds of features. However, running a server definitely

isn’t for everyone.

You have two options here. The first is to set up an actual computer of your own and use

it as a server. However, the cost and maintenance time can be daunting, and you need

a level of technical expertise that the average user might not possess. Furthermore, you

need some way to connect it to the Internet. Many Internet service providers won’t let

you run servers over your connection, and putting your server in a colocation facility or

getting a full-time Internet connection for your server can be costly. However, this might

be the right answer if you are setting up a website for internal use at your company or

organization.

http://www.example.com/
http://www.example.com/
http://www.networksolutions.com/
https://domains.google.com/about/
http://www.weebly.com/
http://squarespace.com/
http://www.webs.com/

ptg16476052

630 LESSON 23: How to Publish Your Site

The second option is to lease a virtual server. Applications exist that enable companies to

treat a single computer as multiple virtual computers. They then lease those virtual com-

puters to people to use for whatever they like. So for a modest price, you can lease a vir-

tual server over which you have full control. From your perspective, it is your computer.

Companies such as Linode (http://linode.com) and RackSpace (http://www.rackspace.com/

cloud) offer virtual servers, as does Amazon.com through its EC2 service (https://

aws.amazon.com/ec2/).

Free Hosting
If you can’t afford to pay a web hosting provider to host your website, some free

alternatives exist. For the most part, free sites do not offer the opportunity to create your

own pages by hand and deploy them. Instead, there are services that host particular kinds

of content, such as weblogs (https://www.blogger.com/home), journals (http://

www.livejournal.com/), and photos (https://www.flickr.com/). The tradeoff is that the

pages on these sites have advertisements included on them and that your bandwidth usage

is generally sharply limited. There are often other rules regarding the amount of space

you can use, too. Free hosting can be a good option for hobbyists, but if you’re serious

about your site, you’ll probably want to host it with a commercial service.

Organizing Your HTML Files for
Publishing
After you have access to a web server, you can publish the website you’ve labored so

hard to create. Before you actually move it into place on your server, however, it’s

important to organize your files. Also, you should have a good idea of what goes where

to avoid lost files and broken links.

Questions to Ask Your Webmaster
The webmaster is the person who runs your web server. This person also might be your

system administrator, help desk administrator, or network administrator. Before you can

publish your site, you should get several facts from the webmaster about how the server

is set up. The following list of questions will help you later in this book when you’re

ready to figure out what you can and cannot do with your server:

n Where on the server will I put my files? In most cases, someone will create a

directory on the server where your files will reside. Know where that directory is

and how to gain access to it. On many hosting providers, this is the only directory

you will have access to.

http://linode.com
http://www.rackspace.com/cloud/
http://www.rackspace.com/cloud
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://www.blogger.com/home
http://www.livejournal.com/
http://www.livejournal.com/
https://www.flickr.com/

ptg16476052

Organizing Your HTML Files for Publishing 631

23

n What’s the URL of my top-level directory? This URL will usually be different

from the actual path to your files.

n What is the operating system of my web server? Most web servers run on Linux

or UNIX using Apache as the web server software, but there are Windows and

Macintosh web servers. The operating system (and web server software) will affect

what types of scripts and files you can use on the site.

n What’s the name of the system’s default index file? This file is loaded by default

when a URL ends with a directory name. Usually it’s index.html or index.htm,

but it may be default.htm or something else.

n Can I run PHP, ASP, or other types of scripts? Depending on your server, the

answer to this question may be a decisive “no,” or you might be limited to certain

programs and capabilities.

n Do you support special plug-ins or file types? If your site will include multime-

dia files (Flash, MP3, MP4, or others), your webmaster might need to configure the

server to accommodate those file types. Make sure that the server properly handles

special types of files before you create them.

n Are there limitations on what or how much I can put up? Some servers restrict

pages to specific content (for example, only work-related pages or no adult content)

or restrict the amount of storage you can use. Make sure that you understand these

restrictions before you publish your content.

n Is there a limit to the amount of bandwidth that my site can consume? This

is somewhat related to the previous question. Most web hosts only allow you to

transfer a certain amount of data over their network over a given period of time

before they either cut you off or start charging you more money. You should ask

what your bandwidth allotment is and make sure that you have enough to cover the

traffic you anticipate. (The bandwidth allotment from most web hosts is more than

enough for all but the most popular sites, and more and more hosts offer unlimited

bandwidth.)

n Do you provide any canned scripts that I can use for my web pages? If you

aren’t keen on writing your own scripts to add advanced features to your pages,

ask your service provider whether it provides scripts that might be of assistance.

For example, many web hosts provide a script for creating an email contact form.

Others might provide access to form-processing scripts, too. More and more

hosting companies are offering package managers to add external programs like

WordPress and Drupal as well.

ptg16476052

632 LESSON 23: How to Publish Your Site

Keeping Your Files Organized with Directories
Probably the easiest way to organize your site is to include all the files in a single direc-

tory. If you have many extra files—images, for example—you can put them in a subdi-

rectory under that main directory. Your goal is to contain all your files in a single place

rather than scatter them around. You can then set all the links in those files to be relative

to that directory. This makes it easier to move the directory around to different servers

without breaking the links.

Having a Default Index File and Correct Filenames
Web servers usually have a default index file that’s loaded when a URL ends with a

directory name rather than a filename. One of the questions you should ask your web-

master is, “What’s the name of this default file?” For most web servers, this file is called

index.html. Your home page, or top-level index, for each site should have this name so

that the server knows which page to send as the default page. Each subdirectory should

also have a default file if it contains HTML files. If you use this default filename, the

URL to that page will be shorter because you don’t have to include the actual filename.

For example, your URL might be http://www.example.com/pages/ rather than http://

www.examplecom/pages/index.html.

If you don’t put an index file in a directory, many web servers will
enable people to browse the contents of the directory. If you don’t
want people to snoop around in your files, you should include an
index file or use the web server’s access controls to disable direc-
tory browsing. Ask your webmaster for help.

CAUTION

Also, each file should have an appropriate extension indicating its type so that the server

can map it to the appropriate file type. If you’ve been reading this book in sequential

order, all your files should have this special extension already and you shouldn’t have

any problems. Table 23.1 lists the common file extensions that you should be using for

your files and multimedia.

TABLE 23.1 Common File Types and Extensions

Format Extension

HTML .html, .htm

ASCII Text .txt

GIF .gif

http://www.example.com/pages/
http://www.examplecom/pages/index.html
http://www.examplecom/pages/index.html

ptg16476052

Publishing Your Files 633

23

Format Extension

JPEG .jpg, .jpeg

PNG .png

Scalable Vector Graphics .svg

Shockwave Flash .swf

WAV Audio .wav

MPEG Audio .mp3

MPEG Video .mp4

QuickTime Video .mov

Portable Document Format .pdf

If you’re using multimedia files on your site that aren’t part of this list, you might need to

configure your server to handle that file type. You’ll learn more about this issue later in

this lesson.

Publishing Your Files
Got everything organized? Then all that’s left is to move everything to the server. After

your files have been uploaded to a directory that the server exposes on the Web, you’re

officially published on the Web. That’s all there is to putting your pages online.

Where’s the appropriate spot on the server, however? You should ask your webmaster

for this information. Also, you should find out how to access that directory on the server,

whether it’s just copying files, using FTP to put them on the server, or using some other

method.

Moving Files Between Systems
If you’re using a web server that has been set up by someone else, usually you’ll have

to upload your web files from your system to theirs using FTP, SCP (secure copy), or

some other method. Although the HTML markup within your files is completely cross-

platform, moving the actual files from one type of system to another sometimes has its

drawbacks. In particular, be careful to do the following:

n Watch out for filename restrictions— Make sure that your filenames don’t have

spaces or other funny characters in them. Keep your filenames as short as possible,

use only letters, dashes (-), underscores (_), and numbers, and you’ll be fine. You

can use periods (.) in your filenames, but that can confuse readers who type them

in, so I recommend avoiding them.

ptg16476052

634 LESSON 23: How to Publish Your Site

n Watch out for uppercase or lowercase sensitivity— Filenames on computers run-

ning Microsoft Windows are not case sensitive. On UNIX and Mac OS X systems,

they are. If you develop your pages on a computer running Windows and publish

them on a server that has case-sensitive filenames, make sure that you have entered

the URLs in your links properly. If you’re linking to a file named About.html, on

your computer running Windows, about.html would work, but on a UNIX server

it would not. It’s best to get in the habit of using all lowercase letters for file and

directory names on your web pages.

n Be aware of carriage returns and line feeds— Different systems use different

methods for ending a line. The Macintosh uses carriage returns, UNIX and Linux

use line feeds, and DOS and Windows use both. When you move files from one

system to another, most of the time the end-of-line characters will be converted

appropriately, but sometimes they won’t. The characters that aren’t converted can

cause your file to come out double spaced or all on a single line when it’s moved to

another system.

Most of the time, this failure to convert doesn’t matter because browsers ignore spuri-

ous returns or line feeds in your HTML files. The existence or absence of either one

isn’t terribly important. However, it might be an issue in sections of text that you’ve

marked up with <pre>; you might find that your well-formatted text that worked so

well on one platform doesn’t come out that way after it’s been moved.

If you do have end-of-line problems, you have two options. Many text editors

enable you to save ASCII files in a format for another platform. If you know the

platform to which you’re moving, you can prepare your files for that platform

before moving them. If you don’t know, save your file to a UNIX or Linux format.

Uploading Your Files
In the preceding list of tips about moving files, I mentioned FTP. FTP, short for File
Transfer Protocol, is one of the ways to move files from your local computer to the

server where they will be published, or to download them so that you can work on them,

for that matter. Some other protocols that can be used to transfer files include SFTP

(Secure FTP) and SCP (Secure Copy). They all work a bit differently; the most important

difference is that SCP and SFTP are encrypted, whereas FTP is not.

If your server provides multiple methods for uploading files,
you should choose SCP or SFTP rather than FTP. With FTP, your
password for the server will be transmitted unencrypted over
the Internet. That’s a security risk. It’s preferable to use the
encrypted uploading options. And many hosting providers are
switching to only secure transfer methods.

TIP

ptg16476052

Publishing Your Files 635

23

A number of clients support FTP, SCP, and SFTP through the same interface. As long

as you have the name of the server, your username, your password, and the name of the

directory where you want to put your files, you can use any of these clients to upload

your web content.

One option that’s often available is publishing files through your HTML editing tool.

Many popular HTML and text editors have built-in support for FTP, SCP, and SFTP.

You should definitely check your tool of choice to see whether it enables you to transfer

files using FTP from directly within the application. Some popular tools that provide FTP

support include Adobe Dreamweaver, Panic Coda, and HTML-Kit. Text editors such

as UltraEdit, Textmate, and jEdit support saving files to a server via FTP, too. If your

HTML editor doesn’t support FTP, or if you’re transferring images, multimedia files, or

even bunches of HTML files simultaneously, you’ll probably want a dedicated FTP cli-

ent. A list of some popular choices follows:

n CuteFTP (Windows, OS X)—http://www.cuteftp.com/

n FTP Explorer (W indows)—http://www.ftpx.com/

n FileZilla (Windows, OS X, Linux)—https://filezilla-project.org/

n Cyberduck (Windows, OS X)—https://cyberduck.io/

n Transmit (OS X)—https://www.panic.com/transmit/

n Fetch (OS X)—http://fetchsoftworks.com/

All the tools listed support FTP, SFTP, and SCP, and some support other transfer options

like WebDAV and Dropbox. How the FTP client is used varies depending on which cli-

ent you choose, but there are some commonalities among all of them that you can count

on (more or less). You’ll start out by configuring a site consisting of the hostname of the

server where you’ll publish the files, your username and password, and perhaps some

other settings that you can leave alone if you’re just getting started.

If you’re sharing a computer with other people, you probably won’t
want to store the password for your account on the server in the
FTP client. Make sure that the site is configured so that you have
to enter your password every time you connect to the remote site.

CAUTION

After you’ve set up your FTP client to connect to your server, you can connect to the site.

Depending on your FTP client, you should be able to simply drag files onto the window

that shows the list of files on your site to upload them or drag them from the listing on

the server to your local computer to download them.

http://www.cuteftp.com/
http://www.ftpx.com/
https://filezilla-project.org/
https://cyberduck.io/
https://www.panic.com/transmit/
http://fetchsoftworks.com/

ptg16476052

636 LESSON 23: How to Publish Your Site

Troubleshooting
What happens if you upload all your files to the server and try to display your home page

in your browser and something goes wrong? Here’s the first place to look.

I Can’t Access the Server
If your browser can’t even get to your server, this probably isn’t a problem you can fix.

Make sure that you have entered the right server name and that it’s a complete hostname

(usually ending in .com, .edu, .net, or some other common suffix). Make sure that you

haven’t mistyped your URL and that you’re using the right protocol. If your webmaster

told you that your URL included a port number, make sure that you’re including that port

number in the URL after the hostname.

Also make sure that your network connection is working. Can you get to other URLs?

Can you get to the top-level home page for the site itself?

If none of these ideas solve the problem, perhaps your server is down or not responding.

Call your webmaster to find out whether she can help.

I Can’t Access Files
What if all your files are showing up as Not Found or Forbidden? First, check your URL.

If you’re using a URL with a directory name at the end, try using an actual filename at

the end—like index.html. Double-check the path to your files; remember that the path

in the URL might be different from the path on the actual disk. Also, keep case sensitiv-

ity in mind. If your file is MyFile.html, make sure that you’re not trying myfile.html or

Myfile.html.

If the URL appears to be correct, check the file permissions. On UNIX systems, all your

directories should be world-executable, and all your files should be world-readable. You

can ensure that all the permissions are correct by using the following commands:

chmod w+r filename
chmod 755 directoryname

Most FTP clients will allow you to modify file and directory permis-
sions remotely.

TIP

I Can’t Access Images
You can get to your HTML files just fine, but all your images are coming up as icons or

broken icons. First, make sure that the references to your images are correct. If you’ve

ptg16476052

Troubleshooting 637

23

used relative pathnames, you shouldn’t have this problem. If you’ve used full pathnames

or file URLs, the references to your images may have been broken when you moved the

files to the server. (I warned you.)

In some browsers, you get a pop-up menu when you select an image with the right mouse

button. (Hold down the Option key while you click on a Macintosh mouse.) Choose the

View This Image menu item to try to load the image directly. This will give you the URL

of the image where the browser thinks it’s supposed to be (which might not be where you

think it’s supposed to be). You can often track down strange relative pathname problems

this way.

Inspecting the image with the Google Chrome developer tools is another way to find the

problem. Open web developer tools on the page, and scroll down to the broken image.

You will then see the URL the site is using and even change it temporarily to see if you

can fix the problem.

If you’re using Internet Explorer for Windows, you can also select the Properties option

from the menu that appears when you right-click an image to see its address. You can

check the address that appears in the Properties dialog box to see whether it points to the

appropriate location.

If all the references look good and the images work just fine on your local system, the

only other place a problem could have occurred is in transferring the files from one sys-

tem to another. Try reuploading the image. And if that doesn’t work, delete the image

from your web hosting service first, waiting a few minutes, and then reuploading. By

waiting a few minutes, you give the web server a chance to update the cache and possibly

fix the problem. If none of these things work, you’ll need to talk to your webmaster or

web hosting support.

My Links Don’t Work
If your HTML and image files are working just fine but your links don’t work, you most

likely used pathnames for those links that applied only to your local system. For example,

you might have used absolute pathnames or file URLs to refer to the files to which

you’re linking. As mentioned for images, if you used relative pathnames and avoided file

URLs, you shouldn’t have a problem. The most common mistake new designers make

is in using file system paths in their links. If you see a link that starts out file:// or has

D:/// (or any other drive name), those links aren’t going to work when your page is on

the web host. These will work fine while they are on your local computer, which is how

they creep into the process. Go back and switch them to relative paths and reupload the

page.

ptg16476052

638 LESSON 23: How to Publish Your Site

My Files Are Being Displayed Incorrectly
Suppose you have an HTML file or a file in some multimedia format that’s displayed

correctly or links just fine on your local system. After you upload the file to the server

and try to view it, the browser gives you gobbledygook. For example, it displays the

HTML code itself instead of the HTML file, or it displays an image or multimedia file as

text.

This problem can happen in two cases. The first is that you’re not using the right file

extensions for your files. Make sure that you’re using one of the correct file extensions

with the correct uppercase and lowercase.

The second case is that your server is not properly configured to handle your files. If all

your HTML files have extensions of .htm, for example, your server might not understand

that .htm is an HTML file. (Most modern servers do, but some older ones don’t.) Or you

might be using a newer form of media that your server doesn’t understand. In either case,

your server might be using some default content type for your files (usually text/plain),

which your browser probably can’t handle. This can happen with server-side scripts, too.

If you put up .php files on a server that doesn’t support PHP, the server will often send

the scripts to the browser as plain text.

To fix this problem, you’ll have to configure your server to handle the file extensions for

the correct media. If you’re working with someone else’s server, you’ll have to contact

your webmaster and have him set up the server correctly. Your webmaster will need two

types of information: the file extensions you’re using and the content type you want him

to return. If you don’t know the content type you want, refer to the Wikipedia article on

MIME at https://en.wikipedia.org/wiki/MIME.

Promoting Your Web Pages
To get people to visit your website, you need to promote it. The more visible your site,

the more pageviews it will attract.

A pageview is a visit to your website. Be aware that although your site may get, say,

50 pageviews in a day, that doesn’t necessarily mean that it was visited by 50 different

people. It’s just a record of the number of times a copy of your web page has been down-

loaded.

You can promote your site in many ways. You can make sure that it’s in search engine

indexes, promote your site via social media, put the URL on your business cards, and so

much more. The following sections describe each approach.

https://en.wikipedia.org/wiki/MIME

ptg16476052

Promoting Your Web Pages 639

23

Getting Links from Other Sites
It doesn’t take much surfing to figure out that the Web is huge. It seems like there’s a site

on every topic, and when it comes to popular topics, there may be hundreds or thousands

of sites. After you’ve done the hard work of creating an interesting site, the next step is to

get other people to link to it.

The direct approach is popular but often yields the wrong results. It can be tempting to

simply find other sites like your own and send a personal email to the people who run

them, introducing yourself and telling them that you have a site similar to theirs that they

may be interested in. If they are interested, it’s possible that they’ll provide a link to your

site. More often than not, though, they won’t see your email, or if they do see it, they will

think you’re a spammer and go out of their way to avoid your website.

It’s much better to get links from sites that you’ve already shown your value to. In other

words, you have already visited their site numerous times and participated, giving back to

their community. Once the website owner recognizes you, she will be much more ame-

nable to linking to your site. And the way you get her to know you is by participating on

her site. You can participate by answering or asking questions in comments, providing

feedback (when requested), joining forums, and making yourself known. Most website

comment forms have a field for URL, which you can use to put your URL on their pages.

It won’t get you search engine results, but it still will be seen by the site owner and might

be clicked on by other participants on the site.

When you’re sure that the site owner will recognize you, then sending a direct email mes-

sage asking for a link is a good idea. But remember that the biggest sites often get hun-

dreds or thousands of link requests a day. So even if they know you, don’t be surprised if

they ignore your request.

Content Marketing Through Guest Posting
The thing about asking for links is you are asking the website owner to give you some-

thing while he gains little or nothing. In fact, if search engines decide that your site is a

spam site or link farm, they could ultimately hurt their own authority by linking to you. A

better way to get links to your site on other sites is to start doing guest posting.

Guest posting occurs when you write an article on your topic of interest, but instead of

posting it on your own website, you post it on another website—for free. You see guest

posts on sites all over the Internet on topics ranging from auto repair to zoology. If there

is a topic, there is probably a website related to it, and most sites are willing to post guest

posts if you ask them to.

ptg16476052

640 LESSON 23: How to Publish Your Site

If you are going to use guest posting to help promote your website, you need to remem-

ber a few things:

n Make sure that they will post your name and URL along with the guest post in

either a byline or a biography section.

n Write the best article you can write. Save your best article ideas for your guest

posts, as those are the ones you want to use as advertising for your website.

n Find out what their policy is on shared posting. Some sites don’t want posts that are

duplicated, even if you only posted it to your own site first. Other sites have laxer

policies.

n Make sure that you retain your rights regarding the work. Just because an article is

posted on the Web doesn’t mean that copyright doesn’t apply.

To start guest posting, you need to come up with a list of sites that you want to post

to. Be sure to list the most popular sites in your topic area as well as some that are less

popular. Don’t assume either that you are too unknown to write for the “big boys” or that

you won’t get enough traffic from the smaller sites. Large sites, especially content-driven

sites, are often looking for new sources of content. And smaller sites can provide you

with a wider audience, especially when you’re just getting started.

DO use guest posts as a way to get
your name and site URL out to the
world.

DO follow all writing guidelines you
receive.

DON’T get discouraged if a site turns
down your guest post idea.

DON’T spam websites asking to be a
guest author.

 DO DON’T

Promoting Your Site Through Social Media
First , what is social media? Most people define social media as websites that enable

their users to socialize with one another. Sites such as Twitter and Facebook are popular

examples. Weblogs like Tumblr and WordPress.com can be considered social media, too.

There are also link sharing sites like Digg and Reddit, where users can submit links, vote

for them, or comment on them. Links that get more votes are featured more prominently

on the site. Social media is about people connecting to one another, and promoting a site

through social media is as simple as talking about your site on those sites. The tricky part

is doing so in a way that makes you a valuable participant in the conversation rather than

a tedious self-promoter.

ptg16476052

Promoting Your Web Pages 641

23

Many people talk about “viral” marketing. The concept is simple: Instead of purchasing

an advertisement that may be displayed for hundreds or thousands of people, you tell

just a few interested people about your site (or essay, or product, or movie, or whatever

it is that you’ve created), and then they in turn share it with people they think will be

interested, and so on, until it has reached a large audience. The advantage, assuming that

it works, is that it’s inexpensive, and your message has been delivered by people who

the audience is actually willing to listen to—people they already know. The difficulty is

in creating something that is interesting to large audiences in the first place and in tell-

ing the right people about it so that they are interested in sharing in what you’ve created.

Taking advantage of social media is one way to accomplish the second part of the task.

Regardless of the outlet, the two steps are to establish a presence and to be interesting.

Twitter (https://twitter.com) is one of the most popular social media sites these days.

After you’ve signed up for an account, you can follow other people on Twitter, and

people who find you interesting will follow you. A lot of people on the Web give advice

on how to attract large numbers of followers, and a lot of people on Twitter follow thou-

sands of people in hopes that people will follow them in return.

Focusing on follower counts is the wrong approach. Remember, the goal with social

media is to establish an audience of people who actually care about what you’re doing.

Let’s say you’ve created a new website for knitting enthusiasts, and in hopes of promot-

ing the site, you’ve created a Twitter account to go along with it.

Creating a Twitter account is easy and free. To create a Twitter
account, you need only supply an account name, a full name, an
email address, and a password of your choosing. The account
name and full name can be anything you like. After you’ve fol-
lowed those steps, you’re all set.

NOTE

For starters, you should create posts on Twitter with links back to your site whenever you

publish something new. You should also follow people who say interesting things, pref-

erably on the subject of knitting. If they say something you find particularly interesting,

you should retweet it; this means you repeat it, mentioning their Twitter handle, to your

followers. You should respond to people when you have something interesting to say,

too. If you do so, eventually they may follow you in return. If things go well, eventually

you’ll have a great outlet for promoting your site, and even if they go poorly, you’ll be

participating in a community of people who like to talk about the subject of your site—

knitting. That’s social media in a nutshell .

https://twitter.com

ptg16476052

642 LESSON 23: How to Publish Your Site

Creating a Facebook Page for Your Site
There’s an additional way to promote your site on the popular social networking site

Facebook. You can create a page that represents your site to the Facebook community .

To do so, you need a Facebook account. After you’ve signed up, go to https://

www.facebook.com/pages/create/. You will be asked what type of page you want to cre-

 ate, as shown in Figure 23.1.

I chose Brand or Product and then Website to create a new page for this book. Then I

was given a chance to add a description of the page, include a profile picture, give it a

Facebook URL, and even specify the audience I wanted to target. The Facebook Page

setup sc reen is shown in Figure 23.2.

After the page has been created, I can customize it in a variety of ways, controlling who’s

allowed to post on it and what kinds of content they’re allowed to post. The Facebook

page gives Facebook users who are interested in this book a place to congregate to dis-

cuss it, share links related to the book, and meet one another.

FIGURE 23.1

The Facebook
Create a Page start
page.

https://www.facebook.com/pages/create/
https://www.facebook.com/pages/create/

ptg16476052

Promoting Your Web Pages 643

23

Site Indexes and Search Engines
Nearly all web users know how to find things using search engines, and you’ll want to

make sure that they can find your site. Search engines work by creating an index of all

the sites they can find. You need to be sure to add your site to the index when you pub-

lish it so that search engines will start including it in search results. As long as people

link to your site, search engines will find it eventually whether you tell them about it or

not, but asking them to index your site will ensure that it’s added immediately. Here’s a

list of the top four search engines:

Google https://www.google.com/

Bing http://www.bing.com/

Yahoo https://www.yahoo.com/

Ask http://www.ask.com/

Lesson 25, “Search Engines and SEO,” goes into more detail about how and why to sub-

mit your sites to some of the popular search engines. There’s a set of interlocking rela-

tionships among search engine providers that can make it difficult to keep track of who is

providing search functionality for whom. The search engines listed previously maintain

their own indexes. After your site is included in their index, it will be available via all the

search engines that use their index, too. The art of so-called search engine optimization,

or SEO, is also covered in detail in Lesson 25.

FIGURE 23.2

The Facebook Page
setup screen.

https://www.google.com/
http://www.bing.com/
https://www.yahoo.com/
http://www.ask.com/

ptg16476052

644 LESSON 23: How to Publish Your Site

Business Cards, Letterhead, Brochures, and
Advertisements
Although the Internet is a wonderful place to promote your new website, many people

fail to consider some other great advertising methods.

Most businesses spend a considerable amount of money each year producing business

cards, letterhead, and other promotional material. These days it’s rare to see any of these

materials without web and email information on them. By printing your email address

and home page URL on all your correspondence and promotional material, you can reach

an entirely new group of potential visitors.

Even your email signature is a good place to promote your site. Just put in a link and the

title and maybe a short description so that everyone you correspond with can see what

you’re publishing on the Web.

When you’re promoting your website, the bottom line is lateral thinking. You need to use

every tool at your disposal if you want to have a successful and active site.

Finding Out Who’s Viewing Your Web
Pages
Now you’ve got your site up on the Web and ready to be viewed, you’ve advertised and

publicized it to the world, and people are flocking to it in droves. Or are they? How can

you tell? You can find out in a number of ways, including using log files and access

counters.

Log Files
One way to figure out how often your pages are being seen, and by whom, is to get

access to your server’s log files. How long these log files are kept depends on how your

server is configured. The logs can take up a lot of disk space, so some hosting providers

remove old logs pretty frequently. If you run your own server, you can keep them as long

as you like, or at least until you run out of room. Many commercial web providers allow

you to view your own web logs or get statistics about how many visitors are accessing

your pages and from where. Ask your webmaster for help.

For more information about search engines, I strongly
recommend you read Search Engine Watch at http://
www.searchenginewatch.com/.

NOTE

http://www.searchenginewatch.com/
http://www.searchenginewatch.com/

ptg16476052

Finding Out Who’s Viewing Your Web Pages 645

23

If you do get access to these raw log files, you’ll most likely see a whole lot of lines that

look something like the following. (I’ve broken this one up into two lines so that it fits on

the page.)

vide-gate.coventry.ac.uk - - [17/Feb/2015:12:36:51 -0700]
 "GET /index.html HTTP/1.0" 200 8916

What does this information mean? The first part of the line is the site that accessed the

file. (In this case, it was a site from the United Kingdom.) The two dashes are used for

authentication. (If you have login names and passwords set up, the username of the per-

son who logged in and the group that person belonged to will appear here.) The date and

time the page was accessed appear inside the brackets. The next part is the actual file-

name that was accessed; here it’s the index.html at the top level of the server. The GET

part is the actual HTTP command the browser used; you usually see GET here. Finally,

the last two numbers are the HTTP status code and the number of bytes transferred. The

status code can be one of many things: 200 means the file was found and transferred cor-

rectly; 404 means the file was not found. (Yes, it’s the status code you get when pages

aren’t found in your browser.) Finally, the number of bytes transferred usually will be the

same number of bytes in your actual file; if it’s a smaller number, the visitor interrupted

the load in the middle.

Most web hosts provide log processing software that will take the logs generated by the

server when users visit your site and turn them into reports, often with graphs and other

visual aids, that you can use to easily see how many users are visiting your site as well as

how those servers are finding your site, whether it’s through search engines or links on

other web pages. You’ll want to check out the support site for your web host to determine

how to set things up so that your logs are processed and find out the URL of the reports

that are generated.

Google Analytics
There are other ways to keep track of who’s visiting your site and what pages they’re

viewing. Processing log files is one way to get an idea of who’s visiting your site.

Another option is to use Google Analytics , a tool provided for free by Google that keeps

track of all the visitors to your site and generates reports about your visitors.

The nice thing about Google Analytics is that you don’t have to deal with log files.

Google Analytics works by providing you with a code that uniquely identifies your site.

On each of the pages that you want to track, you include a reference to a JavaScript file

that Google provides and pass in the code for your site. Whenever users visit the pages

with a link to the tracking script, Google records information about their visit. Google

then uses this information to create the reports for you.

ptg16476052

646 LESSON 23: How to Publish Your Site

One particularly nice thing about Google Analytics is that you can usually add it to your

site even if the site is on a server you don’t control. So if you create a weblog (blog) on

a site like Tumblr, you can edit the theme of the site and paste in the Google Analytics

code .

Installing Google Analytics
To get started with installation, you’ll need to go to the Google Analytics website, http://

www.google.com/analytics/, and sign up for an Analytics account. If you don’t already

have a Google account, you’ll need to sign up for one, too.

After you’ve signed up for your account, you’ll need to create a profile for your website.

Click the Add New Property lin k to create the profile, and you’ll see the form in Figure

23.3.

FIGURE 23.3

Setting up a new
Google Analytics
profile.

This benefit can also be a drawback as Google Analytics will only
track pages that have the code on them. If you forget to add the
code to a page, it won’t show up in your reports.

CAUTION

http://www.google.com/analytics/
http://www.google.com/analytics/

ptg16476052

Finding Out Who’s Viewing Your Web Pages 647

23

To add a profile, you just enter the name and URL of your website in the form provided

and choose the industry category and time zone for your site. After you’ve saved your

new profile, Google provides the code to paste into your own web page so that customer

visits can be tracked. The code itself is a snippet of JavaScript that loads the Google

tracking code. To install the Google tracking code on your site, copy the code that

Google provides into your own pages. Google recommends that you paste the tag just

before the closing </body> tag on your pages. To start out, edit the HTML for your site’s

home page and paste in the Google Analytics code. Upload the page to your server if

necessary, and then visit that page in your browser.

After the page has been loaded with the Google Analytics tracking code in place, Google

Analytics will indicate that it has started tracking visits to your site. At that point, add the

Google tracking code to your other pages and upload them, too.

Using the Google Analytics Reports
After Google Analytics has been installed, it will start creating reports for your site

anywhere from 1 to 24 hours later. To view the main report for your site, just click the

Reporting tab. The Dashboard shows some basic statistics about use of your site—how

many visits you’ve gotten each day for the past month, a map showing where most of

your visitors come from, and which pages on your site are the most popular. You can see

an example of the Dashboard in Figure 23.4.

FIGURE 23.4

The Google
Analytics
Dashboard.

ptg16476052

648 LESSON 23: How to Publish Your Site

Other numbers on the page provide insight into how users are interacting with your site.

Bounce Rate shows the percentage of users who leave after visiting your landing page

instead of sticking around to visit more pages on your site. The average pages per visit

and average time on site provide a further idea of the degree to which users are drilling

down on your site. In some cases, low numbers here may be fine. If your page is a set of

links to other sites, a high bounce rate and low time on the site may indicate that users

are finding what they’re looking for and following the links. Your interpretation of the

statistics should be based on your goals.

Each of the reports on the Dashboard links to a report with more detailed information.

For example, if you click the report link for Traffic Sources, you’ll see a more detailed

breakdown of where your traffic originated, including which search terms people used to

find your site.

One report shows which browsers and operating systems your visitors are using, so you

can figure out which features your audiences will be able to take advantage of. Other

reports show how many of your users visited for the first time and how many were repeat

visitors. There are reports that show which sites link to yours. Keeping a close eye on

your Analytics reports will enable you to figure out which parts of your site are working

and which aren’t, whether you use Google Analytics or some other analytics package.

Summary
In this lesson, you published your site on the Web through the use of a web server, either

one installed by you or that of a network provider. You learned what a web server does

and how to get one, how to organize your files and install them on the server, and how

to find your URL and use it to test your pages. You also learned the many ways that you

can advertise and promote your site and how to use log files and Google Analytics to

keep track of the number of visitors. At last, you’re on the Web and people are coming to

visit!

Workshop
As always, we wrap up the lesson with a few questions, quizzes, and exercises. Here are

some pointers and refreshers on how to promote your website.

ptg16476052

Workshop 649

23

Q&A
Q I’ve published my pages at an ISP I really like. The URL is something like

http://www.thebestisp.com/users/mypages/. Instead of this URL, I’d like to
have my own hostname, something like http://www.mypages.com/. How can I
do this?

 A You have two choices. The easiest way is to ask your ISP whether you’re allowed

to have your own domain name. Many ISPs have a method for setting up your

domain so that you can still use their services and work with them—it’s only your

URL that changes. Note that having your own hostname might cost more money,

but it’s the way to go if you really must have that URL. Many web hosting services

have plans starting as low as $5 a month for this type of service, and it currently

costs as little as $16 to register your domain for two years.

 The other option is to set up your own server with your own domain name. This

option could be significantly more expensive than working with an ISP, and it

requires at least some background in basic network administration.

Q There are so many search engines! Do I have to add my URL to all of them?

 A No, mainly because eventually they will find your site whether you add it to

them or not. Adding your URL to a search engine may get it into the results more

quickly, so if you already know about a search engine and can submit your site, do

so. Otherwise, don’t worry about it.

Quiz
1. What’s the basic function of a web server?

2. What are default index files, and what’s the advantage of using them in all

directories?

3. What are some things that you should check immediately after you upload your

web pages?

4. Name some of the ways that you can promote your website.

5. What’s a pageview?

Quiz Answers
1. A web server is a program that sits on a machine connected to the Internet (or an

intranet). It determines which resource is associated with a URL and delivers that

resource to the user. Some people also refer to the machine that runs the server

software as a web server.

http://www.thebestisp.com/users/mypages/
http://www.mypages.com/

ptg16476052

650 LESSON 23: How to Publish Your Site

2. The default index file is loaded when a URL ends with a directory name rather than

a filename. Typical examples of default index files are index.html, index.htm, and

default.htm. If you use default filenames, you can use a URL such as http://

www.mysite.com/ rather than http://www.mysite.com/index.html to get to the home

page in the directory.

3. Make sure that your browser can reach your web pages on the server, that you can

access the files on your website, and that your links and images work as expected.

After you’ve determined that everything appears the way you think it should, have

your friends and family test your pages in other browsers.

4. Some ways you can promote your site include using major web directories and

search engines, asking for links, writing guest posts, and adding site links to busi-

ness cards and other promotional materials.

5. A pageview is a view of a file from your website.

Exercises
1. Start shopping around and consider where you want to host your website. Find

a couple of web hosting firms that look like good options and do some research

online to see what their existing customers have to say about them.

2. Upload and test a practice page to learn the process, even if it’s just a blank page

that you’ll add content to later. You might work out a few kinks this way before

you actually upload all your hard work on the Web.

3. Visit some of the search engines listed in this lesson to obtain a list of the sites

where you want to promote your web page. Review each of the choices to see

whether there are special requirements for listing your page.

4. Sign up for a Google Analytics account and install it on your site. Explore the

reports to see what kind of information it provides about your site.

http://www.mysite.com/
http://www.mysite.com/
http://www.mysite.com/index.html

ptg16476052

LESSON 24
Taking Advantage of
the Server

At this point, you’ve learned how to publish websites using Hypertext
Markup Language (HTML). This lesson takes things a step further and
explains how to build dynamic websites using scripts on the server. Most
websites utilize some kind of server-side processing. Search engines
take the user’s request and search an index of web pages on the server.
Online stores use server-side processing to look up items in the inventory,
keep track of the user’s shopping cart, and handle the checkout process.
Newspaper websites keep articles in a database and use server-side pro-
cessing to generate the article pages. This lesson introduces server-side
programming using the PHP language. PHP is the most common script-
ing platform provided by web hosts, can be easily installed on your own
computer, and is completely free. It’s also easy to get started with. Even
if you wind up developing your applications using some other scripting
language, you can apply the principles you’ll learn in this lesson to those
languages.

In this lesson, you’ll learn the following:

n How PHP works

n How to set up a PHP development environment

n The basics of the PHP language

n How to process form input

n Using PHP includes

ptg16476052

652 LESSON 24: Taking Advantage of the Server

How PHP Works
PHP enables programmers to include PHP code in their HTML documents, which is

processed on the server before the HTML is sent to the browser. Normally, when a user

submits a request to the server for a web page, the server reads the HTML file and sends

its contents back in response. If the request is for a PHP file and the server supports PHP,

the server looks for PHP code in the document, executes it, and includes the output of

that code in the page in place of the PHP code. Here’s a simple example :

<!DOCTYPE html>
<html>
<head><title>A PHP Page</title></head>
<body>
<?php echo "Hello world!"; ?>
</body>
</html>

If this page is requested from a web server that supports PHP, the HTML sent to the

browser will look like this:

<!DOCTYPE html>
<html>
<head><title>A PHP Page</title></head>
<body>
Hello world!
</body>
</html>

When the user requests the page, the web server determines that it is a PHP page rather

than a regular HTML page. If a web server supports PHP, it usually treats any files

with the extension .php as PHP pages. Assuming this page is called something like

hello.php, when the web server receives the request, it scans the page looking for PHP

code and then runs any code it finds. PHP code is distinguished from the rest of a page

by PHP tags, which look like this:

<?php // your code here ?>

Whenever the server finds those tags, it treats whatever is within them as PHP code.

That’s not so different from the way things work with JavaScript, where anything inside

<script> tags is treated as JavaScript code.

In the example, the PHP code contains a call to the echo function. This function prints

out the value of whatever is passed to it. In this case, I passed the text “Hello world!” to

the function, so that text is included in the page. The concept of functions should also be

familiar to you from Lesson 19, “Using JavaScript in Your Pages.” Just like JavaScript,

PHP lets you define your own functions or use functions built in to the language. echo is

a built-in function.

ptg16476052

Getting PHP to Run on Your Computer 653

24

Statements in PHP, as in JavaScript, are terminated with a semicolon. (You can see the

semicolon at the end of the statement in the example.) There’s no reason why you can’t

include multiple statements within one PHP tag, like this:

<?php
 echo "Hello ";
 echo "world!";
?>

PHP also provides a shortcut if all you want to do is print the value of something to a

page. Instead of using the full PHP tag, you can use the expression tag, which just echoes

a value to the page. Instead of using

<?php echo "Hello world!"; ?>

You can use th is:

<?= "Hello world!" ?>

Replacing php with = enables you to leave out the call to the echo function and the semi-

colon. This style of tag is referred to as a short tag. Not all PHP installations have short

tags enabled, so be sure to test these on your server before you release your PHP pages.

Getting PHP to Run on Your Computer
Before you can start writing your own PHP scripts, you need to set up a PHP environ-

ment. The easiest approach is probably to sign up for a web hosting account that provides

PHP support. Even if you do so, though, there are some advantages to getting PHP to

work on your own computer. You can edit files with your favorite editor and then test

them right on your own computer rather than uploading them to see how they work.

You’ll also be able to work on them even if you’re not online. Finally, you can keep from

putting files on a server that your users will be able to see without your having tested

them first.

To process PHP pages, you need the PHP interpreter and a web server that works with

the PHP interpreter. The good news is that PHP and the most popular web server,

Apache, are both free, open source software. The bad news is that getting PHP up and

running can be a bit of a technical challenge.

Fortunately, if you’re a Windows or Mac user, someone else has done this hard work

for you. A tool called XAMPP, available for both Windows and OS X, bundles up ver-

sions of Apache, PHP, and MySQL (a database useful for storing data associated with

web applications) that are already set up to work together. (The last P is for Perl, another

scripting language.) You can download it from https://www.apachefriends.org/

index.html.

https://www.apachefriends.org/index.html
https://www.apachefriends.org/index.html

ptg16476052

654 LESSON 24: Taking Advantage of the Server

If you’re a Mac user, you also have the option of using MAMP, another free package

that combines Apache, PHP, and MySQL. You can download it from https://

www.mamp.info/en/.

If you like to tinker with your Mac, you have the option of using
the version of Apache and PHP that are included with OS X. But
this can be challenging. Using a prebuilt system is quicker.

TIP

After you’ve installed XAMPP (or MAMP), you just have to start the application to get

a web server up and running that you can use to develop your pages. To test your PHP

pages, you can put them in the htdocs directory inside the XAMPP install directory. For

example, if you want to test the hello.php page I talked about earlier, you could put it in

the htdocs directory. To view it, just go to http://localhost/hello.php.

If that doesn’t work, make sure that XAMPP has started the Apache server. If you’re

using MAMP, the steps are basically the same. Just put your pages in the htdocs folder,

as with XAMPP.

The PHP Language
When you think about the English language, you think about it in terms of parts of

speech. Nouns name things, verbs explain what things do, adjectives describe things, and

so on. Programming languages are similar. A programming language is made up of vari-

ous “parts of speech,” too. In this section, I explain the parts of speech that make up the

PHP language—comments, variables, conditional statements, and functions.

It might be helpful to think back to Lesson 19 as you read this lesson. PHP and

JavaScript share a common ancestry, and many of the basic language features are similar

between the two. If things such as the comment format, curly braces, and control state-

ments look similar from one to the other, it’s because they are.

Comments
Like HTML and JavaScript, PHP supports comments. PHP provides two comment styles:

one for single-line comments, and another for multiple comments. (If you’re familiar

with comments in the C or Java programming language, you’ll notice that PHP’s are the

same.) First, I'll cover single-line comments. To start a single-line comment, use // or #.

Everything that follows either on a line is treated as a comment. Here are som e examples:

// My function starts here.
$old_color = 'purple';

https://www.mamp.info/en/
https://www.mamp.info/en/
http://localhost/hello.php

ptg16476052

The PHP Language 655

24

$color = 'red'; // Set the color for text on the page
$color = 'blue';
$color = $old_color; # Sets the color to the old color.
// $color = 'red';

The text that precedes // is processed by PHP, so the second line assigns the $color

variable. On the third line, I’ve turned off the assignment by commenting it out. PHP also

supports multiple-line comments, which begin with /* and end with */. If you want to

comment out several lines of code, you can do so like this:

/*
$color = 'red';
$count = 55; // Set the number of items on a page.
// $count = $count + 1;
*/

PHP ignores all the lines inside the comments. Note that you can put the // style com-

ment inside the multiline comment with no ill effects. You cannot, however, nest multi-

line comments. This is illegal:

/*
$color = 'red';
$count = 55; // Set the number of items on a page.
/* $count = $count + 1; */
*/

The generally accepted style for PHP code is to use // for single-
line comments rather than #.

NOTE

Variables
Variables provide a way for the programmers to assign a name to a piece of data. In PHP,

these names are preceded by a dollar sign ($). Therefore, you might store a color in a

variable called $color or a date in a variable named $last_published_at. Here’s how

you assign values to those variables:

$color = "red";
$last_published_at = time();

The first line assigns the value "red" to $color; the second returns the value returned by

the built-in PHP function time() to $last_published_at. That function returns a time-

stamp represented as the number of seconds since what’s called the “UNIX epoch,” or

the beginning of UNIX time.

ptg16476052

656 LESSON 24: Taking Advantage of the Server

One thing you should notice here is that you don’t have to indicate what kind of item

you’ll be storing in a variable when you declare it. You can put a string in it, as I did

when I assigned "red" to $color. You can put a number in it, as I did with $last_

published_at. I know that the number is a timestamp, but as far as PHP is concerned,

it’s just a number. What if I want a date that’s formatted to be displayed rather than

stored in seconds so that it can be used in calculations? I can use the PHP date() func-

tion. Here’s an example:

$last_published_at = date("F j, Y, g:i a");

This code formats the current date so that it looks something like “June 10, 2010, 8:47

pm.” As you can see, I can change what kind of information is stored in a variable with-

out doing anything special. It just works. The only catch is that you have to keep track

of what sort of thing you’ve stored in a variable when you use it. For more information

about how PHP deals with variable types, see http://www.php.net/manual/en/

language.types.type-juggling.php.

If you get a warning about not setting a time zone when you
enter the previous date() line, you should add a line setting
your time zone above it in the script: date_default_timezone_
set('America/Los_Angeles'). Change the “America/Los
Angeles” to your time zone. You can find a list of supported time
zones at http://php.net/manual/en/timezones.php.

TIP

Despite the fact that variables don’t have to be declared as being associated with a par-

ticular type, PHP does support various data types, including string, integer, and float (for

numbers with decimal points). Not all variable types work in all contexts. One data type

that requires additional explanation is the array data type.

Arrays
All the variables you’ve seen so far in this lesson have been used to store single values.

Arrays are data structures that can store multiple values. You can think of them as lists

of values, and those values can be strings, numbers, or even other arrays. To declare an

array, use the built-in array function:

$colors = array('red', 'green', 'blue');

This declaration creates an array with three elements in it. Each element in an array

is numbered, and that number is referred to as the index. For historical reasons, array

indexes start at 0, so for the preceding array, the index of red is 0, the index of green is

http://www.php.net/manual/en/language.types.type-juggling.php
http://php.net/manual/en/timezones.php
http://www.php.net/manual/en/language.types.type-juggling.php

ptg16476052

The PHP Language 657

24

1, and the index of blue is 2. You can reference an element of an array using its index,

like this:

$color = $colors[1];

By the same token, you can assign values to specific elements of an array, too, like this:

$colors[2] = 'purple';

You can also use this method to grow an array, as follows:

$colors[3] = 'orange';

What happens if you skip a few elements when you assign an item to an array, as in the

following line?

$colors[8] = 'white';

In this case, not only will element 8 be created, but elements 4 through 7 will be created,

too. If you want to add an element onto the end of an array, you just leave out the index

when you make the assignment, like this:

$colors[] = 'yellow';

In addition to arrays with numeric indexes, PHP supports associative arrays, which have

indexes supplied by the programmer. These are sometimes referred to as dictionaries or

as hashes. Here’s an example that shows how they are declared:

$state_capitals = array(
 'Texas' => 'Austin',
 'Louisiana' => 'Baton Rouge',
 'North Carolina' => 'Raleigh',
 'South Dakota' => 'Pierre'
);

When you reference an associative array, you do so using the keys you supplied, as

follows:

$capital_of_texas = $state_capitals['Texas'];

To add a new element to an associative array, you just supply the new key and value, like

this:

$state_capitals['Pennsylvania'] = 'Harrisburg';

If you need to remove an element from an array, just use the built-in unset() function,

like this:

unset($colors[1]);

ptg16476052

658 LESSON 24: Taking Advantage of the Server

The element with the index specified will be removed, and the array will decrease in size

by one element. The indexes of the elements with larger indexes than the one that was

removed will be reduced by one. You can also use unset() to remove elements from

associative arrays, like this:

unset($state_capitals['Texas']);

Array indexes can be specified using variables. You just put the variable reference inside

the square brackets, like this:

$i = 1;
$var = $my_array[$i];

This also works with associative arrays:

$str = 'dog';
$my_pet = $pets[$str];

As you’ll see a bit further on, the ability to specify array indexes using variables is a

staple of some kinds of loops in PHP.

As you’ve seen, nothing distinguishes between a variable that’s an array and a variable

that holds a string or a number. PHP has a built-in function named is_array() that

returns true if its argument is an array and false if the argument is anything else. Here’s

an example:

is_array(array(1, 2, 3)); // returns true
is_array('tree'); // returns false

When PHP returns a true value, it returns the number 1. PHP
doesn’t return a value when it returns false.

NOTE

To determine whether a particular index is used in an array, you can use PHP’s array_

key_exists() function . This function is often used to do a bit of checking before refer-

ring to a particular index, for example:

if (array_key_exists("Michigan", $state_capitals)) {
 echo $state_capitals["Michigan"];
}

As mentioned previously, it’s perfectly acceptable to use arrays as the values in an array.

Therefore, the following is a valid array declaration:

$stuff = ('colors' => array('red', 'green', 'blue'),
'numbers' => array('one', 'two', 'three'));

ptg16476052

The PHP Language 659

24

In this case, I have an associative array that has two elements. The values for each of the

elements are arrays themselves. I can access this data structure by stacking the references

to the array indexes, like this:

$colors = $stuff['colors']; // Returns the list of colors.
$color = $stuff['colors'][1]; // Returns 'green'
$number = $stuff['numbers'][0]; // Returns 'one'

Strings
The most common data type you’ll work with in PHP is the string type. A string is just a

series of characters. An entire web page is a string, as is a single letter. To define a string,

just place the characters in the string within quotation marks. Here are some examples of

strings:

"one"
"1"
"I like publishing Web pages."
"This string
spans multiple lines."

Take a look at the last string in the list. The opening quotation mark is on the first line,

and the closing quotation mark is on the second line. In PHP, this is completely valid. In

some programming languages, strings that span multiple lines are illegal—not so in PHP,

where strings can span as many lines as you like, so long as you don’t accidentally close

the quotation marks.

There’s more to strings than just defining them. You can use the . operator to join

strings, like this:

$html_paragraph = "<p>" . $paragraph . "</p>";

The $html_paragraph variable will contain the contents of $paragraph surrounded by

the opening and closing paragraph tag. The . operator is generally referred to as the

string concatenation operator.

Up to this point, you might have noticed that sometimes I’ve enclosed strings in double

quotation marks, and that other times I’ve used single quotation marks. They both work

for defining strings, but there’s a difference between the two. When you use double quo-

tation marks, PHP scans the contents of the string for variable substitutions and for spe-

cial characters. When you use single quotation marks, PHP just uses whatever is in the

string without checking to see whether it needs to process the contents.

Special characters are introduced with a backslash, and they are a substitute for characters

that might otherwise be hard to include in a string. For example, \n is the substitute for a

ptg16476052

660 LESSON 24: Taking Advantage of the Server

newline, and \r is the substitute for a carriage return. If you want to include a newline in

a string and keep it all on one line, just write it like this:

$multiline_string = "Line one\nLine two";

Here’s what I mean by variable substitutions. In a double-quoted string, I can include a

reference to a variable inside the string, and PHP will replace it with the contents of the

variable when the string is printed, assigned to another variable, or otherwise used. In

other words, I could have written the preceding string-joining example as follows:

$html_paragraph = "<p>$paragraph</p>";

PHP will find the reference to $paragraph within the string and substitute its contents.

On the other hand, the literal value “$paragraph” would be included in the string if I

wrote that line like this:

$html_paragraph = '<p>$paragraph</p>';

You need to do a bit of extra work to include array values in a string. For example, this

won’t work:

$html_paragraph = "<p>$paragraph['intro']</p>";

You can include the array value using string concatenation:

$html_paragraph = "<p>" . $paragraph['intro'] . "</p>";

You can also use array references within strings if you enclose them within curly braces,

like this:

$html_paragraph = "<p>{$paragraph['intro']}</p>";

One final note on defining strings is escaping. As you know, quotation marks are com-

monly used in HTML as well as in PHP, especially when it comes to defining attributes

in tags. There are two ways to use quotation marks within strings in PHP. The first is

to use the opposite quotation marks to define the string that you’re using within another

string. Here’s an example:

$tag = '<p class="important">';

I can use the double quotes within the string because I defined it using single quotes. This

particular definition won’t work, though, if I want to specify the class using a variable. If

that’s the case, I have two other options:

$tag = "<p class=\"$class\">";
$tag = '<p class="' . $class . '">';

In the first option, I use the backslash character to “escape” the double quotes that occur

within the string. The backslash indicates that the character that follows is part of the

ptg16476052

The PHP Language 661

24

string and does not terminate it. The other option is to use single quotes and employ the

string concatenation operator to include the value of $class in the string.

Conditional Statements
Conditional statements and loops are the bones of any programming language. PHP is

no different. The basic conditional statement in PHP is the if statement. Here’s how it

works:

if ($var == 0) {
 echo "Variable set to 0.";
}

The code inside the brackets will be executed if the expression in the if statement is true.

In this case, if $var is set to anything other than 0, the code inside the brackets will not

be executed. PHP also supports else blocks, which are executed if the expression in the

if statement is false. They look like this:

if ($var == 0) {
 echo "Variable set to 0.";
} else {
 echo "Variable set to something other than 0.";
}

When you add an else block to a conditional statement, it means that the statement will

always do something. If the expression is true, it will run the code in the if portion of the

statement. If the expression is not true, it will run the code in the else portion. Finally,

there’s el seif:

if ($var == 0) {
 echo "Variable set to 0.";
} elseif ($var == 1) {
 echo "Variable set to 1.";
} elseif ($var == 2) {
 echo "Variable set to 2.";
} else {
 echo "Variable set to something other than 0, 1, or 2.";
}

As you can see, elseif allows you to add more conditions to an if statement. In this

case, I added two elseif conditions. There’s no limit on elseif conditions—you can use

as many as you need. Ultimately, elseif and else are both conveniences that enable you

to write less code to handle conditional tasks.

ptg16476052

662 LESSON 24: Taking Advantage of the Server

PHP Conditional Operators
It’s hard to write conditional statements if you don’t know how to write a Boolean

expression. First of all, Boolean means that an expression (which you can think of as a

statement of fact) is either true or false. Here are some examples:

1 == 2 // false
'cat' == 'dog' // false
5.5 == 5.5 // true
5 > 0 // true
5 >= 5 // true
5 < 10 // true

PHP also supports logical operators, such as “not” (which is represented by an exclama-

tion point), “and” (&&), and “or” (||). You can use them to create expressions that are

made up of multiple individual expressions, like these:

1 == 1 && 2 == 4 // false
'blue' == 'green' || 'blue' == 'red' // false
!(1 == 2) // true, because the ! implies "not"
!(1 == 1 || 1 == 2) // false, because ! negates the expression inside the ()

Furthermore, individual values also evaluate to true or false on their own. Any variable

set to anything other than 0 or an empty string ("" or '') will evaluate as true, including

an array with no elements in it. So if $var is set to 1, the following condition will evalu-

ate as true:

if ($var) {
 echo "True.";
}

If you want to test whether an array is empty, use the built-in function empty(). So if

$var is an empty array, empty($var) will return true. Here’s an example:

if (empty($var)) {
 echo "The array is empty.";
}

You can find a full list of PHP operators at http://www.php.net/manual/en/

language.operators.php.

Loops
PHP supports several types of loops, some of which are more commonly used than

others. As you know from the JavaScript lesson, loops execute code repeatedly until a

http://www.php.net/manual/en/language.operators.php
http://www.php.net/manual/en/language.operators.php

ptg16476052

Loops 663

24

condition of some kind is satisfied. PHP supports several types of loops: do...while,

while, for, and foreach. I discuss them in reverse order.

foreach Loops
The foreach loop was created for one purpose—to enable you to process all the elements

in an array quickly and easily. The body of the loop is executed once for each item in an

array, which is made available to the body of the loop as a variable specified in the loop

statement. Here’s how it works:

$colors = array('red', 'green', 'blue');
foreach ($colors as $color) {
 echo $color . "\n";
}

This loop prints each of the elements in the $colors array with a linefeed after each

color.

Don’t forget that web pages display the line feed as a single
space. If you want them to appear on a new line, you must
include a br tag (for example, echo $color . "
\n";).

NOTE

The important part of the example is the foreach statement. It specifies that the array to

iterate over is $colors and that each element should be copied to the variable $color so

that it can be accessed in the body of the loop.

The foreach loop can also process both the keys and the values in an associative array if

you use slightly different syntax. He re’s an example:

$synonyms = array('large' => 'big',
'loud' => 'noisy',
'fast' => 'rapid');

foreach ($synonyms as $key => $value) {
 echo "$key is a synonym for $value.\n";
}

As you can see, the foreach loop reuses the same syntax that creates associative arrays.

ptg16476052

664 LESSON 24: Taking Advantage of the Server

for Loops
Use for loops when you want to run a loop a specific number of times. The loop state-

ment has three parts: a variable assignment for the loop’s counter, an expression (con-

taining the index variable) that specifies when the loop should stop running, and an

expression that increments the loop counter. Here’s a typical for loop:

for ($i = 1; $i <= 10; $i++)
{
 echo "Loop executed $i times.\n";
}

$i is the counter (or index variable) for the loop. The loop is executed until $i is larger

than 10 (meaning that it will run 10 times). The last expression, $i++, adds one to $i

every time the loop executes. The for loop can be used instead of foreach to process an

array. You just have to reference the array in the loop statement, like this:

$colors = array('red', 'green', 'blue');
for ($i = 0; $i < count($colors); $i++) {
 echo "Currently processing " . $colors[$i] . ".\n";
}

There are a couple of differences between this loop and the previous one. In this case, I

start the index variable at 0 and use < rather than <= as the termination condition for the

loop. That’s because count() returns the size of the $colors array, which is 3, and loop

indexes start with 0 rather than 1. If I start at 0 and terminate the loop when $i is equal to

the size of the $colors array, it runs three times, with $i being assigned the values 0, 1,

and 2, corresponding to the indexes of the array being processed.

while and do...while Loops
Both for and foreach are generally used when you want a loop to iterate a specific num-

ber of times. The while and do...while loops, on the other hand, are designed to be run

an arbitrary number of times. Both loop statements use a single condition to determine

whether the loop should continue running. Here’s an example with while:

$number = 1;
while ($number != 5) {
 $number = rand(1, 10);
 echo "Your number is $number.\n";
}

This loop runs until $number is equal to 5. Every time the loop runs, $number is assigned

a random value between 1 and 10. When the random number generator returns a 5, the

ptg16476052

Loops 665

24

while loop will stop running. A do...while loop is basically the same, except the condi-

tion appears at the bottom of the loop . Here’s what it looks like:

$number = 1;
do {
 echo "Your number is $number.\n";
 $number = rand(1, 10);
} while ($number != 5);

Generally speaking, the only time it makes sense to use do … while is when you want to

be sure the body of the loop will execute at least once.

Controlling Loop Execution
Sometimes you want to alter the execution of a loop. Sometimes you need to stop run-

ning the loop immediately, and other times you might want to just skip ahead to the next

iteration of the loop. Fortunately, PHP offers statements that do both. The break state-

ment is used to immediately stop executing a loop and move on to the code that follows

it. The continue statement stops the current iteration of the loop and goes straight to the

loop condition.

Here’s an example of how break is used:

$colors = array('red', 'green', 'blue');
$looking_for = 'red';
foreach ($colors as $color) {
 if ($color = $looking_for) {
 echo "Found $color.\n";
 break;
 }
}

In this example, I’m searching for a particular color. When the foreach loop gets to the

array element that matches the color I’m looking for, I print the color out and use the

break statement to stop the loop. When I’ve found the element I’m looking for, there’s

no reason to continue.

I could accomplish the same thing a different way using continue, like this:

$colors = array('red', 'green', 'blue');
$looking_for = 'red';
foreach ($colors as $color) {
 if ($color != $looking_for) {
 continue;
 }

 echo "Found $color.\n";
}

ptg16476052

666 LESSON 24: Taking Advantage of the Server

In this case, if the color is not the one I’m looking for, the continue statement stops

executing the body of the loop and goes back to the loop condition. If the color is the one

I’m looking for, the continue statement is not executed and the echo function goes ahead

and prints the color name I’m looking for.

The loops I’m using as examples don’t have a whole lot of work to do. Adding in

the break and continue statements doesn’t make my programs much more efficient.

Suppose, however, that each iteration of my loop searches a very large file or fetches

some data from a remote server. If I can save some of that work using break and

continue, it could make my script much faster.

Built-In Functions
PHP supports literally hundreds of built-in functions. You’ve already seen a few, such

as echo() and count(). There are many, many more. PHP has functions for formatting

strings, searching strings, connecting to many types of databases, reading and writing

files, dealing with dates and times, and just about everything in between.

You learned that most of the functionality in the JavaScript language is built using the

methods of a few standard objects such as window and document. PHP is different—rather

than its built-in functions being organized via association with objects, they are all just

part of the language’s vocabulary.

If you ever get the feeling that there might be a built-in function to take care of some

task, check the PHP manual to see whether such a function already exists. Chances are it

does. Definitely check whether your function will manipulate strings or arrays. PHP has

a huge library of array- and string-manipulation functions that take care of most common

tasks.

User-Defined Functions
PHP enables you to create user-defined functions that, like JavaScript functions, enable

you to package up code you want to reuse. Here’s how a function is declared:

function myFunction($arg = 0) {
 // Do stuff
}

The function keyword indicates that you’re creating a user-defined function. The name

of the function follows. In this case, it’s myFunction. The rules for function names and

variable names are the same—numbers, letters, and underscores are valid. The list of

arguments that the function accepts follows the function name, in parentheses.

ptg16476052

User-Defined Functions 667

24

The preceding function has one argument, $arg. In this example, I’ve set a default value

for the argument. The variable $arg would be set to 0 if the function were called like

this:

myFunction();

However, $arg would be set to 55 if the function were called like this:

myFunction(55);

Functions can just as easily accept multiple arguments:

function myOtherFunction($arg1, $arg2, $arg3)
{
 // Do stuff
}

As you can see, myOtherFunction accepts three arguments, one of which is an array.

Valid calls to this function include the following:

myOtherFunction('one', 'two', array('three'));
myOtherFunction('one', 'two');
myOtherFunction(0, 0, @stuff);
myOtherFunction(1, 'blue');

One thing you can’t do is leave out arguments in the middle of a list. So if you have a

function that accepts three arguments, there’s no way to set just the first and third argu-

ments and leave out the second, or set the second and third and leave out the first. If you

pass one argument in, it will be assigned to the function’s first argument. If you pass in

two arguments, they will be assigned to the first and second arguments to the function.

Returning Values
Optionally, your function can return a value, or more specifically, a variable . Here’s a

simple example of a function:

function add($a = 0, $b = 0) {
 return $a + $b;
}

The return keyword is used to indicate that the value of a variable should be returned to

the caller of a function. You could call the previous function like this:

$sum = add(2, 3); // $sum set to 5

A function can just as easily return an array. Here’s an example:

function makeArray($a, $b) {
 return array($a, $b);

ptg16476052

668 LESSON 24: Taking Advantage of the Server

}

$new_array = makeArray('one', 'two');

Your function can also return the result of another function, whether it’s built in or one

you wrote yourself. Here are a couple of examples:

function add($a = 0, $b = 0) {
 return $a + $b;
}

function alsoAdd($a = 0, $b = 0) {
 return add($a, $b);
}

Processing Forms
You learned how to create forms back in Lesson 12, “Designing Forms,” and although I

explained how to design a form, I didn’t give you a whole lot of information about what

to do with form data once it’s submitted. Now I explain how PHP makes data that has

been submitted available to your PHP scripts.

When a user submits a form, PHP automatically decodes the variables and copies the

values into some built-in variables. Built-in variables are like built-in functions—you

can always count on their being defined when you run a script. The three associated with

form data are $_GET, $_POST, and $_REQUEST. These variables are all associative arrays,

and the names assigned to the form fields on your form are the keys to the arrays.

$_GET contains all the parameters submitted using the GET method (in other words, in the

query string portion of the URL). The $_POST method contains all the parameters submit-

ted via POST in the response body. $_REQUEST contains all the form parameters regardless

of how they were submitted. Unless you have a specific reason to differentiate between

GET and POST, you can use $_REQUEST. Let’s look at a simple example of a form:

<form action="post.php" method="post">
 Enter your name: <input type="text" id="yourname" />

 <input type="submit" />
</form>

When the user submits the form, the value of the yourname field will be available in

$_POST and $_REQUEST. You could return it to the user like this:

<p>Hello <?= $_REQUEST['yourname'] ?>. Thanks for visiting.</p>

ptg16476052

Processing Forms 669

24

Once you have access to the data the user submitted, you can do whatever you like with

it. You can validate it (even if you have JavaScript validation, you should still validate

user input on the server as well), store it in a database for later use, or send it to someone

via email.

Handling Parameters with Multiple Values
Most form fields are easy to deal with; they’re simple name and value pairs. If you have

a text field or radio button group, for example, you can access the value submitted using

$_REQUEST, like this:

$radio_value = $_REQUEST['radiofield'];
$text_value = $_REQUEST['textfield'];

However, some types of fields submit multiple name and value pairs—specifically check

boxes and multiple select lists. If you have a group of five check boxes on a form, that

field can actually submit up to five separate parameters, all of which have the same name

and different values. PHP handles this by converting the user input into an array rather

Preventing Cross-Site Scripting

You have to be careful when you display data entered by a user on a web page
because malicious users can include HTML tags and JavaScript in their input in an
attempt to trick other users who might view that information into doing something
they might not want to do, such as entering their password to your site and submit-
ting it to another site. This is known as a cross-site scripting attack.

To prevent malicious users from doing that sort of thing, PHP includes the
htmlspecialchars() function, which automatically encodes any special characters
in a string so that they are displayed on a page rather than letting the browser treat
them as markup. Or, if you prefer, you can use htmlentities(), which encodes all
the characters that are encoded by htmlspecialchars() plus any other characters
that can be represented as entities. In the preceding example, you re ally want to
write the script that displays the user’s name like this:

<p>Hello <?= htmlspecialchars($_POST['yourname']) ?>.
Thanks for visiting.</p>

That prevents the person who submitted the data from launching a successful cross-
site scripting attack.

If you prefer, you can also use the strip_tags() function, which just removes all
the HTML tags from a string.

Finally, if your form is submitted using the POST method, you should refer to the
parameters using $_POST rather than $_REQUEST, which also helps to avoid certain
types of attacks by ignoring information appended to the URL via the query string.

ptg16476052

670 LESSON 24: Taking Advantage of the Server

▼

than a regular variable. Unfortunately, you have to give PHP a hint to let it know that

a field should be handled this way. (PHP has no idea what your form looks like; all it

knows about is the data that has been submitted.)

If you include [] at the end of the name of a form field, PHP knows that it should expect

multiple values for that field and converts the parameters into an array. This occurs even

if only one value is submitted for that field. Here’s an example:

<form action="postmultiplevalues.php" method="post">
 <input type="checkbox" name="colors[]" value="red" /> Red

 <input type="checkbox" name="colors[]" value="green" /> Green

 <input type="checkbox" name="colors[]" value="blue" /> Blue
</form>

When the form is submitted, you can access the values as you would for any other

parameter, except that the value in the $_REQUEST array for this parameter will be an

array rather than a single value. You can access it like this:

$colors = $_REQUEST['colors'];
foreach ($colors as $color) {
 echo "$color
\n";
}

If the user selects only one check box, the value will be placed in an array that has only

one element.

Exercise 24.1: Validating a Form

One of the most common tasks when it comes to server-side processing is form valida-

tion. When users submit data via a form, it should be validated on the server, even if your

page includes JavaScript validation, because you can’t guarantee that JavaScript valida-

tion was actually applied to the form data.

I use a simplified version of the user registration form from Lesson 12 in this exercise.

Figure 24.1 is a screenshot of the form I’ll be using. Here’s the HTML source:

Input ▼
<!DOCTYPE html>
<html>
 <head>
 <title>Registration Form</title>
 </head>
 <body>
 <h1>Registration Form</h1>▼

ptg16476052

Processing Forms 671

24

<p>Please fill out the form below to register for our site. Fields
with bold labels are required.</p>

 <form method="post">
<p><label for="name">Name:</label>

<input id="name"></p>

<p><label for="age">Age:</label>

<input id="age"></p>

<p>Toys:

<label><input type="checkbox" name="toys[]" value="Digital Camera">

Digital Camera</label>

<label><input type="checkbox" name="toys[]" value="MP3 Player"> MP3

Player</label>

<label><input type="checkbox" name="toys[]" value="Tablet">Tablet</label></

p>

<p><input type="submit" value="register" /></p>
 </form>
 </body>
</html>

Output ▼

As you can see, the form has three fields: one for the user’s name, one for the user’s

age, and one that enables the user to select some toys he owns. All three of the fields are

required. The form submits to itself, using the POST method. I’ve specified the action for

FIGURE 24.1

A simple user reg-
istration form.

▼

▼

ptg16476052

672 LESSON 24: Taking Advantage of the Server

the form using a built-in PHP variable that returns the URL for the page currently being

displayed. That way I can make sure the form is submitted to itself without including the

URL for the page in my HTML. Here’s the basic structure of the page:

<?php
// Form processing code
?><!doctype html>
<html>
 <head>

<title>Page Structure</title>
<style>

/* Page styles go here. */
</style>

 </head>
 <body>

<h1>Sample Page</h1>
<!-- Print form errors here -->
<form method="post" action="<?php echo htmlspecialchars($_SERVER["PHP_

SELF"]);?>">
<!-- Present form fields here -->

</form>
 </body>
</html>

This structure is pretty common for pages that present a form and process that form, too.

The PHP processor runs the scripts on the page from top to bottom, so all the form pro-

cessing will take place before any of the page is presented. If this page were going to do

more than just validate the form, it would probably redirect the user to a page thanking

him or her for registering if the validation code found no errors. It would also probably

save the values submitted through the form somewhere. In this case, though, I’m just

explaining form validation.

As you can see, the form-processing code lives on the same page as the form itself, so the

form will be submitted to this page. The validation code will live within the script section

at the top of the page. My objective for this page is to make sure that the user enters all

the required data and that the age the user enters is actually a number.

The first thing I need to do is initialize my PHP and define my variables. I need to set

variables for all my form fields and their error messages, as well as the array of toys:

// define variables
$nameErr = $ageErr = $toysErr = $errors = "";
$name = $age = "";
$toys = array();

▼

▼

ptg16476052

Processing Forms 673

24

Then I wrote the PHP to validate my fields:

if ($_SERVER['REQUEST_METHOD'] == 'POST') {
 if (empty($_POST['name'])) {

$nameErr = 'You must enter your name.';
$errors = 1;

 } else {
 $name = $_POST['name'];
 }

 $agecheck = (isset($_POST['age']) ? $_POST['age'] : null);
 if (!is_numeric($agecheck)) {
 $ageErr = "You must enter a valid age.";

$errors = 1;
 } else {
 $age = $_POST['age'];
 }

 if (empty($_POST['toys'])) {
$toysErr = 'You must choose at least one toy.';
$errors = 1;

 } else {
 $toys = $_POST['toys'];
 }
}

This function validates each of the fields on the form and then places all the errors in

separate error messages named $nameErr, $ageErr, and $toysErr, respectively. When an

error is detected, the error variable is updated with a string. Later on, I display the error

messages and use the field names to mark the fields that have errors.

On the first line, I check to see whether a form has been submitted via POST. Then I start

checking each field one at a time. PHP has a built-in function called empty() that checks

to see whether a variable is empty. In this case, I use it to check $_POST['name'], which

was set automatically when the form was submitted. If that variable is empty, meaning

that the user did not submit her name, I add an entry to $nameErr. If that value is not

empty, I assign the submitted information to the $name variable.

For the age field, I want to make sure that it is not empty and that it’s a number. The line

$agecheck = (isset($_POST['age']) ? $_POST['age'] : null); assigns a variable

$agecheck to the submitted value if it is there and to null if it isn’t. This uses a short-

hand format for the if/then/else conditional statement. It is written in the following

format:

if ? then : else ;

First the conditional statement, followed by a question mark, then the value if it’s true

followed by a colon, and finally the value if it’s false.

▼

▼

ptg16476052

674 LESSON 24: Taking Advantage of the Server

I use the is_numerical() function to check if the $agecheck variable (which was

assigned the age submitted or ‘null’) is a number. If it isn’t I set the $ageErr error vari-

able, and if it is, I set the $age variable to the submitted value.

Finally, I check to make sure that the user has selected a toy. As you saw, this field is

actually a check box group, meaning that the contents of the field are submitted as an

array (assuming I’ve named the field properly). Again, I use empty() here. It works with

regular variables and arrays, and it returns true if an array contains no elements. If there

are no elements in the array, no toys were submitted, and the error message is added to

the $toysErr variable.

That is the end of my PHP script. The benefit of doing it this way is that if there are no

submitted values, the form is displayed like normal. But if any parameters are submitted

via POST, the fields are validated as I just described.

Presenting the Form
Aside from validating form submissions, one of the other important functions of server-

side processing is to prepopulate forms with data when they are presented. Many web

applications are referred to as CRUD applications, where CRUD stands for create/update/

delete. It describes the fact that the applications are used to mostly manage records in

some kind of database. If a user submits a form with invalid data, when you present the

form for the user to correct, you want to include all the data that the user entered so that

he doesn’t have to type it all in again. By the same token, if you’re writing an application

that enables a user to update his user profile for a website, you will want to include the

information in his current profile in the update form. This section explains how to accom-

plish these sorts of tasks.

Separating Presentation and Logic

The point here is that it’s common to mix PHP and HTML in this way. You create
your loop using PHP, but you define the HTML in the page rather than in echo() calls
inside your PHP code. This is generally considered the best practice for PHP. You
should write as much HTML as possible outside your PHP scripts, using PHP only
where it’s necessary to add bits of logic to the page. Then you can keep the bulk of
your PHP code at the top or bottom of your page or in included files to separate the
presentation of your data and the business logic implemented in code. That makes
your code easier to work on in the future. As an example, rather than sprinkling the
validation code throughout my page, I put it in one function so that a programmer
can work on it without worrying about the page layout. By the same token, I could
have built the unordered list inside the validation function and just returned that, but
then my HTML would be mixed in with my PHP. Cleanly separating them is generally
the best approach.

▼

▼

ptg16476052

Processing Forms 675

24

If there are errors, I want to load the form and show the errors inline. This is the easiest

way to show customers exactly what mistakes they made. Before I do that, let me show

you one more thing I’ve added to the page. I included a style sheet that defines one rule:

.error. The error messages for any fields with errors will be assigned to this class so that

they can be highlighted when the form is presented. Here’s the style sheet:

<style>
.error { color: red; }
</style>

Okay, now that everything is set up, let’s look at how the name field is presented. Here’s

the code:

<p>
<label for="name"> labels </label>

<input id="name" value="<?php echo htmlspecialchars($name);?>">
<?php echo $nameErr;?>
</p>

This code is different from the old code I used to present the name field in the original

listing in this example. I included the value as an escaped version of what might have

been submitted in the $name variable with <?php echo htmlspecialchars($name);?>. I

also included a span with the $nameErr error message inside it. If there is no error, then

that tag will display nothing. This message will be red, indicating to the user that she

needs to fix that field.

The age field is identical to the name field in every way except its variable names, so I

skip that and turn instead to the toys field. Here’s the code:

<p>
<label>Toys:</label>

<?php
 $options = array('Digital Camera','MP3 Player','Tablet');
 foreach ($options as $option) {
 echo '<label><input type="checkbox" name="toys[]" ';
 echo 'value="' . $option . '"';
 if (is_array($toys) && in_array($option, $toys)) {

echo " checked";
 }
 echo ">" . $option . "</label>
" ;
 }
?>
<?php echo $toysErr; ?>
</p>

▼

▼

ptg16476052

676 LESSON 24: Taking Advantage of the Server

As you can see, the code for marking the label for the field as an error is the same for this

field as it was for name. The more interesting section of the code here is the loop that cre-

ates the check boxes.

The values and labels in the <input> tags are in an array I called $options. I then walked

through that array with the foreach function, calling each entry $option. Inside the loop,

I print out the <input> tags, using toys[] as the parameter name to let PHP know that

this field can have multiple values and should be treated as an array. I include the value

of the tag as $option, and I use it again to print out the label for the check box after the

tag. The last bit here is the if statement found within the <input> tag. Remember that if

you want a check box to be prechecked when a form is presented, you have to include the

checked attribute. I use the in_array() function to check whether the option currently

being processed is in $toys. If it is, I then print out the checked attribute using echo().

This ensures that all the items the user checked before submitting the form are still

checked if validation fails.

A browser displaying a form that contains some errors appears in Figure 24.2. Here’s the

full source listing for the page:

Input ▼
<?php
// define variables
$nameErr = $ageErr = $toysErr = "";
$name = $age = "";
$toys = array();

if ($_SERVER['REQUEST_METHOD'] == 'POST') {
 if (empty($_POST['name'])) {
 $nameErr = 'You must enter your name.';
 } else {
 $name = $_POST['name'];
 }

 $agecheck = (isset($_POST['age']) ? $_POST['age'] : null);
 if (!is_numeric($agecheck)) {
 $ageErr = "You must enter a valid age.";
 } else {
 $age = $_POST['age'];
 }

 if (empty($_POST['toys'])) {
 $toysErr = 'You must choose at least one toy.';
 } else {
 $toys = $_POST['toys'];
 }
}

▼

▼

ptg16476052

Processing Forms 677

24

?><!DOCTYPE html>
<html>
 <head>
 <title>Registration Form</title>
 <style>

.error { color: red; }
 </style>
 </head>
 <body>
 <h1>Registration Form</h1>

<p>Please fill out the form below to register for our site. Fields
with bold labels are required.</p>

 <form method="post" action="<?php echo htmlspecialchars($_SERVER["PHP_
SELF"]);?>">
 <p>
 <label for="name">Name:</label>

 <input id="name" value="<?php echo htmlspecialchars($name);?>">
 <?php echo $nameErr;?>
 </p>

<p>
<label for="age">Age:</label>

<input id="age" value="<?php echo htmlspecialchars($age);?>">
<?php echo $ageErr;?>
</p>

<p>
<label>Toys:</label>

<?php
 $options = array('Digital Camera','MP3 Player','Tablet');
 foreach ($options as $option) {
 echo '<label><input type="checkbox" name="toys[]" ';
 echo 'value="' . $option . '"';
 if (is_array($toys) && in_array($option, $toys)) {

echo " checked";
 }
 echo ">" . $option . "</label>
" ;
 }
?>
<?php echo $toysErr; ?>
</p>

<p><input type="submit" value="register" /></p>
 </form>
 </body>
</html>

▼

▼

ptg16476052

678 LESSON 24: Taking Advantage of the Server

Output ▼

Using PHP Includes
PHP and all other server-side scripting languages provide the ability to include snippets

of code or markup in pages. With PHP, the ability to include files is built in to the lan-

guage. Because the include statements are part of the language, you don’t need to include

parentheses around the name of the file to be included. You can conditionally include

files, specify which file to include dynamically, or even nest include function calls within

included pages. Here’s a simple example of an include call:

include "header.php";

On encountering that function call, PHP will try to read in and process a file named

header.php in the same directory as the current page. If it can’t find this file, it will try to

find the file in each of the directories in its include path, too. The include path is a list of

directories (generally specified by the server administrator) where PHP searches for files

to include, and it’s generally set for the entire server in a configuration file.

Four include-related functions are built in to PHP: require, require_once, include,

and include_once. All these functions include an external file in the page being pro-

cessed. The difference between include and require is how PHP reacts when the file

being included isn’t available. If include or include_once is used, the PHP page prints

FIGURE 24.2

A form with some
errors that were
caught during vali-
dation.

▼

▲

ptg16476052

Using PHP Includes 679

24

a warning and continues on. If require or require_once is used, an unavailable include

file is treated as a fatal error and page processing stops.

If you use require_once or include_once to include a file that was already included on

the page, the function call will be ignored. If you use require or include, the file will be

included no matter what.

PHP includes are like HTML links in that you can use relative or absolute paths in your

includes. The difference is that absolute PHP paths start at the root of the file system

rather than the web server’s document root. So if you want to include a file using an

absolute path on a computer running Windows, you write the include like this:

require_once 'c:\stuff\myfile.php';

That’s almost never a good idea. You should always use relative paths where possible. In

other words, if the included file is in the directory above the one where the including file

is located, you should use a path like this:

require_once "../myinclude.php";

If the file being included is not stored with your other web documents, try to have that

directory added to your server’s include path rather than using absolute paths to access it.

Never pass data entered by a user to an include function; it’s
a big security risk. For example, this would be inappropriate
and very dangerous:

require_once $_POST['file_to_include';

CAUTION

PHP includes can be useful even if you don’t plan on doing any programming in PHP.

You can turn parts of your website that you use frequently into files to be included, sav-

ing you from having to edit the same content in multiple places when you’re working on

your site. Using PHP includes this way can provide the same advantages that putting your

CSS and JavaScript into external files does. For example, you might create a file called

header.php that looks like this:

<!DOCTYPE html>
<html>
<head>
 <title><?= $title ?></title>
 <script src="site.js"></script>
 <link rel="stylesheet" href="site.css">
</head>
<body>

ptg16476052

680 LESSON 24: Taking Advantage of the Server

This file includes all the tags for the start of my page, including links to external

JavaScript and CSS files. There’s a PHP short tag in the title that prints out the value of

the $title variable. That enables you to use the header file for all of your pages and to

specify individual titles for each of them. To include this file, you use the following code:

<?php
$title = "Welcome!";
include "header.php";
?>

Choosing Which Include Function to Use
Given these four very similar functions, how do you choose which makes the most sense

to use? The most important factor in making that decision is the content of the file to be

included. Generally, there are two types of include files: snippets of markup that will be

presented on your page, and PHP code libraries that provide code you are using on mul-

tiple pages throughout a site.

If the file you are including is a library, you just about always want to use require_once.

If you’re using code from the library on a page, chances are the page will not work if the

library file is not available, meaning that you should use require rather than include. If

the file contains library code, you’re not going to want to include it more than once. Let’s

look at an example. You’ve written a library called temperature_converter.php. The

contents of the file are shown here:

<?php
function celsiusToFahrenheit($temp = 0) {
 return round(($temp * 9/5) + 32);
}
?>

This file contains one function, celsiusToFahrenheit() , which converts a Celsius tem-

perature to Fahrenheit and then rounds the result so that the function returns an integer.

Now let’s look at a page that includes this file:

<?php
require_once "temperature_converter.php";
?>
<html>
 <head>
 <title>Current Temperature</title>
 </head>
 <body>

<p>Current temperature in Fahrenheit: <?= celsiusToFahrenheit(25) ?></p>
</body>

</html>

ptg16476052

Expanding Your Knowledge of PHP 681

24

As you can see, in this case the page won’t have meaning if the function in the library

page is not available, so using require makes sense. On this page, it wouldn’t matter

whether I used require or require_once because there are no other includes. Suppose

that the page included another file—one that prints the current temperatures around the

world. If that page also had a require() call for temperature_converter.php, the same

code would be included twice. An error would cause the page to fail, because each func-

tion name can only be declared once. Using require_once ensures that your library code

is available and that it is not accidentally included in your page multiple times.

However, if you’re including content that will be displayed within your page, include

or require makes more sense. You don’t have to worry about conflicts, and if you’re

including something to be displayed on the page, chances are you want it to appear, even

if you’ve already included the same thing.

Expanding Your Knowledge of PHP
PHP is a full-featured scripting language for creating web applications and even writ-

ing command-line scripts. What you’ve seen in this lesson is just a brief introduction

to the language. There are more statements, lots more built-in functions, and plenty of

other things about the application for which there isn’t space to discuss in this lesson.

Fortunately, an online version of the PHP manual is available that will fill in most of the

blanks for you. You can find it at http://www.php.net/docs.php.

Also, shelves of books about PHP are available to you. Some that you might want to look

into are Sams Teach Yourself PHP, MySQL, and Apache All in One by Julie Meloni, and

PHP and MySQL Web Development by Luke Welling and Laura Thomson.

There’s more to PHP than just the core language, too. Lots of libraries have been written

by users to take care of common programming tasks that you might run into. There’s an

online repository for these libraries called PEAR, which stands for PHP Extension and

Application Repository. You can find it at http://pear.php.net/.

When you’re writing your applications, make sure to check the PHP manual to ensure

there’s not already a built-in function to take care of whatever you’re doing. If there isn’t,

check PEAR.

As I said before, I left out huge swaths of PHP functionality in this lesson for the sake of

space. Here are some areas that you’ll want to look into before developing your own PHP

applications.

http://www.php.net/docs.php
http://pear.php.net/

ptg16476052

682 LESSON 24: Taking Advantage of the Server

Database Connectivity
I mentioned CRUD applications already. A CRUD application is generally just a front

end for a relational database, which in turn is an application optimized for storing data

within tables. Databases can be used to store content for websites, billing information for

an online store, payroll for a company, or anything else that can be expressed as a table.

It seems like there’s a relational database providing the storage for just about every popu-

lar website.

Because databases play such a huge role in developing web applications, PHP provides a

lot of database-related functionality. Most relational databases are applications that can be

accessed over a network, a lot like a web server. PHP is capable of connecting to every

popular relational database. To communicate with relational databases, you have to use a

language called SQL (the Structured Query Language). That’s another book unto itself.

Regular Expressions
Regular expressions comprise a small language designed to provide programmers with

a flexible way to match patterns in strings. For example, the regular expression ^a.*z$

matches a string that starts with a, ends with z, and has some number of characters in

between. You can use regular expressions to do much more fine-grained form validation

than I did in Exercise 24.1. They’re also used to extract information from files, search

and replace within strings, parse email addresses, or anything else that requires you to

solve a problem with pattern matching. Regular expressions are incredibly flexible, but

the syntax can be a bit complex.

PHP actually supports two different varieties of regular expression syntax: Perl style and

POSIX style. You can read about both of them in the PHP manual.

Sending Mail
PHP provides functions for sending email. For example, you could write a PHP script

that automatically notifies an administrator by email when a user registers for a website

or sends users a password reminder if they request one when they forget their password.

PHP also provides functions that enable your applications to retrieve mail as well as send

it, making it possible to write web-based email clients and other such applications.

Object-Oriented PHP
PHP provides features for object-oriented development if you prefer that style of pro-

gramming. For more information on object-oriented PHP, refer to the manual.

ptg16476052

Other Application Platforms 683

24

Cookies and Sessions
Cookies are a browser feature that lets websites set values that are stored by your browser

and returned to the server any time you request a page. For example, when users log in

to your site, you can set a cookie on their computers to keep track of who they are so that

you don’t have to force them to log in any time they want to see a password-protected

page. You can also use cookies to keep track of when visitors return to your site after

their initial visit. PHP provides full support for cookies. It also provides a facility called

sessions. Sessions enable you to store data between requests to the server. For example,

you could read a user’s profile into her session when that user logs in to the site, and then

reference it on every page without going back and loading it all over again. Generally,

cookies are used with sessions so that the server can keep track of which session is asso-

ciated with a particular user.

File Uploads
Back in Lesson 12 you learned about file upload fields for forms. PHP can deal with file

uploads, enabling the programmer to access and manipulate them. With PHP, file uploads

are stored to a temporary location on the server, and it’s up to the programmer to decide

whether to store them permanently and, if so, where to put them.

Other Application Platforms
PHP is just one of many programming languages that people use to write web applica-

tions. It is the language used to create popular web applications like Drupal, WordPress,

and Expression Engine. It’s also the tool used by major web companies like Facebook

and Yahoo! However, other options are available. If you’re just diving into web program-

ming yourself, PHP is probably a good choice, but you might find yourself working on

applications written in another language. Here’s a brief overview of the languages you

may encounter.

Microsoft ASP.NET
Microsoft provides the ASP.NET environment for writing web applications that run on

Windows servers. ASP.NET is similar to PHP in that it supports embedding server-side

code in HTML pages. It supports Visual Basic and C# as programming languages, and it

runs on Microsoft’s Internet Information Server, which is included with Windows Server.

You can read more about ASP.NET and download free tools for developing and running

ASP.NET applications at http://www.asp.net/.

http://www.asp.net/

ptg16476052

684 LESSON 24: Taking Advantage of the Server

Java EE
Java is a programming language originally created by Sun that runs on many operating

systems, including Windows, OS X, and Linux. EE stands for “Enterprise Edition ,” an

umbrella under which the server-side Java technologies live. Java is widely used by large

companies to build internal and external applications.

There are two ways to write web applications in Java—servlets, which are programs that

run on the server and can produce web content as output; and Java Server Pages, which

allow you to embed Java code in HTML pages so that it can be executed on the server.

You can read more about Java EE at http://www.oracle.com/technetwork/java/index.html.

Ruby on Rails
Ruby on Rails is a newer application platform that is gaining popularity because it

enables developers to get a lot done with just a few lines of code. It uses the Ruby pro-

gramming language and is designed with the philosophy that applications can be written

quite efficiently if developers adhere to the conventions that the creators of the Ruby on

Rails framework built in to it. You can read more about Ruby on Rails at http://

rubyonrails.org/.

Summary
This lesson provided a whirlwind tour of the PHP language, and it explained how server-

side scripts are written in general. Although the syntax of other languages will differ from

PHP, the basic principles for dealing with user input, processing forms, and embedding

scripts in your pages will be quite similar. I also listed some other application platforms

you might encounter. They are all similar to PHP in function, even though the syntax of

the languages they use differs from PHP to varying degrees.

In the next lesson, you’ll learn how to take advantage of applications that other people

have written rather than writing them yourself. Just as PHP has lots of built-in functions

to take care of common tasks, so too are there many popular applications that you can

download and install rather than writing them from scratch yourself.

Workshop
The following workshop includes questions you might ask about server-side develop-

ment, quizzes to test your knowledge, and three quick exercises.

http://www.oracle.com/technetwork/java/index.html
http://rubyonrails.org/
http://rubyonrails.org/

ptg16476052

Workshop 685

24

Q&A
Q At work, all of our applications are written using Active Server Pages. Why

didn’t you write about that?

 A There are a number of popular platforms for writing web applications. PHP has the

advantage of running on a number of operating systems, including Windows, Mac

OS X, and Linux. Furthermore, support for PHP is offered by many web hosting

providers. Finally, as you’ll learn in the next lesson, there are many applications

already written in PHP that you can take advantage of. Knowledge of PHP can be

helpful in working with them.

Q Do I need a special application to edit PHP files?

 A Just as with HTML, PHP files are normal text documents. Some text editors have

specialized features that make working with PHP easier, just as there are for

HTML. If you’re just starting out, using Notepad or any other regular text editor

will work fine, but you’ll probably want to find a more powerful tool for writing

PHP if you find yourself programming in PHP a lot.

Q How do I deploy PHP files to a server?

 A There are no special requirements for deploying PHP files. You can just transfer

them to the server as you would regular HTML files. As long as the server is con-

figured to handle PHP, you should be fine. The one thing you do need to be careful

to do is to make sure your directory structure is the same on the server and on your

local computer. If you are using includes and directory paths change, your includes

will break.

Q Are PHP scripts browser dependent in any way?

 A All the processing in PHP scripts takes place on the server. They can be used to

produce HTML or JavaScript that won’t work with your browser, but there’s noth-

ing in PHP that will prevent it from working with a browser.

Quiz
1. What is the difference between double and single quotes in PHP?

2. How do the include_once and require_once functions differ?

3. Which functions can be used to help avoid cross-site scripting attacks?

4. How do you declare an associative array in PHP?

ptg16476052

686 LESSON 24: Taking Advantage of the Server

Quiz Answers
1. In PHP, strings in double quotes are parsed for variable references and special char-

acters before they are presented. Strings in single quotes are presented as is.

2. The include_once function does not return a fatal error if the file being included is

not found. With require_once, if the file is not found, a fatal error occurs and the

rest of the page is not processed.

3. You can use htmlspecialchars() to escape the characters used to generate HTML

tags for a page. You can use strip_tags() to remove HTML tags from a string.

Either approach should prevent users from using malicious input to attempt a cross-

site scripting attack.

4. Associative arrays are declared as follows:

$array = ('key' => 'value, 'key2' => 'value2');

Exercises
1. Get PHP up and running on your own computer.

2. Write a script that enables a user to show the current date and time on a web page.

3. Go to the PHP manual online and find a built-in function that wasn’t introduced in

this lesson. Use it in a script of your own.

ptg16476052

LESSON 25
Search Engines and
SEO

Just uploading your site to a web server somewhere doesn’t mean that
you’ll attract many visitors. In fact, with millions of sites online already,
you’ll need to promote your site if you want to build an audience. And the
way that most people promote their site is through search engines. There
is no one proven way to ensure that your site shows up in the number
one slot in a search engine, but you can do some things to make sure
your site isn’t penalized and may rank a little better. This is called search
engine optimization, or SEO.

So, how do you do SEO? This lesson shows you some of the ways, includ-
ing the following:

n What SEO is and whether your site really needs it

n How search engines find your site

n What makes a site “search engine friendly”

n What keywords are and how you can use them

n How accessibility, user experience, and your content affect SEO

n SEO myths

n How to submit your site to search engines

n Free tools you can use to improve SEO

n Using analytics to verify that your SEO is helping

ptg16476052

688 LESSON 25: Search Engines and SEO

What Is SEO?
SEO, or search engine optimization, is a marketing technique that focuses on getting traf-

fic from organic (nonpaid) search results in sites like Bing, Google, and Yahoo!. You can

do many things to help search engines better index your site and give them hints about

how your site should be referenced and linked to. Some people consider SEO an art form,

as there are no clear and fast rules. But there are some guidelines you can follow to help

improve your search rankings.

The first thing you should bear in mind is that there are no guarantees. Every search

engine has a different algorithm for ranking sites, finding new links, and removing pages

from their index. And some change those algorithms constantly. I have run sites that con-

sistently ranked (and some still rank) in the top five on Google, often in the number one

slot. But those positions change daily. The best I hope for when working on SEO is that

my sites are clear and easy to use for my existing customers. If my sites work well for

people, they will work well for search engines.

Why You Need SEO
The fact is that if your site survives on pageviews then you need to think about SEO.

The vast majority of web traffic comes from the major search engines: Google, Bing, and

Yahoo!. If your site doesn’t show up in those search engines, chances are no one will

find it.

But it’s more than just people finding your site; it’s the quality of the people finding

your site. If your pages are well optimized for search, they will bring people who are

looking for what your site is offering. Someone who is looking to buy a tractor is not

going to want to end up on my site, html5in24hours.com, but if they want information

about HTML and web design, they would be happy to end up there. And the best search

engines strive to direct people to what they are looking for rather than just link them at

random.

What About Social Media?
One thing that is very popular right now is social media—sites like Facebook, Twitter,

and Instagram. These sites are an important part of a complete website marketing strat-

egy, but they don’t drive a lot of traffic. In fact, most companies that use Facebook find

the most success in building their brand rather than driving pageviews to their website.

This is because the goal of sites like Facebook and Twitter is different from search

engines. Facebook and Twitter want people to stay on Facebook and Twitter. They make

money as long as the ads they are displaying get seen by people. They don’t make money

if someone leaves to go to your website.

ptg16476052

How Search Engines Work 689

25

Search engines, in general, make their money either by other services they offer or by the

ads they show within the search results themselves. The entire purpose of a search engine

is to aggregate information and provide the links to it so that customers can access it.

You Can Do Your Own SEO
The beauty of SEO is that it’s not difficult to do. It can get very complex, requiring

server access and even possibly programming skills, but the basics are easy to understand

and apply to every website. And the beauty of well-done SEO is that it improves your

site for your customers—the people visiting your pages—not just the search engines.

Why Don’t Search Engines Find Sites Without SEO?
You should be aware that search engines do find sites without SEO. The Google spiders

are constantly out crawling the Web looking for new pages and adding them to their

index. Depending on where your site is linked from, it can be found by a spider in as

little as a few hours to a couple of days.

You shouldn’t rely on “security through obscurity” as a way of pro-
tecting your web pages. Just because you have not publicized your
site doesn’t mean it won’t be found. Search robots can fill out
forms, read referral codes, and follow links. And when they come
across new pages, they add them to their index, sometimes even
when you’ve asked them explicitly not to.

CAUTION

Search engines are just computer programs—complex ones, but just programs. The major

search engines are constantly updating their algorithms to improve how their search

results work, how their robots crawl the Web, and how their users respond to the results

they get.

But search results are only as good as the content they have to index. If your web pages

are confusing or hard to read for your customers, it’s likely that they will be confusing

and hard to read for search engine robots. And when the robots are confused, your site

gets buried in the results rather than ranking where you’d like it to rank.

How Search Engines Work
Search engines work using a program, called a robot, to crawl through the Web reading

pages and adding them to their indexes. These programs are sometimes called crawlers

or spiders. Once these spiders have found a new page, they read the HTML (and CSS

ptg16476052

690 LESSON 25: Search Engines and SEO

and JavaScript) and store the contents in huge databases. This information is then recalled

later when a customer submits a search query to the search engine. Search engine com-

panies use complex, and secret, algorithms to determine which pages will be shown for

which search queries and in what order, or rank. There are often hundreds, possibly thou-

sands, of variables that go into the ranking algorithms, and each engine is different. But

some of them include

n Trust of the domain and domain quality

n Links to the site from trusted domains and sites

n Relevant content

n Length and readability of the content

n Engagement—how long people stay on the site after they’ve clicked from search

n Social metrics like tweets from Twitter or mentions on Facebook

These are not all the possible things your pages could be measured on when being ranked

by search engines. You’ll learn in more detail about how you can affect your search

engine rankings later in this lesson.

Google
Google is currently the most popular search engine. Its search results are ranked based on

a secret algorithm known only to Google developers. Google is constantly updating its

search algorithm to improve its results for its users.

This search algorithm does a remarkably good job of pushing the most relevant sites

to the top of the search results. It also rewards people who publish useful, popular sites

rather than those who’ve figured out how to manipulate the algorithms that other search

engines use. Many sites that aren’t dedicated to providing search functionality use

Google’s index, so getting into the Google index provides wide exposure.

Google recommends that you focus on making your pages primarily for your users, not
for search engines. Your site should have a clear hierarchy, and every page should be

reachable from a static text link somewhere on your site. Sites that rank well in Google

tend to be information-rich and have accessibility features like alternative text on images

and descriptive title attributes on links. Google also recommends that your URLs

include keywords relevant to the page that are human-readable.

ptg16476052

How Search Engines Work 691

25

Microsoft Bing
Bing is Microsoft’s web search offering. Like Google, Microsoft maintains its own index

of the Web. Bing was launched in May 2009, and as of February 2015, it is the second

largest search engine in the United States.

Like Google, Bing has begun adding “instant answers” into its search results to make

things easier for its customers. If you look up things like sports scores or definitions,

those results will show up right at the top of the search, not forcing readers to go to

another site.

Bing Webmaster Guidelines recommend that your URLs be clean and keyword-rich. You

should not bury your content inside rich media like Flash or JavaScript. Your content

should be fresh and updated regularly. Bing also suggests that you should not put text

you want indexed into images. For example, your company name should appear in text

on your page, not just in a logo.

Yahoo!
Yahoo! has been around since 1994. In fact, it was the first search engine I ever used,

only I accessed it at akebono.stanford.edu. Yahoo! provides both a human-edited direc-

tory of the Web, which I discussed earlier, and web search. Yahoo!’s search engine cur-

rently uses the Bing index for its search results. It is the third most popular search engine

in the United States.

Don’t Forget International Searches
If you are in the United States it’s easy to forget that there are other search engines out

there, but the fact is that the Web is international, and search engines are, too. While the

three most popular search engines in the United States are currently Google, Bing, and

Yahoo!, there is another search engine—Baidu (http://www.baidu.com)—that is second

only to Google worldwide. If you haven’t heard of it, that’s probably because you don’t

read Chinese.

Although Google still continues to dominate search worldwide, it doesn’t reign every-

where. In Russia, Yandex (http://www.yandex.ru) is more popular, Baidu is most popular

in China, South Koreans use Naver (http://www.naver.com), and Japan and Taiwan pre-

fer Yahoo! Japan (http://www.yahoo.co.jp) and Yahoo! Taiwan (https://tw.yahoo.com/),

respectively.

If your site has any aspirations to serving a worldwide audience, be aware of the search

engines in other countries. There are many more than listed here, especially region-

specific sites. Use your favorite search engine to find out more about the country or

region you want to target.

http://www.baidu.com
http://www.yandex.ru
http://www.naver.com
http://www.yahoo.co.jp
https://tw.yahoo.com/

ptg16476052

692 LESSON 25: Search Engines and SEO

SEO Techniques
You can do some specific things with your HTML to make your web pages easier to read

and index for search engines. Your pages need to be well structured and indexable—in

other words, they must be friendly to search engines.

Is Your Site “Friendly?”
Many people refer to a product as being “user friendly” as a way of saying that it’s easy

to use and people like using it. The same could be true of a website that is “search engine

friendly.” Search engines don’t read websites the way humans do, so it’s important to

structure your content in a way that the search engines can read it. For instance

n Your most important content should be in HTML text. Search engines find it

harder, if not impossible, to read text in images, Flash, Java applets, videos, and so

on. This content is often ignored completely by search engines. If it’s important,
write it out in text.

n Provide alternative text. If you must use things that are not readable by search

engines (like Flash, images, etc.), provide a text alternative. Use the HTML attri-

butes and features like the alt attribute on images or include alternate text inside

the video and audio tags. Everything should have a text alternative somewhere
on the page.

n Make your navigation crawlable. Include a text link to every page on your site

somewhere on the site. Note, I don’t mean you should include a text link to every

page on every page. The spiders can crawl from one page to the next and find all

the pages, as long as the text link exists somewhere. Link all your pages.

n Include transcripts to audio and video. As you learned in Lesson 22, “Designing

for User Experience,” including transcripts helps make your multimedia more

accessible, and it helps search spiders too. Make your pages accessible.

n Use correct HTML, CSS, and JavaScript. Most spiders can navigate even the most

error-filled HTML, but they work better and more efficiently on pages that use

standards compliant code. Validate your pages.

If these suggestions sound a lot like the accessibility you learned about in earlier lessons,

you’d be right. Search engine spiders are like a fairly limited AT (assistive technology)

device. If you try to make your site as accessible as possible, you will not only help

search engines better index your site, but you’ll also make them more accessible to your

human customers.

ptg16476052

SEO Techniques 693

25

Using Keywords and Keyword Research
Keywords are the basis of search. Customers go to a search engine and type in a word or

two and then see what results come up. As search engine spiders crawl through pages,

they keep track of key words and phrases that are used often and then use that frequency

to rank pages. This is why a page about sequoias will not rank well in a search for “eng-

lish sheepdog”—the keywords are too dissimilar.

Watch out for companies that promise “#1 ranking on Google” or
similar claims. Often they will fulfill this promise by showing that
a page ranks number one for a highly unlikely keyword phrase. It
does you no good to rank at number one for the search “english
sheepdog sequoia beat down” if no one else is searching for that.

CAUTION

When you are working on optimizing your web pages for search keywords, it can be

tempting to focus on the number of times your keyword phrase is mentioned on the page.

You will see many SEO experts (including old sites of mine) that recommend finding

keyword phrases, using them in specific places (like titles, URLs, headlines, and image

alternate text), and even tracking the density of your keywords (number of times the key-

word phrase is used compared to the rest of the words on the page). But the fact is that

all this is overkill. Here are my recommendations for using keyword phrases on your web

pages:

1. Decide what your page is about, but don’t worry too much about what keyword

phrase you’re targeting. Just write the content.

2. Make sure the title and main headline reflect the content of the page.

3. Keep the most relevant content at the top.

4. Write the page well, with correct spelling and grammar. Use bullets to make things

easier to read.

5. Post the page to your website, and make sure it has a text link to it somewhere on

the site.

You might notice that no where in those instructions did I have you look up popular key-

words or place the phrases in specific locations on the page. The fact is that Google and

other search engines are starting to penalize sites that are over optimized. And although

they are unlikely to drop your ranking because you used a keyword phrase too many

times on one page, they will lower rankings of pages that customers don’t like. And most

people don’t like pages that are obviously keyword focused.

ptg16476052

694 LESSON 25: Search Engines and SEO

Keywords used to be thought of as the most important part of SEO. There were hundreds

of sites dedicated to figuring out the “best” keywords and teaching you how to optimize

your pages for specific keywords and keyword phrases. While it’s true that keywords are

at the heart of the search process, they are no longer the primary thing you should focus

on. Instead, focus on creating great content, as you’ll learn in the next section.

Creating Content for Customers Is the Best SEO
The first and best thing you can do to i mprove your site’s rankings in search engines is to

create and continually update content. Google and other search engines want to have the

best content possible to show to their customers, so your pages should contain relevant,

useful information about whatever they are covering. The sites that consistently rank well

in search engines all have some things in common:

n They are easy to use. This means that both people and search robots won’t have

any problem finding their way around the sites or any difficulty understanding what

the site is about.

n They are concise, yet actionable. In other words, you should make your pages as

long as they need to be to cover the topic at hand, but no longer. A wordy page that

blathers on at length about nothing is not going to be as useful as a short, 500-word

explanation of the topic. But don’t let that word-count number be your metric. If

you need 5,000 words to cover the topic, use all of them. Just make sure that they

all count for something.

n They use modern web design practices. This means they use HTML5 and CSS3.

They are standards compliant and accessible. They are everything you’ve learned to

create by reading this book.

n They provide high-quality content. This should be self-explanatory, but it includes

having few or no typos, correct spelling and grammar, and above all being factually

accurate.

When you’re thinking about SEO, think on a page level rather than on a site level. For

the most part, it’s nearly impossible for a site these days to optimize its home page for

any keywords other than its company name. Instead of worrying that your dog groomer

home page isn’t ranking well for the phrase “dog grooming,” you should start building

content (if you haven’t already) around topics related to dog grooming. Write an article

about your favorite breeds to groom—even one page per breed, if you have enough inter-

esting things to say. Write reviews of dog shampoos and the best leashes. Post editorials

on why dogs are better than cats. Then when people come to read your how-to on remov-

ing skunk smell from dog paws, they will stay to learn that you offer full-service groom-

ing as well .

ptg16476052

SEO Techniques 695

25

Myths and Facts About SEO
There are a lot of myths and misunderstandings surrounding SEO. Some of these things

used to be true but are no longer, and others were never true. The following are some of

the most persistent myths about SEO and some facts that people don’t believe, but really

are true:

n Myth: You must submit your site to search engines. Back in the 1990s, search

engines were just getting started, and many of them didn’t have effective spiders

that could wander the Web at will. So, web page owners had to submit their sites to

the search engine indexes for inclusion. Since 2001, however, submitting your site

to search engines has become completely unnecessary. You can still submit your

sites if you want, but it won’t help you rank higher.

n Myth: You must use meta tags. Back in the early days of the Web, meta tags

were considered the only way to get search engine ranking. You were expected to

post meta keywords and a meta description tag on every page that you wrote, and

search engines would then use that information to both index your site and describe

it in their results. These days, the keywords tag is universally ignored as the spam

technique it became, and the description is typically ignored in favor of the visible

content on the page. Focus on writing a descriptive title, headline, and body copy

and leave the meta tags for things like your character set.

n Myth: Keyword density gets you higher rankings. This has been disproved over

and over, yet many SEO experts continue to recommend that you increase the num-

ber of times a keyword phrase is mentioned on your page. I think the reason it’s

still so popular is that it’s easy to check. But you’ll get much better rankings from

one link to your site from another high-quality site on the same topic.

n Myth: Paid search affects your rankings in organic search. Many people

believe that the search engines deliberately penalize sites that don’t advertise with

them or pay them in some other fashion. But in fact, Google, Bing, and Yahoo! all

have walls around the arms of their companies that work with search and advertis-

ing for exactly this reason.

n Fact: Cloaking can get your site removed from the search engine results.
Cloaking is a technique in which one type of content is shown to human visitors

and another type of content is shown to the search engines. The simplest form of

cloaking is hiding text in the HTML that your site visitors can’t see, such as in

comments. More complex forms use programs to detect the search engine spider

and deliberately show it different content from what a non-spider would see. It is

possible to cloak website content for a positive reason, such as to improve user

ptg16476052

696 LESSON 25: Search Engines and SEO

experience, but if you are considering doing it to affect search rankings, you could

affect your rankings—by being booted out of the results altogether.

n Fact: Schemes to get links will only get you banned. Most people know that the

best way to get higher rankings is to get more and higher-quality links back to your

site. While it can be difficult to manipulate a high-quality site to link to you, many

unscrupulous SEO managers have resorted to link farms, paid links, and directory

links to get the absolute number of links to a page increased. Google in particular

takes a dim view of this type of link manipulation and will devalue sites that do it.

n Fact: Duplicate content hurts your site. One of the ways people would try to

increase their search rankings was to increase the amount of content on their site.

And to do this, they would simply copy the content from one page into another

page and another and another. Search engines don’t like duplicate content because

it fills up their index with repetitive information. And while it can be argued that

they don’t penalize sites that have duplicate content, they take time away from

indexing that site that could be used on nonduplicate content. Ultimately, whether

you believe Google (or Bing, or Yahoo!) penalizes sites with duplicate content or

not, the result is the same—fewer of your pages make it into the index to rank well.

If you have duplicate content on your site, get rid of it either by deleting the dupli-

cates or using redirects or the robots.txt file discussed later in this lesson.

n Fact: Search engines are not obligated to include your site. If you suspect that

your site has been removed from one of the major search indexes, you should find

out why directly from them. Google offers Webmaster Tools (https://

www.google.com/webmaster), and Bing does too (http://www.bing.com/toolbox/

webmaster/). These tools will give you hints and messages explaining what prob-

lems they might have encountered when indexing your site and give you sugges-

tions for fixing them.

Tools for Tracking and Managing SEO
When you’re doing SEO, there are a lot of tools out there to help you. Some were created

by the search engines themselves.

Using Sitemaps
Sitemaps are a great way to list all the files on your site in one place for the search

engines to find it. They help search engines find and identify any content that they might

not have found on their own. There are three ways most sites provide a sitemap: XML,

RSS, and plain text.

https://www.google.com/webmaster
https://www.google.com/webmaster
http://www.bing.com/toolbox/webmaster/
http://www.bing.com/toolbox/webmaster/

ptg16476052

Tools for Tracking and Managing SEO 697

25

An XML sitemap is the best method. It is widely accepted by all major search engines,

and it is extremely easy for them to parse. You can create an XML sitemap yourself with

any text editor, but it’s better to use a sitemap generator.

RSS sitemaps are easy to maintain because they are often built automatically by site

tools like blogs. RSS sitemaps are often updated automatically, but they can be large and

harder to manage because they provide more information than the plain XML format

does.

Text sitemaps are the easiest to maintain. They are typically built as one URL per line

with up to 50,000 lines. But these text files provide no information outside of the URLs

themselves.

If you want to learn more about sitemaps, visit Sitemaps.org, or you can build your own

sitemap at XML-Sitemaps.com.

The robots.txt File
The robots.txt file is a file of that exact name stored in the root of your web server. It

provides instructions to spiders and other web page crawlers about what pages of your

site they should and should not visit. When you use a robots.txt file, you can indicate

to search engines where your sitemap is, directories and pages you do not want them to

visit, and even how often they should return to your site to find new content.

A sample robots.txt file looks like this:

User-agent: *
Disallow: /includes/
Disallow: /misc/

User-agent: googlebot
Disallow: /nosearch/

The first section says that all robots should not visit the /includes/ and /misc/ directo-

ries. The second section suggests that just the Googlebot should not visit the /nosearch/

directory.

Not all web robots read or follow the robots.txt file. Some are
not well written and don’t check the file, and others have nefari-
ous purposes and will deliberately seek out directories you’ve
marked private. If the directories you’ve disallowed are critical,
use some other form of protection like HTAccess to prevent robots
from crawling them.

CAUTION

ptg16476052

698 LESSON 25: Search Engines and SEO

You can use a meta tag to request that specific pages not be indexed or follow any of the

links on them:

<meta name="robots" content="noindex, nofollow">

You can also use the rel="nofollow" attribute on your links. This tells search engines

not to follow this specific link from your pages. Some search engines will still follow the

links, but they will not afford them the same amount of authority your site might lend to

a link that doesn’t have that attribute.

Understanding Canonical Links
Creating duplicate content is not only a bad thing when it comes to search engines, it’s

also very easy to do accidentally (or on purpose, but without malice). For example, every

directory on your server probably has a default page called something like default.html.

That means that someone can visit both http://www.example.com/ and http://

www.example.com/default.html and get the same content. This can happen if you have a

secure server (https://) that serves the same content as the nonsecure server (http://) or a

subdomain like www that serves the same content as the site URL without the www sub-

domain (http://www.example.com/ and http://example.com/).

One of the ways that search engines deal with duplicate content is by allowing you to

define which page is the authoritative or “canonical” version of the page with the canoni-

cal link in the head of the document:

<link rel="canonical" href="http://www.example.com/">

The benefit of using this tag is that you can place it on a page and then not worry about

whether your server is creating duplicates like the subdomain or the default page. The

canonical URL is defined .

Redirecting Duplicate Content
Another tool you can use for dealing with duplicate content is to redirect the duplicate

content to the canonical page. If you use a 301 redirect, you are telling the web server

that not only has this page moved, but it has moved permanently. You can do a redirect

in many ways; check with your hosting provider for the best way to redirect on your site.

Some hosting providers even provide tools to make creating redirects easy.

The most common way to create a redirect is with the HTAccess tool. This is only avail-

able on Apache sites. To create an HTAccess redirect, open the file .htaccess (note the

period at the beginning of the filename) in the root directory of your web server and type

the following:

Options +FollowSymLInks
RewriteEngine on

http://www.example.com/
http://www.example.com/default.html/
http://www.example.com/default.html/
http://www.example.com/
http://www.example.com/

ptg16476052

Tools for Tracking and Managing SEO 699

25

RewriteRule http://www.example.com/dupe.html http://www.example.com/canonical-
file.html [r=301,L]

You can also do it with PHP:

<?php
 Header("HTTP/1.1 301 Moved Permanently");
 Header("Location: http://www.example.com/canonical.html");
?>

Place that at the top of the duplicate page, and it will redirect to the new one.

Checking How Your Site Looks to Search Engines
One way to make sure that your SEO efforts are working is to try to see your site as a

search spider might see it. There are several tools you can use to see your site as a search

engine does. The first place you should look is the Google cache. View the text-only ver-

sion to see what your site looks like to Google. Figure 25.1 shows what the InformIT site

looks like to Google.

Other tools you can use to view your site include SEO-browser.com and the MozBar

(https://moz.com/tools/seo-toolbar/). These tools can give you a better idea of why your

FIGURE 25.1

The Google Web
cache of InformIT.

https://moz.com/tools/seo-toolbar/

ptg16476052

700 LESSON 25: Search Engines and SEO

site might not be ranking the way you want it to because you can see clearly what the

search engines are seeing.

Tracking Your SEO Efforts
The final thing you should do when working on SEO is make sure that you track your

progress. Analytics programs, as mentioned in other lessons, can help you not only see

what pages are doing well but also where you need to improve your efforts.

Some things you should pay attention to include the following:

n Search engine referrals—These are the search engines that are sending you traf-

fic. This can be particularly useful if you get more content from a search engine

other than Google. This may mean that Google has a problem with your site (check

Google Webmaster Tools) or that you have content that appeals to a different

demographic than typical.

n Keywords—Most analytics software will tell you what keywords are generating

traffic to your site. This will help you to both focus your SEO efforts and under-

stand where you’re not ranking well. Watching how these referrals trend on your

site can give you a good sense of whether you’ve lost ranking or something else

has happened.

n What pages get search engine traffic—This is good to know as it tells you which

pages have the best ranking and which pages either are not linked well or are

unknown to the search engines.

n Where your traffic is coming from—Search engines might be the lion’s share of

your referrals, or they might be almost nothing. If you are getting lots of referrals

from a site you don’t recognize, you might want to check it out.

Paying for Links
All the popular search engines have programs that allow you to pay for links on their

search results pages. In other words, you can pay to have a link to your site displayed

when users enter search terms that you choose. Most sites charge on a per-click basis—

you pay every time a user clicks on the link, up to a maximum that you set. After you’ve

used up your budget, your advertisement doesn’t appear any more.

Most search engines display paid links separately from the regular search results, but

this approach still provides a way to get your site in front of users who may be interested

immediately. You just have to be willing to pay.

ptg16476052

Workshop 701

25

Remember that, as mentioned previously, this is not a way to get higher rankings. The

top search engine companies keep their paid search links divisions separate from their

organic search links.

Summary
In this lesson, you learned what SEO is and why it’s important to your website. You

learned about how SEO differs from social networking and got tips for doing your own

SEO. One of the key factors in doing SEO is to apply the rules that you’ve learned in the

earlier lessons in this book: write standards-based HTML, make your pages accessible,

put mobile design first, and make content the most important part of your web pages.

You learned that there is no fool-proof way to make your site appear in the number

one slot on Google or any other search engine, but there are several techniques you can

employ to improve your site for both your customers and search engines.

Workshop
As always, we wrap up the lesson with a few questions, quizzes, and exercises. Here are

some pointers and refreshers on how to promote your website.

Q&A
 Q You mentioned analytics were important to SEO, but do I have to use Google

Analytics to be ranked well on the Google search engine?

 A No, you are not required to use Google Analytics to rank well in Google search.

Just like their advertising division, this is a separate division of the company.

Google Analytics is a good analytics option that shows you a lot of information

about your site including SEO. But there are other options. Yahoo! offers a free

analytics tool called Yahoo! Web Analytics, and one of my favorite tools is Piwik,

which is open source and runs on your own server.

 Q There are so many search engines! Do I have to add my URL to all of them?

 A No, in fact, most search engines will ignore your submission if you are able to find

a submission form. They feel that the links they find through natural organic search

are more valuable because they better reflect how real customers might find your

site. So it’s better to focus on writing great content and getting others to link to you

than worrying about whether you’ve submitted a page to every search engine.

ptg16476052

702 LESSON 25: Search Engines and SEO

Quiz
1. What’s the basic function of SEO?

2. What are five ways to make sure your site is search engine friendly?

3. What is the only thing you need to do for good SEO?

4. What is the rel=canonical link for?

Quiz Answers
1. SEO’s purpose is to help web designers make their sites more visible and rank

higher in search engines. The best SEO is done by focusing on content rather than

gimmicks.

2. There are five rules of thumb for creating search engine friendly pages: If it’s

important, write it out in text. Everything should have a text alternative somewhere

on the page. Link all your pages. Make your pages accessible. Validate your pages.

3. The only thing you need to do for good SEO is create great content.

4. The rel=canonical link tells the search engine the URL of the canonical version

of the current page. This ensures that any duplicate content will not be indexed as a

separate page in search engine indexes.

Exercises
1. Check out your site in the Google cache and see how it looks to search engines.

Make some decisions about how you can improve your site in search engine results

based on what you see.

2. Sign up for a Google Analytics account and install it on your site. Explore the

reports to see what kind of information it provides about your site. Check out what

search engines send traffic to your site and what pages get the most search engine

traffic for what keywords.

ptg16476052

Symbols

//, JavaScript comments, 474

+ (addition) operator, 479

& (ampersand)

named entities, 140

troubleshooting, 142

/ (division) operator, 479

== (equality) operator, 483

> (greater than symbol),

troubleshooting, 142

> (greater than) operator, 483

>= (greater than or equal to)

operator, 483

!= (inequality) operator, 483

< (less than symbol),

troubleshooting, 142

< (less than) operator, 483

<= (less than or equal to)

operator, 483

% (modulus) operator, 479

* (multiplication) operator,

479

% (percent sign), in email

addresses, 116

(pound signs)

CSS and, 164

numbered entities, 141

‘ ’ (quotation marks), href

attributes, 93

; (semicolon), named entities,

140

- (subtraction) operator, 479

A

<a> tag, 93

accesskey attribute, 615

frameset attribute,

557-562

name attributes and, 105

tabindex attribute, 615

title attribute, 615

<abbr> tags, as logical style

tags, 123

absbottom alignment

(images), 207

absolute pathnames, 96-97

linking local pages, 95-98

versus relative pathnames,

97

absolute positioning,

absolute positioning (CSS),

293

dynamic overlays, 297-300

nesting elements, 295-297

Index

ptg16476052

704 absolute positioning (CSS)

page layout, 426-428

properties, 293-295

absolute units (CSS), 166-167

access keys, forms, 352

accessibility, 611, 622

alternative browsers, 613

Building Accessible Websites, 621

designing for, 617

color, 617

fonts, 618

forms, 619

frames, 619

HTML tags, 619

linked windows, 619

Dive Into Accessibility website, 621

myths, 611-612

Section 508, 612

transcripts, 692

validating, 620

W3C Web Accessibility Initiative, 621

writing HTML, 613

images, 616

links, 615

accessing log files, 644-645

accesskey attribute (<a> tag), 615

accounts, Twitter, 641

action attribute, <form> tag, 315, 321, 366

active state (links), 173

addition operator (+), 479

<address> tag, 134-135, 154, 598

addresses (Web). See URLs

adjusting layout, 454, 457-459

RWD, 445

Adobe Color CC, 170

Adobe Photoshop, 198

Adobe website, 198

advertising websites, 638

brochures, 644

business cards, 644

links from other sites, 639-640

social media, 640-642

AJAX, 496

external data, loading, 521-525

JQuery, 520-525

alert message, JavaScript, 494

align attributes

<hr> tags, 133

 tag, 209

<table> tag, 263

alignment

images, 207-209

tables, 263

cells, 264-265

columns, 276-279

rows, 279-282

alink attribute (<body> tag), 172

allowfullscreen (<embed> tag), 405

allowscriptaccess (<embed> tag), 405

alt attribute, <area> tag, 231

alt attribute (tag), 201, 237, 616

alternative content, <object> tag, 403-404

Amazon.com, 630

ampersands (&)

named entities, 140

troubleshooting, 142

analytics, 700

anchor tags, 117. See also <a> tag

anchors, 104

creating, 105

hash signs and, 108

linking in same page, 110

sample exercises, 105-109

anonymous FTP, URLs, 114-115

anonymous functions, JavaScript, 542

Apple Safari, 17

Apple’s QuickTime, container format, 392

<area> tag, 230-231

ptg16476052

avoiding 705

arguments

JavaScript, 486

this, 494

array_key_exists() function, 658

arrays

JavaScript, 489

PHP, 656-659

associative arrays, 657

indexes, 656

<article> element, 378

articles, guest posting, 639-640

ASCII, 139

<aside> element, 379

ASP.NET, 683

associating image maps with images, 231

associative arrays, PHP arrays, 657

asterisk (*), multiplication operator, 479

attribute selectors, 193-194

attributes

<a> tag

accesskey, 615

tabindex, 615

target, 557-562

title, 615

<area> tag, 230-231

alt, 231

coords, 231

href, 231

shape, 230

<audio> tag, 414

<body> tag, 172

alink, 172

link, 172

text , 172

vlink, 172

 tag, clear, 212

<embed> tag, 405

<hr> tag, 132-133

href attributes, links, creating, 90

HTML, 50

<iframe> tag, 571

height, 564

name, 564

src, 564

width, 564

 tag, 237

align, 209

alt, 201, 616

height, 219

hspace, 213

src, 201

usemap, 231-232

vspace, 213

width, 219

manipulating jQuery, 513-514

<map> tag, name, 230

name, <a> tags and, 105

<object> tag, 403

style, 51

type attribute, 77

value attributes, 77

<video> tag, 397

audio, embedding, 413-416

audio players, Flash (embedding), 414-416

<audio> tag, 413-416

attributes, 414

authentication, 627

auto margins (CSS), 180

autoplay attribute

<audio> tag, 414

<video> tag, 397

avoiding

browser-specific technology, 584

Flash in mobile web design, 593

“here” syndrome, 588

ptg16476052

706 tags

B

 tags, 124, 154

background-color property

table background colors, changing, 261

background-position property (CSS), 222

backgrounds

background images, 221, 224

CSS (cascading style sheets)

background-position, 222

elements, 224

 tag, 224

tables, background colors, 261-262

Baidu, 691

bandwidth limitations, 631

<base> tag, 562-563, 571

baseline alignment (images), 207

best practices for RWD, 467-468

Better-Organized Style Sheet listing (15.7), 438

binding events, JQuery, 504-505

Bing, 691

blank target name, 557

block-level elements

backgrounds, 224

versus character-level elements, 122

<blockquote> tag, 135-136, 154

Blogger.com, 37

blue_page window, 558-562

Bobby (accessibility validator), 620

body (tables), 281

<body> tag, 59-60, 172

CSS, applying, 194

CSS box properties and, 181-182

bold text, design tips, 583-584

bold type, headings as, 63

books, Building Accessible Websites, 621

Bookworm Web page code, 151-153

border attribute, 284

<table> tag, 253-256

borders

CSS box model, 175-177

table borders, changing, 253-256

bottom property, absolute positioning, 293

bottom property, CSS positioning, 288

box model (CSS), 174

borders, 175-177

clearing elements, 187

controlling size and element display,

182-185

floating elements, 185-189

margins, 177-182

padding, 177-182

 tags, 133-134, 155, 212

brackets, HTML tags, 45

Braille browsers, 613

breakpoints, 452-453

brevity in Web page design, 582

brochures, including Web address on, 644

browsers

accessibility, alternative browsers, 613

compatibility, 417

getting image coordinates, 233

JavaScript

compatibility, 496

integration, 473

PHP scripts, dependence, 685

building

responsive tables, 463, 466-467

style sheets with media queries, 454

Building Accessible Websites, 621

built-in functions, PHP, 666

bullets, images, 224-225

business cards, including Web address on, 644

button attribute, <input> tag, 367

<button> tag, 340, 366

buttons in Developer Tools, 31. See also form

controls

ptg16476052

clients, FTP clients 707

C

Camino, 17

canonical links, 698

<caption> tag, 247-251, 283

captions, tables, 242

creating, 247-251

carriage returns, 634

cascading (CSS), 165-166

Cascading Style Sheets (CSS). See CSS

(Cascading Style Sheets)

case sensitivity, filenames, 634

cellpadding attribute (<table> tag), 256

cells. See also columns

alignment, 264-265

colors, background colors, 261-262

creating, 244-246

empty cells, creating, 246

padding, 256

spacing, 257-258

spanning multiple rows/columns, 266-269

tables, 242

cellspacing attribute (<table> tag), 257

celsiusToFahrenheit() function, 680

character encoding, 139

UTF-8, 140

character entities, 138

named entities, 140-141

numbered entities, 141

reserved characters, 141

character formatting, design tips, 583-584

character-level elements, 122

versus block-level elements, 122

logical style tags, 122-123

physical style tags, 124

check box controls, creating with <input> tag,

334-335

checkbox attribute, <input> tag, 367

checked attribute, <input> tag, 335

radio, 336

checking file permissions, 636

chmod command, 636

choosing, web servers, 627

bandwidth limitations, 631

domain parking, 629

ISPs (Internet service providers), 628

personal servers, 629

school servers, 627

Web presence providers, 628-629

work servers, 627

Chrome Developer Tools, 171

Chrome (Google), 15

circles, imagemap coordinates, 229

<cite> tag, 154

as logical style tags, 123

clarity in Web page design, 582

class attribute, overview, 163-164

classes (CSS)

naming conventions, 195

overview, 163

classes, manipulating (jQuery), 508-511

clear attribute (
 tag), 212

clear property (CSS), 187

clearing text wrap, 211-212

click to call, 596

client-side images, 226

<area> tag, 230-231

associating with images, 231

circle coordinates, 229

imagemap creation software, 228

image selection, 226

jukebox image example, 232-236

<map> tag, 230-231

polygon coordinates, 229

rectangle coordinates, 230

troubleshooting, 238

clients, FTP clients, 635

ptg16476052

708 cloaking

cloaking, 695

closing HTML tags, 45, 60, 72

cm unit (CSS), 167

Coda, 27

code listings

15.1 (Using <div> Tags to Create Sections for

Positioning), 424-425

15.2 (Style Sheet for Page Layout), 427

15.3 (Style Sheet for Colors and Fonts), 429

15.4 (Moving One Section Before Another),

431

15.5 (Float-Based Layouts in CSS), 433-434

15.6 (Randomly Organized Style Sheet), 437

15.7 (Better-Organized Style Sheet), 438

<code> tag, 154

as logical style tags, 123

codecs, 416

H.264 video codec, 392

converting to, 393-396

<col> tag, 276-277, 283

<colgroup> tag, 276-277, 283

color property (CSS), 172

table background colors, changing, 261

Color Schemer, 170

colors

accessibility, 617

CSS properties, 173

naming, 170

page layout, 429-430

tables, background colors, 261-262

colspan attribute, 284

<td> tag, 267

<th> tag, 267

columns, 266

aligning, 276-279

grouping, 276-279

width of, 259-260

commands, chmod, 636

comments

HTML tags, 69

JavaScript, 474

PHP, 654-655

comments (HTML), 65-66

comparison operators (JavaScript), 483

compatibility, browsers, 417

complex framesets, creating, 558

compressing

CSS, 594-595

JavaScript, 594-595

conditional operators, PHP, 662

conditional statements, PHP, 661

consistent page layout for mobile web, 586

container formats, video, 392-393

content

adding

jQuery, 514-518

to sample pages, 145

alternative content, <object> tag, 403-404

duplicate content, 696

redirecting, 698-699

formatting. See HTML tags

ideas for, 33

improving SEO, 694

modifying jQuery, 508-518

removing jQuery, 514-518

splitting topics across pages, 598

titles, 61

Web pages, adding to, 546-550

wireframing, 33-36

content-management applications, 36-37

contextual selectors (CSS), 162-163

control structures, JavaScript, 482-486

controlling loop execution, PHP, 665-666

controls attribute (<audio> tag), 414

controls attribute (<video> tag), 397

controls (forms), 314

controls, HTML5, 328-329

ptg16476052

CSS (cascading style sheets) 709

cookies, PHP, 683

coordinates

image coordinates, getting from browsers,

233

imagemaps, determining, 227-228

coordinates (imagemaps)

<area> tag, 230-231

circle coordinates, 229

imagemap creation software, 228

<map> tag, 230-231

polygon coordinates, 229

rectangle coordinates, 230

coords attribute (<area> tag), 231

crawlers, 689

cross-platform compatibility, reasons for, 44

cross-platform Web compatibility, 9

cross-site scripting, preventing, 669

CRUD applications, 674

CSS (cascading style sheets), 21, 37, 421

advantages of, 50

applying, 160

background properties, block-level elements,

224

backgrounds, tag, 224

box model, 174

borders, 175-177

clearing elements, 187

controlling size and element display,

182-185

floating elements, 185-189

margins, 177-182

padding, 177-182

<body> tag, 194

cascading, 165-166

compressing for mobile web, 594-595

creating, 50-51

CSS files, creating, 161

font properties, 126-127, 142

form properties, applying styles, 361-364

forms, applying to, 359-361

HTML and. See also HTML

HTML tags, combining with, 51

layout style sheets, writing, 426-433

links, modifying, 173-174

list-style-image properties, unordered lists, 80

list-style-position properties, unordered lists,

80

media queries, 450

breakpoints, 452-453

media features, 451-452

media types, 450-451

style sheets, building, 454

overview, 159

page-level styles, creating, 160

placing in external files, 593-594

positioning, 288

absolute positioning, 293-300

fixed positioning, 301-303

relative positioning, 288-290, 293

static positioning, 288

top/left/bottom/right properties, 288

z-index property (stacking), 303-306

properties

background-position, 222

color, 172

font-family, 156

font-size, 156

font-style, 156

font-variant, 156

font-weight, 156

retrieving, 507-508

text-decoration, 156

sample pages, creating, 143-144

adding content, 145

adding tables of contents, 146

Bookworm Web page code, 151-153

frameworks, 144-145

link menus, 148-149

page descriptions, 147

ptg16476052

710 CSS (cascading style sheets)

planning the page, 144

signatures, 150-151

testing results, 153-154

unordered lists, 150

selectors, 162, 189-190

attribute selectors, 193-194

classes, 163-164. See also classes (CSS)

contextual selectors, 162-163

IDs, 163-164. See also IDs (CSS)

pseudo-classes, 190-193

sitewide style sheets, creating, 161-162

spacing units, 143

 tags, 125

standards, 195

tables, laying out, 422-434

text-decoration properties, 125-126

troubleshooting, 195

units of measure, 166

length units, 166-167

percentage units, 168

URLs, using, 168

web design, 435-436

organization, 436-437

site-wide style sheets, 439

.css file extension, 161

customizing videos, YouTube, 389

CuteFTP, 635

Cynthia Says validator, 620

D

Dailymotion.com, 391

Dashboard (Google Analytics), 647-648

data attribute (<object> tag), 403

data types, JavaScript, 488-489

database connectivity, PHP, 682

<datalist>, 327-328

date and time types (HTML5), 330-331

<dd> tags, 72, 81, 86

default index files, 632-633

definition links, 590

definition terms. See <dt> tags

density of keywords, 693

deployment, PHP files, 685

descendant selector, 189-190

descriptive titles, 583

design, wireframing, 33-36

designing

for accessibility, 617

color, 617

fonts, 618

forms, 619

frames, 619

HTML tags, 619

linked windows, 619

web pages

accessibility. See accessibility

determining user preferences, 610-611

emphasis, 619

first time users versus regular users, 609

images, image etiquette, 237

navigation, 608-609

search engines, 606

URLs, 606-608

designing websites, 581

brevity, 582

browser-specific terminology, 584

clarity, 582

consistent layout, 586

emphasis, 583-584

grouping related information, 586

headings, 585

images, 591

links, 587

organizing for quick scanning, 582

page validation, 578-580

proofreading, 584-585

ptg16476052

domain names, registering 711

spell checking, 584-585

splitting topics across pages, 598

standalone pages, 583

standards compliance, 578-579

designs, style sheets, 435-436

organization, 436-437

site-wide, 439

Developer Tools, 29

buttons, 31

Inspector, 31-32

tabs, 30

View Source, 30

development environments, JavaScript, 495

<dfn> tag, 154

as logical style tags, 123

dictionaries (PHP), 657

<dir> tags, 72

directories, 632

folders and, 95

index files, web servers, 632

in URLs, 112

disabled form controls, creating, 352-353

distributed nature of the Web, 9-10

<div> tag, 423-426

Dive Into Accessibility website, 621

division operator (/), 479

<dl> tags, 81, 86

Doctorow, Cory, 10

DOCTYPE identifiers, 58

DOCTYPE tag, 47

document object (JavaScript), 491

document roots, 97

documentation, JavaScript, 495

documents (HTML)

colors

CSS properties, 173

naming, 170

converting web pages to, 601

images

adding, 200-205

aligning with text, 207-209

as links, 214-218

background images, 221-224

bullets, 224-225

GIF (Graphics Interchange Format),

198-238

Halloween House Web page example,

203-205

height/width, 219

image etiquette, 237

inline images, 200-201, 205-207

JPEG (Joint Photographic Experts Group),

199, 238

navigation icons, 215-218

PNG (Portable Network Graphics), 199

preparing for Web, 198

scaling, 219

spacing around, 213

wrapping text around, 210-212

moving between Web servers, 633

carriage returns/line feeds, 634

filename restrictions, 633

FTP (File Transfer Protocol), 634-635

organizing, 630

default index files, 632-633

directories, 632

filenames, 632-633

Web server setup, 630-631

text

aligning images with, 207-209

wrapping around images, 210-212

text formatting, design tips, 583-584

DOM (Document Object Model), 503

accessing

JavaScript methods, 549

methods, 543

navigating node properties, 545

domain names, registering, 628-629

ptg16476052

712 domain parking

domain parking, 629

domains, 629

dotster.com, 629

drop-down menus, creating, 306-311

<dt> tags, 72, 81, 86

Dunbar Project example

absolute positioning, 426-428

colors/fonts, 429-430

floated columns, 433-434

HTML sections, 423-426

redesigning layout, 432-433

reordering sections, 431

style sheet, 426-430

tables, 422-423

duplicate content, 696

redirecting, 698-699

dynamic overlays, 297-300

dynamic nature of Web, 10-11

E

echo() function, 674

editing PHP files, 685

element displays, CSS box model (controlling),

182-185

elements

backgrounds, 224

hiding, JQuery, 505-506

JavaScript, hiding/showing, 538-546

showing JQuery, 505-506

elements (HTML), 45

The Elements of Style, 582

 tag, 102, 154

as logical style tags, 122

em unit (CSS), 167

em values, 440

Emacs, 26

email, sending (PHP), 682

<embed> tag, 404-405, 416

attributes, 405

embedding

audio, 413-416

Flash multimedia

<object> tag, 400-404

SWFObject, 406-408

video, 386-391

<video> tag, 396-400

empty cells, creating, 246

enctype attribute, <form> tag, 323, 339, 366

Enterprise Edition (Java), 684

equal sign (=), equality operator, 483

equality operator (==), 483

escape codes, HTML reserved characters, 141

event-driven models of execution, JavaScript,

472

event handlers

JavaScript, 492

onblur, 492

onchange, 492

onclick, 492

onfocus, 493

onload, 493

onmouseover, 493

onselect, 493

onsubmit, 493, 529

onunload, 493

event.preventDefault() method, 531

events

binding, JQuery, 504-505

event handlers, onsubmit, 529

JavaScript, 491-495

ex unit (CSS), 167

expand all/collapse all links, FAQs (adding to),

547

explicit navigation links, 589

expressions, JavaScript, 479-480

eXtensible HyperText Markup Language (XHTML).

See XHTML

ptg16476052

Flash video players 713

eXtensible Markup Language (XML), 52

external data, AJAX (loading), 521-525

external files

CSS, placing in, 593-594

JavaScript, placing in, 593-594

websites, 622

F

Facebook, advertising websites via, 640-642

FAQs, expand all/collapse all links (adding to),

547

<fieldset> tag, grouping controls, 350-351

<form> tag

action attribute, 321

enctype attribute, file, 339

using, 319-323

feature images, sizing, 220

Fetch, 635

<fieldset> tag, 366

file attribute, <input> tag, 367

file extensions, 632

file formats

GIF (Graphics Interchange Format), 198-199,

238

JPEG (Joint Photographic Experts Group),

199, 238

PNG (Portable Network Graphics), 199

File Not Found errors, 636

File Transfer Protocol (FTP), 111, 634-635

file upload controls, creating with <input> tag,

339-340

file uploads, PHP, 683

file URLs, 116-117

filenames, 632-633

case sensitivity, 634

restrictions, 633

files

determining type of, 626

file extensions, 632

File Not Found errors, 636

filenames

case sensitivity, 634

restrictions, 633

Forbidden errors, 636

GIF (Graphics Interchange Format), 198-199,

238

HTML files, 45-48

index.html files, creating, 632-633

JPEG (Joint Photographic Experts Group),

199, 238

log files, 645

managing, 626

moving between Web servers, 633

carriage returns/line feeds, 634

filename restrictions, 633

FTP (File Transfer Protocol), 634-635

organizing, 630

default index files, 632-633

directories, 632

filenames, 632-633

Web server setup, 630-631

permissions, checking, 636

PHP files, 685

PNG (Portable Network Graphics), 199

server-side processing, 627

Firefox. See Mozilla Firefox

fixed layouts, 426

fixed positioning (CSS), 301-303

Flash audio players, embedding, 414-416

Flash multimedia, embedding

<object> tag, 400-404

SWFObject, 406-408

Flash video players, 408

Flowplayer, 410-412

JW Player, 408-410

ptg16476052

714 flashvars (<embed> tag)

flashvars (<embed> tag), 405

Flickr.com, 391

Float-Based Layouts in CSS listing (15.5),

433-434

floated columns layout, 433-434

floating elements, CSS box model, 185-189

floating frames, 52

Flowplayer, 410-412, 415

folders, 95

font-family property (CSS), 156

font properties, 127, 142

(CSS), 126

font-size property (CSS), 156

font-style property (CSS), 156

font-variant property (CSS), 156

font-weight property (CSS), 156

fonts

accessibility, 618

page layout, 429-430

sans-serif fonts, 51

serifs, 51

footer element, 376

footers (tables), 280

for loops, 484

JavaScript, 484

PHP, 664

Forbidden errors, 636

foreach loops, PHP, 663

form controls

<button> tag, 340

<label> tag, displaying label elements,

323-324

creating with <input> tag, 324

check box controls, 334-335

file upload controls, 339-340

generic buttons, 337-338

hidden form fields, 338-339

password controls, 332-333

radio buttons, 336

reset buttons, 334

submit buttons, 333-334

text controls, 325-326

disabled controls, creating, 352-353

<fieldset> tag, grouping controls, 350-351

<legend> tag, grouping controls, 350-351

naming, 317

navigation

access keys, 352

default navigation, changing, 351-352

<option> tag, menus, creating, 342-345

readonly controls, creating, 352-353

registration form example, 345-348

<select> tag, menus, creating, 342-345

submit buttons, images as, 337

<textarea> tag, 341-342

form tags, 314, 366

action attribute, 315

enctype attribute, 323

get method, 315-316

method attribute, 315-316, 321-322, 640

post method, 315-316

using, 319-323

formatting

content. See HTML tags

text, HTML pages, 49, 54

forms, 13, 313-315

accessibility, 619

check box controls, creating with <input>

tag, 334-335

controls, 314

creating, 314-319

CSS (cascading style sheets), applying to,

359-361

CSS properties, applying styles, 361-364

<form> tag, using, 319-323

file upload controls, creating with <input>

tag, 339-340

form controls. See form controls

<form> tag. See form tags

ptg16476052

gestures, tapping 715

generic buttons, creating with <input> tag,

337-338

hidden form fields, creating with <input> tag,

338-339

HTML, 313

<input> tag, 316-317

type attribute, 316

value attribute, 317

navigation

access keys, 352

default navigation, changing, 351-352

password controls, creating with <input> tag,

332-333

PHP, 668-669

parameters with multiple values, 669-670

presenting forms, 674-676

validating forms, 670-672

planning, 365

radio buttons, creating with <input> tag, 336

registration form, 13

required fields, testing, 531-533

reset buttons, creating with <input> tag, 334

security, 353

submit buttons

creating with <input> tag, 333-334

images as, 337

tags, 314

telephone numbers, validating, 329

testing, 368

text controls, creating with <input> tag,

325-326

text form controls, 316

validating with JavaScript, 528

code listing, 534-535

onsubmit event handler, 529

this form object, 532

values, manipulating, 511-512

forms processing, server-side scripts and, 626

frames, 555-556

accessibility, 619

framesets, 557

<base> tag, 562-563

creating, 560-562

creating complex, 558

inline frames, 563-566

linked windows, 557-561

magic target names, 557

framesets, 52, 557

<base> tag, 562-563

creating, 560-562

creating complex, 558

frameworks, HTML files (creating), 144-145

FTP (File Transfer Protocol), 38, 111, 634-635

anonymous FTP, URLs, 114-115

navigating FTP servers, 114

non-anonymous FTP, URLs, 115

FTP Explorer, 635

functions

array_key_exists(), 658

celsiusToFahrenheit(), 680

echo(), 674

is_array(), 658

JavaScript, 486-488

anonymous functions, 542

PHP

built-in functions, 666

user-defined functions. See user-defined

functions

popup(), 568-570

unset(), 657

G

generic buttons, creating with <input> tag,

337-338

geolocation, 595

gestures, tapping, 587

ptg16476052

716 get method (<form> tag)

get method (<form> tag), 315-316

get method (forms), 321-322, 640

getElementsByClassName() method, 500

GIF (Graphics Interchange Format), 198-199,

238

global attributes (HTML), 50

godaddy.com, 629

Google, 690

Webmaster tools, 696

Google Analytics, 645-646

Dashboard, 647-648

installing, 646-647

reports, 647-648

Google Chrome, 15

supported character encoding, 139

Google Chrome Developer Tools, 29

buttons, 31

Inspector, 31-32

tabs, 30

View Source, 30

Graphics Interchange Format (GIF), 198-199,

238

greater than operator (>), 483

greater than or equal to operator (>=), 483

greater than symbol (>), troubleshooting, 142

grouping table columns, 276-279

grouping related information, mobile web

design, 586

guest posting, 639-640

H

H.264 codec versus Ogg Theora, 417

H.264 video codec, 392

converting to, 393-396

Halloween House Web page, 202-205

hardware considerations for mobile web design,

592

hash signs, anchors and, 108

hashes (PHP), 657

<head> tag, 59

header element, 376

heading levels, 62-64

heading levels (HTML tags), style attributes and,

51

headings

boldface, 63

importance of, 582

mobile web design, 585

tables, 242, 279-280

height attributes

<embed> tag, 405

<iframe> tag, 564, 571

 tag, 219, 592

<object> tag, 403

<video> tag, 397

height of images, 219

height property for absolute positioning,

294-295

hidden attribute, <input> tag, 367

hidden form fields, creating with <input> tag,

338-339

hiding elements, JavaScript, 538-546

history of HTML page layout, 372-373

history object (JavaScript), 491

history of RWD, 444

hits, websites, 638

home pages, 24-25, 40

ideas for, 25-26

initial visit, 25

linking to, 597

horizontal rules. See <hr> tag

hosting video, 391-395

hosting videos, YouTube, 387-388

hostnames (URLs), port numbers, 111

hover state (links), 173

<hr> tag, 130-131, 155

attributes, 132-133

overview, 131

ptg16476052

HTML documents 717

href attributes

<area> tag, 231

links, creating, 90

hspace attribute (tag), 213

.htm versus .html, 47

HTML (hypertext markup language), 37, 42

adaptability, reasons for, 44

as structurer, 42-43

attributes, 50

address tags, 134-135, 154

 tags, 154

<blockquote> tag, 135-136, 154

 tags, 155

<cite> tags, 154

<code> tags, 154

CSS (cascading style sheets) and, 43. See
also CSS (cascading style sheets)

<dfn> tags, 154

 tags, 154

files, 45-48

formatting text, 54

<hr> tags, 155

<i> tags, 154

<kbd> tags, 154

links. See links

overview, 42

page layout sections, 423-426

page layouts and, 43

parsing, 43

<pre> tags, 154

<samp> tags, 155

sample pages, creating, 47

<small> tags, 155

 tags, 155

 tags, 155

structure, writing with, 423-425

structuring, 58

<sub> tags, 155

<sup> tags, 155

tables. See tables

tags, <div>, 425

<u> tags, 155

<var> tags, 155

writing accessible HTML, 613

images, 616

links, 615

HTML documents

colors

CSS properties, 173

naming, 170

images

adding, 200-205

aligning with text, 207-209

as links, 214-218

background images, 221, 224

bullets, 224-225

GIF (Graphics Interchange Format),

198-199, 238

Halloween House Web page example,

203-205

height/width, 219

image etiquette, 237

inline images, 200-201, 205-207

JPEG (Joint Photographic Experts Group),

199, 238

navigation icons, 215-218

PNG (Portable Network Graphics), 199

preparing for Web, 198

scaling, 219

spacing around, 213

wrapping text around, 210-212

moving between Web servers, 633

carriage returns/line feeds, 634

filename restrictions, 633

FTP (File Transfer Protocol), 634-635

organizing, 630

default index files, 632-633

directories, 632

ptg16476052

718 HTML documents

filenames, 632-633

Web server setup, 630-631

text

aligning images with, 207-209

wrapping around images, 210-212

text formatting, design tips, 583-584

HTML elements, 45

HTML forms. See forms

HTML (Hypertext Markup Language), 21

page layout, history, 372-373

HTML Kit, 27

HTML pages

creating, 46-47

viewing results, 47-48

links, creating, 91-93

local pages, linking, 95-98

text formatting, 49

HTML tags, 43, 58-59, 68, 86

<a>

accesskey attribute, 615

tabindex attribute, 615

target attribute, 557-562

title attribute, 615

<abbr>, as logical style tags, 123

accessibility, 619

<address>, 598

<area>, 230-231

<audio>, 413-416

 tags, 124

<base>, 562-563, 571

<button>, form controls, 340

<body>, 59-60, 172

, 133-134

, clear, 212

brackets, 45

<button>, 366

<caption>, 247-251, 283

character entities, 138

named entities, 140-141

numbered entities, 141

reserved characters, 141

character-level elements, 122

<cite> tags, as logical style tags, 123

closing, 45, 60, 72

<code> tags, as logical style tags, 123

<col>, 276-277, 283

<colgroup> tag, 276-277, 283

comments, 65-66, 69

conventions, founding of, 44

CSS (cascading style sheets), combining with,

51

<dd>, 72, 81, 86

<dfn> tags, as logical style tags, 123

<dir>, 72

<dl>, 81, 86

DOCTYPE identifiers, 58

<dt>, 72, 81, 86

, 102, 122

<embed> tag, 404-405, 416

<fieldset>, 366

<form>, 366

<head>, 59

heading levels, 62-64

style attributes and, 51

<hr>, 130-131

attributes, 132-133

<html>, 58-59

<i> tags, 124

<iframe>, 563-565, 571

, 200-201, 237

align attribute, 209

alt attribute, 201, 616

height attribute, 219

hspace attribute, 213

src attribute, 201

ptg16476052

HTML tags 719

usemap attribute, 231-232

width attribute, 219

indented code, 62

<input>, 366-367

<kbd> tags, as logical style tags, 123

<label>, 316, 366

displaying label elements, 323-324

<legend>, 366

, 72, 86

unordered lists, 78

type attributes and, 76-77

value attributes and, 77

<link>, 161

lists

nesting lists, 82-84

numbered lists, 73-77

overview, 72-73

unordered lists, 78-80

logical style tags, 122-123

<map>, 230-231

markup languages, 45

nested, 59

nesting, 95

<object>, 400-404, 412-413, 416

, 73, 86

type attributes and, 74-75

opening, 45

<option>, 366

origins, 52

<p>, 416

paragraph tags, 64-65

<param>, 417

physical style tags, 124

<pre> tags, 128-130

<samp> tags, as logical style tags, 123

sample pages, creating, 66-67, 143-144

adding content, 145

adding tables of content, 146

Bookworm Web page code, 151-153

frameworks, 144-145

link menus, 148-149

page descriptions, 147

planning the page, 144

signatures, 150-151

testing results, 153-154

unordered lists, 150

<script>, JavaScript, 473-474

<select>, 366

<small> tags, 124

<source>, 417

 tags, 125

 tags, as logical style tags, 122

<style>, type attribute, 160

<sub> tags, 125

<sup> tags, 125

<table> tags, 243, 283

align attribute, 263

border attribute, 253-256

cellpadding attribute, 256

cellspacing attribute, 257

width attribute, 253

<tbody>, 281-283

<td>, 244, 284

colspan attribute, 267

rowspan attribute, 267

valign attribute, 264

<textarea>, 341-342, 366

<tfoot>, 280, 283

<th>, 244, 284, 614

colspan attribute, 267

rowspan attribute, 267

<thead>, 279

<thread>, 283

<title>, 60-61

<tr>, 244, 284

<u> tags, 124

, 72, 86. See also unordered lists

ptg16476052

720 HTML tags

<var> tags, 123

<video>, 396-400, 412-413, 417

HTML5, 53

controls, 328-329

date and time types, 330-331

page layout, 373-374

articles, 378

asides, 379

footers, 376

headers, 376

implicit sectioning, 380

navigation, 377-378

sections, 375, 379

structural elements, polyfill scripts, 381

HTTP

status codes, 645

URLs, 113-114

HTTP servers. See Web servers

hyperlinks, images, 214-218

hypertext, 8. See also links

Hypertext Markup Language (HTML). See HTML

(Hypertext Markup Language)

hypertext references. See href attributes

Hypertext Transfer Protocol (HTTP), 111

I

<i> tag, 124, 154

icons, navigation icons, 215-216, 218

 tag, 200-201

height attributes, 592

<input> tag, 334, 366-367

checked attribute, 335

radio, 336

form control creation, 324

check box controls, 334-335

file upload controls, 339-340

generic buttons, 337-338

hidden form fields, 338-339

password controls, 332-333

radio buttons, 336

reset buttons, 334

submit buttons, 333-334

submit buttons, images as, 337

text controls, 325-326

type attribute

button, 338

file, 339

hidden, 338

radio, 336

value attribute, 326, 334

id attribute, overview, 163-164

IDs (CSS)

naming conventions, 195

overview, 163-164

IE (Internet Explorer). See Microsoft Internet

Explorer

if statement (JavaScript), 482-484

<iframe> tag, 563-565, 571

image attribute, <input> tag, 367

imagemaps

client-side imagemaps, 226

<area> tag, 230-231

associating with images, 231

circle coordinates, 229

image selection, 226

imagemap creation software, 228

jukebox image example, 232-236

<map> tag, 230-231

polygon coordinates, 229

rectangle coordinates, 230

troubleshooting, 238

coordinates, determining, 227-228

server-side imagemaps, 226

images, 198

adding to Web pages

Halloween House Web page example,

202-205

 tag, 200-201

ptg16476052

iterations, loops 721

aligning with text, 207-209

as links, 214-218

background images, 221, 224

bullets, 224-225

client-side imagemaps, 226

<area> tag, 230-231

associating with images, 231

circle coordinates, 229

image selection, 226

imagemap creation software, 228

jukebox image example, 232-236

<map> tag, 230-231

polygon coordinates, 229

rectangle coordinates, 230

troubleshooting, 238

coordinates, getting from browsers, 233

GIF (Graphics Interchange Format), 198-199,

238

Halloween House Web page example,

202-205

height/width, 219

image etiquette, 237

in mobile web design

reducing size of, 591-592

when to use, 591

inline images, 200-201, 205-207

JPEG (Joint Photographic Experts Group),

199, 238

making responsive, 460-463

navigation icons, 215-218

PNG (Portable Network Graphics), 199

scaling, 219

server-side imagemaps, 226

sizing, 220

spacing around, 213

submit buttons, creating with, 337

troubleshooting, 636-637

when to use, 591

wrapping text around, 210-212

writing accessible HTML, 616

 tag, 237

align attribute, 209

alt attribute, 201, 616

CSS backgrounds, 224

height attribute, 219

hspace attribute, 213

src attribute, 201

usemap attribute, 231-232

vspace attribute, 213

width attribute, 219

implicit navigation links, 589

implicit sectioning, 380

importance of RWD, 445

improving

scannability, 582

SEO, 694

includes, PHP, 678-680

choosing includes, 680-681

indented HTML code, 62

index files, 632

indexes

PHP arrays, 656

of websites, 643

inequality operator (!=), 483

inline frames, 563-566

<input> tag, 316-317

input types, date, 331

Inspector, Developer Tools, 31-32

installing Google Analytics, 646-647

interactivity of Web, 12

Internet, media types, 402

Internet Explorer. See Microsoft Internet Explorer

Internet service providers (ISPs), 628

intranets, 9, 24

IrfanView, 198

is_array() function, 658

ISPs (Internet service providers), 628, 649

italic text, design tips, 583-584

iterations, loops, 484

ptg16476052

722 Java Enterprise Edition

J

Java Enterprise Edition, 684

JavaScript, 11, 21, 472

advantages of, 472, 495

alert message, 494

anatomy of scripts, 474

arguments, 486

arrays, 489

browsers

compatibility, 496

integration, 473

comparison operators, 483

compressing for mobile web, 594-595

control structures, 482-486

data types, 488-489

development environments, 495

document object, 491

documentation, 495

DOM, accessing, 543

ease of use, 473

elements, hiding/showing, 538-546

environment, 491

event-driven models of execution, 472

event handlers, 492

events, 491-495

expressions, 479-480

for loops, 484

form validation, 528

code listing, 534-535

onsubmit event handler, 529

this form object, 532

forms, required fields, 531-533

functions, 486-488

anonymous functions, 542

history object, 491

if statement, 482-484

libraries, 500

enabling users, 526

jQuery, 500-525

slowly loading pages, 525

linked windows, opening, 567-571

location object, 491

looping statements, 484-486

objects, 489-490

operators, 479-480

parameters, 486

placing in external files, 593-594

reserved words, 481

<script> tag, 473-474

src attribute, 474

server efficiency, 473

syntax, 476-496

variables, 480-482

Web pages, adding content to, 546-550

while loops, 485-486

window object, 491

JavaScript Console, 475

JavaScript Debugger, 475

JPEG (Joint Photographic Experts Group), 199,

238

jQuery, selectors, 503

jQuery JavaScript library, 500-501

adding/removing content, 514-518

AJAX, 520-525

attributes, manipulating, 513-514

binding events, 504-505

classes, manipulating, 508-511

enabling users, 526

form values, manipulating, 511-512

hiding and showing elements, 505-506

modifying page styles, 505-508

modifying web page content, 508-518

retrieving style sheet properties, 507-508

sample script, 501-503

ptg16476052

link farms 723

slowly loading pages, 525

special effects, 518-520

jukebox imagemap, 232-236

JW Player, 408-410, 415

K

<kbd> tag, 154

as logical style tags, 123

keywords, 693, 700

density, 693

overoptimization, 693

Komodo Edit, 27

Konqueror, 17

L

<label> tag, 316, 366

displaying label elements, 323-324

layout

absolute positioning, 426-428

colors/fonts, 429-430

CSS, positioning, 288-306

fixed, 426

floated columns, 433-434

HTML sections, 423-426

in HTML5, 373-374

articles, 378

asides, 379

footers, 376

headers, 376

implicit sectioning, 380

navigation, 377-378

polyfill elements, 381

sections, 375, 379

liquid, 427

measurements, 440

redesigning, 432-433

reordering sections, 431

RWD, adjusting, 454-459

style sheet, 426-430

tables, 422-423

layout style sheets, writing, 426-433

left property

absolute positioning, 293

CSS positioning, 288

<legend> tag, 366

grouping controls, 350-351

length units (CSS), 167

overview, 166

less than operator (<), 483

less than or equal to operator (<=), 483

less than symbol (<), troubleshooting, 142

 tags, 72, 86

type attributes and, 76-77

value attributes and, 77

libraries (JavaScript), 500

jQuery, 500-501

adding/removing content, 514-518

AJAX, 520-525

binding events, 504-505

enabling users, 526

hiding and showing elements, 505-506

manipulating attributes, 513-514

manipulating classes, 508-511

manipulating form values, 511-512

modifying page styles, 505-508

modifying web page content, 508-518

retrieving style sheet properties, 507-508

sample script, 501-503

slowly loading pages, 525

special effects, 518-520

line breaks. See
 tags

line feeds, 634

link attribute (<body> tag), 172

link farms, 696

ptg16476052

724 link menus

link menus, 583

creating, 101-103, 148-149

<link> tag, 117, 161

linked windows, 557

accessibility, 619

<base> tag, 562-563

creating, 560-562

JavaScript, opening with, 567-571

links, 117-119. See also hypertext

active state, 173

anchors, 104

creating, 105

hash signs and, 108

linking in same page, 110

sample exercises, 105-109

canonical links, 698

creating, 90

<a> tags, 90-91

sample exercise, 91, 95

CSS, modifying with, 173-174

hover state, 173

images, 214-218

in mobile web design, 587-588

definition links, 590

explicit navigation links, 589

“here” syndrome, 588

implicit navigation links, 589

link menus, 587

tangent links, 590

when to use, 589-591

link menus, creating, 101-103

local pages, pathnames, 95-98

navigation links, 583

paying for, 700

remote pages, linking to, 98

sample exercise, 99-100

to home page, 597

troubleshooting, 637

Web pages, adding to, 547-548

writing accessible HTML, 615

Links Web browser, 17

Linode, 630

liquid layouts, 427

list-style-image properties, 87

unordered lists, 80

list-style-position properties, unordered lists, 80

list-style-position property, 87

list-style property, 87

list-style-type property, 87

listings

15.1 (Using <div> Tags to Create Sections for

Positioning), 424-425

15.2 (Style Sheet for Page Layout), 427

15.3 (Style Sheet for Colors and Fonts), 429

15.4 (Moving One Section Before Another),

431

15.5 (Float-Based Layouts in CSS), 433-434

15.6 (Randomly Organized Style Sheet), 437

15.7 (Better-Organized Style Sheet), 438

lists, 72-73

customizing numbered lists, 75-77

HTML tags for, 72-73

numbered lists, 73

importance of, 582

nesting lists, 82-84

ordered lists, 73

customizing, 74-77

other uses for, 84-85

unordered lists, 78

customizing, 78-80

Little Brother, 10-11

loading external data, AJAX, 521-525

local pages, linking (pathnames), 95-98

location object (JavaScript), 491

log files, 645

accessing, 644

ptg16476052

mm unit (CSS) 725

logical style tags, 122-123

<abbr> tags. See <abbr> tags

<cite> tags. See <cite> tags

<code> tags. See <code> tags

<dfn> tags. See <dfn> tags

 tag, 122

<kbd> tags. See <kbd> tags

<samp> tags. See <samp> tags

 tags. See tags

<var> tags. See <var> tags

loop attribute

<audio> tag, 414

<video> tag, 397

loops

for loops, 484

iterations, 484

JavaScript, 484-486

PHP, 662

controlling loop execution, 665-666

for, 664

foreach, 663

while and do...while loops, 664-665

while loops, 485-486

Lynx, 17

M

magic target names, 557

mailto URLs, 19, 116

management, file management, 626

managing SEO

canonical links, 698

robots.txt file, 697-698

sitemaps, 696

manipulating classes, jQuery, 508-511

<map> tag, 230-231

name attribute, 230

Mapedit program, 228

margins, CSS box model, 177-182

marketing. See advertising websites

markup languages. See HTML tags

maxlength attribute (<input> tag), 325, 333

measurement units (CSS), 166

length units, 166-167

percentage units, 168

measurements, 440

media attribute, <link> tag, 161

media queries, 450

breakpoints, 452-453

media features, 451-452

media types, 450-451

style sheets, building, 454

media types (Internet), 402

menus

creating

with <option> tag, 342-345

with <select> tag, 342-345

drop-down menus, creating, 306-311

link menus, creating, 101-103

meter gauges, 357-359

styling, 359

method attribute (<form> tag), 315-316, 321,

366

get method, 315-316

get/post methods, 321-322, 640

post method, 315-316

methods

DOM, accessing, 549

getElementsByClassName(), 500

Microsoft ASP.NET, 683

Microsoft Bing, 691

Microsoft Internet Explorer, 15

middle alignment (images), 207

minus sign (-), subtraction operator, 479

mm unit (CSS), 167

ptg16476052

726 mobile web

mobile web

compressing CSS and JavaScript, 594-595

CSS, placing in external files, 593-594

designing for, 446

features

click to call, 596

geolocation, 595

SMS, 597

hardware considerations, 592

HTML5, head element, 594

images

reducing size of, 591-592

when to use, 591

JavaScript, placing in external files, 593-594

links, 587

definition links, 590

explicit navigation links, 589

“here” syndrome, 588

implicit navigation links, 589

in body text, 588

link menus, 587

tangent links, 590

to home page, 597

when to use, 589-591

page layout

consistency, 586

grouping related information, 586

headings, 585

page signatures, 598-599

RWD

best practices, 467-468

images, making responsive, 460-463

layout, adjusting, 454, 457-459

media queries, 450-454

planning for, 449-450

tables, making responsive, 463, 466-467

videos, making responsive, 460-463

splitting topics across pages, 598

standards compliance, 577

progressive enhancement, 577-578

validating web pages, 578-579

tapping, 587

videos

Flash, avoiding, 593

setting to play automatically, 592

viewport settings, 447-449

writing for, 581

avoiding browser-specific, 584

clarity, 582-583

emphasis, 584

page organization, 582

spell checking, 584-585

Modernizr, 381

modulus operator (%), 479

movies, embedding (SWFObject), 406-408

moving files between Web servers, 633

carriage returns/line feeds, 634

filename restrictions, 633

FTP (File Transfer Protocol), 634-635

Moving One Section Before Another listing

(15.4), 431

MozBar, 699

Mozilla Firefox, 16

multimedia

videos

Flash, avoiding, 593

setting to play automatically, 592

web pages, scaling down, 622

multiple attribute, <option> tag, 344

multiplication operator (*), 479

myString function (JavaScript), 486

myths about SEO, 695

N

name attribute

<a> tags and, 105

<iframe> tag, 564, 571

ptg16476052

operators 727

<map> tag, 230

<object> tag, 403

named entities, 140-141

names

domain names, registering, 629

filenames, 632-633

case sensitivity, 634

restrictions, 633

naming colors, 170

naming conventions, CSS classes and IDs, 195

nav element, 377-378

navigating DOM, node properties, 545

navigation (forms)

access keys, 352

adding to web pages, 608-609

defaults, changing, 351-352

drop-down menus, creating, 306-311

navigation icons, 215-218

navigation links, 583

nested tags, 59

nesting

absolutely positioned elements, 295-297

lists, 82-84

tables, 285

tags, 95

Network Solutions website, 629

networks

intranet, 24

intranets, 9

newspapers, online newspapers, 11-12

node properties, DOM (navigating), 545

nofollow attribute, 113

non-anonymous FTP, URLs, 115

noshade attributes, <hr> tags, 133

Notepad, 26

Notepad++, 27

number input type, 329

numbered entities, 141

numbered lists

customizing, 75-77

HTML tags for, 73

O

object-oriented PHP, 682

<object> tag, 416

alternative content, 403-404

attributes, 403

embedding Flash multimedia, 400-404

<video> tag, using with, 412-413

objects

JavaScript, 489-490

this form, 532

 tags, 73, 86

type attributes and, 74-75

<option> tag, 366

menus, creating, 342-345

multiple attribute, 344

selected attribute, 344

Ogg Theora container format, 393

Ogg Theora versus H.264 codec, 417

onblur event handler, 492

onchange event handler, 492

onclick event handler, 492

onfocus event handler, 493

online books, 10

online newspapers, 11-12

onload event handler, 493

onmouseover event handler, 493

onselect event handler, 493

onsubmit event handler, 493, 529

onunload event handler, 493

opening HTML tags, 45

Opera, 17

operators

JavaScript, 479-480

string concatenation operators, 659

ptg16476052

728 ordered lists

ordered lists, 73

customizing, 74-77

numbered lists, 73

organization, websites, 582

organizing

HTML documents, 630

default index files, 632-633

directories, 632

filenames, 632-633

Web server setup, 630-631

style sheets, 436-437

overoptimization, 693

P

<p> tag, 416

padding, CSS box model, 177-182

padding (table cells), 256

page descriptions, creating, 147

page layout

absolute positioning, 426-428

colors/fonts, 429-430

floated columns, 433-434

HTML and, 43

HTML sections, 423-426

in HTML5, 373-374

articles, 378

asides, 379

footers, 376

headers, 376

implicit sectioning, 380

navigation, 377-378

polyfill elements, 381

sections, 375, 379

for mobile web

consistent layout, 586

grouping related information, 586

headings, 585

redesigning layout, 432-433

reordering sections, 431

style sheet, 426-430

tables, 422-423

page-level styles (CSS), creating, 160

pages. See Web pages

pages (HTML)

creating, 46-47

viewing results, 47-48

text formatting, 49

paragraphs, HTML tags for, 64-65

<param> tag, 417

parameters, JavaScript, 486

parent target name, 557

parsing HTML documents, 43

password attribute, <input> tag, 367

password controls, creating with <input> tag,

332-333

password protection, 627

passwords, creating for forms, 314-319

pathnames

absolute pathnames, 96-97

local pages, linking, 95-98

relative pathnames, 96-97

paying for search placement, 700

pc unit (CSS), 167

percent sign (%)

in email addresses, 116

modulus operator, 479

percentage units (CSS), 168

percentages, measurements, 440

permissions, checking, 636

Photoshop, 198

PHP, 651-654, 684-685

arrays, 656-659

associative arrays, 657

indexes, 656

built-in functions, 666

comments, 654-655

ptg16476052

processing forms (PHP) 729

conditional operators, 662

conditional statements, 661

cookies, 683

database connectivity, 682

expanding knowledge of, 681

file uploads, 683

files

deploying, 685

editing, 685

includes, 678-680

choosing includes, 680-681

loops, 662

controlling execution, 665-666

for, 664

foreach, 663

while and do…while loops, 664-665

object-oriented PHP, 682

processing forms, 668-669

parameters with multiple values, 669-670

presenting forms, 674-676

validating forms, 670-672

regular expressions, 682

running on your computer, 653-654

scripts, browser dependence, 685

sending email, 682

sessions, 683

strings, 659-661

user-defined functions, 666-667

returning values, 667-668

variables, 655-656

PHP and MySQL Web Development (i), 681

PHP interpreter, 653

physical style tags, 124

Pilgrim, Mark, 621

pixels, measurements, 440

planning for RWD, 449-450

planning pages, 144. See also content

plug-inspage attribute (<embed> tag), 405

plus sign (+), addition operator, 479

PNG (Portable Network Graphics), 199

polyfill elements, 381

polygons, imagemap coordinates, 229

popup() function, 568-570

pop-up windows

JavaScript, opening with, 567-571

setting up, 569

port numbers, URLs, 111

Portable Network Graphics (PNG), 199

positioning (CSS), 288

absolute positioning, 293

dynamic overlays, 297-300

nesting elements, 295-297

properties, 293-295

fixed positioning, 301-303

relative positioning, 288-293

static positioning, 288

top/left/bottom/right properties, 288

z-index property (stacking), 303-306

post method (<form> tag), 315-316

post method (forms), 321-322, 640

pound signs (#)

CSS and, 164

numbered entities, 141

<pre> tags, 128-130, 154

preformatted text, 128-130

preload attribute (<audio> tag), 414

preload attribute (<video> tag), 397

preloading video files, 592

preparing images for Web, 198

presenting forms, PHP, 674-676

preventing cross-site scripting, 669

processing forms (PHP), 668-669

parameters with multiple values, 669-670

presenting forms, 674-676

validating forms, 670-672

ptg16476052

730 programs

programs

form validation script, 528

code listing, 534-535

onsubmit event handler, 529

this form object, 532

Mapedit, 228

progress bars, 354-356

progressive enhancement, web pages, 577-578

promoting websites. See advertising websites

proofreading, 584-585

properties

for absolute positioning, 293-295

CSS (cascading style sheets)

background-position, 222

color, 172

font-family, 156

font-size, 156

font-style, 156

font-variant, 156

font-weight, 156

text-decoration, 156

list-style, 87

list-style-image, 87

list-style-position, 87

list-style-type, 87

style sheets, retrieving, 507-508

z-index property, 303-305

protocols, FTP (File Transfer Protocol), 634-635

protocols (URLs), 111

pseudo-classes, 190-193

pt unit (CSS), 167

publications, online books, 10

publishing websites

file organization, 630

default index files, 632-633

directories, 632

filenames, 632-633

Web server setup, 630-631

moving files between Web servers, 633

carriage returns/line feeds, 634

case sensitivity, 634

filename restrictions, 633

FTP (File Transfer Protocol), 634-635

Web servers, 626

authentication, 627

choosing, 627-629

file management, 626

file types, 626

media types, 626

security, 627

server-side processing, 627

server-side scripts and forms processing,

626

px unit (CSS), 167

Q

QuickTime, container format, 392

quotation HTML tags. See <blockquote> tag

quotation marks (‘ ’), href attributes, 93

R

radio attribute, <input> tag, 367

radio buttons, creating with <input> tag, 336

Randomly Organized Style Sheet listing (15.6),

437

range input type, 329

ranking algorithms, 690

readonly form controls, creating, 352-353

rectangles, imagemap coordinates, 230

redirecting duplicate content, 698-699

reducing images for mobile web design,

591-592

referrals, 700

Register.com, 629

ptg16476052

samples 731

registering domain names, 628-629

registration form example (form controls),

345-348

registration forms, 13

regular expressions, PHP, 682

rel attribute, 113

<link> tag, 161

relative pathnames, 96

versus absolute pathnames, 97

linking local pages, 95-98

relative positioning (CSS), 288-290, 293

relative units (CSS), 166-167

rem unit (CSS), 167

remote pages, linking to, 98

sample exercise, 99-100

reports, Google Analytics, 647-648

require_once, 680-681

reserved characters (character entities), 141

reserved words, JavaScript, 481

reset attribute, <input> tag, 367

reset buttons, creating with <input> tag, 334

retrieving style sheet properties, JQuery,

507-508

right alignment (images), 210-211

right property (CSS positioning), 288

robots, 689

robots.txt file, 697-698

rows. See also cells

alignment, 279-282

creating, 244-246

grouping, 279-282

tables, 244

rowspan attribute, 284

<td> tag, 267

<th> tag, 267

Ruby on Rails, 684

RWD, 445

best practices, 467-468

history of, 444

images, making responsive, 460-463

importance of, 445

layout, adjusting, 454-459

media queries, 450

breakpoints, 452-453

media features, 451-452

media types, 450-451

style sheets, building, 454

mobile web, viewport settings, 447-449

planning for, 449-450

tables, making responsive, 463, 466-467

videos, making responsive, 460-463

S

Safari (Apple), 17

<samp> tag, 155

as logical style tags, 123

sample script, JQuery, 501-503

samples

creating and formatting pages, 143-144

adding content, 145

adding tables of contents, 146

Bookworm web page code, 151-153

frameworks, 144-145

link menus, 148-149

page descriptions, 147

planning the page, 144

signatures, 150-151

testing results, 153-154

unordered lists, 150

HTML documents, creating, 47, 66-67

linking anchors, 105-109

linking remote pages, 99-100

link menus, creating, 101-103

links, creating, 91-95

tables

creating, 248-251

service specification table, 269-275

ptg16476052

732 Sams Teach Yourself PHP, MySQL, and Apache All in One

Sams Teach Yourself PHP, MySQL, and Apache
All in One, 681

sandbox attribute, 566

sans-serif fonts, 51

scaling images, 219

scannability of Web pages, 582

scanning, 582

school servers, 627

SCP (Secure Copy), 38

screen magnifiers, 613

screen readers, 613

<script> tag, JavaScript, 473-474

scripts

cross-site scripting, preventing, 669

JavaScript

code listing, 534-535

documentation, 495

for loops, 484

form validation, 528-529, 532

if statement, 483

while loops, 485-486

PHP, browser dependence, 685

server-side scripts and forms processing, 626

search engines, 643

adding to web pages, 606

Baidu, 691

Bing, 691

choosing, 649

Google, 690

keywords, 693

placement, paying for, 700

ranking algorithms, 690

robots, 689

Yahoo!, 691

Yandex, 691

Section 508, 612

section element, 375

implicit sectioning, 379-380

Secure Copy (SCP), 38

Secure FTP (SFTP), 38

Secure Socket Layer (SSL), 627

security

authentication, 627

file permissions, checking, 636

forms, 353

sandbox attribute, 566

SSL (Secure Socket Layer), 627

Web servers, 627

<select> tag, 366

menus, creating, 342-345

size attribute, 343

selected attribute, <option> tag, 344

selectors, 189-190

attribute selectors, 193-194

jQuery, 503

pseudo-classes, 190-193

selectors (CSS), 162

classes, 163-164. See also classes (CSS)

contextual selectors, 162-163

IDs, 163-164

self target name, 557

semicolons [;], named entities, 140

sending email, PHP, 682

SEO (search engine optimization), 688

canonical links, 698

cloaking, 695

content, duplicate content, 696

duplicate content, redirecting, 698-699

improving, 694

keywords, 693

myths, 695

need for, 688

paying for links, 700

robots.txt file, 697-698

sitemaps, 696

spiders, 689

tracking your progress, 700

ptg16476052

special effects, web pages 733

SEO-browser.com, 699

serifs, 51

server efficiency, JavaScript, 473

server-side file processing, 627

server-side images, 226

server-side scripts and forms processing, 626

servers. See web servers

servers (web), 24, 626

authentication, 627

choosing, 627

bandwidth limitations, 631

domain parking, 629

ISPs (Internet service providers), 628

personal servers, 629

school servers, 627

Web presence providers, 628-629

work servers, 627

file management, 626

file types, 626

media types, 626

moving files between, 633

carriage returns/line feeds, 634

filename restrictions, 633

FTP (File Transfer Protocol), 634-635

security, 627

server-side file processing, 627

server-side scripts and forms processing, 626

troubleshooting, 636

sessions, PHP, 683

SFTP (Secure FTP), 38

SGML (Standard Generalized Markup Language),

42

shape attribute (<area> tag), 230

shapes, imagemap coordinates

circles, 229

polygons, 229

rectangles, 230

showing elements, JavaScript, 538-546

signatures

creating, 150-151

for mobile web, 598-599

web pages, 602

site indexes, 643

Bing, 691

choosing, 649

Google, 690

Yahoo!, 691

site-wide style sheets, 439

creating, 161-162

sitemaps, 696

sites. See websites

size attribute

<hr> tags, 132

<input> tag, 325, 333

<select> tag, 343

sizes, CSS box model (controlling), 182-185

sizing images, 219-220

slash (/), division operator, 479

<small> tag, 124, 155

smartphones, 576. See also mobile web

SMS, 597

SmugMug.com, 391

social media, 688

advertising website on, 640-642

sound, embedding, 413-416

source code, displaying in Developer Tools, 30

source element, <video> tag, 399-400

<source> tag, 417

spacing

images, 213

table cells, 257-258

span attribute, 284

<colgroup> tag, 276

 tag, 125, 155

special characters, 112, 138. See also character

entities

special effects, web pages, 518-520

ptg16476052

734 spell checking

spell checking, 584-585

spiders, 689

splitting topics across pages, 598

src attribute

<audio> tag, 414

<embed> tag, 405

<iframe> tag, 564, 571

 tag, 201, 237

<script> tag, 474

<video> tag, 397

SSL (Secure Socket Layer), 627

stacking (CSS), 303-306

stand-alone web pages, designing, 583

Standard Generalized Markup Language (SGML),

42

standards, CSS, 195

standards compliance, websites, 578-579

statements

if statement, JavaScript, 482-484

looping statements, 484-486

static positioning (CSS), 288

status codes (HTTP), 645

stopping text wrap, 211-212

string concatenation operators, 659

strings, PHP, 659-661

 tag, 155

as logical style tags, 122

structural elements in HTML5, polyfill scripts,

381

structure

HTML, writing with, 423-425

of web pages, 373-374

structuring HTML, 58

style attribute, alternatives to, 160

style attributes, 51

Style Sheet for Colors and Fonts listing (15.3),

429

Style Sheet for Page Layout listing (15.2), 427

style sheets. See also CSS

building with media queries, 454

creating, 50-51

HTML tags, combining with, 51

laying out, 426-430

properties

background-position, 222

color, 172

retrieving, 507-508

web design

organization, 436-437

site-wide, 439

web designs, 435-436

<style> tag, type attribute, 160

styles

CSS (cascading style sheets)

background-position, 222

color, 172

web pages, JQuery, 505-508

styling meter gauges, 359

<sub> tag, 125, 155

submit attribute, <input> tag, 367

submit buttons, creating with <input> tag,

333-334

images as submit buttons, 337

submit buttons (forms), 317

subtraction operator (-), 479

<sup> tag, 125, 155

SWFObject, 414-416

Flash movies, embedding, 406-408

syntax, JavaScript, 476-490

T

tabindex attribute, 351

<a> tag, 615

<table> tag, 243, 283

align attribute, 263

border attribute, 253-256

ptg16476052

tangent links 735

cellpadding attribute, 256

cellspacing attribute, 257

width attribute, 253

tables, 241-242, 282-283

alignment, 263

cells, 264-265

rows, 279-282

body of, defining, 281

borders, changing, 253-256

captions, 242

creating, 247-251

cells, 242

alignment, 264-265

creating, 244-246

empty cells, 246

padding, 256

spacing, 257-258

spanning multiple rows/columns,

266-269

colors, background colors, 261-262

columns

aligning, 276-279

grouping, 276-279

width of, 259-260

creating, 242

sample exercise, 248-251

<table> tag, 243

footers, 280

headings, 242, 279-280

laying out, 422-423

making responsive, 463, 466-467

nesting, 285

rows

alignment, 279-282

creating, 244-246

grouping, 279-282

sample exercises, service specification table,

269-275

troubleshooting, 285

when to use, 282

tables of content, adding to sample pages, 146

tabs in Developer Tools, 30

tags

brackets, 45

closing, 45

CSS (cascading style sheets), combining with,

51

datalist, 327-328

HTML, 43

<address>, 598

<div>, 425

markup languages, 45

opening, 45

origins, 52

progress, 354-356

tags (HTML)

<a>

accesskey attribute, 615

tabindex attribute, 615

target attribute, 557-562

title attribute, 615

<area>, 230-231

<base>, 562-563, 571

<body>, 172

, clear attribute, 212

<iframe>, 565, 571

, 237

align attribute, 209

alt attribute, 201, 616

height attribute, 219

hspace attribute, 213

src attribute, 201

usemap attribute, 231-232

vspace attribute, 213

width attribute, 219

<map>, 230-231

name attribute, 230

<th>, 614

tangent links, 590

ptg16476052

736 tapping

tapping, 587

target attribute

<a> tag, 557-562

<base> tag, 562, 571

target names, 557

<tbody> tag, 281-283

<td> tag, 244-246, 284

colspan attribute, 267

rowspan attribute, 267

valign attribute, 264

Teach Yourself PHP, MySQL, and Apache All in
One, 681

telephone numbers, validating, 329

terms (glossary lists). See <dt> tags

testing

forms, 368

required fields, forms, 531-533

results, 153-154

text, 583. See also content

aligning images with, 207-209

character formatting, design tips, 583-584

links, 588

proofreading, 584-585

spell checking, 584-585

wrapping around images, 210-212

text attribute

<body> tag, 172

<input> tag, 366

text controls, creating with <input> tag, 325-326

text-decoration properties, 126

CSS, 125, 156

font, 126-127

text editors, 26-27

text formatting, HTML pages, 49

text form controls, 316

text messaging, SMS, 597

text wrapping, stopping, 211-212

<textarea> tag, 366

form controls, 341-342

TextEdit, 26

texttop alignment (images), 207

TextWrangler, 27

<tfoot> tag, 280, 283

<th> tag, 244, 246, 284, 614. See also tables

colspan attribute, 267

rowspan attribute, 267

valign attribute, 264

<thead> tag, 279-280

this (argument), 494

this form object, 532

<thread> tag, 283

title attribute

<a> tag, 615

<link> tag, 161

<title> tag, 60-61

titles, descriptive titles, 583

tools, W3C Validator, 578-580

top alignment (images), 207

top levels, 97

top property

absolute positioning, 293

CSS positioning, 288

top target name, 558

<tr> tag, 244, 246, 284. See also tables

tracking SEO, 700

transcripts, 692

Transmit, 635

troubleshooting

client-side imagemaps, 238

CSS, 195

file access, 636

file display errors, 638

images, 636-637

links, 637

tables, 285

Web server access, 636

websites, 636-638

Tumblr.com, 37

ptg16476052

vh unit (CSS) 737

Twitter, 641

type attribute, 77

button, 338

checkbox, 334

<embed> tag, 405

file, 339

hidden, 338

<input> tag, 316, 325, 333, 366

<link> tag, 161

<object> tag, 403

radio, 336

<style> tag, 160

TypePad.com, 37

U

<u> tag, 124-155

 tags, 72, 86

unordered lists, 78

uniform resource locators (URLs). See URLs

units of measure (CSS), 166

length units, 166-167

percentage units, 168

UNIX, conventions of, 96

unordered lists, 78

creating, 150

customizing, 78-80

unset() function, 657

uploading videos

YouTube, 388-389

URLs, 18-19, 110-113, 117-119

adding to web pages, 606-608

anonymous FTP, 114-115

CSS and, 161

CSS, using URLs, 168

directories, 112

file, 116-117

hostnames, port numbers, 111

HTTP, 113-114

mailto, 116

Mailto URLs, 19

non-anonymous FTP, 115

protocols, 111

special characters, 112

usenap attribute (tag), 231-232

user-defined functions, PHP, 666-667

returning values, 667-668

user preferences, determining when designing

web pages, 610-611

Using <div> Tags to Create Sections for

Positioning listing (15.1), 424-425

UTF-8, 140

V

validating

accessibility, 620

forms, PHP, 670-672

telephone numbers, 329

Web pages, W3C Validator, 578-580

validating forms with JavaScript, 528

code listing, 534-535

onsubmit event handler, 529

this form object, 532

validators, Cynthia Says, 620

valign attribute, 264

value attribute, 77

<input> tag, 317, 326, 334

values

em, 440

forms, manipulating, 511-512

<var> tag, 155

as logical style tags, 123

variables, 667

JavaScript, 480-482

PHP, 655-656

vh unit (CSS), 167

ptg16476052

738 Viddler.com

Viddler.com, 391

video

container formats, 392-393

customizing, YouTube, 389

embedding, 386-391

Flash, 400-404

SWFObject, 406-408

<video> tag, 396-400

Flash, avoiding in mobile web design, 593

H.264 video codec, 392

converting to, 393-396

hosting, 391-395

YouTube, 387-388

making responsive, 460-463

Ogg Theora container format, 393

setting to play automatically, 592

uploading YouTube, 388-389

web pages, embedding, 386-391

video players (Flash), 408

Flowplayer, 410-412

JW Player, 408-410

<video> tag, 417

attributes, 397

embedding video, 396-400

<object> tag, using with, 412-413

source element, 399-400

VideoPress.com, 391

View Source functionalities, 66

viewport settings on mobile devices, 447-449

Vimeo, 386, 390-391, 416-417

visual styles

HTML tags, evolution of, 44

vlink attribute (<body> tag), 172

vspace attribute (tag), 213

W

W3 Validator, 578-580

W3C (World Wide Web Consortium), 20, 621

web, 577

control of, 20

cross-platform compatibility, 9

decentralized nature of, 9-10

dynamic nature of, 10-11

hypertext, 8

interactivity, 12

W3C (World Wide Web Consortium), 20

Web Accessibility Initiative (W3C), 621

Web browsers, 14

Camino, 17

exclusive content development, 14

FTP servers, navigating, 114

Google Chrome, 15

as HTML formatters, 43

Konqueror, 17

Links, 17

Lynx, 17

Microsoft Internet Explorer, 15

Mozilla Firefox, 16

multiple browser usage, advantages of, 15

Opera, 17

Safari, 17

websites, standards compliance, 578-579

web builders, 629

web design

style sheets, 435-436

organization, 436-437

site-wide, 439

Web documents. See Web pages

web hosting, 36

choosing, 627-630

commercial, 628

content-management applications, 36-37

free, 630

setting up, 37-38

web pages

accessibility, 620-621

audio, embedding, 413-416

ptg16476052

Web publishing, text editor 739

colors, naming, 170

content, adding to, 546-550

creating progressive enhancement, 577-578

design, 581

brevity, 582

browser-specific terminology, 584

clarity, 582

consistent layout, 586

emphasis, 583-584

grouping related information, 586

headings, 585

images, 591

organizing for quick scanning, 582

page validation, 578-580

proofreading, 584-585

spell checking, 584-585

splitting topics across pages, 598

stand-alone pages, 583

standards compliance, 578-579

designing

accessibility. See accessibility

determining user preferences, 610-611

emphasis, 619

for first-time users versus regular users,

609

images, 237

navigation, 608-609

search engines, 606

URLs, 606-608

documents, converting to, 601

elements, hiding/showing, 538-546

Flash multimedia, embedding, 406-408

forms, validating with JavaScript, 528-529,

535

frames, 555-556

inline frames, 563-566

magic target names, 557

framesets, 557

<base> tag, 562-563

creating, 560-562

Halloween House example, 202-205

images

adding, 200-205

aligning with text, 207-209

as links, 214-218

background images, 221, 224

bullets, 224-225

GIF (Graphics Interchange Format),

198-199, 238

Halloween House web page example,

203-205

height/width, 219

image etiquette, 237

inline images, 200-201, 205-207

JPEG (Joint Photographic Experts Group),

199, 238

navigation icons, 215-218

PNG (Portable Network Graphics), 199

preparing for Web, 198

scaling, 219

spacing around, 213

wrapping text around, 210-212

links, adding to, 547-548

modifying content, JQuery, 508-518

modifying styles, JQuery, 505-508

multimedia, scaling down, 622

remote pages, 98

signatures, 602

slowly loading, JavaScript, 525

special effects, JQuery, 518-520

structure, 373-374

text formatting, design tips, 583-584

URLs, 110-113

validating, W3 Validator, 578-580

video

embedding, 386-400

hosting, 391-395

Web presence providers, 628-629

Web publishing, text editor, 26-27

ptg16476052

740 web servers

web servers, 18, 24, 626

authentication, 627

choosing, 627

bandwidth limitations, 631

domain parking, 629

ISPs (Internet service providers), 628

personal servers, 629

school servers, 627

Web presence providers, 628-629

work servers, 627

directories, index files, 632

file management, 626

file types, 626

FTP servers, navigating, 114

log files, 644

media types, 626

moving files between, 633

carriage returns/line feeds, 634

filename restrictions, 633

FTP (File Transfer Protocol), 634-635

security, 627

server-side file processing, 627

server-side scripts and forms processing, 626

troubleshooting, 636

weblogs, 630

WebM container format, 393

webmasters, 630

Webmaster Tools, 696

websites, 10, 24, 40

accessibility, 620-622

Adobe, 198

advertising, 638

brochures, 644

business cards, 644

links from other sites, 639

social media, 640-642

anatomy of, 24-26

Bing, 691

Building Accessible Websites, 621

change to websites, 24

content, wireframing, 33-36

content ideas, 33

CuteFTP, 635

design, 581

brevity, 582

browser-specific terminology, 584

clarity, 582

consistent layout, 586

emphasis, 583-584

grouping related information, 586

headings, 585

images, 591

organizing for quick scanning, 582

page validation, 578-580

proofreading, 584-585

spell checking, 584-585

splitting topics across pages, 598

stand-alone pages, 583

standards compliance, 578-579

Dive Into Accessibility, 621

external files, 622

Fetch, 635

forms, 13, 528-529, 535

FTP Explorer, 635

Google, 690

hits, 638

home pages, 24

initial visit, 25

IrfanView, 198

links, 587

log files, 645

Network Solutions, 629

page validation, W3 Validator, 578-580

publishing

file organization, 630-633

moving files between Web servers,

633-635

ptg16476052

XML (eXtensible Markup Language) 741

server-side scripts and forms processing,

626

Web servers, 626-629

search engines, 643

Bing, 691

Google, 690

Yahoo!, 691

Section 508, 612

Transmit, 635

troubleshooting, 636

file access, 636

file display errors, 638

images, 636-637

links, 637

server access, 636

URLs, 110-113

W3C Validator, 579

W3C Web Accessibility Initiative, 621

web hosting, 36

content-management applications, 36-37

setting up, 37-38

web pages, 24

Yahoo!, 691

WHATWG, 53

when to use images, 591

when to use links, 589-591

while and do…while loops, PHP, 664-665

while loops, 486

JavaScript, 485-486

width

of images, 219

table columns, 259-260

width attributes

<embed> tag, 405

<iframe> tag, 564, 571

 tag, 219

<hr> tags, 132

<object> tag, 403

<table> tag, 253

<video> tag, 397

width property for absolute positioning, 294-295

window object (JavaScript), 491

windows, linked windows, 557

<base> tag, 562-563

creating, 560-562

Windows, Notepad, 26

wireframing, 40

WordPress.com, 37

work servers, 627

World Wide Web. See web

World Wide Web Consortium (W3C), 20

wrapping text around images, 210-212

writeParagraph function (JavaScript), 486

writing

accessible HTML, 613

images, 616

links, 615

articles, guest posting, 639-640

for mobile web, 581

avoiding browser-specific, 584

clarity, 582-583

emphasis, 584

page organization, 582

spell checking, 584-585

WYSIWYG (What You See Is What You Get)

versus HTML, 42

X

XAMPP, 653

XHTML, 52

<hr> tags, converting to XHTML, 131

XHTML 1.0, 58. See also HTML tags

 tags, converting, 134

XML (eXtensible Markup Language), 52

ptg16476052

742 Yahoo!

Y

Yahoo!, 691

Yandex, 691

yellow_page window, 558-562

YouTube, 386, 416-417

customizing videos on, 389

embedding video, 386-391

hosting videos on, 387-388

uploading videos to, 388-389

Z

z-index property (CSS), 303-306

ptg16476052

This page intentionally left blank

ptg16476052

Addison-Wesley • Cisco Press • IBM Press • Microsoft Press • Pearson IT Certif ication • Prentice Hall • Que • Sams • VMware Press

REGISTER YOUR PRODUCT at informit.com/register
Access Additional Benefits and SAVE 35% on Your Next Purchase

• Download available product updates.

• Access bonus material when applicable.

• Receive exclusive offers on new editions and related products.
(Just check the box to hear from us when setting up your account.)

• Get a coupon for 35% for your next purchase, valid for 30 days. Your code will
be available in your InformIT cart. (You will also find it in the Manage Codes
section of your account page.)

Registration benefits vary by product. Benefits will be listed on your account page
under Registered Products.

InformIT.com–The Trusted Technology Learning Source
InformIT is the online home of information technology brands at Pearson, the world’s foremost
education company. At InformIT.com you can

• Shop our books, eBooks, software, and video training.
• Take advantage of our special offers and promotions (informit.com/promotions).
• Sign up for special offers and content newsletters (informit.com/newsletters).
• Read free articles and blogs by information technology experts.
• Access thousands of free chapters and video lessons.

Connect with InformIT–Visit informit.com/community
Learn about InformIT community events and programs.

http://www.informit.com/register
http://www.informit.com/promotions
http://www.informit.com/newsletters
http://www.informit.com/community
http://www.informit.com
http://www.InformIT.com
http://www.InformIT.com

ptg16476052

You love our titles and you love to
share them with your colleagues and friends...why
not earn some $$ doing it!

If you have a website, blog, or even a Facebook
page, you can start earning money by putting
InformIT links on your page.

Whenever a visitor clicks on these links and makes
a purchase on informit.com, you earn commissions*
on all sales!

Every sale you bring to our site will earn you a
commission. All you have to do is post the links to
the titles you want, as many as you want, and we’ll
take care of the rest.

ApplY And get stArted!
It’s quick and easy to apply.
To learn more go to:
http://www.informit.com/affiliates/
*Valid for all books, eBooks and video sales at www.informit.com

Join the

InformIt
AffiliAte teAm!

	Cover
	Table of Contents
	Introduction
	PART I: Getting Started
	LESSON 1: What Is Web Publishing?
	Thinking Like a Web Publisher
	The Web Is a Hypertext Information System
	The Web Is Cross-Platform
	The Web Is Distributed
	The Web Is Dynamic
	The Web Is Interactive

	Web Browsers
	What the Browser Does
	An Overview of Some Popular Browsers

	Web Servers
	Uniform Resource Locators
	Defining Web Publishing Broadly
	Summary
	Workshop
	Q&A
	Quiz
	Quiz Answers
	Exercises

	LESSON 2: Getting Your Tools in Order
	Anatomy of a Website
	Setting Up Your Computer for Web Publishing
	Text Editors
	A Web Browser

	Using the Google Chrome Developer Tools
	What Do You Want to Do on the Web?
	Wireframing Your Website
	What’s Wireframing, and Why Do I Need It?
	Hints for Wireframing

	Web Hosting
	Using a Content-Management Application
	Setting Up Your Own Web Hosting

	Summary
	Workshop
	Q&A
	Quiz
	Quiz Answers
	Exercises

	LESSON 3: Introducing HTML and CSS
	What HTML Is (And What It Isn’t)
	HTML Describes the Structure of a Page
	HTML Does Not Describe Page Layout
	Why It Works This Way
	How Markup Works

	What HTML Files Look Like
	Text Formatting and HTML

	HTML Attributes
	Using the style Attribute
	Including Styles in Tags

	A Short History of HTML Standards
	XHTML

	The Current and Evolving Standard: HTML5
	Summary
	Workshop
	Q&A
	Quiz
	Quiz Answers
	Exercises

	PART II: Creating Web Pages
	LESSON 4: Learning the Basics of HTML
	Structuring Your HTML
	The <html> Tag
	The <head> Tag
	The <body> Tag

	The Title
	Headings
	Paragraphs
	Comments
	Summary
	Workshop
	Q&A
	Quiz
	Quiz Answers
	Exercises

	LESSON 5: Organizing Information with Lists
	Lists: An Overview
	Numbered Lists
	Customizing Ordered Lists

	Unordered Lists
	Customizing Unordered Lists

	Definition Lists
	Nesting Lists
	Other Uses for Lists
	Summary
	Workshop
	Q&A
	Quiz
	Quiz Answers
	Exercises

	LESSON 6: Working with Links
	Creating Links
	The Link Tag: <a>

	Linking Local Pages Using Relative and Absolute Pathnames
	Absolute Pathnames
	Should You Use Relative or Absolute Pathnames?

	Links to Other Documents on the Web
	Linking to Specific Places Within Documents
	Creating Links and Anchors
	The name Attribute of the <a> Tag
	Linking to Elements in the Same Document

	Anatomy of a URL
	Parts of URLs
	Special Characters in URLs
	The rel Attribute

	Kinds of URLs
	HTTP
	Anonymous FTP
	Non-Anonymous FTP
	Mailto
	File

	Summary
	Workshop
	Q&A
	Quiz
	Quiz Answers
	Exercises

	PART III: Doing More with HTML and CSS
	LESSON 7: Formatting Text with HTML and CSS
	Character-Level Elements
	Semantic HTML Tags
	Changes to Physical Style Tags in HTML5

	Character Formatting Using CSS
	The Text Decoration Property
	Font Properties

	Preformatted Text
	Horizontal Rules (or Thematic Breaks)
	Attributes of the <hr> Tag

	Line Break
	Addresses
	Quotations
	Special Characters
	Character Encoding
	Character Entities for Special Characters
	Character Entities for Reserved Characters

	Fonts and Font Sizes
	Summary
	Workshop
	Q&A
	Quiz
	Quiz Answers
	Exercises

	LESSON 8: Using CSS to Style a Site
	Including Style Sheets in a Page
	Creating Page-Level Styles
	Creating Sitewide Style Sheets

	Selectors
	Contextual Selectors
	Classes and IDs
	What Cascading Means

	Units of Measure
	Specifying Colors

	Editing Styles with Developer Tools
	Using Color
	Links
	The Box Model
	Borders
	Margins and Padding
	Controlling Size and Element Display
	Float

	More Selectors
	Pseudo-Classes
	Attribute Selectors

	The <body> Tag
	Summary
	Workshop
	Q&A
	Quiz
	Quiz Answers
	Exercises

	LESSON 9: Using Images on Your Web Pages
	Images on the Web
	Image Formats
	GIF
	JPEG
	PNG
	SVG

	Inline Images in HTML: The Tag
	Adding Alternative Text to Images

	Images and Text
	Text and Image Alignment
	Wrapping Text Next to Images
	Adjusting the Space Around Images

	Images and Links
	Other Neat Tricks with Images
	Image Dimensions and Scaling

	Image Backgrounds
	Using Images as Bullets
	What Is an Imagemap?
	Getting an Image
	Determining Your Coordinates
	The <map> and <area> Tags
	The usemap Attribute

	Image Etiquette
	Summary
	Workshop
	Q&A
	Quiz
	Quiz Answers
	Exercises

	LESSON 10: Building Tables
	Creating Tables
	Table Parts
	The <table> Element
	Summarizing the Table
	Rows and Cells
	Empty Cells
	Captions

	Sizing Tables, Borders, and Cells
	Setting Table Widths
	Changing Table Borders
	Cell Padding
	Cell Spacing
	Column Widths

	Table and Cell Color
	Aligning Your Table Content
	Table Alignment
	Cell and Caption Alignment

	Spanning Multiple Rows or Columns
	More Advanced Table Enhancements
	Grouping and Aligning Columns
	Grouping and Aligning Rows

	How Tables Are Used
	Summary
	Workshop
	Q&A
	Quiz
	Quiz Answers
	Exercises

	LESSON 11: Using CSS to Position Elements on the Page
	Positioning Schemes
	Relative Positioning

	Absolute Positioning
	Positioning Properties
	Positioning Properties and Height and Width
	Nesting Absolutely Positioned Elements
	Dynamic Overlays

	Fixed Positioning
	Controlling Stacking
	Creating Drop-Down Menus
	Summary
	Workshop
	Q&A
	Quiz
	Quiz Answers
	Exercises

	LESSON 12: Designing Forms
	Understanding Form and Function
	Using the <form> Tag
	Using the <label> Tag
	Creating Form Controls with the <input> Tag
	Creating Text Controls
	Adding Options to Text Fields with datalist
	Using the New HTML5 Controls
	Creating Password Controls
	Creating Submit Buttons
	Creating Reset Buttons
	Creating Check Box Controls
	Creating Radio Buttons
	Using Images as Submit Buttons
	Creating Generic Buttons
	Hidden Form Fields
	The File Upload Control

	Using Other Form Controls
	Using the button Element
	Creating Large Text-Entry Fields with textarea
	Creating Menus with select and option

	Grouping Controls with fieldset and legend
	Changing the Default Form Navigation
	Using Access Keys
	Creating disabled and readonly Controls

	Displaying Updates with progress and meter
	Applying Cascading Style Sheet Properties to Form Elements
	Planning Your Forms
	Summary
	Workshop
	Q&A
	Quiz
	Quiz Answers
	Exercises

	LESSON 13: Structuring a Page with HTML5
	A Short History of HTML Page Layout
	Laying Out a Page in HTML5
	HTML5 Structural Tags
	Sections
	Header
	Footer
	Navigation
	Articles
	Asides

	The Page Outline
	Elements with Their Own Outlines

	Using HTML5 Structural Elements
	Polyfill Scripts

	Summary
	Workshop
	Q&A
	Quiz
	Quiz Answers
	Exercise

	LESSON 14: Integrating Multimedia: Video and Sound
	Embedding Video the Simple Way
	Advantages and Disadvantages of Hosting Videos on External Sites
	Uploading Videos to YouTube
	Customizing the Video Player
	Other Services

	Hosting Your Own Video
	Video and Container Formats
	Converting Video to H.264

	Embedding Video Using <video>
	The <video> Tag
	Using the <source> Element

	Embedding Flash Using the <object> Tag
	Alternative Content for the <object> Tag

	The <embed> Tag
	Embedding Flash Movies Using SWFObject
	Flash Video Players
	JW Player
	Using Flowplayer
	Using the <object> Tag with the <video> Tag

	Embedding Audio in Your Pages
	The <audio> Tag
	Flash Audio Players

	Summary
	Workshop
	Q&A
	Quiz
	Quiz Answers
	Exercises

	LESSON 15: Advanced CSS: Page Layout in CSS
	Laying Out the Page
	The Problems with Layout Tables
	Writing HTML with Structure
	Writing a Layout Style Sheet
	The Floated Columns Layout Technique

	The Role of CSS in Web Design
	Style Sheet Organization
	Site-Wide Style Sheets

	Summary
	Workshop
	Q&A
	Quiz
	Quiz Answers
	Exercises

	LESSON 16: Using Responsive Web Design
	What Is Responsive Web Design?
	History of Responsive Web Design
	Why RWD Is Important
	RWD Is More Than Just Changing the Number of Columns

	Mobile Devices Should Come First
	Mobile First
	Affecting the Viewport

	Planning a Responsive Website
	Check Your Analytics
	Try the Site with Your Own Phone
	Decide What Content Is Critical

	Writing Media Queries
	Media Types
	Media Features
	Breakpoints
	Building a Style Sheet with Media Queries

	Understanding the Mechanics of RWD
	Adjusting the Layout
	Making Images and Videos Responsive
	Building Responsive Tables

	Responsive Web Design Best Practices
	Give Everyone the Best Experience
	Use the Best Breakpoints for Your Website, Not for Devices
	Be Flexible But Think Small

	Summary
	Workshop
	Q&A
	Quiz
	Quiz Answers
	Exercises

	PART IV: Using JavaScript and JQuery
	LESSON 17: Introducing JavaScript
	Why Would You Want to Use JavaScript?
	Ease of Use
	Improving Performance
	Integration with the Browser

	The <script> Tag
	The Structure of a JavaScript Script
	The src Attribute

	JavaScript and the Chrome Development Tools
	The JavaScript Language
	Operators and Expressions
	Variables
	Control Structures
	Functions
	Data Types
	Arrays
	Objects

	The JavaScript Environment
	Events
	Summary
	Workshop
	Q&A
	Quiz
	Quiz Answers
	Exercises

	LESSON 18: Using jQuery
	What Are JavaScript Libraries?
	Getting Started with jQuery
	Your First jQuery Script
	Selecting Elements from the Document
	Binding Events
	Modifying Styles on the Page
	Hiding and Showing Elements
	Retrieving and Changing Style Sheet Properties

	Modifying Content on the Page
	Manipulating Classes
	Manipulating Form Values
	Manipulating Attributes Directly
	Adding and Removing Content

	Special Effects
	AJAX and jQuery
	Using AJAX to Load External Data

	Summary
	Workshop
	Q&A
	Quiz
	Quiz Answers
	Exercises

	LESSON 19: Using JavaScript in Your Pages
	Validating Forms with JavaScript
	Hiding and Showing Content
	The Same Code with jQuery

	Adding New Content to a Page
	Summary
	Workshop
	Q&A
	Quiz
	Quiz Answers
	Exercises

	LESSON 20: Working with Frames and Linked Windows
	What Are Frames?
	Why Were Frames Removed from HTML5?
	What About Iframes?

	Working with Linked Windows
	Browsing Context Keywords
	The <base> Tag

	Inline Frames
	Opening Linked Windows with JavaScript
	Summary
	Workshop
	Q&A
	Quiz
	Quiz Answers
	Exercises

	PART V: Designing for Everyone
	LESSON 21: Designing for the Mobile Web
	People Browse Differently on Mobile Phones
	Standards Compliance and the Mobile Web
	Progressive Enhancement
	Validating Your Pages

	Writing for the Mobile Web
	Write Clearly and Be Brief
	Organize Your Pages for Quick Scanning
	Make Each Page Stand on Its Own
	Be Careful with Emphasis
	Don’t Use Browser-Specific Terminology
	Spell Check and Proofread Your Pages

	Design and Page Layout
	Use Headings as Headings
	Group Related Information Visually
	Use a Consistent Layout

	Using Links
	Mobile Users Tap; They Don’t Click
	Use Link Menus with Descriptive Text
	Use Links in Text
	Avoid the “Here” Syndrome
	To Link or Not to Link

	Using Images and Multimedia
	Don’t Overuse Images
	Keep Images Small
	Watch Out for Assumptions About Your Visitors’ Hardware
	Don’t Make Your Videos Annoying
	Avoid Flash

	Making the Most of CSS and JavaScript
	Put Your CSS and JavaScript in External Files
	Location Matters
	Shrink Your CSS and JavaScript

	Take Advantage of Mobile Features
	Geolocation
	Make Phone Calls
	SMS

	Other Good Habits and Hints for Mobile Web Design
	Link Back to Home
	Don’t Split Topics Across Pages
	Sign Your Pages
	One Final Secret to Mobile Web Design

	Summary
	Workshop
	Q&A
	Quiz
	Quiz Answers
	Exercises

	LESSON 22: Designing for User Experience
	Considering User Experience Level
	Add a Search Engine
	Use Concise, Sensible URLs
	Navigation Provides Context
	Are Your Users Tourists or Regulars?

	Determining User Preferences
	What Is Accessibility?
	Common Myths Regarding Accessibility
	Section 508

	Alternative Browsers
	Writing Accessible HTML
	Tables
	Links
	Images and Multimedia

	Designing for Accessibility
	Using Color
	Fonts
	Take Advantage of All HTML Tags
	Frames
	Forms

	Validating Your Sites for Accessibility
	Summary
	Workshop
	Q&A
	Quiz
	Quiz Answers
	Exercises

	PART VI: Going Live on the Web
	LESSON 23: How to Publish Your Site
	What Does a Web Server Do?
	Other Things Web Servers Do

	How to Find Web Hosting
	Using a Web Server Provided by Your School or Work
	Using a Commercial Web Host
	Commercial Web Builders
	Setting Up Your Own Server
	Free Hosting

	Organizing Your HTML Files for Publishing
	Questions to Ask Your Webmaster
	Keeping Your Files Organized with Directories
	Having a Default Index File and Correct Filenames

	Publishing Your Files
	Moving Files Between Systems

	Troubleshooting
	I Can’t Access the Server
	I Can’t Access Files
	I Can’t Access Images
	My Links Don’t Work
	My Files Are Being Displayed Incorrectly

	Promoting Your Web Pages
	Getting Links from Other Sites
	Content Marketing Through Guest Posting
	Promoting Your Site Through Social Media
	Creating a Facebook Page for Your Site
	Site Indexes and Search Engines
	Business Cards, Letterhead, Brochures, and Advertisements

	Finding Out Who’s Viewing Your Web Pages
	Log Files
	Google Analytics

	Summary
	Workshop
	Q&A
	Quiz
	Quiz Answers
	Exercises

	LESSON 24: Taking Advantage of the Server
	How PHP Works
	Getting PHP to Run on Your Computer
	The PHP Language
	Comments
	Variables
	Arrays
	Strings
	Conditional Statements
	PHP Conditional Operators

	Loops
	foreach Loops
	for Loops
	while and do...while Loops
	Controlling Loop Execution

	Built-In Functions
	User-Defined Functions
	Returning Values

	Processing Forms
	Handling Parameters with Multiple Values
	Presenting the Form

	Using PHP Includes
	Choosing Which Include Function to Use

	Expanding Your Knowledge of PHP
	Database Connectivity
	Regular Expressions
	Sending Mail
	Object-Oriented PHP
	Cookies and Sessions
	File Uploads

	Other Application Platforms
	Microsoft ASP.NET
	Java EE
	Ruby on Rails

	Summary
	Workshop
	Q&A
	Quiz
	Quiz Answers
	Exercises

	LESSON 25: Search Engines and SEO
	What Is SEO?
	Why You Need SEO
	What About Social Media?
	You Can Do Your Own SEO
	Why Don’t Search Engines Find Sites Without SEO?

	How Search Engines Work
	Google
	Microsoft Bing
	Yahoo!
	Don’t Forget International Searches

	SEO Techniques
	Is Your Site “Friendly?”
	Using Keywords and Keyword Research
	Creating Content for Customers Is the Best SEO
	Myths and Facts About SEO

	Tools for Tracking and Managing SEO
	Using Sitemaps
	The robots.txt File
	Understanding Canonical Links
	Redirecting Duplicate Content
	Checking How Your Site Looks to Search Engines
	Tracking Your SEO Efforts

	Paying for Links
	Summary
	Workshop
	Q&A
	Quiz
	Quiz Answers
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

