ATV L5

Quick Markup
Reference

Wallace Jackson

ApPress’

http://www.allitebooks.org

HTML5S Quick
Markup Reference

Wallace Jackson

Apress’

M.al litebooks. cogl

http://www.allitebooks.org

HTMLS5 Quick Markup Reference

Wallace Jackson
Lompoc, California, USA

ISBN-13 (pbk): 978-1-4302-6535-1 ISBN-13 (electronic): 978-1-4302-6536-8
DOI 10.1007/978-1-4302-6536-8

Library of Congress Control Number: 2016944265
Copyright © 2016 by Wallace Jackson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions

of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr

Lead Editor: Steve Anglin

Technical Reviewer: Chad Darby

Editorial Board: Steve Anglin, Pramila Balan, Louise Corrigan, Jonathan Gennick,
Robert Hutchinson, Celestin Suresh John, James Markham, Susan McDermott,
Matthew Moodie, Jeffrey Pepper, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Mark Powers

Copy Editor: Kim Burton-Weisman

Compositor: SPi Global

Indexer: SPi Global

Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit waw. springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales-eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are available
to readers at www.apress.com/9781430265351. For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/. Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

M.al litebooks. cogl

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/9781430265351
http://www.apress.com/source-code/
http://www.allitebooks.org

This book is dedicated to affordable software developers and all the
members of the open source software community who work so diligently
to make professional application development software, as well as audio,
2D, video, and 3D content development tools, freely available to new media
application developers, so that we can utilize these tools to achieve our
creative dreams and our financial goals.

I also dedicate this book to my superstar father, Parker Jackson,
my family, my life-long friends, my content production facility’s neighbors,
and my production team partners, for all their help, assistance,
and those relaxing beautiful sunset BBQs underneath pink
clouds on Point Conception.

M.al litebooks. cogl

http://www.allitebooks.org

M.al litebooks. cogl

http://www.allitebooks.org

Contents at a Glance

About the AUthorccccsmismmmismn s ———— xvii
About the Technical ReVIEWErcuccerssssssssssssssssssssssssssssssssnsassnsnss Xix
Acknowledgments.......ccccuuseemmmmsssssnmmssssssnnsssssssnssssssssnsssssssnsssssssnnnnes XXi
Introduction.........ccccsnimmnnmmns s —————— xxiii

Chapter 1: HTML5 History: The Past and Future of HTML Markup .. 1
Chapter 2: HTML5 Documents: Top-Level Document Definition...... 5
Chapter 3: HTML5 Search Engine Optimization: Title and Meta ... 13
Chapter 4: HTML5 Referencing: Using External Links

AN FAVICONS.....covmsamsamsanssssasssnsssssnssnssnssnssnssnssnssnssassassnssassassassassasnansass 19
Chapter 5: HTML5 Processing: Using CSS and JavaScript 25
Chapter 6: HTML5 Parameters: Using Global Tag Attributes 35
Chapter 7: HTML5 Navigation: Using an Anchor Tag for

Ly)T] g (- 45
Chapter 8: HTML5 Multimedia: Utilizing New Media Assets......... 55
Chapter 9: HTML5 Organization: Document Content Hierarchy....... 67
Chapter 10: HTML5 Semantics: Defining Semantic Documents ... 73
Chapter 11: HTML5 Formatting: Publish Text-Based Content....... 87
Chapter 12: HTML5 Phrase Tags: Using Non-Standard Text 103
Chapter 13: HTMLS5 Lists: Numbered, Bulleted, and

Definition ListS.....c.ccossemmsummssanmssnsssansssassssnsssassssasssansssansssnsssansssans 111

CONTENTS AT A GLANCE

Chapter 14: HTML5 Tables: Constructing Data in a
Tabular Format ... 119

Chapter 15: HTML5 Forms: Creating Forms Using HTML5 Tags.. 131
Chapter 16: HTML5 Position: Document Layout and

Text SPaNNING ..ccccevvisemrmisnrmsssnnmsssnssssssssssssssssssnssssansessansessnnnessnnnes 149
Chapter 17: HTML5 Scripting: Using JavaScript and

<SCHIPt> TaQ 1vvvssenersmsssnnnnnmsssansnnssssannnssssssnnnsssssannnsssssnnnnsssssnnnnnssssn 159
Chapter 18: HTML5 Styling: Using the <style> Tag to

ACCESS CSS3....ummrrssmnmmssannmsssnsmssansssssnnsssssnsssssnssssansessansessannensnnnes 165
Chapter 19: HTML5 Real-Time Rendering: Using the

<CANVAS>S TAY wevrrrrsssssnnnnnnnnssssssssssnnnnnnnsnssssssssnnnnnnnensssssssnnnnnnnnnnnsss 171
Chapter 20: HTML5 Plug-ins: Using the <object>, <embed>,
<applet>, and <param> TagS: ...ccccrmmmssnnsnmmssssnsnmsssssnsnsssssansnnsssss 179
Chapter 21: HTML5 Frames: Using the <iframe> Tag........ccunuuees 189

Chapter 22: HTML5 Ruby Annotations: Using the <ruby> Tag.... 195
Chapter 23: HTML 5.1 Tags: Using Menu and

Dialog Design Elements.........ccccuseemmmmssssssnmmssssssnnsssssssnssssssssnsnssss 199

Appendix A: NetBeans: Set up an HTML5 Integrated

Development IDEccccunemmmmmmssssmnmmssssssnmsssssssnsssssssssssssssnnnsnssss 205

Appendix B: Eclipse: Set up an HTML5 Integrated

Development IDEccccunemmmmmmssnssnmmssssssnmsssssssnssssssssnsnssssnnnsnssss 215

Appendix C: IntelliJ: Set up an HTML5S Integrated

Development IDEccccunemmmmmmssnssnmmssssssnmsssssssnssssssssnsnssssnnnsnssss 229

Appendix D: Multimedia: Set up Your New Media Content

Development.......ccccuiseemmmmmsssssnmmssssssnmsssssssnssssssnsnssssssnnnsssssnnnnsnssss 245
INA@X.1ueeriinssnnnnnnssssnnnnsssssnnnnnssssnnnnsssssnnnnsssssnnnnnssssnnnnnssssnnnnnssssnnnnnnssnn 253

vi

Contents

About the AUthOrc.ccccemmismmmmssnmmsnsnmssnsmsssssssas s sasssssnnnns xvii
About the Technical REVIEWETcccccssssmssssnsssssnsssssnsssssnsssssnnssssns Xix
Acknowledgments........cucssssmssassssnsssssssssssssnsssasssssssssnsssnssssnsssansnsans XXi
Introduction.........ccccnnemmmnsemmmsssnnmssssnmsssssmssnssssas s xxiii
Chapter 1: HTMLS History: The Past and Future of HTML Markup..... 1
The History of HTML: Reveal Codes Tagscccvvrrerrersessessessessssssssessennns 1
What Is HTML5? A Definition and Syntaxccccvevvrvrnersnsersensensensennns 2
More Syntax for HTML5: Using Comments..........cccocvveeniennscsesenesnnennes 3
The Future of HTML: HTML5 0S and HTML 5.1 ... 3
HTML5 Quick Reference: Tag Categories..........coeurveresessesessessesessessssennes 4
SUMMANY ...t s 4
Chapter 2: HTML5 Documents: Top-Level Document Definition...... 5
The HTML5 Document Definition Tags.........coveerrersessessessessessessessessessennns 5
The !DOCTYPE Tag: Defines HTML Document TYPe........ccccvvereererenneserensssssesessnsenes 5

The HTML Tag: Defining the Root of the Documentcccoerevrcevrcccnccceccceee, 9

The HEAD Tag: Configuring the HTML5 Document...........ccccovvienvnniencnnnnsesesesnnsens 9

The BODY Tag: Containing the Document Content.............ccccovrerennnnsesenennsenennns 10
SUMMANY ...ttt sn e snesr s n e sr s sr s sn s snesn s sr e sn e snesnsnrnnnenans 11

vii

CONTENTS

Chapter 3: HTML5 Search Engine Optimization: Title and Meta ... 13

The HTML5 HEAD Tags Important for SEQ.........c.ccccvvrvrvrcrccrcerccrennne 13
The TITLE Tag: Defining the HTML5 Document Title.........oococennnsencnenneseneneneenene 13
The META Tag: Defining Document Characteristics...........ococeerrerercrernnencsereneneens 14
The BASE Tag: Configuring a URL for a Document..............ccccvreiencnennncscnenencneens 17

SUMMAIY ...t s n s sre s 18

Chapter 4: HTML5 Referencing: Using External Links
=11 10 [11) —— |)

An HTML HEAD Tag to Link External Filescccoevrrrerressessessessensennens 19
The LINK Relationship: Types of External ASSetsc.ccvvvvvnvnnnsnsnsnsnsensensenns 20
The LINK Tag: The Optional Link Tag Parameters.........c.covmenennmnnessnsssssesesssssneens 23

SUMMANY ...t 24

Chapter 5: HTML5 Processing: Using CSS and JavaScript 25

HTML HEAD Tags to Add Tag Processing.........cccceeeeerserrersessnssessessessenns 25
The SCRIPT Tag: Using JavaScript Programmingcccccceceemrnnencnesennescsesesenenens 26
The NOSCRIPT Tag Advises Users: No JS SUpport.........ccovvvrvnnsnncnnsenenenenennns 30
Using SCRIPT Tags Internally: JavaScript Codingccccooeerienniennscnnsenssenesenens 31
The STYLE Tag: Styling HTML5 Markup Using CSS........ccooovimnnnennrneneneseneeens 32

SUMMANY ...t se e s n s nn e sre s 33

Chapter 6: HTML5 Parameters: Using Global Tag Attributes 35

HTML Global Parameters Across All Tagscccvrerrerrerrersessessessessessenas 35
HTML5 Global Parameters: Advanced Attributes ... 36
Pre-HTML5 Global Parameters: Legacy Attributes..........coccoerniescnenniescsenesesesenens 40

SUMMANY ...t sr e e n s n s e re e 43

viii

CONTENTS

Chapter 7: HTML5 Navigation: Using an Anchor

Tag for Hypertext.......cccoummmmmmmmmmmmmmmmmsmssssssnmmmemmssssssssssnssessssssssnnns 45
HTML Anchor Tag Attributes: All VErsions............cccvvrvvversessessessensensenns 45
Anchor Tag HTML5 Parameters: Hypertext’s HREFcccoooirnenrncnenscrencrneenes 46
Anchor Tag Non-HTML5 Parameters: Legacy Codecocuverurrererererrnsesesessnenenens 51
SUMMAIY ...t er s r e n e s n s 53
Chapter 8: HTML5 Multimedia: Utilizing New Media Assets......... 55
HTML5 New Media Support: Nine GENresccoceevrereressesnesesesensennes 55
Digital Imagery: Using the Tag.......ccocvrrnnnninnnenn s sssseesessenns 56
Digital Audio: Using the <audio> Tagccoeeverernnnnnnnnnne s sessee e ssssssssssessanns 58
Digital Video: Using the <video> Tag.......ccvivrerennnennnnnnns s ssssesssesessssssssessenns 60
Digital lllustration: Using the <SVG> Tag.......ccocvvvrnnnnnnnnnnssie s ses e sessssssssessenns 62
Interactive 3D: Using a <canvas> Tag and WEDGLcccceceverererererenerenserennenns 64
Digital Painting: Digital Painting using JavaScript..........cccoevrerrrererereresseresserensenns 64
Visual Effects: Creating VFX using JavaScriptccooevvvevvrevevenesensevensessesereesenens 65
Web Speech: Speech Synthesis and Recognition..........cccceveevvvrevnievencenenerenennn, 65
SUMMANY ...t sr s sresr s r s sr s r s sn s sn e sn s sn e sr e nnesnenrnnnnnans 65
Chapter 9: HTML5 Organization: Document Content Hierarchy....... 67
HTML5 Content Organization Tags..........coevrrrerserressessessessessesssssssssssennns 67
Heading Level Tags: Segmenting Content Logicallycccoeevenrriicncnencicncnennn 68
Horizontal Rule Tag: Dividing Text Content Visuallycccovoeoennrciencnencicscnenes 69
The Address Tag: Specifying Address Information.............ccocovreeeennnescncnnsscncnens 70
SUMMAIY ...t n s e n s 4
Chapter 10: HTML5 Semantics: Defining Semantic Documents..... 73
HTML5 Semantic Content Organization...........c.ccocevvrvrversersensensensensennes 73
HTMLS5 Sectional Tags: Segment Content Logically..........ccocvrrererererreseserersesesesenens 75
HTML5 Content Type Semantic Definition Tagsc.covvrerernerenenesesesesessssesesenenns 78

ix

CONTENTS

HTML5 Semantic New Media Figure Definition Tags.........ccovvvercnernnencnenenescsenens 82
HTML5 Semantic Document Detail Definition Tagscccocerrvercnernnencsenenescsenens 84
SUMMAIY ...t s r s r e 86
Chapter 11: HTML5 Formatting: Publish Text-Based Content....... 87
Create HTML5 Text Content for Publishing...........cccecvvennnercnenscsnesennenns 87
HTML5 Text Formatting: Paragraph, Pre, and AbDrccccevnvencnennnencsesesssenenens 88
HTMLS5 Text Styling: Bold, Italics, and Underling.........c.coouoeeeeernsescrerenssesenesssenenenns 92
HTML5 Break Tags: Line Break and Word Break...........c.cucceeeerenenesesenssesesessssesenenns 93
HTMLS5 Text Size: Small, Superscript, and SUDSCFPLcccvrniercnrnniesererseseeees 95
HTMLS5 Text Direction: The Bidirectional TEXt TagS......c.cvovrerererenresereresseseseressesesenenns 96
HTML5 Text Quotes: Quote and Block QUOLE Tags........cccoeeeereemereeeereeeeeenenens 97
HTML5 Text Citations: T CITE TAGccceeerreneserersssenmsssesesesesesssessssssssessesssssnssenes 98
HTML5 Special Circumstances Text: Other Tags..........cocoererererenenerenereneseneseseeens 99
R3] 11 4P 101
Chapter 12: HTML5 Phrase Tags: Using Non-Standard Text 103
HTML5 Phrase Tags: Special Text Content.........ccccceeevvrvrvrienserieriennen, 103
HTML5 Phrase Styling: Highlighting Important Text..........ccccovvvvrevnvenncerenverennenens 104
HTML5 Phrase Input Tags: Keyboard and Teletypecccocvvvvninvncncnsenccnsenienne, 106
HTML5 Phrase Coding Tags: Code and Variables...........ccovrerererereriererseresserensenens 107
SUMMANY ... s 109
Chapter 13: HTML5S Lists: Numbered, Bulleted,
and Definition Lists........cccuccmvssmmsmmmmssmmsssmmsssmmssmss s s ssssssnsnsnns 111
HTMLS5 List Tags: Ordered Informationcococvveeeriensnenesensesnnnennnns 111
HTMLS5 Stylized Lists: Ordered and Bulleted LiStScccovvrererernsesesesensesesenensanes 112
HTML5 Description Lists: Lists of Terms with Data...........ccccocerrerererenssesesenennenes 115

RS UT 11 4P 117

CONTENTS

Chapter 14: HTML5 Tables: Constructing Data in a

Tabular Format ... s s s 119
HTMLS5 Table Tags: Tabular Information..........ccccvvvvvvrvrcrcncessencennn, 119
Top Level HTML Table Creation: Table and Caption...........cccoceevevenernnsesesessnsenennns 120
HTML5 Table Content Definition: TR, TH, and TD........cccecvevrrrerverrcererereerereeenes 123
Complex Table Definition: THEAD, TBODY, TFOOTccccvererererererrereeereenereenennes 125
Table Column Definition: COL and COLGROUPccoeerererererererererererererereserenens 128
SUMMAIY ... s 129
Chapter 15: HTML5 Forms: Creating Forms Using HTML5 Tags.... 131
HTMLS5 Form Tags: Interactive Information.........cccocvevercrcrcessencnnnene 131
Basic HTML Form Creation: Form, Label, and Input..........cccoovrvevnvenncrnrerneene, 132
HTML Form Content Groups: TextArea or FieldSet.........ccoevvvvrrevrrennrereeneneenennns 139
HTML Form Option Selection: Select and Option.........ccccevvveverrevrrenerereerereenennns 142
The BUTTON Tag: Creating User Interface Buttonscccceeevvvevvvereseresesenennens 144
New HTML5 Form Tags: DataList, KeyGen, Output.........cccccovveverrerrenenenensereene, 146
SUMMANY ...ttt sr s sn s r s sn s sn s sn e nn e n s nr e n e nn e n s 148
Chapter 16: HTML5 Position: Document Layout and
Text SPanNNiNgcccccvrrrmsssssssssssnmnmmesssssssssssss s ssnns 149
Defining Text Spans: Using the SPAN Tag........cccocvvrrrrerrersersensensennens 149
Use of id, vS. Name, VS. ClasS........ccccvirermrieersmnsnesnssssssesssssssssssssessenns 151
Identifiers: Use an id for JavaScript and Fragments.........ccccocevvvevrvernrcneenenennennns 151
Classes: Use CLASS to Classify CSS3 SeleCtors........couvrrerrererieresserserersssessesenees 152
Names: Naming Forms, Controls and Ul Elementscccocvvvrvevrrerereneenenennennns 152
Define Document Areas: Using a DIV Tagccccveeveercercersessessessensennens 152
The DISPLAY Property: Block, In-Line, and NONEccccervevriernccnnncnenenenenens 153
The Division or DIV Tag: Core Properties...........coueeeerernenesesessenesesessesssesesssssenens 153
Seamless Image Stitching: Using DIVS with CSS3.........ccoriinnneienrreeerenes 154
SUMMAIY ...t ae s e s ne s ne e 157

xi

CONTENTS

Chapter 17: HTML5 Scripting: Using JavaScript and

23] 11 - T 159
Using JavaScript: The HTML5 SCRIPT Tag.......cccevverrerrerrersersersessessensens 159
JavaScript Execution: Parsing Synchronization...........cocuoueeeevnnenesesenssesesensnennns 160
JavaScript Formats: MIME Type and Character Set...........ccooevvevnvevnvcnnscnccenens 161
In-Line JavaScript Code: Using the SCRIPT Tag.........ccceverrrererreresersenereressereneneas 161
Hiding JavaScript: To Do or Not t0 D0?........cccerveerccrrrerecerereeeinns 163
HTML Comments: Use <!-- and --> to Hide JS Codecocvrrmreninsrnerescnsnsnns 164
XHTML Comments: Use <!-- and --> to Hide JS Codec.ourmmrerensrrrrescnsnsrrenens 164
SUMMANY ... e 164
Chapter 18: HTML5S Styling: Using the <style>
Tag to Access CSS3ccccmmmmsmmmmmmsssnsnmmsssssnsnmsssssnnssssssnnsssssssnnnnns 165
Cascading Style Sheets: A History of CSS...........coovnnnnnnnincinnns 165
Using CSS3 with HTML5: The STYLE Tag.......ccooveveeerernseresenesnnennens 166
CSS3 Formats: MIME or Media Type Designation...........ccccveeververersersesesesenesensenes 167
The SCOPED Parameter: Tag-Local HTML5 Styling........ccceeverererenierenserensersnneneens 167
In-Line CSS3 Code: Using the STYLE Parametercccocvvevvrererersenenerensesensenens 168
SUMMANY ... e 169
Chapter 19: HTML5 Real-Time Rendering: Using the
27111 o T T 17
Using the CANVAS Tag: New for HTMLScccvvrvrverrerrerceres e 171
Declaring an HTML5 Canvas: Using Parameters...........cocoovevererrnnnesesesensesessnensanes 172
Drawing on a Canvas: 2D Methods and Properties.......c.cooueuererernnesesesessesesesensanes 173
Interactive 3D: WebGL or WebGL 2 3D Rendering.........covveeerereseneseresensenesssensanes 177
SUMMANY ... s sn s r e nn e nnas 178

xii

CONTENTS

Chapter 20: HTML5 Plug-ins: Using the <object>, <embed>,

<applet>, and <param> TagScuucemrmmsssnnnnmmssssnnnssssssnnssssssnnsnssss 179
Plug-in Applications: The EMBED Tag........c.cceevverrerrerrensessersessessessenens 179
Java or JavaFX Applets: The APPLET Tagccccueerrersessessenssssesssnssnnenns 181
Embed Objects in HTML5: The OBJECT Tag.......ccoccveereereersersessessensennens 183
Declaring Parameters: Using the PARAM Tag........c.ccoeevverrerrersensensennens 185
To Embed or Not to Embed: Tag Selection...........ccccvceveericrrserecnnncnn 186
1T 187
Chapter 21: HTML5 Frames: Using the <iframe> Tag........cceurius 189
HTML Frame Legacy: The FRAMESET and FRAME Tagsccceeunee. 189
HTML5 Frames: Using the IFRAME Tag.........ccccvverrerrersersessensessessensenens 190
Using Object or iFrame: More DiSCUSSION...........ccoceereeeseresenserenenaens 192
SUMMANY ...t sn s sn e sr s sn e sn s sn e sn e n e nr e n e nn e n s 193
Chapter 22: HTML5 Ruby Annotations: Using the <ruby> Tag.... 195
Ruby Annotations: The RUBY Tag.........ccccvrerrerrersensessessesssssessessessessennens 195
Advanced Ruby Annotations: Ruby Containerscccccoevrvevniennscnnncnesessennnens 197
SUMMAIY ...t ae s e s ne s ne e 198
Chapter 23: HTML 5.1 Tags: Using Menu and Dialog Design
Elements..........ccouvmmmmmmmmmmmmmssmmsssss s s s s 199
HTMLS Application Menu: The MENU Tag.......cccoveerrernersessessnnsssssnsennens 199
Populating HTML5 Menus: Using @a MENUITEM Tagccoevvvnnnnnnnsnensensessensennas 200
Creating Sub-Menus: Nested MENU Tag USAgE.........coceererereereereresesseesssnesnnens 202
HTMLS5 Application Dialog: A Dialog Tagcccceeereersersessessessessessessennnns 203
1111 1P S 203

xiii

CONTENTS

Appendix A: NetBeans: Set up an HTML5 Integrated

Development IDEccoccemmsmmmmssmmsssmsssmmsssmssssmssssnsssnsassnsssnnnnsnnes 205
Create a HTML Development Workstation...........cccceveevververiensennieniennns 205
Development Workstations: Hardware Foundation.............cccoeevvevrvenerccnenscnennene. 206
HTML5 Development Workstation: Open SOftware.........coouceveeeeevnsenesesensesesssensanes 207
Java 8: Installing the Foundation for NetBeans 8.1ccceevevrcevnscnnscnnsennens 207
NetBeans 8.1: Download the NetBeans HTML IDE.............ccconnnnnnnnnncnnnennnnes 213
SUMMANY ... s sn s r e nn e nnas 214
Appendix B: Eclipse: Set up an HTML5 Integrated
Development IDEcccoiumssmnmmmmmssnssnmsssssssnssssssnsnssssssnsnssssssnsnnsnsss 215
Set up an HTML Development Workstation............cccccverercercencenenne 215
Development Workstations: Hardware Foundation.............coecvveinvcnnicnnicnenicnna, 216
HTML5 Development Workstation: Open Software..........cccccovvervevnvennicnnsenenienna, 217
Java 8: Installing the Foundation for Eclipse Mars..........ccccocerrvercnennnescnenencncnens 217
Eclipse 4.5: Installing the Eclipse Mars HTML IDE...........ccccccoovvnnivniennccnnscnenennns 223
SUMMANY ... s ne s r s renn e nnas 228

Appendix C: IntelliJ: Set up an HTML5 Integrated
Development IDE ... 229

Set up an HTML Development Workstation...........c.ccccoeeerierencsesencnes 229
Development Workstations: Hardware Foundation............c.ccocvvnvnvncnsnsensenienne, 230
HTML Development Workstation: Open SOffWare...........ccocvveveerereverierenseressesensenens 231
Java 8: Installing the Foundation for IntelliJ IDEAc.coorvrvnvnvninsensensenienens 231
IntelliJ IDEA: Download the Intellid IDEA for HTML.......cccovninninnnnnnnnnnsins 237

SUMMANY ... e 244

Xiv

CONTENTS

Appendix D: Multimedia: Set up Your New Media Content
Development........ooceemmmmmmmmmmmssnsneees 249

Set up a New Media Content Workstation...........cccevevierverieeneriennenns 245
New Media Content Production: Hardware is Key!.......ccccocevrrnenererensnesesennnnenes 246
New Media Content Development: Open SOUICEccovrvererererereresessssesesessnsens 247
GIMP 2.8: Digital Image Editing and Compositing.........cccceeeererenrerereresseseseressesenens 247
Blender: 3D Modeling, Rendering, and Animation...........c.ceccevrnenesenenssesesenensenes 247
Inkscape: Digital lllustration and Digital Painting.........c.coceeeeerernrenererenssesesesennenes 248
Audacity: Digital Audio Editing and Special EffeCtS.........ccccevmerereresssesesessnsenenens 249
Visual Effects: BlackMagic Design Fusion 8.0 VFXccccevmerenrnsnesesessnenenens 249
Digital Video Editing: EditShare Lightworks 12.6..........ccccceeeeerrneneresenssesesessnnenes 250
Office Productivity Suite: Apache 0pen0ffice 4.1.2......ccovcevrrrcererernesenesesnnenes 251

SUMMAIY ...t re s ne e nn s 252

1T . ; &

XV

About the Author

Wallace Jackson has been writing for several leading multimedia publications about
production for the media content development industry, after contributing an article
about advanced computer processing architectures for the centerfold (a removable “mini
issue” insert) of the original issue of AV Video Multimedia Producer magazine, distributed
at the SIGGRAPH trade show.

Wallace has written for a number of popular publications, regarding his work in
interactive 3D and new media advertising campaign design including 3D Artist magazine,
Desktop Publisher Journal, CrossMedia, Kiosk, AV Video Multimedia Producer, and Digital
Signage magazine, as well as many other publications.

Wallace Jackson has authored more than twenty Apress book titles, including
several titles in the ever popular Apress Pro Android series, Java and JavaFX game engine
development titles, digital image compositing titles, digital audio editing titles, digital
video editing titles, digital illustration titles, VEX special effects titles, digital painting
titles, Android 6 new media content production titles, and now JSON and HTMLS5 titles.

In the current book covering HTML5 markup Wallace focuses on the tags, or
elements, which comprise the HTML5 and HTML 5.1 standard, and uses them to
demonstrate HTML5 content production as well as HTMLS5 application and document
design fundamentals, to beginners who want to become savvy regarding HTML5
workflows and how to pull new media content production assets into HTML5.

Wallace is currently the CEO of MindTaffy Design, the new media advertising agency
which specializes in new media content production and digital campaign design and
development, located by La Purisima State Park, in Northern Santa Barbara County, on
the Point Conception Peninsula, halfway between their clientele in Silicon Valley to the
North, and Hollywood, The OC, West Los Angeles, and San Diego to the South.

Mind Taffy Design has created open-source, technology-based (HTMLS5, JavaScript,
Java 9, JavaFX 9, and Android 6.0) digital new media i3D content deliverables for more
than a quarter century, since January of 1991.

The company’s clients consist of a significant number of international brand
manufacturers, including IBM, Sony, Tyco, Samsung, Dell, Epson, Nokia, TEAC, Sun
Microsystems (Oracle), Micron, SGI, KDS USA, EIZO, CTX International, KFC, Nanao
USA, Techmedia, EZC, and Mitsubishi Electronics, among others.

Wallace received his undergraduate degree in business economics from the
University of California at Los Angeles (UCLA) and his graduate degrees in MIS/IT,
business information systems design and implementation from the University of Southern
California (USC).

Wallace also received post-graduate degrees from USC in entrepreneurship and
marketing strategy and completed the USC Graduate Entrepreneurship Program. Wallace
earned his degrees while at USC’s nighttime Marshall School of Business MBA Program,
which allowed him to work full-time as a COBOL and RPG-II programmer.

xvii

ABOUT THE AUTHOR

You can visit Wallace’s blog at www.wallacejackson.com or you can view his
multimedia production content at www.iTVset.com or www.MindTaffy.com. You could
also follow Wallace Jackson on Twitter at @wallacejackson, or connect with him on
LinkedIn at www.LinkedIn.com/in/wallacejackson.

xviii

http://www.wallacejackson.com/
http://www.itvset.com/
http://www.mindtaffy.com/
http://www.linkedin.com/in/wallacejackson

About the Technical

Reviewer

Chad (“Shod”) Darby is an author, instructor, and
speaker in the Java development world. As a recognized
authority on Java applications and architectures, he has
presented technical sessions at software development
conferences worldwide (in the United States, UK, India,
Russia, and Australia). In his fifteen years as a
professional software architect, he’s had the
opportunity to work for Blue Cross/Blue Shield, Merck,
Boeing, Red Hat, and a handful of start-up companies.

Chad is a contributing author to several Java books,
including Professional Java E-Commerce (Wrox Press),
Beginning Java Networking (Wrox Press), and XML and
Web Services Unleashed (Sams Publishing). Chad has
Java certifications from Sun Microsystems and IBM.
He holds a BS in computer science from Carnegie
Mellon University.

You can visit Chdd’s blog at www. luv2code. com to

view his free video tutorials on Java. You can also follow him on Twitter at @darbyluvs2code.

Xix

http://www.luv2code.com/#_blank

Acknowledgments

I'would like to acknowledge all my fantastic editors, and their support staff at Apress, who
worked those long hours and toiled diligently on the book, to make this the preeminent
HTML5 Quick Markup Reference manual currently available in the marketplace.

I would like to thank the following people:

Steve Anglin, for his work as the acquisitions editor for the book, and for recruiting
me to write development titles at Apress, covering widely popular open source content-
development platforms (Android, Java, JavaFX, HTML5, CSS3, JS, JSON, etc.).

Matthew Moodie, for his work as development editor on the book, and for his
experience and guidance during the process of making the DVE Fundamentals book one
of those fantastic digital video editing, compositing and special effects titles.

Mark Powers, for his work as the coordinating editor for this book, and for his
constant diligence in making sure that I either hit my chapter delivery deadlines or far
surpassed them.

Chad Darby for his work as the technical reviewer on this book and for making sure
that I didn’t make technical mistakes.

xxi

Introduction

HTML5 Quick Markup Reference is intended for the HTML5 content developer. As HTML5
now powers not only web browsers, but also, smartphones, iTV Sets, gaming consoles,
tablets, smart watches, notebooks, laptops, e-books, and more. This book is for digital
artisans, digital videographers, multimedia producers, digital illustrators, HTML5 OS or
application developers, HTML5 website developers, all social media campaign developers,
HTML5 game producers, HTMLS5 effect compositors, user interface design architects, user
experience designer architects, and anyone else interested in generating the superior-
quality HTML5 content experience that the public is looking for.

The book covers HTML5 and new HTML5.1 concepts, elements, editing, new
media assets, publishing, programming, styling and real-time rendering. This equates to
creating the most advanced multimedia-capable HTML5 content applications, including
genres including digital images, digital audio, digital video, digital illustration or scalable
vector graphics (SVG), Interactive 3D, or WebGL and WebGL 2, as well as Web 3.0
(Semantic Web Search).

Each chapter builds upon the knowledge learned in the previous chapter. Thus,
later chapters in the book have readers creating more advanced HTML5 content using
canvas, objects, applets, templates, ruby, or iframes. There are also appendices covering
how to download, and set-up, open source HTML5 content production integrated
development environments (or IDEs), using the leading NetBeans, Eclipse, and Intelli]
software packages. I also cover how to download, and install, leading new media content
development software packages (all free) in Appendix D.

In Chapter 1, you look at the history of HTMLS5, the future of HTML5, and the topics
covered in the book.

In Chapter 2, you look at the HTML5 tags used for your top-level document
definition, as we start at the top, or HEAD, of your HTML document, and work
downwards, in this title.

In Chapter 3 you look at those HTML5 elements that greatly affect search engine
optimization, or SEO, including your META and TITLE tags. These are contained at the
top, or in the HEAD of a HTML5 document, building on what was learned in Chapter 2.

Chapters 4 covers referencing external assets from an HTML5 document or
application using the LINK element. You look at how to “externalize” your CSS3 and
JavaScript assets, as a data footprint optimization technique.

Chapter 5 explores the SCRIPT (JavaScript) and STYLE (cascading style sheet) tags,
in the HEAD of the HTML5 document. JavaScript and CSS3 are discussed in detail.

Chapter 6 introduces the concept of global attributes, or parameters, allowed for use
by every tag (element) across HTMLS5.

Chapter 7 covers “hypertext,” which differentiates HTMLS5, and look at document
navigation using an ANCHOR tag or element.

xxiii

http://dx.doi.org/10.1007/978-1-4302-6536-8_1
http://dx.doi.org/10.1007/978-1-4302-6536-8_2
http://dx.doi.org/10.1007/978-1-4302-6536-8_3
http://dx.doi.org/10.1007/978-1-4302-6536-8_2
http://dx.doi.org/10.1007/978-1-4302-6536-8_4
http://dx.doi.org/10.1007/978-1-4302-6536-8_5
http://dx.doi.org/10.1007/978-1-4302-6536-8_6
http://dx.doi.org/10.1007/978-1-4302-6536-8_7

INTRODUCTION

Chapter 8 delves into using new media assets with HTML5, including digital image,
digital video, digital audio, digital illustration, interactive 3D, and similar leading-edge
content.

Chapter 9 covers HTML5 content hierarchy and organization of HTML5 documents,
as well as the effect of this hierarchy for search engine optimization (SEO) strategies and
techniques.

Chapter 10 introduces new semantic content elements, which allow HTML5 to
merge into this new Web 3.0, or “semantic search,” era, which is now upon us. These tags
allow HTMLS5 developers to make their HTML5 content compatible with Web 3.0.

Chapter 11 gets into publishing HTMLS5 text-based content, as well as how to use tags
(elements) to “style” text content. This chapter covers what many consider the “core” tags
in HTMLS5, including paragraph, bold, italics, underline, and more.

Chapter 12 outlines the HTMLS5 phrase tags, which allow you use special types of text
in a semantic context with your HTML5 documents, websites, e-books, iTV shows, games,
and applications.

Chapter 13 takes a look at HTMLS5 elements which allow you to create bulleted,
numbered and other ordered lists of data or information in your HTML5 documents.
These tags are also “core” tags in HTML and can be used for user interface design as well.

Chapter 14 covers another popular topic for HTML5 content developers, specifically,
tables, and these many table related elements which are supported in HTMLS5 for tabular
information designs.

Chapter 15 delves into interactive HTML5 form design, and the many complexities
involved with client-side form markup and how to talk to these, using server-side forms
processing languages and databases, which store the information culled using these forms.

Chapter 16 explores the positioning of content for HTML5, using the division and
span elements, in combination with CSS3.

Chapter 17 covers scripting in HTML5 in greater detail by using the JavaScript
programming language in combination with a SCRIPT element in both the HEAD and the
BODY of HTML5 documents.

Chapter 18 looks at CSS styles in HTMLS5 in greater detail by using cascading style
sheets, in combination with the STYLE element, in both the HEAD and the BODY of your
HTML5 documents.

Chapter 19 gets into HTMLS5 real-time rendering done using the CANVAS element.
This allows developers to create games, interactive 2D or i2D content, as well as
interactive 3D or i3D content, using an advanced real-time drawing surface, also found in
the Android 7 OS, as well as in other advanced operating systems.

Chapter 20 deals with the different ways to “plug in” or embed external content into
HTML5 documents using Java applets or other types of “objects” new in HTMLS5.

Chapter 21 covers frames in HTML, including the iFrame element still supported in
HTMLS5. This element allows you to seamlessly embed content from another website or
application inside of your current HTML5 website or application.

Chapter 22 covers Ruby annotations, small text elements, attached to main text,
usually to indicate the pronunciation or meaning of your corresponding characters.
These annotations are often used in Japanese, Korean, and Chinese publications.

Finally, Chapter 23 explores the new tags introduced in HTML 5.1 to bridge the
HTML5 content markup language from a web browser centric platform over into the new
HTMLS5 operating systems that are running popular consumer electronics devices today,
such as smartphones running Firefox OS and iTVs running Opera OS.

XXiv

http://dx.doi.org/10.1007/978-1-4302-6536-8_8
http://dx.doi.org/10.1007/978-1-4302-6536-8_9
http://dx.doi.org/10.1007/978-1-4302-6536-8_10
http://dx.doi.org/10.1007/978-1-4302-6536-8_11
http://dx.doi.org/10.1007/978-1-4302-6536-8_12
http://dx.doi.org/10.1007/978-1-4302-6536-8_13
http://dx.doi.org/10.1007/978-1-4302-6536-8_14
http://dx.doi.org/10.1007/978-1-4302-6536-8_15
http://dx.doi.org/10.1007/978-1-4302-6536-8_16
http://dx.doi.org/10.1007/978-1-4302-6536-8_17
http://dx.doi.org/10.1007/978-1-4302-6536-8_18
http://dx.doi.org/10.1007/978-1-4302-6536-8_19
http://dx.doi.org/10.1007/978-1-4302-6536-8_20
http://dx.doi.org/10.1007/978-1-4302-6536-8_21
http://dx.doi.org/10.1007/978-1-4302-6536-8_22
http://dx.doi.org/10.1007/978-1-4302-6536-8_23

INTRODUCTION

If you are interested in producing cutting-edge, Web 3.0 compatible, HTML5 content,
and you want to learn all your basic HTML5 element fundamentals, as well as how new
media assets can work together with HTML5 design or publishing elements, this is the
HTML5 Quick Markup Reference manual that you can use to begin your journey to new
experiences with HTML5 content.

Indeed, the HTML5 Quick Markup Reference manual gives you comprehensive
HTMLS5 design element knowledge that transitions you from an HTML5 neophyte to an
HTMLS5 design professional.

XXV

CHAPTER 1

HTMLS History: The Past and
Future of HTML Markup)

Let’s get started by taking a look at the history of markup languages, of which HTML—now
in its fifth revision, called HTML5—is the most popular and widely utilized. This year (2016)
portends the release of another version of HTMLS5 called HTML 5.1, which supports using
HTMLS5 not only for all of the popular browsers, but also for the new HTML5 operating
systems that have recently appeared as competitors to Android, i0S, and Windows
Mobile. The browser manufacturers—specifically Opera, Mozilla Firefox, and Google
Chrome—realized that they could enhance their browser code, add icons, and run HTML5
on top of the Linux kernel and compete with the other consumer electronics operating
systems. Now Firefox OS is on Panasonic iTV Sets and Alcatel-Lucent smartphones, and the
Opera HTMLS5 OS is on Sony Bravia iTV Sets. HTML 5.1 adds features more in line with
HTMLS5 OS requirements.

This book provides a reference to all of those HTMLS5 tags and their parameters,
attributes, characteristics, and configuration options, of which there are currently 120 or
more. I organize these as logically as possible, starting at the top of the HTML5 document
with the metatags for search engine optimization (SEO), styling (CSS), or interactivity
(JavaScript), and logically stratify chapters covering tags used for writing (text), forms,
lists, multimedia, and similar document features and attributes.

Besides the history and future of HTML, this chapter overviews the markup (coding)
format or syntax for tag and parameter usage, so that understand the rest of the book
as we cover the 120 HTMLS5 tags used to implement document features, along with the
parameters they support.

Finally, I outline the rest of the book to show you how I organize and reference the
120 HTML tags in the HTMLS5 specification into logical topical areas, which build on each
other in an orderly fashion.

The History of HTML: Reveal Codes Tags

The first time I ever encountered tags, which are used for formatting text values, was
using a word processing software package called WordPerfect for the Data General
MV-7800XP mini-computer. This software had a handy feature called Reveal Codes that
was accessed using F3, the third function key along the top of the keyboard. Using this

© Wallace Jackson 2016 1
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_1

CHAPTER 1 © HTML5 HISTORY: THE PAST AND FUTURE OF HTML MARKUP

feature showed Control Codes surrounding formatted text values, so the bolded word
Important looked like Important when you pressed the F3 Reveal Codes key.
Pretty cool feature!

A system called ENQUIRE is another HTML predecessor. In 1980, the physicist
Tim Berners-Lee, prototyped ENQUIRE, a system for CERN researchers to utilize and
share text-based documents. In 1989, Berners-Lee proposed an Internet-based hypertext
system. He specified HTML and wrote the browser and server software in late 1990.
Berners-Lee and CERN data systems engineer Robert Cailliau collaborated, however, the
project was never adopted by CERN.

The first publicly available HTML description was a document called “HTML Tags,”
first mentioned on the Internet by Berners-Lee in late 1991. The document described
18 elements. Except for the hyperlink tag, they were all influenced by SGMLguid, an
in-house Standard Generalized Markup Language (SGML) documentation format
developed at CERN. Eleven of the original tag formatting elements remain active in
HTMLS5 today. They are covered in this book.

Berners-Lee also considered HTML's markup tags to be an application of SGML.
HTML was formally defined as being such by an Internet Engineering Task Force (IETF),
in the mid-1993 publication of the first proposal for an HTML specification called
“Hypertext Markup Language (HTML)”. It was released as an Internet specification by
Tim Berners-Lee and Dan Connolly. There was also “SGML Document Type Definitions,”
which define HTML syntax and grammar. Similarly, Dave Raggett’s competing
Internet draft, “HTML+ (Hypertext Markup Format)” released later in 1993, suggested
standardizing already-implemented features, such as tables and fill-able forms.

After these early HTML and HTML+ drafts expired in early 1994, the IETF created
the HTML Working Group, which completed the HTML 2.0 draft in 1995. This was the
first HTML specification, intended as the defacto standard against which all future HTML
implementations should be compared. Further development of HTML under these
auspices of the IETF was stalled, by competing interests.

Since 1996, the HTML specifications have been maintained, with input from
commercial software vendors, by the World Wide Web Consortium, also known as the
W3C. In 2000, HTML4 became an international standard, ISO/IEC 15445:2000. HTML5
was released in Q4 of 2014 and HTML 5.1 is scheduled for release at the end of 2016,
which is why it is covered in this book.

What Is HTML5? A Definition and Syntax

HTML is the markup language that web browsers, and more recently, operating systems,
use to interpret and compose text, images, and other material into visual or audible
content pages for widespread human consumption, as well as by cats who watch HTML5
iTV Sets.

Default characteristics for each item represented using HTML5 markup tags and
their parameters are defined in the browser. These characteristics can be altered or
enhanced by the web page designer’s use of CSS or JavaScript, although these are not
covered in this reference book.

CHAPTER 1 © HTML5 HISTORY: THE PAST AND FUTURE OF HTML MARKUP

HTML markup—as well as other markup languages, such as SGML and XML—uses
tags to surround document components that you wish to enhance. For instance, to make
text bold, you use the HTML tag in the following fashion:

<p>This text will be bold. And this text will not be bold.</p>

The ending tag has a backslash before the letter or letters that define the tag; it tells
the engine (code) that is parsing the document to turn off that feature. A <p> paragraph
tag tells the HTML5 rendering engine that you're going to insert a paragraph (<p>) of text;
a bold () tag tells it when you want to turn bolding on and off.

Tags need to be nested in the proper order, so the bold tag should be contained
(nested) inside of your paragraph tag, as seen in the preceding HTML5 markup example.

The first tag, which turns the feature on, can also have optional parameters, or
features for configuring how you want that tag to behave. Here’s an example of the use of
parameters:

APRESS WEBSITE LINK

This anchor (<a>) tag provides a way to link to the Apress website from within a
different website. The title parameter shows users a title when they mouseover the link.
The http parameter provides the website address, or URL.

More Syntax for HTML5: Using Comments

Since this entire book is essentially an HTML5 markup reference that uses the basic
syntax (markup encoding structure) covered in the previous section, I'll address how
comments are handled in HTML5 now; that way, we can get all of the syntax issues out of
the way along with the history and future of HTML5 content development.

HTML5 comment tags are similar to comment tags for other programming languages
such as Java 9 and JavaScript. They start with the left pointing chevron (<) and then the
exclamation point (!) character, followed by two hyphens (dashes, or minus signs) and
then you insert your comment text, and end with another two dashes, and finally a right-
facing chevron (>) character. Here is an example of a comment in HTML5:

<!-- This is an example of how a comment is constructed in HTML5 -->

Next, let’s take a look at where HTMLS5 is going, so that you know just how valuable
this quick markup reference book is going to be to your new media content deliverable
work process.

The Future of HTML: HTML5 0S and HTML 5.1

HTML was only for use in browsers until Google acquired Android and started to
dominate the consumer electronics device marketplace, which it continues to do today,
with over 100 manufacturers using Android for iTV Sets, smartphones, tablets, e-book
readers, set-top boxes, and even personal computers. Not wanting to be left out of this
lucrative market, HTML5 browser manufacturers morphed their browsers into HTML5

CHAPTER 1 © HTML5 HISTORY: THE PAST AND FUTURE OF HTML MARKUP

OS products by adding features such as icons, and connecting their code and technology
to the latest Linux OS kernel, which powers the popular Android OS and many other
popular operating systems.

HTML is now used not only for production of content for popular browser software,
but also with consumer electronics devices, which means that tags have to be added,
since there is a more advanced usage (operating systems) for HTML5 and future versions
of HTML, such as HTML 5.1.

An impending solution for adding the OS-related features is HTML 5.1, which
continues to add advanced features with new media content development support. OS
user interfaces support the new <dialog> tag. HTML5.1 also supports menuing with
dialogs by using the new <menu> and <menuitem> tags, which we’ll cover in a special
chapter on HTML 5.1.

Next, let’s take a look at how we’re going to cover these tags.

HTML5 Quick Reference: Tag Categories

This book goes over HTMLS5 tags from the highest level of the document in a “top down”
fashion. We start with the tags that define the areas of your HTML5 document and the
tags found at the top of your document, which define SEO (meta tags) and external
documents (such as CSS and JS documents and favicons), which are linked to an HTML5
document from external file resources. The first four chapters cover the tags that define
your HTML5 document’s infrastructure.

Chapters 2 through 9 cover the basics, such as hypertext (linking to other URLSs),
new media assets such as imagery, audio, and video, and the document content
hierarchy and heading levels.

Chapters 10 through 15 cover text-based elements such as paragraphs, lists, forms,
and tables, which contain most of the text-based content found in HTML5 documents
and apps today. These chapters are a bit longer because there are quite a few tags related
to these areas in HTML.

Chapters 16 through 20 cover more advanced topics, such as document positioning,
divisions, document styles, CSS3, document interactivity, JavaScript, document rendering
using the canvas, and document objects.

Chapters 21 through 23 cover infrequently used tags, and HTML 5.1. I also include
several appendices, which cover how to set up an HTML5 IDE, as well as how to obtain
advanced open source new media content development packages, so that you can
develop your entire HTMLS5 projects using a single content development workstation.

Summary

This chapter looked at HTML' history, future, definition, syntax, commenting, and
summarized how this book plans to categorize and reference the 120 tags that currently
comprise the HTML5 and HTML 5.1 feature set.

In the next chapter, you learn about the top-level document tags, such as <html>,
<head>, and <body>, and how they define the overall structure of the HTML5 content
document.

http://dx.doi.org/10.1007/978-1-4302-6536-8_2
http://dx.doi.org/10.1007/978-1-4302-6536-8_9
http://dx.doi.org/10.1007/978-1-4302-6536-8_10
http://dx.doi.org/10.1007/978-1-4302-6536-8_15
http://dx.doi.org/10.1007/978-1-4302-6536-8_16
http://dx.doi.org/10.1007/978-1-4302-6536-8_20
http://dx.doi.org/10.1007/978-1-4302-6536-8_21
http://dx.doi.org/10.1007/978-1-4302-6536-8_23

CHAPTER 2

HTMLS Documents: Top-
Level Document Definition /

In this chapter, let’s continue by taking a look at the topmost level of HTMLS5, the <html>
tag, which defines and contains your HTML5 document, the <head> tag, which defines
how it is configured, and the <body> tag, which handles the contents. These are the
highest-level tags in the HTML5 markup schema. All three tags need to be in your HTML5
document, in the proper order and used for the proper purposes.

L also go over the markup (coding) format and syntax for your HTML5 document
level tags, and their optional parameter. We look at how to define your document type
using a <!DOCTYPE> tag, and at the different types of HTML documents. We focus on
HTMLS5 for this reference book, as you may have noticed, from the title, but I also cover
older incarnations, such as HTML4 and XHTML for context sake.

The HTML5 Document Definition Tags

This chapter explains the tags used to define your HTML document type, document root,
document header, and document content. We start with the first tag, the <!DOCTYPE
doctype> declaration, which defines your document type, and then we progress
downward to the tags that are nested inside of the <html> tag, including the <head> and
<body> tags.

The IDOCTYPE Tag: Defines HTML Document Type

The first tag in the HTML5 document is the <!DOCTYPE html> tag, which has no closing
tag because it simply defines the version of HTMLS5 that you are using for your HTML
document. You would think that it would be <!DOCTYPE html5>, but html actually
means HTML5. Don’t ask me why— I do not know.

© Wallace Jackson 2016 5
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_2

CHAPTER 2 © HTML5 DOCUMENTS: TOP-LEVEL DOCUMENT DEFINITION

The following HTML5 markup structure is an example of a document declaration
and nested top-level tags :

<'DOCTYPE htmly
<html>
<head>
<!-- HTML5 Document Header Attributes (Tags) Go In Here -->
</head>
<body>
<!-- HTML5 Document Body Content (Tags) Will Go In Here -->
</body>
</html>

Older HTML document types, such as HTML4 or XHTML 1.1, are declared with
either “strict” or “transitional” document types. HTML5 has done away with the
document type differences; therefore, it is much simpler. Let’s take a quick look at
XHTML and HTMLA4 next, in case you have to write HTML for legacy (old) systems and
clients running older operating systems and browsers.

The XHTML Document Types: XHTML 1.0

XHTML, or Extensible HTML, is an older and stricter type of HTML document definition
that is based on XML. XHTML is the XML implementation of HTML. It is stricter because
tags must be opened, closed, and nested in an orderly fashion so that the parser can
correctly interpret them. The XHTML document type also requires the <\DOCTYPE>
tag, whereas the HTML5 document type does not, so some HTML5 documents simply
start with the <html> tag instead of the <!DOCTYPE html><html> tag sequence. All of
the major HTML5 browsers correctly parse XHTML document types; however, you want
to use HTML5 because of the superset of features and tags that are provided in it (as I'll
outline in this book). Since XHTML is still used in a wide range of document content
and applications, I'll cover it in this section so that you know how to declare XHTML
document types, if you wish.

If you are using the older XHTML document type for some reason, you declare the
document type as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN
http://www.w3org/TR/xhtml1/dtd/xhtml1-transitional.dtd">
<html>
<head>
<!-- XHTML Document Header Attributes (Tags) Go In Here -->
</head>
<body>
<!-- XHTML Document Body Content (Tags) Will Go In Here -->
</body>
</html>

CHAPTER 2 © HTML5 DOCUMENTS: TOP-LEVEL DOCUMENT DEFINITION

The “strict” XHTML document type is less flexible. You should declare this document
type using the following HTML syntax and markup:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN
"http://wuw.w30rg/TR/xhtml1/dtd/xhtmli-strict.dtd">
<html>
<head>
<!-- XHTML Document Header Attributes (Tags) Go In Here -->
</head>
<body>
<!-- XHTML Document Body Content (Tags) Will Go In Here -->
</body>
</html>

The “frameset” XHTML document type allows you to define your HTML documents
using discrete areas called frames. You should declare an XHTML frameset document
type using the following HTML syntax and markup:

<!'DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN
"http://wuw.w30rg/TR/xhtml1/dtd/xhtml1-frameset.dtd">
<html>
<head>
<!-- XHTML Document Header Attributes (Tags) Go In Here -->
</head>
<body>
<!-- XHTML Document Body Content (Tags) Will Go In Here -->
</body>
</html>

Frames are no longer recommended for use in HTML5. You can now use divisions
with the <div> tag. Divisions can be used much like layers in Photoshop or GIMP. They
are far more flexible and can be moved (animated).

Next, let’s take a look at the HTML 4.01 document type.

The HTML4 Document Types: HTML 4.01

HTMLA4 was released on December 18, 1997. HTML 4.01 was released on April 24, 1998.
There were two major versions prior to HTML4: HTML 3.2 and the original HTML 2.0
specification. HTML4 added greater multimedia support, cascading style sheets, Java
scripting languages, printing capabilities, and support for disabled users. It started
internationalization (language) support as well. HTML4 conforms to the ISO 8879
SGML specification. HTML4 documents use a much more complex IDOCTYPE tag
implementation, using SGML's Document Type Definition (DTD) declaration syntax
along with the repository URL reference.

CHAPTER 2 © HTML5 DOCUMENTS: TOP-LEVEL DOCUMENT DEFINITION

If you are using the older HTML4 document type for some reason, you declare the
document type as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN
"http://www.w3org/TR/html4/Lloose.dtd" >
<html>
<head>
<!-- HTML4 Document Header Attributes (Tags) Go In Here -->
</head>
<body>
<!-- HTML4 Document Body Content (Tags) Will Go In Here -->
</body>
</html>

Transitional HTML 4.01 is more forgiving because it supports more tags, parameters,
and syntax formats; whereas strict HTML is more like XML or XHTML and has many
more rules that need to be closely followed. You declare a HTML4 document type as
follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 //EN
"http://wwm.w3org/TR/htmla/strict.dtd" » <html>

<head>
<!-- HTML4 Document Header Attributes (Tags) Go In Here -->
</head>
<body>
<!-- HTML4 Document Body Content (Tags) Will Go In Here -->
</body>
</html>

The HTML 4.01 frameset DTD or document type definition looks like the following
<IDOCTYPE> tag:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN
"http://wwmi.w30xg/TR/html4/frameset.dtd" » <html>

<head>
<!-- HTML4 Document Header Attributes (Tags) Go In Here -->
</head>
<body>
<!-- HTML4 Document Body Content (Tags) Will Go In Here -->
</body>
</html>

Again, frames is an outdated document design approach, so don’t design with it
unless you absolutely have to on an HTML legacy project. Next, let’s take a look at the
<html> tag.

CHAPTER 2 © HTML5 DOCUMENTS: TOP-LEVEL DOCUMENT DEFINITION

The HTML Tag: Defining the Root of the Document

The <html> tag tells the browser (and now the OS) that this is an HTML document,

especially in the absence of the <!DOCTYPE> tag that you frequently see in HTML5

markup. An <html> tag anchors (or roots) the document and contains all the other tags.
This is an example of the HTML tag with child tags inside it:

<html xmlns="http://www.w3.0rg/1999/xhtml">

<head>
<!-- HTML5 Document Header Attributes (Tags) Go In Here -->
</head>
<body>
<!-- HTML5 Document Body Content (Tags) Will Go In Here -->
</body>
</html>

Notice the xmlIns parameter, which references the XML Naming Schema address
and defaults to www.w3.0xg/1999/xhtml.

In HTML5 added a second new parameter for a manifest that allows developers to
add a URL for a custom document cache location for off-line browsing. The following
is an example (Replace the www.apress.com website with your own cache address
location URL):

<html xmlns=http://www.w3.0rg/1999/xhtml manifest="http://www.apress.com">

<head>
<!-- HTML5 Document Header Attributes (Tags) Go In Here -->
</head>
<body>
<!-- HTML5 Document Body Content (Tags) Will Go In Here -->
</body>
</html>

Your default CSS3 settings for this HTML tag should look like the following CSS3 style
sheet definition, used in most browser and operating system implementations:

html { display:block; } <!-- Display content using a block format -->
html:focus { outline:none; } <!-- Do not outline content when selected -->

Next, let’s look at the <head> tag and learn how it allows you to set up and configure
what your document can do.

The HEAD Tag: Configuring the HTML5 Document

The HTMLS5 <head> tag contains over a half dozen child tags that are used to configure
your HTML5 document and define what it can do and how it is found on the Internet.
These child tags include the <title>, <style>, <script>, <meta>, <link>, <base>, and
<noscript> tags. The <title> tag puts a name at the top of the browser, tab, and page.

http://www.w3.org/1999/xhtml
http://www.apress.com/

CHAPTER 2 © HTML5 DOCUMENTS: TOP-LEVEL DOCUMENT DEFINITION

The <script> tag defines the JavaScript configuration. The <style> tag defines the style
sheet (CSS3) configuration. The <link> tag links to external file resources. The <meta> tag
allows you to add metadata. The <base> tag defines the default URL for all link targets in
your HTML5 document. The <head>structure looks like this:

<html>
<head>
<title>
<script>
<style>
<link>
<meta>
<base>
<noscript>
</head>
</html>

The <head> tag previously had a profile attribute, which specifies a URL to a
document containing a set of rules for the <meta> tag content attributes. It is important to
note that this particular parameter is not supported in HTML5, so I am not covering it in
this book.

The <head> child tags are covered in their own chapters, so let’s look at the <body>
tag next. Then we can move on to some of the lower-level tags used in HTMLS5.

The BODY Tag: Containing the Document Content

The <body> tag contains most of the tags covered in this book. All six <body> tag
attributes (parameters) that were supported in HTML4 and have been removed from
HTMLS5 support, but I cover them in this section anyway, for the sake of comprehensive
coverage. An alink parameter is used with a color value to define the color of active links
in the body of the document. The vlink parameter is used with a color value to define the
color of visited links. Finally, the link parameter is used with a color value to define the
color of links that have not been visited.

You can control background color with the bgcolor parameter. You can install a
background image with the background parameter. Finally, you can specify the color for
the text in an HTML4 document with a text parameter, which is used with a color value
to define the color for content text in the body of your document. In HTML5, you use
CSS3 to provide your body styling. We look at this a bit later on with the <style> tag and
cascading style sheets.

Your default CSS3 settings for the <body> tag should look like the following CSS3
style sheet definition (in most browser and operating system implementations):

body { display: block; margin: 8px; }
body:focus { outline:none; }

10

CHAPTER 2 © HTML5 DOCUMENTS: TOP-LEVEL DOCUMENT DEFINITION

Most HTML5 documents use the basic <!/DOCTYPE html> and <html>, <head>,
and <body> tags without any parameters, other than class or id parameters (which are
covered later on), like this basic HTML5 document with a TITLE, and P (paragraph) text
installed in the <head> and <body> sections of the document:

<!DOCTYPE html>
<html>
<head>
<title>Website Title Goes Here</title>
</head>
<body>
<p>Website Text Paragraph Content.</p>
</body>
</html>

From here, we get into some of the tags that you use to control your content and the
way that your document is referenced on the Internet.

Summary

In this chapter, you learned about the top-level HTML5 document tags, including the
<IDOCTYPE>, <HTML>, <HEAD>, and <BODY> tags. Notice that the tag names can be in
lowercase or uppercase letters, so use whatever tag style you prefer for your markup.

In the next chapter, you start looking at the document tags inside the <HEAD> parent
tag, which influences SEO, including the <title>, <meta>, and <base> tags, and learn how
to use them to optimize the search engine configuration for your HTML5 document.

11

CHAPTER 3

HTML5 Search Engine
Optimization: Title and Meta/

Let’s continue here in Chapter 3 by looking at the tags that are the most important for
search engine optimization, also referred to as SEQ. SEQ is the practice of optimizing
your website ranking in search engines. SEO tags are found at the document definition
and configuration level. These tags are contained in the document HEAD, and were
covered briefly in Chapter 2. The SEO-centric tags include your <title> tag, which defines
and contains your document title and keywords, as well as the <meta> tags, which define
how the HTML5 document is listed in the various search engines. These two tags, along
with the <base> tag, are the most important tags to use for SEO in the HTML5 markup
schema, besides the paragraph and heading tags that contain the actual text content and
keywords that the search engines use to index and rank your HTML5 documents.

We cover these tags later on in the book, along with the <body> tag.

In this chapter, I also go over the markup (coding) format and syntax for HTML5
document-level SEO tags, with their various parameters. We look at how to define your
document title using the <title> tag and at the different types of metadata that you can
advise the search engines with regarding a <meta> tag or a collection of <meta> tags, as is
more commonly used. We’ll also look at the <base> tag because it also relates to SEO.

The HTML5 HEAD Tags Important for SEO

This chapter covers three high-level <head> tags used to define how you want the search
engines to index your HTML document title, description, and content. We'll start with the
<title> tag, which defines your document title, and then progress downward to tags that
are inside the <head> tag, including the <meta> and <base> tag.

The TITLE Tag: Defining the HTML5 Document Title

The first tag in the <head> section of your document definition is usually the <title> tag,
which contains your HTML5 document title between the opening tag and the closing tag.
The <title>tag is one of the key tags that a search engine algorithm looks at to determine

© Wallace Jackson 2016 13
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_3

http://dx.doi.org/10.1007/978-1-4302-6536-8_3
http://dx.doi.org/10.1007/978-1-4302-6536-8_2

CHAPTER 3 * HTML5 SEARCH ENGINE OPTIMIZATION: TITLE AND META

what the content is within your document. These SEO algorithms are referred to as bots
because the code that they use simulates Al, or artificial intelligence, and so they seem to
be functioning like search engine robots.

The following HTML5 markup structure is an example of a document <title>
declaration for the HTML5 document and the top-level tags it is nested:

<!DOCTYPE html>
<html>
<head>
<titlesTitle, Using Important Search Term Keywords</title»
</head>
<body>
<!-- HTML5 Document Body Content (Tags) Will Go In Here -->
</body>
</html>

Document titles should be descriptive and contain keywords that describe the
content and help the search engine bots define how to index the website or HTMLS5 app.
For instance, my iTVclock.com website title has keywords for iTV Sets and watch faces
(smartwatch designs in Android) using the following HTML5 markup and syntax:

<!DOCTYPE html>
<html lang="en">
<head>
<title>iTV Clocks for iTV Sets | 3D Watch Faces for iTV Sets</title>
</head>
<body>
<!I-- iTV Clock's HTML5 Document Body Content (Tags) Will Go In Here -->
</body>
</html>

Asyou can see, the domain name (iTV Clock) and important keywords (iTV Sets and
Watch Faces) are in the descriptive title, so that the search engine bots know iTV clock is
for iTV Sets and that they relate to the (Android) watch faces API because these iTV clocks
will also be for sale as Android watch faces for your smartwatch. Also, notice that I used
the lang="en" parameter in the HTML tag. This tells the HTML5 rendering engine that
the page uses the English language.

Next, let’s look at the <meta> tag, which is used to define content type, author,
keywords, and description.

The META Tag: Defining Document Characteristics

The <meta> tag allows you to provide metadata, or data about your document that is not
visible to the document viewer (reviewer), but which tells the search engine, browsers,
and HTML5 operating systems about descriptive, SEO, robot, author, and copyright
characteristics in your HTML5 document.

14

CHAPTER 3 © HTML5 SEARCH ENGINE OPTIMIZATION: TITLE AND META

Metadata contained in the <meta> tags takes the form of name-value data pairs,
much like JSON data definitions. If you want to learn more about JSON, reference my
book, JSON Quick Syntax Reference (Apress, 2016).

There can be more than one <meta> tag. They go in the <head> section of the
HTML5 document. There must be both a name and a content parameter—one
cannot exist without the other, so if you have a name=“name”, you must have a
content="“data value.”

The <meta> tag format for the iTV Clock website has the following HTML5 markup
syntax, with the six primary <meta> tags most often utilized within the document’s
<head> section:

<!DOCTYPE html>

<html lang="en">
<head>
<title>iTV Clocks for iTV Sets | 3D Watch Faces for iTV Sets</title>
<meta name="description" content="Use your iTV Set as a Clock!">
<meta name="keywords" content=" iTV Clock, iTV Set, Watch Faces">
<meta name="robots" content="index, follow">
<meta name="copyright" content="Copyright 2014 through 2016">
<meta name="author" content="Wallace Jackson">
<meta charset="UTF-8">
</head>
<body>
<!-- iTV Clock's HTML5 Document Body Content (Tags) Will Go In Here -->
</body>

</html>

The description metatag contains the description used in the search engine listing
result. The keywords metatag offers a keyword list to the search engine robot. The robots
metatag suggests how your site should be indexed. The copyright and author metatags
secure your HTML5 document’s copyrights.

There is also a <meta> tag parameter called charset that is used to define the
character set for your document, which for most HTML5 documents and applications is
either UTF-8 or UTF-16. Universal Text Format 8-bit uses 256 character representations
and Universal Text Format 16-bit uses 65,536 character representations. UTF-16 clearly
represents a wider range of languages than UTF-8, although UTF-8 represents languages
that use an alphabet character set, such as English, French, Spanish, Italian, Portugese,
and German.

Before the simplified HTML5 charset="utf-8” parameter, a <meta> tag to define the
character set (for HTML 4.0 and prior) looked as follows:

<meta http-equiv="Content-Type" content="text/html" charset="utf-8"> (HTML4)

Table 3-1 lists 17 name:content data value pairs used in the <meta> tag format for
HTML5 documents and applications.

15

CHAPTER 3 * HTML5 SEARCH ENGINE OPTIMIZATION: TITLE AND META

Table 3-1. Meta Tag name:content Data Value Pairs and Their Uses

Name Value Content Value Purpose or Usage
description A description for the HTML Your search engine listing
document description content control
keywords Your keyword list SEO keyword suggestions
robots index and follow SEO robot instructions
copyright Copyright dates Document copyright dates
author Author name Document author(s) names
webauthor Author name Document author(s) names
charset Character set used Generally UTF-8 or UTF-16
abstract Document summary Abstract of content summary

revisit-after
language

distribution

expires
generator
reply-to

no-email-
collection

rating

googlebot

Period (i.e., 9 days)
Name of language

global, local, TU

Date (1 Jan 2017)
Name of software
E-mail address

An anti-spam link

Intended audience

noodp

Robot revisit instructions
Language used for document

Global, local or internal
distribution for document

Document content expiration
Document content generator
Document contact information

metatags.info/nospamharvest

general, mature, restricted

Use page description in ODP

You can use the http-equiv parameter to define your HTTP header for the
information (values) of your content parameter. This metatag is used to add certain non-
standard values to your HTML5 website header, so let’s cover some of those standard
http-equiv values used in website.

Table 3-2 lists 13 of the http-equiv:content data value pairs used inside the <meta>

tag format for HTML5 documents and applications.

16

CHAPTER 3 © HTML5 SEARCH ENGINE OPTIMIZATION: TITLE AND META

Table 3-2. Meta Tag name:content Data Value Pairs and Their Uses

http-equiv Content Value Purpose or Usage
content-type Media Type, CharSet Define MIME type and charset
cache-control Set cache settings Defines caching parameters
cookie Defines cookie file Define cookie name and dates
content-disposition Define applications Defines file name extension
imagetoolbar Shows image toolbar Control display (IE) toolbar
MSThemeCompatible Use WinXP Ul theme Sets WinXP UI theme for site
picslabel Label image content Allows imagery to be labeled
pragma Sets HTTPS caching Ensure HTTPS page not cached
Resource-Type Defines resources Define a page resource type
refresh Time before refresh Redirect after a time period
Content-Script-Type Scripting language Define a scripting language
Content-Style-Type Style Sheet language Define a style sheet language
window-target Specify windowname asa Sets the window name for the
window target for HTML5 webpage to be rendered in;
document rendering / generally used to break out of a
parsing frameset

Next, let’s look at the <base> tag and how it allows you to define a base target URL
for your HTML5 document.

The BASE Tag: Configuring a URL for a Document

The HTML5 <base> tag is has no ending tag. It uses the HREF parameter to define the
default URL and therefore the default “target” parameter for all links in the document.
If I were to add the <base> tag to the iTV Clock HTML5 website, the resulting markup
structure would look like this:

<!DOCTYPE html>
<html lang="en">

<head>
<title>iTV Clocks for iTV Sets | 3D Watch Faces for iTV Sets</title>
<meta name="description" content="Use your iTV Set as a Clock!">
<meta name="keywords" content=" iTV Clock, iTV Set, Watch Faces">
<meta name="robots" content="index, follow">
<meta name="copyright" content="Copyright 2014 through 2016">
<meta name="author" content="Wallace Jackson">
<meta charset="UTF-8">

17

CHAPTER 3 * HTML5 SEARCH ENGINE OPTIMIZATION: TITLE AND META

<base hxef="http://www.iTVclock.com">
</head>
<body>
<!-- iTV Clock's HTML5 Document Body Content (Tags) Will Go In Here -->
</body>
</html>

There can only be a single <base> tag defined in the HTML5 document; it needs to
be defined within the HEAD section of the document. The order of the child tags within
the <head> tag does not matter, in case you are wondering.

More of the <head> child tags are covered in the next two chapters. Let’s move on to
the other HTMLS5 tags that are child tags of the <body> tag.

Summary

In this chapter, you learned about the HTML5 document tags for search engine
optimization (SEO) contained in the <HEAD> tag, including the <TITLE>, <META>, and
<BASE> tags. Again, notice that your tag names can be either lowercase or uppercase
letters, so use whichever tag style you prefer in your HTML5 markup syntax.

The next chapter discusses the LINK document tags inside the <HEAD> parent tag
that influences linking to external assets, including favicons and cascading style sheets.

18

CHAPTER 4

HTMLS Referencing: Using
External Links and Favicons

Let’s continue by taking a look at the <link> tag. This important tag is used to connect
external files, documents, and resources such as HTMLS5 icons, or favicons (these are
used in the browser tabs), to your HTML5 documents and applications. This tag is also
found at the HEAD document definition and configuration level, just like the tags covered
in the previous chapters.

In this chapter, I also go over the markup (coding) format and syntax for HTML5
document-level <link> tags, including all of the various parameters. We'll look at how to
define your external documents, profiles, and asset links using the <link> tag. We'll also
look at many different types of link relationship data that you provide using the required
rel parameter, one of the tag parameters used to reference external resources.

An HTML HEAD Tag to Link External Files

This chapter covers a single, high-level (in document HEAD) tag that is used to define
how you want external files to be “linked” into your HTML5 document and its content.
I call this “externalizing” HTML5 development assets, such as favicons and style sheets.
There’s a distinct advantage to doing this, which I explain in this section before we get
into how to use the <link> tag and its parameters to externalize assets. If you externalize
an asset as a file in an HTML5 document, it is cached, and therefore, only needs to be
loaded once, in your index.html markup. Let’s look at the advantage of this using your
cascading style sheet (CSS3) asset as an example. If you externalize your style definitions
for your HTML5 website or application, this code only needs to be loaded once, even
though it is referenced using the same <link> tag on every page in your website. If the
CSS file is 8KB and you have 101 pages on the website, this saves you 800KB of data
transfer overhead!

© Wallace Jackson 2016 19
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_4

CHAPTER 4 © HTML5 REFERENCING: USING EXTERNAL LINKS AND FAVICONS

The LINK Relationship: Types of External Assets

The only required parameter (also called an attribute) in a <link> tag is the rel or
relationship parameter, which tells the HTMLS5 parsing (rendering) engine what type of
document it links. The two most commonly used are icon and stylesheet, but we go over
other rel parameter options during this section of the chapter. Table 4-1 shows the various
rel parameter options currently supported for the <link> tag in HTMLS5.

Table 4-1. Link rel Parameter Value and Purpose

Rel Parameter Value Rel Parameter Value Purpose

alternate Link to an alternate version of the document
author Link to put Author Profile in search results

help Link to the help document for the HTML document
icon Link external icon (.ICO) resource for document
license Link to the copyright information for document
next Link to next document in a series of documents
prefetch Link to a target resource that should be cached
prev Link to a previous document in a series of docs
search Link to a search tool for the document
stylesheet Link to an external cascading style sheet (.css)

Let’s take a look at several of these in real-world use, starting with the HTMLS5 icon,
popularly called a favicon. Let’s also look at how to link to your external cascading style
sheet and to an author profile URL.

Linking to an Icon: Using a Favicon in the Document Tab or App

One of the things you always want to do for an HTML5 website or HTML5 application
is to have an icon to use for visual branding purposes. This is especially important for
HTML5 iTV Sets, HTML5 tablets, and HTML5 smartphones, as icons launch your app!

An example of a document LINK declaration, for a favicon for the HTML5 document,
along with the top-level <head> tag it is nested in, looks like the following HTML5 markup
structure:

<!DOCTYPE html>
<html lang="en">

<head>
<title>iTV Clocks for iTV Sets | 3D Watch Faces for iTV Sets</title>
<meta name="description" content="Use your iTV Set as a Clock!">
<meta name="keywords" content=" iTV Clock, iTV Set, Watch Faces">
<meta name="robots" content="index, follow">
<meta name="copyright" content="Copyright 2014 through 2016">

20

CHAPTER 4 © HTML5 REFERENCING: USING EXTERNAL LINKS AND FAVICONS

<meta name="author" content="Wallace Jackson">
<meta charset="UTF-8">
<base href="http://www.iTVclock.com">
<link rel-"icon" href="itvclock.ico"> <!-- Link to icon resource -->
</head>
<body>
<!-- iTV Clock's HTML5 Document Body Content (Tags) Will Go In Here -->
</body>
</html>

Asyou can see, you also need to provide a URL with an href parameter. Since the
itvclock.ico is in the same folder, I do not need any http, domain, or folder referencing. If
I'had this itvclock.ico on my iTVdesign.com website instead, this tag would then look like
the following HTML5 markup syntax:

<link rel="icon" href="http://www.itvdesign.com/icon-folder/itvclock.ico">

Tuse GIMP 2.8.16 currently to create favicons using the .ico file name extension.
Make sure that the graphic is 64 pixels and square, 8-, 24-, or 32-bit color, and use a File
>» Export As menu sequence to create it. If you need more background on this, see my
book Digital Image Compositing Fundamentals (Apress, 2015).

Next, let’s take a look at linking to your external CSS3 style sheet asset so that you
can “externalize” your website or application styling into one highly optimized style
sheet resource asset. This reduces the amount of code in each of the HTML5 documents
(pages) because styling syntax has been removed into an external resource that can
simply be linked to using a few characters of markup (in this case 60 characters or bytes).

Link to a Style Sheet: Using an External Style Sheet for
CSS3 Style

One of the things you always want to do for an HTML5 website or application is to have
a consistent visual appearance, or styling, for your HTMLS5 user interface design. This is
also important for visual branding purposes and is equally important for HD and UHD
iTVs, HD and UHD tablets, and HD smartphones.

Your style sheet link not only needs the rel and the href parameters, but also a type
parameter, declaring your MIME type for the CSS file, which is text/css, just like it would
be on the server-side of the MIME declaration for the CSS file on the server.

An example of a document LINK declaration for style sheet externalization for your
HTML5 document, and the top-level tags the <link> tag is nested in looks like this:

<!DOCTYPE html>
<html lang="en">
<head>
<title>iTV Clocks for iTV Sets | 3D Watch Faces for iTV Sets</title>
<meta name="description" content="Use your iTV Set as a Clock!">
<meta name="keywords" content=" iTV Clock, iTV Set, Watch Faces">

21

CHAPTER 4 © HTML5 REFERENCING: USING EXTERNAL LINKS AND FAVICONS

<meta name="robots" content="index, follow">
<meta name="copyright" content="Copyright 2014 through 2016">
<meta name="author" content="Wallace Jackson">
<meta charset="UTF-8">
<base href="http://www.iTVclock.com">
<link rel="icon" href="itvclock.ico">
<link rel="stylesheet" type="text/css" href="itvclock.css">
</head>
<body>
<!-- iTV Clock's HTML5 Document Body Content (Tags) Will Go In Here -->
</body>
</html>

As you can seeg, it is common to have several <link> tags nested inside of your <head>
tag. If your markup needs to be XHTML (XML) compliant, you add an orderly closing
tag by inserting a backslash in front of the closing chevron, as is shown in the following
markup syntax:

¢ link rel="stylesheet" type="text/css" href="itvclock.css" /»

If you wanted to add a style sheet for printed media, you would add the media
parameter into the style sheet’s <link> tag to specify printed media (device hardware), as
follows:

<link rel="stylesheet" type="text/css" href="itvclock.css" media="print" />

The media parameter has nine options, including the default screen option,
including the braille or the tty options for the handicapped users, aural option for audio
and speech synthesis, and hardware device options, for printer (printers), projection
(projectors), tv (iTV) and handheld (smartphone, smartwatch, or tablets). You can also
specify more than one media device by using Boolean operators AND (and), NOT (not),
and OR (comma). If you want to specify values for the device, there are parameters
to specify width, height, orientation, resolution, aspect-ratio, color, color-index,
monochrome, and scan or grid values.

Next, let’s take a look at your rel="author” parameter, and its option for linking to an
external author profile.

Linking to an Author Profile: Putting a Face on a Search Listing

One of the more recent things that you are now able to do using the <link> tag for an
HTMLS5 website or application is to have an author profile referenced via your HTML5
markup for personal branding purposes. This is especially important if you want

your picture to appear in the search engine listing. I show you how to do this in this
chapter with the <link> tag, as well as in Chapter 6 via the <a> (anchor) tag because
the optimal way to implement it is using both a <head><link rel="author"></head>
and <body></body> markup structure (syntax) within your HTML5
document markup.

22

http://dx.doi.org/10.1007/978-1-4302-6536-8_6

CHAPTER 4 © HTML5 REFERENCING: USING EXTERNAL LINKS AND FAVICONS

The following is an example of a document LINK declaration, for an author profile link:

<!DOCTYPE html>
<html lang="en">

<head>

<title>iTV Clocks for iTV Sets | 3D Watch Faces for iTV Sets</title>
<meta name="description" content="Use your iTV Set as a Clock!">
<meta name="keywords" content=" iTV Clock, iTV Set, Watch Faces">
<meta name="robots" content="index, follow">

<meta name="copyright" content="Copyright 2014 through 2016">

<meta name="author" content="Wallace Jackson">

<meta charset="UTF-8">

<base href="http://www.iTVclock.com">

<link rel="icon" href="itvclock.ico">

<link rel="stylesheet" type="text/css" href="itvclock.css">

<link rel="author"

hxef="https://plus.google.com/u/0/+WallaceJackson/about/p/pub"
title="Wallace Jackson">

</head>

<body>

<!-- iTV Clock's HTML5 Document Body Content (Tags) Will Go In Here -->
</body>

</html>

Notice that three key parameters were used: the required rel=“author”, an href URL
for the Google+ account, and the title parameter containing the author name value.

Also, note how I spaced (formatted) the tag for enhanced readability, as extra white
space (tabs and spaces) is allowed and is not processed by the HTML5 markup syntax
parsing engine.

To do this thoroughly also requires an anchor tag with a rel parameter, which is
covered in Chapter 6.

Next, let’s look at the other nine parameters that the <link> tag supports, six of which
work in HTMLS5 and three of which work in HTML4 and earlier.

The LINK Tag: The Optional Link Tag Parameters

The <link> tag has a number of optional parameters in addition to a required rel
parameter. The most important is the href parameter, which allows you to specify a
URL location for the external asset that is being linked to. You have seen this in use in
the several <link> tag examples in this chapter, and the media parameter as well, so I
will focus on the other four parameters supported in HTML5 during this section of the
chapter. Other supported parameters for the <link> tag are seen in Table 4-2.

23

http://dx.doi.org/10.1007/978-1-4302-6536-8_6

CHAPTER 4 © HTML5 REFERENCING: USING EXTERNAL LINKS AND FAVICONS

Table 4-2. Link Tag Parameters

Parameter Name HTMLS5 Support Parameter Purpose or Usage

href Yes Location (URL) for the linked asset
hreflang Yes The language used in a linked asset
rel Yes Relationship (type) of linked asset
media Yes Device type needed for linked asset
type Yes Media type used by the linked asset
sizes Yes Pixel size of a linked icon resource
crossorigin Yes Specify cross-origin request handling
rev No Relationship between linked documents
charset No Character encoding of a linked asset
target No Where a linked asset is to be loaded

The hreflang parameter specifies a language used by the externally linked asset
or document. This <link> tag parameter is not as frequently implemented with HTML5
unless multiple language versions of an HTML5 document or an application have been
created, and then it is needed.

The type parameter specifies what type of a file (asset) is being provided to the
<link> tag. This is often called a MIME type, especially on the server-side for files
supported by the server definition syntax.

A sizes parameter specifies the icon’s dimensions in pixels (picture elements). It is
often unutilized because icons are most often provided at 64 x 64 pixels.

The crossorigin parameter allows access to images, scripts, or styles that are on another
server using the CORS (cross-origin resource sharing) standard. Setting this new parameter
to anonymous restricts cross-sharing access between a server, and setting it to use-
credentials sets the credentials flag to “true”” User credentials can be shared using cookies,
HTTP authentication, or client-side SSL certificates. It can be used with the <script> tag and
with the (image) tag, where it is more often utilized than with the <link> tag.

Next, let’s look at the rest of the tags supported inside the <head> tag, and then we
can look at hypertext (anchor tags).

Summary

This chapter talked about the HTML5 document <link> tag for linking external documents,
profiles, and assets, which is also contained in the <head> tag. You looked at the required
rel parameter, its values, and several examples. The rest of the optional parameters that
apply to HTML5 markup, documents, and applications were also discussed.

In the next chapter, you look at the remaining <head> child tags, including the style,
script, or noscript tags that influence linking to external JavaScript assets and apply
exceptions to your externalized cascading style sheets.

24

CHAPTER 5

HTMLS Processing: Using
CSS and JavaScript

Let’s finish up with the child tags of the parent <head> tag, which is itself a child tag
of the <html> tag, by taking a look at the <style> tag for CSS3 document styling and
the <script> tag for JavaScript (or JS) document scripting. We will also look at the
<noscript> tag. These are the last of the tags contained in the HEAD section of the
HTML5 document definition, so after this we focus on tags that are child tags of the
BODY or content section. This is getting exciting. We are making excellent progress
thus far!

In this chapter, I go over markup format and syntax for HTML5 document-level
<style> and <script> tags, including all of their important parameters. We will look
at how to define these external JavaScript documents using JS files, and how to use a
<style> tag to insert exceptions to your externally linked CSS file for only that HTML5
document page. We also cover the <noscript> tag and how it defines alternate content
for users who have disabled scripting languages in their browsers.

HTML HEAD Tags to Add Tag Processing

This chapter covers two high-level (in document HEAD) tags used to define how you
want your HTML5 tags (markup) processed further to add desktop publishing like styling,
pixel-precise positioning, special effects, animation, interactivity, and other types of
“algorithmic” processing. This is done using the <style> tag for CSS3 processing, and the
<script> tag for JavaScript processing.

The chapter title is “HTML5 Processing” because CSS and JS can further process
HTML5. That said, this is not a book on CSS3 or JavaScript, just HTML5 markup (tags),
so if you want to learn CSS3 styling or JS programming, be sure to buy a title from Apress.
com that specifically covers those topics.

© Wallace Jackson 2016 25
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_5

CHAPTER 5 * HTML5 PROCESSING: USING CSS AND JAVASCRIPT

The SCRIPT Tag: Using JavaScript Programming

If you want to add advanced features to your HTML5 document, website, or application,
you want to use JavaScript, which is actually based on the ECMAScript 262 standard.

This is done using the <script> child tag in the <head> parent tag (section) of the HTML5
document. It contains JavaScript code inside of the <script> tag or uses the src parameter
and optional (in HTMLS5, at least) type parameter to externally reference the JavaScript
assets using a JS file. JavaScript is often referred to as JS, its abbreviation. I show you how
to reference an external JavaScript asset in this chapter, as well as how to put JavaScript
inside of your HTML5 document directly. Table 5-1 shows various parameter options,
five of which are supported for this <script> tag in HTML5, and one of which is supported
only in XHTML and HTML 4.

Table 5-1. Supported <script> Tag Parameters

Script Parameter Script Parameter Purpose

src Specify the URL for an external JavaScript file

type Specify optional media type for external JS file

charset Specify character encoding for external JS file

defer Specifies to execute scripts after HTML parsing

async Specified to execute scripts asynchronously

xml:space Specifies whether white space in code should be preserved.

This is not supported in HTMLS5.

You may be wondering when you should use external vs. internal JavaScript code.
The rule of thumb is to use external JavaScript assets for global JavaScript code, which is
used by every document in an HTMLS5 website; use internal JavaScript code for localized
JavaScript functions, which are only used on that particular HTML5 page, document, or
application.

If a function is used more than once, externalize it, so that it can be cached, and does
not have to be served by your server more than one time, and can be accessed using your
local storage device (cache), whenever it is needed by an HTML5 page.

Let’s look at how I externalized JavaScript code, used in my iTVclock.com website to
set the hands of the clocks.

The SRC Parameter: Externalizing JavaScript Program Assets

You can externalize JavaScript code just as you can with cascading style sheets, except
that instead of the <link> tag, you use a <script> tag with its src (source file) parameter. It
is important to note that the externalized JavaScript file must not contain the <script> tag,
only the JavaScript code that would normally exist inside of the <script> tag were you to
use the JavaScript internal to the HTML5 document approach.

26

CHAPTER 5 © HTML5 PROCESSING: USING CSS AND JAVASCRIPT

An example of an HTML5 document <script> declaration for an external .js asset,
along with the top-level <head> tag it’s nested in, looks like the following HTML5 markup
structure:

<!DOCTYPE html>
<html lang="en">

<head>

<title>iTV Clocks for iTV Sets | 3D Watch Faces for iTV Sets</title>
<meta name="description" content="Use your iTV Set as a Clock!">
<meta name="keywords" content=" iTV Clock, iTV Set, Watch Faces">
<meta name="robots" content="index, follow">

<meta name="copyright" content="Copyright 2014 through 2016">

<meta name="author" content="Wallace Jackson">

<meta charset="UTF-8">

<base href="http://www.iTVclock.com">

<link rel="icon" href="itvclock.ico">

<link rel="stylesheet" type="text/css" href="itvclock.css">

<link rel="author"

href="https://plus.google.com/u/0/+WallaceJackson/about/p/pub"
title="Wallace Jackson">

<script src="itvclock.js" type="text/javascript">

</head>

<body>

<!-- iTV Clock's HTML5 Document Body Content (Tags) Will Go In Here -->
</body>

</html>

Asyou can see, I've provided an optional type parameter so that HTML4 browsers
can also use this code. If I wanted this HTML markup to support XHTML, the tag would
then look like the following XHTML markup syntax, using a proper closing tag:

< script src="itvclock.js" type="text/javascript" />

If I am only supporting HTML5 rendering engines, all I'd need to declare this
external JavaScript asset is the following HTML5 markup syntax:

<script src="itvclock.js">
Next, let’s look at how you can synchronize the loading of an external .js JavaScript

asset, so that you can control how the JavaScript code is executed relative to the loading
and parsing (execution) the HTML5 markup (tags) for your documents.

27

CHAPTER 5 * HTML5 PROCESSING: USING CSS AND JAVASCRIPT

The ASYNC and DEFER Parameters: JavaScript Asset Execution

There are three ways to control how your JavaScript code is executed relative to the
rendering (parsing) of your HTML5 markup (tags). If you don’t specify any parameter

to control synchronization, which is the default, the external JavaScript is downloaded
and executed immediately, before the HTML5 content markup in the BODY of your
document, since the <script> tag is in the <head> of the HTML5 document and thus
processed first. There are also parameters to defer (process JavaScript after rendering) or
to process asynchronously, at the same time the page is rendering.

Deferring JavaScript Processing: The <defer> Parameter

Let’s look at an example of an HTML5 document <script> declaration for deferring the
processing of an external .js asset. This is used if you need your HTML5 markup to be
loaded and parsed before the JavaScript code is executed. The <script> tag, with the defer
parameter enabled, should have the following HTML5 markup structure:

<!DOCTYPE html>
<html lang="en">

<head>

<title>iTV Clocks for iTV Sets | 3D Watch Faces for iTV Sets</title>
<meta name="description" content="Use your iTV Set as a Clock!">
<meta name="keywords" content=" iTV Clock, iTV Set, Watch Faces">
<meta name="robots" content="index, follow">

<meta name="copyright" content="Copyright 2014 through 2016">

<meta name="author" content="Wallace Jackson">

<meta charset="UTF-8">

<base href="http://www.iTVclock.com">

<link rel="icon" href="itvclock.ico">

<link rel="stylesheet" type="text/css" href="itvclock.css">

<link rel="author"

href="https://plus.google.com/u/0/+WallaceJackson/about/p/pub"
title="Wallace Jackson">

<script src="itvclock.js" type="text/javascript’ defer="defer" >
</head>

<body>

<!-- iTV Clock's HTML5 Document Body Content (Tags) Will Go In Here -->
</body>

</html>

As you can see, I've provided an optional type parameter so that HTML4 browsers
can also use this code. If I wanted this HTML5 markup to support XHTML1, this <script>
tag with the defer parameter enabled looks like the following XHTML markup syntax,

which has the proper closing /> tag structure:

<script src="itvclock.js" type="text/javascript" defer="defer" />

28

CHAPTER 5 © HTML5 PROCESSING: USING CSS AND JAVASCRIPT

If T am only supporting HTML5 rendering engines, all I'd need to have to declare this
external JavaScript asset is the following HTML5 markup syntax with a defer parameter
added:

<script src="itvclock.js" defer="defer">

Next, let’s look at how to process the JavaScript code at the same time that your
HTML5 markup is parsing.

Parallel JavaScript Processing: The <async> Parameter

Let’s look at an example of an HTML5 document <script> declaration for paralleling

the processing of an external .js asset. This is used if you need your HTML5 markup to

be loaded and parsed in parallel with, or at the same time that your JavaScript code is
executed. The <script> tag, along with the parent <head> tag that it is nested in, looks like
the following HTML5 markup structure using the async parameter:

<!DOCTYPE html>
<html lang="en">

<head>

<title>iTV Clocks for iTV Sets | 3D Watch Faces for iTV Sets</title>
<meta name="description" content="Use your iTV Set as a Clock!">
<meta name="keywords" content=" iTV Clock, iTV Set, Watch Faces">
<meta name="robots" content="index, follow">

<meta name="copyright" content="Copyright 2014 through 2016">

<meta name="author" content="Wallace Jackson">

<meta charset="UTF-8">

<base href="http://www.iTVclock.com">

<link rel="icon" href="itvclock.ico">

<link rel="stylesheet" type="text/css" href="itvclock.css">

<link rel="author"

href="https://plus.google.com/u/0/+WallaceJackson/about/p/pub"
title="Wallace Jackson">

<script src="itvclock.js" type="text/javascript" async="async" >
</head>

<body>

<!-- iTV Clock's HTML5 Document Body Content (Tags) Will Go In Here -->
</body>

</html>

Asyou can see, I've provided an optional type parameter so that HTML4 browsers
can also use this code. If I wanted this HTML markup to support XHTML, the tag would
then look like the following XHTML markup syntax, using a proper tag closing:

< script src="itvclock.js" type="text/javascript" async="async" />

29

CHAPTER 5 * HTML5 PROCESSING: USING CSS AND JAVASCRIPT

If I am only supporting HTML5 rendering engines, all I'd need to have to declare
this external JavaScript asset is the following HTML5 markup syntax, adding the async
parameter:

<script src="itvclock.js" async="async">

Next, let’s take a look at using the charset parameter.

The CHARSET Parameter: Using a Different JS Character Set

The <script> tag charset parameter specifies the character set that is being utilized in

an external JavaScript asset. It is important to note that this only needs to be used if the
character set for the external .js file is different from the character set used for the HTML5
markup syntax in your HTML5 document. Your <script> markup should look like this:

<!DOCTYPE html>
<html lang="en">

<head>

<title>iTV Clocks for iTV Sets | 3D Watch Faces for iTV Sets</title>

<meta name="description" content="Use your iTV Set as a Clock!">

<meta name="keywords" content=" iTV Clock, iTV Set, Watch Faces">

<meta name="robots" content="index, follow">

<meta name="copyright" content="Copyright 2014 through 2016">

<meta name="author" content="Wallace Jackson">

<meta charset="UTF-16"> <!-- Document using UTF-16 Character Set -->

<base href="http://www.iTVclock.com">

<link rel="icon" href="itvclock.ico">

<link rel="stylesheet" type="text/css" href="itvclock.css">

<link rel="author"
href="https://plus.google.com/u/0/+WallaceJackson/about/p/pub"
title="Wallace Jackson">

<script src="itvclock.js" type="text/javascript” charset="UTF-8" />

</head>

<body>

<!-- iTV Clock's HTML5 Document Body Content (Tags) Will Go In Here -->

</body>

</html>

Next, let’s take a quick look at an HTML <noscript> tag.

The NOSCRIPT Tag Advises Users: No JS Support

The <noscript> tag should always be implemented if you are using the <script> tag, but
unfortunately, it is rarely used. It would come under the heading of “user error trapping,’
in my opinion, as some users turn JavaScript off in the browser or device, and need to be
advised to turn the JavaScript capability back on for the application.

30

CHAPTER 5 © HTML5 PROCESSING: USING CSS AND JAVASCRIPT

The following is an example of a document NOSCRIPT declaration for use of
JavaScript assets, whether internalized or externalized:

<!DOCTYPE html>
<html lang="en">

<head>

<title>iTV Clocks for iTV Sets | 3D Watch Faces for iTV Sets</title>

<meta
<meta
<meta
<meta
<meta
<meta
<base
<link
<link
<link

name="description" content="Use your iTV Set as a Clock!">
name="keywords" content=" iTV Clock, iTV Set, Watch Faces">
name="robots" content="index, follow">

name="copyright" content="Copyright 2014 through 2016">
name="author" content="Wallace Jackson">

charset="UTF-8">

href="http://www.iTVclock.com">

rel="icon" href="itvclock.ico">

rel="stylesheet" type="text/css" href="itvclock.css">
rel="author"
href="https://plus.google.com/u/0/+WallaceJackson/about/p/pub"
title="Wallace Jackson">

<script src="itvclock.js" type="text/javascript" />
<noscript>No JavaScript Support; Please Enable JavaScript!</mescripts

</head>

<body>

<!-- iTV Clock's HTML5 Document Body Content (Tags) Will Go In Here -->

</body>

</html>

Asyou can see, it is common to have this tag after your <script> tag. Since it uses a
proper closing tag, the markup is XHTML (XML) compliant.

Using SCRIPT Tags Internally: JavaScript Coding

It is also possible to include your JavaScript code alongside your HTML5 markup by
surrounding it with <script> and </script> tags. You can also use comments to “hide”

the JS code from the parsing engine, but the JavaScript rendering engine still sees the
JavaScript code correctly. This is shown in the following example, where a simple Hello
World JS app is in the comments inside the open and closing <script> tags (instead of the
externalized .JS script loader):

<!DOCTYPE html>
<html lang="en">

<head>

<title>iTV Clocks for iTV Sets | 3D Watch Faces for iTV Sets</title>

<meta
<meta
<meta
<meta

name="description" content="Use your iTV Set as a Clock!">
name="keywords" content=" iTV Clock, iTV Set, Watch Faces">
name="robots" content="index, follow">

name="copyright" content="Copyright 2014 through 2016">

31

CHAPTER 5 * HTML5 PROCESSING: USING CSS AND JAVASCRIPT

<meta name="author" content="Wallace Jackson">
<meta charset="UTF-8">
<base href="http://www.iTVclock.com">
<link rel="icon" href="itvclock.ico">
<link rel="stylesheet" type="text/css" href="itvclock.css">
<link rel="author"
href="https://plus.google.com/u/0/+WallaceJackson/about/p/pub"
title="Wallace Jackson">
<scripts
<l--
Document.getElementById("JSapp".innerHTML="Hello World JavaScript";
-->
</scripty
<noscript>No JavaScript Support; Please Enable JavaScript!</noscript>
</head>
<body>
<!-- iTV Clock's HTML5 Document Body Content (Tags) Will Go In Here -->
</body>
</html>

You should use this localized JavaScript approach with your JS functions, which exist only
on that one HTML5 document, page, or application. Next, let’s look at the CSS <style> tag.

The STYLE Tag: Styling HTML5 Markup Using CSS

The <style> tag has a fewer parameters, but includes the media and type parameters, and
anew scoped parameter. The supported parameters are shown in Table 5-2.

Table 5-2. Style Tag Parameters

Parameter Name New in HTML5? Parameter Purpose or Usage

scoped Yes Style is locally scoped (to parent and
children only)

media No Media/device style is targeted at

type No Media type specification of style tag

The scoped parameter specifies application only to the element (tag) being styled
or “cascading” down to child tag elements, which is why it’s called cascading style sheet
(CSS). This parameter is not frequently implemented because most styles in HTML5 are
applied globally across all pages in the document.

Here is an example of a <style> tag being used to apply a variation or exception from
a global stylesheet externalized using the <link> tag.

<style> type=text/css><!-- #b (background-image:url(b.png);) --></style>

This HTML5 markup replaces the #b style for background-image styling with local
styling that provides the current (proper) background image for this particular

32

CHAPTER 5 © HTML5 PROCESSING: USING CSS AND JAVASCRIPT

iTV Clock face. Doing this allows you to have a global style for background imagery and
still replace a local background image style in any document that you want to vary from
the global CSS style defined for the background image.

Notice that I use the comment trick (the same one used with JavaScript) to hide
the CSS3 code from parsing engines, which would not understand it and would throw
an error code. I do not cover CSS syntax in this book on HTML5 markup, but Apress has
several titles on CSS.

<!DOCTYPE html>
<html lang="en">
<head>
<title>iTV Clocks for iTV Sets | 3D Watch Faces for iTV Sets</title>
<meta name="description" content="Use your iTV Set as a Clock!">
<meta name="keywords" content=" iTV Clock, iTV Set, Watch Faces">
<meta name="robots" content="index, follow">
<meta name="copyright" content="Copyright 2014 through 2016">
<meta name="author" content="Wallace Jackson">
<meta charset="UTF-8">
<base href="http://www.iTVclock.com">
<link rel="icon" href="itvclock.ico">
<link rel="stylesheet" type="text/css" href="itvclock.css">
<link rel="author" title="Wallace Jackson"
href=https://plus.google.com/u/0/+WallaceJackson/about/p/pub />
<script><!--
Document.getElementById("JSapp".innerHTML="Hello World JavaScript"; -->
</script>
<noscript>No JavaScript Support; Please Enable JavaScript!</noscript>
<styley type=text/css»<!-- #b (background-image:url(b.png);) --></styles
</head>
<body>
<!-- 1TV Clock's HTML5 Document Body Content (Tags) Will Go In Here -->
</body>
</html>

Next, let’s look at the parameters that can be used by all HTML5 tags, and then we
look at anchor tags, which are contained in the <head> (content) section of HTML5
document and application markup.

Summary

In this chapter, you learned about HTML5 document processing using JavaScript (JS)
and cascading style sheets (CSS) with the <script> tag and <style> tag. You also looked at
the <noscript> tag, which works in conjunction with the <script> tag. You saw how to use
<script> internally in the HTML5 document, and how to use the <script> tag to override
externalized CSS assets for localized style sheet changes.

In the next chapter, you learn about HTMLS5 global parameters.

33

CHAPTER 6

HTMLS5 Parameters: Using
Global Tag Attributes

Before we start our extensive coverage of all of the child tags of the parent <body> tag,
which is itself a child tag of the <html> tag, let’s take a chapter here at the front of the
book to cover the “global” parameters, which can be used by any of the tags in HTML5.
These work with elements (tags) in the HEAD and BODY sections of the HTML5
document definition. In fact, a couple of them were covered in the first five chapters of
this book!

In this chapter, I go over 16 parameters supported across all HTML5 document-level
tags. I show you what these parameters do for your HTML5 documents and apps.
Eight of these global parameters are new to HTML5 and the other eight work in
previous versions of HTML as well. After this chapter, you'll be ready to learn all of
the <body> tags!

HTML Global Parameters Across All Tags

This chapter covers those tag attributes, characteristics, or parameters that can be used
with any tag in HTML5 and previous versions, such as HTML 4.01 and XHTML 1.1. It is
logical to cover this before going into the plethora (around a hundred) of tags that are
children of the <body> tag. I am doing this so that we can cover these global parameters
in a single chapter.

Table 6-1 shows the 16 parameters. The first eight in the top half of the table
only work in HTML5 browsers and operating systems. We cover these first, since
HTMLS is the primary focus of this book. The bottom half of the table contains the
eight parameters that work in HTMLS5 (due to backwards compatibility) and in earlier
versions of HTML.

© Wallace Jackson 2016 35
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_6

CHAPTER 6 © HTML5 PARAMETERS: USING GLOBAL TAG ATTRIBUTES

Table 6-1. Supported Global HTML5 Tag Attributes

Global Parameter Global Parameter Purpose

contenteditable Specify if an element content is editable or not
contextmenu Specify context menu for the HTML5 element (tag)
data-<attribute> Specify custom data attributes for your document
draggable Specifies if an element is draggable (or is not)
dropzone Specifies a drop processing (copy, move or link)
hidden Specify visibility (relevancy) for each element
spellcheck Specify spelling and grammar check for elements
translate Specifies to execute scripts after HTML parsing
accesskey Specify a keystroke shortcut to focus an element
class Specify a classname for element in a style sheet
dir Specify a text reading direction for an element

id Specify a unique ID for element in a style sheet
lang Specify the language used for that element

style Allows in-line CSS Style declaration for element
tabindex Specifies the tabbing order for that element

title Specifies extra information regarding an element

Let’s talk about the eight HTMLS5 global parameters first.

HTML5 Global Parameters: Advanced Attributes

The global attributes or parameters recently added to HTML5 are more advanced and
add features more akin to devices, operating systems, and applications than to websites,
as older versions of HTML were designed for. These parameters allow things such as drag
and drop, editable content, context menus, custom data definition, spell-checking, and
language translation.

The CONTENTEDITABLE Parameter: Can | Edit This Content?

The contenteditable=“boolean” parameter (or attribute) allows you to specify whether
or not you want your user to be able to edit the content inside of that element (tag) that
the parameter is attached to (used inside of). When a contenteditable attribute is not
set on an element, but is set on a parent tag of that element, a child element inherits the
setting (true, false) from its parent element.

36

CHAPTER 6 © HTML5 PARAMETERS: USING GLOBAL TAG ATTRIBUTES

In fact, some browsers, including Opera and Firefox, set the inherit value as the
default, whereas Chrome and Internet Explorer set the false value as the default. Thus,
you could say there are three value options for this parameter, true, false, and inherit.

The following HTML5 markup is an example of creating an editable paragraph of
text using a <p> tag (which is covered in Chapter 10):

<p contenteditable="true">Go ahead, edit this text if you're so inclined</p>

Next, let’s look at context-sensitive menus in HTML5 with the contextmenu parameter.

The CONTEXTMENU Parameter: Context Sensitive Menuing

The contextmenu="“id” parameter (or attribute) allows you to specify whether or not you
want your user to be able to open a context-sensitive menu by right-clicking the content
inside of that element (tag) to which the parameter is attached to. The contextmenu
parameter value references the ID parameter of a <menu> tag element, which you define
using <menuitem> child tags to define your menu options (items).

The following example shows a context-sensitive menu using the <div> tag
(described in Chapter 14) in a document:

<div contextmenu="divmenu">
<menu id="divmenu" type="context">
<menuitem label="Menu Option 1"></menuitem>
<menuitem label="Menu Option 2"></menuitem>
<menuitem label="Menu Option 3"></menuitem>
</menu>
</div>

You can attach context-menus to any HTML5 element; after all, this is a global
parameter, so it can be attached to any HTML5 tag (document or app design element).
Be sure that it is logical to attach a menu to your design element from a UI design
standpoint; the user still has to right-click that element and expect that menu. Next, let’s
take a look at custom data constructs using the data parameter.

The DATA- Parameter: Custom Data Definitions for HTML5

The data-name="“datatype” parameter (or attribute) allows you to specify custom
private data type definitions to content inside of that element. The data-name
parameter value allows you to add your data type name to the parameter itself, which is
unique in HTML5 parameters, and references the data type used to define that particular
tag’s content.

It is logical to utilize in conjunction with JSON (JavaScript Object Notation) data
object definitions, which you can research further in my JSON Quick Syntax Reference
(Apress 2016) book.

37

http://dx.doi.org/10.1007/978-1-4302-6536-8_10
http://dx.doi.org/10.1007/978-1-4302-6536-8_14

CHAPTER 6 © HTML5 PARAMETERS: USING GLOBAL TAG ATTRIBUTES

To enhance the context-sensitive menu created using a <div> tag in the previous
section, let’s create a data-car data type definition and name each menu item (car
models) with its country of origin. To accomplish this, modify your HTML5 tag markup to
look like this:

<div contextmenu="carmenu">
<menu id="carmenu" type="context">
<menuitem data-car="german" label="Mercedez Benz"></menuitem>
<menuitem data-car="italian" label="Lamborghini"></menuitem>
<menuitem data-car="american" label="Corvette"></menuitem>
</menu>
</div>

Next, let’s take a look at the draggable design elements that you can create in
HTMLS5, by using the draggable parameter.

The DRAGGABLE Parameter: Can | Drag This Element Around?

The draggable=“boolean” parameter (or attribute) allows you to specify whether you
want your user to be able to drag around the content inside of the tag on a display screen.
There are actually three value options for this parameter, true, false, and auto. Using the
auto option specifies the default draggable value for each particular browser.

The following HTML5 markup shows a draggable paragraph of text using a <p> tag:

<p draggable="true">You're able to drag this paragraph around the screen</p>

Next let’s take a look at how to drop draggable elements in HTMLS5 by using the
dropzone parameter. These two parameters are used in conjunction with each other,
because to be able to drop an element, you have to be able to drag it in the first place!

The DROPZONE Parameter: What to Do When an
Element Is Dropped

The dropzone="“action” parameter (or attribute) allows you to specify the action that
your HTMLS5 application implements once the user drags the content into place on the
screen. There are three action value options for this parameter: move, copy, and link.
The auto option specifies the default draggable value for each particular browser.

To create the dropzone area, attach a dropzone parameter to a <div> area using the
<div> tag (see Chapter 14), as shown in the following HTML5 markup:

<div dropzone="mowe">Content Child Elements/Tags will be in here</div>

To create a copy of the dragged content in your dropzone area, use the copy option
instead, as shown the following markup:

<div dropzone="copy">Content Child Elements/Tags will be in here</div>

38

http://dx.doi.org/10.1007/978-1-4302-6536-8_14

CHAPTER 6 © HTML5 PARAMETERS: USING GLOBAL TAG ATTRIBUTES

This leaves your original dragged content intact and copies it to the new location.
This is the least memory-efficient option because it duplicates the drag-and-drop content
in system memory, which is inefficient. The solution is to use the link option, which
displays the dropped content in a second location but references it from the original
memory storing the original element. This is accomplished with the following HTML5
markup to link the new content in the division:

<div dropzone="link">Content Child Elements/Tags will be in here</div>

Next, let’s look at how to hide elements in HTML5 using the hidden parameter.

The HIDDEN Parameter: Hide Element Content until it is Relevant

The hidden=“boolean” parameter (or attribute) allows you to specify whether you want
your element to be hidden from view. There are two value options for this parameter:
true or false. Specifying the hidden tag sets the value to true; not specifying it sets the
value to false. The following example creates a hidden paragraph of text using a <p> tag:

<p hidden>This paragraph will be hidden from the user's view</p>

Next, let’s look at how to spell-check elements in HTML5, by using the spellcheck
parameter.

The SPELLCHECK Parameter: Allow Spell-checking for Content

The spellcheck=“boolean” parameter (or attribute) allows you to specify whether you
want your text-based elements to have the spell-checking feature enabled. This is used
in conjunction with the contenteditable attribute for text-capable elements, such as
paragraphs, text areas, input fields, and the like.

To create an editable paragraph text that supports this spell-checking feature, use
the <p> tag with the contenteditable and the spellcheck parameters both set to a value of
true, as shown in the following HTML5 markup:

<p contenteditable="true" spellcheck="true">Paragraph with spellchecking</p>

Next, let’s take a look at the language support in HTML5 using the translate parameter.

The TRANSLATE Parameter: HTML5 Global Language Support

The translate=“boolean” parameter (or attribute) allows you to specify whether you
want your text-based elements to be translated into different languages. Interestingly,
instead of using true and false for the Boolean value, this parameter uses yes and no. The
default (not specifying the translate parameter at all) is yes (translate this text element
content), which equates to “support the localization of this content” Therefore, this
parameter is primarily used to prevent a translation when you want the language for your
HTML5 document to remain in the language that you originally created it in.

39

CHAPTER 6 © HTML5 PARAMETERS: USING GLOBAL TAG ATTRIBUTES

To create paragraph text that supports this translation feature, use the <p> tag with
no translate parameter, or with the parameter set to a yes value, as shown in the following
HTML5 markup:

<p>This Paragraph Will Be Translated by Default, to Localize the Content</p>
<p translate="yes">This Paragraph WILL Be Translated, for Localization.</p>

To create paragraph text that will never be translated, use the <p> tag with the
translate parameter set to the no value, as follows:

<p translate="no">This Paragraph Will NOT Be Translated or Localized</p>

Next, let’s take a look at global parameters supported across all versions of HTML,
including HTML5 and HTML 5.1.

Pre-HTML5 Global Parameters: Legacy Attributes

The remaining eight parameters in Table 6-1 have been in HTML for quite a long time
and are probably much more familiar to you. The style and lang parameters have been
covered already, so let’s go over the rest so that you can get into the tags that control
content design and display in your HTMLS5 applications, websites, and documents.

The ACCESSKEY Parameter: Adding Keyboard Shortcut Keys

The accesskey="key value” parameter (or attribute) allows you to specify a keyboard
shortcut for your elements. This is useful for hypertext anchor <a> tags (covered in
Chapter 7), which allows your users to simply press a letter key on the keyboard to
automatically access a website.

To create a keyboard shortcut for an anchor tag link, use an accesskey parameter
inside of an <a> tag and assign it a key on the keyboard. Here’s an example, using basic
HTML5 markup:
Publisher Website

Author Website

Next, let’s take a look at how you attach HTMLS5 tags to cascading stylesheet (CSS)
definitions using a class parameter.

The CLASS Parameter: Labeling Your Elements for Use with CSS

The class=“name” parameter (or attribute) allows you to specify a classname for your
tags. It is useful for any tags that can be styled using CSS3 or controlled using JavaScript,
which includes the majority of the tags covered in this book.

40

http://dx.doi.org/10.1007/978-1-4302-6536-8_7

CHAPTER 6 © HTML5 PARAMETERS: USING GLOBAL TAG ATTRIBUTES

To create a classname for a paragraph tag, use the class parameter inside of a <p> tag.
To access this inside of a style tag, use the p.coloredtext dot notation. Here’s a basic
example using HTML5 markup with the high-level tags you've learned:

<html><head><style>

p.coloredtext { color: red; } <!-- CSS to set the p color to red -->
</style></head>
<body>

<p class="coloredtext">This text will be displayed in a Red color.</p>
</body></html>

Next, let’s look at how you define text direction (left to right, or LTR, and right to left,
or RTL), using a dir parameter.

The DIR Parameter: Defining the Direction of your Text

A dir=“direction” parameter (or attribute) allows you to specify the direction that you
want your text-based elements to be read. This parameter uses rtl and Itr as options, as well
as auto, which is the default for the browser. If you use auto, the browser tries to ascertain
the correct direction based upon the content (the character set that it is utilizing).

To create paragraph text that supports this translation feature, use the <p> tag with
no translate parameter, or with the parameter set to a yes value, as follows:

<p dir="rtl">This Paragraph Will Be Written from the Right To the Left!</p>

In HTMLS5, this parameter can be used with any tag, although it is only useful
with some tags. In older versions of HTML, the parameter can’t be used with <frame>,
<iframe>, <frameset>, <param>, <script>, <base>,
, or <hr>.

Next, let’s take a look at the id parameter.

The ID Parameter: Identifying Your Content Elements

The id=“name” parameter (or attribute) allows you to specify an id to use as a handle. It
is useful for any tags that can be styled using CSS3 or controlled using JavaScript.

To create an ID for a paragraph tag, use an id parameter inside of a <p> tag. To access this
inside of a <script> tag, use the document.getElementByld() function. Here's an example:

<html><body>
<p id="hellowoxrld">Click this button to change to: Hello World!</p>
<button onclick="HelloWorldFunction()">Change Text, Please!</button>
<script>
function HelloWorldFunction() {
document.getElementById("helloworld").innderHTML = "Hello World";
}
</script>
</body></html>

Next, let’s take a look at how you specify language by using the lang parameter.

41

CHAPTER 6 © HTML5 PARAMETERS: USING GLOBAL TAG ATTRIBUTES

The LANG Parameter: Defining an Element’s Language

The lang="“language” parameter (or attribute) allows you to specify the language used in
your text-based elements.

To create the paragraph text that supports this language specification feature, use the
<p> tag with the lang parameter, set to the abbreviated value of the language used in your
text element. An example of this is shown in the following HTML5 markup:

<p lang="es">Buenos Dias, Compadres!</p>

Next, let’s take a look at the in-line stylesheet support in HTML5 using the style
parameter.

The STYLE Parameter: Using In-Line Stylesheet Settings

The style=“css” parameter (or attribute) allows you to specify "in-line CSS3" markup in
an element (tag).

To create paragraph text that supports this stylesheet specification feature, use the
<p> tag with the style parameter set to use style markup. The following is an example of
how this is done using HTML5 markup:

<p style="color:green">This text will now use the green color!</p>

Next, let’s take a look at controlling the way that your Tab key advances through your
Ul in HTMLS5 using the tabindex parameter.

The TABINDEX Parameter: Tab Key Advancement Ordering

The tabindex="integer value” parameter (or attribute) allows you to specify a TAB key
order for your tags. It is useful for hypertext anchor <a>, allowing users to tab through
each link in the order that you define. To create a tabbing order for an anchor tag link,
use a tabindex parameter inside of an <a> tag and assign it a number. Here’s an example
using basic HTML5 markup:

Publisher's Website
Author's Website
Tech Reviewer Website

Next, let’s take a look at how you can define the pop-up tooltip text that your HTML5
tags show when your users do a mouse-over action on your user interface design elements.

The TITLE Parameter: Adding a Title to your Content Element

A dir=“direction” parameter (or attribute) allows you to specify the direction you want
your text-based elements to be read. This parameter uses rtl and Itr as options, as well as
auto, which will be default for the browser. If you use auto the browser will try to ascertain
the correct direction based upon the content (that is, what character set it is utilizing).

42

CHAPTER 6 © HTML5 PARAMETERS: USING GLOBAL TAG ATTRIBUTES

To create paragraph text which supports this translation feature use the <p> tag with
no translate parameter or with the parameter set to a yes value, as shown in the following
HTML5 markup:

<p title="This will display on Mouse-Over">Mouse-Over Text for Tool Tip!</p>
In HTMLS5 this parameter can be used with any tag, though it is only useful with

some tags. In previous versions of HTML, this parameter can't be used in <meta>, <base>,
<head>, <html>, <style>, <param>, or <script> tags.

Summary

This chapter explained global HTML5 parameters (also referred to as attributes or
characteristics). In the next chapter, you're going to look at the HTML5 anchor <A> or
<a> tag, which allows hypertext and URL references.

43

CHAPTER 7

HTML5 Navigation: Using an
Anchor Tag for Hypertext -

This chapter focuses largely on the anchor (<A> or <a>) tag, which added the
differentiating hypertext features to HTML, or Hypertext Markup Language. The anchor
tag originally supported URL links, allowing you to go to other websites, called hypertext,
as well as anchors or page locators, allowing you to jump to different locations in the
same URL (website). HTML5 now only supports URL linking with the <a> tag; however,
I cover the legacy parameters for the <a> tag to be complete about this anchor tag
element’s coverage.

In this chapter, I go over a dozen parameters supported by HTML's anchor tag,
seven of them are supported in HTML5, and five are also supported versions prior
to HTMLS5.

HTML Anchor Tag Attributes: All Versions

This chapter covers the anchor or <a> tag used for hypertext, or linking across

different HTML5 documents and applications, as well as a dozen anchor tag attributes,
characteristics, or parameters. It is logical to cover this first, before we get into the plethora
(around a hundred) of tags that are children of the <body> tag, because hypertext
differentiates HTML5 and the anchor tag is commonly used to create navigation to other
sections of a website. This is typically done by using CSS3 to style links so that they look
like buttons. Table 7-1 shows the parameters used with the anchor <a> tag: the first two
only work with HTMLS5, the next five work with all HTML versions, and the last five do not
work with HTML5.

© Wallace Jackson 2016 45
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_7

CHAPTER 7 © HTML5 NAVIGATION: USING AN ANCHOR TAG FOR HYPERTEXT

Table 7-1. HTML5 <a> Tag Attributes Supported and Not Supported

Global Parameter Global Parameter Purpose

download Specify if an element content is editable or not
media Specify context menu for the HTML5 element (tag)
href Specify custom data attributes for your document
hreflang Specifies if an element is draggable (or is not)

rel Specifies a drop processing (copy, move or link)
target Specify visibility (relevancy) for each element
type Specify spelling and grammar check for elements
charset Specifies to execute scripts after HTML Parsing
coords Specify a keystroke shortcut to focus an element
name Allows in-line CSS style declaration for element
rev Specifies the tabbing order for that element

shape Specifies extra information regarding an element

Let’s get into the seven HTMLS5 global parameters first.

Anchor Tag HTML5 Parameters: Hypertext's HREF

The most important parameter for using the anchor <a> tag in HTMLS5 is the href, or
hypertext reference, parameter. It uses a URL, or Uniform Resource Locator, as the
parameter value. The URL is a website address that begins with an http:// Hypertext
Transfer Protocol (HTTP) header and then the web address. For example, the Apress
website is at http://www.apress.com.

The following is an example of a hypertext link using the <a> tag with the href parameter:

Click here to open the Apress website

As the default, links not yet visited (clicked) are blue, visited links are purple, and
active links are red. Links are also underlined by default, although, this can be changed
using CSS3, if you want to style a link differently.

Without the href parameter, six of the twelve anchor tag parameters cannot be used.
These include download, target, media, rel, type, and hreflang, which we’ll cover next.

The HREFLANG Parameter: Hypertext Link Language Support

The hreflang="“language abbreviation” parameter (or attribute) allows you to specify
the language used by your hypertext link. We have looked at this before, so I will just
reference a quick example, and then we can move on to the other anchor tag parameters.
The following is an example of a language specified link using an <a> tag:

Bonjour! www.Apress.com

46

http://www.apress.com/

CHAPTER 7 © HTML5 NAVIGATION: USING AN ANCHOR TAG FOR HYPERTEXT

Language codes are formally defined via ISO 639, which are found at the following
websites:

e http://www.iso.org/iso/home/standards/language_codes.htm
(1SO.org)

e https://en.wikipedia.org/wiki/List_of ISO 639-1 codes
(Wikipedia)

Next, let’s look at the two tags that are only supported in HTML5: the download tag
and the media tag.

The DOWNLOAD Parameter: Downloading Files Using the A Tag

When present, the download parameter (or attribute) tells the HTML5 parsing engine
(browser or operating system) that the file referenced using the href parameter needs to
be downloaded, rather than loaded and parsed as an HTML5 document or application.
To download a file, such as the animated MindTaffy logo found on www.
WallaceJackson.com, you would specify the file name in the href parameter rather
than an HTML website. You would also add the download parameter, which acts like
a Boolean flag, so the download parameter present means download="“true” and the
download parameter absent means download="false” To accomplish this, you would
modify your HTML5 tag markup to look like this example:

Download Logo!

Next, let’s take another brief look at a media parameter.

The MEDIA Parameter: What Media Device Does a Link Support?

The media=“media/device types” parameter (or attribute) was covered in Chapter 4, so
we do not need to cover it here, other than to show an example of its use with the <a> tag.
The following is an example a link specifying a device type:

iTV Set - Display: Screen

Next, let’s take a look at how you can use the target parameter to tell the browser
how and where to open your new hyperlinked document.

The TARGET Parameter: Where to Open a Hypertext Document

The target=“_constant” parameter (or attribute) allows you to specify the location that

your HTMLS5 application opens your URL link in. There are four value options for this
parameter, _blank, _self, parent, and _top. You can also use a frame name, although
since framesets are seldom used anymore, this is quite rare, as are the _parent and _top
options. Most developers use _blank to open a new tab in the browser, or _self (which
is the default if there is no target parameter specified in the <a> tag), which replaces the
current HTML5 content with that specified in the URL from using the href parameter.

47

http://www.iso.org/iso/home/standards/language_codes.htm
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
http://www.wallacejackson.com/
http://www.wallacejackson.com/
http://dx.doi.org/10.1007/978-1-4302-6536-8_4

CHAPTER 7 © HTML5 NAVIGATION: USING AN ANCHOR TAG FOR HYPERTEXT

To create a new tab for your linked document, you use the target="_blank”
parameter inside your <a> tag, as shown in the following example:

Open iTV Set in a new Tab

To replace the currently displayed HTML content with the linked document, you
should use the target="_self” parameter in your <a> tag, as shown in the following
example:

Replace this site with iTV Set

To replace the currently displayed HTML content in the parent frame with your
linked document, you'd use the target=“_parent” parameter in your <a> tag, as follows:

Open iTV Set in Parent Frame

To replace currently displayed HTML5 content at the top of your frameset (which
fills an entire tab or window) with your linked document, you use the target=“_top”
parameter inside of your <a> tag, as follows:

Open iTV Set in the Full Window

To replace currently displayed HTML content in any named frame within your
frameset with your linked document, you would use the target="“frame-name”
parameter inside of the <a> tag, as shown in the following HTML5 markup example:

Open iTV Set in this Frame

Next let’s take a look at how to define the relationship between linked documents in
HTMLS5 by using the rel parameter.

The REL Parameter: Define a Relationship to the Hypertext Link

The rel="relationship type” parameter (or attribute) allows you to define the type

of relationship that exists between the current HTML5 document and the document
specified in your href parameter by using the URL value. There are a dozen possible
values that can be used in the <a> tag’s rel attribute, including alternate, author,
bookmark, help, license, next, nofollow, noreferrer, prefetch, prev, search, and tag.
Some of these are the same as the rel parameter supported by the <link> tag; however,
some of them are different parameters for the <a> tag. Table 7-2 lists these parameters
along with their purpose.

48

CHAPTER 7 © HTML5 NAVIGATION: USING AN ANCHOR TAG FOR HYPERTEXT

Table 7-2. HTML5 Anchor Tag rel Attributes

REL Parameter REL Parameter Purpose

alternate Specifies an alternate version of HTML5 document
author Specifies your author profile for HTML5 document
bookmark Specifies permanent URL to bookmark the document
help Specifies the URL (a link) to the help document
license Specifies a URL (a link) to a copyright document
next Specifies next document in a series of documents
nofollow Specify spelling and grammar check for elements
noreferrer Specifies to execute scripts after HTML parsing
prefetch Specify a keystroke shortcut to focus an element
prev Allows in-line CSS style declaration for element
search Specifies the tabbing order for that element

tag Specifies extra information regarding an element

To create an alternate version of a linked document, you use a rel="alternate”
parameter inside the <a> tag, as shown in the following HTML5 markup:

Alternate iTV Version

To reference your Author Profile version for your linked document, you would use
this rel="author” parameter inside your <a> tag, as shown in the following HTML5
markup:

Author Website

To create a bookmark link version for a linked document, you use the
rel="“bookmark” parameter inside the <a> tag, as shown in the following HTML5 markup:

Bookmark for iTV Set Site

To create a help document version for a linked document, you use a rel="“help”
parameter inside the <a> tag, as shown in the following HTML5 markup:

iTV Set Website Help Document

To create a licensing document for a linked document, you use the rel=“license”
parameter inside of an <a> tag, as shown in the following HTML5 markup:

Copyright License Document

49

CHAPTER 7 © HTML5 NAVIGATION: USING AN ANCHOR TAG FOR HYPERTEXT

To designate the next version for your linked document series, you should use the
rel="next” parameter, inside an <a> tag, as shown in the following example:

The Next Document in a Series

To instruct search engine robots not to follow (or rank) a linked document, you
should use the rel=“nofollow” parameter, inside of your <a> tag, as shown in the
following example:

Do Not Follow (Rank) Link

To hide the fact that links to another website came from your website, you would
utilize the rel=“noreferrer” parameter, inside of your <a> tag, as shown in the following
example:

No Site Referrer Info Sent

To instruct HTML5 rendering engines to “pre-load,” or to cache a document before
itis needed, that is, before your link is clicked by a user, you would use a rel="prefetch”
parameter, inside of your <a> tag, as shown in the following example:

Prefetch This Document

To designate a previous version for your linked document series, you should use the
rel=“prev” parameter, inside the <a> tag, as shown in the following example:

Previous Document in a Series

If you create a search tool user interface (application) for the document you can link
to this HTMLS5 search application, and then utilize the rel=“search” parameter inside of
your <a> tag, as shown in the following example:

Custom Search Utility Link

To quote the W3C directly, regarding this parameter: “The search keyword indicates
that the referenced document provides an interface specifically for searching the
document and its related resources.” Creating a custom search interface (user interface
application) is no easy task, and is somewhat rare across smaller websites, but does exist
on larger sites.

To instruct search engine robots that the text used in a <a> tag is a relevant keyword
related to the current document’s topic, you should use a rel=“tag” parameter, inside of
your <a> tag, as shown in the following example:

Tag the ebooks keyword

Next, let’s take a brief review of your type parameter.

50

CHAPTER 7 © HTML5 NAVIGATION: USING AN ANCHOR TAG FOR HYPERTEXT

The TYPE Parameter: MIME Types, Media Types, and File Types

We covered the type parameter already, during Chapters 4 and 5, so let’s just suffice it

to say here that the anchor <a> tag supports the definition of a MIME (media or file)

type with the type="“file type” parameter. In case you are wondering, MIME stands for
Multipurpose Internet Mail Extensions, as it was used originally for e-mail and expanded
later to be used for servers, browsers, and applications. Usage of the type parameter in
your <a> tag might look like the following HTML5 markup:

iTV Set: An HTML Websitel!

Next, let’s cover non-HTMLS5 anchor tag parameters, so we have comprehensive
coverage of hypertext during this chapter.

Anchor Tag Non-HTML5 Parameters: Legacy Code

Finally, let’s take a quick look at the five anchor tag parameters that do not work in
HTMLS5, but which do work for HTML4 and earlier, just in case you are doing some legacy
code maintenance or supporting multiple browser revision numbers.

The CHARSET Parameter: Hypertext Link Character Set Support

We covered the charset parameter in Chapters 4 and 5, so I'll just reiterate here that your
anchor <a> tag supports character set definition using the charset="charset” parameter.
Most HTML documents or apps use the UTF-8 or ISO-8859-1 preset.

The following is an example of a character set specified link by using an <a> tag and
charset parameter:

iTV Set: A UTF-8 Website!

Next, let’s take a closer look at the coords parameter.

The COORDS Parameter: Define Coordinates for Your
Image Map

The coords parameter (or attribute) tells the HTMLS5 parsing engine the coordinates
for the file referenced using the href parameter. It is used in conjunction with the shape
parameter. It created image maps, which are no longer supported in HTMLS5.

HTML tag markup looks like this example:
Image Map

Next, let’s take brief look at the name parameter.

51

http://dx.doi.org/10.1007/978-1-4302-6536-8_4
http://dx.doi.org/10.1007/978-1-4302-6536-8_5
http://dx.doi.org/10.1007/978-1-4302-6536-8_4
http://dx.doi.org/10.1007/978-1-4302-6536-8_5

CHAPTER 7 © HTML5 NAVIGATION: USING AN ANCHOR TAG FOR HYPERTEXT

The NAME Parameter: Naming a Link (Supported
Prior to HTML5)

Prior to HTMLS5, the name parameter (or attribute) specified the name of the anchor, but
it was deprecated (support was discontinued) with the anchor (jump to different part of
document) feature. Therefore, I do not need to cover it beyond showing an example of its
use with the <a> tag. To simulate this in HTMLS5, use an id parameter. The following is an
example of a named anchor in HTML4 and older versions:

iTV Set Anchor Name
To create a named link in HTMLS5, you would use this HTML markup:
iTV Set Link Name Using ID

Next, let’s take a look at the rev parameter.

The REV Parameter: Where to Open a Hypertext Document

The rev parameter (or attribute) is the opposite of the rel parameter. It is no longer
supported in HTML5.

To create the reverse relationship for a linked document, you use the rev="“constant”
parameter inside your <a> tag, as follows:

An Opposite of an iTV Set

Next, let’s look at the shape parameter.

The SHAPE Parameter: Define the Shapes for Your
Image Maps

The shape parameter (or attribute) tells the HTML5 parsing engine the shape (rect or
circle) used for the file referenced using an href parameter. It is used in conjunction with
the coords parameter. It created image maps, but it is not supported in HTML5.

HTML tag markup looks like this:

Image Map
Now you are ready to move on to the remaining document content design, creation,

and publishing tags supported in HTML5. We are making steady progress and we are
about to have fun using multimedia design elements in our HTMLS5 applications!

52

CHAPTER 7 © HTML5 NAVIGATION: USING AN ANCHOR TAG FOR HYPERTEXT

Summary

This chapter covered hypertext in HTML5 by using the anchor or <a> tag and a dozen
of its parameters. You learned about the href parameter and Hypertext Transfer
Protocol (HTTP). You also looked at several parameters that work in HTML5, and
some that do not.

The next chapter discusses the HTMLS5 tags that support the addition of new media
elements, including imagery, audio, and video. These allow developers to add visual
(and aural, with audio) pizazz to their HTML5 website, document, or application.

53

CHAPTER 8

HTML5 Multimedia: Utilizing
New Media Assets

Before getting into the remaining child tags of the parent <body> tag, let’s cover a

few tags that allow you to implement new media content elements in your HTML5
designs. These elements are becoming more prolific in HTML5 documents and
applications. This is happening due to the advent of different devices types, such as
iTV Sets, smartwatches, smartphones, tablets, and e-book readers, just to name a few.
And yes, there are HTML5 operating systems that drive popular products in each of
these genres, challenging Android’s market domination across consumer electronics
devices. If you are interested in producing new media content in HTMLS5, check out
Appendix D of this book, as well as my new media content production fundamentals
book series at www.apxess.com.

In this chapter, I go over the key tags to implement new media elements, such as
digital images using the tag, digital video using the <video> tag, digital illustration
using the <svg> tag, and digital audio using the <audio> tag. We also cover advanced
areas of new media that utilize APIs or a combination of new media features. This
allows developers to achieve almost anything in HTML5 that a more advanced OOP
programming language, such as C++ or Java, is able to. In fact, Java or JavaFX work inside
HTMLS5, so the future is bright for HTML5 in multimedia!

HTML5 New Media Support: Nine Genres

This chapter covers the new media capabilities of HTMLS5. It discusses all of the new
media genres and shows how developers can create content within these genres using
tags, which are covered first, and then JavaScript and APIs. Table 8-1 lists the new media
genres supported in HTMLS5, along with the file formats, and in some cases, the API that
they utilize.

© Wallace Jackson 2016 55
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_8

http://www.apress.com/

CHAPTER 8 © HTML5 MULTIMEDIA: UTILIZING NEW MEDIA ASSETS

Table 8-1. Nine HTML5 New Media Genres and Data Format Support

New Media Asset Supported Data Formats

Digital Imagery JPEG, GIF, PNG8, PNG24, PNG32, WebP, BMP, PDF
Digital Audio MP3, OGG Vorbis, WAVE, AIFE MPEG-4, OPUS, FLAC
Digital Video MPEG-4 AVC H.264, MPEG-H EVC H.265, WebM VP8/VP9
Digital Illustration SVG (Scalable Vector Graphic)(also used via CSS)
Interactive 3D WebGL or WebGL2 (<canvas> covered in Chapter 17)
Digital Painting SVG, JPEG, GIFE, PNG (8/24/32), WebP, WebM, MPEG
Visual FX (VFX) Above Formats combined together using JavaScript
Speech Recognition Recognizes Speech; Converts to Text (Web Speech)
Speech Synthesis Synthesizes Speech, Using Text (Web Speech API)

The first section of Table 8-1 features new media assets that enjoy “native” or direct
tag support in HTMLS5, including the , <audio>, <video>, <svg>, and <canvas> tags.

The second section of Table 8-1 contains new media genres that require JavaScript
and advanced APIs to create a more advanced new media asset, such as a digital painting,
or a visual effects (VFX) pipeline, or an interactive user experience. If you're interested in
new media for HTML5 I have a New Media Fundamentals series of books with Apress at
Apress. com, just search for this Author’s name.

The third section of Table 8-1 contains a speech synthesis and speech recognition
entries, because there is now the Web Speech API for two of the popular browsers—
Google Chrome and Apple Safari. It won’t be long before other HTMLS5 platforms adopt
the Web Speech API, especially as iTVs and smartphones with HTML5 operating systems
are increasing in number. This means that the Web Speech API should exist in all popular
browsers before 2017 rolls around.

Let’s look at each of these new media areas in their own sections in the chapter, now
that I have outlined the relevant file (data) formats that are supported. Next, let’s look at
the core tags and their parameters and related APIs, which allow HTML5 developers to
implement multimedia applications that rival those created for Android, Windows, Linux,
and iOS. This is an exciting chapter for HTML5 developers who wish to create never-
before-seen (or heard) user experiences!

Digital Imagery: Using the Tag

The most widely used new media element with HTMLS5 is the digital image, which

uses the tag. It was introduced in HTML 1.2 and standardized in HTML 2.0.
Parameters include src, the digital image asset file reference parameter, as well as the
width and height parameters and useful SEO parameters. Table 8-2 shows parameter
support in HTMLS5.

56

http://dx.doi.org/10.1007/978-1-4302-6536-8_17
http://www.apress.com/

CHAPTER 8 © HTML5 MULTIMEDIA: UTILIZING NEW MEDIA ASSETS

Table 8-2. Parameters Supported By Tag

IMG Tag Parameter IMG Tag Parameter Purpose

src A digital image asset source file name reference
alt Alternate text description of image used for SEO
crossorigin Cross-origin access control for third-party site
height Height (in pixels) to display the image

width Width (in pixels) to display the image

longdesc URL for a detailed description of image

usemap Specify image as a client-side image map

ismap Specify image as a server-side image map

align Specify the alignment of image to other elements
border Specify the border width around image

hspace Specify the whitespace width left/right of image
vspace Specify the whitespace width top/bottom of image

The tag has a dozen parameters, eight of which are supported in HTML5, and
four of which have been deprecated due to the use of CSS to provide these functions.
The 12 parameters are seen in Table 8-2; common usage parameters are in the first
section and the less commonly used parameters are in the second section. The third
section contains parameters supported in previous HTML versions, which you use CSS
to implement in HTML5. You can use these parameters in legacy HTML4 or prior HTML
versions such as HTML3.2, HTML 2.0, and XHTML 1.0 and 1.1.

If you want to master digital image compositing terms, principles, workflows, and
fundamentals, check out Digital Image Compositing Fundamentals (Apress, 2015).

The following is an example of a digital image asset using the tag with the src
parameter:

To optimize a digital image asset for SEO purposes, you use the alt parameter, as
shown in the following example HTML5 markup:

To scale a digital image asset, you use with the width and height parameters, as
shown in following example:

 <!-- Scale Down Image -->
Make sure to scale your image by a power of 2. Thus, your source image for the

preceding markup should be 800 x 600, or 1600 x 1200 in physical pixel resolution. Always
scale down not up!

57

CHAPTER 8 © HTML5 MULTIMEDIA: UTILIZING NEW MEDIA ASSETS

To allow a digital image asset to be legally accessed from a third-party website,
use the crossorigin parameter (as covered in Chapter 4), as shown in the following
HTML5 markup:

To further optimize a digital image asset for SEO, using the longdesc parameter,
you should utilize this following HTML5 markup, which provides the URL reference to a
keyword-optimized description that you create using HTML5:

To define a client-side digital image map asset with the USEMAP parameter, you
would utilize the following HTML5 markup:

<map id="mapname">
<area shape="rect" coords="10,10,640,240" href="URL" alt="SEO" />
<area shape="circle" coords="320,360,120" href="URL" alt="SEOQ" />
</map>

This provides the id reference to your <map> element definition, which contains
<area> element definitions that define areas within your client-side image map.

To specify a digital image asset using server-side image mapping, use an ismap
parameter, as shown in the following HTML5 markup:

Next, let’s look at digital audio assets and the HTML5 <audio> tag.

Digital Audio: Using the <audio> Tag

Your next most widely used new media element in HTMLS5 is digital audio, which uses the
<audio> tag. This is new to HTML5 and it is not in previous versions of HTML. Parameters
include the src, which references a digital audio asset file name, and controls, which
adds the audio transport user interface feature. Table 8-3 shows the <audio> tag
parameters supported in HTML5, with the two most important parameters in the top
section, the most commonly used options in a middle section, with seldom used options
in the bottom section of the table.

58

http://dx.doi.org/10.1007/978-1-4302-6536-8_4

CHAPTER 8 © HTML5 MULTIMEDIA: UTILIZING NEW MEDIA ASSETS

Table 8-3. Parameters Supported By the <audio> Tag

Audio Tag Parameter Audio Tag Parameter’s Purpose

src Digital audio asset source file name reference
controls Audio transport Ul (user interface) controls
preload Preloads the digital audio file asset

muted Mutes the digital audio asset

loop Loops the digital audio asset

autoplay Automatically play audio on a page load event
autobuffer Automatically buffer audio on page load event

This <audio> tag has seven parameters. These can be seen in Table 8-3 in the first
section (common usage parameters) and in the second section (three less frequently
used parameters). The third section of the table contains parameters that are supported
but are not recommended for use unless absolutely needed. The reason for this is that
autoplay bothers many users, and an autobuffer takes up system resources that may not
even be used if the user chooses not to hit the transport play button.

If you want to master digital audio editing terminology, principles, workflows, data
footprint optimization, compositing and fundamentals, you check out my Digital Audio
Editing Fundamentals (Apress, 2015).

To create a digital audio asset, use the <audio> tag with the controls parameter,
<source> child tags, and noaudio message (like noscript), using this following HTML5
markup structure:

<audio controls>
<source src="preferred audio_codec.ogg" type="audio/ogg" />
<source src="second_choice audio_codec.mp3" type="audio/mp3" />
ALERT! Your Browser Does Not Support Audio or the HTML5 Audio Tag!
</audio>

Using more than one <source> tag provides “fallback” file format support choices
for the HTMLS5 platform that you are using, in case the first audio codec choice is not
supported by the HTML5 browser (or HTML5 operating system).

To autoplay a digital image asset using the autoplay parameter, you would utilize
the following HTML5 markup:

<audio controls autoplay>
<source src="preferred audio_codec.ogg" type="audio/ogg" />
<source src="second_choice audio_codec.mp3" type="audio/mp3" />
ALERT! Your Browser Does Not Support Audio or the HTML5 Audio Tag!
</audio>

59

CHAPTER 8 © HTML5 MULTIMEDIA: UTILIZING NEW MEDIA ASSETS

To loop the digital audio asset using the loop parameter, you should utilize the
following HTML5 markup:

<audio controls loop>
<source src="preferred audio codec.ogg" type="audio/ogg" />
<source src="second _choice audio codec.mp3" type="audio/mp3" />
ALERT! Your Browser Does Not Support Audio or the HTML5 Audio Tag!
</audio>

To preload a digital audio asset, use a preload parameter with the auto setting,
utilizing this following HTML5 markup:

<audio controls preload="auto">
<source src="preferred audio_codec.ogg" type="audio/ogg" />
<source src="second_choice audio _codec.mp3" type="audio/mp3" />
ALERT! Your Browser Does Not Support Audio or the HTML5 Audio Tag!
</audio>

To preload only digital audio metadata, use the preload parameter with a
metadata setting, using this HTML5 markup:

<audio controls preload="metadata">
<source src="preferred audio codec.ogg" type="audio/ogg" />
<source src="second_choice audio_codec.mp3" type="audio/mp3" />

ALERT! Your Browser Does Not Support Audio or the HTML5 Audio Tag! </audio>

To prevent any pre-loading of your digital audio assets, use the preload parameter
with the none setting, utilizing this following HTML5 markup:

<audio controls preload="none">
<source src="preferred_audio_codec.ogg" type="audio/ogg" />
<source src="second_choice audio_codec.mp3" type="audio/mp3" />

ALERT! Your Browser Does Not Support Audio or the HTML5 Audio Tag! </audio>

Next, let’s take a look at the digital video <video> tag.

Digital Video: Using the <video> Tag

Your next most widely used new media element in HTMLS5 is digital video, which uses the
<video> tag. This is new to HTML5 and is not in previous versions of HTML. Parameters
include the src, which references a digital audio asset file name, and controls, which
adds the video transport user interface feature, and width and height, in case you wish
to “downsample” or scale down your digital video asset (using a factor of 2 or 4). Table 8-4
shows the <video> tag parameters supported in HTML5 with the four most important
parameters in the top section, the four most commonly used options in the middle
section, and two less frequently used options listed in the bottom section.

60

CHAPTER 8 © HTML5 MULTIMEDIA: UTILIZING NEW MEDIA ASSETS

Table 8-4. Parameters Supported by the <video> Tag

Video Tag Parameter Video Tag Parameter’s Purpose

src Digital video asset source file name reference
width Digital video asset width in pixels

height Digital video asset height in pixels

controls Video transport UI (user interface) controls
preload Preload the digital video file asset

muted Mutes the digital video asset

poster Digital image to use as a poster while loading
loop Loops the digital video asset

autoplay Automatically plays a video on page load event
autobuffer Automatically buffers video on page load event

The <video> tag has ten parameters. These are seen in Table 8-4 in the first section
(common usage parameters) and in the second section (four less frequently utilized
parameters).

If you want to master digital video editing terminology, principles, workflows, data
footprint optimization, compositing, and fundamentals, check out the Digital Video
Editing Fundamentals (Apress, 2015).

To create a digital video asset, use the <video> tag with the controls parameter,
width and height parameters, three <source> child tags, and a novideo message (like a
noscript), as shown in the following HTML5 markup structure:

<video width="400" height="300" controls>
<source src="my preferred video codec.mp4" type="video/mp4" />
<source src="second_choice video_codec.ogg" type="video/ogg" />
<source src="third choice_audio_codec.webm" type="audio/webm"/>
ALERT! Your Browser Does Not Support Video or the HTML5 Video Tag!
</video>

Using more than one <source> tag provides “fallback” file format support choices
for the HTMLS5 platform that you are using, in case the first video codec choice is not
supported by that particular HTML5 browser (or operating system).

To autoplay a digital video asset, you use the autoplay parameter, as shown in the
following HTML5 markup:

<video width="400" height="300" controls autoplay>
<source src="my_preferred video_codec.mp4" type="video/mp4" />
<source src="second_choice video codec.ogg" type="video/ogg" />
<source src="third choice audio_codec.webm" type="audio/webm"/>
ALERT! Your Browser Does Not Support Video or the HTML5 Video Tag!
</video>

61

CHAPTER 8 © HTML5 MULTIMEDIA: UTILIZING NEW MEDIA ASSETS

To loop a digital video asset, you use the loop parameter, as shown in the following
HTML5 markup:

<video width="400" height="300" controls loop>
<source src="my preferred video_codec.mp4" type="video/mp4" />
<source src="second_choice video_codec.ogg" type="video/ogg" />
<source src="third choice audio_codec.webm" type="audio/webm"/>
ALERT! Your Browser Does Not Support Video or the HTML5 Video Tag!
</video>

To preload a digital video asset, you use the preload parameter with the auto
setting, as shown in the following HTML5 markup:

<video width="400" height="300" controls preload="auto">
<source src="my preferred video codec.mp4" type="video/mp4" />
<source src="second_choice_video_codec.ogg" type="video/ogg" />
<source src="third choice audio_codec.webm" type="audio/webm"/>
ALERT! Your Browser Does Not Support Video or the HTML5 Video Tag!
</video>

As with the <audio> tag preload parameter, you can set a preload value to none or to
only load the metadata.

In case you are wondering what metadata is, it includes information about the audio
or video asset, such as the title, the name of the artist, and information about the music
(or video) content.

To display an image during video buffering, use a poster parameter set to reference
your digital image asset’s file name, as shown in the following HTML5 markup:

<video width="400" height="300" controls poster="posterimagename.png">
<source src="my_preferred video_codec.mp4" type="video/mp4" />
<source src="second_choice video_codec.ogg" type="video/ogg" />
<source src="third choice audio_codec.webm" type="audio/webm"/>
ALERT! Your Browser Does Not Support Video or the HTML5 Video Tag!
</video>

Next, let’s look at the digital illustration <svg> tag and its child tags (which allow you
to define illustration).

Digital Illustration: Using the <svg> Tag

Your next most widely used new media element in HTMLS5 is digital illustration, which
uses the <svg> tag. It is also new in HTML5, meaning it was not included in previous
versions of HTML. CSS is the most popular way to apply the power of svg, especially a
plethora of special effects to apply to the vector element components of your HTML5
applications, including text, buttons, or vector illustrations. A number of new media
software packages can generate SVG XML data, including Inkscape, GIMP, Core]DRAW,
OpenOffice Draw, and Adobe Illustrator, to name just a few.

62

CHAPTER 8 © HTML5 MULTIMEDIA: UTILIZING NEW MEDIA ASSETS

SVG tag parameters include width and height for your SVG digital illustration
definition, as well as child tags, used to define SVG elements, which add features to
digital illustration assets. SVG is based on XML, and SVG uses XML tags, which as
you now know is compatible with HTML5 now that SVG support has been added. This
is exciting for HTML5 developers, as vector support allows digital illustrators to create
impressive interactive 2D artwork as well as visually exciting special effects for users.

Table 8-5 shows some of the SVG tag’s child tag elements that are supported in
HTMLS5. They also have their own parameters, such as fill, stroke, and color, and so forth,
as you will see in some of the markup examples in this section. I cannot discuss SVG in
detail in this book, because it is a topic in and unto itself. That said, the W3C’s decision to
add SVG support to HTML5 was easy due to shared SGML markup language origins.

Table 8-5. Child Tags Supported By the <svg> Tag
SVG Child Tag Purpose of SVG Child Tag

circle Draw a 2D circle element

rect Draw a 2D circle element

ellipse Draw a 2D circle element

polygon Draw a polygon (n-sided shape element)
polyline Draw a polyline

line Draw aline

image Digital image to use as a poster while loading
text Loop video

font Automatically play video on page load event
path Loop video

filter Automatically play video on page load event
animate Automatically buffer video on page load event

The <svg> tag has many child tags and parameters, all of which are supported
in HTML5 and are typically accessed using CSS to implement the digital illustration
functions.

Some of the more often used SVG elements are seen in Table 8-5. The first section
contains the basic shapes and the second section contains other useful vector design
elements.

If you wanted to master digital illustration (SVG) terms as well as core SVG XML
principles, SVG XML markup workflow, and SVG fundamentals, check out my Digital
Hllustration Fundamentals (Apress, 2015) title. In this book, I show readers how to create
(and optimize) SVG assets using GIMP and Inkscape, so the book bridges digital imaging
and digital illustration software with HTML5. The book also has chapters covering
Android, Java and JavaFX code, HTML5 markup, XML, CSS, and cross-platform (cross-
device) publishing.

63

CHAPTER 8 © HTML5 MULTIMEDIA: UTILIZING NEW MEDIA ASSETS

To create a digital illustration asset, use the <svg> tag with the width and height
parameters and with a child tag that defines an SVG circle shape, as shown in the
following HTML5 markup:

<svg width="640" height="480">
<circle cx="0" cy="0" r="25" fill="blue" stroke="red" stroke-width="4">
</svg>

To create an SVG rounded rectangle, utilize the following HTML5 markup, which
includes parameters for rx (radius x) and ry (radius y):

<svg width="640" height="480">
<rect x="20" y="20" rx="10" ry="10" width="200" height="200"
style="fill:yellow; stroke:purple; stroke-width:6; opacity:0.5" />
</svg>

Notice the style parameter, which contains in-line CSS3 style information, which is
more common for styling SVG illustrations.

Next, let’s look at the other new media areas that can be simulated using features
in HTML5.

Interactive 3D: Using a <canvas> Tag and WebGL

We are going to spend an entire chapter on advanced drawing for HTML5 using the
<canvas> tag, which is how you implement interactive 3D, or i3D. This advanced new
media area requires a special API called WebGL, which uses OpenGL. WebGL2 is due
out in 2016. It brings the visual impact of OpenGL to HTML5. We'll go over all of this in
Chapter 17. (I just wanted to put it in context in this chapter with the other new media
genres.)

Digital Painting: Digital Painting using JavaScript

Digital painting is a combination of digital imaging, vector illustration, particle systems,
and digital video. SVG is moving towards adding digital painting features, but you can use
JavaScript and CSS3 with HTMLS5 to simulate digital painting now. This is an advanced
area beyond the tag markup focus of this book, but if you want to learn more about digital
painting, you should check out Digital Painting Techniques (Apress, 2016). In this book,

I show readers how to create (and optimize) digital painting assets using Corel Painter
2016, GIMP, and Inkscape, which bridges digital imaging and digital illustration software
with HTMLS5. This book has chapters covering data footprint optimization, Android,
JavaScript, Java 8 and JavaFX coding, HTML5 markup, as well as cross-platform and cross-
device new media content publishing.

64

http://dx.doi.org/10.1007/978-1-4302-6536-8_17

CHAPTER 8 © HTML5 MULTIMEDIA: UTILIZING NEW MEDIA ASSETS

Visual Effects: Creating VFX using JavaScript

Other advanced new media genres, such as visual effects, or VFX, can also be simulated
using advanced JavaScript programming in conjunction with CSS3, WebGL2, and HTML5
tags. This is an advanced area beyond the tag markup focus of this book, but if you want
to learn more about visual effects, you should check out Visual Effects Fundamentals
(Apress, 2016). In this book, I show the readers how to create (and optimize) visual effects
assets using BlackMagic Fusion and GIMP, so it bridges digital imaging, digital video,
digital audio, and digital illustration software with HTML5. The book goes over data
footprint optimization, Android, Java 8 and JavaFX coding, HTML5 markup, and cross-
platform and cross-device publishing.

Web Speech: Speech Synthesis and Recognition

Finally, let’s take a quick look at speech recognition and speech synthesis, which were
recently added to HTML5 browsers Google Chrome and Apple Safari using the Web
Speech API. Expect Firefox to add it as well since it is moving to support iTVs and
smartphones. Opera is also doing the same. The future of new media is looking bright
for HTML5-based platforms and browsers, which is especially exciting for multimedia
producers. For an example of how speech recognition and speech synthesis work in
Google Chrome, visit https://www.google.com/int1l/en/chrome/demos/speech.html.

Summary

This chapter discussed new media support for HTML5 using the , <audio>,
<video>, and <svg> tags; their related child tags and parameter options; and other new
media genre support in HTML5. In the next chapter, you learn about <header> tags,
which support the organization of content into levels within your HTML5 document.

65

https://www.google.com/intl/en/chrome/demos/speech.html

CHAPTER 9

HTMLS Organization:
Document Content Hierarchy/

Let’s discuss tags which allow developers to implement content hierarchy into their
HTMLS5 designs, such as different levels of document content, called headings, which use
six different levels of “h” tags, and DTP (desktop publishing) tools such as address areas
and horizontal rules, to divide the content visually. These allow you to organize your
document content into logical topical sections. They're also utilized by search engines
for indexing text-based content and for SEO ranking text-based content.

In this chapter, I go over the primary tags for implementing document content
hierarchies, using headings with <h1> through <h6> tags that give developers six levels
of content refinement. I also cover the <address> and <hr> tags (horizontal rule). The
<hr> tag allows you to define sections for your documents. The <address> tag defines
addresses for the physical and virtual (website and e-mail) address for your HTML
document content. Even though these tags are legacy tags not new to HTMLS5, they need
to be covered in this chapter.

HTML5 Content Organization Tags

This chapter covers text content organization capabilities for all versions of HTML
spanning back to version 2. You look at the legacy text content hierarchy tags and see how
developers define importance—to users and search engines—of text-based content with
these tags.

Table 9-1 shows the text content heading or organization tags supported prior to
HTMLS5 (the first seven tags) as well as two desktop publishing-related tags that are also
supported in HTML5. These allow you to define a horizontal rule and the address area in
HTML documents.

© Wallace Jackson 2016 67
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_9

CHAPTER 9 © HTML5 ORGANIZATION: DOCUMENT CONTENT HIERARCHY

Table 9-1. Eight HTML Content Organization Tags and Their Usage

Organization Tags Content Organization Tag Usage

h1 Top-level heading (most SEO important keywords)
h2 2nd-level heading (2nd SEO important keywords)
h3 3rd-level heading (most SEO important keywords)
h4 4th-level heading (most SEO important keywords)
h5 5th-level heading (most SEO important keywords)
h6 6th-level heading (most SEO important keywords)
hr Horizontal rule content divider line

address Address information for article/document

Let’s take a look at these in logical sections, as delineated in this table, starting with
the HTML “h” tags.

Heading Level Tags: Segmenting Content Logically

The headinglevel 1 <h1> through heading level 6 <h6> tags allow six levels of document
headings, which can be used like section (paragraph or a collection of paragraphs) titles,
or more accurately, cascading topical section headings. The search engine algorithms
use headings to ascertain keywords and organize text content. This ranges from the most
important keywords (broad stroke content) for the document defined using <h1> and <h2>,
and the least important keywords (specific, or well-defined, content) defined in <h6>.
These should be used to logically stratify the content in a way that drills down
into the organization of your text content so that the user can follow and assimilate its
meaning effortlessly. The organization of the text content uses heading levels as a guide
to how your content is refined. For instance, you might have a document that drills down
to a discussion of the Ferrari models currently available in North America from a more
general discussion of exotic cars.
An example looks like the following HTML markup, which is compatible with
all versions of HTML. It contains a significant amount of textual content within each
paragraph tag or contains a collection of paragraph <p> tags between each of the six
HTML heading levels. It defines what is in the paragraph tags by using summary terms
(which are keywords, as far as the search engine robots are concerned).

<!DOCTYPE html>
<html>
<head>
<title>Exotic Cars Example</title>
</head>
<body>
<h1>Exotic Car Document</h1>
<p>Top Level Keywords Relating to Exotic Cars from Every Nation</p>
<h2>Exotic European Cars</h2>

68

CHAPTER 9 © HTML5 ORGANIZATION: DOCUMENT CONTENT HIERARCHY

<p>Next Level Keywords Relating to Exotic Cars from European Union</p>
<h3>Exotic European Sports Cars</h3>
<p>Next Level Keywords Relating to Exotic European Sports Cars</p>
<h4>Popular Exotic Italian Sports Cars (Ferrari and Lamborghini)</h4>
<p>Next Level Keywords Relating to Exotic Italian Sports Cars</p>
<h5>Currently Popular Ferrari Sports Cars</h5>
<p>Next Level Keywords for Currently Popular Ferrari Sports Cars</p>
<h6>Ferrari Sports Cars Available in North America (USA and Canada)</h6>
<p>Next Level Keywords for Ferrari Sports Cars Available in America</p>
</body>
</html>

For this markup example, I simply used some SEO keywords suggestions as the
content for the <p> tag, which is covered in Chapter 11. Normally, this is the text-based
content in a long paragraph format, but it would make the example too long!

Next, let’s look at the horizontal rule <hr> tag and see how it allows you to draw a
visual divider line between logical sections of a document in versions prior to HTMLS5,
and to separate areas of the document semantically in HTML5 and later. Semantic
HTMLS5 is discussed in Chapter 10.

Horizontal Rule Tag: Dividing Text Content Visually

Prior to HTMLS5, the horizontal rule or <hr> tag was used to insert a line between logical
areas in a document. In HTMLS5, it is no longer used for visual demarkation, but instead
as a logical or semantic demarkation of logical document sections. For this reason, the
parameters seen in Table 9-2 are no longer supported in HTML5. HTML5 browsers
may still draw this line for presentation purposes, which the <hr> tag was used for
before HTML5, but the browser or operating system looks at it as a semantic document
sectional division.

Table 9-2. Parameters for the <hr> Tag, Used Prior to HTML5

Organization Tags Content Organization Tag Usage

align Determine alignment (left, right, center values)
size Specify line height using pixels (integer value)
width Specify line width in pixels or as a percentage
noshade Forces one solid color value to be used for line

This is a logical progression for document organization, as far as content/search
(HTMLS5), styling (CSS3), and animation and interactivity (JavaScript) are concerned. It is
also quite logical where the move toward the “semantic web” is concerned.

69

http://dx.doi.org/10.1007/978-1-4302-6536-8_11
http://dx.doi.org/10.1007/978-1-4302-6536-8_10

CHAPTER 9 © HTML5 ORGANIZATION: DOCUMENT CONTENT HIERARCHY

To create the horizontal rule and semantic break between your logical sections,
use an <hr> tag after the last paragraph tag. This can be done for each of the six sections,
using the following HTML5 markup and building on the previous example:

<!DOCTYPE html><html>
<head><title>Exotic Cars</title></head>
<body>
<h1>Exotic Car Document</h1>
<p>Top Level Keywords Relating to Exotic Cars from Every Nation</p>
<hr>
<h2>Exotic European Cars</h2>
<p>Next Level Keywords Relating to Exotic Cars from European Union</p>
<hr>
<h3>Exotic European Sports Cars</h3>
<p>Next Level Keywords Relating to Exotic European Sports Cars</p>
<hr>
<h4>Popular Exotic Italian Sports Cars (Ferrari and Lamborghini)</h4>
<p>Next Level Keywords Relating to Exotic Italian Sports Cars</p>
<hr>
<h5>Currently Popular Ferrari Sports Cars</hs5>
<p>Next Level Keywords for Currently Popular Ferrari Sports Cars</p>
<hr>
<h6>Ferrari Sports Cars Available in North America (USA and Canada)</h6>
<p>Next Level Keywords for Ferrari Sports Cars Available in America</p>
<hr>
</body>
</html>

If you are developing legacy code for HTML4 and earlier, you should use the
parameters shown in Table 9-2 to control the horizontal rule alignment, width, and
height. Next, let’s take a look at how to specify an address for your document or article.

The Address Tag: Specifying Address Information

The <address> tag defines the types of addresses in a document to provide contact
information for the user. In versions prior to HTMLS5, the <address> tag was a child of the
<body> tag and provided address information for the entire document. If you are using
the <address> tag as a child tag in the new HTML5 <article> tag, which is covered in
Chapter 10, the <address> tag defines the address (contact) information for semantically
defined articles.

70

http://dx.doi.org/10.1007/978-1-4302-6536-8_10

CHAPTER 9 © HTML5 ORGANIZATION: DOCUMENT CONTENT HIERARCHY

To create an address information section for a document, use the <address> tag
with your address, e-mail, websites, and similar address-related information inside of it
by using child tags. The following is an example of address HTML markup structure:

<body>
<address>
Document Created By: Walls

<hr>
Address: 12345 Streetname Road, Cityname, Statename, Zip Code, Country

<hr>
Website: WallaceJackson.com
</address>
</body>

Notice that I used a break
 tag and a horizontal rule <hr> tag to define the
different areas of the address with a semantic break (HTML5) and a horizontal line (rule)
for HTML 4 and earlier. The break tag is covered in Chapter 11.

I saved the rest of the document organization tag topics for Chapter 10, which
discusses semantic document definition, since HTML5 and later use special tags to
define the content areas for the document (HTML5 browser) or the application (HTML5
operating system). This <address> tag is a great example of a semantic tag, and a good
way to segue into the new HTML5 semantic tags.

Summary

This chapter discussed document headings and desktop publishing legacy support in
HTML5 and all previous versions using the <h1> through <h6>, <hr>, and <address>
tags and their related parameter options. The next chapter continues the document
organization journey by using the new semantic tags added to HTML5 to support the
organization of content in logical areas within a document. Defining text-based content
through paragraphs, lists, forms, tables, and the like, is also covered.

71

http://dx.doi.org/10.1007/978-1-4302-6536-8_11
http://dx.doi.org/10.1007/978-1-4302-6536-8_10

CHAPTER 10

HTMLS Semantics: Defining
Semantic Documents

Next, let’s cover the new “semantic” tags in HTMLS5 that allow developers to more
logically define the content hierarchy in their HTML5 designs. This is done with
headers, footers, sections, figures, captions, sidebars, and navigation panels, to
name a few. They allow you to organize document content into logical sections.

Semantics is the study of a word’s meaning, so what makes these tags semantic is that
they define the content, so search engines can “see” the document design semantically

(i.e., intelligently).

In this chapter, I go over semantic tags, which implement the new HTML5 semantic
document organization paradigm. The tags have names that define the functional area of
the HTML5 document they represent. Examples of semantic tags include <header> and

<footer> tags, <figure> and <figcaption> tags, and the <section>, <article>, <main>,
<nav>, <aside>, <details>, <summary>, <mark>, and <time> tags.

HTML5 Semantic Content Organization

This chapter covers semantic content organization capabilities in HTML5. Prior to
HTMLS5, developers created their descriptive (semantic) names for document elements

using the <div> tag, or other tags, and a class or id parameter, such as <div id="header">

for example. Since developers did not use standardized semantic labels, the W3C did it
for them, so that search engine robots (algorithms) could start to implement Web 3.0,
which is semantic search. According to the W3C: The semantic Web allows data to be
shared and reused across applications, enterprises, and communities. Table 10-1 shows
semantic content organization tags, which are all new in HTMLS5, categorized into
primary document sections, functional document sections, multimedia capable figures
and detail-oriented document characteristics.

© Wallace Jackson 2016
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_10

4

73

CHAPTER 10 HTML5 SEMANTICS: DEFINING SEMANTIC DOCUMENTS

Table 10-1. Thirteen HTML Semantic Organization Tags

Organization Tags Content Organization Tag Usage

header Specifies the header information of the document
footer Specifies the footer information of the document
section Specifies the section information of the document
main Specifies primary or main content of the document
nav Navigation; usually a collection of anchor tags
article Specifies the article information of the document
aside Sidebar content related to the surrounding text
figure Specifies figure and new media of the document
figcaption Specifies the section information of the document
details Specifies additional detail that users can show or hide
summary Specifies the section information of the document
mark Specifies figure and new media of the document
time Specifies the figure caption of the figure media

It is interesting to note that there are some tags prior to HTMLS5 that just happened
to be semantic, although they were not specifically designed to be so at the time. These
include <form>, <table>, and abbreviated tags like <a> (anchor), (list), and <p>
(paragraph). The new media tags can also be considered semantic, because they describe
 (imagery), <audio>, <video>, <svg> (scalable vector graphics or illustrations), and
<canvas> (real-time 2D and 3D graphics) elements in the actual name of the tag, so a
search engine knows the document’s content.

Let’s take a look at these semantic tags in logical sections, as delineated in Table 10-1,
starting with the HTMLS5 <section>, <header>, and <footer> sectional tags. They
define broad, high-level document areas used in desktop publishing to hold reference
information and other ancillary information usually tied into these areas using
superscript or subscript numbers in a primary (center or middle) document content area.

An example of a semantic document structure is seen in Figure 10-1, which shows
some of the most important semantic tags.

74

CHAPTER 10 © HTML5 SEMANTICS: DEFINING SEMANTIC DOCUMENTS

Main Content Topics <main>
| Document Header <header> |
| Document Navigation <nav> |
| Document Article <article>
Figure <figure>

Sidebar:

<aside>
Caption <figcaption>

N

Document Section <section>

Document Footer <footer>

Figure 10-1. An example of a semantic HTML5 document structure

HTML5 Sectional Tags: Segment Content Logically

The sectional <section> tag and more specialized <header> and <footer> tags
semantically define standard areas in a document, so that the search engine knows
what you are doing with your document design. The <section> tag is for more general
sectioning of a document. The <header> and <footer> are for specific introductory
information and footnotes.

The SECTION Tag: Define Document Sections

A <section> tag is used to define any kind of section in a document, such as a chapter, for
instance. If there were no <header> and <footer> semantic tags, <section> could be used
to define headers and footers as well. The <section> tag is a child tag of the <body> and
<article> tags. It is a parent tag to tags like <article>, <figure>, <p>, and the six heading
tags, for instance.

There are no hierarchy rules, so <article> tags can have child <section> tags, and
<section> tags can have child <article> tags. This makes the semantic content design far
more flexible.

75

CHAPTER 10 HTML5 SEMANTICS: DEFINING SEMANTIC DOCUMENTS

Let’s use the <section> tag along with an id value in a content design with sections
for both exotic and domestic cars. The following expands upon the heading tags example
used in Chapter 9:

<!DOCTYPE html><html>
<head><title>Exotic and Domestic Cars</title></head>
<body>
<section id="exotic">
<h1>Exotic Car Document</h1>
<p>Top Level Keywords Relating to Exotic Cars from Every Nation</p>
<h2>Exotic European Cars</h2>
<p>Next Level Keywords Relating to Exotic Cars from European Union</p>
<h3>Exotic European Sports Cars</h3>
<p>Next Level Keywords Relating to Exotic European Sports Cars</p>
</section>
<section id="domestic">
<h1>Domestic Car Document</h1>
<p>Top Level Keywords Relating to Domestic Cars from Every Nation</p>
<h2>Domestic European Cars</h2>
<p>Next Level Keywords Relating to Domestic Cars from European Union</p>
<h3>Domestic European Sedans</h3>
<p>Next Level Keywords Relating to Domestic European Sedans</p>
</section>
</body>
</html>

Next, let’s look at a special type of section tag called the <header> tag. This tag
specifically provides information at the top or “header” of the document design.

The HEADER Tag: Define Introductory Content for the Document

The <header> tag defines the introductory content of the document. If there were no
<nav> semantic tag, it could also be used to define navigation (user interface) elements.
The <header> tag cannot be used as a child tag of <footer>, <address>, or another
<header> tag. More than one <header> tag may be used in a single document, however.
The <header> element (tag) usually contains a heading tag (<h1> for instance) and
a paragraph <p> tag, and possibly an image, such as a logo, picture, or similar visual
branding element.

Let’s use a <header> tag to define the header for the car content design example.
The example now uses sections for European and American cars underneath the
<header> in an HTMLS5 content hierarchy. I changed the section id to reflect this new
design change, as shown in the following HTML5 markup:

<!DOCTYPE html><html>

<head><title>Exotic and Domestic Cars</title></head>
<body>

76

http://dx.doi.org/10.1007/978-1-4302-6536-8_9

CHAPTER 10 © HTML5 SEMANTICS: DEFINING SEMANTIC DOCUMENTS

<header>
<h1>Exotic Cars Unleashed!</h1>
<p>Top Level Keywords Relating to Exotic Cars from Every Nation</p>
</header>
<section id="european">
<h2>Exotic European Cars</h2>
<p>Next Level Keywords Relating to Exotic Cars from European Union</p>
<h3>Exotic European Sports Cars</h3>
<p>Next Level Keywords Relating to Exotic European Sports Cars</p>
</section>
<section id="american">
<h2>Exotic American Cars</h2>
<p>Next Level Keywords Relating to Domestic Cars from North America</p>
<h3>Exotic American Sports Cars</h3>
<p>Next Level Keywords Relating to Exotic North American Sports Cars</p>
</section>
</body>
</html>

Next, let’s take a look at a special type of section tag called the <footer> tag. This
tag provides information at the bottom or “foot” of your document design. It is usually
footnote or other reference information that further defines or identifies the primary
document content.

The FOOTER Tag: Footnote Information Referencing the Content

The <footer> tag defines footnote and similar reference content for the document. More
than one <footer> tag may be used in a single document. The <footer> element usually
contains copyrights, author contact information, or references to other documents used
as resources.

Let’s use a <footer> tag to define a footer for the car content design example. The
footer references information that identifies the sources for the document content, as
shown in the following HTML5 markup:

<IDOCTYPE html><html>
<head><title>Exotic and Domestic Cars</title></head>
<body>
<header>
<h1>Exotic Cars Unleashed!</h1>
<p>Top Level Keywords Relating to Exotic Cars from Every Nation</p>
</header>
<section id="european">
<h2>Exotic European Cars</h2>
<p>Next Level Keywords Relating to Exotic Cars from European Union</p>
<h3>Exotic European Sports Cars</h3>
<p>Next Level Keywords Relating to Exotic European Sports Cars</p>
</section>

77

CHAPTER 10 HTML5 SEMANTICS: DEFINING SEMANTIC DOCUMENTS

<section id="american">
<h2>Exotic American Cars</h2>
<p>Next Level Keywords Relating to Domestic Cars from North America</p>
<h3>Exotic American Sports Cars</h3>
<p>Next Level Keywords Relating to Exotic North American Sports Cars</p>
</section>
<footer>
<h4>Exotic Car Article Article, Contact and Sources:</h1>
<p>Blog’s Author: Wallace Jackson</p>
<p>Author e-mail: Wallace Jackson</p>
<p>Blog’s Source: Magazine or Book Resources and Links would go here</p>
</footer>
</body>
</html>

Next, let’s take a look at the HTML5 semantic tags, which allow you to define
document “areas,” such as the main document topic, articles within a document,
informational sidebars, and navigation bars.

HTMLS5 Content Type Semantic Definition Tags

The next four tags in Table 10-1 define other document areas—articles, sidebars,
navigation U, and the top level (the main area) of your document—in semantic terms
using tags named for the document areas, which is what the new HTML5 document
semantics are all about! You need to use these tags properly and precisely to make
your HTML5 document compatible with Web 3.0 (the Semantic Web). Search engines
assimilate semantically optimized content, which is made possible by using the tags
covered within this important HTML5 chapter.

The MAIN Tag: Defining the Top Level of the Document Content

The <main> tag defines the topmost level of the document. Only one <main> tag is used
in a single document. This <main> tag can’t be used as a child tag of <nav>, <header>,
<footer>, <article>, or <aside> because it defines the top level of a document. The <main>
element needs to contain unique information and design elements, which cannot be
repeated across any other HTML documents.

Let’s use this <main> tag to define the top level of the car content design example.
The main tag has an opening tag for the top of the document (before the <header> tag)
and a closing tag at the bottom of the document (after the <footer> tag), so that your
entire document is contained (defined) inside of this <main> tag semantic structure. An
example of this is shown in the following HTML5 markup:

<!DOCTYPE html><html>

<head><title>Exotic and Domestic Cars</title></head>
<body>

78

CHAPTER 10 © HTML5 SEMANTICS: DEFINING SEMANTIC DOCUMENTS

<main>
<header>
<h1>Exotic Cars Unleashed!</h1>
<p>Top Level Keywords Relating to Exotic Cars from Every Nation</p>
</header>
<section id="european">
<h2>Exotic European Cars</h2>
<p>Next Level Keywords Relating to Exotic Cars from European Union</p>
<h3>Exotic European Sports Cars</h3>
<p>Next Level Keywords Relating to Exotic European Sports Cars</p>
</section>
<section id="american">
<h2>Exotic American Cars</h2>
<p>Next Level Keywords Relating to Domestic Cars from North America</p>
<h3>Exotic American Sports Cars</h3>
<p>Next Level Keywords Relating to Exotic North American Sports Cars</p>
</section>
<footer>
<h4>Exotic Car Article Article, Contact and Sources:</hi>
<p>Blog’s Author: Wallace Jackson</p>
<p>Author e-mail: Wallace Jackson</p>
<p>Blog’s Source: Magazine or Book Resources and Links would go here</p>
</footer>
</main>
</body>
</html>

Next, let’s take a look at the <nav> tag, which contains the user interface design
(document navigation HTMLS5 elements) for your HTML5 document or application.
I also recommend using CSS to style the document navigation tags.

The NAV Tag: Defining the Navigation Ul for Your Document

The <nav> tag defines the user interface of the document’s navigation area, which is
typically implemented using <a> tag anchor link styles. (CSS3 styling is not covered in
this book, so make sure to get a good CSS3 book to go with this book.) Multiple <nav> tags
may be used in a single document. The <nav> element (tag) must only contain links that
are used for navigation.

Let’s add the <nav> tag to our current example, as shown in the following HTML5
markup:

<!DOCTYPE html><html>
<head><title>Exotic and Domestic Cars</title></head>
<body>
<mainy
<header>
<h1>Exotic Cars Unleashed!</h1>

79

CHAPTER 10 HTML5 SEMANTICS: DEFINING SEMANTIC DOCUMENTS

<p>Top Level Keywords Relating to Exotic Cars from Every Nation</p>
</header>
<nav>
<a http://www.web-address.com/car-info.html>CAR INFO
<a http://www.web-address.com/our-team.html>OUR TEAM
<a http://www.web-address.com/buy-cars.html>BUY CARS
</nav»
<section id="european">
<h2>Exotic European Cars</h2>
<p>Next Level Keywords Relating to Exotic Cars from European Union</p>
<h3>Exotic European Sports Cars</h3>
<p>Next Level Keywords Relating to Exotic European Sports Cars</p>
</section>
<section id="american">
<h2>Exotic American Cars</h2>
<p>Next Level Keywords Relating to Domestic Cars from North America</p>
<h3>Exotic American Sports Cars</h3>
<p>Next Level Keywords Relating to Exotic North American Sports Cars</p>
</section>
<footer>
<h4>Exotic Car Article Article, Contact and Sources:</h1>
<p>Blog’s Author: Wallace Jackson</p>
<p>Author e-mail: Wallace Jackson</p>
<p>Blog’s Source: Magazine or Book Resources and Links would go here</p>
</footer>
</mainy
</body></html>

Next, let’s take a look at the <article> tag, which creates topic-specific articles in the
document.

The ARTICLE Tag: Defining Articles within an HTML5 Document

The <article> tag defines an article within your document. An article is unique,
proprietary content that stands up independently to other document content. It is
possible to use multiple <article> tags in one document.

Let’s change the <section> tags to <article> tags in the car example, turning it into a
magazine by using the following markup:

<IDOCTYPE html><html>
<head><title>Exotic and Domestic Cars Today</title></head>
<body>
<main>
<header>
<h1>Exotic Cars Magazine: Current Exotic Car Articles</h1>
<p>Top Level Keywords Relating to Exotic Cars from Every Nation</p>
</header>

80

CHAPTER 10 © HTML5 SEMANTICS: DEFINING SEMANTIC DOCUMENTS

<nav>
<a http://www.web-address.com/car-info.html>CAR INFO
<a http://www.web-address.com/our-team.htm1>0UR TEAM
<a http://www.web-address.com/buy-cars.html>BUY CARS
</nav>
<article>
<h2>Exotic European Cars: Maintaining a Lead Over US Manufacturers</h2>
<p>Next Level Keywords Relating to Exotic Cars from European Union</p>
<h3>Exotic European Sports Car Round-Up</h3>
<p>Next Level Keywords Relating to Exotic European Sports Cars</p>
</article>
<article>
<h2>Exotic American Cars: Gaining on the Domination of European Cars</h2>
<p>Next Level Keywords Relating to Domestic Cars from North America</p>
<h3>Exotic American Sports Car Round-Up</h3>
<p>Next Level Keywords Relating to Exotic North American Sports Cars</p>
</article>
<footer>
<h4>Exotic Car Article Article, Contact and Sources:</h1>
<p>Blog’s Author: Wallace Jackson</p>
<p>Author e-mail: Wallace Jackson</p>
<p>Blog’s Source: Magazine or Book Resources and Links would go here</p>
</footer>
</main>
</body>
</html>

Next, let’s take a look at the <aside> tag, which creates informational sidebars in the
document.

The ASIDE Tag: Defining Information Sidebars in Your Document

The <aside> tag defines an informational sidebar within your document. Sidebar content
must be related to the content adjacent to it. It is possible to use multiple <aside> tags in
one document.

Let’s change the <section> tags to <article> tags in the car example, turning it into a
magazine by using this markup:

<!DOCTYPE html><html>
<head><title>Exotic and Domestic Cars Today</title></head>
<body>
<main>
<header>
<h1>Exotic Cars Magazine: Current Exotic Car Articles</hi1>
<p>Top Level Keywords Relating to Exotic Cars from Every Nation</p>
</header>

81

CHAPTER 10 HTML5 SEMANTICS: DEFINING SEMANTIC DOCUMENTS

<nav>
<a http://www.web-address.com/car-info.html>CAR INFO
<a http://www.web-address.com/our-team.html>0UR TEAM
<a http://www.web-address.com/buy-cars.html>BUY CARS
</nav>
<article>
<h2>Exotic European Cars: Maintaining a Lead Over US Manufacturers</h2>
<p>Next Level Keywords Relating to Exotic Cars from European Union</p>
<h3>Exotic European Sports Car Round-Up</h3>
<p>Next Level Keywords Relating to Exotic European Sports Cars</p>
<aside>
<h4>Sidebar: Top Selling European Sports Cars</h4>
<p>Next Level Keywords Relating to Top Selling European Sports Cars</p>
</aside>
</article>
<article>
<h2>Exotic American Cars: Gaining on the Domination of European Cars</h2>
<p>Next Level Keywords Relating to Domestic Cars from North America</p>
<h3>Exotic American Sports Car Round-Up</h3>
<p>Next Level Keywords Relating to Exotic North American Sports Cars</p>
</article>
<footer>
<h5>Exotic Car Article Article, Contact and Sources:</h1>
<p>Blog’s Author: Wallace Jackson</p>
<p>Author e-mail: Wallace Jackson</p>
<p>Blog’s Source: Magazine or Book Resources and Links would go here</p>
</footer>
</main></body></html>

Next, let’s take a look at how to use figures and figure captions in HTML5.

HTML5 Semantic New Media Figure Definition Tags

The next two tags shown in Table 10-1 allow you to define a new media element
semantically, using a figure and a figure caption.

The FIGURE and FIGCAPTION Tags: Adding Captioned Imagery

A <figure> tag is used to define multimedia. A <figcaption> tag is nested to define the
caption for the new media asset.

Let’s use these two tags to define a captioned image for the sports car content, as
shown in the following HTML5 markup:

<IDOCTYPE html><html>

<head><title>Exotic and Domestic Cars Today</title></head>
<body>

82

CHAPTER 10 © HTML5 SEMANTICS: DEFINING SEMANTIC DOCUMENTS

<main>
<header>
<h1>Exotic Cars Magazine: Current Exotic Car Articles</hi>
<p>Top Level Keywords Relating to Exotic Cars from Every Nation</p>
</header>
<nav>
<a http://www.web-address.com/car-info.html>CAR INFO
<a http://www.web-address.com/our-team.html>OUR TEAM
<a http://www.web-address.com/buy-cars.html>BUY CARS
</nav>
<article>
<h2>Exotic European Cars: Maintaining a Lead Over US Manufacturers</h2>
<p>Next Level Keywords Relating to Exotic Cars from European Union</p>
<h3>Exotic European Sports Car Round-Up</h3>
<p>Next Level Keywords Relating to Exotic European Sports Cars</p>
<aside>
<h4>Sidebar: Top Selling European Sports Cars</h4>
<p>Next Level Keywords Relating to Top Selling European Sports Cars</p>
</aside>
</article>
<article>
<h2>Exotic American Cars: Gaining on the Domination of European Cars</h2>
<p>Next Level Keywords Relating to Domestic Cars from North America</p>
<h3>Exotic American Sports Car Round-Up</h3>
<p>Next Level Keywords Relating to Exotic North American Sports Cars</p>
<figures

<figcaptionsFigure 1. Image of Popular American Sports Car</figcaption»
</figure>
</article>
<footer>
<h5>Exotic Car Article Article, Contact and Sources:</h1>
<p>Blog’s Author: Wallace Jackson</p>
<p>Blog’s Source: Magazine or Book Resources and Links would go here</p>
</footer>
</main></body></html>

You can also place the <figcaption> child tag inside of the <figure> parent tag, before
the or <video> tag, if you want to have the figure text on top of your image or video,
rather than underneath it. Having the caption underneath the new media element is
the standard way to caption your image or video. You can also use a caption with your
<audio> tag, but be sure to include the controls parameter so that there is something (the
play-pause-rewind transport) there to caption!

Next, let’s look at the final few semantic tags, which add various detail elements,
including pop-up information, summaries, text marking, and system time.

83

CHAPTER 10 HTML5 SEMANTICS: DEFINING SEMANTIC DOCUMENTS

HTML5 Semantic Document Detail Definition Tags

The last four tags in Table 10-1 allow you to define the detail elements of your semantic
HTMLS5 documents. These include the <detail> tag that developers use to define interactive
pop-up widgets that allow users to drill down into a document’s semantic content. There

is also a child <summary> tag that is used with the <detail> tag. Finally, the <mark> tag
“marks up” text, and the <time> tag allows you to display the system date and time.

The DETAILS and SUMMARY Tags: Adding Pop-up Information

The <details> tag is used in conjunction with the <summary> tag to define pop-up
information that allows users to “drill down” for more information. The information
provided in the <summary> tag is clicked to toggle the show or hide functions in the
<details> tag. The <details> tag has one parameter, called open, which signifies that
open="true" and equates to the “show” state for the <details> element being the default
state. If the open parameter is not present, this equates to open="false", and the hide
state is the default; the user has to click the <summary> tag’s text to “unhide” or open the
<details> element.

Let’s add a <details> tag and its <summary> child tag to the <header> section of the
sports car content. Let’s have it contain a pop-up widget labeled Click Here for the List of
Our Featured Articles!. When the user clicks it, a list of the two <article> elements appear,
as specified in the following HTML5 markup example:

<!DOCTYPE html><html>
<head><title>Exotic and Domestic Cars Today</title></head>
<body>
<main>
<header>
<h1>Exotic Cars Magazine: Current Exotic Car Articles</h1>
<p>Top Level Keywords Relating to Exotic Cars from Every Nation</p>
<details>
<summary>Click Here For the List of Our Featured Articles!</summarys
<p>Exotic European Cars: Maintaining the Lead Over US Manufacturers</p>
<p>Exotic American Cars: Gaining on the Domination of European Cars</p>
</details>
</header>
<nav>
<a http://www.web-address.com/car-info.html>CAR INFO
<a http://www.web-address.com/our-team.html1>0UR TEAM
<a http://www.web-address.com/buy-cars.html>BUY CARS
</nav>
<article>
<h2>Exotic European Cars: Maintaining the Lead Over US Manufacturers</h2>
<p>Next Level Keywords Relating to Exotic Cars from European Union</p>
<h3>Exotic European Sports Car Round-Up</h3>
<p>Next Level Keywords Relating to Exotic European Sports Cars</p>

84

CHAPTER 10 © HTML5 SEMANTICS: DEFINING SEMANTIC DOCUMENTS

<aside>
<h4>Sidebar: Top Selling European Sports Cars</h4>
<p>Next Level Keywords Relating to Top Selling European Sports Cars</p>
</aside>
</article>
<article>
<h2>Exotic American Cars: Gaining on the Domination of European Cars</h2>
<p>Next Level Keywords Relating to Domestic Cars from North America</p>
<h3>Exotic American Sports Car Round-Up</h3>
<p>Next Level Keywords Relating to Exotic North American Sports Cars</p>
<figure>

<figcaption>Figure 1. Image of Popular American Sports Car</figcaption>
</figure>
</article>
<footer>
<h5>Exotic Car Article Article, Contact and Sources:</hi>
<p>Blog’s Author: Wallace Jackson</p>
<p>Blog’s Source: Magazine or Book Resources and Links would go here</p>
</footer>
</main>
</body></html>

Next, let’s take a look at the final two semantic tags, <mark> and <time>. If other
legacy tags have been upgraded with new semantic features or functions, I'll cover those
additions in future chapters.

The MARK and TIME Tags: Adding More Information

The <marks> tag highlights important text. The <time> tag defines human-readable
time values. In Firefox the <mark> tag applies a yellow tint (Magic Marker effect) to the
text enclosed inside the <mark> and </mark> tags. These tags could be used in our car
example, as follows:

<!DOCTYPE html><html>
<head><title>Exotic and Domestic Cars Today</title></head>
<body>
<main>
<header>
<h1>Exotic Cars Magazine: Current Exotic Car Articles</hi1>
<p>Top Level Keywords Related to <mark»Exotic Cars</mark» worldwide</p>
<details>
<summary>List of Our Articles Released at <time»10:00</times</summary>
<p>Exotic European Cars: Maintaining the Lead Over US Manufacturers</p>
<p>Exotic American Cars: Gaining on the Domination of European Cars</p>
</details>
</header>
<nav>

85

CHAPTER 10 HTML5 SEMANTICS: DEFINING SEMANTIC DOCUMENTS

<a http://www.web-address.com/car-info.html>CAR INFO
<a http://www.web-address.com/our-team.html>OUR TEAM
<a http://www.web-address.com/buy-cars.html>BUY CARS
</nav>
<article>
<h2>Exotic European Cars: Maintaining the Lead Over US Manufacturers</h2>
<p>Next Level Keywords Relating to Exotic Cars from European Union</p>
<h3>Exotic European Sports Car Round-Up</h3>
<p>Next Level Keywords Relating to Exotic European Sports Cars</p>
<aside>
<h4>Sidebar: Top Selling European Sports Cars</h4>
<p>Next Level Keywords Relating to Top Selling European Sports Cars</p>
</aside>
</article>
<article>
<h2>Exotic American Cars: Gaining on the Domination of European Cars</h2>
<p>Next Level Keywords Relating to Domestic Cars from North America</p>
<h3>Exotic American Sports Car Round-Up</h3>
<p>Next Level Keywords Relating to Exotic North American Sports Cars</p>
<figure>

<figcaption>Figure 1. Image of Popular American Sports Car</figcaption>
</figure>
</article>
<footer>
<h5>Exotic Car Article Article, Contact and Sources:</h1>
<p>Blog’s Author: Wallace Jackson</p>
<p>Blog’s Source: Magazine or Book Resources and Links would go here</p>
</footer>
</main>
</body>
</html>

At this point, you should go back and look at the diagram shown in Figure 10-1,
which visualizes some of the semantic tags used in the examples in this chapter.

Summary

In this chapter, you learned about the new semantic tag support recently added to
HTMLS5, including the <main>, <nav>, <header>, <footer>, <article>, <section>, <aside>,
<figure>, <figcaption>, <details>, <summary>, <mark>, and <time> tags. In the next
chapter, you look at the HTML5 tags that support publishing text-based content within
your HTML5 documents and applications.

86

CHAPTER 11

HTMLS5 Formatting: Publish
Text-Based Content

Next, let’s cover text publishing tags in HTML5, which allow developers to control text-
based content with styling, superscript and subscript, line and word breaks, quotations,
abbreviations, citations, and the like. These text-related tags allow you to define
document content without having to use stylesheets for styling purposes.

In this chapter, I go over the key tags to implement text-based content in HTML. The
paragraph <p> tag defines blocks (paragraphs) of text; it was already covered in the book.
The other text-related tags in this chapter include those for formatting text, styling text,
breaking (separating and spacing) text, sizing text, text direction, quotations, citations,
and special types of text circumstances.

Create HTML5 Text Content for Publishing

This chapter covers the text-related tags in HTMLS5 used for creating text content for
publishing in documents, websites, or applications. Most were supported in legacy
versions of HTML. A couple of the tags are new in HTMLS5; I'll point these out.

These text tags are child tags of the semantic tags covered in Chapter 10. Your
text-based content is encapsulated (wrapped) in standardized semantic containers, so
that search engine robots (indexing and ranking algorithms) can optimally implement
Web 3.0 and the future of the Internet—semantic search.

Table 11-1 shows tags for creating, formatting, styling, and publishing text-based
content. They are categorized into seven logical areas: text formatting, text styling, text
breaking (separating, spacing), text sizing, text direction, text quotation, text captions
(titles), and tags for special circumstances.

© Wallace Jackson 2016 87
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_11

http://dx.doi.org/10.1007/978-1-4302-6536-8_10

CHAPTER 11 HTML5 FORMATTING: PUBLISH TEXT-BASED CONTENT

Table 11-1. Twenty HTML and HTML5 Text Content Publishing Tags

Text Content Tags Text Content Tag Standard Usage

p Specifies a paragraph of text content

pre Specifies pre-formatted text content

abbr Specifies an abbreviation

b Specifies the bold style for the text content

i Specifies the italics style for the text content

u Specifies the underline style for the text content
br Specifies a line break (new line, carriage return)
wbr Specifies a word break opportunity for long words
small Specifies a small text style for that text content
sub Specifies subscript text style for text content

sup Specifies superscript text style for text content
bdi Specifies bidirectional isolation for text content
bdo Specifies bidirectional override on text direction
q Specifies a short quotation for the document
blockquote Specifies a long (block) quotation for document
cite Defines a title (citation) for a published work
data Specifies human-readable and machine-readable data
s Specifies text that is no longer accurate/relevant
del Specifies text content which has been deleted

ins Specifies text content which has been inserted

Let’s go over each of these content publishing tags—one logical section at a time.

HTML5 Text Formatting: Paragraph, Pre, and Abbr

The first three tags tell the rendering engine how to format the text: as a block or
paragraph of text; as a pre-spaced or specially formed arrangement of text; or as
abbreviated text with an optional mouse-over definition. These tags are shown in the first
section in Table 11-1.

Let’s cover the paragraph <p> tag first because it’s the most commonly used text-
related tag in HTML5 document, website, and application design. Before HTMLS5, this tag
had the align parameter, which supports left, right, center, and justify.

The align parameter was supported in pre-HTMLS5 versions, but it is not supported in
HTML5. As I've mentioned, the trend in HTMLS5 and later versions is to use CSS3 to provide
element (tags) styling, and for HTMLS5 tags to focus on the definition of the semantic content.

88

CHAPTER 11 © HTML5 FORMATTING: PUBLISH TEXT-BASED CONTENT

Let’s start a new “publishing text content” example HTML document that uses
the semantic and SEO tags you learned to define a header paragraph showing a text
paragraph. This is done in the following HTML5 markup:

<!DOCTYPE html><html>
<head><title>Publishing Text Content in HTML5 Documents</title></head>
<body>
<main>
<header>
<h1>Publishing Text: Using Text-Related Tags in HTML5</h1>
<p>This is an example of a paragraph, containing text sentences. It is
possible to have more than 1 sentence in a paragraph, of course!</p»
</header>
</main>
</body>
</html>

For legacy HTML markup, you can use an align parameter, as shown in the following
HTML 4.01 (and previous versions) markup:

<p align="left">This is an example of a paragraph containing 2 sentences.
It is possible to have more than 1 sentence in a paragraph, of course!</p»

Let’s cover the preformatted <pre> tag next, because it’s the least commonly used
text-related tag in an HTML document, website, and applications design. Before HTML5,
this tag used the width parameter, which defines a maximum width for each line of
preformatted text. This tag maintains the character spacing, so it doesn’t “collapse”
multiple space characters into one space.

The width parameter is not supported in HTMLS5.

Let’s use a <pre> tag to create fun, text-based character art in the shape of a pine tree,
often popular during the holiday season, as shown in the following HTML5 markup:

<!DOCTYPE html><html>
<head><title>Publishing Text Content in HTML5 Documents</title></head>
<body>
<main»
<header>
<h1>Publishing Text: Using Text-Related Tags in HTML5</h1>
<p>This is an example of a paragraph containing text sentences. It is
possible to have more than a sentence in a paragraph, of course!</p>
</header>
<article>
<h2>Pre-format Text: Maintaining Precise Character Spacing</h2>
<p>You can use a PRE Element to implement character art, like this:</p>
<pre>

89

CHAPTER 11 HTML5 FORMATTING: PUBLISH TEXT-BASED CONTENT

88
8888
8888
888888
88888888
8888888888
8888888388888
888888338888388888
888888888888888888888
8888888888
88888888888888
88888883888838888888888
88888888888388883888388888388
883888388888888
88888888888888888
888888888888888888888
888888888888888888888888888
888888838883888838888888838888888
88888883888838888888
8888883388883888388888
888888888888888888888888
8888888888888888888888888888
888888888888888888888888888888
8888888888 8883888 88838888888
88888
88888
88888
88888888888
</pre»
¢/articley
</mainy
</body>
</html>

Next, let’s take a look at the abbreviation <abbr> tag.
Let’s use the <abbr> tag to create an abbreviation for the second <article> section in
this example. Use the title parameter so that the abbreviation is defined in a mouse-over:

<IDOCTYPE html><html>
<head><title>Publishing Text Content in HTML5 Documents</title></head>
<body>
<main>
<header>
<h1>Publishing Text: Using Text-Related Tags in HTML5</h1>
<p>This is an example of a paragraph containing text sentences. It is
possible to have more than a sentence in a paragraph, of course!</p>
</header>

90

CHAPTER 11 © HTML5 FORMATTING: PUBLISH TEXT-BASED CONTENT

<article»
<h2>Pre-format Text: Maintaining Precise Character Spacing</h2>
<p>You can use a PRE Element to implement character art, like this:</p>
<pre>
88
8888
8888
888888
88888888
8888888888
8888888888888
88888888888388888
888888888833388888888
8888888888
88888888888888
8888888888888338888888
888888888883838888888383388888
888888888888888
88888888888888888
888888888883338888888
888888888833388888833388888
888888888883838838888888338888888
888888888888883888
88888888888338888888
888888888888388888888888
8888888888388888888338888888
888888888883838888883388888888
8888888888 8888888 88888888888
88888
88888
88888
88888888888
</pre>
</article»
<article>
<h3>Abbreviated Text: Using the ABBR Tag to Describe this Pine Tree</h3>
<p>Christmas Tree is also <abbr title="Christmas">XMAS</abbr> Tree!</p>
</article>
</mainy
</body></html>

Next, let’s take a look at text styling elements (tags).

91

CHAPTER 11 HTML5 FORMATTING: PUBLISH TEXT-BASED CONTENT

HTML5 Text Styling: Bold, Italics, and Underline

The next three tags tell the rendering engine how to style the text characters, either as
a bold block of text, an italicized block of text, or as an underlined block of text. These
HTML tags can also be used in combination with each other. They are shown in the
second section of Table 11-1.

Let’s cover the bold tag first because it’s the most commonly used text-related tag in
HTML document, website, or application design. Let’s bold the word “paragraph” in the
original example by surrounding that word with the and tags. This is shown in
the following HTML markup example (it can also be used in HTML5):

<!DOCTYPE html><html>
<head><title>Publishing Text Content in HTML5 Documents</title></head>
<body>
<main>
<header>
<h1>Publishing Text: Using Text-Related Tags in HTML5</h1>
<p>This is an example of a <bsparagraph</bs» containing text sentences.
It’s possible to have more than 1 sentence in a paragraph.</p>
</header>
</main>
</body>
</html>

To bold an entire block of text within the sentence, you include additional words
inside your starting and ending tags:

<p align=left>An <bsexample of a paragraph</b» containing text sentences.
It’s possible to have more than 1 sentence in a paragraph.</p>

Note From the W3C website (www.w3schools.com/tags/tag b.asp): “According to the
HTML 5 specification, this tag should be used as a last resort, when no other tag is more
appropriate. The HTML 5 specification states that headings should be denoted with the <h1>
to <h6> tags, emphasized text should be denoted using the tag, important text should
be denoted with a tag, and marked/highlighted text should use a <mark> tag.”

Now let’s discuss the italics <i> tag and italicize the word “possible” in the original
example by surrounding it with the <i> and </i> tags. This is shown in the following
HTML5 markup (it can also be used in previous versions of HTML (2.0, 3.2, and 4.01)):

<IDOCTYPE html><html>

<head><title>Publishing Text Content in HTML5 Documents</title></head>
<body>

<main>

92

http://www.w3schools.com/tags/tag_b.asp

CHAPTER 11 © HTML5 FORMATTING: PUBLISH TEXT-BASED CONTENT

<header>
<h1>Publishing Text: Using Text-Related Tags in HTML5</h1>
<p>This is an example of a paragraph containing text sentences.
It’s <ispossible</i» to have more than 1 sentence in a paragraph.</p>
</header>
</main></body></html>

To italicize an entire block of text within a sentence, you should include more words
inside of the starting and ending tags, as I have done here, around the “text sentences” text:

<p>An example of a paragraph containing <istext sentences</i».
It’s <ispossible</i» to have more than 1 sentence in a paragraph.</p>

Let’s cover the underline <u> tag next, since it is the least commonly used text-
related tag in HTML5 documents. The reason for this is because the anchor <a> tag (link)
default is an underlined link, and therefore, using the <u> tag to underline text is likely to
confuse users into thinking that that text represents a link. When a user clicks underlined
text and nothing happents, it looks as if there is a coding (markup) error. Therefore,
convention is not to use the underline tag unless it is absolutely necessary.

Let’s underline the word “possible” in the original example by surrounding that word
with the <u> and </u> tags. It looks like following HTML5 markup (it can also be used in
previous versions of HTML):

<!DOCTYPE html><html>
<head><title>Publishing Text Content in HTML5 Documents</title></head>
<body>
<main>
<header>
<h1>Publishing Text: Using Text-Related Tags in HTML5</h1>
<p>An example of a paragraph containing <i>text sentences.</i>
It’s possible to have <usmore than 1 sentence</us in a paragraph.</p>
</header>
</main></body></html>

Let’s cover the line break and word break tags next.

HTMLS5 Break Tags: Line Break and Word Break

The next two tags tell the rendering engine how to break the text apart, either using a
new-line and carriage return to create a line break, or by using a hyphen to break a long
word across lines, which is called a word break. The line break uses the
 tag, and the
word break uses the <wbr> tag. These HTML tags can also be used in combination with
each other. They are shown in the third section of Table 11-1.

Let’s cover the word break tag first, as most developers do not know about it, and it
is very simple to use and very useful for making sure that long words are broken across
lines in a way that is completely controlled by a text content developer. Let’s break the
with <wbr>.

93

CHAPTER 11 HTML5 FORMATTING: PUBLISH TEXT-BASED CONTENT

To do this, break up the longest word in the dictionary by using the <wbr> tag in the
places that we want a rendering engine (browser and OS) to separate it across lines if it
becomes necessary, as shown in the following HTML5 markup:

<!DOCTYPE html><html>
<head><title>Publishing Text Content in HTML5 Documents</title></head>
<body>
<main>
<header>
<h1>Breaking Text Apart: Using Text-Related Tags in HTML5</h1>
<p>This is an example of a word which is really long using word break:
Pneumono<wbrsultramicroscopic<wbr»silico<wbxsvolcano<uwbrsconiosis</p>
</header>
</main>
</body>
</html>

Now let’s talk about the line break
 tag next; it’s one of the most commonly
used text-related tags in HTML5 document, website, and application design. This tag is
sometimes called the “break” tag because it uses
 and not <lbr>.

Let’s insert line breaks (new lines and line spacing) by using the
 tag. The
following HTML5 markup shows an example of this (it can also be used in previous
versions of HTML):

<IDOCTYPE html><html>
<head><title>Publishing Text Content in HTML5 Documents</title></head>
<body>
<main>
<header>
<h1>Breaking Text Apart: Using Text-Related Tags in HTML5</h1>
<p>This is an example of using the line break tag to break apart<br»
a paragraph containing text sentences<br»
without using multiple paragraph tags.<brs>

It is possible to put line spacing between your sentences<br»
and still use only one single paragraph.</p>
</header>
</main>
</body>
</html>

To add a carriage return and a new line, just as you can do with a manual typewriter,
you would use a single
 tag. To add a space between sentences (or paragraphs),
add two
 tags in succession, like this:

. This adds a space between your
sentences shown. To widen this space, you can use three (or more) break tags, like this:

. The more break tags you add, the wider the space between sentences,
paragraphs, or text blocks. Next, let’s talk about text sizing elements (tags).

94

CHAPTER 11 © HTML5 FORMATTING: PUBLISH TEXT-BASED CONTENT

HTMLS5 Text Size: Small, Superscript, and Subscript

The next three tags tell the rendering engine how to size text characters: as a small
character, a superscript raised small character, or a subscript lowered small character.
These HTML tags are seen in the fourth section of Table 11-1.

Let’s start with the <small> tag because it tells the HTML5 rendering engine to
reduce the font size of your text. Let’s reduce the size of the words “small text” in one of
the sentences in the original example by surrounding those words with the <small> and
</small> tags. This should look like this following HTML markup, which can also be used
in HTML5:

<!DOCTYPE html><html>
<head><title>Publishing Text Content in HTML5 Documents</title></head>
<body>
<main>
<header>
<h1>Publishing Small Text: Using Text-Related Tags in HTML5</h1>
<p>An example of <small>small text</small> contained in a sentence.</p>
</header>
</main>
</body>
</html>

Let’s cover the superscript <sup> tag next, since it is used for footnote references
and math (power) representation. It is the second most commonly used size-related tag
in HTML5.

Superscript text appears halfway above a normal line; it is usually rendered in the
same font size used with the <small> tag.

Let’s superscript the mathematical representation of ten squared, or ten to the
second power. This is accomplished by surrounding the 2 with the ^{and}
tags. The following HTML5 markup shows an example of this (it can also be used in
previous versions of HTML):

<!DOCTYPE html><html>
<head><title>Publishing Text Content in HTML5 Documents</title></head>
<body>
<main>
<header>
<h1>Publishing Small Text: Using Text-Related Tags in HTML5</h1>
<p>Here is an example of a subscript footer footnote representation:
Ten Squared Equals One Hundred: 10² = 100</p>
</header>
</main>
</body>
</html>

Let’s cover the subscript <sub> tag next since it is used for footnote references; it is
the second-most commonly used size-related element (tag).

95

CHAPTER 11 HTML5 FORMATTING: PUBLISH TEXT-BASED CONTENT

Subscript text appears halfway below the font baseline. It is usually rendered in the
same font size used with the <small> tag.

Let's subscript the footnote reference for an article by adding a subscripted [1].
This is accomplished by surrounding the [1] reference with the _{and} tags.
The following HTML5 markup is an example of this (it can also be used in all previous
versions of HTML):

<IDOCTYPE html><html>
<head><title>Publishing Text Content in HTML5 Documents</title></head>
<body>
<main>
<article>
<h1>Publishing Small Text: Using Text-Related Tags in HTML5</h1>
<p>Here is the example of your subscript footnote referencing:
Further Research Material<subs[1]</suby» is in the Footer.</p>
</article>
</main>
</body>
</html>

Let’s cover text direction tags next. Text direction was recently added to HTML 4
(and Android 4.2) to support languages that write from the right side of the screen toward
the left side of the screen.

HTML5 Text Direction: The Bidirectional Text Tags

The next two tags tell the rendering engine which direction to render the text characters
in by either using the Itr or left-to-right paradigm or the rtl or right-to-left paradigm. The
Android OS added support for ltr vs. rtl rendering in version 4.2. Directional text HTML
tags are listed in in the fifth section of Table 11-1; they include the bidirectional isolation
<bdi> and the bidirectional override <bdo> tags.

Let’s start with the <bdi> tag, which tells the HTML5 rendering engine to isolate (or
to not apply the current text direction specified in your document) any text inside of the
<bdi> and </bdi> tags.

Let’s isolate the text direction for the words “isolated text” in a sentence in the
original example by surrounding those words with <bdi> and </bdi> tags. An example of
this is shown in the following HTML 4.01 markup (it can also be used in HTML5):

<IDOCTYPE html><html>

<head><title>Publishing Text Content in HTML5 Documents</title></head>

<body>

<main>
<header>
<h1>Publishing Directional Text: Using Text-Related Tags in HTML5</h1>
<p>An example of <bdisisolated text</bdi» contained in a sentence.</p>
</header>

</main>

</body>

</html>

96

CHAPTER 11 © HTML5 FORMATTING: PUBLISH TEXT-BASED CONTENT

Let’s cover the HTML 4 bidirectional override <bdo> tag next; it specifically defines
the direction of a word, sentence, or block of text. It uses the required direction dir
parameter, which takes either an rtl or an Itr data value.

Let’s override the default left to right text direction and use the <bdo> tag to make
some of the text go right to left by using the dir parameter. This is accomplished by
surrounding the words “right to left” with the <bdo> and </bdo> tags in conjunction with
the dir="rtl" parameter in the opening <bdo> tag. The following HTML5 markup shows
an example of this (it can also be utilized in HTML 4.01):

<!DOCTYPE html><html>
<head><title>Publishing Text Content in HTML5 Documents</title></head>
<body>
<main>
<header>
<h1>Publishing Directional Text: Using Text-Related Tags in HTML5</h1>
<p>Here is the example of the default left to right text direction.</p>
<p>Override this to create <bdo dir="rtl"sright to left</bdo>text.</p>
</header>
</main>
</body>
</html>

Let’s cover the text quotation tags supported in HTMLS5.

HTML5 Text Quotes: Quote and Block Quote Tags

The next two tags tell the rendering engine to render the text characters in a quotation
format, using a quote <q> tag or a block quote <blockquote> tag. These HTML tags are
seen in the sixth section of Table 11-1.

Let’s start with the <q> tag, which tells the HTML5 rendering engine that your text is
a quotation.

It is interesting to note that you do not have to supply the quotation marks when
you utilize this tag. The following markup is an example of this (it can also be used in
HTMLS5):

<IDOCTYPE html><html>

<head><title>Publishing Text Content in HTML5 Documents</title></head>

<body>

<main>
<header>
<h1>Publishing Quoted Text: Using Text-Related Tags in HTML5</h1>
<p>An example of a text quotation contained within a paragraph of text.
<q>This is a quotation from the Author of HTML5 Quick Markup.</q></p>
</header>

</main>

</body>

</html>

97

CHAPTER 11 HTML5 FORMATTING: PUBLISH TEXT-BASED CONTENT

There is also a cite parameter, if you want to reference the source of a quote using a
URL. The following is an example of this:

<q cite="http://www.wallacejackson.com>
This is a sample quotation from the Author of HTML5 Quick Markup Reference.
</Q>

Let’s talk about the block quote <blockquote> tag next, since it is used for
longer quotations, which are taken from and reference another source. In HTMLS5,
the <blockquote> tag always specifies a section quoted from another source. HTML5
browsers usually indent a <blockquote> element.

This distinction does not exist in HTML 4.01 and earlier, where the <blockquote>
simply signifies a quote as a block of text and does not have to represent something from
an externally referenced work. This is shown in the following HTML5 markup (it can also
be used in previous versions of HTML):

<IDOCTYPE html><html>
<head><title>Publishing Text Content in HTML5 Documents</title></head>
<body>
<main>
<article>
<h1>Publishing Quoted Text: Using Text-Related Tags in HTML5</h1>
<p>Here is an example of a block quote representation in a paragraph:
<blockquote cite="http://wuw.apress.com/9781484218624">
This compact quick scripting syntax reference on JSON covers
syntax and parameters central to JSON object definitions, using
the NetBeans 8.1 open source and Eclipse IDE software tool packages.
</blockquote»
</p>
</article>
</main>
</body>
</html>

Let’s cover text citation tags supported in HTML5 next.

HTML5 Text Citations: The CITE Tag

The cite tag tells the rendering engine the title of the text. This HTML tag is in the sixth
section of Table 11-1. The cite tag tells the HTML5 rendering engine to apply a title
citation for an intellectual property work to any text inside the <cite> and </cite> tags.
The IP owner’s name is not the title of the work. Let’s add a title citation to our HTML5
example by surrounding a title with a <cite> and </cite> tag structure. This is shown in
the following HTML markup:

<IDOCTYPE html><html>
<head><title>Publishing Text Content in HTML5 Documents</title></head>

98

CHAPTER 11 © HTML5 FORMATTING: PUBLISH TEXT-BASED CONTENT

<body>

<main>
<header>
<h1>Publishing Citation Text: Using Text-Related Tags in HTML5</h1>
<p>I wrote <cite»JSON Quick Syntax Reference</cite» during 2016.</p>
</header>

</main>

</body>

</html>

Finally, let’s discuss text special circumstance tags, which are supported by HTMLS5.
These are seen in the seventh section of Table 11-1.

HTMLS5 Special Circumstances Text: Other Tags

The last four tags tell the rendering engine about outdated, inaccurate, deleted, or
inserted text, and allow you to represent data using its native format.

Let’s start with the <data> tag, which provides machine-readable data. It is useful
in cases where data needs to be in a certain format to be processed using JavaScript, but
it does not format well for human-readable applications; that is, it does not have that
format that you prefer your users experience (read).

As a simple example, you prefer to present numbers to your users using text (i.e.,
one, two, three), but you also need to have JavaScript code that sorts the numbers to
organize the data. JavaScript requires that the numbers be provided as numerals (1, 2, 3)
to enable this sorting.

A <data> tag enables you to solve this problem by providing two different data
representations. Text numbers are provided inside <data> and </data> tags; whereas
integers for the JavaScript code are provided as a value parameter. The following HTML
markup shows an example of this (it can also be used in HTML5):

<!DOCTYPE html><html>
<head><title>Publishing Text Content in HTML5 Documents</title></head>
<body>
<main>
<article>
<h1>Publishing Special Circumstances Text: Using Text-Related Tags</h1>
<p>An example of <data> tags contained in a paragraph. Numbers Include:
<data value="1">One</data>
<data value="2">Two</data>
<data value="3">Three</data>
</p>
</article>
</main>
</body></html>

99

CHAPTER 11 HTML5 FORMATTING: PUBLISH TEXT-BASED CONTENT

Next, let’s discuss the <s> tag, which was deprecated in HTML 4.01 and originally
used to define strike-through text (in case you were wondering what the “s” stood for).
As such, the default CSS3 definition for this element should look like this example:

s { text-decoration: line-through; }

Again, CSS3 is not the focus of this book, only HTML5 markup syntax. The <s>
element is redefined in HTMLS5; it is now used to define text that is no longer correct,
accurate, or relevant. This <s> tag should not be used to define replaced or deleted text,
because the tag defines replaced or deleted text. (I cover this tag next.) Here is the
<s> tag used to update my Android apps book, using HTML5 markup:

<IDOCTYPE html><html>
<head><title>Publishing Text Content in HTML5 Documents</title></head>
<body>
<main>
<header>
<h1>Publishing Deprecated Text: Using Text-Related Tags in HTML5</h1>
<p>I wrote <s>Android Apps for Absolute Beginners 1st Ed.</s> in 2010.</p>
<p>I wrote Android Apps for Absolute Beginners 4th Ed. in 2017.</p>
</header>
</main>
</body></html>

Next, let’s look at the delete tag used for text that has been deleted and
replaced using the insert <ins> tag. Use and <ins> for document updates or
modifications.

HTML5 browsers normally draw a line through deleted text and underline inserted
text. We cover the <ins> tag here because it’s used with the delete tag and provides the
exact opposite function. Here are the and <ins> tags, which were used to update my
Android Apps for Absolute Beginners (Apress, 2014) book:

<!DOCTYPE html><html>

<head><title>Publishing Text Content in HTML5 Documents</title></head>

<body>

<main>
<header>
<h1>Publishing Deprecated Text: Using Text-Related Tags in HTML5</h1>
<p>I wrote <del»Android Apps for Absolute Beginners 3rd Ed. (2014)</dels

<ins»Android Apps for Absolute Beginners 4th Ed. (2017)</ins»
for Apress, an imprint of International Publisher Springer.</p>

</header>

</main>

</body></html>

Let’s save the phrase tags for the next chapter; after that, you'll be ready to get into
lists, forms, and tables.

100

CHAPTER 11 © HTML5 FORMATTING: PUBLISH TEXT-BASED CONTENT

Summary

In this chapter, you looked at 20 text publishing tags supported in HTML5 and previous
versions, including tags for formatting text, tags for styling text, tags for breaking
(separating and spacing) text, tags for sizing text, tags for text direction, text for
quotations, text for citations and tags for special types of text circumstances. In the next
chapter, you look at the phrase tags, which support the publishing of non-standard text-
based content inside of HTML5 documents, websites, and applications.

101

CHAPTER 12

HTMLS5 Phrase Tags: Using
Non-Standard Text

Now let’s go over phrase tags in HTML5, which allow developers to actually control

the browser’s assimilation and classification of the text-based content by using styling,
defining, hinting, formatting, Teletype and keyboard input, computer coding, variables,
and the like. These more specialized text-related tags allow HTML5 developers to define
their document content without having to resort to using stylesheets for styling purposes,
or JavaScript, for coding-related activities.

In this chapter, you look at phrase tags for implementing non-standard text-based
content in HTML5. These include the strong tag (like bold), the emphasis
 tag (like italics), the code <code> tag, variable <var> tag and sample <samp> tag
for coding related text, the definition <dfn> tag for term definition, a keyboard <kbd>
tag for keyboard data entry, and the Teletype <tt> tag, for Teletype data entry.

HTML5 Phrase Tags: Special Text Content

This chapter covers the text-related “phrase tags” supported in HTML5. They are used
to create non-standard types of text content for publishing in documents, websites,

or applications. Most of them were supported in legacy versions of HTML. The
and tags have updated semantic definitions in HTML5; I point this out where
applicable. These tags are also used as child tags of the semantic tags covered in
Chapter 10 and the text publishing tags covered in Chapter 11. Phrase content is
encapsulated (wrapped) in standardized semantic and text containers, so that the
search engine robots (index and rank algorithms) can properly implement Web 3.0
Semantic Search.

© Wallace Jackson 2016 103
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_12

http://dx.doi.org/10.1007/978-1-4302-6536-8_10
http://dx.doi.org/10.1007/978-1-4302-6536-8_11

CHAPTER 12 I HTML5 PHRASE TAGS: USING NON-STANDARD TEXT

Table 12-1 shows eight phrase tags that can be used for defining, styling, input,
and coding.

Table 12-1. Eight HTML Text Content Publishing “Phrase Tags”

Text Phrase Tags Text Phrase Tag Usage

dfn Defines the defining instance for a term

strong Defines an important term or statement

em Defines an emphasized term or statement

kbd Defines keyboard input

tt Defines Teletype input (not supported in HTML5)
code Defines a computer code listing or fragment
samp Defines a computer code sample output

var Defines a computer code variable

Let’s take a look at the phrase tags in logical sections just like they are arranged in
this table, starting with HTML5 phrase tags for styling <dfn>, , and . These
define important content, in one way or another, to the HTML rendering engine, and
for that reason, should also be considered semantic tags as well. Each also has its own
unique styling.

HTML5 Phrase Styling: Highlighting Important Text

The phrase-styling tag is used much like the bold tag. The tag is
used much like the italics <i> tag. There is also a more specialized <dfn> tag used to
semantically define important terms or abbreviations in your document, so that search
engines understand the emphasis put on content elements.

The DFN Tag: Definition Terminology for the HTML5 Document

The definition <dfn> tag represents the “defining instance” of a term that you use in an
HTML5 document, website, or application. This defining instance is the first usage of
that particular term within a given document. The parent for this <dfn> tag needs to
contain a definition or explanation of the term defined inside the child <dfn> tag. You can
define a <dfn> element without using any parameters, as shown in the following HTML5
markup example:

<p>Did you know <dfn»JSON¢/dfn» stands for: JavaScript Object Notation?</p>

104

CHAPTER 12 © HTML5 PHRASE TAGS: USING NON-STANDARD TEXT

The <dfn> tag is also commonly used with the global title attribute or parameter,
so that when you mouse-over the defined term, you see its definition. The following
HTML5 markup shows an example of this:

<p>Did you know that <dfn title="JavaScript Object Notation">JSON</dfn>
stands for: JavaScript Object Notation and can be used with HTML5?</p>

The <dfn> tag can also be used as the parent tag of the <abbr> tag, which you saw in
Chapter 11, and which some consider to be a phrase tag as well.

In order for the mouse-over function to work properly, you need to make sure that
the title attribute or parameter exists inside of the <abbr> tag, which is itself inside of the
<dfn> element. This is done using the following HTML5 markup:

<p>HOT TIP: <dfn><abbx title="JavaScript Object Notation">JSON¢/abbxs></dfn>
stands for JavaScript Object Notation and can be utilized with HTML5?</p>

Itis also possible to add a global id attribute to the <dfn> element, so that it could be
referenced by using the href parameter, or in CSS3 stylesheets and via JavaScript code.
This is shown in the following HTML5 markup:

<p>Do you know <dfn id="json" title="JavaScript Object Notation">JSON</dfn>
stands for JavaScript Object Notation, and it can be used with HTML5?</p>

Your markup can refer back to the definition by using an <a> tag, if set up as follows
whenever the JSON term is used:

<p>If you want to learn <a href="#json"»ISON¢/a», check out Wallace
Jackson's Apress Title: <gq>JSON Quick Syntax Reference (2016).</qg></p>

Next, let’s take a look at a special type of phrase tag called the tag. This tag
is specifically utilized for highlighting important or key information in the document
design.

The STRONG Tag: Defining Important Text and Terminology

The tag is the semantic search version of the bold tag in as much that it not
only bolds the text style, but also indicates a greater importance or “strength” for the term
or phrase that is contained within the and tags. This tells a semantic
search algorithm what is important, which allows it to do a better job at its attempt at
semantic artificial intelligence.

Let’s use a tag to increase my importance as an author. This example
should enclose my name in the and tags, as shown in the following
HTML5 markup:

<p>If you want to learn JSON, check out <strongsWallace
Jackson's Title: <g>JSON Quick Syntax Reference (2016).</q></p>

105

http://dx.doi.org/10.1007/978-1-4302-6536-8_11

CHAPTER 12 I HTML5 PHRASE TAGS: USING NON-STANDARD TEXT

This should give my name a slight boost in search engine rank, at least versus
using the bold tag, because it tells the search engine algorithms that as the content
developer, I am assigning an increased level of importance to myself. Some folks inform
me that I do this way too much; then I simply cite SEO as my excuse to continue doing so.

The EM Tag: Emphasizing Important Text and Terminology

The tag is the semantic search version of the italics <i> tag, in as much that it
not only italicizes the text style, but also indicates a greater focus or “emphasis” for the
term or phrase contained witihn the and tags. This tells a semantic search
algorithm what is emphasized, which allows it to do a better job with the search engine’s
attempt to implement the semantic artificial intelligence.

Let’s use an tag to increase the emphasis on a book title in the previous
example. This example encloses the book title in the and tags. This change
from a quotation tag to an emphasis tag is shown in the following HTML5 markup:

<p>If you want to learn JSON, check out Wallace
Jackson's Title: <em»JSON Quick Syntax Reference (2016).</emy
</p>

This change serves to change the styling from using quotation marks to delineate the
book title to using italics, like this: JSON Quick Syntax Reference.

Next, let’s look at the phrase tags that simulate keyboard and Teletype data input.
The Teletype, or TTY, is an electro-mechanical typewriter that sends and receives
typed messages, from point to point and from point to multipoint, over various types
of communications channels. It is an early predecessor to the facsimile machine
popular today.

HTML5 Phrase Input Tags: Keyboard and Teletype

The next two tags shown in Table 12-1 define phrase text styles, which make it appear as
if custom input is being performed. These typically change the text font style in a browser
to a font that connotes typing, such as Courier or a monospace font. It is important to
note that these tags do not actually add an ability to take text from an external physical
hardware device, but simply make the text used with those tags in your document

make it look as though that is happening, so these tags are input styling rather than the
previous emphasis styling tags. Let’s go over the keyboard <kbd> tag first, because it is
still supported in HTMLS5, and it is the tag you'll want to use to simulate keyboard input in
documents.

106

CHAPTER 12 © HTML5 PHRASE TAGS: USING NON-STANDARD TEXT

The KBD Tag: Defining Keyboard Input

The <kbd> tag specifies keyboard input (or Teletype input for HTML5, which no longer
supports the <tt> tag) in HTML5 documents, websites, and applications. More than one
<kbd> tag may be used in a single document. This <kbd> tag uses the following style
definition; if you like, you could change this to specify the Courier font in an external CSS
stylesheet:

kbd { font-family: monospace; }
kbd { font-family: Courier; } // This €SS3 will simulate a typewriter
kbd { font-family: 'Lucida Console'; } // This CSS3 will simulate Teletype

Let’s use the <kbd> tag to change the book title style to look like a font that is used in
coding. An example of this is shown in the following HTML5 markup:

<p>If you want to learn JSON, check out Wallace
Jackson's Title: <kbd>JSON Quick Syntax Reference (2016).</kbd>
</p>

Next, let’s take a look at the <tt> tag, which should be used in HTML versions earlier
than HTML5 to simulate a Teletype machine in an HTML5 document or application.

The TT Tag: Defining Teletype Input

The <tt> tag specifies Teletype input for HTML versions prior to HTML5, which no longer
supports the <tt> tag. More than one <tt> tag may be used in a single document. This <tt>
tag uses the following style definition; if you like, you could change this to specify Courier
font or a monospace font in an external CSS stylesheet:

tt { font-family: monospace; } // This (€SS3 will simulate a keyboard!
tt { font-family: Courier; } // This CSS3 will simulate a typewriter!

Let’s use this <tt> tag to change the book title style to look like the font used in
Teletypes. An example of this is shown in the following HTML5 markup:

<p>If you want to learn ISON, check out Wallace
Jackson's Title: <tt»JSON Quick Syntax Reference (2016).</tt>
</p>

Next, let’s look at phrase tags which simulate working with computer code.

HTML5 Phrase Coding Tags: Code and Variables

The final three phrase tags shown in Table 12-1 allow you to style text elements to look
like they are computer coding-related content. This is done by using the code fragment
<code>, sample output <samp>, and the code variable <var> tags.

107

CHAPTER 12 I HTML5 PHRASE TAGS: USING NON-STANDARD TEXT

The Code Tag: Code Sample Listings and Code Fragments

The <code> tag defines a “code fragment,” which is a snippet or partial code listing.
Usually, the entire code listing is too long, but it is possible to use this phrase tag to style
an entire code listing. The CSS3 setting for a <code> tag defaults to using the monospace
font to style the code text, as shown in the following CSS3 definition (with other coding-
related, font-family styling options included):

code { font-family: monospace; } // Default Style for the <code> element
code { font-family: Courier; } // This €SS will simulate the typewriter
code { font-family: 'Lucida Console'; } // This CSS will simulate a Teletype

Let’s use the tag to showcase a Java 9 code snippet from my Pro Java 9 Games
Development (Apress, 2017) book, as shown in the following markup:

<p>If you want to learn JAVA, check out Wallace
Jackson's Title Pro Java 9 Game Development (2017).
Here is a sample snippet of Java 9 code from this upcoming Java 9 Game
Development programming title:
<code>
legalButton.setOnAction(new EventHandler<ActionEvent>() {
@0verride
public void handle(ActionEvent event) {
infoOverlay.getChildren().clear();
infoOverlay.getChildren().addAll(copyText, riteText);
infoOverlay.setTranslateY(380);
infoOverlay.setLineSpacing(-9);
uiContainer.setBackground(uiBackground3);
boardGameBackPlate. setImage(transparentlogo);

}
b
</code»
</p>

Next, let’s take a look at the sample output <samp> tag.

The SAMP Tag: Adding Sample Code Output

The <samp> tag is used to define code output, which is the result of running code. The
CSS3 setting for a <samp> tag defaults to using the monospace font to style the code text,
as shown in the following CSS3 definition:

samp { font-family: monospace; } // Default Style for a <samp> element

samp { font-family: Courier; } // This €SS will simulate a typewriter
samp { font-family: 'Lucida Console'; } // This CSS will simulate a Teletype

108

CHAPTER 12 © HTML5 PHRASE TAGS: USING NON-STANDARD TEXT

Let’s use this tag to showcase a Hello World code sample, taken from my upcoming
Pro Java 9 Games Development (Apress, 2017) book, as shown in the following HTML5
markup:

<p>If you want to learn JAVA, check out Wallace
Jackson's Title Pro Java 9 Games Development (2017).
Here is a sample snippet of Java 9 code output from Chapter 6 in the
upcoming Pro Java 9 Games Development programming title:
<samp>

Hello World!

</samp»

</p>

Next, let’s take a look at the code variable <var> tag.

The VAR Tag: Adding Code Variables

The <var> tag defines code variables, which are the data values within your code. The
CSS3 setting for the <var> tag defaults to using the italics to style the code text, as shown
in the following CSS3 definition:

var { font-style: italic; } // Default Style for the <var> tag is italic
var { font-style: italic; font-family: monospace; } // italic monospace font

The <var> tag is usually nested inside a <code> tag, as variables exist inside code.
Let’s use the tag to style variables in the <code> tag example in the following markup:

<codeylegalButton.setOnAction(new EventHandler<ActionEvent>() {

@0verride

public void handle(ActionEvent event) {
infoOverlay.getChildren().clear();
infoOverlay.getChildren().addAll(<varscopyText, riteText</vars);
infoOverlay.setTranslateY(380);
infoOverlay.setLineSpacing(-9);
uiContainer.setBackground(uiBackground3);
boardGameBackPlate.setImage(transparentlogo);

}

});</codes

Summary

In this chapter, you learned about the phrase tag support in HTML5 and previous
versions, including the <dfn>, , , <kbd>, <tt>, <code>, <var>, and <samp>
tags. In the next chapter, you look at the HTMLS5 list tags.

109

CHAPTER 13

HTMLS Lists: Numbered,
Bulleted, and Definition Listy

Let’s discuss the six list creation tags for HTML5 next, which allow developers to create
different types of list-based content using a numbered (or even a lettered) list, a bulleted
list, or a definition list. These more specialized text-related tags allow HTML5 developers
to define their document list content with a good deal of flexibility using only a half-dozen
tags. These list tags are inherently semantic, as they clearly define lists and order, as well
as list descriptions and terms.

In this chapter, you learn about list tags, which implement list-based content in HTML,
as all of the tags are supported in HTML 4.01, and some in earlier versions of HTML.

These include a list tag, an ordered list tag, the unordered list tag,
and the description list <dl> tag, description term <dt> tag, and the description data
<dd> tag.

HTMLS List Tags: Ordered Information

This chapter covers the six text-related “list tags” supported in HTML5. They create
ordered collections of information, much like an array in JavaScript programming, but
styled as a list or data definition collection, similar to what you experience with basic
JSON definitions, such as the ones covered in JSON Quick Syntax Reference (Apress,
2016). All of these tags are supported in legacy versions of HTML; a few of the tags even
go all the way back to HTML 2.0, which I'll point out, where applicable. These list tags
are optimally used as child tags of the semantic tags covered back in Chapter 10, so that
list-based content is encapsulated (wrapped) in standardized semantic containers, so
that the search engine robots (the indexing and ranking algorithms) optimally implement
Web 3.0, which is the future of the Internet: Semantic Search. Table 13-1 shows the six
list tags supported in HTML5.

© Wallace Jackson 2016 111
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_13

http://dx.doi.org/10.1007/978-1-4302-6536-8_10

CHAPTER 13 I HTML5 LISTS: NUMBERED, BULLETED, AND DEFINITION LISTS

Table 13-1. Six HTML Content Publishing Tags for Creating Lists
HTMLS List Creation Tags HTMLS5 List Creation Tag Usage

li Defines a list item

ol Defines an ordered list

ul Defines an unordered list
dl Defines a definition list

dt Defines a definition term
dd Defines the definition data

Let’s take a look at these list creation tags in logical sections, in the same way that they
are arranged in this table, starting with “core” HTMLS list tags , , and . These
define important content lists or collections to the HTML rendering engines. For this
reason, these list tags should also be considered to be classified as semantic search tags.

HTMLS5 Stylized Lists: Ordered and Bulleted Lists

The list tags that go back the farthest in HTML support are the most often used: the list
item tag, which specifies each item in a list, and its parent or tags, which
are used to specify unordered (bulleted) lists, or ordered (numbered/lettered/Roman
Numeral) lists. These tags have enough parameters that you can create a wide array of
professionally styled lists, without having to resort to any custom CSS3 stylesheet code.

The LI Tag: The Core List Tag Used to Define Each List ltem

The tag defines each “member” of the list with a starting and an ending
tag around the word, sentence, or text block of the list member. The proper way to use the
 tag is as a child element of a or parent container, however, browsers are
very forgiving in how they render elements, and render them without a parent
or container. If you use an HTML “validator,” to validate your markup, it won’t be
considered “valid” HTML markup, just so you know. Therefore, I am going to show you
the correct way to use .

Let’s use a semantic <section> tag to create two section areas of bullets containing
types of cars. We'll expand upon the semantic tags example in Chapter 10, and add
bulleted lists (using the default unordered list parent tag). This is accomplished
using the following HTML5 markup:

<!DOCTYPE html><html>
<head><title>Exotic and Domestic Cars</title></head>
<body>
<section id="exotic car list">
<h1>European Exotic Car Brand List</h1>

<lisFerrari¢/1iy

112

http://dx.doi.org/10.1007/978-1-4302-6536-8_10

CHAPTER 13 HTML5 LISTS: NUMBERED, BULLETED, AND DEFINITION LISTS

<lislamborghini</1is
<liyPorsche</1iy
<lisBugatti¢/1is

</section>
<section id="domestic car list">
<h1>American Domestic Car Brand List</h1>

<liyCadillac¢/1is
<liyBuick¢/1is
<liyJeep</1i>
<liyLincoln¢/1iy

</section></body></html>

Next, let’s take a look at how the unordered list tag allows you to configure the
child members that it contains.

The UL Tag: Defining and Styling an Unordered List Container

The tag is used as a parent tag list container to define the list member content using
symbols for what are commonly called “bullets.” This tag has two parameters that are not
supported in HTML5 due to the trend toward using CSS for styling and tag markup for
content definition. I include them in Table 13-2 for those of you working on legacy HTML
projects.

Table 13-2. Two HTML Parameters for Creating Unordered Lists

Unordered List Parameter Unordered List Parameter Usage

type Defines bullet type (disc, circle, square)

compact Defines the list to be rendered: smaller

Let’s look at how you configure the tag.

Let’s use the type parameter to change a standard disc bullet to a square bullet
for the first section’s list, and the bullet to use the hollow bullet (called a circle) for the
second section’s list. This is accomplished in the following HTML markup (in HTMLS5 it is
accomplished using CSS3):

<!DOCTYPE html><html>
<head><title>Exotic and Domestic Cars</title></head>
<body>
<section id="exotic car list">
<h1>European Exotic Car Brand List</h1>
<ul type="square"»
Ferrari</1i>

113

CHAPTER 13 I HTML5 LISTS: NUMBERED, BULLETED, AND DEFINITION LISTS

Lamborghini</1i>
Porsche</1i>
Bugatti</1i>
</uly
</section>
<section id="domestic car list">
<h1>American Domestic Car Brand List</h1>
<ul type="circle"»
Cadillac</1i>
<1i>Buick</1i>
Jeep
<lisLincoln</1i>
</uly
</section>
</body>
</html>

Note that most, if not all, of the HTML5 browsers should still respect the type
parameter, implementing a correct bullet type even though the parameter is no longer
supported in HTMLS5.

Next let’s take a look at ordered list parent tags.

The OL Tag: Defining and Styling an Ordered List Container

The tag defines list-based content that is numbered, uses Roman Numerals, or
uses alphabetic letter indicators to determine the order of the members in an ordered
list. The tag has four parameters (one of which, compact, is no longer supported in
HTMLS5 due to the trend toward using CSS3 for styling and using tag markup solely for
content definition). The type parameter for the tag is supported in HTMLS5, as are
the reversed and the start parameters, which are generally used with a numeric ordering
type, set using a type parameter. I include these parameters in Table 13-3 for those of you
working on legacy HTML markup projects.

Table 13-3. Four HTML5 Parameters for Creating Ordered Lists

Ordered List Parameter Ordered List Parameter Usage

type Defines ordering type (1, A, a, I, or i)
reversed Defines numbering direction (backward)
start Defines the start number (for number type)
compact Defines the List to be rendered: smaller

114

CHAPTER 13 HTML5 LISTS: NUMBERED, BULLETED, AND DEFINITION LISTS

Let’s take a look at how we can configure this tag, substituting it for the tag
used in a previous example.

To use numbered ordering starting with the number four and counting backward,
you can specify the following parameters for the first section’s list:

<!DOCTYPE html><html>
<head><title>Exotic and Domestic Cars</title></head>
<body>
<section id="exotic car list">
<h1>European Exotic Car Brand List</h1>
<ol type="1" start="4" reverseds
Ferrari</1i>
Lamborghini</1i>
Porsche</1i>
Bugatti</1i>
</ol»
</section>
<section id="domestic car list">
<h1>American Domestic Car Brand List</h1>

<ol type="A"»>
Cadillac</1i>
<1li>Buick</1i>
Jeep</1i>
Lincoln</1i>
</ol»

</section>

</body>

</html>

The second section uses capital letter alphabetic order, signified using the type="A"
parameter. To use Roman numerals, use the type=“I"parameter setting. It is usually not
logical to count backward or starting with arbitrary letters or Roman numerals using these
type settings, but it’s possible to do so.

Next, let’s take a look at HTML5 description lists. HTML versions prior to HTML5
defined the <dl> tag as a definition list (this was not as semantically relevant).

HTMLS5 Description Lists: Lists of Terms with Data

The last three tags in Table 13-1 allow you to define a description list. In HTML 4.01, a
<dl> was called a “definition list” This list contained a group of terms and definitions.
These terms and definitions represented a “many to many” interrelationship, as in one
or more terms matched to one or more definitions. This HTML element was therefore
misunderstood and subsequently misused, or not used at all. To make matters worse, this
definition list was not usable for semantic search.

To fix all the issues with the <dl> tag, HTMLS5 redefines this tag as a description list.
The <dl> element represents the associated (related) data list consisting of zero or more
name-value pairs or name-value groups.

115

CHAPTER 13 I HTML5 LISTS: NUMBERED, BULLETED, AND DEFINITION LISTS

A name-value pair consists of the description term <dt> and its description data
<dd> value, which is very similar to a JSON key-value pair. A name-value group consists
of one or more description terms <dt> elements followed by one or more values in the
form of description data <dd> elements.

Within a single description list <dl> element, there cannot be more than one single
description term <dt> element for each description term name; that is, there can be no
duplicate <dt> elements within a description list <dl> parent container.

Name-value pairs and name-value groups can be terms and definitions, metadata
topics and values, questions and answers, or any other pairs or groupings of name-
value data.

Those of you familiar with JSON may see the similarities between the key-value pairs
used to define JSON data definition structures and object notation structures.

The DL Tag: Defining the Description List Parent Container

The <dl> tag defines the topmost level for the description list. The default CSS3 defined
for the <dl> tag is shown here for reference purposes only. It keeps the data in the
description list spaced very close together with minimal spacing around the description
list block of data pairs/groups:

dl { display: block;
margin-top: lem;
margin-bottom: 1em;
margin-left: o;
margin-right: o; }

Let’s use the <dl> tag along with the <dt> and <dd> tags to define a data array for
Italian exotic car brands and models in our content design example section. This example
is shown in the following HTML5 markup:

<IDOCTYPE html><html>

<head>

<title>Exotic and Domestic Cars</title>

</head>

<body>

<section id="exotic car list">
<h1>Italian Exotic Car Brand Description List</h1>
<dly
<dt>Ferrari</dt><dd>LaFerrari</dd>
<dt>Bugatti</dt><dd>Chiron</dd>
<dt>Maserati</dt><dd>GranCabrio</dd>
<dt>Lamborghini</dt><dd>Gallardo</dd>
</dl»

</section>

</body>

</html>

116

CHAPTER 13 HTML5 LISTS: NUMBERED, BULLETED, AND DEFINITION LISTS

Next, let’s take a look at the definition term <dt> tag.

The DT Tag: Defining Each Description Term Child Element

The <dt> tag defines the description term for each key-value data pair, as you saw in
the previous section. Default CSS3 defined for this <dt> tag is shown here (for reference
purposes only):

dt { display: block; }

Next, let’s take a look at the definition data <dd> tag.

The DD Tag: Defining Each Description Data Child Element

The <dd> tag holds description data in a description list. Inside of a <dd> tag you can
put paragraphs, line breaks, images, links, other lists, and similar text-based content. You
can see how the tag is used in the preceding example. The default CSS for the <dd> tag is
shown here for reference purposes only:

dd { display: block; margin-left: 40px; }

Next, let’s look at another way to arrange data, in a tabular format, when we look at
the HTML table tags in the next chapter.

Summary

This chapter described list tag support in HTML5 and prior versions, including the
, , <o0l>, <dl>, <dt>, and <dd> tags. In the next chapter, you look at the HTML5
tags that support the publishing of table-based content within HTML5 documents and
applications.

117

CHAPTER 14

HTML5 Tables: Constructing
Data in a Tabular Format /

Let’s talk about the ten table creation tags for HTML5. They allow developers to create
different types of table-based content, using a tabular format in a grid-based layout.
These more specialized table-related tags allow HTML5 developers to define their
document tabular content with a significant amount of flexibility, using less than a dozen
tags. The table tags are inherently semantic because they are clearly used to define tables
of data collections and information grids.

The chapter explains table tags, which implement tabular content in HTML.
All of the tags are supported in HTML5; and also are supported in earlier versions of
HTML. They include the table <table>, table data <td>, table row <tr>, column <col>,
table column group <colgroup>, caption <caption>, table body <tbody>, table header
<thead>, table footer <tfoot> and table group header <th>.

HTMLS5 Table Tags: Tabular Information

This chapter covers the ten text-related table tags that are supported in HTML5.
They create tabular collections of information, much like a grid in Android or Java
programming, but styled as a table, which is like a 2D data definition collection
(databases use tables as well) similar to what you experience with basic SQL definitions.
All of these tags are supported in legacy versions of HTML; a few of the tags even go all
the way back to HTML 2.0, and I'll point this out, where applicable. The table tags are
optimally used as child tags of the semantic tags covered in Chapter 10, so that your
table-based content is encapsulated (or wrapped) into standardized semantic containers.
Table data is also semantic; it is assimilated by semantic search, as the table-related tag
names describe what the data contained inside of the table tag name represents to the
organization of your tabular content!

Because of the conformance to the new Web 3.0 semantic thrust currently underway
in HTMLS5, table tags have returned from the recent obscurity they were facing. For a
while, developers were moving away from using tables and frames toward using other
containers and CSS to achieve the same visual results. But used properly, table tags can
create tables of interrelated data, much like a database. Table 14-1 shows the ten table
tags that are supported in HTML5 as well as in earlier HTML versions.

© Wallace Jackson 2016 119
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_14

http://dx.doi.org/10.1007/978-1-4302-6536-8_10

CHAPTER 14 I HTML5 TABLES: CONSTRUCTING DATA IN A TABULAR FORMAT

Table 14-1. Ten HTML Content Publishing Tags for Table Creation
HTML Table Creation Tags HTML Table Creation Tag Usage

table Defines a table

caption Defines a table caption

tr Defines a table row

th Defines a table heading cell
td Defines a table data cell
thead Defines a table header

tbody Defines a table body

tfoot Defines a table footer

col Defines a table column
colgroup Defines a table column group

Let’s take a look at the table creation tags in logical sections, in the same way that
they're arranged in this table, starting with your core HTML5 table tags <table>, <tbody>,
and <caption>. These define important table characteristics to the HTML5 rendering
engine. For this reason, these list tags could also be classified as semantic search tags, and
so it is important that they be implemented correctly by HTML5 content developers.

Top Level HTML Table Creation: Table and Caption

The top-level table tags are used to define the table itself; these include the table <table>
tag, which is used as the parent container for the table, and its child tags—<tbody> and
<caption>, which are used to specify the primary table data, called table body and table
caption, respectively.

The TABLE Tag: The Core Tag Used to Create the Table Element

A <table> tag defines the HTML table element. At a bare minimum, an HTML table must
consist of the <table> element and one or more <tr>, <td>, and <th> elements.

Two <table> element parameters are still supported in HTML5: sortable and border.
Eight parameters were replaced by CSS3, but are valid in prior HTML versions. They are
all shown in Table 14-2.

120

http://www.w3schools.com/TAGS/tag_tr.asp
http://www.w3schools.com/TAGS/tag_th.asp
http://www.w3schools.com/TAGS/tag_td.asp

CHAPTER 14 © HTML5 TABLES: CONSTRUCTING DATA IN A TABULAR FORMAT

Table 14-2. Ten <table> Parameters Used for Table Configuration
HTML Table Tag Parameters ~ HTML Table Tag Parameter Usage

sortable Defines the table as sortable

border Defines the table as having a border

align Defines alignment (left, right, center)
bgcolor Defines the table background color
cellpadding Defines the table cell padding value
cellspacing Defines the table cell spacing value
frame Defines outside borders that are visible
rules Defines inside borders that are visible
summary Defines the summary of the table content
width Defines the table width

Asyou see later on in this chapter, all of the other table tags are child tags of <table>.
The <tr> element defines a table row, the <td> element defines each table cell, and the
<th> element defines a table header labeling the table columns.

More complex tables would also include <caption>, <col>, <colgroup>, <thead>,
<tfoot>, and <tbody> elements, all of which is covered in detail over the course of
this chapter.

Let’s use the <table> tag to create a table in a section containing popular brands and
models of Italian sport cars, and use the two parameters supported in HTML5, border
and sortable, to make this table have borders, and be able to be sorted. It's important to
note that not all the browsers currently support a sortable parameter. This exotic car table
is accomplished using the following HTML5 markup:

<!DOCTYPE html><html>
<head><title>Exotic Car Table</title></head>
<body>
<section id="exotic car table">
<table border="1" sortable»
<tr>
<th>Brand</th>
<th>Model</th>
</tr>
<tr>
<td>Ferrari</td>
<td>LaFerrari</td>
</tr>
<tr>
<td>Bugatti</td>
<td>Chiron</td>
</tr>
<tr>

121

CHAPTER 14 I HTML5 TABLES: CONSTRUCTING DATA IN A TABULAR FORMAT

<td>Maserati</td>
<td>GranCabrio</td>

</tr>

<tr>
<td>Lamborghini</td>
<td>Gallardo</td>

</tr>

</tabley
</section>
</body></html>

Next, let’s take a look at how the table caption <caption> tag allows you to add a
caption to the parent Table <table> tag it is contained in.

The CAPTION Tag: Adding a Caption to Your Table

The <caption> tag is used as a child tag to define the caption for your table element. The
<caption> tag needs to be inserted immediately after the <table> tag. This tag has one
align parameter, which is not supported in HTML5 due to the trend toward using CSS for
styling and tag markup for content definition.

Let’s use the caption tag to add a caption to your table example. This is
accomplished in the following HTML markup:

<!DOCTYPE html><html>
<head><title>Exotic Car Table with Caption</title></head>
<body>
<section id="exotic car table">
<table>
<captionsExotic Italian Car Manufacturers and Current Models</captiony
<tr><th>Brand</th><th>Model</th></tr>
<tr><td>Ferrari</td><td>LaFerrari</td></tr>
<tr><td>Bugatti</td><td>Chiron</td></tr>
<tr><td>Maserati</td><td>GranCabrio</td></tr>
<tr><td>Lamborghini</td><td>Gallardo</td></tr>
</table>
</section>
</body></html>

Notice that I've also made the table markup more compact in the way I am spacing
my tags, with table row constructs each occupying their own line of markup. As long as
everything nests properly, spacing makes no difference to the HTMLS5 parsing engines.

Next, let’s look at table content definition child tags.

122

CHAPTER 14 © HTML5 TABLES: CONSTRUCTING DATA IN A TABULAR FORMAT

HTMLS5 Table Content Definition: TR, TH, and TD

The next three tags in Table 14-1 allow you to define your table rows and their cells. There
are five parameters for the <tr> tag, none of which is supported in HTML5. I include them
in Table 14-3 for those of you working on legacy projects.

Table 14-3. Five Table Row <tr> Parameters Used Prior to HTML5
HTML Table Tag Parameters ~ HTML Table Tag Parameter Usage

align Alignment (left, right, center, justify)
bgcolor Defines the table row background color
char Aligns content to a table row character
charoff Defines the character alignment offset
valign Vertical alignment (top, middle, bottom)

A table row is kind of like a record in a database, with the table cells serving as data
fields inside of a data record. In fact, with tables being sortable and semantic search
relating more and more to data, the <table> tag and its children are very well positioned
to be used in this fashion in Web 3.0.

As you've seen in the examples thus far, each <tr> element contains one or more
<th> or <td> elements.

Since you have already seen how the <tr> element is used, I move on to cover table
heading <th>, and table data <td> elements in this section, without using up any space
for markup listings. To see these elements in action, simply refer back to the tags thatI
covered in the previous section.

The TH Tag: Defining the Table Heading Cells in the Table Row

The <th> tag defines the table headings in a table row. These headings are used to label
subsequent rows of data by using headings for each column. An HTML table has two
kinds of cells: heading cells, called header cells, which contain heading information, and
standard cells, which contain table data. Standard cells are created by using the <td>
element, which is covered in the next section.

The text content used inside these <th> elements are bolded and centered by
default (automatically). The text in your <td> elements, on the other hand, would not
be bolded, and should be left-aligned as a default, just like text in most tables and in
spreadsheets, that is, data, and not heading text (labels, data field names, etc.).

This is seen in the default CSS3 stylesheet settings for the <th> element, which are
shown here to reinforce this:

th { display: table-cell;
vertical-align: inherit;
font-weight: bold;
text-align: center; }

123

http://www.w3schools.com/TAGS/tag_th.asp
http://www.w3schools.com/TAGS/tag_td.asp

CHAPTER 14 I HTML5 TABLES: CONSTRUCTING DATA IN A TABULAR FORMAT

Notice that CSS supports tables implicitly with a table-cell parameter and that the
vertical alignment parameter is inherited, from the table row <tr> parent tag (see Table 14-3).

There are six parameters supported for the table heading <th> tag in HTMLS5, as seen
in the top section of Table 14-4. There are nine other parameters that aren’t supported
in HTML5 but work in earlier versions of HTML. The sorted parameter allows you to
define the sort direction (reversed, number, reversed number, or number reversed) and
a scope parameter allows you to define your <th> tag’s scope of influence (row, column,
rowgroup, or colgroup).

Table 14-4. Fifteen <th> Parameters Used for Table Headers

HTML Table Tag Parameters HTML Table Tag Parameter Usage

sorted Defines a sort direction for that column
scope Defines header scope (col, row or group)
abbr Defines a header abbreviation term
headers Defines header cells a header relates to
colspan Defines a number of columns header spans
rowspan Defines a number of rows a header spans
align Alignment (left, right, center, justify)
axis Defines category names for header cell
bgcolor Defines the header background color
char Aligns content to table header character
charoff Defines the character alignment offset
height Defines the table height

nowrap Specify no wrap flag for header content
valign Vertical alignment (top, middle, bottom)
width Defines the table width

The abbr parameter defines the abbreviation for your header. The headers
parameter defines the header cells that the <th> tag relates to. This allows you to have
more than one level of header information. To use this headers parameter, assign an id to
your top-level header, and reference it using a headers parameter. Here’s an example of
this using HTML markup:

<tr><th id="namedata" colspan="2">Enter Name Here:</th></tr>
<tr>

<th headers="namedata">Proper Name:</th>

<th headers="namedata">Family Name:</th>
</tr>

124

CHAPTER 14 © HTML5 TABLES: CONSTRUCTING DATA IN A TABULAR FORMAT

I also show a colspan parameter in the previous example, since your Enter Name
Here needs to align over your Proper Name and Family Name headings, so it needs to
span two columns using a colspan="2" parameter value. You can do this same thing
using the rowspan parameter to have a heading span more than one row.

Next, let’s look at complex tables that have different header, footer, and body sections.

Complex Table Definition: THEAD, TBODY, TFOOT

Similar to semantic tags, the <table> parent tag allows you to define a header and a
footer for your table, as well as a main body of content. The <thead> element is used in
conjunction with the <tbody> and <tfoot> elements, and each of these can specify the
various component parts of your table definition; that is, a table header, or <thead>; a
table body, or <tbody>; and a table footer, or <tfoot>. This more complex form of table
definition uses the tags shown in the third section of Table 14-1.

The THEAD Tag: Defining Each Description Term Child Element

The <thead> tag groups header content in an HTML table. The <thead> element needs to
be used in conjunction with the <tbody> and <tfoot> elements so that you are specifying
each of the component semantic sections that are in your table. Browsers then leverage
these semantic design elements for asynchronous scrolling, allowing a table body to
independently move while the header and footer information remains locked in place.
When printing a large table that spans multiple pages, defining these global table region
elements enables a table header and a table footer to be printed at the top and bottom of
each page, respectively.

This <thead> tag must always be a child tag of a <table> parent tag and needs to be
declared after any <caption> as well as any <colgroup> elements. Additionally a <thead>
must be used before the <tbody> or <tfoot> table section containers and used before any
<tr> elements.

Default CSS3 defined for this <thead> tag is shown here, for reference purposes only,
and, as you can see, the header is centered vertically, and its border color is inherited
from its parent container, and it has its own table-header-group CSS3:

thead { display: table-header-group;
vertical-align: middle;
border-color: inherit; }

None of the table header group parameters are supported in HTML5, but I list them

in Table 14-5 for those of you working on legacy HTML markup projects. The parameters
are all used for alignment and their usage is fairly self-explanatory.

125

http://www.w3schools.com/TAGS/tag_tbody.asp
http://www.w3schools.com/TAGS/tag_tfoot.asp

CHAPTER 14 I HTML5 TABLES: CONSTRUCTING DATA IN A TABULAR FORMAT

Table 14-5. Table Head <thead> Parameters Used Prior to HTML5

HTML THEAD Tag Parameters HTML THEAD Tag Parameter Usage

align Alignment (left, right, center, justify)
char Aligns content to a table row character
charoff Defines the character alignment offset
valign Vertical alignment (top, middle, bottom)

Next, let’s take a look at the table body <tbody> tag.

The TBODY Tag: Defining Each Description Data Child Element

The <tbody> tag holds the main part of your table, and has the same considerations as
discussed in the previous section covering thead. This <tbody> tag must always be a child
tag of a <table> parent tag, and needs to be declared after any <caption> element, and
after any <colgroup> elements and after the <thead> element. Additionally, a <tbody>
must be used before the <tfoot> table footer section containers and used before any <tr>
elements containing any <th> and <td> elements.

The default CSS for a <tbody> tag is seen as a grouping of table rows, and is middle
(vertical center) aligned. This is shown here for reference purposes, because this book
does not cover CSS3 quick syntax reference:

tbody { display: table-row-group;
vertical-align: middle;
border-color: inherit; }

The <tbody> parameters are the same ones shown in Table 14-5, so I will not repeat
them again here.

Next, let’s morph the initial example in this chapter and use a more complex table
version with <thead> and <tbody> to create the same results:

<!DOCTYPE html><html>
<head><title>Exotic Car Table with Caption</title></head>
<body>
<section id="exotic car table">
<table>
<caption>Exotic Italian Car Manufacturers and Current Models</caption>
<thead>
<tr><th>Brand</th><th>Model</th></tr>
</thead>
<tbody>
<tr><td>Ferrari</td><td>LaFerrari</td></tr>
<tr><td>Bugatti</td><td>Chiron</td></tr>

126

CHAPTER 14 © HTML5 TABLES: CONSTRUCTING DATA IN A TABULAR FORMAT

<tr><td>Maserati</td><td>GranCabrio</td></tr>
<tr><td>Lamborghini</td><td>Gallardo</td></tr>
</tbody>
</table>
</section>
</body></html>

Next, let’s take a look at the table footer <tfoot> tag.

The TFOOT Tag: Defining Each Description Data Child Element

The <tfoot> tag holds the footer part of a table. It has the same considerations as
discussed in the previous two sections. This <tfoot> tag must always be a child tag of a
<table> parent tag, and needs to be declared after any <caption> element, and after any
<colgroup> elements and after the <thead> element. Additionally, a <tfoot> must be used
before the <tbody> table body section container, which is counter-intuitive to what you
might assume. I would have assumed that the <tfoot> markup comes after the <tbody>
markup. In fact, this is not the case, so remember this rule!

Default CSS for a <tfoot> tag looks like the following:

tfoot { display: table-footer-group;
vertical-align: middle;
border-color: inherit; }

The <tfoot> parameters are the same ones shown in Table 14-5, so, I will not repeat
them again here. Remember, they are not supported in HTMLS5, so only use them in
legacy HTML projects and use CSS to implement these features. An HTML5 browser
might render these deprecated parameters, so be sure to test your HTML markup across
all popular browsers.

Next, let’s morph the initial example in this chapter and use a more complex table
version using <thead>, <tbody> and <tfoot>, to create an enhanced table result, which
has a footer with references. This is done in the following HTML5 markup:

<IDOCTYPE html><html>
<head><title>Exotic Car Table with Caption</title></head>
<body>
<section id="exotic car table">
<table>
<caption>Exotic Italian Car Manufacturers and Current Models</caption>
<thead>
<tr><th>Brand</th><th>Model</th></tr>
</thead>
<tfoot>
<tr><th>References:</th></tr>
<tr><td>Sports Car Brands and Models researched using Google</td></tr>
</tfoot>

127

CHAPTER 14 I HTML5 TABLES: CONSTRUCTING DATA IN A TABULAR FORMAT

<tbody>
<tr><td>Ferrari</td><td>LlaFerrari</td></tr>
<tr><td>Bugatti</td><td>Chiron</td></tr>
<tr><td>Maserati</td><td>GranCabrio</td></tr>
<tr><td>Lamborghini</td><td>Gallardo</td></tr>

</tbody>

</table>
</section></body></html>

Next, let’s take a look at column-related table tags.

Table Column Definition: COL and COLGROUP

Finally, let’s look at a couple of the table tags that allow you to work with table columns.
A <col> tag is generally used inside a <colgroup> tag to define column characteristics
across an entire column, so that you don’t have to do it inside every single <th> or <td>
tag. None of the column parameters is supported in HTMLS5, but I list them in Table 14-6
for all of you working on legacy HTML markup projects.

Table 14-6. Table Column Parameters Used Prior to HTML5
HTML THEAD Tag Parameters ~ HTML THEAD Tag Parameter Usage

align Alignment (left, right, center, justify)
char Aligns content to a table row character
charoff Defines the character alignment offset
width Defines the column width

valign Vertical alignment (top, middle, bottom)

Next, let’s add a background color to each column in the example table. We'll use
yellow for the car manufacturer column and orange for the car model column. This is
accomplished by nesting these two <col> definitions in order and arranged from left to
right inside the <colgroup> parent tag, as shown in the following HTML5 markup:

<IDOCTYPE html><html>
<head>
<title>Exotic Car Table with Caption</title>
</head>
<body>
<section id="bi-colored column exotic car manufacturer and model table">
<table>
<caption>Italian Car Manufacturer (Yellow) and Model (Orange)</caption>
<colgroup>
<col style="background-color:yellow" />
<col style="background-color:orange" />
</colgroup>

128

CHAPTER 14 © HTML5 TABLES: CONSTRUCTING DATA IN A TABULAR FORMAT

<thead>
<tr><ths>Manufacturer</ths><th>Model</th></tr>
</thead>
<tfoot>
<tr><th>References:</th></tr>
<tr><td>Sports Car Brands and Models researched using Google</td></tr>
</tfoot>
<tbody>
<tr><tdy>Ferrari</td><td>LaFerrari</td></tr>
<tr><td>Bugatti</td><td>Chiron</td></tr>
<tr><td>Maserati</td><td>GranCabrio</td></tr>
<tr><td>Lamborghini</td><td>Gallardo</td></tr>
</tbody>
</table>
</section>
</body></html>

This puts yellow behind the car manufacturer column and orange behind the car
model column. Note that the <colgroup> construct of the child <col> tag definition is
after the <caption> tag, and before any <tr>, <thead>, <tfoot>, or <tbody> tags.

Summary

In this chapter, you learned about table tag support in HTML5 and earlier HTML
versions, including the <table>, <tr>, <th>, <td>, <thead>, <tbody>, <tfoot>, <caption>,
<colgroup>, and <col> tags. The next chapter looks at the HTMLS5 tags that support the
publishing of form-based content within HTML5 documents and applications.

129
