
HTML5
Quick Markup
Reference

THE E XPER T ’S VOICE® IN W E B D E V E L O P M E N T

—
Wallace Jackson

www.allitebooks.com

http://www.allitebooks.org

 HTML5 Quick
Markup Reference

 Wallace Jackson

www.allitebooks.com

http://www.allitebooks.org

HTML5 Quick Markup Reference

Wallace Jackson
Lompoc, California, USA

ISBN-13 (pbk): 978-1-4302-6535-1 ISBN-13 (electronic): 978-1-4302-6536-8
DOI 10.1007/978-1-4302-6536-8

Library of Congress Control Number: 2016944265

Copyright © 2016 by Wallace Jackson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Chád Darby
Editorial Board: Steve Anglin, Pramila Balan, Louise Corrigan, Jonathan Gennick,

Robert Hutchinson, Celestin Suresh John, James Markham, Susan McDermott,
Matthew Moodie, Jeffrey Pepper, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Kim Burton-Weisman
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com , or visit www.springeronline.com . Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales .

 Any source code or other supplementary materials referenced by the author in this text are available
to readers at www.apress.com/9781430265351 . For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/ . Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/9781430265351
http://www.apress.com/source-code/
http://www.allitebooks.org

 Th is book is dedicated to aff ordable software developers and all the
members of the open source software community who work so diligently

to make professional application development software, as well as audio,
2D, video, and 3D content development tools, freely available to new media

application developers, so that we can utilize these tools to achieve our
creative dreams and our fi nancial goals.

 I also dedicate this book to my superstar father, Parker Jackson,
my family, my life-long friends, my content production facility’s neighbors,

and my production team partners, for all their help, assistance,
and those relaxing beautiful sunset BBQs underneath pink

clouds on Point Conception.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ... xvii

About the Technical Reviewer .. xix

Acknowledgments .. xxi

Introduction .. xxiii

 ■Chapter 1: HTML5 History: The Past and Future of HTML Markup .. 1

 ■Chapter 2: HTML5 Documents: Top-Level Document Defi nition 5

 ■Chapter 3: HTML5 Search Engine Optimization: Title and Meta ... 13

 ■ Chapter 4: HTML5 Referencing: Using External Links
and Favicons ...19

 ■Chapter 5: HTML5 Processing: Using CSS and JavaScript 25

 ■Chapter 6: HTML5 Parameters: Using Global Tag Attributes 35

 ■ Chapter 7: HTML5 Navigation: Using an Anchor Tag for
Hypertext .. 45

 ■Chapter 8: HTML5 Multimedia: Utilizing New Media Assets 55

 ■Chapter 9: HTML5 Organization: Document Content Hierarchy67

 ■Chapter 10: HTML5 Semantics: Defi ning Semantic Documents ... 73

 ■Chapter 11: HTML5 Formatting: Publish Text-Based Content 87

 ■Chapter 12: HTML5 Phrase Tags: Using Non-Standard Text 103

 ■ Chapter 13: HTML5 Lists: Numbered, Bulleted, and
Defi nition Lists .. 111

 ■ CONTENTS AT A GLANCE

vi

 ■ Chapter 14: HTML5 Tables: Constructing Data in a
Tabular Format ... 119

 ■Chapter 15: HTML5 Forms: Creating Forms Using HTML5 Tags .. 131

 ■ Chapter 16: HTML5 Position: Document Layout and
Text Spanning ... 149

 ■ Chapter 17: HTML5 Scripting: Using JavaScript and
<script> Tag ... 159

 ■ Chapter 18: HTML5 Styling: Using the <style> Tag to
Access CSS3 ... 165

 ■ Chapter 19: HTML5 Real-Time Rendering: Using the
<canvas> Tag ... 171

 ■ Chapter 20: HTML5 Plug-ins: Using the <object>, <embed>,
<applet>, and <param> Tags: ... 179

 ■Chapter 21: HTML5 Frames: Using the <iframe> Tag 189

 ■Chapter 22: HTML5 Ruby Annotations: Using the <ruby> Tag 195

 ■ Chapter 23: HTML 5.1 Tags: Using Menu and
Dialog Design Elements .. 199

 ■ Appendix A: NetBeans: Set up an HTML5 Integrated
Development IDE .. 205

 ■ Appendix B: Eclipse: Set up an HTML5 Integrated
Development IDE .. 215

 ■ Appendix C: IntelliJ: Set up an HTML5 Integrated
Development IDE .. 229

 ■ Appendix D: Multimedia: Set up Your New Media Content
Development ... 245

Index .. 253

vii

Contents

About the Author ... xvii

About the Technical Reviewer .. xix

Acknowledgments .. xxi

Introduction .. xxiii

 ■Chapter 1: HTML5 History: The Past and Future of HTML Markup 1

The History of HTML: Reveal Codes Tags .. 1

What Is HTML5? A Defi nition and Syntax .. 2

More Syntax for HTML5: Using Comments .. 3

The Future of HTML: HTML5 OS and HTML 5.1 3

HTML5 Quick Reference: Tag Categories ... 4

Summary ... 4

 ■Chapter 2: HTML5 Documents: Top-Level Document Defi nition 5

The HTML5 Document Defi nition Tags ... 5

The !DOCTYPE Tag: Defi nes HTML Document Type ... 5

The HTML Tag: Defi ning the Root of the Document .. 9

The HEAD Tag: Confi guring the HTML5 Document .. 9

The BODY Tag: Containing the Document Content .. 10

Summary ... 11

 ■ CONTENTS

viii

 ■Chapter 3: HTML5 Search Engine Optimization: Title and Meta ... 13

The HTML5 HEAD Tags Important for SEO ... 13

The TITLE Tag: Defi ning the HTML5 Document Title .. 13

The META Tag: Defi ning Document Characteristics .. 14

The BASE Tag: Confi guring a URL for a Document .. 17

Summary ... 18

 ■ Chapter 4: HTML5 Referencing: Using External Links
and Favicons ...19

An HTML HEAD Tag to Link External Files ... 19

The LINK Relationship: Types of External Assets .. 20

The LINK Tag: The Optional Link Tag Parameters .. 23

Summary ... 24

 ■Chapter 5: HTML5 Processing: Using CSS and JavaScript 25

HTML HEAD Tags to Add Tag Processing ... 25

The SCRIPT Tag: Using JavaScript Programming ... 26

The NOSCRIPT Tag Advises Users: No JS Support .. 30

Using SCRIPT Tags Internally: JavaScript Coding ... 31

The STYLE Tag: Styling HTML5 Markup Using CSS ... 32

Summary ... 33

 ■Chapter 6: HTML5 Parameters: Using Global Tag Attributes 35

HTML Global Parameters Across All Tags .. 35

HTML5 Global Parameters: Advanced Attributes .. 36

Pre-HTML5 Global Parameters: Legacy Attributes .. 40

Summary ... 43

 ■ CONTENTS

ix

 ■ Chapter 7: HTML5 Navigation: Using an Anchor
Tag for Hypertext .. 45

HTML Anchor Tag Attributes: All Versions .. 45

Anchor Tag HTML5 Parameters: Hypertext’s HREF ... 46

Anchor Tag Non-HTML5 Parameters: Legacy Code .. 51

Summary ... 53

 ■Chapter 8: HTML5 Multimedia: Utilizing New Media Assets 55

HTML5 New Media Support: Nine Genres ... 55

Digital Imagery: Using the Tag .. 56

Digital Audio: Using the <audio> Tag ... 58

Digital Video: Using the <video> Tag .. 60

Digital Illustration: Using the <svg> Tag ... 62

Interactive 3D: Using a <canvas> Tag and WebGL ... 64

Digital Painting: Digital Painting using JavaScript .. 64

Visual Effects: Creating VFX using JavaScript .. 65

Web Speech: Speech Synthesis and Recognition ... 65

Summary ... 65

 ■Chapter 9: HTML5 Organization: Document Content Hierarchy67

HTML5 Content Organization Tags... 67

Heading Level Tags: Segmenting Content Logically ... 68

Horizontal Rule Tag: Dividing Text Content Visually .. 69

The Address Tag: Specifying Address Information .. 70

Summary ... 71

 ■Chapter 10: HTML5 Semantics: Defi ning Semantic Documents..... 73

HTML5 Semantic Content Organization ... 73

HTML5 Sectional Tags: Segment Content Logically .. 75

HTML5 Content Type Semantic Defi nition Tags .. 78

 ■ CONTENTS

x

HTML5 Semantic New Media Figure Defi nition Tags .. 82

HTML5 Semantic Document Detail Defi nition Tags .. 84

Summary ... 86

 ■Chapter 11: HTML5 Formatting: Publish Text-Based Content 87

Create HTML5 Text Content for Publishing .. 87

HTML5 Text Formatting: Paragraph, Pre, and Abbr ... 88

HTML5 Text Styling: Bold, Italics, and Underline ... 92

HTML5 Break Tags: Line Break and Word Break ... 93

HTML5 Text Size: Small, Superscript, and Subscript .. 95

HTML5 Text Direction: The Bidirectional Text Tags .. 96

HTML5 Text Quotes: Quote and Block Quote Tags... 97

HTML5 Text Citations: The CITE Tag .. 98

HTML5 Special Circumstances Text: Other Tags ... 99

Summary ... 101

 ■Chapter 12: HTML5 Phrase Tags: Using Non-Standard Text 103

HTML5 Phrase Tags: Special Text Content ... 103

HTML5 Phrase Styling: Highlighting Important Text .. 104

HTML5 Phrase Input Tags: Keyboard and Teletype ... 106

HTML5 Phrase Coding Tags: Code and Variables .. 107

Summary ... 109

 ■ Chapter 13: HTML5 Lists: Numbered, Bulleted,
and Defi nition Lists ... 111

HTML5 List Tags: Ordered Information .. 111

HTML5 Stylized Lists: Ordered and Bulleted Lists .. 112

HTML5 Description Lists: Lists of Terms with Data... 115

Summary ... 117

 ■ CONTENTS

xi

 ■ Chapter 14: HTML5 Tables: Constructing Data in a
Tabular Format ... 119

HTML5 Table Tags: Tabular Information ... 119

Top Level HTML Table Creation: Table and Caption ... 120

HTML5 Table Content Defi nition: TR, TH, and TD ... 123

Complex Table Defi nition: THEAD, TBODY, TFOOT .. 125

Table Column Defi nition: COL and COLGROUP .. 128

Summary ... 129

 ■Chapter 15: HTML5 Forms: Creating Forms Using HTML5 Tags 131

HTML5 Form Tags: Interactive Information .. 131

Basic HTML Form Creation: Form, Label, and Input .. 132

HTML Form Content Groups: TextArea or FieldSet .. 139

HTML Form Option Selection: Select and Option .. 142

The BUTTON Tag: Creating User Interface Buttons ... 144

New HTML5 Form Tags: DataList, KeyGen, Output.. 146

Summary ... 148

 ■ Chapter 16: HTML5 Position: Document Layout and
Text Spanning ... 149

Defi ning Text Spans: Using the SPAN Tag .. 149

Use of id, vs. Name, vs. Class .. 151

Identifi ers: Use an id for JavaScript and Fragments ... 151

Classes: Use CLASS to Classify CSS3 Selectors ... 152

Names: Naming Forms, Controls and UI Elements ... 152

Defi ne Document Areas: Using a DIV Tag .. 152

The DISPLAY Property: Block, In-Line, and None .. 153

The Division or DIV Tag: Core Properties ... 153

Seamless Image Stitching: Using DIVs with CSS3 .. 154

Summary ... 157

 ■ CONTENTS

xii

 ■ Chapter 17: HTML5 Scripting: Using JavaScript and
<script> Tag ... 159

Using JavaScript: The HTML5 SCRIPT Tag ... 159

JavaScript Execution: Parsing Synchronization .. 160

JavaScript Formats: MIME Type and Character Set .. 161

In-Line JavaScript Code: Using the SCRIPT Tag .. 161

Hiding JavaScript: To Do or Not to Do? .. 163

HTML Comments: Use <!-- and --> to Hide JS Code ... 164

XHTML Comments: Use <!-- and --> to Hide JS Code ... 164

Summary ... 164

 ■ Chapter 18: HTML5 Styling: Using the <style>
Tag to Access CSS3 .. 165

Cascading Style Sheets: A History of CSS ... 165

Using CSS3 with HTML5: The STYLE Tag ... 166

CSS3 Formats: MIME or Media Type Designation ... 167

The SCOPED Parameter: Tag-Local HTML5 Styling ... 167

In-Line CSS3 Code: Using the STYLE Parameter .. 168

Summary ... 169

 ■ Chapter 19: HTML5 Real-Time Rendering: Using the
<canvas> Tag ... 171

Using the CANVAS Tag: New for HTML5 .. 171

Declaring an HTML5 Canvas: Using Parameters ... 172

Drawing on a Canvas: 2D Methods and Properties ... 173

Interactive 3D: WebGL or WebGL 2 3D Rendering ... 177

Summary ... 178

 ■ CONTENTS

xiii

 ■ Chapter 20: HTML5 Plug-ins: Using the <object>, <embed>,
<applet>, and <param> Tags ... 179

Plug-in Applications: The EMBED Tag .. 179

Java or JavaFX Applets: The APPLET Tag .. 181

Embed Objects in HTML5: The OBJECT Tag ... 183

Declaring Parameters: Using the PARAM Tag 185

To Embed or Not to Embed: Tag Selection ... 186

Summary ... 187

 ■Chapter 21: HTML5 Frames: Using the <iframe> Tag 189

HTML Frame Legacy: The FRAMESET and FRAME Tags 189

HTML5 Frames: Using the IFRAME Tag .. 190

Using Object or iFrame: More Discussion.. 192

Summary ... 193

 ■Chapter 22: HTML5 Ruby Annotations: Using the <ruby> Tag 195

Ruby Annotations: The RUBY Tag ... 195

Advanced Ruby Annotations: Ruby Containers ... 197

Summary ... 198

 ■Chapter 23: HTML 5.1 Tags: Using Menu and Dialog Design
Elements .. 199

HTML5 Application Menu: The MENU Tag .. 199

Populating HTML5 Menus: Using a MENUITEM Tag .. 200

Creating Sub-Menus: Nested MENU Tag Usage .. 202

HTML5 Application Dialog: A Dialog Tag .. 203

Summary ... 203

 ■ CONTENTS

xiv

 ■ Appendix A: NetBeans: Set up an HTML5 Integrated
Development IDE .. 205

Create a HTML Development Workstation ... 205

Development Workstations: Hardware Foundation ... 206

HTML5 Development Workstation: Open Software ... 207

Java 8: Installing the Foundation for NetBeans 8.1 .. 207

NetBeans 8.1: Download the NetBeans HTML IDE .. 213

Summary ... 214

 ■ Appendix B: Eclipse: Set up an HTML5 Integrated
Development IDE .. 215

Set up an HTML Development Workstation ... 215

Development Workstations: Hardware Foundation ... 216

HTML5 Development Workstation: Open Software ... 217

Java 8: Installing the Foundation for Eclipse Mars ... 217

Eclipse 4.5: Installing the Eclipse Mars HTML IDE .. 223

Summary ... 228

 ■ Appendix C: IntelliJ: Set up an HTML5 Integrated
Development IDE .. 229

Set up an HTML Development Workstation ... 229

Development Workstations: Hardware Foundation ... 230

HTML Development Workstation: Open Software ... 231

Java 8: Installing the Foundation for IntelliJ IDEA .. 231

IntelliJ IDEA: Download the IntelliJ IDEA for HTML ... 237

Summary ... 244

 ■ CONTENTS

xv

 ■ Appendix D: Multimedia: Set up Your New Media Content
Development ... 245

Set up a New Media Content Workstation ... 245

New Media Content Production: Hardware is Key! ... 246

New Media Content Development: Open Source .. 247

GIMP 2.8: Digital Image Editing and Compositing... 247

Blender: 3D Modeling, Rendering, and Animation... 247

Inkscape: Digital Illustration and Digital Painting ... 248

Audacity: Digital Audio Editing and Special Effects .. 249

Visual Effects: BlackMagic Design Fusion 8.0 VFX ... 249

Digital Video Editing: EditShare Lightworks 12.6 .. 250

Offi ce Productivity Suite: Apache OpenOffi ce 4.1.2 .. 251

Summary ... 252

Index .. 253

xvii

 About the Author

 Wallace Jackson has been writing for several leading multimedia publications about
production for the media content development industry, after contributing an article
about advanced computer processing architectures for the centerfold (a removable “mini
issue” insert) of the original issue of AV Video Multimedia Producer magazine, distributed
at the SIGGRAPH trade show.

 Wallace has written for a number of popular publications, regarding his work in
interactive 3D and new media advertising campaign design including 3D Artist magazine,
 Desktop Publisher Journal , CrossMedia , Kiosk , AV Video Multimedia Producer , and Digital
Signage magazine, as well as many other publications.

 Wallace Jackson has authored more than twenty Apress book titles, including
several titles in the ever popular Apress Pro Android series, Java and JavaFX game engine
development titles, digital image compositing titles, digital audio editing titles, digital
video editing titles, digital illustration titles, VFX special effects titles, digital painting
titles, Android 6 new media content production titles, and now JSON and HTML5 titles.

 In the current book covering HTML5 markup Wallace focuses on the tags, or
elements, which comprise the HTML5 and HTML 5.1 standard, and uses them to
demonstrate HTML5 content production as well as HTML5 application and document
design fundamentals, to beginners who want to become savvy regarding HTML5
workflows and how to pull new media content production assets into HTML5.

 Wallace is currently the CEO of MindTaffy Design, the new media advertising agency
which specializes in new media content production and digital campaign design and
development, located by La Purisima State Park, in Northern Santa Barbara County, on
the Point Conception Peninsula, halfway between their clientele in Silicon Valley to the
North, and Hollywood, The OC, West Los Angeles, and San Diego to the South.

 Mind Taffy Design has created open-source, technology-based (HTML5, JavaScript,
Java 9, JavaFX 9, and Android 6.0) digital new media i3D content deliverables for more
than a quarter century, since January of 1991.

 The company’s clients consist of a significant number of international brand
manufacturers, including IBM, Sony, Tyco, Samsung, Dell, Epson, Nokia, TEAC, Sun
Microsystems (Oracle), Micron, SGI, KDS USA, EIZO, CTX International, KFC, Nanao
USA, Techmedia, EZC, and Mitsubishi Electronics, among others.

 Wallace received his undergraduate degree in business economics from the
University of California at Los Angeles (UCLA) and his graduate degrees in MIS/IT,
business information systems design and implementation from the University of Southern
California (USC).

 Wallace also received post-graduate degrees from USC in entrepreneurship and
marketing strategy and completed the USC Graduate Entrepreneurship Program. Wallace
earned his degrees while at USC’s nighttime Marshall School of Business MBA Program,
which allowed him to work full-time as a COBOL and RPG-II programmer.

 ■ ABOUT THE AUTHOR

xviii

 You can visit Wallace’s blog at www.wallacejackson.com or you can view his
multimedia production content at www.iTVset.com or www.MindTaffy.com . You could
also follow Wallace Jackson on Twitter at @wallacejackson , or connect with him on
LinkedIn at www.LinkedIn.com/in/wallacejackson .

http://www.wallacejackson.com/
http://www.itvset.com/
http://www.mindtaffy.com/
http://www.linkedin.com/in/wallacejackson

xix

 About the Technical
Reviewer

 Chád (“Shod”) Darby is an author, instructor, and
speaker in the Java development world. As a recognized
authority on Java applications and architectures, he has
presented technical sessions at software development
conferences worldwide (in the United States, UK, India,
Russia, and Australia). In his fifteen years as a
professional software architect, he’s had the
opportunity to work for Blue Cross/Blue Shield, Merck,
Boeing, Red Hat, and a handful of start-up companies.

 Chád is a contributing author to several Java books,
including Professional Java E-Commerce (Wrox Press),
 Beginning Java Networking (Wrox Press), and XML and
Web Services Unleashed (Sams Publishing). Chád has
Java certifications from Sun Microsystems and IBM.
He holds a BS in computer science from Carnegie
Mellon University.

 You can visit Chád’s blog at www.luv2code.com to
view his free video tutorials on Java. You can also follow him on Twitter at @darbyluvs2code .

http://www.luv2code.com/#_blank

xxi

 Acknowledgments

 I would like to acknowledge all my fantastic editors, and their support staff at Apress, who
worked those long hours and toiled diligently on the book, to make this the preeminent
 HTML5 Quick Markup Reference manual currently available in the marketplace.

 I would like to thank the following people:
 Steve Anglin , for his work as the acquisitions editor for the book, and for recruiting

me to write development titles at Apress, covering widely popular open source content-
development platforms (Android, Java, JavaFX, HTML5, CSS3, JS, JSON, etc.).

 Matthew Moodie , for his work as development editor on the book, and for his
experience and guidance during the process of making the DVE Fundamentals book one
of those fantastic digital video editing, compositing and special effects titles.

 Mark Powers , for his work as the coordinating editor for this book, and for his
constant diligence in making sure that I either hit my chapter delivery deadlines or far
surpassed them.

 Chád Darby for his work as the technical reviewer on this book and for making sure
that I didn’t make technical mistakes.

xxiii

 Introduction

 HTML5 Quick Markup Reference is intended for the HTML5 content developer. As HTML5
now powers not only web browsers, but also, smartphones, iTV Sets, gaming consoles,
tablets, smart watches, notebooks, laptops, e-books, and more. This book is for digital
artisans, digital videographers, multimedia producers, digital illustrators, HTML5 OS or
application developers, HTML5 website developers, all social media campaign developers,
HTML5 game producers, HTML5 effect compositors, user interface design architects, user
experience designer architects, and anyone else interested in generating the superior-
quality HTML5 content experience that the public is looking for.

 The book covers HTML5 and new HTML5.1 concepts, elements, editing, new
media assets, publishing, programming, styling and real-time rendering. This equates to
creating the most advanced multimedia-capable HTML5 content applications, including
genres including digital images, digital audio, digital video, digital illustration or scalable
vector graphics (SVG), Interactive 3D, or WebGL and WebGL 2, as well as Web 3.0
(Semantic Web Search).

 Each chapter builds upon the knowledge learned in the previous chapter. Thus,
later chapters in the book have readers creating more advanced HTML5 content using
canvas, objects, applets, templates, ruby, or iframes. There are also appendices covering
how to download, and set-up, open source HTML5 content production integrated
development environments (or IDEs), using the leading NetBeans, Eclipse, and IntelliJ
software packages. I also cover how to download, and install, leading new media content
development software packages (all free) in Appendix D.

 In Chapter 1 , you look at the history of HTML5, the future of HTML5, and the topics
covered in the book.

 In Chapter 2 , you look at the HTML5 tags used for your top-level document
definition, as we start at the top, or HEAD, of your HTML document, and work
downwards, in this title.

 In Chapter 3 you look at those HTML5 elements that greatly affect search engine
optimization, or SEO, including your META and TITLE tags. These are contained at the
top, or in the HEAD of a HTML5 document, building on what was learned in Chapter 2 .

 Chapters 4 covers referencing external assets from an HTML5 document or
application using the LINK element. You look at how to “externalize” your CSS3 and
JavaScript assets, as a data footprint optimization technique.

 Chapter 5 explores the SCRIPT (JavaScript) and STYLE (cascading style sheet) tags,
in the HEAD of the HTML5 document. JavaScript and CSS3 are discussed in detail.

 Chapter 6 introduces the concept of global attributes, or parameters, allowed for use
by every tag (element) across HTML5.

 Chapter 7 covers “hypertext,” which differentiates HTML5, and look at document
navigation using an ANCHOR tag or element.

http://dx.doi.org/10.1007/978-1-4302-6536-8_1
http://dx.doi.org/10.1007/978-1-4302-6536-8_2
http://dx.doi.org/10.1007/978-1-4302-6536-8_3
http://dx.doi.org/10.1007/978-1-4302-6536-8_2
http://dx.doi.org/10.1007/978-1-4302-6536-8_4
http://dx.doi.org/10.1007/978-1-4302-6536-8_5
http://dx.doi.org/10.1007/978-1-4302-6536-8_6
http://dx.doi.org/10.1007/978-1-4302-6536-8_7

 ■ INTRODUCTION

xxiv

 Chapter 8 delves into using new media assets with HTML5, including digital image,
digital video, digital audio, digital illustration, interactive 3D, and similar leading-edge
content.

 Chapter 9 covers HTML5 content hierarchy and organization of HTML5 documents,
as well as the effect of this hierarchy for search engine optimization (SEO) strategies and
techniques.

 Chapter 10 introduces new semantic content elements, which allow HTML5 to
merge into this new Web 3.0, or “semantic search,” era, which is now upon us. These tags
allow HTML5 developers to make their HTML5 content compatible with Web 3.0.

 Chapter 11 gets into publishing HTML5 text-based content, as well as how to use tags
(elements) to “style” text content. This chapter covers what many consider the “core” tags
in HTML5, including paragraph, bold, italics, underline, and more.

 Chapter 12 outlines the HTML5 phrase tags, which allow you use special types of text
in a semantic context with your HTML5 documents, websites, e-books, iTV shows, games,
and applications.

 Chapter 13 takes a look at HTML5 elements which allow you to create bulleted,
numbered and other ordered lists of data or information in your HTML5 documents.
These tags are also “core” tags in HTML and can be used for user interface design as well.

 Chapter 14 covers another popular topic for HTML5 content developers, specifically,
tables, and these many table related elements which are supported in HTML5 for tabular
information designs.

 Chapter 15 delves into interactive HTML5 form design, and the many complexities
involved with client-side form markup and how to talk to these, using server-side forms
processing languages and databases, which store the information culled using these forms.

 Chapter 16 explores the positioning of content for HTML5, using the division and
span elements, in combination with CSS3.

 Chapter 17 covers scripting in HTML5 in greater detail by using the JavaScript
programming language in combination with a SCRIPT element in both the HEAD and the
BODY of HTML5 documents.

 Chapter 18 looks at CSS styles in HTML5 in greater detail by using cascading style
sheets, in combination with the STYLE element, in both the HEAD and the BODY of your
HTML5 documents.

 Chapter 19 gets into HTML5 real-time rendering done using the CANVAS element.
This allows developers to create games, interactive 2D or i2D content, as well as
interactive 3D or i3D content, using an advanced real-time drawing surface, also found in
the Android 7 OS, as well as in other advanced operating systems.

 Chapter 20 deals with the different ways to “plug in” or embed external content into
HTML5 documents using Java applets or other types of “objects” new in HTML5.

 Chapter 21 covers frames in HTML, including the iFrame element still supported in
HTML5. This element allows you to seamlessly embed content from another website or
application inside of your current HTML5 website or application.

 Chapter 22 covers Ruby annotations, small text elements, attached to main text,
usually to indicate the pronunciation or meaning of your corresponding characters.
These annotations are often used in Japanese, Korean, and Chinese publications.

 Finally, Chapter 23 explores the new tags introduced in HTML 5.1 to bridge the
HTML5 content markup language from a web browser centric platform over into the new
HTML5 operating systems that are running popular consumer electronics devices today,
such as smartphones running Firefox OS and iTVs running Opera OS.

http://dx.doi.org/10.1007/978-1-4302-6536-8_8
http://dx.doi.org/10.1007/978-1-4302-6536-8_9
http://dx.doi.org/10.1007/978-1-4302-6536-8_10
http://dx.doi.org/10.1007/978-1-4302-6536-8_11
http://dx.doi.org/10.1007/978-1-4302-6536-8_12
http://dx.doi.org/10.1007/978-1-4302-6536-8_13
http://dx.doi.org/10.1007/978-1-4302-6536-8_14
http://dx.doi.org/10.1007/978-1-4302-6536-8_15
http://dx.doi.org/10.1007/978-1-4302-6536-8_16
http://dx.doi.org/10.1007/978-1-4302-6536-8_17
http://dx.doi.org/10.1007/978-1-4302-6536-8_18
http://dx.doi.org/10.1007/978-1-4302-6536-8_19
http://dx.doi.org/10.1007/978-1-4302-6536-8_20
http://dx.doi.org/10.1007/978-1-4302-6536-8_21
http://dx.doi.org/10.1007/978-1-4302-6536-8_22
http://dx.doi.org/10.1007/978-1-4302-6536-8_23

 ■ INTRODUCTION

xxv

 If you are interested in producing cutting-edge, Web 3.0 compatible, HTML5 content,
and you want to learn all your basic HTML5 element fundamentals, as well as how new
media assets can work together with HTML5 design or publishing elements, this is the
 HTML5 Quick Markup Reference manual that you can use to begin your journey to new
experiences with HTML5 content.

 Indeed, the HTML5 Quick Markup Reference manual gives you comprehensive
HTML5 design element knowledge that transitions you from an HTML5 neophyte to an
HTML5 design professional.

1© Wallace Jackson 2016
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_1

 CHAPTER 1

 HTML5 History: The Past and
Future of HTML Markup

 Let’s get started by taking a look at the history of markup languages, of which HTML—now
in its fifth revision, called HTML5—is the most popular and widely utilized. This year (2016)
portends the release of another version of HTML5 called HTML 5.1 , which supports using
HTML5 not only for all of the popular browsers, but also for the new HTML5 operating
systems that have recently appeared as competitors to Android, iOS, and Windows
Mobile. The browser manufacturers—specifically Opera, Mozilla Firefox, and Google
Chrome—realized that they could enhance their browser code, add icons, and run HTML5
on top of the Linux kernel and compete with the other consumer electronics operating
systems. Now Firefox OS is on Panasonic iTV Sets and Alcatel-Lucent smartphones, and the
Opera HTML5 OS is on Sony Bravia iTV Sets. HTML 5.1 adds features more in line with
HTML5 OS requirements.

 This book provides a reference to all of those HTML5 tags and their parameters,
attributes, characteristics, and configuration options, of which there are currently 120 or
more. I organize these as logically as possible, starting at the top of the HTML5 document
with the metatags for search engine optimization (SEO) , styling (CSS), or interactivity
(JavaScript), and logically stratify chapters covering tags used for writing (text), forms,
lists, multimedia, and similar document features and attributes.

 Besides the history and future of HTML, this chapter overviews the markup (coding)
format or syntax for tag and parameter usage, so that understand the rest of the book
as we cover the 120 HTML5 tags used to implement document features, along with the
parameters they support.

 Finally, I outline the rest of the book to show you how I organize and reference the
120 HTML tags in the HTML5 specification into logical topical areas, which build on each
other in an orderly fashion.

 The History of HTML : Reveal Codes Tags
 The first time I ever encountered tags, which are used for formatting text values, was
using a word processing software package called WordPerfect for the Data General
MV-7800XP mini-computer. This software had a handy feature called Reveal Codes that
was accessed using F3, the third function key along the top of the keyboard. Using this

CHAPTER 1 ■ HTML5 HISTORY: THE PAST AND FUTURE OF HTML MARKUP

2

feature showed Control Codes surrounding formatted text values, so the bolded word
 Important looked like Important when you pressed the F3 Reveal Codes key.
Pretty cool feature!

 A system called ENQUIRE is another HTML predecessor. In 1980, the physicist
 Tim Berners-Lee , prototyped ENQUIRE, a system for CERN researchers to utilize and
share text-based documents. In 1989, Berners-Lee proposed an Internet-based hypertext
system. He specified HTML and wrote the browser and server software in late 1990.
Berners-Lee and CERN data systems engineer Robert Cailliau collaborated, however, the
project was never adopted by CERN.

 The first publicly available HTML description was a document called “HTML Tags,”
first mentioned on the Internet by Berners-Lee in late 1991. The document described
18 elements. Except for the hyperlink tag, they were all influenced by SGMLguid, an
in-house Standard Generalized Markup Language (SGML) documentation format
developed at CERN. Eleven of the original tag formatting elements remain active in
HTML5 today. They are covered in this book.

 Berners-Lee also considered HTML’s markup tags to be an application of SGML.
HTML was formally defined as being such by an Internet Engineering Task Force (IETF) ,
in the mid-1993 publication of the first proposal for an HTML specification called
“Hypertext Markup Language (HTML)”. It was released as an Internet specification by
Tim Berners-Lee and Dan Connolly. There was also “SGML Document Type Definitions,”
which define HTML syntax and grammar. Similarly, Dave Raggett’s competing
Internet draft, “HTML+ (Hypertext Markup Format)” released later in 1993, suggested
standardizing already-implemented features, such as tables and fill-able forms.

 After these early HTML and HTML+ drafts expired in early 1994, the IETF created
the HTML Working Group, which completed the HTML 2.0 draft in 1995. This was the
first HTML specification, intended as the defacto standard against which all future HTML
implementations should be compared. Further development of HTML under these
auspices of the IETF was stalled, by competing interests.

 Since 1996, the HTML specifications have been maintained, with input from
commercial software vendors, by the World Wide Web Consortium, also known as the
W3C. In 2000, HTML4 became an international standard, ISO/IEC 15445:2000. HTML5
was released in Q4 of 2014 and HTML 5.1 is scheduled for release at the end of 2016,
which is why it is covered in this book.

 What Is HTML5? A Definition and Syntax
 HTML is the markup language that web browsers, and more recently, operating systems,
use to interpret and compose text, images, and other material into visual or audible
content pages for widespread human consumption, as well as by cats who watch HTML5
iTV Sets.

 Default characteristics for each item represented using HTML5 markup tags and
their parameters are defined in the browser. These characteristics can be altered or
enhanced by the web page designer’s use of CSS or JavaScript, although these are not
covered in this reference book.

CHAPTER 1 ■ HTML5 HISTORY: THE PAST AND FUTURE OF HTML MARKUP

3

 HTML markup—as well as other markup languages, such as SGML and XML—uses
 tags to surround document components that you wish to enhance. For instance, to make
text bold , you use the HTML tag in the following fashion:

 <p>This text will be bold. And this text will not be bold.</p>

 The ending tag has a backslash before the letter or letters that define the tag; it tells
the engine (code) that is parsing the document to turn off that feature. A <p> paragraph
tag tells the HTML5 rendering engine that you’re going to insert a paragraph (<p>) of text;
a bold () tag tells it when you want to turn bolding on and off.

 Tags need to be nested in the proper order, so the bold tag should be contained
(nested) inside of your paragraph tag, as seen in the preceding HTML5 markup example.

 The first tag, which turns the feature on, can also have optional parameters, or
features for configuring how you want that tag to behave. Here’s an example of the use of
parameters:

 APRESS WEBSITE LINK

 This anchor (<a>) tag provides a way to link to the Apress website from within a
different website. The title parameter shows users a title when they mouseover the link.
The http parameter provides the website address, or URL.

 More Syntax for HTML5: Using Comments
 Since this entire book is essentially an HTML5 markup reference that uses the basic
syntax (markup encoding structure) covered in the previous section, I’ll address how
comments are handled in HTML5 now; that way, we can get all of the syntax issues out of
the way along with the history and future of HTML5 content development.

 HTML5 comment tags are similar to comment tags for other programming languages
such as Java 9 and JavaScript. They start with the left pointing chevron (<) and then the
 exclamation point (!) character, followed by two hyphens (dashes, or minus signs) and
then you insert your comment text, and end with another two dashes, and finally a right-
facing chevron (>) character. Here is an example of a comment in HTML5:

 <!-- This is an example of how a comment is constructed in HTML5 -->

 Next, let’s take a look at where HTML5 is going, so that you know just how valuable
this quick markup reference book is going to be to your new media content deliverable
work process.

 The Future of HTML: HTML5 OS and HTML 5.1
 HTML was only for use in browsers until Google acquired Android and started to
dominate the consumer electronics device marketplace, which it continues to do today,
with over 100 manufacturers using Android for iTV Sets, smartphones, tablets, e-book
readers, set-top boxes, and even personal computers. Not wanting to be left out of this
lucrative market, HTML5 browser manufacturers morphed their browsers into HTML5

CHAPTER 1 ■ HTML5 HISTORY: THE PAST AND FUTURE OF HTML MARKUP

4

OS products by adding features such as icons, and connecting their code and technology
to the latest Linux OS kernel, which powers the popular Android OS and many other
popular operating systems.

 HTML is now used not only for production of content for popular browser software,
but also with consumer electronics devices, which means that tags have to be added,
since there is a more advanced usage (operating systems) for HTML5 and future versions
of HTML, such as HTML 5.1.

 An impending solution for adding the OS-related features is HTML 5.1, which
continues to add advanced features with new media content development support. OS
user interfaces support the new <dialog> tag. HTML5.1 also supports menuing with
dialogs by using the new <menu> and <menuitem> tags, which we’ll cover in a special
chapter on HTML 5.1.

 Next, let’s take a look at how we’re going to cover these tags.

 HTML5 Quick Reference: Tag Categories
 This book goes over HTML5 tags from the highest level of the document in a “top down”
fashion. We start with the tags that define the areas of your HTML5 document and the
tags found at the top of your document, which define SEO (meta tags) and external
documents (such as CSS and JS documents and favicons), which are linked to an HTML5
document from external file resources. The first four chapters cover the tags that define
your HTML5 document’s infrastructure.

 Chapters 2 through 9 cover the basics, such as hypertext (linking to other URLs),
 new media assets such as imagery, audio, and video, and the document content
hierarchy and heading levels .

 Chapters 10 through 15 cover text-based elements such as paragraphs, lists, forms,
and tables, which contain most of the text-based content found in HTML5 documents
and apps today. These chapters are a bit longer because there are quite a few tags related
to these areas in HTML.

 Chapters 16 through 20 cover more advanced topics, such as document positioning,
divisions, document styles, CSS3, document interactivity, JavaScript, document rendering
using the canvas, and document objects.

 Chapters 21 through 23 cover infrequently used tags, and HTML 5.1. I also include
several appendices, which cover how to set up an HTML5 IDE, as well as how to obtain
advanced open source new media content development packages, so that you can
develop your entire HTML5 projects using a single content development workstation.

 Summary
 This chapter looked at HTML’s history, future, definition, syntax, commenting, and
summarized how this book plans to categorize and reference the 120 tags that currently
comprise the HTML5 and HTML 5.1 feature set.

 In the next chapter, you learn about the top-level document tags, such as <html>,
<head>, and <body>, and how they define the overall structure of the HTML5 content
document.

http://dx.doi.org/10.1007/978-1-4302-6536-8_2
http://dx.doi.org/10.1007/978-1-4302-6536-8_9
http://dx.doi.org/10.1007/978-1-4302-6536-8_10
http://dx.doi.org/10.1007/978-1-4302-6536-8_15
http://dx.doi.org/10.1007/978-1-4302-6536-8_16
http://dx.doi.org/10.1007/978-1-4302-6536-8_20
http://dx.doi.org/10.1007/978-1-4302-6536-8_21
http://dx.doi.org/10.1007/978-1-4302-6536-8_23

5© Wallace Jackson 2016
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_2

 CHAPTER 2

 HTML5 Documents: Top-
Level Document Definition

 In this chapter, let’s continue by taking a look at the topmost level of HTML5, the <html>
tag, which defines and contains your HTML5 document, the <head> tag, which defines
how it is configured, and the <body> tag, which handles the contents. These are the
highest-level tags in the HTML5 markup schema. All three tags need to be in your HTML5
document, in the proper order and used for the proper purposes.

 I also go over the markup (coding) format and syntax for your HTML5 document
level tags, and their optional parameter. We look at how to define your document type
using a <!DOCTYPE> tag, and at the different types of HTML documents. We focus on
HTML5 for this reference book, as you may have noticed, from the title, but I also cover
older incarnations, such as HTML4 and XHTML for context sake.

 The HTML5 Document Definition Tags
 This chapter explains the tags used to define your HTML document type, document root,
document header, and document content. We start with the first tag, the <!DOCTYPE
doctype> declaration, which defines your document type, and then we progress
downward to the tags that are nested inside of the <html> tag, including the <head> and
<body> tags.

 The !DOCTYPE Tag : Defines HTML Document Type
 The first tag in the HTML5 document is the <!DOCTYPE html> tag, which has no closing
tag because it simply defines the version of HTML5 that you are using for your HTML
document. You would think that it would be <!DOCTYPE html5>, but html actually
means HTML5. Don’t ask me why— I do not know.

CHAPTER 2 ■ HTML5 DOCUMENTS: TOP-LEVEL DOCUMENT DEFINITION

6

 The following HTML5 markup structure is an example of a document declaration
and nested top-level tags :

 <!DOCTYPE html>
 <html>
 <head>
 <!-- HTML5 Document Header Attributes (Tags) Go In Here -->
 </head>
 <body>
 <!-- HTML5 Document Body Content (Tags) Will Go In Here -->
 </body>
 </html>

 Older HTML document types, such as HTML4 or XHTML 1.1, are declared with
either “strict” or “transitional” document types. HTML5 has done away with the
document type differences; therefore, it is much simpler. Let’s take a quick look at
XHTML and HTML4 next, in case you have to write HTML for legacy (old) systems and
clients running older operating systems and browsers.

 The XHTML Document Types : XHTML 1.0
 XHTML , or Extensible HTML , is an older and stricter type of HTML document definition
that is based on XML . XHTML is the XML implementation of HTML. It is stricter because
tags must be opened, closed, and nested in an orderly fashion so that the parser can
correctly interpret them. The XHTML document type also requires the <!DOCTYPE>
tag, whereas the HTML5 document type does not, so some HTML5 documents simply
start with the <html> tag instead of the <!DOCTYPE html><html> tag sequence. All of
the major HTML5 browsers correctly parse XHTML document types; however, you want
to use HTML5 because of the superset of features and tags that are provided in it (as I’ll
outline in this book). Since XHTML is still used in a wide range of document content
and applications, I’ll cover it in this section so that you know how to declare XHTML
document types, if you wish.

 If you are using the older XHTML document type for some reason, you declare the
document type as follows:

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN
 http://www.w3org/TR/xhtml1/dtd/xhtml1-transitional.dtd">
 <html>
 <head>
 <!-- XHTML Document Header Attributes (Tags) Go In Here -->
 </head>
 <body>
 <!-- XHTML Document Body Content (Tags) Will Go In Here -->
 </body>
 </html>

CHAPTER 2 ■ HTML5 DOCUMENTS: TOP-LEVEL DOCUMENT DEFINITION

7

 The “strict” XHTML document type is less flexible. You should declare this document
type using the following HTML syntax and markup:

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN
 "http://www.w3org/TR/xhtml1/dtd/xhtml1-strict.dtd">
 <html>
 <head>
 <!-- XHTML Document Header Attributes (Tags) Go In Here -->
 </head>
 <body>
 <!-- XHTML Document Body Content (Tags) Will Go In Here -->
 </body>
 </html>

 The “frameset” XHTML document type allows you to define your HTML documents
using discrete areas called frames . You should declare an XHTML frameset document
type using the following HTML syntax and markup:

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN
 "http://www.w3org/TR/xhtml1/dtd/xhtml1-frameset.dtd">
 <html>
 <head>
 <!-- XHTML Document Header Attributes (Tags) Go In Here -->
 </head>
 <body>
 <!-- XHTML Document Body Content (Tags) Will Go In Here -->
 </body>
 </html>

 Frames are no longer recommended for use in HTML5. You can now use divisions
with the <div> tag. Divisions can be used much like layers in Photoshop or GIMP. They
are far more flexible and can be moved (animated).

 Next, let’s take a look at the HTML 4.01 document type.

 The HTML4 Document Types : HTML 4.01
 HTML4 was released on December 18, 1997. HTML 4.01 was released on April 24, 1998.
There were two major versions prior to HTML4: HTML 3.2 and the original HTML 2.0
specification. HTML4 added greater multimedia support, cascading style sheets, Java
scripting languages, printing capabilities, and support for disabled users. It started
internationalization (language) support as well. HTML4 conforms to the ISO 8879
SGML specification. HTML4 documents use a much more complex !DOCTYPE tag
implementation, using SGML’s Document Type Definition (DTD) declaration syntax
along with the repository URL reference.

CHAPTER 2 ■ HTML5 DOCUMENTS: TOP-LEVEL DOCUMENT DEFINITION

8

 If you are using the older HTML4 document type for some reason, you declare the
document type as follows:

 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN
 "http://www.w3org/TR/html4/loose.dtd" >
 <html>
 <head>
 <!-- HTML4 Document Header Attributes (Tags) Go In Here -->
 </head>
 <body>
 <!-- HTML4 Document Body Content (Tags) Will Go In Here -->
 </body>
 </html>

 Transitional HTML 4.01 is more forgiving because it supports more tags, parameters,
and syntax formats; whereas strict HTML is more like XML or XHTML and has many
more rules that need to be closely followed. You declare a HTML4 document type as
follows:

 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 //EN
 "http://www.w3org/TR/html4/strict.dtd" > <html>
 <head>
 <!-- HTML4 Document Header Attributes (Tags) Go In Here -->
 </head>
 <body>
 <!-- HTML4 Document Body Content (Tags) Will Go In Here -->
 </body>
 </html>

 The HTML 4.01 frameset DTD or document type definition looks like the following
<!DOCTYPE> tag:

 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN
 "http://www.w3org/TR/html4/frameset.dtd" > <html>
 <head>
 <!-- HTML4 Document Header Attributes (Tags) Go In Here -->
 </head>
 <body>
 <!-- HTML4 Document Body Content (Tags) Will Go In Here -->
 </body>
 </html>

 Again, frames is an outdated document design approach, so don’t design with it
unless you absolutely have to on an HTML legacy project. Next, let’s take a look at the
<html> tag.

CHAPTER 2 ■ HTML5 DOCUMENTS: TOP-LEVEL DOCUMENT DEFINITION

9

 The HTML Tag : Defining the Root of the Document
 The <html> tag tells the browser (and now the OS) that this is an HTML document,
especially in the absence of the <!DOCTYPE> tag that you frequently see in HTML5
markup. An <html> tag anchors (or roots) the document and contains all the other tags.

 This is an example of the HTML tag with child tags inside it:

 <html xmlns ="http://www.w3.org/1999/xhtml">
 <head>
 <!-- HTML5 Document Header Attributes (Tags) Go In Here -->
 </head>
 <body>
 <!-- HTML5 Document Body Content (Tags) Will Go In Here -->
 </body>
 </html>

 Notice the xmlns parameter, which references the XML Naming Schema address
and defaults to www.w3.org/1999/xhtml .

 In HTML5 added a second new parameter for a manifest that allows developers to
add a URL for a custom document cache location for off-line browsing. The following
is an example (Replace the www.apress.com website with your own cache address
location URL):

 <html xmlns=http://www.w3.org/1999/xhtml manifest ="http://www.apress.com">
 <head>
 <!-- HTML5 Document Header Attributes (Tags) Go In Here -->
 </head>
 <body>
 <!-- HTML5 Document Body Content (Tags) Will Go In Here -->
 </body>
 </html>

 Your default CSS3 settings for this HTML tag should look like the following CSS3 style
sheet definition, used in most browser and operating system implementations:

 html { display:block; } <!-- Display content using a block format -->
 html:focus { outline:none; } <!-- Do not outline content when selected -->

 Next, let’s look at the <head> tag and learn how it allows you to set up and configure
what your document can do.

 The HEAD Tag: Configuring the HTML5 Document
 The HTML5 <head> tag contains over a half dozen child tags that are used to configure
your HTML5 document and define what it can do and how it is found on the Internet.
These child tags include the <title>, <style>, <script>, <meta>, <link>, <base>, and
<noscript> tags. The <title> tag puts a name at the top of the browser, tab, and page.

http://www.w3.org/1999/xhtml
http://www.apress.com/

CHAPTER 2 ■ HTML5 DOCUMENTS: TOP-LEVEL DOCUMENT DEFINITION

10

The <script> tag defines the JavaScript configuration. The <style> tag defines the style
sheet (CSS3) configuration. The <link> tag links to external file resources. The <meta> tag
allows you to add metadata. The <base> tag defines the default URL for all link targets in
your HTML5 document. The <head>structure looks like this:

 <html>
 <head>
 <title>
 <script>
 <style>
 <link>
 <meta>
 <base>
 <noscript>
 </head>
 </html>

 The <head> tag previously had a profile attribute, which specifies a URL to a
document containing a set of rules for the <meta> tag content attributes. It is important to
note that this particular parameter is not supported in HTML5, so I am not covering it in
this book.

 The <head> child tags are covered in their own chapters, so let’s look at the <body>
tag next. Then we can move on to some of the lower-level tags used in HTML5.

 The BODY Tag: Containing the Document Content
 The <body> tag contains most of the tags covered in this book. All six <body> tag
attributes (parameters) that were supported in HTML4 and have been removed from
HTML5 support, but I cover them in this section anyway, for the sake of comprehensive
coverage. An alink parameter is used with a color value to define the color of active links
in the body of the document. The vlink parameter is used with a color value to define the
color of visited links. Finally, the link parameter is used with a color value to define the
color of links that have not been visited.

 You can control background color with the bgcolor parameter. You can install a
background image with the background parameter. Finally, you can specify the color for
the text in an HTML4 document with a text parameter, which is used with a color value
to define the color for content text in the body of your document. In HTML5, you use
CSS3 to provide your body styling. We look at this a bit later on with the <style> tag and
cascading style sheets.

 Your default CSS3 settings for the <body> tag should look like the following CSS3
style sheet definition (in most browser and operating system implementations):

 body { display: block; margin: 8px; }
 body:focus { outline:none; }

CHAPTER 2 ■ HTML5 DOCUMENTS: TOP-LEVEL DOCUMENT DEFINITION

11

 Most HTML5 documents use the basic <!DOCTYPE html> and <html>, <head>,
and <body> tags without any parameters, other than class or id parameters (which are
covered later on), like this basic HTML5 document with a TITLE, and P (paragraph) text
installed in the <head> and <body> sections of the document:

 <!DOCTYPE html>
 <html>
 <head>
 <title>Website Title Goes Here</title>
 </head>
 <body>
 <p>Website Text Paragraph Content.</p>
 </body>
 </html>

 From here, we get into some of the tags that you use to control your content and the
way that your document is referenced on the Internet.

 Summary
 In this chapter, you learned about the top-level HTML5 document tags, including the
<!DOCTYPE>, <HTML>, <HEAD>, and <BODY> tags. Notice that the tag names can be in
lowercase or uppercase letters, so use whatever tag style you prefer for your markup.

 In the next chapter, you start looking at the document tags inside the <HEAD> parent
tag, which influences SEO, including the <title>, <meta>, and <base> tags, and learn how
to use them to optimize the search engine configuration for your HTML5 document.

13© Wallace Jackson 2016
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_3

 CHAPTER 3

 HTML5 Search Engine
Optimization: Title and Meta

 Let’s continue here in Chapter 3 by looking at the tags that are the most important for
 search engine optimization , also referred to as SEO . SEO is the practice of optimizing
your website ranking in search engines. SEO tags are found at the document definition
and configuration level. These tags are contained in the document HEAD, and were
covered briefly in Chapter 2 . The SEO-centric tags include your <title> tag, which defines
and contains your document title and keywords, as well as the <meta> tags, which define
how the HTML5 document is listed in the various search engines. These two tags, along
with the <base> tag, are the most important tags to use for SEO in the HTML5 markup
schema, besides the paragraph and heading tags that contain the actual text content and
keywords that the search engines use to index and rank your HTML5 documents.
We cover these tags later on in the book, along with the <body> tag.

 In this chapter, I also go over the markup (coding) format and syntax for HTML5
document-level SEO tags, with their various parameters. We look at how to define your
document title using the <title> tag and at the different types of metadata that you can
advise the search engines with regarding a <meta> tag or a collection of <meta> tags, as is
more commonly used. We’ll also look at the <base> tag because it also relates to SEO.

 The HTML5 HEAD Tags Important for SEO
 This chapter covers three high-level <head> tags used to define how you want the search
engines to index your HTML document title, description, and content. We’ll start with the
<title> tag, which defines your document title, and then progress downward to tags that
are inside the <head> tag, including the <meta> and <base> tag.

 The TITLE Tag: Defining the HTML5 Document Title
 The first tag in the <head> section of your document definition is usually the <title> tag,
which contains your HTML5 document title between the opening tag and the closing tag.
The <title>tag is one of the key tags that a search engine algorithm looks at to determine

http://dx.doi.org/10.1007/978-1-4302-6536-8_3
http://dx.doi.org/10.1007/978-1-4302-6536-8_2

CHAPTER 3 ■ HTML5 SEARCH ENGINE OPTIMIZATION: TITLE AND META

14

what the content is within your document. These SEO algorithms are referred to as bots
because the code that they use simulates AI, or artificial intelligence, and so they seem to
be functioning like search engine robots.

 The following HTML5 markup structure is an example of a document <title>
declaration for the HTML5 document and the top-level tags it is nested:

 <!DOCTYPE html>
 <html>
 <head>
 <title> Title, Using Important Search Term Keywords </title>
 </head>
 <body>
 <!-- HTML5 Document Body Content (Tags) Will Go In Here -->
 </body>
 </html>

 Document titles should be descriptive and contain keywords that describe the
content and help the search engine bots define how to index the website or HTML5 app.
For instance, my iTVclock.com website title has keywords for iTV Sets and watch faces
(smartwatch designs in Android) using the following HTML5 markup and syntax:

 <!DOCTYPE html>
 <html lang="en" >
 <head>
 <title> iTV Clocks for iTV Sets | 3D Watch Faces for iTV Sets </title>
 </head>
 <body>
 <!-- iTV Clock's HTML5 Document Body Content (Tags) Will Go In Here -->
 </body>
 </html>

 As you can see, the domain name (iTV Clock) and important keywords (iTV Sets and
Watch Faces) are in the descriptive title, so that the search engine bots know iTV clock is
for iTV Sets and that they relate to the (Android) watch faces API because these iTV clocks
will also be for sale as Android watch faces for your smartwatch. Also, notice that I used
the lang="en" parameter in the HTML tag. This tells the HTML5 rendering engine that
the page uses the English language.

 Next, let’s look at the <meta> tag, which is used to define content type, author,
keywords, and description.

 The META Tag: Defining Document Characteristics
 The <meta> tag allows you to provide metadata , or data about your document that is not
visible to the document viewer (reviewer), but which tells the search engine, browsers,
and HTML5 operating systems about descriptive, SEO, robot, author, and copyright
characteristics in your HTML5 document.

CHAPTER 3 ■ HTML5 SEARCH ENGINE OPTIMIZATION: TITLE AND META

15

 Metadata contained in the <meta> tags takes the form of name-value data pairs,
much like JSON data definitions. If you want to learn more about JSON, reference my
book, JSON Quick Syntax Reference (Apress, 2016).

 There can be more than one <meta> tag. They go in the <head> section of the
HTML5 document. There must be both a name and a content parameter—one
cannot exist without the other, so if you have a name=“name” , you must have a
 content=“data value.”

 The <meta> tag format for the iTV Clock website has the following HTML5 markup
syntax, with the six primary <meta> tags most often utilized within the document’s
<head> section:

 <!DOCTYPE html>
 <html lang="en">
 <head>
 <title>iTV Clocks for iTV Sets | 3D Watch Faces for iTV Sets</title>
 <meta name=" description " content="Use your iTV Set as a Clock!">
 <meta name=" keywords " content=" iTV Clock, iTV Set, Watch Faces">
 <meta name=" robots " content="index, follow">
 <meta name=" copyright " content="Copyright 2014 through 2016">
 <meta name=" author " content="Wallace Jackson">
 <meta charset ="UTF-8">
 </head>
 <body>
 <!-- iTV Clock's HTML5 Document Body Content (Tags) Will Go In Here -->
 </body>
 </html>

 The description metatag contains the description used in the search engine listing
result. The keywords metatag offers a keyword list to the search engine robot. The robots
metatag suggests how your site should be indexed. The copyright and author metatags
secure your HTML5 document’s copyrights.

 There is also a <meta> tag parameter called charset that is used to define the
character set for your document, which for most HTML5 documents and applications is
either UTF-8 or UTF-16 . Universal Text Format 8-bit uses 256 character representations
and Universal Text Format 16-bit uses 65,536 character representations. UTF-16 clearly
represents a wider range of languages than UTF-8, although UTF-8 represents languages
that use an alphabet character set, such as English, French, Spanish, Italian, Portugese,
and German.

 Before the simplified HTML5 charset=“utf-8” parameter, a <meta> tag to define the
character set (for HTML 4.0 and prior) looked as follows:

 <meta http-equiv="Content-Type" content="text/html" charset="utf-8"> (HTML4)

 Table 3-1 lists 17 name:content data value pairs used in the <meta> tag format for
HTML5 documents and applications.

CHAPTER 3 ■ HTML5 SEARCH ENGINE OPTIMIZATION: TITLE AND META

16

 Table 3-1. Meta Tag name:content Data Value Pairs and Their Uses

 Name Value Content Value Purpose or Usage

 description A description for the HTML
document

 Your search engine listing
description content control

 keywords Your keyword list SEO keyword suggestions

 robots index and follow SEO robot instructions

 copyright Copyright dates Document copyright dates

 author Author name Document author(s) names

 webauthor Author name Document author(s) names

 charset Character set used Generally UTF-8 or UTF-16

 abstract Document summary Abstract of content summary

 revisit-after Period (i.e., 9 days) Robot revisit instructions

 language Name of language Language used for document

 distribution global, local, IU Global, local or internal
distribution for document

 expires Date (1 Jan 2017) Document content expiration

 generator Name of software Document content generator

 reply-to E-mail address Document contact information

 no-email-
collection

 An anti-spam link metatags.info/nospamharvest

 rating Intended audience general, mature, restricted

 googlebot noodp Use page description in ODP

 You can use the http-equiv parameter to define your HTTP header for the
information (values) of your content parameter. This metatag is used to add certain non-
standard values to your HTML5 website header, so let’s cover some of those standard
http-equiv values used in website.

 Table 3-2 lists 13 of the http-equiv:content data value pairs used inside the <meta>
tag format for HTML5 documents and applications.

CHAPTER 3 ■ HTML5 SEARCH ENGINE OPTIMIZATION: TITLE AND META

17

 Next, let’s look at the <base> tag and how it allows you to define a base target URL
for your HTML5 document.

 The BASE Tag : Configuring a URL for a Document
 The HTML5 <base> tag is has no ending tag. It uses the HREF parameter to define the
default URL and therefore the default “target” parameter for all links in the document.
If I were to add the <base> tag to the iTV Clock HTML5 website, the resulting markup
structure would look like this:

 <!DOCTYPE html>
 <html lang="en">
 <head>
 <title>iTV Clocks for iTV Sets | 3D Watch Faces for iTV Sets</title>
 <meta name="description" content="Use your iTV Set as a Clock!">
 <meta name="keywords" content=" iTV Clock, iTV Set, Watch Faces">
 <meta name="robots" content="index, follow">
 <meta name="copyright" content="Copyright 2014 through 2016">
 <meta name="author" content="Wallace Jackson">
 <meta charset="UTF-8">

 Table 3-2. Meta Tag name:content Data Value Pairs and Their Uses

 http-equiv Content Value Purpose or Usage

 content-type Media Type, CharSet Define MIME type and charset

 cache-control Set cache settings Defines caching parameters

 cookie Defines cookie file Define cookie name and dates

 content-disposition Define applications Defines file name extension

 imagetoolbar Shows image toolbar Control display (IE) toolbar

 MSThemeCompatible Use WinXP UI theme Sets WinXP UI theme for site

 picslabel Label image content Allows imagery to be labeled

 pragma Sets HTTPS caching Ensure HTTPS page not cached

 Resource-Type Defines resources Define a page resource type

 refresh Time before refresh Redirect after a time period

 Content-Script-Type Scripting language Define a scripting language

 Content-Style-Type Style Sheet language Define a style sheet language

 window-target Specify window name as a
window target for HTML5
document rendering /
parsing

 Sets the window name for the
webpage to be rendered in;
generally used to break out of a
frameset

CHAPTER 3 ■ HTML5 SEARCH ENGINE OPTIMIZATION: TITLE AND META

18

 < base href ="http://www.iTVclock.com">
 </head>
 <body>
 <!-- iTV Clock's HTML5 Document Body Content (Tags) Will Go In Here -->
 </body>
 </html>

 There can only be a single <base> tag defined in the HTML5 document; it needs to
be defined within the HEAD section of the document. The order of the child tags within
the <head> tag does not matter, in case you are wondering.

 More of the <head> child tags are covered in the next two chapters. Let’s move on to
the other HTML5 tags that are child tags of the <body> tag.

 Summary
 In this chapter, you learned about the HTML5 document tags for search engine
optimization (SEO) contained in the <HEAD> tag, including the <TITLE>, <META>, and
<BASE> tags. Again, notice that your tag names can be either lowercase or uppercase
letters, so use whichever tag style you prefer in your HTML5 markup syntax.

 The next chapter discusses the LINK document tags inside the <HEAD> parent tag
that influences linking to external assets, including favicons and cascading style sheets.

19© Wallace Jackson 2016
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_4

 CHAPTER 4

 HTML5 Referencing: Using
External Links and Favicons

 Let’s continue by taking a look at the <link> tag. This important tag is used to connect
external files, documents, and resources such as HTML5 icons, or favicons (these are
used in the browser tabs), to your HTML5 documents and applications. This tag is also
found at the HEAD document definition and configuration level, just like the tags covered
in the previous chapters.

 In this chapter, I also go over the markup (coding) format and syntax for HTML5
document-level <link> tags, including all of the various parameters. We’ll look at how to
define your external documents, profiles, and asset links using the <link> tag. We’ll also
look at many different types of link relationship data that you provide using the required
 rel parameter, one of the tag parameters used to reference external resources.

 An HTML HEAD Tag to Link External Files
 This chapter covers a single, high-level (in document HEAD) tag that is used to define
how you want external files to be “linked” into your HTML5 document and its content.
I call this “externalizing” HTML5 development assets, such as favicons and style sheets.
There’s a distinct advantage to doing this, which I explain in this section before we get
into how to use the <link> tag and its parameters to externalize assets. If you externalize
an asset as a file in an HTML5 document, it is cached , and therefore, only needs to be
loaded once , in your index.html markup. Let’s look at the advantage of this using your
cascading style sheet (CSS3) asset as an example. If you externalize your style definitions
for your HTML5 website or application, this code only needs to be loaded once, even
though it is referenced using the same <link> tag on every page in your website. If the
CSS file is 8KB and you have 101 pages on the website, this saves you 800KB of data
transfer overhead!

CHAPTER 4 ■ HTML5 REFERENCING: USING EXTERNAL LINKS AND FAVICONS

20

 The LINK Relationship: Types of External Assets
 The only required parameter (also called an attribute) in a <link> tag is the rel or
 relationship parameter , which tells the HTML5 parsing (rendering) engine what type of
document it links. The two most commonly used are icon and stylesheet, but we go over
other rel parameter options during this section of the chapter. Table 4-1 shows the various
rel parameter options currently supported for the <link> tag in HTML5.

 Table 4-1. Link rel Parameter Value and Purpose

 Rel Parameter Value Rel Parameter Value Purpose

 alternate Link to an alternate version of the document

 author Link to put Author Profile in search results

 help Link to the help document for the HTML document

 icon Link external icon (.ICO) resource for document

 license Link to the copyright information for document

 next Link to next document in a series of documents

 prefetch Link to a target resource that should be cached

 prev Link to a previous document in a series of docs

 search Link to a search tool for the document

 stylesheet Link to an external cascading style sheet (.css)

 Let’s take a look at several of these in real-world use, starting with the HTML5 icon,
popularly called a favicon . Let’s also look at how to link to your external cascading style
sheet and to an author profile URL.

 Linking to an Icon: Using a Favicon in the Document Tab or App
 One of the things you always want to do for an HTML5 website or HTML5 application
is to have an icon to use for visual branding purposes. This is especially important for
HTML5 iTV Sets, HTML5 tablets, and HTML5 smartphones, as icons launch your app!

 An example of a document LINK declaration, for a favicon for the HTML5 document,
along with the top-level <head> tag it is nested in, looks like the following HTML5 markup
structure:

 <!DOCTYPE html>
 <html lang="en">
 <head>
 <title>iTV Clocks for iTV Sets | 3D Watch Faces for iTV Sets</title>
 <meta name="description" content="Use your iTV Set as a Clock!">
 <meta name="keywords" content=" iTV Clock, iTV Set, Watch Faces">
 <meta name="robots" content="index, follow">
 <meta name="copyright" content="Copyright 2014 through 2016">

CHAPTER 4 ■ HTML5 REFERENCING: USING EXTERNAL LINKS AND FAVICONS

21

 <meta name="author" content="Wallace Jackson">
 <meta charset="UTF-8">
 <base href="http://www.iTVclock.com">
 < link rel =" icon " href ="itvclock. ico "> <!-- Link to icon resource -->
 </head>
 <body>
 <!-- iTV Clock's HTML5 Document Body Content (Tags) Will Go In Here -->
 </body>
 </html>

 As you can see, you also need to provide a URL with an href parameter. Since the
itvclock.ico is in the same folder, I do not need any http, domain, or folder referencing. If
I had this itvclock.ico on my iTVdesign.com website instead, this tag would then look like
the following HTML5 markup syntax:

 <link rel="icon" href="http://www.itvdesign.com/icon-folder/itvclock.ico">

 I use GIMP 2.8.16 currently to create favicons using the .ico file name extension.
Make sure that the graphic is 64 pixels and square , 8-, 24-, or 32-bit color, and use a File
➤ Export As menu sequence to create it. If you need more background on this, see my
book Digital Image Compositing Fundamentals (Apress, 2015).

 Next, let’s take a look at linking to your external CSS3 style sheet asset so that you
can “externalize” your website or application styling into one highly optimized style
sheet resource asset. This reduces the amount of code in each of the HTML5 documents
(pages) because styling syntax has been removed into an external resource that can
simply be linked to using a few characters of markup (in this case 60 characters or bytes).

 Link to a Style Sheet: Using an External Style Sheet for
 CSS3 Style
 One of the things you always want to do for an HTML5 website or application is to have
a consistent visual appearance, or styling, for your HTML5 user interface design. This is
also important for visual branding purposes and is equally important for HD and UHD
iTVs, HD and UHD tablets, and HD smartphones.

 Your style sheet link not only needs the rel and the href parameters, but also a type
parameter, declaring your MIME type for the CSS file, which is text/css, just like it would
be on the server-side of the MIME declaration for the CSS file on the server.

 An example of a document LINK declaration for style sheet externalization for your
HTML5 document, and the top-level tags the <link> tag is nested in looks like this:

 <!DOCTYPE html>
 <html lang="en">
 <head>
 <title>iTV Clocks for iTV Sets | 3D Watch Faces for iTV Sets</title>
 <meta name="description" content="Use your iTV Set as a Clock!">
 <meta name="keywords" content=" iTV Clock, iTV Set, Watch Faces">

CHAPTER 4 ■ HTML5 REFERENCING: USING EXTERNAL LINKS AND FAVICONS

22

 <meta name="robots" content="index, follow">
 <meta name="copyright" content="Copyright 2014 through 2016">
 <meta name="author" content="Wallace Jackson">
 <meta charset="UTF-8">
 <base href="http://www.iTVclock.com">
 <link rel="icon" href="itvclock.ico">
 <link rel=" stylesheet " type =" text/css " href ="itvclock. css ">
 </head>
 <body>
 <!-- iTV Clock's HTML5 Document Body Content (Tags) Will Go In Here -->
 </body>
 </html>

 As you can see, it is common to have several <link> tags nested inside of your <head>
tag. If your markup needs to be XHTML (XML) compliant, you add an orderly closing
tag by inserting a backslash in front of the closing chevron, as is shown in the following
markup syntax:

 < link rel="stylesheet" type="text/css" href="itvclock.css" />

 If you wanted to add a style sheet for printed media, you would add the media
parameter into the style sheet’s <link> tag to specify printed media (device hardware), as
follows:

 <link rel="stylesheet" type="text/css" href="itvclock.css" media ="print" />

 The media parameter has nine options, including the default screen option,
including the braille or the tty options for the handicapped users, aural option for audio
and speech synthesis, and hardware device options, for printer (printers), projection
(projectors), tv (iTV) and handheld (smartphone, smartwatch, or tablets). You can also
specify more than one media device by using Boolean operators AND (and), NOT (not),
and OR (comma). If you want to specify values for the device, there are parameters
to specify width , height , orientation , resolution , aspect-ratio , color , color-index ,
 monochrome , and scan or grid values.

 Next, let’s take a look at your rel=“author” parameter, and its option for linking to an
external author profile.

 Linking to an Author Profile: Putting a Face on a Search Listing
 One of the more recent things that you are now able to do using the <link> tag for an
HTML5 website or application is to have an author profile referenced via your HTML5
markup for personal branding purposes. This is especially important if you want
your picture to appear in the search engine listing. I show you how to do this in this
chapter with the <link> tag, as well as in Chapter 6 via the <a> (anchor) tag because
the optimal way to implement it is using both a <head><link rel="author"></head>
and <body></body> markup structure (syntax) within your HTML5
document markup.

http://dx.doi.org/10.1007/978-1-4302-6536-8_6

CHAPTER 4 ■ HTML5 REFERENCING: USING EXTERNAL LINKS AND FAVICONS

23

 The following is an example of a document LINK declaration, for an author profile link:

 <!DOCTYPE html>
 <html lang="en">
 <head>
 <title>iTV Clocks for iTV Sets | 3D Watch Faces for iTV Sets</title>
 <meta name="description" content="Use your iTV Set as a Clock!">
 <meta name="keywords" content=" iTV Clock, iTV Set, Watch Faces">
 <meta name="robots" content="index, follow">
 <meta name="copyright" content="Copyright 2014 through 2016">
 <meta name="author" content="Wallace Jackson">
 <meta charset="UTF-8">
 <base href="http://www.iTVclock.com">
 <link rel="icon" href="itvclock.ico">
 <link rel="stylesheet" type="text/css" href="itvclock.css">
 <link rel ="author"
 href ="https://plus.google.com/u/0/+WallaceJackson/about/p/pub"
 title ="Wallace Jackson">
 </head>
 <body>
 <!-- iTV Clock's HTML5 Document Body Content (Tags) Will Go In Here -->
 </body>
 </html>

 Notice that three key parameters were used: the required rel=“author” , an href URL
for the Google+ account, and the title parameter containing the author name value.

 Also, note how I spaced (formatted) the tag for enhanced readability, as extra white
space (tabs and spaces) is allowed and is not processed by the HTML5 markup syntax
parsing engine.

 To do this thoroughly also requires an anchor tag with a rel parameter, which is
covered in Chapter 6 .

 Next, let’s look at the other nine parameters that the <link> tag supports, six of which
work in HTML5 and three of which work in HTML4 and earlier.

 The LINK Tag: The Optional Link Tag Parameters
 The <link> tag has a number of optional parameters in addition to a required rel
parameter. The most important is the href parameter, which allows you to specify a
 URL location for the external asset that is being linked to. You have seen this in use in
the several <link> tag examples in this chapter, and the media parameter as well, so I
will focus on the other four parameters supported in HTML5 during this section of the
chapter. Other supported parameters for the <link> tag are seen in Table 4-2 .

http://dx.doi.org/10.1007/978-1-4302-6536-8_6

CHAPTER 4 ■ HTML5 REFERENCING: USING EXTERNAL LINKS AND FAVICONS

24

 Table 4-2. Link Tag Parameters

 Parameter Name HTML5 Support Parameter Purpose or Usage

 href Yes Location (URL) for the linked asset

 hreflang Yes The language used in a linked asset

 rel Yes Relationship (type) of linked asset

 media Yes Device type needed for linked asset

 type Yes Media type used by the linked asset

 sizes Yes Pixel size of a linked icon resource

 crossorigin Yes Specify cross-origin request handling

 rev No Relationship between linked documents

 charset No Character encoding of a linked asset

 target No Where a linked asset is to be loaded

 The hreflang parameter specifies a language used by the externally linked asset
or document. This <link> tag parameter is not as frequently implemented with HTML5
unless multiple language versions of an HTML5 document or an application have been
created, and then it is needed.

 The type parameter specifies what type of a file (asset) is being provided to the
<link> tag. This is often called a MIME type , especially on the server-side for files
supported by the server definition syntax.

 A sizes parameter specifies the icon’s dimensions in pixels (picture elements). It is
often unutilized because icons are most often provided at 64 × 64 pixels.

 The crossorigin parameter allows access to images, scripts, or styles that are on another
server using the CORS (cross-origin resource sharing) standard. Setting this new parameter
to anonymous restricts cross-sharing access between a server, and setting it to use-
credentials sets the credentials flag to “true.” User credentials can be shared using cookies,
HTTP authentication, or client-side SSL certificates. It can be used with the <script> tag and
with the (image) tag, where it is more often utilized than with the <link> tag.

 Next, let’s look at the rest of the tags supported inside the <head> tag, and then we
can look at hypertext (anchor tags).

 Summary
 This chapter talked about the HTML5 document <link> tag for linking external documents,
profiles, and assets, which is also contained in the <head> tag. You looked at the required
rel parameter, its values, and several examples. The rest of the optional parameters that
apply to HTML5 markup, documents, and applications were also discussed.

 In the next chapter, you look at the remaining <head> child tags, including the style,
script, or noscript tags that influence linking to external JavaScript assets and apply
exceptions to your externalized cascading style sheets.

25© Wallace Jackson 2016
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_5

 CHAPTER 5

 HTML5 Processing: Using
CSS and JavaScript

 Let’s finish up with the child tags of the parent <head> tag, which is itself a child tag
of the <html> tag, by taking a look at the <style> tag for CSS3 document styling and
the <script> tag for JavaScript (or JS) document scripting. We will also look at the
 <noscript> tag. These are the last of the tags contained in the HEAD section of the
HTML5 document definition, so after this we focus on tags that are child tags of the
 BODY or content section. This is getting exciting. We are making excellent progress
thus far!

 In this chapter, I go over markup format and syntax for HTML5 document-level
<style> and <script> tags, including all of their important parameters. We will look
at how to define these external JavaScript documents using JS files, and how to use a
<style> tag to insert exceptions to your externally linked CSS file for only that HTML5
document page. We also cover the <noscript> tag and how it defines alternate content
for users who have disabled scripting languages in their browsers.

 HTML HEAD Tags to Add Tag Processing
 This chapter covers two high-level (in document HEAD) tags used to define how you
want your HTML5 tags (markup) processed further to add desktop publishing like styling,
pixel-precise positioning, special effects, animation, interactivity, and other types of
“algorithmic” processing. This is done using the <style> tag for CSS3 processing, and the
<script> tag for JavaScript processing.

 The chapter title is “HTML5 Processing” because CSS and JS can further process
HTML5. That said, this is not a book on CSS3 or JavaScript, just HTML5 markup (tags),
so if you want to learn CSS3 styling or JS programming, be sure to buy a title from Apress.
com that specifically covers those topics.

CHAPTER 5 ■ HTML5 PROCESSING: USING CSS AND JAVASCRIPT

26

 The SCRIPT Tag : Using JavaScript Programming
 If you want to add advanced features to your HTML5 document, website, or application,
you want to use JavaScript, which is actually based on the ECMAScript 262 standard.
This is done using the <script> child tag in the <head> parent tag (section) of the HTML5
document. It contains JavaScript code inside of the <script> tag or uses the src parameter
and optional (in HTML5, at least) type parameter to externally reference the JavaScript
assets using a JS file. JavaScript is often referred to as JS, its abbreviation. I show you how
to reference an external JavaScript asset in this chapter, as well as how to put JavaScript
inside of your HTML5 document directly. Table 5-1 shows various parameter options,
five of which are supported for this <script> tag in HTML5, and one of which is supported
only in XHTML and HTML 4.

 Table 5-1. Supported <script> Tag Parameters

 Script Parameter Script Parameter Purpose

 src Specify the URL for an external JavaScript file

 type Specify optional media type for external JS file

 charset Specify character encoding for external JS file

 defer Specifies to execute scripts after HTML parsing

 async Specified to execute scripts asynchronously

 xml:space Specifies whether white space in code should be preserved.
This is not supported in HTML5.

 You may be wondering when you should use external vs. internal JavaScript code.
The rule of thumb is to use external JavaScript assets for global JavaScript code, which is
used by every document in an HTML5 website; use internal JavaScript code for localized
JavaScript functions, which are only used on that particular HTML5 page, document, or
application.

 If a function is used more than once, externalize it, so that it can be cached, and does
not have to be served by your server more than one time, and can be accessed using your
local storage device (cache), whenever it is needed by an HTML5 page.

 Let’s look at how I externalized JavaScript code, used in my iTVclock.com website to
set the hands of the clocks.

 The SRC Parameter : Externalizing JavaScript Program Assets
 You can externalize JavaScript code just as you can with cascading style sheets, except
that instead of the <link> tag, you use a <script> tag with its src (source file) parameter. It
is important to note that the externalized JavaScript file must not contain the <script> tag,
only the JavaScript code that would normally exist inside of the <script> tag were you to
use the JavaScript internal to the HTML5 document approach.

CHAPTER 5 ■ HTML5 PROCESSING: USING CSS AND JAVASCRIPT

27

 An example of an HTML5 document <script> declaration for an external .js asset,
along with the top-level <head> tag it’s nested in, looks like the following HTML5 markup
structure:

 <!DOCTYPE html>
 <html lang="en">
 <head>
 <title>iTV Clocks for iTV Sets | 3D Watch Faces for iTV Sets</title>
 <meta name="description" content="Use your iTV Set as a Clock!">
 <meta name="keywords" content=" iTV Clock, iTV Set, Watch Faces">
 <meta name="robots" content="index, follow">
 <meta name="copyright" content="Copyright 2014 through 2016">
 <meta name="author" content="Wallace Jackson">
 <meta charset="UTF-8">
 <base href="http://www.iTVclock.com">
 <link rel="icon" href="itvclock.ico">
 <link rel="stylesheet" type="text/css" href="itvclock.css">
 <link rel="author"
 href="https://plus.google.com/u/0/+WallaceJackson/about/p/pub"
 title="Wallace Jackson">
 < script src ="itvclock .js " type =" text/javascript ">
 </head>
 <body>
 <!-- iTV Clock's HTML5 Document Body Content (Tags) Will Go In Here -->
 </body>
 </html>

 As you can see, I’ve provided an optional type parameter so that HTML4 browsers
can also use this code. If I wanted this HTML markup to support XHTML, the tag would
then look like the following XHTML markup syntax, using a proper closing tag:

 < script src ="itvclock .js " type =" text/javascript " />

 If I am only supporting HTML5 rendering engines, all I’d need to declare this
external JavaScript asset is the following HTML5 markup syntax:

 <script src="itvclock.js">

 Next, let’s look at how you can synchronize the loading of an external .js JavaScript
asset, so that you can control how the JavaScript code is executed relative to the loading
and parsing (execution) the HTML5 markup (tags) for your documents.

CHAPTER 5 ■ HTML5 PROCESSING: USING CSS AND JAVASCRIPT

28

 The ASYNC and DEFER Parameters: JavaScript Asset Execution
 There are three ways to control how your JavaScript code is executed relative to the
rendering (parsing) of your HTML5 markup (tags). If you don’t specify any parameter
to control synchronization, which is the default, the external JavaScript is downloaded
and executed immediately, before the HTML5 content markup in the BODY of your
document, since the <script> tag is in the <head> of the HTML5 document and thus
processed first. There are also parameters to defer (process JavaScript after rendering) or
to process asynchronously , at the same time the page is rendering.

 Deferring JavaScript Processing: The <defer> Parameter

 Let’s look at an example of an HTML5 document <script> declaration for deferring the
processing of an external .js asset. This is used if you need your HTML5 markup to be
loaded and parsed before the JavaScript code is executed. The <script> tag, with the defer
parameter enabled, should have the following HTML5 markup structure:

 <!DOCTYPE html>
 <html lang="en">
 <head>
 <title>iTV Clocks for iTV Sets | 3D Watch Faces for iTV Sets</title>
 <meta name="description" content="Use your iTV Set as a Clock!">
 <meta name="keywords" content=" iTV Clock, iTV Set, Watch Faces">
 <meta name="robots" content="index, follow">
 <meta name="copyright" content="Copyright 2014 through 2016">
 <meta name="author" content="Wallace Jackson">
 <meta charset="UTF-8">
 <base href="http://www.iTVclock.com">
 <link rel="icon" href="itvclock.ico">
 <link rel="stylesheet" type="text/css" href="itvclock.css">
 <link rel="author"
 href="https://plus.google.com/u/0/+WallaceJackson/about/p/pub"
 title="Wallace Jackson">
 < script src ="itvclock. js " type =" text/javascript " defer="defer" >
 </head>
 <body>
 <!-- iTV Clock's HTML5 Document Body Content (Tags) Will Go In Here -->
 </body>
 </html>

 As you can see, I’ve provided an optional type parameter so that HTML4 browsers
can also use this code. If I wanted this HTML5 markup to support XHTML1, this <script>
tag with the defer parameter enabled looks like the following XHTML markup syntax,
which has the proper closing /> tag structure:

 < script src ="itvclock. js " type =" text/javascript " defer="defer" />

CHAPTER 5 ■ HTML5 PROCESSING: USING CSS AND JAVASCRIPT

29

 If I am only supporting HTML5 rendering engines, all I’d need to have to declare this
external JavaScript asset is the following HTML5 markup syntax with a defer parameter
added:

 <script src="itvclock.js" defer="defer" >

 Next, let’s look at how to process the JavaScript code at the same time that your
HTML5 markup is parsing.

 Parallel JavaScript Processing: The <async> Parameter

 Let’s look at an example of an HTML5 document <script> declaration for paralleling
the processing of an external .js asset. This is used if you need your HTML5 markup to
be loaded and parsed in parallel with , or at the same time that your JavaScript code is
executed. The <script> tag, along with the parent <head> tag that it is nested in, looks like
the following HTML5 markup structure using the async parameter :

 <!DOCTYPE html>
 <html lang="en">
 <head>
 <title>iTV Clocks for iTV Sets | 3D Watch Faces for iTV Sets</title>
 <meta name="description" content="Use your iTV Set as a Clock!">
 <meta name="keywords" content=" iTV Clock, iTV Set, Watch Faces">
 <meta name="robots" content="index, follow">
 <meta name="copyright" content="Copyright 2014 through 2016">
 <meta name="author" content="Wallace Jackson">
 <meta charset="UTF-8">
 <base href="http://www.iTVclock.com">
 <link rel="icon" href="itvclock.ico">
 <link rel="stylesheet" type="text/css" href="itvclock.css">
 <link rel="author"
 href="https://plus.google.com/u/0/+WallaceJackson/about/p/pub"
 title="Wallace Jackson">
 < script src ="itvclock. js " type =" text/javascript " async="async" >
 </head>
 <body>
 <!-- iTV Clock's HTML5 Document Body Content (Tags) Will Go In Here -->
 </body>
 </html>

 As you can see, I’ve provided an optional type parameter so that HTML4 browsers
can also use this code. If I wanted this HTML markup to support XHTML, the tag would
then look like the following XHTML markup syntax, using a proper tag closing:

 < script src ="itvclock. js " type =" text/javascript " async="async" />

CHAPTER 5 ■ HTML5 PROCESSING: USING CSS AND JAVASCRIPT

30

 If I am only supporting HTML5 rendering engines, all I’d need to have to declare
this external JavaScript asset is the following HTML5 markup syntax, adding the async
parameter:

 <script src="itvclock.js" async="async">

 Next, let’s take a look at using the charset parameter.

 The CHARSET Parameter: Using a Different JS Character Set
 The <script> tag charset parameter specifies the character set that is being utilized in
an external JavaScript asset. It is important to note that this only needs to be used if the
character set for the external .js file is different from the character set used for the HTML5
markup syntax in your HTML5 document. Your <script> markup should look like this:

 <!DOCTYPE html>
 <html lang="en">
 <head>
 <title>iTV Clocks for iTV Sets | 3D Watch Faces for iTV Sets</title>
 <meta name="description" content="Use your iTV Set as a Clock!">
 <meta name="keywords" content=" iTV Clock, iTV Set, Watch Faces">
 <meta name="robots" content="index, follow">
 <meta name="copyright" content="Copyright 2014 through 2016">
 <meta name="author" content="Wallace Jackson">
 <meta charset="UTF-16"> <!-- Document using UTF-16 Character Set -->
 <base href="http://www.iTVclock.com">
 <link rel="icon" href="itvclock.ico">
 <link rel="stylesheet" type="text/css" href="itvclock.css">
 <link rel="author"
 href="https://plus.google.com/u/0/+WallaceJackson/about/p/pub"
 title="Wallace Jackson">
 <script src="itvclock.js" type="text/javascript" charset="UTF-8" />
 </head>
 <body>
 <!-- iTV Clock's HTML5 Document Body Content (Tags) Will Go In Here -->
 </body>
 </html>

 Next, let’s take a quick look at an HTML <noscript> tag.

 The NOSCRIPT Tag Advises Users: No JS Support
 The <noscript> tag should always be implemented if you are using the <script> tag, but
unfortunately, it is rarely used. It would come under the heading of “user error trapping,”
in my opinion, as some users turn JavaScript off in the browser or device, and need to be
advised to turn the JavaScript capability back on for the application.

CHAPTER 5 ■ HTML5 PROCESSING: USING CSS AND JAVASCRIPT

31

 The following is an example of a document NOSCRIPT declaration for use of
JavaScript assets, whether internalized or externalized:

 <!DOCTYPE html>
 <html lang="en">
 <head>
 <title>iTV Clocks for iTV Sets | 3D Watch Faces for iTV Sets</title>
 <meta name="description" content="Use your iTV Set as a Clock!">
 <meta name="keywords" content=" iTV Clock, iTV Set, Watch Faces">
 <meta name="robots" content="index, follow">
 <meta name="copyright" content="Copyright 2014 through 2016">
 <meta name="author" content="Wallace Jackson">
 <meta charset="UTF-8">
 <base href="http://www.iTVclock.com">
 <link rel="icon" href="itvclock.ico">
 <link rel="stylesheet" type="text/css" href="itvclock.css">
 <link rel="author"
 href="https://plus.google.com/u/0/+WallaceJackson/about/p/pub"
 title="Wallace Jackson">
 <script src="itvclock.js" type="text/javascript" />
 <noscript> No JavaScript Support; Please Enable JavaScript! </noscript>
 </head>
 <body>
 <!-- iTV Clock's HTML5 Document Body Content (Tags) Will Go In Here -->
 </body>
 </html>

 As you can see, it is common to have this tag after your <script> tag. Since it uses a
proper closing tag, the markup is XHTML (XML) compliant.

 Using SCRIPT Tags Internally: JavaScript Coding
 It is also possible to include your JavaScript code alongside your HTML5 markup by
surrounding it with <script> and </script> tags. You can also use comments to “hide”
the JS code from the parsing engine, but the JavaScript rendering engine still sees the
JavaScript code correctly. This is shown in the following example, where a simple Hello
World JS app is in the comments inside the open and closing <script> tags (instead of the
externalized .JS script loader):

 <!DOCTYPE html>
 <html lang="en">
 <head>
 <title>iTV Clocks for iTV Sets | 3D Watch Faces for iTV Sets</title>
 <meta name="description" content="Use your iTV Set as a Clock!">
 <meta name="keywords" content=" iTV Clock, iTV Set, Watch Faces">
 <meta name="robots" content="index, follow">
 <meta name="copyright" content="Copyright 2014 through 2016">

CHAPTER 5 ■ HTML5 PROCESSING: USING CSS AND JAVASCRIPT

32

 <meta name="author" content="Wallace Jackson">
 <meta charset="UTF-8">
 <base href="http://www.iTVclock.com">
 <link rel="icon" href="itvclock.ico">
 <link rel="stylesheet" type="text/css" href="itvclock.css">
 <link rel="author"
 href="https://plus.google.com/u/0/+WallaceJackson/about/p/pub"
 title="Wallace Jackson">
 <script>
 <!--
 Document.getElementById("JSapp".innerHTML="Hello World JavaScript";
 -->
 </script>
 <noscript>No JavaScript Support; Please Enable JavaScript!</noscript>
 </head>
 <body>
 <!-- iTV Clock's HTML5 Document Body Content (Tags) Will Go In Here -->
 </body>
 </html>

 You should use this localized JavaScript approach with your JS functions, which exist only
on that one HTML5 document, page, or application. Next, let’s look at the CSS <style> tag.

 The STYLE Tag : Styling HTML5 Markup Using CSS
 The <style> tag has a fewer parameters, but includes the media and type parameters, and
a new scoped parameter. The supported parameters are shown in Table 5-2 .

 Table 5-2. Style Tag Parameters

 Parameter Name New in HTML5? Parameter Purpose or Usage

 scoped Yes Style is locally scoped (to parent and
children only)

 media No Media/device style is targeted at

 type No Media type specification of style tag

 The scoped parameter specifies application only to the element (tag) being styled
or “cascading” down to child tag elements, which is why it’s called cascading style sheet
(CSS). This parameter is not frequently implemented because most styles in HTML5 are
applied globally across all pages in the document.

 Here is an example of a <style> tag being used to apply a variation or exception from
a global stylesheet externalized using the <link> tag.

 <style> type=text/css><!-- #b (background-image:url(b.png);) --></style>

 This HTML5 markup replaces the #b style for background-image styling with local
styling that provides the current (proper) background image for this particular

CHAPTER 5 ■ HTML5 PROCESSING: USING CSS AND JAVASCRIPT

33

iTV Clock face. Doing this allows you to have a global style for background imagery and
still replace a local background image style in any document that you want to vary from
the global CSS style defined for the background image.

 Notice that I use the comment trick (the same one used with JavaScript) to hide
the CSS3 code from parsing engines, which would not understand it and would throw
an error code. I do not cover CSS syntax in this book on HTML5 markup, but Apress has
several titles on CSS.

 <!DOCTYPE html>
 <html lang="en">
 <head>
 <title>iTV Clocks for iTV Sets | 3D Watch Faces for iTV Sets</title>
 <meta name="description" content="Use your iTV Set as a Clock!">
 <meta name="keywords" content=" iTV Clock, iTV Set, Watch Faces">
 <meta name="robots" content="index, follow">
 <meta name="copyright" content="Copyright 2014 through 2016">
 <meta name="author" content="Wallace Jackson">
 <meta charset="UTF-8">
 <base href="http://www.iTVclock.com">
 <link rel="icon" href="itvclock.ico">
 <link rel="stylesheet" type="text/css" href="itvclock.css">
 <link rel="author" title="Wallace Jackson"
 href=https://plus.google.com/u/0/+WallaceJackson/about/p/pub />
 <script><!--
 Document.getElementById("JSapp".innerHTML="Hello World JavaScript"; -->
 </script>
 <noscript>No JavaScript Support; Please Enable JavaScript!</noscript>
 <style> type=text/css><!-- #b (background-image:url(b.png);) --></style>
 </head>
 <body>
 <!-- iTV Clock's HTML5 Document Body Content (Tags) Will Go In Here -->
 </body>
 </html>

 Next, let’s look at the parameters that can be used by all HTML5 tags, and then we
look at anchor tags, which are contained in the <head> (content) section of HTML5
document and application markup.

 Summary
 In this chapter, you learned about HTML5 document processing using JavaScript (JS)
and cascading style sheets (CSS) with the <script> tag and <style> tag. You also looked at
the <noscript> tag, which works in conjunction with the <script> tag. You saw how to use
<script> internally in the HTML5 document, and how to use the <script> tag to override
externalized CSS assets for localized style sheet changes.

 In the next chapter, you learn about HTML5 global parameters.

35© Wallace Jackson 2016
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_6

 CHAPTER 6

 HTML5 Parameters: Using
Global Tag Attributes

 Before we start our extensive coverage of all of the child tags of the parent <body> tag,
which is itself a child tag of the <html> tag, let’s take a chapter here at the front of the
book to cover the “global” parameters, which can be used by any of the tags in HTML5.
These work with elements (tags) in the HEAD and BODY sections of the HTML5
document definition. In fact, a couple of them were covered in the first five chapters of
this book!

 In this chapter, I go over 16 parameters supported across all HTML5 document-level
tags. I show you what these parameters do for your HTML5 documents and apps.
Eight of these global parameters are new to HTML5 and the other eight work in
previous versions of HTML as well. After this chapter, you’ll be ready to learn all of
the <body> tags!

 HTML Global Parameters Across All Tags
 This chapter covers those tag attributes, characteristics, or parameters that can be used
with any tag in HTML5 and previous versions, such as HTML 4.01 and XHTML 1.1. It is
logical to cover this before going into the plethora (around a hundred) of tags that are
children of the <body> tag. I am doing this so that we can cover these global parameters
in a single chapter.

 Table 6-1 shows the 16 parameters. The first eight in the top half of the table
only work in HTML5 browsers and operating systems. We cover these first, since
HTML5 is the primary focus of this book. The bottom half of the table contains the
eight parameters that work in HTML5 (due to backwards compatibility) and in earlier
versions of HTML.

CHAPTER 6 ■ HTML5 PARAMETERS: USING GLOBAL TAG ATTRIBUTES

36

 Table 6-1. Supported Global HTML5 Tag Attributes

 Global Parameter Global Parameter Purpose

 contenteditable Specify if an element content is editable or not

 contextmenu Specify context menu for the HTML5 element (tag)

 data-<attribute> Specify custom data attributes for your document

 draggable Specifies if an element is draggable (or is not)

 dropzone Specifies a drop processing (copy, move or link)

 hidden Specify visibility (relevancy) for each element

 spellcheck Specify spelling and grammar check for elements

 translate Specifies to execute scripts after HTML parsing

 accesskey Specify a keystroke shortcut to focus an element

 class Specify a classname for element in a style sheet

 dir Specify a text reading direction for an element

 id Specify a unique ID for element in a style sheet

 lang Specify the language used for that element

 style Allows in-line CSS Style declaration for element

 tabindex Specifies the tabbing order for that element

 title Specifies extra information regarding an element

 Let’s talk about the eight HTML5 global parameters first.

 HTML5 Global Parameters: Advanced Attributes
 The global attributes or parameters recently added to HTML5 are more advanced and
add features more akin to devices, operating systems, and applications than to websites,
as older versions of HTML were designed for. These parameters allow things such as drag
and drop, editable content, context menus, custom data definition, spell-checking, and
language translation.

 The CONTENTEDITABLE Parameter: Can I Edit This Content?
 The contenteditable =“boolean” parameter (or attribute) allows you to specify whether
or not you want your user to be able to edit the content inside of that element (tag) that
the parameter is attached to (used inside of). When a contenteditable attribute is not
set on an element, but is set on a parent tag of that element, a child element inherits the
setting (true, false) from its parent element.

CHAPTER 6 ■ HTML5 PARAMETERS: USING GLOBAL TAG ATTRIBUTES

37

 In fact, some browsers, including Opera and Firefox, set the inherit value as the
default, whereas Chrome and Internet Explorer set the false value as the default. Thus,
you could say there are three value options for this parameter, true, false, and inherit.

 The following HTML5 markup is an example of creating an editable paragraph of
text using a <p> tag (which is covered in Chapter 10):

 <p contenteditable="true">Go ahead, edit this text if you're so inclined</p>

 Next, let’s look at context-sensitive menus in HTML5 with the contextmenu parameter.

 The CONTEXTMENU Parameter: Context Sensitive Menuing
 The contextmenu =“id” parameter (or attribute) allows you to specify whether or not you
want your user to be able to open a context-sensitive menu by right-clicking the content
inside of that element (tag) to which the parameter is attached to. The contextmenu
parameter value references the ID parameter of a <menu> tag element, which you define
using <menuitem> child tags to define your menu options (items).

 The following example shows a context-sensitive menu using the <div> tag
(described in Chapter 14) in a document:

 <div contextmenu=" divmenu ">
 <menu id=" divmenu " type="context">
 <menuitem label="Menu Option 1"></menuitem>
 <menuitem label="Menu Option 2"></menuitem>
 <menuitem label="Menu Option 3"></menuitem>
 </menu>
 </div>

 You can attach context-menus to any HTML5 element; after all, this is a global
parameter, so it can be attached to any HTML5 tag (document or app design element).
Be sure that it is logical to attach a menu to your design element from a UI design
 standpoint ; the user still has to right-click that element and expect that menu. Next, let’s
take a look at custom data constructs using the data parameter.

 The DATA- Parameter: Custom Data Definitions for HTML5
 The data-name=“datatype” parameter (or attribute) allows you to specify custom
private data type definitions to content inside of that element. The data-name
parameter value allows you to add your data type name to the parameter itself, which is
unique in HTML5 parameters, and references the data type used to define that particular
tag’s content.

 It is logical to utilize in conjunction with JSON (JavaScript Object Notation) data
object definitions, which you can research further in my JSON Quick Syntax Reference
(Apress 2016) book.

http://dx.doi.org/10.1007/978-1-4302-6536-8_10
http://dx.doi.org/10.1007/978-1-4302-6536-8_14

CHAPTER 6 ■ HTML5 PARAMETERS: USING GLOBAL TAG ATTRIBUTES

38

 To enhance the context-sensitive menu created using a <div> tag in the previous
section, let’s create a data-car data type definition and name each menu item (car
models) with its country of origin. To accomplish this, modify your HTML5 tag markup to
look like this:

 <div contextmenu="carmenu">
 <menu id="carmenu" type="context">
 <menuitem data-car ="german" label="Mercedez Benz"></menuitem>
 <menuitem data-car ="italian" label="Lamborghini"></menuitem>
 <menuitem data-car ="american" label="Corvette"></menuitem>
 </menu>
 </div>

 Next, let’s take a look at the draggable design elements that you can create in
HTML5, by using the draggable parameter.

 The DRAGGABLE Parameter: Can I Drag This Element Around?
 The draggable=“boolean” parameter (or attribute) allows you to specify whether you
want your user to be able to drag around the content inside of the tag on a display screen.
There are actually three value options for this parameter, true , false , and auto . Using the
auto option specifies the default draggable value for each particular browser.

 The following HTML5 markup shows a draggable paragraph of text using a <p> tag:

 <p draggable="true">You're able to drag this paragraph around the screen</p>

 Next let’s take a look at how to drop draggable elements in HTML5 by using the
dropzone parameter. These two parameters are used in conjunction with each other,
because to be able to drop an element, you have to be able to drag it in the first place!

 The DROPZONE Parameter: What to Do When an
Element Is Dropped
 The dropzone=“action” parameter (or attribute) allows you to specify the action that
your HTML5 application implements once the user drags the content into place on the
screen. There are three action value options for this parameter: move , copy , and link .
The auto option specifies the default draggable value for each particular browser.

 To create the dropzone area, attach a dropzone parameter to a <div> area using the
 <div> tag (see Chapter 14), as shown in the following HTML5 markup:

 <div dropzone=" move ">Content Child Elements/Tags will be in here</div>

 To create a copy of the dragged content in your dropzone area, use the copy option
instead, as shown the following markup:

 <div dropzone=" copy ">Content Child Elements/Tags will be in here</div>

http://dx.doi.org/10.1007/978-1-4302-6536-8_14

CHAPTER 6 ■ HTML5 PARAMETERS: USING GLOBAL TAG ATTRIBUTES

39

 This leaves your original dragged content intact and copies it to the new location.
This is the least memory-efficient option because it duplicates the drag-and-drop content
in system memory, which is inefficient. The solution is to use the link option, which
displays the dropped content in a second location but references it from the original
memory storing the original element. This is accomplished with the following HTML5
markup to link the new content in the division:

 <div dropzone=" link ">Content Child Elements/Tags will be in here</div>

 Next, let’s look at how to hide elements in HTML5 using the hidden parameter.

 The HIDDEN Parameter: Hide Element Content until it is Relevant
 The hidden=“boolean” parameter (or attribute) allows you to specify whether you want
your element to be hidden from view. There are two value options for this parameter:
 true or false . Specifying the hidden tag sets the value to true; not specifying it sets the
value to false. The following example creates a hidden paragraph of text using a <p> tag:

 <p hidden >This paragraph will be hidden from the user's view</p>

 Next, let’s look at how to spell-check elements in HTML5, by using the spellcheck
parameter.

 The SPELLCHECK Parameter: Allow Spell-checking for Content
 The spellcheck=“boolean” parameter (or attribute) allows you to specify whether you
want your text-based elements to have the spell- checking feature enabled. This is used
in conjunction with the contenteditable attribute for text-capable elements, such as
paragraphs, text areas, input fields, and the like.

 To create an editable paragraph text that supports this spell-checking feature, use
the <p> tag with the contenteditable and the spellcheck parameters both set to a value of
 true , as shown in the following HTML5 markup:

 <p contenteditable="true" spellcheck="true">Paragraph with spellchecking</p>

 Next, let’s take a look at the language support in HTML5 using the translate parameter.

 The TRANSLATE Parameter: HTML5 Global Language Support
 The translate=“boolean” parameter (or attribute) allows you to specify whether you
want your text-based elements to be translated into different languages. Interestingly,
instead of using true and false for the Boolean value, this parameter uses yes and no . The
default (not specifying the translate parameter at all) is yes (translate this text element
content), which equates to “support the localization of this content.” Therefore, this
parameter is primarily used to prevent a translation when you want the language for your
HTML5 document to remain in the language that you originally created it in.

CHAPTER 6 ■ HTML5 PARAMETERS: USING GLOBAL TAG ATTRIBUTES

40

 To create paragraph text that supports this translation feature, use the <p> tag with
no translate parameter, or with the parameter set to a yes value, as shown in the following
HTML5 markup:

 <p>This Paragraph Will Be Translated by Default, to Localize the Content</p>
 <p translate ="yes">This Paragraph WILL Be Translated, for Localization.</p>

 To create paragraph text that will never be translated, use the <p> tag with the
 translate parameter set to the no value, as follows:

 <p translate ="no">This Paragraph Will NOT Be Translated or Localized</p>

 Next, let’s take a look at global parameters supported across all versions of HTML,
including HTML5 and HTML 5.1.

 Pre-HTML5 Global Parameters: Legacy Attributes
 The remaining eight parameters in Table 6-1 have been in HTML for quite a long time
and are probably much more familiar to you. The style and lang parameters have been
covered already, so let’s go over the rest so that you can get into the tags that control
content design and display in your HTML5 applications, websites, and documents.

 The ACCESSKEY Parameter: Adding Keyboard Shortcut Keys
 The accesskey=“key value” parameter (or attribute) allows you to specify a keyboard
shortcut for your elements. This is useful for hypertext anchor <a> tags (covered in
Chapter 7), which allows your users to simply press a letter key on the keyboard to
automatically access a website.

 To create a keyboard shortcut for an anchor tag link, use an accesskey parameter
inside of an <a> tag and assign it a key on the keyboard. Here’s an example, using basic
HTML5 markup:

 Publisher Website

 Author Website

 Next, let’s take a look at how you attach HTML5 tags to cascading stylesheet (CSS)
definitions using a class parameter.

 The CLASS Parameter: Labeling Your Elements for Use with CSS
 The class=“name” parameter (or attribute) allows you to specify a classname for your
tags. It is useful for any tags that can be styled using CSS3 or controlled using JavaScript,
which includes the majority of the tags covered in this book.

http://dx.doi.org/10.1007/978-1-4302-6536-8_7

CHAPTER 6 ■ HTML5 PARAMETERS: USING GLOBAL TAG ATTRIBUTES

41

 To create a classname for a paragraph tag, use the class parameter inside of a <p> tag.
To access this inside of a style tag, use the p.coloredtext dot notation. Here’s a basic
example using HTML5 markup with the high-level tags you’ve learned:

 <html><head><style>
 p. coloredtext { color: red; } <!-- CSS to set the p color to red -->
 </style></head>
 <body>
 <p class=" coloredtext ">This text will be displayed in a Red color.</p>
 </body></html>

 Next, let’s look at how you define text direction (left to right, or LTR, and right to left,
or RTL), using a dir parameter.

 The DIR Parameter: Defining the Direction of your Text
 A dir=“direction” parameter (or attribute) allows you to specify the direction that you
want your text-based elements to be read. This parameter uses rtl and ltr as options, as well
as auto, which is the default for the browser. If you use auto, the browser tries to ascertain
the correct direction based upon the content (the character set that it is utilizing).

 To create paragraph text that supports this translation feature, use the <p> tag with
no translate parameter, or with the parameter set to a yes value, as follows:

 <p dir="rtl">This Paragraph Will Be Written from the Right To the Left!</p>

 In HTML5, this parameter can be used with any tag, although it is only useful
with some tags. In older versions of HTML, the parameter can’t be used with <frame>,
<iframe>, <frameset>, <param>, <script>, <base>,
, or <hr>.

 Next, let’s take a look at the id parameter.

 The ID Parameter: Identifying Your Content Elements
 The id=“name” parameter (or attribute) allows you to specify an id to use as a handle. It
is useful for any tags that can be styled using CSS3 or controlled using JavaScript.

 To create an ID for a paragraph tag, use an id parameter inside of a <p> tag. To access this
ins ide of a <script> tag, use the document.getElementById() function. Here’s an example:

 <html><body>
 <p id=" helloworld ">Click this button to change to: Hello World!</p>
 <button onclick="HelloWorldFunction()">Change Text, Please!</button>
 <script>
 function HelloWorldFunction() {
 document.getElementById(" helloworld ").innderHTML = "Hello World";
 }
 </script>
 </body></html>

 Next, let’s take a look at how you specify language by using the lang parameter.

CHAPTER 6 ■ HTML5 PARAMETERS: USING GLOBAL TAG ATTRIBUTES

42

 The LANG Parameter: Defining an Element’s Language
 The lang=“language” parameter (or attribute) allows you to specify the language used in
your text-based elements.

 To create the paragraph text that supports this language specification feature, use the
 <p> tag with the lang parameter, set to the abbreviated value of the language used in your
text element. An example of this is shown in the following HTML5 markup:

 <p lang="es">Buenos Dias, Compadres!</p>

 Next, let’s take a look at the in-line stylesheet support in HTML5 using the style
parameter.

 The STYLE Parameter: Using In-Line Stylesheet Settings
 The style=“css” parameter (or attribute) allows you to specify "in-line CSS3" markup in
an element (tag).

 To create paragraph text that supports this stylesheet specification feature, use the
 <p> tag with the style parameter set to use style markup . The following is an example of
how this is done using HTML5 markup:

 <p style="color:green">This text will now use the green color!</p>

 Next, let’s take a look at controlling the way that your Tab key advances through your
UI in HTML5 using the tabindex parameter.

 The TABINDEX Parameter: Tab Key Advancement Ordering
 The tabindex=“integer value” parameter (or attribute) allows you to specify a TAB key
 order for your tags. It is useful for hypertext anchor <a>, allowing users to tab through
each link in the order that you define. To create a tabbing order for an anchor tag link,
use a tabindex parameter inside of an <a> tag and assign it a number. Here’s an example
using basic HTML5 markup:

 Publisher's Website
 Author's Website
 Tech Reviewer Website

 Next, let’s take a look at how you can define the pop-up tooltip text that your HTML5
tags show when your users do a mouse-over action on your user interface design elements.

 The TITLE Parameter : Adding a Title to your Content Element
 A dir=“direction” parameter (or attribute) allows you to specify the direction you want
your text-based elements to be read. This parameter uses rtl and ltr as options, as well as
auto, which will be default for the browser. If you use auto the browser will try to ascertain
the correct direction based upon the content (that is, what character set it is utilizing).

CHAPTER 6 ■ HTML5 PARAMETERS: USING GLOBAL TAG ATTRIBUTES

43

 To create paragraph text which supports this translation feature use the <p> tag with
no translate parameter or with the parameter set to a yes value, as shown in the following
HTML5 markup:

 <p title="This will display on Mouse-Over">Mouse-Over Text for Tool Tip!</p>

 In HTML5 this parameter can be used with any tag, though it is only useful with
some tags. In previous versions of HTML, this parameter can't be used in <meta>, <base>,
<head>, <html>, <style>, <param>, or <script> tags.

 Summary
 This chapter explained global HTML5 parameters (also referred to as attributes or
 characteristics). In the next chapter, you’re going to look at the HTML5 anchor <A> or
<a> tag, which allows hypertext and URL references.

45© Wallace Jackson 2016
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_7

 CHAPTER 7

 HTML5 Navigation: Using an
Anchor Tag for Hypertext

 This chapter focuses largely on the anchor (<A> or <a>) tag, which added the
differentiating hypertext features to HTML, or Hypertext Markup Language. The anchor
tag originally supported URL links, allowing you to go to other websites, called hypertext ,
as well as anchors or page locators, allowing you to jump to different locations in the
same URL (website). HTML5 now only supports URL linking with the <a> tag; however,
I cover the legacy parameters for the <a> tag to be complete about this anchor tag
element’s coverage.

 In this chapter, I go over a dozen parameters supported by HTML’s anchor tag,
seven of them are supported in HTML5, and five are also supported versions prior
to HTML5.

 HTML Anchor Tag Attributes: All Versions
 This chapter covers the anchor or <a> tag used for hypertext, or linking across
different HTML5 documents and applications, as well as a dozen anchor tag attributes,
characteristics, or parameters. It is logical to cover this first, before we get into the plethora
(around a hundred) of tags that are children of the <body> tag, because hypertext
differentiates HTML5 and the anchor tag is commonly used to create navigation to other
sections of a website. This is typically done by using CSS3 to style links so that they look
like buttons. Table 7-1 shows the parameters used with the anchor <a> tag: the first two
only work with HTML5, the next five work with all HTML versions, and the last five do not
work with HTML5.

CHAPTER 7 ■ HTML5 NAVIGATION: USING AN ANCHOR TAG FOR HYPERTEXT

46

 Table 7-1. HTML5 <a> Tag Attributes Supported and Not Supported

 Global Parameter Global Parameter Purpose

 download Specify if an element content is editable or not

 media Specify context menu for the HTML5 element (tag)

 href Specify custom data attributes for your document

 hreflang Specifies if an element is draggable (or is not)

 rel Specifies a drop processing (copy, move or link)

 target Specify visibility (relevancy) for each element

 type Specify spelling and grammar check for elements

 charset Specifies to execute scripts after HTML Parsing

 coords Specify a keystroke shortcut to focus an element

 name Allows in-line CSS style declaration for element

 rev Specifies the tabbing order for that element

 shape Specifies extra information regarding an element

 Let’s get into the seven HTML5 global parameters first.

 Anchor Tag HTML5 Parameters : Hypertext’s HREF
 The most important parameter for using the anchor <a> tag in HTML5 is the href , or
 hypertext reference , parameter. It uses a URL, or Uniform Resource Locator, as the
parameter value. The URL is a website address that begins with an http:// Hypertext
Transfer Protocol (HTTP) header and then the web address. For example, the Apress
website is at http://www.apress.com .

 The following is an example of a hypertext link using the <a> tag with the href parameter:

 Click here to open the Apress website

 As the default, links not yet visited (clicked) are blue , visited links are purple , and
active links are red . Links are also underlined by default, although, this can be changed
using CSS3, if you want to style a link differently.

 Without the href parameter, six of the twelve anchor tag parameters cannot be used.
These include download, target, media, rel, type, and hreflang, which we’ll cover next.

 The HREFLANG Parameter: Hypertext Link Language Support
 The hreflang =“language abbreviation” parameter (or attribute) allows you to specify
the language used by your hypertext link. We have looked at this before, so I will just
reference a quick example, and then we can move on to the other anchor tag parameters.
The following is an example of a language specified link using an <a> tag:

 Bonjour! www.Apress.com

http://www.apress.com/

CHAPTER 7 ■ HTML5 NAVIGATION: USING AN ANCHOR TAG FOR HYPERTEXT

47

 Language codes are formally defined via ISO 639 , which are found at the following
websites:

• http://www.iso.org/iso/home/standards/language_codes.htm
(ISO.org)

• https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
(Wikipedia)

 Next, let’s look at the two tags that are only supported in HTML5: the download tag
and the media tag.

 The DOWNLOAD Parameter: Downloading Files Using the A Tag
 When present, the download parameter (or attribute) tells the HTML5 parsing engine
(browser or operating system) that the file referenced using the href parameter needs to
be downloaded, rather than loaded and parsed as an HTML5 document or application.

 To download a file, such as the animated MindTaffy logo found on www.
WallaceJackson.com , you would specify the file name in the href parameter rather
than an HTML website. You would also add the download parameter, which acts like
a Boolean flag, so the download parameter present means download=“true” and the
download parameter absent means download=“false”. To accomplish this, you would
modify your HTML5 tag markup to look like this example:

 Download Logo!

 Next, let’s take another brief look at a media parameter.

 The MEDIA Parameter: What Media Device Does a Link Support?
 The media=“media/device types” parameter (or attribute) was covered in Chapter 4 , so
we do not need to cover it here, other than to show an example of its use with the <a> tag.
The following is an example a link specifying a device type:

 iTV Set - Display: Screen

 Next, let’s take a look at how you can use the target parameter to tell the browser
how and where to open your new hyperlinked document.

 The TARGET Parameter: Where to Open a Hypertext Document
 The target =“_constant” parameter (or attribute) allows you to specify the location that
your HTML5 application opens your URL link in. There are four value options for this
parameter, _blank , _self , _ parent , and _top . You can also use a frame name, although
since framesets are seldom used anymore, this is quite rare, as are the _parent and _top
options. Most developers use _blank to open a new tab in the browser, or _self (which
is the default if there is no target parameter specified in the <a> tag), which replaces the
current HTML5 content with that specified in the URL from using the href parameter.

http://www.iso.org/iso/home/standards/language_codes.htm
https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
http://www.wallacejackson.com/
http://www.wallacejackson.com/
http://dx.doi.org/10.1007/978-1-4302-6536-8_4

CHAPTER 7 ■ HTML5 NAVIGATION: USING AN ANCHOR TAG FOR HYPERTEXT

48

 To create a new tab for your linked document, you use the target=“_blank”
parameter inside your <a> tag, as shown in the following example:

 Open iTV Set in a new Tab

 To replace the currently displayed HTML content with the linked document, you
should use the target=“_self” parameter in your <a> tag, as shown in the following
example:

 Replace this site with iTV Set

 To replace the currently displayed HTML content in the parent frame with your
linked document, you’d use the target=“_parent” parameter in your <a> tag, as follows:

 Open iTV Set in Parent Frame

 To replace currently displayed HTML5 content at the top of your frameset (which
fills an entire tab or window) with your linked document, you use the target=“_top”
parameter inside of your <a> tag, as follows:

 Open iTV Set in the Full Window

 To replace currently displayed HTML content in any named frame within your
frameset with your linked document, you would use the target=“frame-name”
parameter inside of the <a> tag, as shown in the following HTML5 markup example:

 Open iTV Set in this Frame

 Next let’s take a look at how to define the relationship between linked documents in
HTML5 by using the rel parameter.

 The REL Parameter: Define a Relationship to the Hypertext Link
 The rel=“relationship type” parameter (or attribute) allows you to define the type
of relationship that exists between the current HTML5 document and the document
specified in your href parameter by using the URL value. There are a dozen possible
values that can be used in the <a> tag’s rel attribute, including alternate , author ,
 bookmark , help , license , next , nofollow , noreferrer , prefetch , prev , search , and tag .
Some of these are the same as the rel parameter supported by the <link> tag; however,
some of them are different parameters for the <a> tag. Table 7-2 lists these parameters
along with their purpose.

CHAPTER 7 ■ HTML5 NAVIGATION: USING AN ANCHOR TAG FOR HYPERTEXT

49

 Table 7-2. HTML5 Anchor Tag rel Attributes

 REL Parameter REL Parameter Purpose

 alternate Specifies an alternate version of HTML5 document

 author Specifies your author profile for HTML5 document

 bookmark Specifies permanent URL to bookmark the document

 help Specifies the URL (a link) to the help document

 license Specifies a URL (a link) to a copyright document

 next Specifies next document in a series of documents

 nofollow Specify spelling and grammar check for elements

 noreferrer Specifies to execute scripts after HTML parsing

 prefetch Specify a keystroke shortcut to focus an element

 prev Allows in-line CSS style declaration for element

 search Specifies the tabbing order for that element

 tag Specifies extra information regarding an element

 To create an alternate version of a linked document, you use a rel=“alternate”
parameter inside the <a> tag, as shown in the following HTML5 markup:

 Alternate iTV Version

 To reference your Author Profile version for your linked document, you would use
this rel=“author” parameter inside your <a> tag, as shown in the following HTML5
markup:

 Author Website

 To create a bookmark link version for a linked document, you use the
 rel=“bookmark” parameter inside the <a> tag, as shown in the following HTML5 markup:

 Bookmark for iTV Set Site

 To create a help document version for a linked document, you use a rel=“help”
parameter inside the <a> tag, as shown in the following HTML5 markup:

 iTV Set Website Help Document

 To create a licensing document for a linked document, you use the rel=“license”
parameter inside of an <a> tag, as shown in the following HTML5 markup:

 Copyright License Document

CHAPTER 7 ■ HTML5 NAVIGATION: USING AN ANCHOR TAG FOR HYPERTEXT

50

 To designate the next version for your linked document series, you should use the
 rel=“next” parameter, inside an <a> tag, as shown in the following example:

 The Next Document in a Series

 To instruct search engine robots not to follow (or rank) a linked document, you
should use the rel=“nofollow” parameter, inside of your <a> tag, as shown in the
following example:

 Do Not Follow (Rank) Link

 To hide the fact that links to another website came from your website, you would
utilize the rel=“noreferrer” parameter, inside of your <a> tag, as shown in the following
example:

 No Site Referrer Info Sent

 To instruct HTML5 rendering engines to “pre-load,” or to cache a document before
it is needed, that is, before your link is clicked by a user, you would use a rel=“prefetch”
parameter, inside of your <a> tag, as shown in the following example:

 Prefetch This Document

 To designate a previous version for your linked document series, you should use the
 rel=“prev” parameter, inside the <a> tag, as shown in the following example:

 Previous Document in a Series

 If you create a search tool user interface (application) for the document you can link
to this HTML5 search application, and then utilize the rel=“search” parameter inside of
your <a> tag, as shown in the following example:

 Custom Search Utility Link

 To quote the W3C directly, regarding this parameter: “The search keyword indicates
that the referenced document provides an interface specifically for searching the
document and its related resources.” Creating a custom search interface (user interface
application) is no easy task, and is somewhat rare across smaller websites, but does exist
on larger sites.

 To instruct search engine robots that the text used in a <a> tag is a relevant keyword
related to the current document’s topic, you should use a rel=“tag” parameter, inside of
your <a> tag, as shown in the following example:

 Tag the ebooks keyword

 Next, let’s take a brief review of your type parameter.

CHAPTER 7 ■ HTML5 NAVIGATION: USING AN ANCHOR TAG FOR HYPERTEXT

51

 The TYPE Parameter: MIME Types, Media Types, and File Types
 We covered the type parameter already, during Chapters 4 and 5 , so let’s just suffice it
to say here that the anchor <a> tag supports the definition of a MIME (media or file)
 type with the type=“file type” parameter. In case you are wondering, MIME stands for
Multipurpose Internet Mail Extensions, as it was used originally for e-mail and expanded
later to be used for servers, browsers, and applications. Usage of the type parameter in
your <a> tag might look like the following HTML5 markup:

 iTV Set: An HTML Website!

 Next, let’s cover non-HTML5 anchor tag parameters, so we have comprehensive
coverage of hypertext during this chapter.

 Anchor Tag Non-HTML5 Parameters: Legacy Code
 Finally, let’s take a quick look at the five anchor tag parameters that do not work in
HTML5, but which do work for HTML4 and earlier, just in case you are doing some legacy
code maintenance or supporting multiple browser revision numbers.

 The CHARSET Parameter: Hypertext Link Character Set Support
 We covered the charset parameter in Chapters 4 and 5 , so I’ll just reiterate here that your
anchor <a> tag supports character set definition using the charset=“charset” parameter.
Most HTML documents or apps use the UTF-8 or ISO-8859-1 preset.

 The following is an example of a character set specified link by using an <a> tag and
charset parameter:

 iTV Set: A UTF-8 Website!

 Next, let’s take a closer look at the coords parameter.

 The COORDS Parameter: Define Coordinates for Your
Image Map
 The coords parameter (or attribute) tells the HTML5 parsing engine the coordinates
for the file referenced using the href parameter. It is used in conjunction with the shape
parameter. It created image maps, which are no longer supported in HTML5.

 HTML tag markup looks like this example:

 Image Map

 Next, let’s take brief look at the name parameter.

http://dx.doi.org/10.1007/978-1-4302-6536-8_4
http://dx.doi.org/10.1007/978-1-4302-6536-8_5
http://dx.doi.org/10.1007/978-1-4302-6536-8_4
http://dx.doi.org/10.1007/978-1-4302-6536-8_5

CHAPTER 7 ■ HTML5 NAVIGATION: USING AN ANCHOR TAG FOR HYPERTEXT

52

 The NAME Parameter: Naming a Link (Supported
Prior to HTML5)
 Prior to HTML5, the name parameter (or attribute) specified the name of the anchor, but
it was deprecated (support was discontinued) with the anchor (jump to different part of
document) feature. Therefore, I do not need to cover it beyond showing an example of its
use with the <a> tag. To simulate this in HTML5, use an id parameter. The following is an
example of a named anchor in HTML4 and older versions:

 iTV Set Anchor Name

 To create a named link in HTML5, you would use this HTML markup:

 iTV Set Link Name Using ID

 Next, let’s take a look at the rev parameter.

 The REV Parameter: Where to Open a Hypertext Document
 The rev parameter (or attribute) is the opposite of the rel parameter. It is no longer
supported in HTML5.

 To create the reverse relationship for a linked document, you use the rev=“constant”
 parameter inside your <a> tag, as follows:

 An Opposite of an iTV Set

 Next, let’s look at the shape parameter.

 The SHAPE Parameter: Define the Shapes for Your
Image Maps
 The shape parameter (or attribute) tells the HTML5 parsing engine the shape (rect or
circle) used for the file referenced using an href parameter. It is used in conjunction with
the coords parameter. It created image maps, but it is not supported in HTML5.

 HTML tag markup looks like this:

 Image Map

 Now you are ready to move on to the remaining document content design, creation,
and publishing tags supported in HTML5. We are making steady progress and we are
about to have fun using multimedia design elements in our HTML5 applications!

CHAPTER 7 ■ HTML5 NAVIGATION: USING AN ANCHOR TAG FOR HYPERTEXT

53

 Summary
 This chapter covered hypertext in HTML5 by using the anchor or <a> tag and a dozen
of its parameters. You learned about the href parameter and Hypertext Transfer
Protocol (HTTP). You also looked at several parameters that work in HTML5, and
some that do not.

 The next chapter discusses the HTML5 tags that support the addition of new media
elements, including imagery, audio, and video. These allow developers to add visual
(and aural, with audio) pizazz to their HTML5 website, document, or application.

55© Wallace Jackson 2016
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_8

 CHAPTER 8

 HTML5 Multimedia: Utilizing
New Media Assets

 Before getting into the remaining child tags of the parent <body> tag, let’s cover a
few tags that allow you to implement new media content elements in your HTML5
designs. These elements are becoming more prolific in HTML5 documents and
applications. This is happening due to the advent of different devices types, such as
iTV Sets, smartwatches, smartphones, tablets, and e-book readers, just to name a few.
And yes, there are HTML5 operating systems that drive popular products in each of
these genres, challenging Android’s market domination across consumer electronics
devices. If you are interested in producing new media content in HTML5, check out
 Appendix D of this book, as well as my new media content production fundamentals
book series at www.apress.com .

 In this chapter, I go over the key tags to implement new media elements, such as
digital images using the tag, digital video using the <video> tag, digital illustration
using the <svg> tag, and digital audio using the <audio> tag. We also cover advanced
areas of new media that utilize APIs or a combination of new media features. This
allows developers to achieve almost anything in HTML5 that a more advanced OOP
programming language, such as C++ or Java, is able to. In fact, Java or JavaFX work inside
HTML5, so the future is bright for HTML5 in multimedia!

 HTML5 New Media Support: Nine Genres
 This chapter covers the new media capabilities of HTML5. It discusses all of the new
media genres and shows how developers can create content within these genres using
tags, which are covered first, and then JavaScript and APIs. Table 8-1 lists the new media
genres supported in HTML5, along with the file formats, and in some cases, the API that
they utilize.

http://www.apress.com/

CHAPTER 8 ■ HTML5 MULTIMEDIA: UTILIZING NEW MEDIA ASSETS

56

 Table 8-1. Nine HTML5 New Media Genres and Data Format Support

 New Media Asset Supported Data Formats

 Digital Imagery JPEG, GIF, PNG8, PNG24, PNG32, WebP, BMP, PDF

 Digital Audio MP3, OGG Vorbis, WAVE, AIFF, MPEG-4, OPUS, FLAC

 Digital Video MPEG-4 AVC H.264, MPEG-H EVC H.265, WebM VP8/VP9

 Digital Illustration SVG (Scalable Vector Graphic)(also used via CSS)

 Interactive 3D WebGL or WebGL2 (<canvas> covered in Chapter 17)

 Digital Painting SVG, JPEG, GIF, PNG (8/24/32), WebP, WebM, MPEG

 Visual FX (VFX) Above Formats combined together using JavaScript

 Speech Recognition Recognizes Speech; Converts to Text (Web Speech)

 Speech Synthesis Synthesizes Speech, Using Text (Web Speech API)

 The first section of Table 8-1 features new media assets that enjoy “native” or direct
tag support in HTML5, including the , <audio>, <video>, <svg>, and <canvas> tags.

 The second section of Table 8-1 contains new media genres that require JavaScript
and advanced APIs to create a more advanced new media asset, such as a digital painting,
or a visual effects (VFX) pipeline, or an interactive user experience. If you’re interested in
new media for HTML5 I have a New Media Fundamentals series of books with Apress at
 Apress.com , just search for this Author’s name.

 The third section of Table 8-1 contains a speech synthesis and speech recognition
entries, because there is now the Web Speech API for two of the popular browsers—
Google Chrome and Apple Safari. It won’t be long before other HTML5 platforms adopt
the Web Speech API, especially as iTVs and smartphones with HTML5 operating systems
are increasing in number. This means that the Web Speech API should exist in all popular
browsers before 2017 rolls around.

 Let’s look at each of these new media areas in their own sections in the chapter, now
that I have outlined the relevant file (data) formats that are supported. Next, let’s look at
the core tags and their parameters and related APIs, which allow HTML5 developers to
implement multimedia applications that rival those created for Android, Windows, Linux,
and iOS. This is an exciting chapter for HTML5 developers who wish to create never-
before-seen (or heard) user experiences!

 Digital Imagery: Using the Tag
 The most widely used new media element with HTML5 is the digital image, which
uses the tag. It was introduced in HTML 1.2 and standardized in HTML 2.0 .
Parameters include src , the digital image asset file reference parameter, as well as the
 width and height parameters and useful SEO parameters. Table 8-2 shows parameter
support in HTML5.

http://dx.doi.org/10.1007/978-1-4302-6536-8_17
http://www.apress.com/

CHAPTER 8 ■ HTML5 MULTIMEDIA: UTILIZING NEW MEDIA ASSETS

57

 Table 8-2. Parameters Supported By Tag

 IMG Tag Parameter IMG Tag Parameter Purpose

 src A digital image asset source file name reference

 alt Alternate text description of image used for SEO

 crossorigin Cross-origin access control for third-party site

 height Height (in pixels) to display the image

 width Width (in pixels) to display the image

 longdesc URL for a detailed description of image

 usemap Specify image as a client-side image map

 ismap Specify image as a server-side image map

 align Specify the alignment of image to other elements

 border Specify the border width around image

 hspace Specify the whitespace width left/right of image

 vspace Specify the whitespace width top/bottom of image

 The tag has a dozen parameters, eight of which are supported in HTML5 , and
four of which have been deprecated due to the use of CSS to provide these functions.
The 12 parameters are seen in Table 8-2 ; common usage parameters are in the first
section and the less commonly used parameters are in the second section. The third
section contains parameters supported in previous HTML versions, which you use CSS
to implement in HTML5. You can use these parameters in legacy HTML4 or prior HTML
versions such as HTML3.2, HTML 2.0, and XHTML 1.0 and 1.1.

 If you want to master digital image compositing terms, principles, workflows, and
fundamentals, check out Digital Image Compositing Fundamentals (Apress, 2015).

 The following is an example of a digital image asset using the tag with the src
parameter:

 To optimize a digital image asset for SEO purposes, you use the alt parameter , as
shown in the following example HTML5 markup:

 To scale a digital image asset, you use with the width and height parameters , as
shown in following example:

 <!-- Scale Down Image -->

 Make sure to scale your image by a power of 2. Thus, your source image for the
preceding markup should be 800 × 600, or 1600 × 1200 in physical pixel resolution. Always
scale down not up!

CHAPTER 8 ■ HTML5 MULTIMEDIA: UTILIZING NEW MEDIA ASSETS

58

 To allow a digital image asset to be legally accessed from a third-party website,
use the crossorigin parameter (as covered in Chapter 4), as shown in the following
HTML5 markup:

 To further optimize a digital image asset for SEO, using the longdesc parameter ,
you should utilize this following HTML5 markup, which provides the URL reference to a
keyword-optimized description that you create using HTML5:

 To define a client-side digital image map asset with the USEMAP parameter, you
would utilize the following HTML5 markup:

 < map id=" mapname ">
 < area shape="rect" coords="10,10,640,240" href="URL" alt="SEO" />
 < area shape="circle" coords="320,360,120" href="URL" alt="SEO" />
 </map>

 This provides the id reference to your <map> element definition, which contains
 <area> element definitions that define areas within your client-side image map.

 To specify a digital image asset using server-side image mapping , use an ismap
parameter , as shown in the following HTML5 markup:

 Next, let’s look at digital audio assets and the HTML5 <audio> tag.

 Digital Audio: Using the <audio> Tag
 Your next most widely used new media element in HTML5 is digital audio, which uses the
<audio> tag. This is new to HTML5 and it is not in previous versions of HTML. Parameters
include the src , which references a digital audio asset file name , and controls , which
adds the audio transport user interface feature. Table 8-3 shows the <audio> tag
parameters supported in HTML5, with the two most important parameters in the top
section, the most commonly used options in a middle section, with seldom used options
in the bottom section of the table.

http://dx.doi.org/10.1007/978-1-4302-6536-8_4

CHAPTER 8 ■ HTML5 MULTIMEDIA: UTILIZING NEW MEDIA ASSETS

59

 Table 8-3. Parameters Supported By the <audio> Tag

 Audio Tag Parameter Audio Tag Parameter’s Purpose

 src Digital audio asset source file name reference

 controls Audio transport UI (user interface) controls

 preload Preloads the digital audio file asset

 muted Mutes the digital audio asset

 loop Loops the digital audio asset

 autoplay Automatically play audio on a page load event

 autobuffer Automatically buffer audio on page load event

 This <audio> tag has seven parameters. These can be seen in Table 8-3 in the first
section (common usage parameters) and in the second section (three less frequently
used parameters). The third section of the table contains parameters that are supported
but are not recommended for use unless absolutely needed. The reason for this is that
autoplay bothers many users, and an autobuffer takes up system resources that may not
even be used if the user chooses not to hit the transport play button.

 If you want to master digital audio editing terminology, principles, workflows, data
footprint optimization, compositing and fundamentals, you check out my Digital Audio
Editing Fundamentals (Apress, 2015).

 To create a digital audio asset, use the <audio> tag with the controls parameter,
 <source> child tags, and noaudio message (like noscript), using this following HTML5
markup structure:

 <audio controls >
 <source src ="preferred_audio_codec.ogg" type ="audio/ogg" />
 <source src ="second_choice_audio_codec.mp3" type ="audio/mp3" />
 ALERT! Your Browser Does Not Support Audio or the HTML5 Audio Tag!
 </audio>

 Using more than one <source> tag provides “fallback” file format support choices
for the HTML5 platform that you are using, in case the first audio codec choice is not
supported by the HTML5 browser (or HTML5 operating system).

 To autoplay a digital image asset using the autoplay parameter, you would utilize
the following HTML5 markup:

 <audio controls autoplay >
 <source src="preferred_audio_codec.ogg" type="audio/ogg" />
 <source src="second_choice_audio_codec.mp3" type="audio/mp3" />
 ALERT! Your Browser Does Not Support Audio or the HTML5 Audio Tag!
 </audio>

CHAPTER 8 ■ HTML5 MULTIMEDIA: UTILIZING NEW MEDIA ASSETS

60

 To loop the digital audio asset using the loop parameter, you should utilize the
following HTML5 markup:

 <audio controls loop >
 <source src="preferred_audio_codec.ogg" type="audio/ogg" />
 <source src="second_choice_audio_codec.mp3" type="audio/mp3" />
 ALERT! Your Browser Does Not Support Audio or the HTML5 Audio Tag!
 </audio>

 To preload a digital audio asset , use a preload parameter with the auto setting,
utilizing this following HTML5 markup:

 <audio controls preload =" auto ">
 <source src="preferred_audio_codec.ogg" type="audio/ogg" />
 <source src="second_choice_audio_codec.mp3" type="audio/mp3" />
 ALERT! Your Browser Does Not Support Audio or the HTML5 Audio Tag!
 </audio>

 To preload only digital audio metadata, use the preload parameter with a
 metadata setting, using this HTML5 markup:

 <audio controls preload =" metadata ">
 <source src="preferred_audio_codec.ogg" type="audio/ogg" />
 <source src="second_choice_audio_codec.mp3" type="audio/mp3" />
 ALERT! Your Browser Does Not Support Audio or the HTML5 Audio Tag! </audio>

 To prevent any pre-loading of your digital audio assets, use the preload parameter
with the none setting, utilizing this following HTML5 markup:

 <audio controls preload =" none ">
 <source src="preferred_audio_codec.ogg" type="audio/ogg" />
 <source src="second_choice_audio_codec.mp3" type="audio/mp3" />
 ALERT! Your Browser Does Not Support Audio or the HTML5 Audio Tag! </audio>

 Next, let’s take a look at the digital video <video> tag.

 Digital Video: Using the <video> Tag
 Your next most widely used new media element in HTML5 is digital video, which uses the
<video> tag. This is new to HTML5 and is not in previous versions of HTML. Parameters
include the src , which references a digital audio asset file name , and controls , which
adds the video transport user interface feature, and width and height, in case you wish
to “downsample” or scale down your digital video asset (using a factor of 2 or 4). Table 8-4
shows the <video> tag parameters supported in HTML5 with the four most important
parameters in the top section, the four most commonly used options in the middle
section, and two less frequently used options listed in the bottom section.

CHAPTER 8 ■ HTML5 MULTIMEDIA: UTILIZING NEW MEDIA ASSETS

61

 Table 8-4. Parameters Supported by the <video> Tag

 Video Tag Parameter Video Tag Parameter’s Purpose

 src Digital video asset source file name reference

 width Digital video asset width in pixels

 height Digital video asset height in pixels

 controls Video transport UI (user interface) controls

 preload Preload the digital video file asset

 muted Mutes the digital video asset

 poster Digital image to use as a poster while loading

 loop Loops the digital video asset

 autoplay Automatically plays a video on page load event

 autobuffer Automatically buffers video on page load event

 The <video> tag has ten parameters. These are seen in Table 8-4 in the first section
(common usage parameters) and in the second section (four less frequently utilized
parameters).

 If you want to master digital video editing terminology, principles, workflows, data
footprint optimization, compositing, and fundamentals, check out the Digital Video
Editing Fundamentals (Apress, 2015).

 To create a digital video asset , use the <video> tag with the controls parameter,
 width and height parameters, three <source> child tags, and a novideo message (like a
noscript), as shown in the following HTML5 markup structure:

 <video width ="400" height ="300" controls >
 <source src ="my_preferred_video_codec.mp4" type ="video/mp4" />
 <source src ="second_choice_video_codec.ogg" type ="video/ogg" />
 <source src ="third_choice_audio_codec.webm" type ="audio/webm"/>
 ALERT! Your Browser Does Not Support Video or the HTML5 Video Tag!
 </video>

 Using more than one <source> tag provides “fallback” file format support choices
for the HTML5 platform that you are using, in case the first video codec choice is not
supported by that particular HTML5 browser (or operating system).

 To autoplay a digital video asset , you use the autoplay parameter , as shown in the
following HTML5 markup:

 <video width="400" height="300" controls autoplay >
 <source src="my_preferred_video_codec.mp4" type="video/mp4" />
 <source src="second_choice_video_codec.ogg" type="video/ogg" />
 <source src="third_choice_audio_codec.webm" type="audio/webm"/>
 ALERT! Your Browser Does Not Support Video or the HTML5 Video Tag!
 </video>

CHAPTER 8 ■ HTML5 MULTIMEDIA: UTILIZING NEW MEDIA ASSETS

62

 To loop a digital video asset , you use the loop parameter , as shown in the following
HTML5 markup:

 <video width="400" height="300" controls loop >
 <source src="my_preferred_video_codec.mp4" type="video/mp4" />
 <source src="second_choice_video_codec.ogg" type="video/ogg" />
 <source src="third_choice_audio_codec.webm" type="audio/webm"/>
 ALERT! Your Browser Does Not Support Video or the HTML5 Video Tag!
 </video>

 To preload a digital video asset , you use the preload parameter with the auto
setting, as shown in the following HTML5 markup:

 <video width="400" height="300" controls preload =" auto ">
 <source src="my_preferred_video_codec.mp4" type="video/mp4" />
 <source src="second_choice_video_codec.ogg" type="video/ogg" />
 <source src="third_choice_audio_codec.webm" type="audio/webm"/>
 ALERT! Your Browser Does Not Support Video or the HTML5 Video Tag!
 </video>

 As with the <audio> tag preload parameter, you can set a preload value to none or to
only load the metadata .

 In case you are wondering what metadata is, it includes information about the audio
or video asset, such as the title, the name of the artist, and information about the music
(or video) content.

 To display an image during video buffering, use a poster parameter set to reference
your digital image asset’s file name , as shown in the following HTML5 markup:

 <video width="400" height="300" controls poster =" posterimagename.png ">
 <source src="my_preferred_video_codec.mp4" type="video/mp4" />
 <source src="second_choice_video_codec.ogg" type="video/ogg" />
 <source src="third_choice_audio_codec.webm" type="audio/webm"/>
 ALERT! Your Browser Does Not Support Video or the HTML5 Video Tag!
 </video>

 Next, let’s look at the digital illustration <svg> tag and its child tags (which allow you
to define illustration).

 Digital Illustration: Using the <svg> Tag
 Your next most widely used new media element in HTML5 is digital illustration , which
uses the <svg> tag. It is also new in HTML5, meaning it was not included in previous
versions of HTML. CSS is the most popular way to apply the power of svg , especially a
plethora of special effects to apply to the vector element components of your HTML5
applications, including text, buttons, or vector illustrations. A number of new media
software packages can generate SVG XML data , including Inkscape, GIMP, CorelDRAW,
OpenOffice Draw, and Adobe Illustrator, to name just a few.

CHAPTER 8 ■ HTML5 MULTIMEDIA: UTILIZING NEW MEDIA ASSETS

63

 SVG tag parameters include width and height for your SVG digital illustration
definition, as well as child tags , used to define SVG elements, which add features to
 digital illustration assets . SVG is based on XML , and SVG uses XML tags, which as
you now know is compatible with HTML5 now that SVG support has been added. This
is exciting for HTML5 developers, as vector support allows digital illustrators to create
impressive interactive 2D artwork as well as visually exciting special effects for users.

 Table 8-5 shows some of the SVG tag’s child tag elements that are supported in
HTML5. They also have their own parameters, such as fill , stroke , and color , and so forth,
as you will see in some of the markup examples in this section. I cannot discuss SVG in
detail in this book, because it is a topic in and unto itself. That said, the W3C’s decision to
add SVG support to HTML5 was easy due to shared SGML markup language origins.

 Table 8-5. Child Tags Supported By the <svg> Tag

 SVG Child Tag Purpose of SVG Child Tag

 circle Draw a 2D circle element

 rect Draw a 2D circle element

 ellipse Draw a 2D circle element

 polygon Draw a polygon (n-sided shape element)

 polyline Draw a polyline

 line Draw a line

 image Digital image to use as a poster while loading

 text Loop video

 font Automatically play video on page load event

 path Loop video

 filter Automatically play video on page load event

 animate Automatically buffer video on page load event

 The <svg> tag has many child tags and parameters, all of which are supported
in HTML5 and are typically accessed using CSS to implement the digital illustration
functions.

 Some of the more often used SVG elements are seen in Table 8-5 . The first section
contains the basic shapes and the second section contains other useful vector design
elements.

 If you wanted to master digital illustration (SVG) terms as well as core SVG XML
principles, SVG XML markup workflow, and SVG fundamentals, check out my Digital
Illustration Fundamentals (Apress, 2015) title. In this book, I show readers how to create
(and optimize) SVG assets using GIMP and Inkscape, so the book bridges digital imaging
and digital illustration software with HTML5. The book also has chapters covering
Android, Java and JavaFX code, HTML5 markup, XML, CSS, and cross-platform (cross-
device) publishing.

CHAPTER 8 ■ HTML5 MULTIMEDIA: UTILIZING NEW MEDIA ASSETS

64

 To create a digital illustration asset , use the <svg> tag with the width and height
parameters and with a child tag that defines an SVG circle shape, as shown in the
following HTML5 markup:

 <svg width ="640" height ="480">
 < circle cx="0" cy="0" r="25" fill="blue" stroke="red" stroke-width="4">
 </svg>

 To create an SVG rounded rectangle , utilize the following HTML5 markup, which
includes parameters for rx (radius x) and ry (radius y):

 <svg width ="640" height ="480">
 < rect x="20" y="20" rx="10" ry="10" width="200" height="200"
 style ="fill:yellow; stroke:purple; stroke-width:6; opacity:0.5" />
 </svg>

 Notice the style parameter , which contains in-line CSS3 style information , which is
more common for styling SVG illustrations.

 Next, let’s look at the other new media areas that can be simulated using features
in HTML5.

 Interactive 3D: Using a <canvas> Tag and WebGL
 We are going to spend an entire chapter on advanced drawing for HTML5 using the
 <canvas> tag, which is how you implement interactive 3D, or i3D. This advanced new
media area requires a special API called WebGL, which uses OpenGL. WebGL2 is due
out in 2016. It brings the visual impact of OpenGL to HTML5. We’ll go over all of this in
Chapter 17 . (I just wanted to put it in context in this chapter with the other new media
genres.)

 Digital Painting : Digital Painting using JavaScript
 Digital painting is a combination of digital imaging, vector illustration, particle systems,
and digital video. SVG is moving towards adding digital painting features, but you can use
JavaScript and CSS3 with HTML5 to simulate digital painting now. This is an advanced
area beyond the tag markup focus of this book, but if you want to learn more about digital
painting, you should check out Digital Painting Techniques (Apress, 2016). In this book,
I show readers how to create (and optimize) digital painting assets using Corel Painter
2016, GIMP, and Inkscape, which bridges digital imaging and digital illustration software
with HTML5. This book has chapters covering data footprint optimization, Android,
JavaScript, Java 8 and JavaFX coding, HTML5 markup, as well as cross-platform and cross-
device new media content publishing.

http://dx.doi.org/10.1007/978-1-4302-6536-8_17

CHAPTER 8 ■ HTML5 MULTIMEDIA: UTILIZING NEW MEDIA ASSETS

65

 Visual Effects : Creating VFX using JavaScript
 Other advanced new media genres, such as visual effects, or VFX, can also be simulated
using advanced JavaScript programming in conjunction with CSS3, WebGL2, and HTML5
tags. This is an advanced area beyond the tag markup focus of this book, but if you want
to learn more about visual effects, you should check out Visual Effects Fundamentals
(Apress, 2016). In this book, I show the readers how to create (and optimize) visual effects
assets using BlackMagic Fusion and GIMP, so it bridges digital imaging, digital video,
digital audio, and digital illustration software with HTML5. The book goes over data
footprint optimization, Android, Java 8 and JavaFX coding, HTML5 markup, and cross-
platform and cross-device publishing.

 Web Speech : Speech Synthesis and Recognition
 Finally, let’s take a quick look at speech recognition and speech synthesis, which were
recently added to HTML5 browsers Google Chrome and Apple Safari using the Web
Speech API. Expect Firefox to add it as well since it is moving to support iTVs and
smartphones. Opera is also doing the same. The future of new media is looking bright
for HTML5-based platforms and browsers, which is especially exciting for multimedia
producers. For an example of how speech recognition and speech synthesis work in
Google Chrome, visit https://www.google.com/intl/en/chrome/demos/speech.html .

 Summary
 This chapter discussed new media support for HTML5 using the , <audio>,
<video>, and <svg> tags; their related child tags and parameter options; and other new
media genre support in HTML5. In the next chapter, you learn about <header> tags,
which support the organization of content into levels within your HTML5 document.

https://www.google.com/intl/en/chrome/demos/speech.html

67© Wallace Jackson 2016
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_9

 CHAPTER 9

 HTML5 Organization:
Document Content Hierarchy

 Let’s discuss tags which allow developers to implement content hierarchy into their
HTML5 designs, such as different levels of document content, called headings , which use
six different levels of “h” tags, and DTP (desktop publishing) tools such as address areas
and horizontal rules , to divide the content visually. These allow you to organize your
document content into logical topical sections. They’re also utilized by search engines
for indexing text-based content and for SEO ranking text-based content.

 In this chapter, I go over the primary tags for implementing document content
hierarchies, using headings with <h1> through <h6> tags that give developers six levels
of content refinement. I also cover the <address> and <hr> tags (horizontal rule). The
<hr> tag allows you to define sections for your documents. The <address> tag defines
addresses for the physical and virtual (website and e-mail) address for your HTML
document content. Even though these tags are legacy tags not new to HTML5, they need
to be covered in this chapter.

 HTML5 Content Organization Tags
 This chapter covers text content organization capabilities for all versions of HTML
spanning back to version 2. You look at the legacy text content hierarchy tags and see how
developers define importance—to users and search engines—of text-based content with
these tags.

 Table 9-1 shows the text content heading or organization tags supported prior to
HTML5 (the first seven tags) as well as two desktop publishing–related tags that are also
supported in HTML5. These allow you to define a horizontal rule and the address area in
HTML documents.

CHAPTER 9 ■ HTML5 ORGANIZATION: DOCUMENT CONTENT HIERARCHY

68

 Table 9-1. Eight HTML Content Organization Tags and Their Usage

 Organization Tags Content Organization Tag Usage

 h1 Top-level heading (most SEO important keywords)

 h2 2nd-level heading (2nd SEO important keywords)

 h3 3rd-level heading (most SEO important keywords)

 h4 4th-level heading (most SEO important keywords)

 h5 5th-level heading (most SEO important keywords)

 h6 6th-level heading (most SEO important keywords)

 hr Horizontal rule content divider line

 address Address information for article/document

 Let’s take a look at these in logical sections, as delineated in this table, starting with
the HTML “h” tags.

 Heading Level Tags : Segmenting Content Logically
 The heading level 1 <h1> through heading level 6 <h6> tags allow six levels of document
headings, which can be used like section (paragraph or a collection of paragraphs) titles,
or more accurately, cascading topical section headings. The search engine algorithms
use headings to ascertain keywords and organize text content. This ranges from the most
important keywords (broad stroke content) for the document defined using <h1> and <h2>,
and the least important keywords (specific, or well-defined, content) defined in <h6>.

 These should be used to logically stratify the content in a way that drills down
into the organization of your text content so that the user can follow and assimilate its
meaning effortlessly. The organization of the text content uses heading levels as a guide
to how your content is refined. For instance, you might have a document that drills down
to a discussion of the Ferrari models currently available in North America from a more
general discussion of exotic cars.

 An example looks like the following HTML markup, which is compatible with
all versions of HTML. It contains a significant amount of textual content within each
paragraph tag or contains a collection of paragraph <p> tags between each of the six
HTML heading levels. It defines what is in the paragraph tags by using summary terms
(which are keywords, as far as the search engine robots are concerned).

 <!DOCTYPE html>
 <html>
 <head>
 <title>Exotic Cars Example</title>
 </head>
 <body>
 <h1>Exotic Car Document</h1>
 <p>Top Level Keywords Relating to Exotic Cars from Every Nation</p>
 <h2>Exotic European Cars</h2>

CHAPTER 9 ■ HTML5 ORGANIZATION: DOCUMENT CONTENT HIERARCHY

69

 <p>Next Level Keywords Relating to Exotic Cars from European Union</p>
 <h3>Exotic European Sports Cars</h3>
 <p>Next Level Keywords Relating to Exotic European Sports Cars</p>
 <h4>Popular Exotic Italian Sports Cars (Ferrari and Lamborghini)</h4>
 <p>Next Level Keywords Relating to Exotic Italian Sports Cars</p>
 <h5>Currently Popular Ferrari Sports Cars</h5>
 <p>Next Level Keywords for Currently Popular Ferrari Sports Cars</p>
 <h6>Ferrari Sports Cars Available in North America (USA and Canada)</h6>
 <p>Next Level Keywords for Ferrari Sports Cars Available in America</p>
 </body>
 </html>

 For this markup example, I simply used some SEO keywords suggestions as the
content for the <p> tag, which is covered in Chapter 11 . Normally, this is the text-based
content in a long paragraph format, but it would make the example too long!

 Next, let’s look at the horizontal rule <hr> tag and see how it allows you to draw a
 visual divider line between logical sections of a document in versions prior to HTML5,
and to separate areas of the document semantically in HTML5 and later. Semantic
HTML5 is discussed in Chapter 10 .

 Horizontal Rule Tag : Dividing Text Content Visually
 Prior to HTML5, the horizontal rule or <hr> tag was used to insert a line between logical
areas in a document. In HTML5, it is no longer used for visual demarkation, but instead
as a logical or semantic demarkation of logical document sections. For this reason, the
parameters seen in Table 9-2 are no longer supported in HTML5 . HTML5 browsers
may still draw this line for presentation purposes, which the <hr> tag was used for
before HTML5, but the browser or operating system looks at it as a semantic document
sectional division .

 Table 9-2. Parameters for the <hr> Tag, Used Prior to HTML5

 Organization Tags Content Organization Tag Usage

 align Determine alignment (left, right, center values)

 size Specify line height using pixels (integer value)

 width Specify line width in pixels or as a percentage

 noshade Forces one solid color value to be used for line

 This is a logical progression for document organization, as far as content/search
(HTML5), styling (CSS3), and animation and interactivity (JavaScript) are concerned. It is
also quite logical where the move toward the “semantic web” is concerned.

http://dx.doi.org/10.1007/978-1-4302-6536-8_11
http://dx.doi.org/10.1007/978-1-4302-6536-8_10

CHAPTER 9 ■ HTML5 ORGANIZATION: DOCUMENT CONTENT HIERARCHY

70

 To create the horizontal rule and semantic break between your logical sections,
use an <hr> tag after the last paragraph tag. This can be done for each of the six sections,
using the following HTML5 markup and building on the previous example:

 <!DOCTYPE html><html>
 <head><title>Exotic Cars</title></head>
 <body>
 <h1>Exotic Car Document</h1>
 <p>Top Level Keywords Relating to Exotic Cars from Every Nation</p>
 <hr>
 <h2>Exotic European Cars</h2>
 <p>Next Level Keywords Relating to Exotic Cars from European Union</p>
 <hr>
 <h3>Exotic European Sports Cars</h3>
 <p>Next Level Keywords Relating to Exotic European Sports Cars</p>
 <hr>
 <h4>Popular Exotic Italian Sports Cars (Ferrari and Lamborghini)</h4>
 <p>Next Level Keywords Relating to Exotic Italian Sports Cars</p>
 <hr>
 <h5>Currently Popular Ferrari Sports Cars</h5>
 <p>Next Level Keywords for Currently Popular Ferrari Sports Cars</p>
 <hr>
 <h6>Ferrari Sports Cars Available in North America (USA and Canada)</h6>
 <p>Next Level Keywords for Ferrari Sports Cars Available in America</p>
 <hr>
 </body>
 </html>

 If you are developing legacy code for HTML4 and earlier, you should use the
parameters shown in Table 9-2 to control the horizontal rule alignment, width, and
height. Next, let’s take a look at how to specify an address for your document or article.

 The Address Tag : Specifying Address Information
 The <address> tag defines the types of addresses in a document to provide contact
information for the user. In versions prior to HTML5, the <address> tag was a child of the
<body> tag and provided address information for the entire document. If you are using
the <address> tag as a child tag in the new HTML5 <article> tag, which is covered in
Chapter 10 , the <address> tag defines the address (contact) information for semantically
defined articles.

http://dx.doi.org/10.1007/978-1-4302-6536-8_10

CHAPTER 9 ■ HTML5 ORGANIZATION: DOCUMENT CONTENT HIERARCHY

71

 To create an address information section for a document, use the <address> tag
with your address , e-mail , websites , and similar address-related information inside of it
by using child tags. The following is an example of address HTML markup structure:

 <body>
 < address >
 Document Created By: Walls

<hr>
 Address: 12345 Streetname Road, Cityname, Statename, Zip Code, Country

<hr>
 Website: WallaceJackson.com
 < /address >
 </body>

 Notice that I used a break
 tag and a horizontal rule <hr> tag to define the
different areas of the address with a semantic break (HTML5) and a horizontal line (rule)
for HTML 4 and earlier. The break tag is covered in Chapter 11 .

 I saved the rest of the document organization tag topics for Chapter 10 , which
discusses semantic document definition, since HTML5 and later use special tags to
define the content areas for the document (HTML5 browser) or the application (HTML5
operating system). This <address> tag is a great example of a semantic tag, and a good
way to segue into the new HTML5 semantic tags.

 Summary
 This chapter discussed document headings and desktop publishing legacy support in
HTML5 and all previous versions using the <h1> through <h6>, <hr>, and <address>
tags and their related parameter options. The next chapter continues the document
organization journey by using the new semantic tags added to HTML5 to support the
organization of content in logical areas within a document. Defining text-based content
through paragraphs, lists, forms, tables, and the like, is also covered.

http://dx.doi.org/10.1007/978-1-4302-6536-8_11
http://dx.doi.org/10.1007/978-1-4302-6536-8_10

73© Wallace Jackson 2016
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_10

 CHAPTER 10

 HTML5 Semantics: Defining
Semantic Documents

 Next, let’s cover the new “semantic” tags in HTML5 that allow developers to more
logically define the content hierarchy in their HTML5 designs. This is done with
 headers , footers , sections , figures , captions , sidebars , and navigation panels , to
name a few. They allow you to organize document content into logical sections .
Semantics is the study of a word’s meaning, so what makes these tags semantic is that
they define the content, so search engines can “see” the document design semantically
(i.e., intelligently).

 In this chapter, I go over semantic tags , which implement the new HTML5 semantic
document organization paradigm. The tags have names that define the functional area of
the HTML5 document they represent. Examples of semantic tags include <header> and
 <footer> tags, <figure> and <figcaption> tags, and the <section> , <article> , <main> ,
 <nav> , <aside> , <details> , <summary> , <mark> , and <time> tags.

 HTML5 Semantic Content Organization
 This chapter covers semantic content organization capabilities in HTML5. Prior to
HTML5, developers created their descriptive (semantic) names for document elements
using the <div> tag, or other tags, and a class or id parameter, such as <div id="header">
for example. Since developers did not use standardized semantic labels, the W3C did it
for them, so that search engine robots (algorithms) could start to implement Web 3.0 ,
which is semantic search . According to the W3C: The semantic Web allows data to be
shared and reused across applications, enterprises, and communities. Table 10-1 shows
semantic content organization tags, which are all new in HTML5, categorized into
primary document sections, functional document sections, multimedia capable figures,
and detail-oriented document characteristics.

CHAPTER 10 ■ HTML5 SEMANTICS: DEFINING SEMANTIC DOCUMENTS

74

 Table 10-1. Thirteen HTML Semantic Organization Tags

 Organization Tags Content Organization Tag Usage

 header Specifies the header information of the document

 footer Specifies the footer information of the document

 section Specifies the section information of the document

 main Specifies primary or main content of the document

 nav Navigation; usually a collection of anchor tags

 article Specifies the article information of the document

 aside Sidebar content related to the surrounding text

 figure Specifies figure and new media of the document

 figcaption Specifies the section information of the document

 details Specifies additional detail that users can show or hide

 summary Specifies the section information of the document

 mark Specifies figure and new media of the document

 time Specifies the figure caption of the figure media

 It is interesting to note that there are some tags prior to HTML5 that just happened
to be semantic, although they were not specifically designed to be so at the time. These
include <form>, <table>, and abbreviated tags like <a> (anchor), (list), and <p>
(paragraph). The new media tags can also be considered semantic, because they describe
 (imagery), <audio>, <video>, <svg> (scalable vector graphics or illustrations), and
<canvas> (real-time 2D and 3D graphics) elements in the actual name of the tag, so a
search engine knows the document’s content.

 Let’s take a look at these semantic tags in logical sections, as delineated in Table 10-1 ,
starting with the HTML5 <section>, <header>, and <footer> sectional tags. They
define broad, high-level document areas used in desktop publishing to hold reference
information and other ancillary information usually tied into these areas using
superscript or subscript numbers in a primary (center or middle) document content area.

 An example of a semantic document structure is seen in Figure 10-1 , which shows
some of the most important semantic tags.

CHAPTER 10 ■ HTML5 SEMANTICS: DEFINING SEMANTIC DOCUMENTS

75

 HTML5 Sectional Tags : Segment Content Logically
 The sectional <section> tag and more specialized <header> and <footer> tags
semantically define standard areas in a document, so that the search engine knows
what you are doing with your document design. The <section> tag is for more general
sectioning of a document. The <header> and <footer> are for specific introductory
information and footnotes.

 The SECTION Tag: Define Document Sections
 A <section> tag is used to define any kind of section in a document, such as a chapter, for
instance. If there were no <header> and <footer> semantic tags, <section> could be used
to define headers and footers as well. The <section> tag is a child tag of the <body> and
<article> tags. It is a parent tag to tags like <article>, <figure>, <p>, and the six heading
tags, for instance.

 There are no hierarchy rules, so <article> tags can have child <section> tags, and
<section> tags can have child <article> tags. This makes the semantic content design far
more flexible.

 Figure 10-1. An example of a semantic HTML5 document structure

CHAPTER 10 ■ HTML5 SEMANTICS: DEFINING SEMANTIC DOCUMENTS

76

 Let’s use the <section> tag along with an id value in a content design with sections
for both exotic and domestic cars. The following expands upon the heading tags example
used in Chapter 9 :

 <!DOCTYPE html><html>
 <head><title>Exotic and Domestic Cars</title></head>
 <body>
 < section id="exotic">
 <h1>Exotic Car Document</h1>
 <p>Top Level Keywords Relating to Exotic Cars from Every Nation</p>
 <h2>Exotic European Cars</h2>
 <p>Next Level Keywords Relating to Exotic Cars from European Union</p>
 <h3>Exotic European Sports Cars</h3>
 <p>Next Level Keywords Relating to Exotic European Sports Cars</p>
 </section>
 < section id="domestic">
 <h1>Domestic Car Document</h1>
 <p>Top Level Keywords Relating to Domestic Cars from Every Nation</p>
 <h2>Domestic European Cars</h2>
 <p>Next Level Keywords Relating to Domestic Cars from European Union</p>
 <h3>Domestic European Sedans</h3>
 <p>Next Level Keywords Relating to Domestic European Sedans</p>
 </section>
 </body>
 </html>

 Next, let’s look at a special type of section tag called the <header> tag. This tag
specifically provides information at the top or “header” of the document design.

 The HEADER Tag: Define Introductory Content for the Document
 The <header> tag defines the introductory content of the document. If there were no
<nav> semantic tag, it could also be used to define navigation (user interface) elements.
The <header> tag cannot be used as a child tag of <footer>, <address>, or another
<header> tag. More than one <header> tag may be used in a single document, however.
The <header> element (tag) usually contains a heading tag (<h1> for instance) and
a paragraph <p> tag, and possibly an image, such as a logo, picture, or similar visual
branding element.

 Let’s use a <header> tag to define the header for the car content design example.
The example now uses sections for European and American cars underneath the
<header> in an HTML5 content hierarchy. I changed the section id to reflect this new
design change, as shown in the following HTML5 markup:

 <!DOCTYPE html><html>
 <head><title>Exotic and Domestic Cars</title></head>
 <body>

http://dx.doi.org/10.1007/978-1-4302-6536-8_9

CHAPTER 10 ■ HTML5 SEMANTICS: DEFINING SEMANTIC DOCUMENTS

77

 < header >
 <h1>Exotic Cars Unleashed!</h1>
 <p>Top Level Keywords Relating to Exotic Cars from Every Nation</p>
 < /header >
 <section id=" european ">
 <h2>Exotic European Cars</h2>
 <p>Next Level Keywords Relating to Exotic Cars from European Union</p>
 <h3>Exotic European Sports Cars</h3>
 <p>Next Level Keywords Relating to Exotic European Sports Cars</p>
 </section>
 <section id=" american ">
 <h2>Exotic American Cars</h2>
 <p>Next Level Keywords Relating to Domestic Cars from North America</p>
 <h3>Exotic American Sports Cars</h3>
 <p>Next Level Keywords Relating to Exotic North American Sports Cars</p>
 </section>
 </body>
 </html>

 Next, let’s take a look at a special type of section tag called the <footer> tag. This
tag provides information at the bottom or “foot” of your document design. It is usually
 footnote or other reference information that further defines or identifies the primary
document content.

 The FOOTER Tag: Footnote Information Referencing the Content
 The <footer> tag defines footnote and similar reference content for the document. More
than one <footer> tag may be used in a single document. The <footer> element usually
contains copyrights, author contact information, or references to other documents used
as resources.

 Let’s use a <footer> tag to define a footer for the car content design example. The
footer references information that identifies the sources for the document content, as
shown in the following HTML5 markup:

 <!DOCTYPE html><html>
 <head><title>Exotic and Domestic Cars</title></head>
 <body>
 <header>
 <h1>Exotic Cars Unleashed!</h1>
 <p>Top Level Keywords Relating to Exotic Cars from Every Nation</p>
 </header>
 <section id="european">
 <h2>Exotic European Cars</h2>
 <p>Next Level Keywords Relating to Exotic Cars from European Union</p>
 <h3>Exotic European Sports Cars</h3>
 <p>Next Level Keywords Relating to Exotic European Sports Cars</p>
 </section>

CHAPTER 10 ■ HTML5 SEMANTICS: DEFINING SEMANTIC DOCUMENTS

78

 <section id="american">
 <h2>Exotic American Cars</h2>
 <p>Next Level Keywords Relating to Domestic Cars from North America</p>
 <h3>Exotic American Sports Cars</h3>
 <p>Next Level Keywords Relating to Exotic North American Sports Cars</p>
 </section>
 < footer >
 <h4>Exotic Car Article Article, Contact and Sources:</h1>
 <p>Blog’s Author: Wallace Jackson</p>
 <p>Author e-mail: Wallace Jackson</p>
 <p>Blog’s Source: Magazine or Book Resources and Links would go here</p>
 < /footer >
 </body>
 </html>

 Next, let’s take a look at the HTML5 semantic tags, which allow you to define
document “areas,” such as the main document topic, articles within a document,
informational sidebars , and navigation bars.

 HTML5 Content Type Semantic Definition Tags
 The next four tags in Table 10-1 define other document areas—articles, sidebars,
navigation UI, and the top level (the main area) of your document—in semantic terms
using tags named for the document areas, which is what the new HTML5 document
semantics are all about! You need to use these tags properly and precisely to make
your HTML5 document compatible with Web 3.0 (the Semantic Web). Search engines
assimilate semantically optimized content, which is made possible by using the tags
covered within this important HTML5 chapter.

 The MAIN Tag: Defining the Top Level of the Document Content
 The <main> tag defines the topmost level of the document. Only one <main> tag is used
in a single document. This <main> tag can’t be used as a child tag of <nav>, <header>,
<footer>, <article>, or <aside> because it defines the top level of a document. The <main>
element needs to contain unique information and design elements, which cannot be
repeated across any other HTML documents.

 Let’s use this <main> tag to define the top level of the car content design example.
The main tag has an opening tag for the top of the document (before the <header> tag)
and a closing tag at the bottom of the document (after the <footer> tag), so that your
entire document is contained (defined) inside of this <main> tag semantic structure. An
example of this is shown in the following HTML5 markup:

 <!DOCTYPE html><html>
 <head><title>Exotic and Domestic Cars</title></head>
 <body>

CHAPTER 10 ■ HTML5 SEMANTICS: DEFINING SEMANTIC DOCUMENTS

79

 <main>
 < header >
 <h1>Exotic Cars Unleashed!</h1>
 <p>Top Level Keywords Relating to Exotic Cars from Every Nation</p>
 < /header >
 < section id=" european ">
 <h2>Exotic European Cars</h2>
 <p>Next Level Keywords Relating to Exotic Cars from European Union</p>
 <h3>Exotic European Sports Cars</h3>
 <p>Next Level Keywords Relating to Exotic European Sports Cars</p>
 </section>
 < section id=" american ">
 <h2>Exotic American Cars</h2>
 <p>Next Level Keywords Relating to Domestic Cars from North America</p>
 <h3>Exotic American Sports Cars</h3>
 <p>Next Level Keywords Relating to Exotic North American Sports Cars</p>
 </section>
 < footer >
 <h4>Exotic Car Article Article, Contact and Sources:</h1>
 <p>Blog’s Author: Wallace Jackson</p>
 <p>Author e-mail: Wallace Jackson</p>
 <p>Blog’s Source: Magazine or Book Resources and Links would go here</p>
 < /footer >
 </main>
 </body>
 </html>

 Next, let’s take a look at the <nav> tag, which contains the user interface design
(document navigation HTML5 elements) for your HTML5 document or application.
I also recommend using CSS to style the document navigation tags.

 The NAV Tag: Defining the Navigation UI for Your Document
 The <nav> tag defines the user interface of the document’s navigation area, which is
typically implemented using <a> tag anchor link styles. (CSS3 styling is not covered in
this book, so make sure to get a good CSS3 book to go with this book.) Multiple <nav> tags
may be used in a single document. The <nav> element (tag) must only contain links that
are used for navigation.

 Let’s add the <nav> tag to our current example, as shown in the following HTML5
markup:

 <!DOCTYPE html><html>
 <head><title>Exotic and Domestic Cars</title></head>
 <body>
 <main>
 < header >
 <h1>Exotic Cars Unleashed!</h1>

CHAPTER 10 ■ HTML5 SEMANTICS: DEFINING SEMANTIC DOCUMENTS

80

 <p>Top Level Keywords Relating to Exotic Cars from Every Nation</p>
 < /header >
 <nav>
 <a http://www.web-address.com/car-info.html>CAR INFO
 <a http://www.web-address.com/our-team.html>OUR TEAM
 <a http://www.web-address.com/buy-cars.html>BUY CARS
 </nav>
 < section id=" european ">
 <h2>Exotic European Cars</h2>
 <p>Next Level Keywords Relating to Exotic Cars from European Union</p>
 <h3>Exotic European Sports Cars</h3>
 <p>Next Level Keywords Relating to Exotic European Sports Cars</p>
 </section>
 < section id=" american ">
 <h2>Exotic American Cars</h2>
 <p>Next Level Keywords Relating to Domestic Cars from North America</p>
 <h3>Exotic American Sports Cars</h3>
 <p>Next Level Keywords Relating to Exotic North American Sports Cars</p>
 </section>
 < footer >
 <h4>Exotic Car Article Article, Contact and Sources:</h1>
 <p>Blog’s Author: Wallace Jackson</p>
 <p>Author e-mail: Wallace Jackson</p>
 <p>Blog’s Source: Magazine or Book Resources and Links would go here</p>
 < /footer >
 </main>
 </body></html>

 Next, let’s take a look at the <article> tag, which creates topic-specific articles in the
document.

 The ARTICLE Tag: Defining Articles within an HTML5 Document
 The <article> tag defines an article within your document. An article is unique,
proprietary content that stands up independently to other document content. It is
possible to use multiple <article> tags in one document.

 Let’s change the <section> tags to <article> tags in the car example, turning it into a
magazine by using the following markup:

 <!DOCTYPE html><html>
 <head><title>Exotic and Domestic Cars Today</title></head>
 <body>
 <main>
 < header >
 <h1>Exotic Cars Magazine: Current Exotic Car Articles</h1>
 <p>Top Level Keywords Relating to Exotic Cars from Every Nation</p>
 < /header >

CHAPTER 10 ■ HTML5 SEMANTICS: DEFINING SEMANTIC DOCUMENTS

81

 <nav>
 <a http://www.web-address.com/car-info.html>CAR INFO
 <a http://www.web-address.com/our-team.html>OUR TEAM
 <a http://www.web-address.com/buy-cars.html>BUY CARS
 </nav>
 <article>
 <h2>Exotic European Cars: Maintaining a Lead Over US Manufacturers</h2>
 <p>Next Level Keywords Relating to Exotic Cars from European Union</p>
 <h3>Exotic European Sports Car Round-Up</h3>
 <p>Next Level Keywords Relating to Exotic European Sports Cars</p>
 </article>
 <article>
 <h2>Exotic American Cars: Gaining on the Domination of European Cars</h2>
 <p>Next Level Keywords Relating to Domestic Cars from North America</p>
 <h3>Exotic American Sports Car Round-Up</h3>
 <p>Next Level Keywords Relating to Exotic North American Sports Cars</p>
 </article>
 < footer >
 <h4>Exotic Car Article Article, Contact and Sources:</h1>
 <p>Blog’s Author: Wallace Jackson</p>
 <p>Author e-mail: Wallace Jackson</p>
 <p>Blog’s Source: Magazine or Book Resources and Links would go here</p>
 < /footer >
 </main>
 </body>
 </html>

 Next, let’s take a look at the <aside> tag, which creates informational sidebars in the
document.

 The ASIDE Tag: Defining Information Sidebars in Your Document
 The <aside> tag defines an informational sidebar within your document. Sidebar content
must be related to the content adjacent to it. It is possible to use multiple <aside> tags in
one document.

 Let’s change the <section> tags to <article> tags in the car example, turning it into a
magazine by using this markup:

 <!DOCTYPE html><html>
 <head><title>Exotic and Domestic Cars Today</title></head>
 <body>
 <main>
 <header>
 <h1>Exotic Cars Magazine: Current Exotic Car Articles</h1>
 <p>Top Level Keywords Relating to Exotic Cars from Every Nation</p>
 </header>

CHAPTER 10 ■ HTML5 SEMANTICS: DEFINING SEMANTIC DOCUMENTS

82

 <nav>
 <a http://www.web-address.com/car-info.html>CAR INFO
 <a http://www.web-address.com/our-team.html>OUR TEAM
 <a http://www.web-address.com/buy-cars.html>BUY CARS
 </nav>
 <article>
 <h2>Exotic European Cars: Maintaining a Lead Over US Manufacturers</h2>
 <p>Next Level Keywords Relating to Exotic Cars from European Union</p>
 <h3>Exotic European Sports Car Round-Up</h3>
 <p>Next Level Keywords Relating to Exotic European Sports Cars</p>
 <aside>
 <h4>Sidebar: Top Selling European Sports Cars</h4>
 <p>Next Level Keywords Relating to Top Selling European Sports Cars</p>
 </aside>
 </article>
 <article>
 <h2>Exotic American Cars: Gaining on the Domination of European Cars</h2>
 <p>Next Level Keywords Relating to Domestic Cars from North America</p>
 <h3>Exotic American Sports Car Round-Up</h3>
 <p>Next Level Keywords Relating to Exotic North American Sports Cars</p>
 </article>
 <footer>
 <h5>Exotic Car Article Article, Contact and Sources:</h1>
 <p>Blog’s Author: Wallace Jackson</p>
 <p>Author e-mail: Wallace Jackson</p>
 <p>Blog’s Source: Magazine or Book Resources and Links would go here</p>
 </footer>
 </main></body></html>

 Next, let’s take a look at how to use figures and figure captions in HTML5.

 HTML5 Semantic New Media Figure Definition Tags
 The next two tags shown in Table 10-1 allow you to define a new media element
semantically, using a figure and a figure caption .

 The FIGURE and FIGCAPTION Tags: Adding Captioned Imagery
 A <figure> tag is used to define multimedia. A <figcaption> tag is nested to define the
caption for the new media asset.

 Let’s use these two tags to define a captioned image for the sports car content, as
shown in the following HTML5 markup:

 <!DOCTYPE html><html>
 <head><title>Exotic and Domestic Cars Today</title></head>
 <body>

CHAPTER 10 ■ HTML5 SEMANTICS: DEFINING SEMANTIC DOCUMENTS

83

 <main>
 <header>
 <h1>Exotic Cars Magazine: Current Exotic Car Articles</h1>
 <p>Top Level Keywords Relating to Exotic Cars from Every Nation</p>
 </header>
 <nav>
 <a http://www.web-address.com/car-info.html>CAR INFO
 <a http://www.web-address.com/our-team.html>OUR TEAM
 <a http://www.web-address.com/buy-cars.html>BUY CARS
 </nav>
 <article>
 <h2>Exotic European Cars: Maintaining a Lead Over US Manufacturers</h2>
 <p>Next Level Keywords Relating to Exotic Cars from European Union</p>
 <h3>Exotic European Sports Car Round-Up</h3>
 <p>Next Level Keywords Relating to Exotic European Sports Cars</p>
 <aside>
 <h4>Sidebar: Top Selling European Sports Cars</h4>
 <p>Next Level Keywords Relating to Top Selling European Sports Cars</p>
 </aside>
 </article>
 <article>
 <h2>Exotic American Cars: Gaining on the Domination of European Cars</h2>
 <p>Next Level Keywords Relating to Domestic Cars from North America</p>
 <h3>Exotic American Sports Car Round-Up</h3>
 <p>Next Level Keywords Relating to Exotic North American Sports Cars</p>
 <figure>

 <figcaption> Figure 1. Image of Popular American Sports Car </figcaption>
 </figure>
 </article>
 <footer>
 <h5>Exotic Car Article Article, Contact and Sources:</h1>
 <p>Blog’s Author: Wallace Jackson</p>
 <p>Blog’s Source: Magazine or Book Resources and Links would go here</p>
 </footer>
 </main></body></html>

 You can also place the <figcaption> child tag inside of the <figure> parent tag, before
the or <video> tag, if you want to have the figure text on top of your image or video,
rather than underneath it. Having the caption underneath the new media element is
the standard way to caption your image or video. You can also use a caption with your
<audio> tag, but be sure to include the controls parameter so that there is something (the
play-pause-rewind transport) there to caption!

 Next, let’s look at the final few semantic tags, which add various detail elements,
including pop-up information, summaries, text marking, and system time.

CHAPTER 10 ■ HTML5 SEMANTICS: DEFINING SEMANTIC DOCUMENTS

84

 HTML5 Semantic Document Detail Definition Tags
 The last four tags in Table 10-1 allow you to define the detail elements of your semantic
HTML5 documents. These include the <detail> tag that developers use to define interactive
pop-up widgets that allow users to drill down into a document’s semantic content. There
is also a child <summary> tag that is used with the <detail> tag. Finally, the <mark> tag
“marks up” text, and the <time> tag allows you to display the system date and time.

 The DETAILS and SUMMARY Tags: Adding Pop-up Information
 The <details> tag is used in conjunction with the <summary> tag to define pop-up
information that allows users to “drill down” for more information. The information
provided in the <summary> tag is clicked to toggle the show or hide functions in the
<details> tag. The <details> tag has one parameter, called open , which signifies that
open="true" and equates to the “show” state for the <details> element being the default
state. If the open parameter is not present, this equates to open="false", and the hide
state is the default ; the user has to click the <summary> tag’s text to “unhide” or open the
<details> element.

 Let’s add a <details> tag and its <summary> child tag to the <header> section of the
sports car content. Let’s have it contain a pop-up widget labeled Click Here for the List of
Our Featured Articles! . When the user clicks it, a list of the two <article> elements appear,
as specified in the following HTML5 markup example:

 <!DOCTYPE html><html>
 <head><title>Exotic and Domestic Cars Today</title></head>
 <body>
 <main>
 <header>
 <h1>Exotic Cars Magazine: Current Exotic Car Articles</h1>
 <p>Top Level Keywords Relating to Exotic Cars from Every Nation</p>
 <details>
 <summary> Click Here For the List of Our Featured Articles !</summary>
 <p>Exotic European Cars: Maintaining the Lead Over US Manufacturers</p>
 <p>Exotic American Cars: Gaining on the Domination of European Cars</p>
 </details>
 </header>
 <nav>
 <a http://www.web-address.com/car-info.html>CAR INFO
 <a http://www.web-address.com/our-team.html>OUR TEAM
 <a http://www.web-address.com/buy-cars.html>BUY CARS
 </nav>
 <article>
 <h2>Exotic European Cars: Maintaining the Lead Over US Manufacturers</h2>
 <p>Next Level Keywords Relating to Exotic Cars from European Union</p>
 <h3>Exotic European Sports Car Round-Up</h3>
 <p>Next Level Keywords Relating to Exotic European Sports Cars</p>

CHAPTER 10 ■ HTML5 SEMANTICS: DEFINING SEMANTIC DOCUMENTS

85

 <aside>
 <h4>Sidebar: Top Selling European Sports Cars</h4>
 <p>Next Level Keywords Relating to Top Selling European Sports Cars</p>
 </aside>
 </article>
 <article>
 <h2>Exotic American Cars: Gaining on the Domination of European Cars</h2>
 <p>Next Level Keywords Relating to Domestic Cars from North America</p>
 <h3>Exotic American Sports Car Round-Up</h3>
 <p>Next Level Keywords Relating to Exotic North American Sports Cars</p>
 <figure>

 <figcaption>Figure 1. Image of Popular American Sports Car</figcaption>
 </figure>
 </article>
 <footer>
 <h5>Exotic Car Article Article, Contact and Sources:</h1>
 <p>Blog’s Author: Wallace Jackson</p>
 <p>Blog’s Source: Magazine or Book Resources and Links would go here</p>
 </footer>
 </main>
 </body></html>

 Next, let’s take a look at the final two semantic tags, <mark> and <time>. If other
legacy tags have been upgraded with new semantic features or functions, I’ll cover those
additions in future chapters.

 The MARK and TIME Tags: Adding More Information
 The <mark> tag highlights important text. The <time> tag defines human-readable
time values. In Firefox the <mark> tag applies a yellow tint (Magic Marker effect) to the
text enclosed inside the <mark> and </mark> tags. These tags could be used in our car
example, as follows:

 <!DOCTYPE html><html>
 <head><title>Exotic and Domestic Cars Today</title></head>
 <body>
 <main>
 <header>
 <h1>Exotic Cars Magazine: Current Exotic Car Articles</h1>
 <p>Top Level Keywords Related to <mark> Exotic Cars </mark> worldwide</p>
 <details>
 <summary>List of Our Articles Released at <time> 10:00 </time> </summary>
 <p>Exotic European Cars: Maintaining the Lead Over US Manufacturers</p>
 <p>Exotic American Cars: Gaining on the Domination of European Cars</p>
 </details>
 </header>
 <nav>

CHAPTER 10 ■ HTML5 SEMANTICS: DEFINING SEMANTIC DOCUMENTS

86

 <a http://www.web-address.com/car-info.html>CAR INFO
 <a http://www.web-address.com/our-team.html>OUR TEAM
 <a http://www.web-address.com/buy-cars.html>BUY CARS
 </nav>
 <article>
 <h2>Exotic European Cars: Maintaining the Lead Over US Manufacturers</h2>
 <p>Next Level Keywords Relating to Exotic Cars from European Union</p>
 <h3>Exotic European Sports Car Round-Up</h3>
 <p>Next Level Keywords Relating to Exotic European Sports Cars</p>
 <aside>
 <h4>Sidebar: Top Selling European Sports Cars</h4>
 <p>Next Level Keywords Relating to Top Selling European Sports Cars</p>
 </aside>
 </article>
 <article>
 <h2>Exotic American Cars: Gaining on the Domination of European Cars</h2>
 <p>Next Level Keywords Relating to Domestic Cars from North America</p>
 <h3>Exotic American Sports Car Round-Up</h3>
 <p>Next Level Keywords Relating to Exotic North American Sports Cars</p>
 <figure>

 <figcaption>Figure 1. Image of Popular American Sports Car</figcaption>
 </figure>
 </article>
 <footer>
 <h5>Exotic Car Article Article, Contact and Sources:</h1>
 <p>Blog’s Author: Wallace Jackson</p>
 <p>Blog’s Source: Magazine or Book Resources and Links would go here</p>
 </footer>
 </main>
 </body>
 </html>

 At this point, you should go back and look at the diagram shown in Figure 10-1 ,
which visualizes some of the semantic tags used in the examples in this chapter.

 Summary
 In this chapter, you learned about the new semantic tag support recently added to
HTML5, including the <main>, <nav>, <header>, <footer>, <article>, <section>, <aside>,
<figure>, <figcaption>, <details>, <summary>, <mark>, and <time> tags. In the next
chapter, you look at the HTML5 tags that support publishing text-based content within
your HTML5 documents and applications.

87© Wallace Jackson 2016
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_11

 CHAPTER 11

 HTML5 Formatting: Publish
Text-Based Content

 Next, let’s cover text publishing tags in HTML5, which allow developers to control text-
based content with styling, superscript and subscript, line and word breaks, quotations,
abbreviations, citations, and the like. These text-related tags allow you to define
document content without having to use stylesheets for styling purposes.

 In this chapter, I go over the key tags to implement text-based content in HTML. The
paragraph <p> tag defines blocks (paragraphs) of text; it was already covered in the book.
The other text-related tags in this chapter include those for formatting text, styling text,
 breaking (separating and spacing) text, sizing text, text direction , quotations , citations ,
and special types of text circumstances .

 Create HTML5 Text Content for Publishing
 This chapter covers the text-related tags in HTML5 used for creating text content for
publishing in documents, websites, or applications. Most were supported in legacy
versions of HTML. A couple of the tags are new in HTML5; I’ll point these out.

 These text tags are child tags of the semantic tags covered in Chapter 10 . Your
text-based content is encapsulated (wrapped) in standardized semantic containers, so
that search engine robots (indexing and ranking algorithms) can optimally implement
 Web 3.0 and the future of the Internet— semantic search .

 Table 11-1 shows tags for creating, formatting, styling, and publishing text-based
content. They are categorized into seven logical areas: text formatting, text styling, text
breaking (separating, spacing), text sizing, text direction, text quotation, text captions
(titles), and tags for special circumstances.

http://dx.doi.org/10.1007/978-1-4302-6536-8_10

CHAPTER 11 ■ HTML5 FORMATTING: PUBLISH TEXT-BASED CONTENT

88

 Table 11-1. Twenty HTML and HTML5 Text Content Publishing Tags

 Text Content Tags Text Content Tag Standard Usage

 p Specifies a paragraph of text content

 pre Specifies pre-formatted text content

 abbr Specifies an abbreviation

 b Specifies the bold style for the text content

 i Specifies the italics style for the text content

 u Specifies the underline style for the text content

 br Specifies a line break (new line, carriage return)

 wbr Specifies a word break opportunity for long words

 small Specifies a small text style for that text content

 sub Specifies subscript text style for text content

 sup Specifies superscript text style for text content

 bdi Specifies bidirectional isolation for text content

 bdo Specifies bidirectional override on text direction

 q Specifies a short quotation for the document

 blockquote Specifies a long (block) quotation for document

 cite Defines a title (citation) for a published work

 data Specifies human-readable and machine-readable data

 s Specifies text that is no longer accurate/relevant

 del Specifies text content which has been deleted

 ins Specifies text content which has been inserted

 Let’s go over each of these content publishing tags—one logical section at a time.

 HTML5 Text Formatting: Paragraph, Pre, and Abbr
 The first three tags tell the rendering engine how to format the text: as a block or
paragraph of text; as a pre-spaced or specially formed arrangement of text; or as
abbreviated text with an optional mouse-over definition. These tags are shown in the first
section in Table 11-1 .

 Let’s cover the paragraph <p> tag first because it’s the most commonly used text-
related tag in HTML5 document, website, and application design. Before HTML5, this tag
had the align parameter, which supports left , right , center , and justify .

 The align parameter was supported in pre-HTML5 versions, but it is not supported in
HTML5. As I’ve mentioned, the trend in HTML5 and later versions is to use CSS3 to provide
element (tags) styling, and for HTML5 tags to focus on the definition of the semantic content.

CHAPTER 11 ■ HTML5 FORMATTING: PUBLISH TEXT-BASED CONTENT

89

 Let’s start a new “publishing text content” example HTML document that uses
the semantic and SEO tags you learned to define a header paragraph showing a text
paragraph. This is done in the following HTML5 markup:

 <!DOCTYPE html><html>
 <head><title>Publishing Text Content in HTML5 Documents</title></head>
 <body>
 <main>
 < header >
 <h1>Publishing Text: Using Text-Related Tags in HTML5</h1>
 <p> This is an example of a paragraph , containing text sentences. It is
 possible to have more than 1 sentence in a paragraph, of course! </p>
 < /header >
 </main>
 </body>
 </html>

 For legacy HTML markup, you can use an align parameter, as shown in the following
HTML 4.01 (and previous versions) markup:

 <p align="left"> This is an example of a paragraph containing 2 sentences.
 It is possible to have more than 1 sentence in a paragraph, of course! </p>

 Let’s cover the preformatted <pre> tag next, because it’s the least commonly used
text-related tag in an HTML document, website, and applications design. Before HTML5,
this tag used the width parameter, which defines a maximum width for each line of
preformatted text. This tag maintains the character spacing , so it doesn’t “collapse”
multiple space characters into one space.

 The width parameter is not supported in HTML5.
 Let’s use a <pre> tag to create fun, text-based character art in the shape of a pine tree,

often popular during the holiday season, as shown in the following HTML5 markup:

 <!DOCTYPE html><html>
 <head><title>Publishing Text Content in HTML5 Documents</title></head>
 <body>
 <main>
 < header >
 <h1>Publishing Text: Using Text-Related Tags in HTML5</h1>
 <p>This is an example of a paragraph containing text sentences. It is
 possible to have more than a sentence in a paragraph, of course!</p>
 < /header >
 <article>
 <h2>Pre-format Text: Maintaining Precise Character Spacing</h2>
 <p>You can use a PRE Element to implement character art, like this:</p>
 <pre>

CHAPTER 11 ■ HTML5 FORMATTING: PUBLISH TEXT-BASED CONTENT

90

 88
 8888
 8888
 888888
 88888888
 8888888888
 8888888888888
 88888888888888888
 888888888888888888888
 8888888888
 88888888888888
 8888888888888888888888
 8888888888888888888888888888
 888888888888888
 88888888888888888
 888888888888888888888
 888888888888888888888888888
 88888888888888888888888888888888
 888888888888888888
 88888888888888888888
 888888888888888888888888
 8888888888888888888888888888
 888888888888888888888888888888
 8888888888 8888888 88888888888
 88888
 88888
 88888
 88888888888
 </pre>
 </article>
 </main>
 </body>
 </html>

 Next, let’s take a look at the abbreviation <abbr> tag.
 Let’s use the <abbr> tag to create an abbreviation for the second <article> section in

this example. Use the title parameter so that the abbreviation is defined in a mouse-over:

 <!DOCTYPE html><html>
 <head><title>Publishing Text Content in HTML5 Documents</title></head>
 <body>
 <main>
 < header >
 <h1>Publishing Text: Using Text-Related Tags in HTML5</h1>
 <p>This is an example of a paragraph containing text sentences. It is
 possible to have more than a sentence in a paragraph, of course!</p>
 < /header >

CHAPTER 11 ■ HTML5 FORMATTING: PUBLISH TEXT-BASED CONTENT

91

 <article>
 <h2>Pre-format Text: Maintaining Precise Character Spacing</h2>
 <p>You can use a PRE Element to implement character art, like this:</p>
 <pre>
 88
 8888
 8888
 888888
 88888888
 8888888888
 8888888888888
 88888888888888888
 888888888888888888888
 8888888888
 88888888888888
 8888888888888888888888
 8888888888888888888888888888
 888888888888888
 88888888888888888
 888888888888888888888
 888888888888888888888888888
 8888888888888888888888888888888
 888888888888888888
 88888888888888888888
 888888888888888888888888
 8888888888888888888888888888
 888888888888888888888888888888
 8888888888 8888888 88888888888
 88888
 88888
 88888
 88888888888
 </pre>
 </article>
 <article>
 <h3>Abbreviated Text: Using the ABBR Tag to Describe this Pine Tree</h3>
 <p>Christmas Tree is also < abbr title="Christmas">XMAS</abbr> Tree!</p>
 </article>
 </main>
 </body></html>

 Next, let’s take a look at text styling elements (tags).

CHAPTER 11 ■ HTML5 FORMATTING: PUBLISH TEXT-BASED CONTENT

92

 HTML5 Text Styling: Bold, Italics, and Underline
 The next three tags tell the rendering engine how to style the text characters, either as
a bold block of text, an italicized block of text, or as an underlined block of text. These
HTML tags can also be used in combination with each other. They are shown in the
second section of Table 11-1 .

 Let’s cover the bold tag first because it’s the most commonly used text-related tag in
HTML document, website, or application design. Let’s bold the word “paragraph” in the
original example by surrounding that word with the and tags. This is shown in
the following HTML markup example (it can also be used in HTML5):

 <!DOCTYPE html><html>
 <head><title>Publishing Text Content in HTML5 Documents</title></head>
 <body>
 <main>
 <header>
 <h1>Publishing Text: Using Text-Related Tags in HTML5</h1>
 <p>This is an example of a paragraph containing text sentences.
 It’s possible to have more than 1 sentence in a paragraph.</p>
 </header>
 </main>
 </body>
 </html>

 To bold an entire block of text within the sentence, you include additional words
inside your starting and ending tags:

 <p align=left>An example of a paragraph containing text sentences.
 It’s possible to have more than 1 sentence in a paragraph.</p>

 ■ Note From the W3C website (www.w3schools.com/tags/tag_b.asp): “According to the
HTML 5 specification, this tag should be used as a last resort, when no other tag is more
appropriate. The HTML 5 specification states that headings should be denoted with the <h1>
to <h6> tags, emphasized text should be denoted using the tag, important text should
be denoted with a tag, and marked/highlighted text should use a <mark> tag.”

 Now let’s discuss the italics <i> tag and italicize the word “possible” in the original
example by surrounding it with the <i> and </i> tags. This is shown in the following
HTML5 markup (it can also be used in previous versions of HTML (2.0, 3.2, and 4.01)):

 <!DOCTYPE html><html>
 <head><title>Publishing Text Content in HTML5 Documents</title></head>
 <body>
 <main>

http://www.w3schools.com/tags/tag_b.asp

CHAPTER 11 ■ HTML5 FORMATTING: PUBLISH TEXT-BASED CONTENT

93

 <header>
 <h1>Publishing Text: Using Text-Related Tags in HTML5</h1>
 <p>This is an example of a paragraph containing text sentences.
 It’s <i> possible </i> to have more than 1 sentence in a paragraph.</p>
 </header>
 </main></body></html>

 To italicize an entire block of text within a sentence, you should include more words
inside of the starting and ending tags, as I have done here, around the “text sentences” text:

 <p>An example of a paragraph containing <i> text sentences </i>.
 It’s <i> possible </i> to have more than 1 sentence in a paragraph.</p>

 Let’s cover the underline <u> tag next, since it is the least commonly used text-
related tag in HTML5 documents. The reason for this is because the anchor <a> tag (link)
default is an underlined link, and therefore, using the <u> tag to underline text is likely to
confuse users into thinking that that text represents a link. When a user clicks underlined
text and nothing happens, it looks as if there is a coding (markup) error. Therefore,
convention is not to use the underline tag unless it is absolutely necessary.

 Let’s underline the word “possible” in the original example by surrounding that word
with the <u> and </u> tags. It looks like following HTML5 markup (it can also be used in
previous versions of HTML):

 <!DOCTYPE html><html>
 <head><title>Publishing Text Content in HTML5 Documents</title></head>
 <body>
 <main>
 <header>
 <h1>Publishing Text: Using Text-Related Tags in HTML5</h1>
 <p>An example of a paragraph containing <i>text sentences.</i>
 It’s possible to have <u> more than 1 sentence </u> in a paragraph.</p>
 </header>
 </main></body></html>

 Let’s cover the line break and word break tags next.

 HTML5 Break Tags: Line Break and Word Break
 The next two tags tell the rendering engine how to break the text apart, either using a
new-line and carriage return to create a line break , or by using a hyphen to break a long
word across lines, which is called a word break . The line break uses the
 tag, and the
word break uses the <wbr> tag. These HTML tags can also be used in combination with
each other. They are shown in the third section of Table 11-1 .

 Let’s cover the word break tag first, as most developers do not know about it, and it
is very simple to use and very useful for making sure that long words are broken across
lines in a way that is completely controlled by a text content developer. Let’s break the
with <wbr>.

CHAPTER 11 ■ HTML5 FORMATTING: PUBLISH TEXT-BASED CONTENT

94

 To do this, break up the longest word in the dictionary by using the <wbr> tag in the
places that we want a rendering engine (browser and OS) to separate it across lines if it
becomes necessary, as shown in the following HTML5 markup:

 <!DOCTYPE html><html>
 <head><title>Publishing Text Content in HTML5 Documents</title></head>
 <body>
 <main>
 <header>
 <h1>Breaking Text Apart: Using Text-Related Tags in HTML5</h1>
 <p>This is an example of a word which is really long using word break:
 Pneumono <wbr> ultramicroscopic <wbr> silico <wbr> volcano <wbr> coniosis</p>
 </header>
 </main>
 </body>
 </html>

 Now let’s talk about the line break
 tag next; it’s one of the most commonly
used text-related tags in HTML5 document, website, and application design. This tag is
sometimes called the “break” tag because it uses
 and not <lbr>.

 Let’s insert line breaks (new lines and line spacing) by using the
 tag. The
following HTML5 markup shows an example of this (it can also be used in previous
versions of HTML):

 <!DOCTYPE html><html>
 <head><title>Publishing Text Content in HTML5 Documents</title></head>
 <body>
 <main>
 <header>
 <h1>Breaking Text Apart: Using Text-Related Tags in HTML5</h1>
 <p>This is an example of using the line break tag to break apart

 a paragraph containing text sentences

 without using multiple paragraph tags.

 It is possible to put line spacing between your sentences

 and still use only one single paragraph.</p>
 </header>
 </main>
 </body>
 </html>

 To add a carriage return and a new line, just as you can do with a manual typewriter,
you would use a single
 tag. To add a space between sentences (or paragraphs),
add two
 tags in succession, like this:

. This adds a space between your
sentences shown. To widen this space, you can use three (or more) break tags, like this:

. The more break tags you add, the wider the space between sentences,
paragraphs, or text blocks. Next, let’s talk about text sizing elements (tags).

CHAPTER 11 ■ HTML5 FORMATTING: PUBLISH TEXT-BASED CONTENT

95

 HTML5 Text Size: Small, Superscript, and Subscript
 The next three tags tell the rendering engine how to size text characters: as a small
character, a superscript raised small character, or a subscript lowered small character.
These HTML tags are seen in the fourth section of Table 11-1 .

 Let’s start with the <small> tag because it tells the HTML5 rendering engine to
reduce the font size of your text. Let’s reduce the size of the words “small text” in one of
the sentences in the original example by surrounding those words with the <small> and
 </small> tags. This should look like this following HTML markup, which can also be used
in HTML5:

 <!DOCTYPE html><html>
 <head><title>Publishing Text Content in HTML5 Documents</title></head>
 <body>
 <main>
 <header>
 <h1>Publishing Small Text: Using Text-Related Tags in HTML5</h1>
 <p>An example of <small> small text </small> contained in a sentence.</p>
 </header>
 </main>
 </body>
 </html>

 Let’s cover the superscript <sup> tag next, since it is used for footnote references
and math (power) representation. It is the second most commonly used size-related tag
in HTML5.

 Superscript text appears halfway above a normal line; it is usually rendered in the
same font size used with the <small> tag.

 Let’s superscript the mathematical representation of ten squared, or ten to the
second power. This is accomplished by surrounding the 2 with the ^{and}
tags. The following HTML5 markup shows an example of this (it can also be used in
previous versions of HTML):

 <!DOCTYPE html><html>
 <head><title>Publishing Text Content in HTML5 Documents</title></head>
 <body>
 <main>
 <header>
 <h1>Publishing Small Text: Using Text-Related Tags in HTML5</h1>
 <p>Here is an example of a subscript footer footnote representation:
 Ten Squared Equals One Hundred: 10 ² = 100</p>
 </header>
 </main>
 </body>
 </html>

 Let’s cover the subscript <sub> tag next since it is used for footnote references; it is
the second-most commonly used size-related element (tag).

CHAPTER 11 ■ HTML5 FORMATTING: PUBLISH TEXT-BASED CONTENT

96

 Subscript text appears halfway below the font baseline. It is usually rendered in the
same font size used with the <small> tag.

 Let’s subscript the footnote reference for an article by adding a subscripted [1].
This is accomplished by surrounding the [1] reference with the _{and} tags.
The following HTML5 markup is an example of this (it can also be used in all previous
versions of HTML):

 <!DOCTYPE html><html>
 <head><title>Publishing Text Content in HTML5 Documents</title></head>
 <body>
 <main>
 <article>
 <h1>Publishing Small Text: Using Text-Related Tags in HTML5</h1>
 <p>Here is the example of your subscript footnote referencing:
 Further Research Material _[1] is in the Footer.</p>
 </article>
 </main>
 </body>
 </html>

 Let’s cover text direction tags next. Text direction was recently added to HTML 4
(and Android 4.2) to support languages that write from the right side of the screen toward
the left side of the screen.

 HTML5 Text Direction: The Bidirectional Text Tags
 The next two tags tell the rendering engine which direction to render the text characters
in by either using the ltr or left-to-right paradigm or the rtl or right-to-left paradigm. The
Android OS added support for ltr vs. rtl rendering in version 4.2. Directional text HTML
tags are listed in in the fifth section of Table 11-1 ; they include the bidirectional isolation
<bdi> and the bidirectional override <bdo> tags .

 Let’s start with the <bdi> tag, which tells the HTML5 rendering engine to isolate (or
to not apply the current text direction specified in your document) any text inside of the
<bdi> and </bdi> tags.

 Let’s isolate the text direction for the words “isolated text” in a sentence in the
original example by surrounding those words with <bdi> and </bdi> tags. An example of
this is shown in the following HTML 4.01 markup (it can also be used in HTML5):

 <!DOCTYPE html><html>
 <head><title>Publishing Text Content in HTML5 Documents</title></head>
 <body>
 <main>
 <header>
 <h1>Publishing Directional Text: Using Text-Related Tags in HTML5</h1>
 <p>An example of <bdi> isolated text </bdi> contained in a sentence.</p>
 </header>
 </main>
 </body>
 </html>

CHAPTER 11 ■ HTML5 FORMATTING: PUBLISH TEXT-BASED CONTENT

97

 Let’s cover the HTML 4 bidirectional override <bdo> tag next; it specifically defines
the direction of a word, sentence, or block of text. It uses the required direction dir
parameter, which takes either an rtl or an ltr data value.

 Let’s override the default left to right text direction and use the <bdo> tag to make
some of the text go right to left by using the dir parameter. This is accomplished by
surrounding the words “right to left” with the <bdo> and </bdo> tags in conjunction with
the dir="rtl" parameter in the opening <bdo> tag. The following HTML5 markup shows
an example of this (it can also be utilized in HTML 4.01):

 <!DOCTYPE html><html>
 <head><title>Publishing Text Content in HTML5 Documents</title></head>
 <body>
 <main>
 <header>
 <h1>Publishing Directional Text: Using Text-Related Tags in HTML5</h1>
 <p>Here is the example of the default left to right text direction.</p>
 <p>Override this to create <bdo dir="rtl"> right to left </bdo> text.</p>
 </header>
 </main>
 </body>
 </html>

 Let’s cover the text quotation tags supported in HTML5.

 HTML5 Text Quotes: Quote and Block Quote Tags
 The next two tags tell the rendering engine to render the text characters in a quotation
format, using a quote <q> tag or a block quote <blockquote> tag. These HTML tags are
seen in the sixth section of Table 11-1 .

 Let’s start with the <q> tag, which tells the HTML5 rendering engine that your text is
a quotation.

 It is interesting to note that you do not have to supply the quotation marks when
you utilize this tag. The following markup is an example of this (it can also be used in
HTML5):

 <!DOCTYPE html><html>
 <head><title>Publishing Text Content in HTML5 Documents</title></head>
 <body>
 <main>
 <header>
 <h1>Publishing Quoted Text: Using Text-Related Tags in HTML5</h1>
 <p>An example of a text quotation contained within a paragraph of text.
 <q> This is a quotation from the Author of HTML5 Quick Markup. </q> </p>
 </header>
 </main>
 </body>
 </html>

CHAPTER 11 ■ HTML5 FORMATTING: PUBLISH TEXT-BASED CONTENT

98

 There is also a cite parameter, if you want to reference the source of a quote using a
 URL . The following is an example of this:

 <q cite="http://www.wallacejackson.com >
 This is a sample quotation from the Author of HTML5 Quick Markup Reference.
 </q>

 Let’s talk about the block quote <blockquote> tag next, since it is used for
longer quotations, which are taken from and reference another source. In HTML5,
the <blockquote> tag always specifies a section quoted from another source. HTML5
browsers usually indent a <blockquote> element.

 This distinction does not exist in HTML 4.01 and earlier, where the <blockquote>
simply signifies a quote as a block of text and does not have to represent something from
an externally referenced work. This is shown in the following HTML5 markup (it can also
be used in previous versions of HTML):

 <!DOCTYPE html><html>
 <head><title>Publishing Text Content in HTML5 Documents</title></head>
 <body>
 <main>
 <article>
 <h1>Publishing Quoted Text: Using Text-Related Tags in HTML5</h1>
 <p>Here is an example of a block quote representation in a paragraph:
 <blockquote cite="http://www.apress.com/9781484218624">
 This compact quick scripting syntax reference on JSON covers
 syntax and parameters central to JSON object definitions, using
 the NetBeans 8.1 open source and Eclipse IDE software tool packages.
 </blockquote>
 </p>
 </article>
 </main>
 </body>
 </html>

 Let’s cover text citation tags supported in HTML5 next.

 HTML5 Text Citations : The CITE Tag
 The cite tag tells the rendering engine the title of the text. This HTML tag is in the sixth
section of Table 11-1 . The cite tag tells the HTML5 rendering engine to apply a title
citation for an intellectual property work to any text inside the <cite> and </cite> tags.
The IP owner’s name is not the title of the work. Let’s add a title citation to our HTML5
example by surrounding a title with a <cite> and </cite> tag structure. This is shown in
the following HTML markup:

 <!DOCTYPE html><html>
 <head><title>Publishing Text Content in HTML5 Documents</title></head>

CHAPTER 11 ■ HTML5 FORMATTING: PUBLISH TEXT-BASED CONTENT

99

 <body>
 <main>
 <header>
 <h1>Publishing Citation Text: Using Text-Related Tags in HTML5</h1>
 <p>I wrote <cite> JSON Quick Syntax Reference </cite> during 2016.</p>
 </header>
 </main>
 </body>
 </html>

 Finally, let’s discuss text special circumstance tags, which are supported by HTML5.
These are seen in the seventh section of Table 11-1 .

 HTML5 Special Circumstances Text : Other Tags
 The last four tags tell the rendering engine about outdated , inaccurate , deleted , or
 inserted text, and allow you to represent data using its native format.

 Let’s start with the <data> tag, which provides machine-readable data. It is useful
in cases where data needs to be in a certain format to be processed using JavaScript, but
it does not format well for human-readable applications; that is, it does not have that
format that you prefer your users experience (read).

 As a simple example, you prefer to present numbers to your users using text (i.e.,
one, two, three), but you also need to have JavaScript code that sorts the numbers to
organize the data. JavaScript requires that the numbers be provided as numerals (1, 2, 3)
to enable this sorting.

 A <data> tag enables you to solve this problem by providing two different data
representations. Text numbers are provided inside <data> and </data> tags; whereas
integers for the JavaScript code are provided as a value parameter. The following HTML
markup shows an example of this (it can also be used in HTML5):

 <!DOCTYPE html><html>
 <head><title>Publishing Text Content in HTML5 Documents</title></head>
 <body>
 <main>
 <article>
 <h1>Publishing Special Circumstances Text: Using Text-Related Tags</h1>
 <p>An example of <data> tags contained in a paragraph. Numbers Include:
 <data value="1">One</data>
 <data value="2">Two</data>
 <data value="3">Three</data>
 </p>
 </article>
 </main>
 </body></html>

CHAPTER 11 ■ HTML5 FORMATTING: PUBLISH TEXT-BASED CONTENT

100

 Next, let’s discuss the <s> tag, which was deprecated in HTML 4.01 and originally
used to define strike-through text (in case you were wondering what the “s” stood for).
As such, the default CSS3 definition for this element should look like this example:

 s { text-decoration: line-through; }

 Again, CSS3 is not the focus of this book, only HTML5 markup syntax. The <s>
element is redefined in HTML5; it is now used to define text that is no longer correct,
accurate, or relevant . This <s> tag should not be used to define replaced or deleted text,
because the tag defines replaced or deleted text. (I cover this tag next.) Here is the
<s> tag used to update my Android apps book, using HTML5 markup:

 <!DOCTYPE html><html>
 <head><title>Publishing Text Content in HTML5 Documents</title></head>
 <body>
 <main>
 <header>
 <h1>Publishing Deprecated Text: Using Text-Related Tags in HTML5</h1>
 <p>I wrote <s>Android Apps for Absolute Beginners 1st Ed.</s> in 2010.</p>
 <p>I wrote Android Apps for Absolute Beginners 4th Ed. in 2017.</p>
 </header>
 </main>
 </body></html>

 Next, let’s look at the delete tag used for text that has been deleted and
replaced using the insert <ins> tag. Use and <ins> for document updates or
modifications.

 HTML5 browsers normally draw a line through deleted text and underline inserted
text. We cover the <ins> tag here because it’s used with the delete tag and provides the
exact opposite function. Here are the and <ins> tags, which were used to update my
 Android Apps for Absolute Beginners (Apress, 2014) book:

 <!DOCTYPE html><html>
 <head><title>Publishing Text Content in HTML5 Documents</title></head>
 <body>
 <main>
 <header>
 <h1>Publishing Deprecated Text: Using Text-Related Tags in HTML5</h1>
 <p>I wrote Android Apps for Absolute Beginners 3rd Ed. (2014)
 <ins> Android Apps for Absolute Beginners 4th Ed. (2017) </ins>
 for Apress, an imprint of International Publisher Springer.</p>
 </header>
 </main>
 </body></html>

 Let’s save the phrase tags for the next chapter; after that, you’ll be ready to get into
lists, forms, and tables.

CHAPTER 11 ■ HTML5 FORMATTING: PUBLISH TEXT-BASED CONTENT

101

 Summary
 In this chapter, you looked at 20 text publishing tags supported in HTML5 and previous
versions, including tags for formatting text, tags for styling text, tags for breaking
(separating and spacing) text, tags for sizing text, tags for text direction , text for
 quotations , text for citations and tags for special types of text circumstances . In the next
chapter, you look at the phrase tags , which support the publishing of non-standard text-
based content inside of HTML5 documents, websites, and applications.

103© Wallace Jackson 2016
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_12

 CHAPTER 12

 HTML5 Phrase Tags: Using
Non-Standard Text

 Now let’s go over phrase tags in HTML5, which allow developers to actually control
the browser’s assimilation and classification of the text-based content by using styling,
defining, hinting, formatting, Teletype and keyboard input, computer coding, variables,
and the like. These more specialized text-related tags allow HTML5 developers to define
their document content without having to resort to using stylesheets for styling purposes,
or JavaScript, for coding-related activities.

 In this chapter, you look at phrase tags for implementing non-standard text-based
content in HTML5. These include the strong tag (like bold), the emphasis
 tag (like italics), the code <code> tag, variable <var> tag and sample <samp> tag
for coding related text, the definition <dfn> tag for term definition , a keyboard <kbd>
tag for keyboard data entry , and the Teletype <tt> tag, for Teletype data entry .

 HTML5 Phrase Tags: Special Text Content
 This chapter covers the text-related “phrase tags” supported in HTML5. They are used
to create non-standard types of text content for publishing in documents, websites,
or applications. Most of them were supported in legacy versions of HTML. The
and tags have updated semantic definitions in HTML5; I point this out where
applicable. These tags are also used as child tags of the semantic tags covered in
Chapter 10 and the text publishing tags covered in Chapter 11 . Phrase content is
encapsulated (wrapped) in standardized semantic and text containers, so that the
search engine robots (index and rank algorithms) can properly implement Web 3.0
Semantic Search .

http://dx.doi.org/10.1007/978-1-4302-6536-8_10
http://dx.doi.org/10.1007/978-1-4302-6536-8_11

CHAPTER 12 ■ HTML5 PHRASE TAGS: USING NON-STANDARD TEXT

104

 Table 12-1 shows eight phrase tags that can be used for defining, styling, input,
and coding.

 Table 12-1. Eight HTML Text Content Publishing “Phrase Tags”

 Text Phrase Tags Text Phrase Tag Usage

 dfn Defines the defining instance for a term

 strong Defines an important term or statement

 em Defines an emphasized term or statement

 kbd Defines keyboard input

 tt Defines Teletype input (not supported in HTML5)

 code Defines a computer code listing or fragment

 samp Defines a computer code sample output

 var Defines a computer code variable

 Let’s take a look at the phrase tags in logical sections just like they are arranged in
this table, starting with HTML5 phrase tags for styling <dfn>, , and . These
define important content, in one way or another, to the HTML rendering engine, and
for that reason, should also be considered semantic tags as well. Each also has its own
unique styling.

 HTML5 Phrase Styling: Highlighting Important Text
 The phrase-styling tag is used much like the bold tag. The tag is
used much like the italics <i> tag. There is also a more specialized <dfn> tag used to
semantically define important terms or abbreviations in your document, so that search
engines understand the emphasis put on content elements.

 The DFN Tag: Definition Terminology for the HTML5 Document
 The definition <dfn> tag represents the “defining instance” of a term that you use in an
HTML5 document, website, or application. This defining instance is the first usage of
that particular term within a given document. The parent for this <dfn> tag needs to
contain a definition or explanation of the term defined inside the child <dfn> tag. You can
define a <dfn> element without using any parameters, as shown in the following HTML5
markup example:

 <p>Did you know <dfn> JSON </dfn> stands for: JavaScript Object Notation?</p>

CHAPTER 12 ■ HTML5 PHRASE TAGS: USING NON-STANDARD TEXT

105

 The <dfn> tag is also commonly used with the global title attribute or parameter,
so that when you mouse-over the defined term, you see its definition. The following
HTML5 markup shows an example of this:

 <p>Did you know that <dfn title="JavaScript Object Notation" >JSON</dfn>
 stands for: JavaScript Object Notation and can be used with HTML5?</p>

 The <dfn> tag can also be used as the parent tag of the <abbr> tag, which you saw in
Chapter 11 , and which some consider to be a phrase tag as well.

 In order for the mouse-over function to work properly, you need to make sure that
the title attribute or parameter exists inside of the <abbr> tag, which is itself inside of the
<dfn> element. This is done using the following HTML5 markup:

 <p>HOT TIP: <dfn> <abbr title="JavaScript Object Notation">JSON </abbr> </dfn>
 stands for JavaScript Object Notation and can be utilized with HTML5?</p>

 It is also possible to add a global id attribute to the <dfn> element, so that it could be
referenced by using the href parameter, or in CSS3 stylesheets and via JavaScript code.
This is shown in the following HTML5 markup:

 <p>Do you know <dfn id="json" title="JavaScript Object Notation">JSON</dfn>
 stands for JavaScript Object Notation, and it can be used with HTML5?</p>

 Your markup can refer back to the definition by using an <a> tag, if set up as follows
whenever the JSON term is used:

 <p>If you want to learn JSON , check out Wallace
 Jackson's Apress Title: <q>JSON Quick Syntax Reference (2016).</q></p>

 Next, let’s take a look at a special type of phrase tag called the tag. This tag
is specifically utilized for highlighting important or key information in the document
design.

 The STRONG Tag : Defining Important Text and Terminology
 The tag is the semantic search version of the bold tag in as much that it not
only bolds the text style, but also indicates a greater importance or “strength” for the term
or phrase that is contained within the and tags. This tells a semantic
search algorithm what is important, which allows it to do a better job at its attempt at
semantic artificial intelligence.

 Let’s use a tag to increase my importance as an author. This example
should enclose my name in the and tags, as shown in the following
HTML5 markup:

 <p>If you want to learn JSON, check out Wallace
 Jackson's Title: <q>JSON Quick Syntax Reference (2016).</q></p>

http://dx.doi.org/10.1007/978-1-4302-6536-8_11

CHAPTER 12 ■ HTML5 PHRASE TAGS: USING NON-STANDARD TEXT

106

 This should give my name a slight boost in search engine rank, at least versus
using the bold tag, because it tells the search engine algorithms that as the content
developer, I am assigning an increased level of importance to myself. Some folks inform
me that I do this way too much; then I simply cite SEO as my excuse to continue doing so.

 The EM Tag: Emphasizing Important Text and Terminology
 The tag is the semantic search version of the italics <i> tag, in as much that it
not only italicizes the text style, but also indicates a greater focus or “emphasis” for the
term or phrase contained witihn the and tags. This tells a semantic search
algorithm what is emphasized, which allows it to do a better job with the search engine’s
attempt to implement the semantic artificial intelligence.

 Let’s use an tag to increase the emphasis on a book title in the previous
example. This example encloses the book title in the and tags. This change
from a quotation tag to an emphasis tag is shown in the following HTML5 markup:

 <p>If you want to learn JSON, check out Wallace
 Jackson's Title: JSON Quick Syntax Reference (2016).
 </p>

 This change serves to change the styling from using quotation marks to delineate the
book title to using italics, like this: JSON Quick Syntax Reference .

 Next, let’s look at the phrase tags that simulate keyboard and Teletype data input.
The Teletype, or TTY, is an electro-mechanical typewriter that sends and receives
typed messages, from point to point and from point to multipoint, over various types
of communications channels. It is an early predecessor to the facsimile machine
popular today.

 HTML5 Phrase Input Tags: Keyboard and Teletype
 The next two tags shown in Table 12-1 define phrase text styles, which make it appear as
if custom input is being performed. These typically change the text font style in a browser
to a font that connotes typing, such as Courier or a monospace font. It is important to
note that these tags do not actually add an ability to take text from an external physical
hardware device, but simply make the text used with those tags in your document
make it look as though that is happening, so these tags are input styling rather than the
previous emphasis styling tags. Let’s go over the keyboard <kbd> tag first, because it is
still supported in HTML5, and it is the tag you’ll want to use to simulate keyboard input in
documents.

CHAPTER 12 ■ HTML5 PHRASE TAGS: USING NON-STANDARD TEXT

107

 The KBD Tag: Defining Keyboard Input
 The <kbd> tag specifies keyboard input (or Teletype input for HTML5, which no longer
supports the <tt> tag) in HTML5 documents, websites, and applications. More than one
<kbd> tag may be used in a single document. This <kbd> tag uses the following style
definition; if you like, you could change this to specify the Courier font in an external CSS
stylesheet:

 kbd { font-family: monospace ; }
 kbd { font-family: Courier ; } // This CSS3 will simulate a typewriter
 kbd { font-family: ' Lucida Console '; } // This CSS3 will simulate Teletype

 Let’s use the <kbd> tag to change the book title style to look like a font that is used in
coding. An example of this is shown in the following HTML5 markup:

 <p>If you want to learn JSON, check out Wallace
 Jackson's Title: <kbd> JSON Quick Syntax Reference (2016). </kbd>
 </p>

 Next, let’s take a look at the <tt> tag, which should be used in HTML versions earlier
than HTML5 to simulate a Teletype machine in an HTML5 document or application.

 The TT Tag: Defining Teletype Input
 The <tt> tag specifies Teletype input for HTML versions prior to HTML5, which no longer
supports the <tt> tag. More than one <tt> tag may be used in a single document. This <tt>
tag uses the following style definition; if you like, you could change this to specify Courier
font or a monospace font in an external CSS stylesheet:

 tt { font-family: monospace ; } // This CSS3 will simulate a keyboard!
 tt { font-family: Courier ; } // This CSS3 will simulate a typewriter!

 Let’s use this <tt> tag to change the book title style to look like the font used in
Teletypes. An example of this is shown in the following HTML5 markup:

 <p>If you want to learn JSON, check out Wallace
 Jackson's Title: <tt> JSON Quick Syntax Reference (2016). </tt>
 </p>

 Next, let’s look at phrase tags which simulate working with computer code.

 HTML5 Phrase Coding Tags: Code and Variables
 The final three phrase tags shown in Table 12-1 allow you to style text elements to look
like they are computer coding–related content. This is done by using the code fragment
<code> , sample output <samp> , and the code variable <var> tags.

CHAPTER 12 ■ HTML5 PHRASE TAGS: USING NON-STANDARD TEXT

108

 The Code Tag: Code Sample Listings and Code Fragments
 The <code> tag defines a “code fragment,” which is a snippet or partial code listing.
Usually, the entire code listing is too long, but it is possible to use this phrase tag to style
an entire code listing. The CSS3 setting for a <code> tag defaults to using the monospace
font to style the code text, as shown in the following CSS3 definition (with other coding-
related, font-family styling options included):

 code { font-family: monospace; } // Default Style for the <code> element
 code { font-family: Courier; } // This CSS will simulate the typewriter
 code { font-family: 'Lucida Console'; } // This CSS will simulate a Teletype

 Let’s use the tag to showcase a Java 9 code snippet from my Pro Java 9 Games
Development (Apress, 2017) book, as shown in the following markup:

 <p>If you want to learn JAVA, check out Wallace
 Jackson's Title Pro Java 9 Game Development (2017).
 Here is a sample snippet of Java 9 code from this upcoming Java 9 Game
 Development programming title:
 <code>
 legalButton.setOnAction(new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent event) {
 infoOverlay.getChildren().clear();
 infoOverlay.getChildren().addAll(copyText, riteText);
 infoOverlay.setTranslateY(380);
 infoOverlay.setLineSpacing(-9);
 uiContainer.setBackground(uiBackground3);
 boardGameBackPlate.setImage(transparentlogo);
 }
 });
 </code>
 </p>

 Next, let’s take a look at the sample output <samp> tag.

 The SAMP Tag : Adding Sample Code Output
 The <samp> tag is used to define code output, which is the result of running code. The
CSS3 setting for a <samp> tag defaults to using the monospace font to style the code text,
as shown in the following CSS3 definition:

 samp { font-family: monospace ; } // Default Style for a <samp> element
 samp { font-family: Courier ; } // This CSS will simulate a typewriter
 samp { font-family: 'Lucida Console' ; } // This CSS will simulate a Teletype

CHAPTER 12 ■ HTML5 PHRASE TAGS: USING NON-STANDARD TEXT

109

 Let’s use this tag to showcase a Hello World code sample, taken from my upcoming
 Pro Java 9 Games Development (Apress, 2017) book, as shown in the following HTML5
markup:

 <p>If you want to learn JAVA, check out Wallace
 Jackson's Title Pro Java 9 Games Development (2017).
 Here is a sample snippet of Java 9 code output from Chapter 6 in the
 upcoming Pro Java 9 Games Development programming title:
 <samp>
 Hello World!
 </samp>
 </p>

 Next, let’s take a look at the code variable <var> tag.

 The VAR Tag: Adding Code Variables
 The <var> tag defines code variables , which are the data values within your code. The
CSS3 setting for the <var> tag defaults to using the italics to style the code text, as shown
in the following CSS3 definition:

 var { font-style: italic ; } // Default Style for the <var> tag is italic
 var { font-style: italic ; font-family: monospace ; } // italic monospace font

 The <var> tag is usually nested inside a <code> tag, as variables exist inside code.
Let’s use the tag to style variables in the <code> tag example in the following markup:

 <code> legalButton.setOnAction(new EventHandler<ActionEvent>() {
 @Override
 public void handle(ActionEvent event) {
 infoOverlay.getChildren().clear();
 infoOverlay.getChildren().addAll(<var> copyText, riteText </var>);
 infoOverlay.setTranslateY(380);
 infoOverlay.setLineSpacing(-9);
 uiContainer.setBackground(uiBackground3);
 boardGameBackPlate.setImage(transparentlogo);
 }
 }); </code>

 Summary
 In this chapter, you learned about the phrase tag support in HTML5 and previous
versions, including the <dfn>, , , <kbd>, <tt>, <code>, <var>, and <samp>
tags. In the next chapter, you look at the HTML5 list tags.

111© Wallace Jackson 2016
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_13

 CHAPTER 13

 HTML5 Lists: Numbered,
Bulleted, and Definition Lists

 Let’s discuss the six list creation tags for HTML5 next, which allow developers to create
different types of list-based content using a numbered (or even a lettered) list, a bulleted
list, or a definition list. These more specialized text-related tags allow HTML5 developers
to define their document list content with a good deal of flexibility using only a half-dozen
tags. These list tags are inherently semantic, as they clearly define lists and order, as well
as list descriptions and terms.

 In this chapter, you learn about list tags, which implement list-based content in HTML,
as all of the tags are supported in HTML 4.01, and some in earlier versions of HTML.

 These include a list tag, an ordered list tag, the unordered list tag,
and the description list <dl> tag, description term <dt> tag, and the description data
 <dd> tag.

 HTML5 List Tags: Ordered Information
 This chapter covers the six text-related “list tags” supported in HTML5. They create
ordered collections of information, much like an array in JavaScript programming, but
styled as a list or data definition collection , similar to what you experience with basic
JSON definitions, such as the ones covered in JSON Quick Syntax Reference (Apress,
2016). All of these tags are supported in legacy versions of HTML; a few of the tags even
go all the way back to HTML 2.0, which I’ll point out, where applicable. These list tags
are optimally used as child tags of the semantic tags covered back in Chapter 10 , so that
list-based content is encapsulated (wrapped) in standardized semantic containers, so
that the search engine robots (the indexing and ranking algorithms) optimally implement
 Web 3.0 , which is the future of the Internet: Semantic Search . Table 13-1 shows the six
list tags supported in HTML5.

http://dx.doi.org/10.1007/978-1-4302-6536-8_10

CHAPTER 13 ■ HTML5 LISTS: NUMBERED, BULLETED, AND DEFINITION LISTS

112

 Let’s take a look at these list creation tags in logical sections, in the same way that they
are arranged in this table, starting with “core” HTML5 list tags , , and . These
define important content lists or collections to the HTML rendering engines. For this
reason, these list tags should also be considered to be classified as semantic search tags .

 HTML5 Stylized Lists: Ordered and Bulleted Lists
 The list tags that go back the farthest in HTML support are the most often used: the list
item tag, which specifies each item in a list, and its parent or tags, which
are used to specify unordered (bulleted) lists, or ordered (numbered/lettered/Roman
Numeral) lists. These tags have enough parameters that you can create a wide array of
professionally styled lists, without having to resort to any custom CSS3 stylesheet code.

 The LI Tag: The Core List Tag Used to Define Each List Item
 The tag defines each “member” of the list with a starting and an ending
tag around the word, sentence, or text block of the list member. The proper way to use the
 tag is as a child element of a or parent container, however, browsers are
very forgiving in how they render elements, and render them without a parent
or container. If you use an HTML “validator,” to validate your markup, it won’t be
considered “valid” HTML markup, just so you know. Therefore, I am going to show you
the correct way to use .

 Let’s use a semantic <section> tag to create two section areas of bullets containing
types of cars. We’ll expand upon the semantic tags example in Chapter 10 , and add
bulleted lists (using the default unordered list parent tag). This is accomplished
using the following HTML5 markup:

 <!DOCTYPE html><html>
 <head><title>Exotic and Domestic Cars</title></head>
 <body>
 <section id="exotic car list">
 <h1>European Exotic Car Brand List</h1>

 Ferrari

 Table 13-1. Six HTML Content Publishing Tags for Creating Lists

 HTML5 List Creation Tags HTML5 List Creation Tag Usage

 li Defines a list item

 ol Defines an ordered list

 ul Defines an unordered list

 dl Defines a definition list

 dt Defines a definition term

 dd Defines the definition data

http://dx.doi.org/10.1007/978-1-4302-6536-8_10

CHAPTER 13 ■ HTML5 LISTS: NUMBERED, BULLETED, AND DEFINITION LISTS

113

 Lamborghini
 Porsche
 Bugatti

 </section>
 <section id="domestic car list">
 <h1>American Domestic Car Brand List</h1>

 Cadillac
 Buick
 Jeep
 Lincoln

 </section></body></html>

 Next, let’s take a look at how the unordered list tag allows you to configure the
child members that it contains.

 The UL Tag: Defining and Styling an Unordered List Container
 The tag is used as a parent tag list container to define the list member content using
symbols for what are commonly called “bullets.” This tag has two parameters that are not
supported in HTML5 due to the trend toward using CSS for styling and tag markup for
content definition. I include them in Table 13-2 for those of you working on legacy HTML
projects.

 Table 13-2. Two HTML Parameters for Creating Unordered Lists

 Unordered List Parameter Unordered List Parameter Usage

 type Defines bullet type (disc, circle, square)

 compact Defines the list to be rendered: smaller

 Let’s look at how you configure the tag.
 Let’s use the type parameter to change a standard disc bullet to a square bullet

for the first section’s list, and the bullet to use the hollow bullet (called a circle) for the
second section’s list. This is accomplished in the following HTML markup (in HTML5 it is
accomplished using CSS3):

 <!DOCTYPE html><html>
 <head><title>Exotic and Domestic Cars</title></head>
 <body>
 <section id="exotic car list">
 <h1>European Exotic Car Brand List</h1>
 <ul type="square">
 Ferrari

CHAPTER 13 ■ HTML5 LISTS: NUMBERED, BULLETED, AND DEFINITION LISTS

114

 Lamborghini
 Porsche
 Bugatti

 </section>
 <section id="domestic car list">
 <h1>American Domestic Car Brand List</h1>
 <ul type="circle">
 Cadillac
 Buick
 Jeep
 Lincoln

 </section>
 </body>
 </html>

 Note that most, if not all, of the HTML5 browsers should still respect the type
parameter, implementing a correct bullet type even though the parameter is no longer
supported in HTML5.

 Next let’s take a look at ordered list parent tags.

 The OL Tag: Defining and Styling an Ordered List Container
 The tag defines list-based content that is numbered, uses Roman Numerals, or
uses alphabetic letter indicators to determine the order of the members in an ordered
list. The tag has four parameters (one of which, compact , is no longer supported in
HTML5 due to the trend toward using CSS3 for styling and using tag markup solely for
content definition). The type parameter for the tag is supported in HTML5, as are
the reversed and the start parameters, which are generally used with a numeric ordering
type, set using a type parameter. I include these parameters in Table 13-3 for those of you
working on legacy HTML markup projects.

 Table 13-3. Four HTML5 Parameters for Creating Ordered Lists

 Ordered List Parameter Ordered List Parameter Usage

 type Defines ordering type (1, A, a, I, or i)

 reversed Defines numbering direction (backward)

 start Defines the start number (for number type)

 compact Defines the List to be rendered: smaller

CHAPTER 13 ■ HTML5 LISTS: NUMBERED, BULLETED, AND DEFINITION LISTS

115

 Let’s take a look at how we can configure this tag, substituting it for the tag
used in a previous example.

 To use numbered ordering starting with the number four and counting backward,
you can specify the following parameters for the first section’s list:

 <!DOCTYPE html><html>
 <head><title>Exotic and Domestic Cars</title></head>
 <body>
 <section id="exotic car list">
 <h1>European Exotic Car Brand List</h1>
 <ol type="1" start="4" reversed>
 Ferrari
 Lamborghini
 Porsche
 Bugatti

 </section>
 <section id="domestic car list">
 <h1>American Domestic Car Brand List</h1>
 <ol type="A">
 Cadillac
 Buick
 Jeep
 Lincoln

 </section>
 </body>
 </html>

 The second section uses capital letter alphabetic order, signified using the type=“A”
parameter. To use Roman numerals, use the type=“I”parameter setting. It is usually not
logical to count backward or starting with arbitrary letters or Roman numerals using these
type settings, but it’s possible to do so.

 Next, let’s take a look at HTML5 description lists . HTML versions prior to HTML5
defined the <dl> tag as a definition list (this was not as semantically relevant).

 HTML5 Description Lists: Lists of Terms with Data
 The last three tags in Table 13-1 allow you to define a description list. In HTML 4.01, a
<dl> was called a “definition list.” This list contained a group of terms and definitions.
These terms and definitions represented a “many to many” interrelationship, as in one
or more terms matched to one or more definitions. This HTML element was therefore
misunderstood and subsequently misused, or not used at all. To make matters worse, this
definition list was not usable for semantic search.

 To fix all the issues with the <dl> tag, HTML5 redefines this tag as a description list .
The <dl> element represents the associated (related) data list consisting of zero or more
name-value pairs or name-value groups.

CHAPTER 13 ■ HTML5 LISTS: NUMBERED, BULLETED, AND DEFINITION LISTS

116

 A name-value pair consists of the description term <dt> and its description data
<dd> value, which is very similar to a JSON key-value pair. A name-value group consists
of one or more description terms <dt> elements followed by one or more values in the
form of description data <dd> elements.

 Within a single description list <dl> element, there cannot be more than one single
description term <dt> element for each description term name; that is, there can be no
duplicate <dt> elements within a description list <dl> parent container.

 Name-value pairs and name-value groups can be terms and definitions, metadata
topics and values, questions and answers, or any other pairs or groupings of name-
value data.

 Those of you familiar with JSON may see the similarities between the key-value pairs
used to define JSON data definition structures and object notation structures.

 The DL Tag: Defining the Description List Parent Container
 The <dl> tag defines the topmost level for the description list. The default CSS3 defined
for the <dl> tag is shown here for reference purposes only. It keeps the data in the
description list spaced very close together with minimal spacing around the description
list block of data pairs/groups:

 dl { display: block;
 margin-top: 1em;
 margin-bottom: 1em;
 margin-left: 0;
 margin-right: 0; }

 Let’s use the <dl> tag along with the <dt> and <dd> tags to define a data array for
Italian exotic car brands and models in our content design example section. This example
is shown in the following HTML5 markup:

 <!DOCTYPE html><html>
 <head>
 <title>Exotic and Domestic Cars</title>
 </head>
 <body>
 <section id="exotic car list">
 <h1>Italian Exotic Car Brand Description List</h1>
 <dl>
 <dt>Ferrari</dt><dd>LaFerrari</dd>
 <dt>Bugatti</dt><dd>Chiron</dd>
 <dt>Maserati</dt><dd>GranCabrio</dd>
 <dt>Lamborghini</dt><dd>Gallardo</dd>
 </dl>
 </section>
 </body>
 </html>

CHAPTER 13 ■ HTML5 LISTS: NUMBERED, BULLETED, AND DEFINITION LISTS

117

 Next, let’s take a look at the definition term <dt> tag.

 The DT Tag: Defining Each Description Term Child Element
 The <dt> tag defines the description term for each key-value data pair, as you saw in
the previous section. Default CSS3 defined for this <dt> tag is shown here (for reference
purposes only):

 dt { display: block; }

 Next, let’s take a look at the definition data <dd> tag.

 The DD Tag: Defining Each Description Data Child Element
 The <dd> tag holds description data in a description list. Inside of a <dd> tag you can
put paragraphs, line breaks, images, links, other lists, and similar text-based content. You
can see how the tag is used in the preceding example. The default CSS for the <dd> tag is
shown here for reference purposes only:

 dd { display: block; margin-left: 40px; }

 Next, let’s look at another way to arrange data, in a tabular format, when we look at
the HTML table tags in the next chapter.

 Summary
 This chapter described list tag support in HTML5 and prior versions, including the
, , , <dl>, <dt>, and <dd> tags. In the next chapter, you look at the HTML5
tags that support the publishing of table-based content within HTML5 documents and
applications.

119© Wallace Jackson 2016
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_14

 CHAPTER 14

 HTML5 Tables: Constructing
Data in a Tabular Format

 Let’s talk about the ten table creation tags for HTML5. They allow developers to create
different types of table-based content, using a tabular format in a grid-based layout.
These more specialized table-related tags allow HTML5 developers to define their
document tabular content with a significant amount of flexibility, using less than a dozen
tags. The table tags are inherently semantic because they are clearly used to define tables
of data collections and information grids.

 The chapter explains table tags, which implement tabular content in HTML.
All of the tags are supported in HTML5; and also are supported in earlier versions of
HTML. They include the table <table> , table data <td> , table row <tr> , column <col> ,
table column group <colgroup>, caption <caption> , table body <tbody> , table header
 <thead> , table footer <tfoot> and table group header <th> .

 HTML5 Table Tags: Tabular Information
 This chapter covers the ten text-related table tags that are supported in HTML5.
They create tabular collections of information, much like a grid in Android or Java
programming, but styled as a table, which is like a 2D data definition collection
(databases use tables as well) similar to what you experience with basic SQL definitions.
All of these tags are supported in legacy versions of HTML; a few of the tags even go all
the way back to HTML 2.0, and I’ll point this out, where applicable. The table tags are
optimally used as child tags of the semantic tags covered in Chapter 10 , so that your
table-based content is encapsulated (or wrapped) into standardized semantic containers.
Table data is also semantic; it is assimilated by semantic search, as the table-related tag
names describe what the data contained inside of the table tag name represents to the
organization of your tabular content!

 Because of the conformance to the new Web 3.0 semantic thrust currently underway
in HTML5, table tags have returned from the recent obscurity they were facing. For a
while, developers were moving away from using tables and frames toward using other
containers and CSS to achieve the same visual results. But used properly, table tags can
create tables of interrelated data, much like a database. Table 14-1 shows the ten table
tags that are supported in HTML5 as well as in earlier HTML versions.

http://dx.doi.org/10.1007/978-1-4302-6536-8_10

CHAPTER 14 ■ HTML5 TABLES: CONSTRUCTING DATA IN A TABULAR FORMAT

120

 Let’s take a look at the table creation tags in logical sections, in the same way that
they’re arranged in this table, starting with your core HTML5 table tags <table>, <tbody>,
and <caption>. These define important table characteristics to the HTML5 rendering
engine. For this reason, these list tags could also be classified as semantic search tags, and
so it is important that they be implemented correctly by HTML5 content developers.

 Top Level HTML Table Creation: Table and Caption
 The top-level table tags are used to define the table itself; these include the table <table>
tag, which is used as the parent container for the table, and its child tags— <tbody> and
 <caption> , which are used to specify the primary table data, called table body and table
caption , respectively.

 The TABLE Tag: The Core Tag Used to Create the Table Element
 A <table> tag defines the HTML table element. At a bare minimum, an HTML table must
consist of the <table> element and one or more <tr> , <td> , and <th> elements.

 Two <table> element parameters are still supported in HTML5: sortable and border.
Eight parameters were replaced by CSS3, but are valid in prior HTML versions. They are
all shown in Table 14-2 .

 Table 14-1. Ten HTML Content Publishing Tags for Table Creation

 HTML Table Creation Tags HTML Table Creation Tag Usage

 table Defines a table

 caption Defines a table caption

 tr Defines a table row

 th Defines a table heading cell

 td Defines a table data cell

 thead Defines a table header

 tbody Defines a table body

 tfoot Defines a table footer

 col Defines a table column

 colgroup Defines a table column group

http://www.w3schools.com/TAGS/tag_tr.asp
http://www.w3schools.com/TAGS/tag_th.asp
http://www.w3schools.com/TAGS/tag_td.asp

CHAPTER 14 ■ HTML5 TABLES: CONSTRUCTING DATA IN A TABULAR FORMAT

121

 As you see later on in this chapter, all of the other table tags are child tags of <table>.
The <tr> element defines a table row, the <td> element defines each table cell, and the
<th> element defines a table header labeling the table columns.

 More complex tables would also include <caption>, <col>, <colgroup>, <thead>,
<tfoot>, and <tbody> elements, all of which is covered in detail over the course of
this chapter.

 Let’s use the <table> tag to create a table in a section containing popular brands and
models of Italian sport cars, and use the two parameters supported in HTML5, border
and sortable, to make this table have borders, and be able to be sorted. It’s important to
note that not all the browsers currently support a sortable parameter . This exotic car table
is accomplished using the following HTML5 markup:

 <!DOCTYPE html><html>
 <head><title>Exotic Car Table</title></head>
 <body>
 <section id="exotic car table">
 <table border="1" sortable>
 <tr>
 <th>Brand</th>
 <th>Model</th>
 </tr>
 <tr>
 <td>Ferrari</td>
 <td>LaFerrari</td>
 </tr>
 <tr>
 <td>Bugatti</td>
 <td>Chiron</td>
 </tr>
 <tr>

 Table 14-2. Ten <table> Parameters Used for Table Configuration

 HTML Table Tag Parameters HTML Table Tag Parameter Usage

 sortable Defines the table as sortable

 border Defines the table as having a border

 align Defines alignment (left, right, center)

 bgcolor Defines the table background color

 cellpadding Defines the table cell padding value

 cellspacing Defines the table cell spacing value

 frame Defines outside borders that are visible

 rules Defines inside borders that are visible

 summary Defines the summary of the table content

 width Defines the table width

CHAPTER 14 ■ HTML5 TABLES: CONSTRUCTING DATA IN A TABULAR FORMAT

122

 <td>Maserati</td>
 <td>GranCabrio</td>
 </tr>
 <tr>
 <td>Lamborghini</td>
 <td>Gallardo</td>
 </tr>
 </table>
 </section>
 </body></html>

 Next, let’s take a look at how the table caption <caption> tag allows you to add a
caption to the parent Table <table> tag it is contained in.

 The CAPTION Tag: Adding a Caption to Your Table
 The <caption> tag is used as a child tag to define the caption for your table element. The
<caption> tag needs to be inserted immediately after the <table> tag. This tag has one
align parameter, which is not supported in HTML5 due to the trend toward using CSS for
styling and tag markup for content definition.

 Let’s use the caption tag to add a caption to your table example. This is
accomplished in the following HTML markup:

 <!DOCTYPE html><html>
 <head><title>Exotic Car Table with Caption</title></head>
 <body>
 <section id="exotic car table">
 <table>
 <caption> Exotic Italian Car Manufacturers and Current Models </caption>
 <tr><th>Brand</th><th>Model</th></tr>
 <tr><td>Ferrari</td><td>LaFerrari</td></tr>
 <tr><td>Bugatti</td><td>Chiron</td></tr>
 <tr><td>Maserati</td><td>GranCabrio</td></tr>
 <tr><td>Lamborghini</td><td>Gallardo</td></tr>
 </table>
 </section>
 </body></html>

 Notice that I’ve also made the table markup more compact in the way I am spacing
my tags, with table row constructs each occupying their own line of markup. As long as
everything nests properly, spacing makes no difference to the HTML5 parsing engines.

 Next, let’s look at table content definition child tags.

CHAPTER 14 ■ HTML5 TABLES: CONSTRUCTING DATA IN A TABULAR FORMAT

123

 HTML5 Table Content Definition: TR, TH, and TD
 The next three tags in Table 14-1 allow you to define your table rows and their cells. There
are five parameters for the <tr> tag, none of which is supported in HTML5. I include them
in Table 14-3 for those of you working on legacy projects.

 Table 14-3. Five Table Row <tr> Parameters Used Prior to HTML5

 HTML Table Tag Parameters HTML Table Tag Parameter Usage

 align Alignment (left, right, center, justify)

 bgcolor Defines the table row background color

 char Aligns content to a table row character

 charoff Defines the character alignment offset

 valign Vertical alignment (top, middle, bottom)

 A table row is kind of like a record in a database, with the table cells serving as data
fields inside of a data record. In fact, with tables being sortable and semantic search
relating more and more to data, the <table> tag and its children are very well positioned
to be used in this fashion in Web 3.0.

 As you’ve seen in the examples thus far, each <tr> element contains one or more
 <th> or <td> elements.

 Since you have already seen how the <tr> element is used, I move on to cover table
heading <th>, and table data <td> elements in this section, without using up any space
for markup listings. To see these elements in action, simply refer back to the tags that I
covered in the previous section.

 The TH Tag: Defining the Table Heading Cells in the Table Row
 The <th> tag defines the table headings in a table row. These headings are used to label
subsequent rows of data by using headings for each column. An HTML table has two
kinds of cells: heading cells, called header cells , which contain heading information, and
 standard cells , which contain table data. Standard cells are created by using the <td>
element, which is covered in the next section.

 The text content used inside these <th> elements are bolded and centered by
default (automatically). The text in your <td> elements, on the other hand, would not
be bolded, and should be left-aligned as a default, just like text in most tables and in
spreadsheets, that is, data, and not heading text (labels, data field names, etc.).

 This is seen in the default CSS3 stylesheet settings for the <th> element, which are
shown here to reinforce this:

 th { display: table-cell ;
 vertical-align: inherit;
 font-weight: bold ;
 text-align: center ; }

http://www.w3schools.com/TAGS/tag_th.asp
http://www.w3schools.com/TAGS/tag_td.asp

CHAPTER 14 ■ HTML5 TABLES: CONSTRUCTING DATA IN A TABULAR FORMAT

124

 Notice that CSS supports tables implicitly with a table-cell parameter and that the
vertical alignment parameter is inherited, from the table row <tr> parent tag (see Table 14-3).

 There are six parameters supported for the table heading <th> tag in HTML5, as seen
in the top section of Table 14-4 . There are nine other parameters that aren’t supported
in HTML5 but work in earlier versions of HTML. The sorted parameter allows you to
define the sort direction (reversed, number, reversed number, or number reversed) and
a scope parameter allows you to define your <th> tag’s scope of influence (row, column,
rowgroup, or colgroup).

 Table 14-4. Fifteen <th> Parameters Used for Table Headers

 HTML Table Tag Parameters HTML Table Tag Parameter Usage

 sorted Defines a sort direction for that column

 scope Defines header scope (col, row or group)

 abbr Defines a header abbreviation term

 headers Defines header cells a header relates to

 colspan Defines a number of columns header spans

 rowspan Defines a number of rows a header spans

 align Alignment (left, right, center, justify)

 axis Defines category names for header cell

 bgcolor Defines the header background color

 char Aligns content to table header character

 charoff Defines the character alignment offset

 height Defines the table height

 nowrap Specify no wrap flag for header content

 valign Vertical alignment (top, middle, bottom)

 width Defines the table width

 The abbr parameter defines the abbreviation for your header. The headers
 parameter defines the header cells that the <th> tag relates to. This allows you to have
more than one level of header information. To use this headers parameter, assign an id to
your top-level header, and reference it using a headers parameter. Here’s an example of
this using HTML markup:

 <tr><th id="namedata" colspan="2" >Enter Name Here:</th></tr>
 <tr>
 <th headers =" namedata ">Proper Name:</th>
 <th headers =" namedata ">Family Name:</th>
 </tr>

CHAPTER 14 ■ HTML5 TABLES: CONSTRUCTING DATA IN A TABULAR FORMAT

125

 I also show a colspan parameter in the previous example, since your Enter Name
Here needs to align over your Proper Name and Family Name headings, so it needs to
span two columns using a colspan="2" parameter value. You can do this same thing
using the rowspan parameter to have a heading span more than one row.

 Next, let’s look at complex tables that have different header, footer, and body sections.

 Complex Table Definition: THEAD, TBODY, TFOOT
 Similar to semantic tags, the <table> parent tag allows you to define a header and a
footer for your table, as well as a main body of content. The <thead> element is used in
conjunction with the <tbody> and <tfoot> elements, and each of these can specify the
various component parts of your table definition; that is, a table header, or <thead> ; a
table body, or <tbody> ; and a table footer, or <tfoot> . This more complex form of table
definition uses the tags shown in the third section of Table 14-1 .

 The THEAD Tag : Defining Each Description Term Child Element
 The <thead> tag groups header content in an HTML table. The <thead> element needs to
be used in conjunction with the <tbody> and <tfoot> elements so that you are specifying
each of the component semantic sections that are in your table. Browsers then leverage
these semantic design elements for asynchronous scrolling , allowing a table body to
independently move while the header and footer information remains locked in place.
When printing a large table that spans multiple pages, defining these global table region
elements enables a table header and a table footer to be printed at the top and bottom of
each page, respectively.

 This <thead> tag must always be a child tag of a <table> parent tag and needs to be
declared after any <caption> as well as any <colgroup> elements. Additionally a <thead>
must be used before the <tbody> or <tfoot> table section containers and used before any
<tr> elements.

 Default CSS3 defined for this <thead> tag is shown here, for reference purposes only,
and, as you can see, the header is centered vertically, and its border color is inherited
from its parent container, and it has its own table-header-group CSS3:

 thead { display: table-header-group;
 vertical-align: middle;
 border-color: inherit; }

 None of the table header group parameters are supported in HTML5, but I list them
 in Table 14-5 for those of you working on legacy HTML markup projects. The parameters
are all used for alignment and their usage is fairly self-explanatory.

http://www.w3schools.com/TAGS/tag_tbody.asp
http://www.w3schools.com/TAGS/tag_tfoot.asp

CHAPTER 14 ■ HTML5 TABLES: CONSTRUCTING DATA IN A TABULAR FORMAT

126

 Next, let’s take a look at the table body <tbody> tag.

 The TBODY Tag: Defining Each Description Data Child Element
 The <tbody> tag holds the main part of your table, and has the same considerations as
discussed in the previous section covering thead. This <tbody> tag must always be a child
tag of a <table> parent tag, and needs to be declared after any <caption> element, and
after any <colgroup> elements and after the <thead> element. Additionally, a <tbody>
must be used before the <tfoot> table footer section containers and used before any <tr>
elements containing any <th> and <td> elements.

 The default CSS for a <tbody> tag is seen as a grouping of table rows, and is middle
(vertical center) aligned. This is shown here for reference purposes, because this book
does not cover CSS3 quick syntax reference:

 tbody { display: table-row-group;
 vertical-align: middle;
 border-color: inherit; }

 The <tbody> parameters are the same ones shown in Table 14-5 , so I will not repeat
them again here.

 Next, let’s morph the initial example in this chapter and use a more complex table
version with <thead> and <tbody> to create the same results:

 <!DOCTYPE html><html>
 <head><title>Exotic Car Table with Caption</title></head>
 <body>
 <section id="exotic car table">
 <table>
 <caption>Exotic Italian Car Manufacturers and Current Models</caption>
 <thead>
 <tr><th>Brand</th><th>Model</th></tr>
 </thead>
 <tbody>
 <tr><td>Ferrari</td><td>LaFerrari</td></tr>
 <tr><td>Bugatti</td><td>Chiron</td></tr>

 Table 14-5. Table Head <thead> Parameters Used Prior to HTML5

 HTML THEAD Tag Parameters HTML THEAD Tag Parameter Usage

 align Alignment (left, right, center, justify)

 char Aligns content to a table row character

 charoff Defines the character alignment offset

 valign Vertical alignment (top, middle, bottom)

CHAPTER 14 ■ HTML5 TABLES: CONSTRUCTING DATA IN A TABULAR FORMAT

127

 <tr><td>Maserati</td><td>GranCabrio</td></tr>
 <tr><td>Lamborghini</td><td>Gallardo</td></tr>
 </tbody>
 </table>
 </section>
 </body></html>

 Next, let’s take a look at the table footer <tfoot> tag.

 The TFOOT Tag: Defining Each Description Data Child Element
 The <tfoot> tag holds the footer part of a table. It has the same considerations as
discussed in the previous two sections. This <tfoot> tag must always be a child tag of a
<table> parent tag, and needs to be declared after any <caption> element, and after any
<colgroup> elements and after the <thead> element. Additionally, a <tfoot> must be used
 before the <tbody> table body section container, which is counter-intuitive to what you
might assume. I would have assumed that the <tfoot> markup comes after the <tbody>
markup. In fact, this is not the case, so remember this rule!

 Default CSS for a <tfoot> tag looks like the following:

 tfoot { display: table-footer-group;
 vertical-align: middle;
 border-color: inherit; }

 The <tfoot> parameters are the same ones shown in Table 14-5 , so, I will not repeat
them again here. Remember, they are not supported in HTML5, so only use them in
legacy HTML projects and use CSS to implement these features. An HTML5 browser
might render these deprecated parameters, so be sure to test your HTML markup across
all popular browsers.

 Next, let’s morph the initial example in this chapter and use a more complex table
version using <thead>, <tbody> and <tfoot>, to create an enhanced table result, which
has a footer with references. This is done in the following HTML5 markup:

 <!DOCTYPE html><html>
 <head><title>Exotic Car Table with Caption</title></head>
 <body>
 <section id="exotic car table">
 <table>
 <caption>Exotic Italian Car Manufacturers and Current Models</caption>
 <thead>
 <tr><th>Brand</th><th>Model</th></tr>
 </thead>
 <tfoot>
 <tr><th>References:</th></tr>
 <tr><td>Sports Car Brands and Models researched using Google</td></tr>
 </tfoot>

CHAPTER 14 ■ HTML5 TABLES: CONSTRUCTING DATA IN A TABULAR FORMAT

128

 <tbody>
 <tr><td>Ferrari</td><td>LaFerrari</td></tr>
 <tr><td>Bugatti</td><td>Chiron</td></tr>
 <tr><td>Maserati</td><td>GranCabrio</td></tr>
 <tr><td>Lamborghini</td><td>Gallardo</td></tr>
 </tbody>
 </table>
 </section></body></html>

 Next, let’s take a look at column-related table tags.

 Table Column Definition: COL and COLGROUP
 Finally, let’s look at a couple of the table tags that allow you to work with table columns.
A <col> tag is generally used inside a <colgroup> tag to define column characteristics
across an entire column, so that you don’t have to do it inside every single <th> or <td>
tag. None of the column parameters is supported in HTML5, but I list them in Table 14-6
for all of you working on legacy HTML markup projects.

 Table 14-6. Table Column Parameters Used Prior to HTML5

 HTML THEAD Tag Parameters HTML THEAD Tag Parameter Usage

 align Alignment (left, right, center, justify)

 char Aligns content to a table row character

 charoff Defines the character alignment offset

 width Defines the column width

 valign Vertical alignment (top, middle, bottom)

 Next, let’s add a background color to each column in the example table. We’ll use
yellow for the car manufacturer column and orange for the car model column. This is
accomplished by nesting these two <col> definitions in order and arranged from left to
right inside the <colgroup> parent tag, as shown in the following HTML5 markup:

 <!DOCTYPE html><html>
 <head>
 <title>Exotic Car Table with Caption</title>
 </head>
 <body>
 <section id="bi-colored column exotic car manufacturer and model table">
 <table>
 <caption>Italian Car Manufacturer (Yellow) and Model (Orange)</caption>
 <colgroup>
 < col style="background-color:yellow" />
 < col style="background-color:orange" />
 </colgroup>

CHAPTER 14 ■ HTML5 TABLES: CONSTRUCTING DATA IN A TABULAR FORMAT

129

 <thead>
 <tr><th>Manufacturer</th><th>Model</th></tr>
 </thead>
 <tfoot>
 <tr><th>References:</th></tr>
 <tr><td>Sports Car Brands and Models researched using Google</td></tr>
 </tfoot>
 <tbody>
 <tr><td>Ferrari</td><td>LaFerrari</td></tr>
 <tr><td>Bugatti</td><td>Chiron</td></tr>
 <tr><td>Maserati</td><td>GranCabrio</td></tr>
 <tr><td>Lamborghini</td><td>Gallardo</td></tr>
 </tbody>
 </table>
 </section>
 </body></html>

 This puts yellow behind the car manufacturer column and orange behind the car
model column. Note that the <colgroup> construct of the child <col> tag definition is
after the <caption> tag, and before any <tr>, <thead>, <tfoot>, or <tbody> tags.

 Summary
 In this chapter, you learned about table tag support in HTML5 and earlier HTML
versions, including the <table>, <tr>, <th>, <td>, <thead>, <tbody>, <tfoot>, <caption>,
<colgroup>, and <col> tags. The next chapter looks at the HTML5 tags that support the
publishing of form-based content within HTML5 documents and applications.

131© Wallace Jackson 2016
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_15

 CHAPTER 15

 HTML5 Forms: Creating
Forms Using HTML5 Tags

 Let’s talk about the 13 form creation tags for HTML5 next; three are new to HTML5 and
ten work in HTML5 and HTML legacy versions. They allow developers to create different
types of form-based content, using a form container with data entry (or data input)
fields along with advanced user interface controls in the form, such as buttons and
drop-down lists that can make your forms interactive . These more specialized form-
related tags allow HTML5 developers to define forms for their document with a
significant amount of flexibility, using more than a dozen powerful tags. The form tags
talk to the server-side processing component in most circumstances, so we are only
going to cover the client-side form design HTML5 markup component in this process.
For server-side processing, make sure to get a book on PHP, JSF, Drupal, Joomla, AJAJ, or
AJAX at the Apress website (www.apress.com).

 In this chapter, you look at forms tags related to implementing forms content
in HTML, as all of these tags are supported in HTML5, and many in earlier versions
of HTML. These tags include a form <form> , label <label> , input <input> , text area
 <textarea> , field set <fieldset> , legend <legend>, select <select>, options <option>
and option group <optgroup> , button <button> , data list <datalist> , key generator
 <keygen> , and the output <output> tag that allows you to in-line calculations.

 HTML5 Form Tags: Interactive Information
 This chapter covers the 13 text-related form tags supported in HTML5, which create
 interactive forms to collect information. These are usually designed in a grid
configuration, or even styled similar to a table. Ten of these tags are supported in legacy
versions of HTML, and three of them are new to HTML5. These form tags would also
optimally be utilized as child tags of the semantic tags covered in Chapter 10 , so that the
form-based content is encapsulated (or wrapped) into standardized semantic containers.
Form data can also be semantic ; it can be assimilated using semantic search, as the
forms-related tag names describe what a form element defined by that tag does, and
therefore what it represents to the content.

 Table 15-1 shows 13 form tags supported in HTML5; ten of them are supported in
legacy HTML versions.

http://www.apress.com/
http://dx.doi.org/10.1007/978-1-4302-6536-8_10

CHAPTER 15 ■ HTML5 FORMS: CREATING FORMS USING HTML5 TAGS

132

 Let’s take a look at these form creation tags in logical sections, in the same way that
they are arranged in this table, starting with core HTML5 form tags <form>, <label>, and
<input>. These define important form characteristics or components to an HTML5
rendering engine. For this reason, these form tags should also be considered semantic
search tags. As such, it is important these tags are implemented correctly for forms.

 Basic HTML Form Creation: Form, Label, and Input
 The top-level form tags define the form itself include the form <form> tag, which is
utilized as the parent container for the form, and the <label> and <input> child tags,
which specify form labels and data input fields.

 The FORM Tag: The Core Tag Used to Create the Form Element
 A <form> tag defines the HTML form construct, which is used for obtaining user data
input . An HTML form, at a bare minimum, must consist of this <form> element, as well
as one or more of the elements seen in Table 15-1 .

 Two <form> element parameters were introduced in HTML5, autocomplete and
 novalidate , and six HTML parameters are still supported. One is no longer supported, as
shown in Table 15-2 .

 Table 15-1. Thirteen HTML Forms Design Content Publishing Tags

 HTML Form Creation Tag HTML Form Creation Tag’s Purpose or Usage

 form Defines a form

 input Defines an input (data field)

 label Defines an input (field) label

 textarea Defines text area (multi-line input field)

 fieldset Defines a fieldset (group of input fields)

 legend Defines a legend (label) for a fieldset

 select Defines a drop-down list

 option Defines an option in drop-down list

 optgroup Defines an option group in drop-down list

 button Defines a button

 datalist (new in HTML5) Pre-defined option list for input controls

 keygen (new in HTML5) Defines a key-pair generator field in form

 output (new in HTML5) Defines output (a result of a calculation)

CHAPTER 15 ■ HTML5 FORMS: CREATING FORMS USING HTML5 TAGS

133

 As you see in this chapter, all the other form tags are child tags of <form>. The
following HTML creates an empty form:

 <!DOCTYPE html><html>
 <head>
 <title>Empty Exotic Car Preference Form</title>
 </head>
 <body>
 <section id="exotic car preference form">
 <form action="myForm.asp" method="get" autocomplete="on" novalidate>
 <!-- Your Form Design and Child Tags will be nested in here -->
 </form>
 <p>Form data will be sent to a page on the server called "myForm.asp"</p>
 </section>
 </body>
 </html>

 This <form> tag defines the myForm.asp for the form data submission, defines
an HTTP “get” method for the server to read the data from the client form, sets the
 autocomplete feature to “on” and sets the novalidate feature to “true” by including the
novalidate parameter itself inside of the opening <form> tag.

 Next, let’s take a look at how to use the input <input> tag, to get data input from the
person filling out your form.

 Table 15-2. Nine <form> Parameters Used for Form Configuration

 HTML5 Form Tag Parameter HTML5 Form Tag Parameter’s Usage

 accept (no HTML5 support) Specifies a comma-separated list of file types that
a server accepts, which is submitted through a file
upload process

 autocomplete (New in HTML5) Specifies autocomplete on or off for form

 novalidate (New in HTML5) Specifies a form should not be validated

 accept-charset Specifies character encodings that are specified for
use for a form submission

 action Specifies where to submit the form data

 enctype Specifies how form data should be encoded

 method Specifies HTTP method to use (get or post)

 name Allows you to specify the form name

 target Specifies where to display the response is received
after submitting the form (_blank , _parent , _self , _top)

CHAPTER 15 ■ HTML5 FORMS: CREATING FORMS USING HTML5 TAGS

134

 The INPUT Tag: Adding Data Input Fields to the Form
 The <input> tag is used as a child tag to define DATA input areas for users to enter
text. These are commonly called fields in forms and in databases. This tag has so many
parameters that I am going to include two tables: one has the parameters that are new
to HTML5 and the other has parameters that are not supported in HTML5. There are
also those parameters that work in both HTML5 and legacy HTML versions. We’ll get to
parameters after a short example of using two <input> child tags in a parent <form> tag.

 Let’s use <input> tags to ask our users to enter the car manufacturer and model they
prefer, as shown in the following markup:

 <!DOCTYPE html><html>
 <head>
 <title>My Exotic Car Preference Form with Two Input Fields</title>
 </head>
 <body>
 <section id="exotic car preference form">
 <form action="myForm.asp" method="get" autocomplete ="on" novalidate>
 Manufacturer: < input type ="text" name ="manufacturer" value ="Ferrari">

 A Model Name: < input type ="text" name ="model-name" value ="LaFerrari">

 </form>
 <p>Please enter favorite exotic car manufacturer and model name above!</p>
 </section>
 </body>
 </html>

 Parameters specify text input, field name , and a default value . The autocomplete=“on”
parameter tells the browser that it is allowed to predict or guess the data value that the user
is typing in currently. When a user starts to type in a field, the browser should display options
to fill in the field, based on earlier typed values, or on pre-defined input. You see how this
pre-defined input is defined a bit later on in the chapter when we cover the <datalist> tag,
which is used to define a list of data elements. It is used with the autocomplete parameter
(and function) to greatly enhance the user experience of your form design by giving the
appearance of an “artificial intelligence” on the part of the form, which give the users
feedback as to what the field in a form is looking for from them.

CHAPTER 15 ■ HTML5 FORMS: CREATING FORMS USING HTML5 TAGS

135

 Table 15-3 lists the 19 new HTML5 <input> tag parameters.

 Table 15-3. HTML5 <input> Parameters Used in Form Configuration

 HTML5 Input Tag Parameter HTML5 Input Tag Parameter’s Usage

 autocomplete Specifies autocomplete on or off for input

 autofocus Specifies autofocus for input on page load

 dirname Specifies respect text direction for input

 form Specifies a form that the input belongs to

 formaction Specifies URL that the form is processed at

 formenctype Specifies encoding (for submit or image)

 formmethod Specifies HTTP method to use (get or post)

 formnovalidate Specifies input should not be validated

 formtarget Specifies where to display the response

 height Specifies the height for the input element

 list Specifies datalist containing input options

 max Specifies a maximum value for input element

 min Specifies a minimum value for input element

 multiple Specifies more than one value for an input

 pattern Specifies the “regular expression” that an <input>
element value is checked against

 placeholder Specifies a short hint , describing expected value to be
entered in an <input> element

 required Specifies an input field as being required

 step Specifies legal number intervals for input

 width Specifies the width for the input element

 Table 15-4 lists 11 legacy HTML <input> tag parameters.

CHAPTER 15 ■ HTML5 FORMS: CREATING FORMS USING HTML5 TAGS

136

 The align parameter isn’t supported in HTML5 because it is done with CSS3. These
other 11 parameters are supported in both HTML5 and in earlier (legacy) versions of HTML.

 Let’s add a limit to the number of characters that your user is allowed to use to
designate a car brand and model name:

 <form action="myForm.asp" method="get" autocomplete="on" novalidate>
 Manufacturer:
 <input type="text" name="manufacturer" value="Ferrari" maxlength ="16">

 A Model Name:
 <input type="text" name="model-name" value="LaFerrari" maxlength ="24">

 </form>

 This maxlength parameter allows you to control the width for text data fields, so that
you can have a compact form design, and limit a user to a reasonable character data length.

 Table 15-4. HTML <input> Parameters Used in Form Configuration

 HTML Input Tag Parameter HTML Input Tag Parameter’s Usage

 align (Not in HTML5) Specifies the alignment of an image input; only for
type=“image” (left, right, top, middle, bottom)

 accept Specifies the types of files that a server accepts; only for
type=“file” (audio/type, video/type, image/type)

 alt Specifies alternate text for images; this is only for
type=“image”

 checked Specifies input element pre-selected after the pageload;
this is for type=“checkbox” or for type=“radio”
(radio buttons)

 disabled Specifies <input> element should be disabled

 maxlength Specifies maximum characters in input field

 name Specifies the input field (element) name

 readonly Specifies that input field is read-only

 size Specifies input field width in characters

 src Specifies a URL for an image to use as a submit button;
only used for type=“image”

 type Specifies a type of input element to display

 value Specifies the input element default value

CHAPTER 15 ■ HTML5 FORMS: CREATING FORMS USING HTML5 TAGS

137

 Let’s add autofocus to the first data entry field so the user has their cursor in the
correct data field, ready to type:

 <form action="myForm.asp" method="get" autocomplete="on" novalidate>
 Manufacturer:
 <input type="text" name="manufacturer" value="Ferrari"
 maxlength="16" autofocus >

 A Model Name:
 <input type="text" name="model-name" value="LaFerrari" maxlength="24">

 </form>

 Now let’s “wire” the input fields to the form they’re in by using the name attribute
inside the <form> tag, and the form attribute in the <input> tag, referencing the same
characters:

 <form name =" carpreferenceform " action="myForm.asp" method="get"
 autocomplete="on" novalidate>
 Manufacturer:
 <input type="text" name="manufacturer" value="Ferrari"
 maxlength="16" form =" carpreferenceform " autofocus>

 A Model Name:
 <input type="text" name="model-name" value="LaFerrari"
 maxlength="24" form =" carpreferenceform ">

 </form>

 Notice that since I have a method=“get” inside of my <form> tag, that I don’t have to
use formmethod=“get” inside of each <input> tag. For design purposes, I can also define
 width and height in pixels for these data fields as well:

 <form name="carpreferenceform" action="myForm.asp" method="get"
 autocomplete="on" novalidate>
 Manufacturer:
 <input type="text" name="manufacturer" value="Ferrari" height="24"
 maxlength="16" form="carpreferenceform" autofocus width="128" >

 A Model Name:
 <input type="text" name="model-name" value="LaFerrari" height="24"
 maxlength="24" form="carpreferenceform" width="128" >

 </form>

 I’m not going to cover 30 parameters for the <input> element in detail here, because
some of these are self-explanatory, some are seldom used, and others are used in
conjunction with the server side of the form processing, which is likely a different team
member that is specifying what parameters to use!

 Next, let’s take a look at the <label> tag. This allows you to label the <input>
elements, especially those that use a type parameter, to designate something other than a
data field, such as a radio button, GUI button, or check box, for instance.

CHAPTER 15 ■ HTML5 FORMS: CREATING FORMS USING HTML5 TAGS

138

 The LABEL Tag: Fixed Text Label Definitions for Input Elements
 Whereas an <input> tag is an empty tag and contains no content, only parameters, a
 <label> tag can contain a descriptive label , in between the <label> and </label> opening
and closing tags. The <label> tag is specifically used to define a label for a related <input>
element. This <label> tag does not render as anything special for the user other than a
text label. However, it does provide a user experience improvement for touchscreen and
mouse users, because if the user touches or clicks text specified using this <label> element,
it toggles the input (control) element specified by the <input type="control-name"> .

 There are only two parameters for this <label> tag; the form parameter, which
you have seen with the <input> tag, which “wires” the <label> to a <form>, and the for
parameter, which wires the <label> to the <input> itself, using an id parameter.

 The for parameter for the <label> tag should be equal to the id attribute for the
related <input> element, to bind them together. This is shown in the following HTML5
markup example:

 <!DOCTYPE html><html>
 <head>
 <title>My Exotic Car Preference Form using Six Radio Buttons</title>
 </head>
 <body>
 <section id="exotic car preference form">
 <form name="carform" action="myForm.asp" method="get" novalidate>
 <label for="ferrari" >Ferrari</label>
 <input type="radio" name="cartype" form=" carform " id=" ferrari "
 value="Ferrari Brand Selected" />

 <label for="maserati" >Maserati</label>
 <input type="radio" name="cartype" form=" carform " id=" maserati "
 value="Maserati Brand Selected" />

 <label for="bugatti" >Bugatti</label>
 <input type="radio" name=cartype" form=" carform " id=" bugatti "
 value="Bugatti Brand Selected" />

 <label for="laferrari" >Ferrari</label>
 <input type="radio" name="carmodel" form=" carform " id=" laferrari "
 value="Ferrari La Ferrari Model Selected" />

 <label for="grancabrio" >GranCabrio</label>
 <input type="radio" name="carmodel" form=" carform " id=" grancabrio "
 value="Maserati GranCabrio Model Selected" />

 <label for="chiron" >Chiron</label>
 <input type="radio" name=carmodel" form=" carform " id=" chiron "
 value="Bugatti Chiron Model Selected" />

 <input type="submit" value="Please Submit My Choices" form="carform" />
 </form>
 <p>Please select your favorite exotic car manufacturer and model name</p>
 </section>
 </body></html>

CHAPTER 15 ■ HTML5 FORMS: CREATING FORMS USING HTML5 TAGS

139

 This time we are using radio buttons to designate a user selection of their favorite
car manufacturer, and favorite car. The radio buttons are grouped by name , so that you
can’t select more than one, and are wired to the form and input described earlier using
 form and for parameters respectively. The value you provide is what is sent to the server
(or e-mail address) when the form is submitted using the <input type=“submit”> tag,
which is used for a simple Submit button. Complex buttons are covered later in this
chapter. Next, let’s take a look at larger areas of form data entry such as text areas or
paragraph text entry and groups of fields or field sets.

 HTML Form Content Groups: TextArea or FieldSet
 The next three tags in Table 15-1 allow you to define large data entry areas for text and
collections of data input fields. There are over a dozen parameters for these tags, all of
which are supported in HTML5. I include them in Tables 15-5 and 15-6 , and try to cover
all the key parameters in the examples.

 The TEXTAREA Tag: Define a Block or Paragraph of Text Input
 The < textarea> tag allows you to define multi-line text input controls. These text area
controls can hold an unlimited number of characters, although this is not advised, and
text renders using a fixed-width font such as monospace or Courier). The size of the
text area should be specified using the cols and rows parameters, as I have done in the
following example markup, where I ask the users for a written description of their favorite
car brand and model. I am also using just about every <textarea> tag parameter possible
within the example, including autofocus, required, name, form, placeholder,
and maxlength.

 <!DOCTYPE html><html>
 <head>
 <title>Exotic Car Preference Written Description Form</title>
 </head>
 <body>
 <section id="exotic car preference paragraph form">
 <form name="cardescription" action="myForm.asp" method="get" novalidate>
 <textarea rows="5" cols="250" maxlength="1250" required
 name="myfavoritecar" form="cardescription" autofocus
 placeholder="Write a short paragraph on your favorite car">
 Please write a short paragraph on your favorite car and brand in here!
 </textarea>
 </form>
 <p>Please write a short paragraph on your favorite car and brand above</p>
 </section>
 </body></html>

CHAPTER 15 ■ HTML5 FORMS: CREATING FORMS USING HTML5 TAGS

140

 The dozen parameters for this <textarea> tag is listed in Table 15-5 , with the five
legacy parameters listed in the first section, and the seven new HTML5 parameters listed
in the second section.

 Next, let’s look at how to logically group fields and data entry controls together,
using the <fieldset> element.

 The FIELDSET Tag: Grouping Data Fields and Input Controls
 The <fieldset> tag is used to group related form data field and control elements together
within a complex form. The <fieldset> tag draws a box around related elements to group
them visually.

 Let’s use the radio button control example, and put the car brand selection and
car model selection radio buttons into their own logical sections, by using this
<fieldset> element.

 This should look like the following HTML5 markup:

 <!DOCTYPE html><html>
 <head>
 <title>Exotic Car Preference Form: 6 Radio Buttons in 2 Field Sets</title>
 </head><body>
 <section id="exotic car preference form">
 <form name=" carform " action="myForm.asp" method="get" novalidate>
 <fieldset name=" carbrands " form=" carform ">
 <label for="ferrari">Ferrari</label>

 Table 15-5. Twelve HTML5 Parameters for Text Area Configuration

 TextArea Tag Parameter TextArea Tag Parameter’s Usage

 cols Specifies text area columns (characters)

 rows Specifies text area rows (lines)

 name Specifies the text area (element) name

 disabled Specifies text area should be disabled

 readonly Specifies that text area is read-only

 autofocus Specifies text area autofocus on page load

 dirname Specifies please respect text area direction

 form Specifies the form text area belongs to

 maxlength Specifies text area maximum character count

 placeholder Specifies description of what text is needed

 required Specifies that text area completion required

 wrap Specifies how text area needs to be wrapped
(options are hard or soft)

CHAPTER 15 ■ HTML5 FORMS: CREATING FORMS USING HTML5 TAGS

141

 <input type="radio" name="cartype" form="carform" id="ferrari"
 value="Ferrari Brand Selected" />

 <label for="maserati">Maserati</label>
 <input type="radio" name="cartype" form="carform" id="maserati"
 value="Maserati Brand Selected" />

 <label for="bugatti">Bugatti</label>
 <input type="radio" name=cartype" form="carform" id="bugatti"
 value="Bugatti Brand Selected" />

 </fieldset>
 <fieldset name=" carmodels " form=" carform ">
 <label for="laferrari">Ferrari</label>
 <input type="radio" name="carmodel" form="carform" id="laferrari"
 value="Ferrari La Ferrari Model Selected" />

 <label for="grancabrio">GranCabrio</label>
 <input type="radio" name="carmodel" form="carform" id="grancabrio"
 value="Maserati GranCabrio Model Selected" />

 <label for="chiron">Chiron</label>
 <input type="radio" name=carmodel" form="carform" id="chiron"
 value="Bugatti Chiron Model Selected" />

 </fieldset>
 <input type="submit" value="Please Submit My Choices" form="carform" />
 </form>
 <p>Please select favorite exotic car manufacturer and model name above</p>
 </section>
 </body></html>

 Notice that I have wired everything together using the form and name parameters,
as well as naming the logical fieldsets. Three HTML5 <fieldset> parameters are listed in
Table 15-6 .

 Next, let’s take a look at the complex form’s <legend> element.

 The LEGEND Tag: Adding a Legend to the Field Set Groupings
 The <legend> tag defines a caption for the <fieldset> element. It has one align parameter
(see Table 15-4) that is no longer supported in HTML5, as you now need to use CSS
for this alignment function (although the parameter may still work in some browsers
attempting to provide backward compatibility). Align parameter values include top ,
 bottom , left , and right .

 Table 15-6. Three <fieldset> Parameters Used Prior to HTML5

 HTML FieldSet Tag Parameter HTML FieldSet Tag Parameter’s Usage

 disabled Specifies text area should be disabled

 form Specifies the form text area belongs to

 name Specifies the text area (element) name

CHAPTER 15 ■ HTML5 FORMS: CREATING FORMS USING HTML5 TAGS

142

 <form name="carform" action="myForm.asp" method="get" novalidate>
 <fieldset name="carbrands" form="carform">
 <legend>Choose Your Favorite Exotic Sports Car Brand:</legend>
 <label for="ferrari">Ferrari</label>
 <input type="radio" name="cartype" form="carform" id="ferrari"
 value="Ferrari Brand Selected" />

 <label for="maserati">Maserati</label>
 <input type="radio" name="cartype" form="carform" id="maserati"
 value="Maserati Brand Selected" />

 <label for="bugatti">Bugatti</label>
 <input type="radio" name=cartype" form="carform" id="bugatti"
 value="Bugatti Brand Selected" />

 </fieldset>
 <fieldset name="carmodels" form="carform">
 <legend>Choose Your Favorite Exotic Sports Car Model:</legend>
 <label for="laferrari">Ferrari</label>
 <input type="radio" name="carmodel" form="carform" id="laferrari"
 value="Ferrari La Ferrari Model Selected" />

 <label for="grancabrio">GranCabrio</label>
 <input type="radio" name="carmodel" form="carform" id="grancabrio"
 value="Maserati GranCabrio Model Selected" />

 <label for="chiron">Chiron</label>
 <input type="radio" name=carmodel" form="carform" id="chiron"
 value="Bugatti Chiron Model Selected" />

 </fieldset>
 <input type="submit" value="Please Submit My Choices" form="carform" />
 </form>

 Next, let’s look at the option selection tags for complex forms.

 HTML Form Option Selection: Select and Option
 HTML5 forms have some fairly complex options for selecting options and option
grouping, much like the menus in the application software packages, which makes form
design one of the most advanced area in HTML5 publishing, along with new media and
interactivity, as you see later on in this book. The third section of Table 15-1 shows tags
used to create these selection sets , called drop-down lists , in HTML5 form design.

 The SELECT and OPTION Tags: Defining Drop-Down Lists
 The <select> element creates drop-down lists . The <option> tag is used inside of the
<select> element to define any options you want to make available using this list. These are
similar to radio buttons, in that you can only select one member of the list. If you want to
select more than one, use a group of check boxes, where multiple data items can be selected.

CHAPTER 15 ■ HTML5 FORMS: CREATING FORMS USING HTML5 TAGS

143

 There are seven parameters supported for a <select> tag, three of these are new
in HTML5 and are seen in the top section of Table 15-7 . Another four parameters are
supported for legacy HTML versions, and are seen in the bottom section of the table.

 Table 15-7. Seven <select> Parameters Used for Selection Lists

 HTML5 Select Tag Parameter HTML5 Select Tag Parameter’s Usage

 autofocus Specifies selector autofocus on page load

 form Specifies the form selector belongs to

 required Specifies that a selection is required

 disabled Specifies the selector should be disabled

 multiple Specifies more than one value for selector

 name Specifies the selector name

 size Defines the number of selection options

 Let’s create a manufacturer and model selection example, that uses the <select> and
<option> tags inside of a <fieldset> tag, inside of a <form> tag inside of a semantic <section>
tag, instead of using radio buttons to provide a user with a single selection option.

 You wire the <select> tag into the <form> tag, using the name parameter inside of
the <form> tag, and using the form parameter inside of each of the <select> tags.

 You use the required parameter in <select> tags and the size=“4” parameter to
specify the number of options. You should set the autofocus parameter in the first
<select> so that it is pre-selected for use, and finally use a name parameter to give each
<select> element a unique identity.

 Here’s an example of this using HTML5 markup:

 <!DOCTYPE html><html>
 <head>
 <title>Exotic Car Selection Form: 8 List Selections in 2 Field Sets</title>
 </head>
 <body>
 <section id="exotic car preference form">
 <form name=" carform " action="myForm.asp" method="get" novalidate>
 <fieldset name="carbrands" form="carform">
 <select form=" carform " required name=" brandlist " autofocus size="4" >
 <option value="ferrari" label ="Ferrari">Enzo Ferrari</option>
 <option value="maserati" label="Maserati">Alfieri Maserati</option>
 <option value="bugatti" label="Bugatti">Ettore Isidoro Bugatti</option>
 <option value="lmbo" label="Lamborghini">Ferruccio Lamborghini</option>
 </select>
 </fieldset>
 <fieldset name="carmodels" form="carform">
 <select form=" carform " required name=" modellist " size="4" >
 <option value="laferrari">LaFerrari</option>

CHAPTER 15 ■ HTML5 FORMS: CREATING FORMS USING HTML5 TAGS

144

 <option value="grancabrio">GranCabrio</option>
 <option value="chiron">Chiron</option>
 <option value="gallardo">Gallardo</option>
 </select>
 </fieldset>
 <input type="submit" value="Please Submit My Selection" form="carform"/>
 </form>
 <p>Please select favorite exotic car manufacturer and model name above</p>
 </section>
 </body></html>

 Also notice that I am using a label attribute to specify a shorter version of an option
text value. This shorter version is displayed in the drop-down list. Also note that this is not
yet fully implemented in all of the browsers across all of the HTML5 platforms, but it is
only a matter of time before it is fully supported as its implementation is quite logical.

 Next, let’s look at the option group or <optgroup> tag.

 The OPTGROUP Tags: Grouping the Drop-Down List Options
 The < optgroup> tag groups related options in drop-down lists. If you have long lists full
of options, then a grouping of related options is easier to digest for your end users. Let’s
group the car manufacturer list options into a more expensive and less expensive list
grouping to see how this <optgroup> tag is used. The HTML5 markup looks like this:

 <select form="carform" required name="brandlist" autofocus size="4">
 <optgroup label="More Affordable Exotic Cars">
 <option value="ferrari" label="Ferrari">Enzo Ferrari</option>
 <option value="maserati" label="Maserati">Alfieri Maserati</option>
 </optgroup>
 <optgroup label="Less Affordable Exotic Cars">
 <option value="bugatti" label="Bugatti">Ettore Isidoro Bugatti</option>
 <option value="lambo" label="Lamborghini">Ferruccio Lamborghini</option>
 </optgroup>
 </select>

 Next, let’s take a look at the <button> form design tag.

 The BUTTON Tag: Creating User Interface Buttons
 The <button> tag defines clickable buttons for submitting or resetting a form, or for
custom purposes. You may place content, such as text or imagery, inside of the <button>
elements. This is the primary difference between the <button> element and submit
buttons created earlier in the chapter using the <input type=“submit”> element.

CHAPTER 15 ■ HTML5 FORMS: CREATING FORMS USING HTML5 TAGS

145

 Be sure to always specify a type parameter, using either the submit , reset , or button
value with the <button> elements. It is important to note that different HTML5 browsers
use different default types for this <button> element, so you need to “force the issue”
by specifying what you want the button to do, and not rely on default values to be set
correctly for you!

 Eight HTML5 <button> parameters are listed in Table 15-8 , along with three legacy
HTML parameters.

 Table 15-8. HTML5 <button> Parameters for Button Configuration

 HTML5 Button Tag Parameter HTML5 Button Tag Parameter’s Usage

 autofocus Specifies autofocus for button on page load

 form Specifies a form that the button belongs to

 formaction Specifies URL the form is processed at

 formenctype Specifies encoding (for submit or image)

 formmethod Specifies HTTP method to use (get or post)

 formnovalidate Specifies button should not be validated

 formtarget Specifies where to display the response

 name Specifies the button element name

 disabled Specifies that a button is disabled for use

 type Selects button type (button, reset, submit)

 value Specifies a text value for the button label

 Let’s replace that <input type=“submit”> in the example with <button
type=“submit”> and <button type=“reset”> markup:

 <!DOCTYPE html><html>
 <head>
 <title>Exotic Car Selection Form: 8 List Selections in 2 Field Sets</title>
 </head><body>
 <section id="exotic car preference form">
 <form name=" carform " action="myForm.asp" method="get" novalidate>
 <fieldset name="carbrands" form="carform">
 <select form="carform" required name="brandlist" autofocus size="4">
 <option value="ferrari" label="Ferrari">Enzo Ferrari</option>
 <option value="maserati" label="Maserati">Alfieri Maserati</option>
 <option value="bugatti" label="Bugatti">Ettore Isidoro Bugatti</option>
 <option value="lmbo" label="Lamborghini">Ferruccio Lamborghini</option>
 </select>
 </fieldset>
 <fieldset name="carmodels" form="carform">
 <select form="carform" required name="modellist" size="4">
 <option value="laferrari">LaFerrari</option>

CHAPTER 15 ■ HTML5 FORMS: CREATING FORMS USING HTML5 TAGS

146

 <option value="grancabrio">GranCabrio</option>
 <option value="chiron">Chiron</option>
 <option value="gallardo">Gallardo</option>
 </select>
 </fieldset>
 <button type=" submit " value=" Submit Choices " form=" carform " name=" B1 " />
 <button type=" reset " value=" Reset Choices " form=" carform " name=" B2 " />
 </form>
 <p>Please select favorite exotic car manufacturer and model name above</p>
 </section></body></html>

 Note that I am using the two pre-defined type values to create two functional
buttons, as well as button label values, button names, and a recommended tie-in to the
form name using the form parameter. Next, let’s take a look at the new HTML5 form tags .

 New HTML5 Form Tags: DataList, KeyGen, Output
 There are three new tags in HTML5 for form design. They allow you to define data lists
for auto-complete, generate keys for data security, and output the results of calculations
on data.

 The DATALIST Tag: Defining Each Description Term Child Elem
 The <datalist> tag specifies a list of pre-defined options for an <input> element to use
via the list parameter shown in Table 15-3 . The <datalist> tag is for use in providing the
auto-complete feature on <input> elements. When a <datalist> is provided, users see a
drop-down list of pre-defined options appear once they start to input data. To bind the
<input> element list parameter together with a <datalist> element, use the id parameter
in a <datalist> tag, as shown in the following HTML5 markup:

 <input list =" italiancars ">
 <datalist id =" italiancars ">
 <option value="Ferrari">
 <option value="Maserati">
 <option value="Bugatti">
 <option value="Lamborghini">
 </datalist>

 Next, let’s take a look at a Key Generator <keygen> tag.

 The KEYGEN Tag: Defining Each Description Data Child Element
 The <keygen> tag allows you to specify a security key-pair generator field , used for
securing form data. When the form is submitted, a private key is stored locally, and a
public key is sent to the server.

CHAPTER 15 ■ HTML5 FORMS: CREATING FORMS USING HTML5 TAGS

147

 Here is a sample form and username input that uses this <keygen> tag and a <button>
tag to submit the secure key to the server, as shown in the following HTML5 markup:

 <form action="private_keygen.asp" method="get" name=" keyform ">
 Username: <input type="text" name="user_name">
 Encryption: <keygen name="security_key">
 <button type="submit" value="Submit Secure Key" form=" keyform " name="K1"/>
 </form>

 Table 15-9 shows the six HTML5 parameters supported by the <keygen> tag.

 Next, let’s take a look at the output <output> tag.

 The OUTPUT Tag: Defining Each Description Data Child Element
 The <output> tag represents the result of a calculation, such as one performed using
<input> data fields, as done in the example, or from a more complex JavaScript
calculation. Table 15-10 shows the three parameters supported in HTML5 for the new
<output> tag (element).

 Table 15-9. Six <keygen> Parameters for Secure Key Generation

 HTML5 KeyGen Tag Parameter HTML5 KeyGen Tag Parameter’s Usage

 autofocus Specifies KeyGen autofocus on page load

 form Specifies form that the KeyGen belongs to

 disabled Specifies KeyGen element will be disabled

 keytype Specifies a security algorithm for the key

 name Defines the KeyGen element name

 challenge Specifies that the value of the <keygen> element is
 challenged on submission

 Table 15-10. Three <output> Parameters for Output Generation

 HTML5 Output Tag Parameter HTML5 Output Tag Parameter’s Usage

 for Specifies the relationship between the result of
the calculation and elements that were used in that
calculation

 form Specify form that the output belongs to

 name Defines the output element name

CHAPTER 15 ■ HTML5 FORMS: CREATING FORMS USING HTML5 TAGS

148

 Let’s create a <form> construct that adds two numbers, using the <input> fields to
collect the data, an oninput event in the <form> tag to do a simple output=inputA+inputB
calculation, and an <output> tag to hold the output. The <form> and <output> constructs
are wired together using the o.value (form oninput), and the name="o" (output tag
parameter).

 The HTML5 markup for this looks like the following:

 <form name="add2numbers" onsubmit="return false"
 oninput="o.value = parseInt(a.value) + parseInt(b.value)">
 <input name="a" type="number" step="any"> +
 <input name="b" type="number" step="any"> =
 <output name="o"></output>
 </form>

 Next, we’re going to get into defining areas with HTML5.

 Summary
 This chapter discussed forms tag support in HTML5 and previous versions, including
the <form>, <input>, <label>, <textarea>, <fieldset>, <legend>, <select>, <option>,
<optgroup>, <button>, <datalist>, <keygen>, and <output> tags. In the next chapter, you
learn about HTML5 tags support the positioning of content within HTML5 documents
and applications as well as defining areas in HTML5 using pixels or percentages, so that
your HTML design is precise!

149© Wallace Jackson 2016
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_16

 CHAPTER 16

 HTML5 Position: Document
Layout and Text Spanning

 Let’s talk about the tags in HTML5 that allow developers to group elements and control
the content’s position . Let’s also discuss tags that allow the grouped elements to be styled
as if they were one single functional unit. These tags include the division <div> tag and
the span tag. These tags do nothing in and of themselves; they must be styled.

 This chapter looks at the powerful tags in HTML5 that implement advanced content
design techniques. We start with the tag because it affects only text elements, and
then we progress to the more complex and powerful <div> tag. The and <div> tags
have no HTML5 parameters, because they are styled using CSS3. The chapter features no
tables, only HTML5 markup examples.

 Defining Text Spans: Using the SPAN Tag
 The tag is utilized to group in-line elements within your HTML5 document.
The tag provides no visual result in and of itself, it must be styled using CSS3
or manipulated using JavaScript. Therefore, the tag provides developers with
a way to add external access to be able to hook onto a section of text content, image or
document portion encapsulated using the starting tag along with an ending
 tag.

 The following HTML5 markup example uses a tag and the global HTML5
 style parameter to color part of the sentence:

 <p>Ferrari's come in a Ferrari Red color</p>

 The primary difference between a tag and a <div> tag is that the tag
is used in-line (inside of other tags), whereas the <div> tag creates block constructs or
deeply nested HTML5 markup constructs (that look like blocks of HTML5 markup, and
hence the name “block level construct”).

 There are no local or native parameters for a tag in HTML5; however, there
are certain global HTML5 parameters that are commonly used with the tag.
These include an id or a class parameter , used to access the , using external CSS3
definitions, and the title tag to allow mouse-over pop-ups to be attached to spanned

CHAPTER 16 ■ HTML5 POSITION: DOCUMENT LAYOUT AND TEXT SPANNING

150

text elements. Here is an example of these parameters using HTML5 markup from the
previous example:

 <p>The Ferrari La Ferrari Model will usually come painted in the

 Ferrari Red color
 , unless you order it in some custom (other than red) color.</p>

 span# myspan { color:red; } /* Externalized CSS3 linked via a .CSS file */

 A span can also be used with imagery! This is especially useful when using event
handler parameters . Surround the tag with a tag configured to use
 onMouseDown , onMouseOut , and onDblClick , to allow your user to single click an
image and turn a Ferrari image blue, double-click an image to turn the Ferrari image
yellow, and remove the mouse from over the image, to restore the default red Ferrari
image. This is done in the following HTML5 markup:

 <p>Click image to see a Blue Ferrari, Double-Click for a Yellow Ferrari:</p>
 <span onMouseDown ="document. ferrarigif .src='blueferrari.gif'"
 onMouseOut ="document. ferrarigif .src='redferrari.gif'"
 onDblClick ="document. ferrarigif .src='yellowferrari.gif'">
 < img src ="redferrari.gif" height="240" width="480" nam e=" ferrarigif ">

 It is also useful to use the language related parameters of dir (text direction) and
 lang (language definition) with the tag, because is primarily utilized to
affect text elements, which are affected by languages and text direction.

 You can change the text direction within the by using the dir parameter via
the following HTML5 markup:

 <p>Ferrari comes in a standard Ferrari Red color</p>

 You can also define the language used in a span of text by using the <span
lang=“language”> configuration. Let’s say a Ferrari is very sexy in Italy as shown in the
following HTML5 markup:

 <p>Ferrari's are considered Molto Sexy in Italy</p>

 Next, let’s take a look at the <div> tag and how you can use this tag to build complex
HTML5 document designs, enclosing HTML5 constructs in <div> tags which have been
assigned the id, or class, parameter. First, let’s take a look at the difference between using
the id parameter and the class parameter for CSS3 applications, which the <div> tag
leverages extensively.

CHAPTER 16 ■ HTML5 POSITION: DOCUMENT LAYOUT AND TEXT SPANNING

151

 Use of id, vs. Name, vs. Class
 There has generally been some confusion as HTML5 has evolved in regards to three
different parameters that are used to identify design elements (tags). These are the id ,
 name , and class . I try to clarify what each of these is best suited for in this section of
the chapter, since <div> and rely heavily on these to identify them for external
processing, since these two tags do not do anything, in and of themselves.

 Identifiers : Use an id for JavaScript and Fragments
 The id parameter is short for identifier ; more precisely, it is short for fragment identifier .
It allows you to go to a specific section of your document, using a URL plus a hash sign
(or pound sign) “#” fragment designation. This is done with the # character between the
URL and the value which was used in the id=“fragment-id-value” parameter. This is an
example of fragment URLs:

 http://www.website-name-here.com/webpage-name.html # fragment-id-value

 It is created in your HTML5 markup using the <p> tag:

 <p id =fragment-id-value>This is a paragraph of text you want to jump to</p>

 Within the same document that you are currently in, this is referenced using only the
 fragment-id-value , inside of the <a> tag using the href parameter and the # sign, like this:

 Click here to go to this fragment/section

 It is important to note that you can only use an id name once for any XHTML,
HTML, or HTML5 document. A duplicate id tag causes your page to fail validation and
can have a negative effect when you are using ids with JavaScript. Besides defining
document fragment navigation, the id parameter is important in defining the document
elements that you process using JavaScript. Using ids for non-standard applications such
as CSS can potentially interfere with this, so use the class parameter for CSS3 selector
definitions.

 CSS3 can select ids to apply individual styles to them by using the hash sign (#), but
JavaScript relies on id as well due to its use of the getElementById() function utilized in
.js externalized JavaScript.

 For this reason, I’ll recommend segregating the usage of these three different
assignment parameters to the use they are most often used for: id for JavaScript and
fragment navigation; class for CSS3 selector designation; and name for forms, server, and
database usage (remote data server access). This way, you never get mixed up regarding
what you’re using a parameter for!

CHAPTER 16 ■ HTML5 POSITION: DOCUMENT LAYOUT AND TEXT SPANNING

152

 Classes : Use CLASS to Classify CSS3 Selectors
 Just as is used with CSS3, similarly, class can be used in JavaScript programming. The
class parameter is quite different from the id parameter, because class can be used
multiple times within the same HTML document. The separation of content (elements,
tags, markup) from presentation (CSS styles) is what makes HTML5 powered by CSS so
very powerful. Developers do not understand the full extent to which they can use classes
because many have become used to using (the much simpler) ids.

 It’s important to note that not only can classes be used more than once, but more
than one class designation can be used in an HTML5 element (tag), using the same class
parameter ! Here’s an example of this using HTML markup and CSS definition:

 <p>Ferrari automobile's are considered to be:
 Molto Sexy
 in most parts of Italy!
 </p>
 --------------------------CSS3 Selector Definition Below-----------------
 .left2right { direction: ltr; }
 .asexycolor { color: red; }

 The first piece of code is valid HTML; it shows a using two separate classes
in a single class parameter, using a space to separate the two classnames. This technique
can reduce your CSS3 stylesheet data footprint (size) considerably if used effectively. It is
important to note that you can use both ids and classes on the same HTML5 element, to
reference JavaScript (id) and CSS3 stylesheets (class), optimally.

 Names: Naming Forms, Controls and UI Elements
 The name attribute is most often used when sending data in a form submission, and
for wiring different form components together with the form, as you just observed
extensively in Chapter 15 . Due to slightly different parameter conventions, different
controls respond to these similar (name and id) parameters differently.

 You can have several radio buttons that all have different id attributes, but need to
use the same name parameter value to properly define their grouping so that users can
only select one option.

 At the end of the day, whether you use name, id, or class is entirely up to you so long
as you implement classes and ids properly, and the HTML5 works identically across
all of the different browsers, when you test it! It’s really just a matter of personal choice
regarding how and when to leverage these parameters.

 Define Document Areas: Using a DIV Tag
 The division <div> tag is used much like the span tag, except that the area defines
is a square area, called a block , rather than a line (or in-line) area, as is common to
define with text. I frequently use <div> tags to “stitch” together images and animations
to create a seamless user experience. Unlike the semantic tags, the <div> (and)
tags are invisible to the search engines and only relate to positioning and styling the

http://dx.doi.org/10.1007/978-1-4302-6536-8_15

CHAPTER 16 ■ HTML5 POSITION: DOCUMENT LAYOUT AND TEXT SPANNING

153

content around them, and do not affect the content itself. You should use these design
(positioning, styling, and aligning) tags in conjunction with semantic tags to achieve a
HTML5 result that is both visually stunning as well as semantically accurate.

 The DISPLAY Property: Block, In-Line, and None
 As I mentioned earlier, the in an in-line tag and the <div> is a block tag . These
happen to describe the CSS3 display property, which can also be set to none , which
hides that tag (element) from the HTML5 rendering engine altogether. This is different
from the hidden property, which renders the space that the element would take up in the
design, but makes it invisible (transparent). The none display property actually removes
that element from the design altogether, so to make sure your semantic tags did not affect
your visual design, you could set their display property to none!

 There are also custom display types related to lists and tables, and some hybrid types
such as flex and run-in that bridge the gap between block and in-line for advanced styling.

 Examples of elements besides the division <div> that use this block display property
include the paragraph <p> tag, the header <header> tag, footer <footer> tag, and section
<section> tag, the heading 1-6 <h1> through <h6> tags, and the form <form> tag.

 Examples of elements (besides) that use an in-line display property include the
anchor <a> tag and the image tag. You might be thinking, “Images are square. Why are
these not a block display type?” The reason imagery is in-line is because a text element wraps
around it for desktop publishing effects, making the image in-line with that text, in essence.

 Examples of some elements that default to a none display property include the script
<script> tag, which is covered in Chapter 17 , the style <style> tag, which is covered in
Chapter 18 , the title <title> tag, the head <head> tag, the link <link> tag, the meta <meta>
tag, and the base <base> tag.

 The Division or DIV Tag : Core Properties
 The <div> tag defines some division in or section of an HTML5 document. This is done
by using the <div> tag to group elements at the block-level, and then formatting these
elements inside of the <div> container by using CSS3 style definitions . In fact, the <div>
element is most frequently used as a generic container for HTML5 visual design, where
CSS3 aligns, positions, z-orders, shows/hides, fades, assigns effects to, and styles all
HTML5 content contained inside of that division.

 Let’s use the <div> tag to add a background color to the previous example, as seen in
the following HTML5 markup:

 <div style="background-color:yellow">
 <p>Click image to see Blue Ferrari, Double-Click for Yellow Ferrari:</p>
 <span onMouseDown="document.ferrarigif.src='blueferrari.gif'"
 onMouseOut="document.ferrarigif.src='redferrari.gif'"
 onDblClick="document.ferrarigif.src='yellowferrari.gif'">

 <p>Everything in this document division will have yellow behind it!</p>
 </div>

http://dx.doi.org/10.1007/978-1-4302-6536-8_17
http://dx.doi.org/10.1007/978-1-4302-6536-8_18

CHAPTER 16 ■ HTML5 POSITION: DOCUMENT LAYOUT AND TEXT SPANNING

154

 This places yellow highlighting behind all of the paragraph text above and below the
interactive image and the image itself. As you can see, you have put a global style on all of
these contained document elements by using the <div> tag as a division container.

 The more common way for a <div> element to be styled is to assign it a classname
using the class parameter , like this:

 <div class ="example">
 <p>Click image to see Blue Ferrari, Double-Click for Yellow Ferrari:</p>
 <span onMouseDown="document.ferrarigif.src='blueferrari.gif'"
 onMouseOut="document.ferrarigif.src='redferrari.gif'"
 onDblClick="document.ferrarigif.src='yellowferrari.gif'">

 <p>Everything in this document division will have yellow behind it!</p>
 </div>

 div.example { background-color :yellow; position: absolute;
 top: 108px; left: 120px; width: 500px; height: 500px;
 z-index: -1; opacity: 0.5; border: solid 1px #000000; }
 .example { background-color: yellow; }

 The preceding code adds a background color, positions the <div>, sets a 50%
translucency, sets a z-index to be in the background, and draws a one-pixel solid
black border around the division. I also showed an example of how any element with
class=“example” is background-colored yellow to show the power of classes.

 Although this is not a CSS3 book, I show you some CSS3 in this chapter and in
Chapter 18 , because it is necessary to show you this material bridge between CSS3 and
HTML5 markup, and to show you how certain tags, such as <div>, <style>, <link>, and
 can work together with CSS3.

 It is important to note that the default behavior of the <div> tag when rendered in a
browser (or OS) is to place a line break before, as well as after, the <div> element. This can
be, and frequently is, changed by the developer using CSS3. In fact, the next thing to look
at is how I seamlessly stitch tag assets together using <div> tags and CSS3 for my
multimedia-related HTML5 content production pipeline.

 Seamless Image Stitching: Using DIVs with CSS3
 Now that we have looked at some less advanced <div> examples, I should show you a
more advanced example. Let’s look at how DIVs are used to assemble the various image
and animation components for the iTVset.com site, as well as overlaying JavaScript
clock elements, all done using <div> tags. JavaScript is covered in Chapter 17 and CSS3 is
covered in Chapter 18 . Figure 16-1 shows the result of the HTML5 markup we’re going to
look at next. This is styled using a CSS3 stylesheet, which we explore after that.

http://dx.doi.org/10.1007/978-1-4302-6536-8_18
http://dx.doi.org/10.1007/978-1-4302-6536-8_17
http://dx.doi.org/10.1007/978-1-4302-6536-8_18

CHAPTER 16 ■ HTML5 POSITION: DOCUMENT LAYOUT AND TEXT SPANNING

155

 As you can see in the following HTML5 markup, I am using <div> tags that contain
 tags, using the class property to address these, and the id property to reference the
JavaScript. The <canvas> tag (id="clock") is covered in Chapter 19 .

 <div class ="c">

 </div>
 <div class="d">

 \
 </div>
 <div class="h"></div>
 <div class="tx"></div>
 <div class="p"><p>TEXT CONTENT FOR THE HTML5 DOCUMENT IS IN HERE</p></div>
 <div class="j"></div>
 <div class="s"></div>
 <div class="bu"></div>
 <div class="t">

 <!-- TOP UI LINKS ANCHOR TAG MARKUP -->
 </div>

 Figure 16-1. HTML5 Design stitched together using DIVs and CSS3

http://dx.doi.org/10.1007/978-1-4302-6536-8_19

CHAPTER 16 ■ HTML5 POSITION: DOCUMENT LAYOUT AND TEXT SPANNING

156

 <div class="l">

 <!-- LEFT UI LINKS ANCHOR TAG MARKUP -->

 </div>
 <div class="r">

 <!-- RIGHT UI LINKS ANCHOR TAG MARKUP -->

 </div>
 <div class="b">

 <!-- BOTTOM UI LINKS ANCHOR TAGS MARKUP -->

 </div>
 <div class="time">
 <canvas id="clock" width="500" height="500"></canvas>
 </div>

 To create what you see in Figure 16-1 , I’m using CSS3 to define a background-image
property for the <div> tags that do not contain tags. I use absolute positioning
and I define precise pixel locations by using the top , left , width , or height properties.
I control image tiles using the fixed and no-repeat properties, and opacity , background-
color , and border using the CSS3 properties that bear those names. You can look at the
DIV classname to see what CSS3 positions and loads each image area.

 div.time { position:absolute ;top:108px;left:120px;width:500px;height:500px;}
 div.p {position:absolute;top:-216px;left:694px;width:446px;height:400px;}
 div.tx { position:absolute; top :150px; left :680px; width :460px;
 height :400px; background-color:#000; opacity :0.35;
 border:solid 1px #ccc; }
 div.c { position:absolute;top:48px;left:0px;width:1280px;height:624px; }
 div.c img.c2 {position:absolute;left:0px;width:270px;height:80px;top:0px; }
 div.c img.c3 {position:absolute;left:270px;width:640px;height:80px;top:0px;}
 div.c img.c4 {position:absolute;left:910px;width:370px;height:80px;top:0px;}
 div.d { position:absolute;top:128px;left:0px;width:1280px;height:544px; }
 div.d img.c5 {position:absolute;left:0px;width:1280px;height:480px;top:0px;}
 div.d img.c6 { position:absolute; left: 0px; width: 1280px; height: 64px;
 top:480px; }
 div.s {position:absolute; left:0px; width:1280px; height:56px; top:608px;
 background: no-repeat; background-image : url(s.png); }
 div.h {position:absolute; left:0px width:1280px; height:128px; top:128px;
 background: fixed no-repeat; background-image : url(sy.gif); }
 div.j { position:absolute; left:176px; width:96px; height:720px; top:0px;
 background: fixed no-repeat; opacity: 0.6;
 background-image : url(jy.gif); }
 div.bu { position:absolute; left:525px; width:44px; height:720px; top:0px;
 background: fixed no-repeat; opacity: 0.4;
 background-image : url(bu.gif); }

CHAPTER 16 ■ HTML5 POSITION: DOCUMENT LAYOUT AND TEXT SPANNING

157

 div.t { position:absolute; top:0px; left:0px; width:1280px; height:48px;
 background-image : url(bk1.png); }
 div.t img.tp1 { position:absolute;left:18px;width:56px;height:45px;top:2px;}
 div.t img.tp2 { position: absolute; left: 1187px; width: 56px; height: 45px;
 top:2px; }
 div.l { position: absolute; top: 0px; left: 0px; width: 64px;
 height: 652px; background-image : url(bkg7.jpg); }
 div.l img.lt1 { position: absolute; left: 18px;width: 45px; height: 56px;
 top: 64px;}
 div.l img.lt2 { position: absolute; left: 18px; width: 45px;
 height: 56px; top: 594px; }
 div.b { position: absolute; top: 664px; left: 0px; width: 1280px;
 height: 48px; background-image : url(bk7.png); }
 div.b img.bt1 { position: absolute; left: 18px; width: 56px;
 height: 45px;top: 3px; }
 div.b img.bt2 { position: absolute; left: 1187px; width: 56px;
 height: 45px; top: 3px; }

 Next, let’s look at the JavaScript <script> tag. I reference the <canvas id=“clock”>
 tag in my clock JavaScript.

 Summary
 This chapter covered tags that define areas in HTML5 and earlier versions, including the
<div> and tags. The next chapter looks at the HTML5 JavaScript <script> tag.

159© Wallace Jackson 2016
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_17

 CHAPTER 17

 HTML5 Scripting: Using
JavaScript and <script> Tag

 Now let’s discuss the <script> tag in HTML5. It allows you to use the JavaScript
programming language with your HTML5 content creation pipeline (markup, design,
programming, and publishing). The JavaScript language is based on ECMAScript 262.
It connects the inner-workings of a browser and now the HTML5 OS powering your
smartphone, smartwatch, tablet, notebook, and iTV Set with HTML5 markup content
definition and CSS3 stylesheet design.

 In this chapter, you look at the <script> tag in HTML5, which implements advanced
JavaScript content that can take your HTML5 and CSS3 content to the next level. I did
this with the iTVset.com website by adding a seamless clock to the HTML5 and CSS3 in
the previous chapter. I am not going to go into minute details regarding the JavaScript
programming languages, because this book focuses on HTML5 markup, but we’ll look at
how to bridge JavaScript and HTML5. I suggest that you visit Apress (www.apress.com)
and check out some JavaScript titles so that you can master this area.

 Using JavaScript: The HTML5 SCRIPT Tag
 The <script> tag defines client-side JavaScript assets. The <script> element (tag) contains
script statements, also known as JavaScript code, or references an external JS script file.
This is done with the src parameter in the <script> tag or with the <link> tag. If the src
attribute is present in the <script> opening tag, then the <script> element itself is empty.
Common JavaScript usage includes adding interactivity, new media asset manipulation,
form validation, user interface design, and similar dynamic and advanced real-time
changes of your HTML5 application content. The <script> tag parameters used in HTML5
are listed in Table 17-1 .

http://www.apress.com/

CHAPTER 17 ■ HTML5 SCRIPTING: USING JAVASCRIPT AND <SCRIPT> TAG

160

 It’s important to include the <noscript> element for the users who have disabled
JavaScript in their browser, or have a browser, or operating system, which does not
support client-side Java scripting.

 JavaScript Execution: Parsing Synchronization
 There are several ways that external JavaScript can be executed; before rendering your
HTML5 markup and CSS3 style, after rendering the HTML5 markup and CSS3 style,
and during the rendering of your HTML5 markup and CSS3 styles. Synchronization
of JavaScript execution with HTML5 and CSS3 markup parsing is controlled using the
 parameters in Table 17-1 .

 If neither the async nor the defer parameter is present, then JavaScript is the first
asset fetched and executed before the browser continues parsing your markup. This
"first" parameter is not shown in Table 17-1 . It is simply set by not setting any parameter
in the <script> tag, and so it is the default way that a JavaScript is processed (first). This
is because there are often things that JavaScript does to set up an HTML5 rendering
environment and document structure; therefore, JavaScript needs to be executed into
memory before any other elements are rendered into system memory. This is quite
logical, if you think about it from a programming standpoint, because JavaScript is
processed prior to HTML5 markup, which is processed before styling!

 If the new in HTML5 async parameter is present inside of the <script> tag, then a
script is executed asynchronously with the rest of the page. This means that a script is
executed while the page in the process of parsing the HTML5 tags and applying the CSS3
styles to those tags.

 If an async parameter is not present in the <script> tag and the defer parameter
is instead present, then the script can only be executed when the page has finished
parsing ; that is, the script is paused or held back from executing until the CSS and
HTML5 markup are fully applied to your document (browser) or application (operating
system).

 Table 17-1. Six HTML5 <script> Tag Parameters

 Script Tag Parameter Script Tag Parameter’s Usage

 async (New in HTML5) Specifies that a JavaScript is to be executed
 asynchronously ; this is for external scripts

 charset Specifies the character set encoding used in the external
JavaScript file

 defer Specifies that a JavaScript is to be executed when the page
has finished parsing ; this is only for external JavaScript files

 src Defines the source file for the JavaScript

 type Defines the JavaScript Media (MIME) type

 xml:space (No HTML5) Determines preservation of whitespace (XHTML)

CHAPTER 17 ■ HTML5 SCRIPTING: USING JAVASCRIPT AND <SCRIPT> TAG

161

 JavaScript Formats: MIME Type and Character Set
 The other parameters in Table 17-1 handle data formats, which define the JavaScript
code itself. The JavaScript MIME Type (now called a Media Type) should be one of these
following combinations: text/jscript , text/javascript , or text/ecmascript . Any of these
types will work across all of the popular browsers and OSes that are widely used today
(Mozilla Firefox, Google Chrome, Apple Safari, and Opera). The most often utilized of
these three is the text/javascript MIME type, as it most clearly and simply defines the
contents of the .JS file.

 If you are creating an application, you would substitute the word text with the word
application. If you are interested in seeing the complete list of media types, visit this URL:

 http://www.iana.org/assignments/media-types/media-types.xhtml

 These following three are valid commonly used MIME Types as well: application/
x-javascript, application/ecmascript, and, application/javascript.

 In HTML5, the character set is typically designated UTF-8 , unless you are in a
country that uses a custom character set, in which case you use UFT-16 that supports
non-Roman characters, such as Asian characters.

 In-Line JavaScript Code: Using the SCRIPT Tag
 Since I already showed you how to externalize a JavaScript code asset in Chapter 4 ,
let’s look at how to use a <script> tag to add the JavaScript logic to run the clock that is
referenced in the <canvas id="clock> HTML5 markup in Chapter 16 . In this way, you use
CSS3 with the class parameter and you use the id parameter to reference JavaScript with
the document.getElementById('clock'); call. The JavaScript code is inside the <script>
tag, as seen in the following HTML5 markup example:

 <script type="text/javascript" charset="UTF-8">
 var hour_hand=null, minute_hand=null, second_hand=null, ctx=null,
 degrees=0, clock_face=null, clock_face=null, HEIGHT=500, WIDTH=500;
 function init_itv() {
 var canvas = document.getElementById('clock');
 if(canvas.getContext('2d')) {
 ctx = canvas.getContext('2d');
 hour_hand = new Image();
 hour_hand.src = 'hour_hand.png';
 minute_hand = new Image();
 minute_hand.src = 'minute_hand.png';
 second_hand = new Image();
 second_hand.src = 'second_hand.png';
 clock_face = new Image();
 clock_face.src = 'clock_face.png';
 clock_face.onload = imgLoaded; }
 else {
 alert("Canvas not supported!"); }
}

http://dx.doi.org/10.1007/978-1-4302-6536-8_4
http://dx.doi.org/10.1007/978-1-4302-6536-8_16

CHAPTER 17 ■ HTML5 SCRIPTING: USING JAVASCRIPT AND <SCRIPT> TAG

162

 function clearCanvas() { ctx.clearRect(0, 0, HEIGHT, WIDTH); }
 function imgLoaded() { setInterval(draw, 500); }
 function getRequiredMinuteAngle(currentTime) {
 return Math.floor(((360/60) * currentTime.getMinutes()),0); }
 function getRequiredHourAngle(currentTime) {
 return Math.floor(((360/12) * currentTime.getHours()),0); }
 function getRequiredSecondAngle(currentTime) {
 return Math.floor(((360/60) * currentTime.getSeconds()),0); }
 function draw() {
 var currentTime = new Date();
 clearCanvas();
 ctx.drawImage(clock_face, 0, 0);
 ctx.save();
 ctx.translate(HEIGHT/2, WIDTH/2);
 rotateAndDraw(minute_hand, getRequiredMinuteAngle(currentTime));
 rotateAndDraw(hour_hand, getRequiredHourAngle(currentTime));
 rotateAndDraw(second_hand, getRequiredSecondAngle(currentTime));
 ctx.restore();
 }
 function rotateAndDraw(image, angle) {
 ctx.rotate(angle * (Math.PI / 180));
 ctx.drawImage(image, 0-HEIGHT/2, 0-WIDTH/2);
 ctx.rotate(-angle * (Math.PI / 180));
 }
 </script>

 Global variables accessed by all of the functions in the <script> tag are declared first at
the top, and local variables are declared at the top (inside) of each function. If you want to
learn JavaScript, be sure to get a good JavaScript title from Apress because this book focuses
on HTML5 markup only and doesn't cover JavaScript or CSS3 in any significant detail.

 Figure 17-1 shows the clock JavaScript running inside a <canvas> tag (covered in
Chapter 19) and referenced using the id parameter inside a canvas tag like the
<canvas id="clock">.

http://dx.doi.org/10.1007/978-1-4302-6536-8_19

CHAPTER 17 ■ HTML5 SCRIPTING: USING JAVASCRIPT AND <SCRIPT> TAG

163

 As you can see in the <script> HTML5 markup, this time I am not using the “hide JS
from non-supporting parsing engines” convention that I mentioned earlier in the book.
Let’s discuss why that is next, as browsers and operating systems become more advanced
and 100% HTML5 and HTML 5.1 this becomes less and less necessary to do, and in some
cases, less and less desirable.

 Hiding JavaScript: To Do or Not to Do?
 When HTML browsers first became available, not all of them supported JavaScript, just
as not all of them support WebGL2 (see Chapter 19) now. There used to be a convention
of hiding the JavaScript inside of the <script> tag with HTML comments, so the JavaScript
(external or in-line) element appeared to be empty to parsing engines that did not
understand that element. HTML engines that did understand JavaScript would ignore
these comments and process compile and execute) the JavaScript code correctly. Markup
is parsed, whereas code is compiled and executed (or processed, to use a single term).

 Figure 17-1. JavaScript document.getElementById('clock'); wired to <canvas id="clock">
HTML5 element to create iTVset.com clock

http://dx.doi.org/10.1007/978-1-4302-6536-8_19

CHAPTER 17 ■ HTML5 SCRIPTING: USING JAVASCRIPT AND <SCRIPT> TAG

164

 HTML Comments: Use <!-- and --> to Hide JS Code
 The convention that has been in place for well over a decade is to hide JavaScript code in
HTML comments, like this:

 <script>
 <!--
 JAVASCRIPT CODE
 -->
 </script>

 There is now discussion in the HTML5 community that this is no longer necessary or
even desirable, due to the acceptance of JavaScript as HTML’s defacto standard language
and because there are so many different versions of XHTML and HTML that would parse
and potentially misinterpret comments and the symbols. The current consensus seems to
be to vacate this practice and not use any comments in the script.

 XHTML Comments: Use <!-- and --> to Hide JS Code
 Some discussion of this convention suggests that to support XHTML correctly, you
should use a different form of commenting that involves the [CDATA [code-here]] code
encapsulation approach inside a different (XML-centric) type of commenting convention.
This looks like the following:

 <script>
 //<![CDATA[
 JAVASCRIPT CODE
 //]]>
 </script>

 My take on all of this is that if you are developing for HTML5 (which is now legacy
code, as you’ll see in Chapter 23) or HTML 5.1, you should not worry about XHTML 1.x
or HTML 2/3/4 parsing engines. They are too ancient to worry about supporting due to a
 widespread proliferation of affordable HTML5 devices.

 Summary
 This chapter discussed the <script> tag, which allows you to use JavaScript code with your
HTML5 and CSS3 markup. The next chapter looks at the HTML5 cascading style sheet
<style> tag.

http://dx.doi.org/10.1007/978-1-4302-6536-8_23

165© Wallace Jackson 2016
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_18

 CHAPTER 18

 HTML5 Styling: Using the
<style> Tag to Access CSS3

 Now let’s cover the <style> tag in HTML5, which allows you to use CSS3 cascading style
sheet syntax with your HTML5 content creation pipeline (design, markup, style, program,
and publish). The CSS3 syntax is loosely based on SGML. It extracts the UI design
and HTML5 content styling into its own encapsulated language. You looked at how to
externalize CSS3 in Chapter 4 . This chapter provides an overview of CSS3 and explains
how to access CSS3 style sheets “in-line” by using the <style> tag. You can also use the
<style> tag to override the externalized CSS3 master style sheet for HTML5 content,
allowing you to tweak the master style sheet on a document-by-document basis, without
adding any data footprint to your external CSS3 site-wide or application-wide style sheet
definition.

 In this chapter, you look at the <style> tag in HTML5. It implements advanced
style sheet content that allows you to design, configure, and customize your HTML5
document, as I did with the iTVset.com website design, using <div> and tags with
class parameters in the previous chapter.

 Cascading Style Sheets: A History of CSS
 The style sheet has been utilized to style markup since the very beginning when SGML
(Standard Generalized Markup Language) was conceived in the 1980s. One requirement
of the HTML style sheet language was that style sheets be able to originate from different
resources across the World Wide Web. For this reason, existing style sheet languages, such
as DSSSL and FOSI, were not suitable. CSS , on the other hand, allows your document’s
styling to be influenced by multiple disparate style sheets. This is done by “cascading”
through style sheet definitions. CSS, or cascading style sheets, were subsequently
developed to provide style sheets for use with HTML and XHTML . I cover the history and
future of CSS in this first section.

 CSS was first proposed by Opera’s CTO, Håkon Wium Lie, on October 10, 1994.
Håkon Wium Lie worked with Tim Berners-Lee at CERN, where a number of other style
sheet languages for the World Wide Web were being tested around the same time. The
initial World Wide Web Consortium (W3C) CSS1 proposal was released in 1996. Bert Bos
was also involved in this proposal. He is co-author of CSS1. He and Håkon Wium Lie are
regarded as the co-creators of CSS.

http://dx.doi.org/10.1007/978-1-4302-6536-8_4

CHAPTER 18 ■ HTML5 STYLING: USING THE <STYLE> TAG TO ACCESS CSS3

166

 CSS2 was proposed on November 4, 1997 and published as a W3C recommendation
on May 12, 1998. CSS3 was proposed in 1998; it is still under development today.

 CSS2 includes core capabilities, like absolute, relative, and fixed positioning of
elements, z-index (3D), media types, bidirectional text, font properties, shadows, and
support for aural (audio) style sheets, which were replaced by CSS3 speech modules.

 CSS3 is divided into several separate documents, called modules . Each module adds
new capabilities or extends features defined in CSS2. CSS3 is also backward compatible
with CSS2. The earliest CSS3 proposal was published in June 1999. CSS3 is currently
being worked on as a specification.

 CSS4 should be implemented after CSS3 is completed. There is no unified CSS4
specification, because CSS3 and CSS4 are split into separate modules. There are Level 4
modules instead of a unified specification proposal. Level 4 module specifications can
collectively be referred to as CSS4.

 Using CSS3 with HTML5: The STYLE Tag
 The <style > tag defines style information for an HTML document that is not defined
externally using a CSS file asset. It also overrides styles defined in an external master
CSS3 definition in a local document; this departs from the styling norm for some reason.
Inside a <style> element, you use CSS3 syntax to specify how HTML5 elements should be
rendered in your browser, operating system, iTV Set, or smartphone. It is permissible for
each HTML document to contain multiple <style> tags. As you learned in Chapter 4 , use
the <link> tag to link to an externally defined style sheet.

 These <style> tags should exist in the <head> section of your HTML5 document
unless the scoped parameter is present. The scoped attribute is new to HTML5. It allows
you to define styles specifically for a (hopefully semantic) section of your document. If the
scoped attribute is present, the styles only apply to that style element’s parent and child
elements; that is, elements nested inside a <style> tag.

 The <style> tag parameters used in legacy HTML or HTML5 are listed in Table 18-1 .
The new HTML5 parameter is listed first; the legacy HTML parameters are listed afterward.

 Table 18-1. HTML5 <style> Tag Parameters

 Style Tag Parameter Style Tag Parameter’s Usage

 scoped (New in HTML5) Specifies style only applies to element’s parent and
element’s child elements

 media Specifies media or device media resource is optimized for

 type Defines the CSS3 Media (MIME) Type

 The media parameter allows you to specify the media device that the CSS3 style is
optimized for. Styles are certainly customized to match devices types, such as printers,
iTV Sets, or smartphone screens, so this is an important parameter for HTML5 <style>
tags (elements).

http://dx.doi.org/10.1007/978-1-4302-6536-8_4

CHAPTER 18 ■ HTML5 STYLING: USING THE <STYLE> TAG TO ACCESS CSS3

167

 The value string (inside the quotation marks) can accept several values, including
Boolean operators such as AND, NOT, and OR (OR uses a comma, not a keyword).

 The supported device keyword values for the media parameter include aural
for speech synthesizers; braille for Braille feedback devices; handheld for handheld
devices (small screen, limited bandwidth devices, such as phones, PDA, or mini-tablets);
 projection for DLP, LCD, or LED projectors; print for printers, print preview mode, or
printed page; screen for computer screen; tty for Teletypes and media using a fixed-pitch
character grid; and tv for iTV Sets and similar television set–related devices that feature
large screens, HD and UHD resolution, and limited scrolling capabilities.

 Pixel data values can also be specified to specify the width or height of the targeted
display area or the device, including min-width , max-width , min-height , max-height ,
 device-width , and device-height . You can also specify the orientation (portrait,
landscape), aspect ratio, device aspect ratio, monochrome, resolution, grid or scan,
color, and color index. A max and min value range can also be specified for any of these
parameters, if needed.

 CSS3 Formats: MIME or Media Type Designation
 The type parameter (see Table 18-1) handles your data format, which defines the MIME
type for the CSS3 code. The CSS MIME type (now called the media type) should be
designated as text/css . This type designation works across all widely used browsers and
operating systems (Mozilla Firefox, Google Chrome, Apple Safari, and Opera).

 If you are interested in seeing the complete definition for the text/css media (MIME)
type, visit the following website:

 https://www.iana.org/assignments/media-types/text/ css

 In HTML5, the character set is generally designated UTF-8. You can also use the US-
ASCII or ISO-8859-X character set designations with CSS3 files if you decide to specify a
charset parameter (using the <link> tag, of course).

 The SCOPED Parameter: Tag-Local HTML5 Styling
 With the new scoped parameter , there are now three levels of CSS3 localization. Global
CSS3 styles can be externalized, or defined globally across any document that imports
(links to) those CSS files. Using the <style> tag in the <head> section to define “document
local” styles has always been possible. If you use the scoped parameter with the <style>
tag, you can use <style> tags inside the <body> section, for “element local” styling! Let’s
scope out (no pun intended) this cool new capability!

 Here’s an example of a scoped style that is declared down in the <body> section of
the HTML5 document:

 <!DOCTYPE html><html>
 <head>
 <title>Locally Scoped CSS3 Targeting DIV in Semantic Section</title>
 </head>

CHAPTER 18 ■ HTML5 STYLING: USING THE <STYLE> TAG TO ACCESS CSS3

168

 <body>
 <section id="DIV Tag Locally Scoped Style Definition">
 <div>
 <style scoped >
 h1 {color:green;}
 p {color:brown;}
 </style>
 <h1>This is a heading which has been locally styled green.</h1>
 <p>This is a paragraph which has been locally styled brown.</p>
 </div>
 </section>
 </body>
 </html>

 In-Line CSS3 Code : Using the STYLE Parameter
 Whereas the <style scoped> tag and parameter essentially allow what amounts to “block
level” styling, remember that you can also apply CSS3 style definitions inside a tag
using the style parameter for in-line styling. This gives you a full range of ways to apply
styles, from global application-wide external CSS style sheets using the <link> tag, to
<head><style></head> document-level styling, to <body><style scoped></body> block–
level styling, to the global HTML5–style parameter’s in-line element styling. Here’s how the
block-level scoped <style> approach is replaced by the in-line style parameter approach:

 <!DOCTYPE html><html>
 <head>
 <title>Locally Scoped CSS3 Targeting DIV in Semantic Section</title>
 </head>
 <body>
 <section id="DIV Tag Locally Scoped Style Definition">
 <h1 style="color:green" >Heading which has been in - line styled green</h1>
 <p style="color:brown" >Paragraph which has been in-line styled brown</p>
 </section>
 </body></html>

 I’ve tried to give you an idea of how CSS and JavaScript work with HTML5 without
getting off track, as these topics are extremely complex and deserve their own books to be
able to master their complexity. I only have a few hundred pages to cover more than 120
HTML 5 and 5.1 tags, so I have to concentrate on these tags, and their parameters .

 That said, I continue to suggest that you purchase books on specialized topics,
such as CSS3, JavaScript, WebGL, Web Speech API, Web RTC, and new media content
production fundamentals. I have a New Media Content Production Fundamentals series
at Apress (www.apress.com). If you’re interested, search for my name for on the site.

http://www.apress.com/

CHAPTER 18 ■ HTML5 STYLING: USING THE <STYLE> TAG TO ACCESS CSS3

169

 Summary
 In this chapter, you learned a little of the history of CSS. You also learned about the HTML
<style> tag that allows you to use CSS3 style sheet syntax with HTML5 markup and all of
the ways that you can style HTML5 elements.

 In the next chapter, you look at HTML5 Canvas , WebGL , and WebGL 2 , which are
accessed using the <canvas> tag.

171© Wallace Jackson 2016
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_19

 CHAPTER 19

 HTML5 Real-Time Rendering:
Using the <canvas> Tag

 Now let’s discuss the <canvas> tag in HTML5, which allows you to use the canvas ,
an advanced real-time rendering surface that you can access directly in real-time
using JavaScript code. Since the <canvas> tag specifies (creates in memory) a real-time
drawing surface, it is covered it in this book to show you what it can do for your HTML5
applications and documents. The HTML5 content creation pipeline just got a little bit
more complex (design, markup, style, program, real-time render, and publish). Other
operating systems, such as Android, also have a Canvas feature. A canvas is needed
for i2D and i3D applications and games, because it is engineered to be fast enough to
develop gaming applications or OpenGL interactive 3D.

 Using the CANVAS Tag: New for HTML5
 The HTML5 <canvas> element provides a drawing surface —like a color, digital 2D or
3D Etch A Sketch—to draw graphics, such as animated graphics or interactive graphics,
by using a scripting language. In HTML5, the canvas uses JavaScript as the programming
language; in Android OS, Java is the programming language. The <canvas> element or tag
is a specialized container for high-speed graphics, much like a graphics engine of sorts.
You must use JavaScript to actually draw and interact with the real-time graphics surface.

 HTML5 Canvas has methods for drawing boxes, circles, paths, text, lines, points,
polygons, splines, and images. These canvas elements can be colored and animated.
They can graph data to create presentation aids such as line graphs and bar charts.

 Canvas objects can move realistically; anything is possible—from realistic bouncing
balls with gravity and friction causing bounce decay, to complex interactive games.

 Canvas objects respond interactively with JavaScript events, or any user actions: key
press, mouse clicks, button clicks, touchscreen finger movement, and similar event-
processing logic, just as HTML5 tags use via the onMouseDown event parameter.

 Canvas offers many possibilities for HTML5 gaming applications . In fact, more
than one HTML5 <canvas> element can be used at the same time, if you write your code
carefully enough to conserve processing power.

 The two <canvas> tag parameters used in HTML5 are shown in Table 19-1 . They
are relatively simple. They define the width and height of the canvas. You also use the

CHAPTER 19 ■ HTML5 REAL-TIME RENDERING: USING THE <CANVAS> TAG

172

global HTML id parameter to assign your name to the Canvas element so that it can be
referenced from your JavaScript. You saw this in action with the Chapter 17 clock.

 Table 19-1. HTML5 <canvas> Tag Parameters

 Canvas Tag Parameter Canvas Tag Parameter’s Usage

 width Specify the canvas width value, using pixels

 height Specify the canvas height value, using pixels

 Next, let’s see how to declare a <canvas> tag or element in your HTML5 documents
and applications.

 Declaring an HTML5 Canvas: Using Parameters
 The <canvas> element needs some parameters to be defined correctly; otherwise, it
cannot be used as a drawing surface. It needs to have two spatial dimensions— width and
height. Also, it must have an id attribute so that it can be referenced using JavaScript.

 By default, the <canvas> element has no border and no content; it’s simply an empty
surface. Let’s use a global style parameter to add a border so that you’re able to better
visualize where this canvas is located on your screen. Since the default canvas color is
black, we’ll use a red border color that is a thick three pixels in width. (Of course, if the
document’s background color were white, you would be able to see the canvas anyway!)
The HTML5 markup to code this looks like the following:

 <!DOCTYPE html><html>
 <head>
 <title>Declaring an SD Resolution Canvas for Use in GamePlay</title>
 </head>
 <body>
 <section id="A Game Play HTML5 Canvas Declaration Example">
 <canvas id ="gamePlayCanvasSample" width ="720" height ="480"
 style ="border: 3px solid #FF0000; top: 0; left: 0;">
 If you are seeing this message, then your HTML5 Browser,
 or operating system, doesn't support the Canvas Element!
 </canvas>
 </section>
 </body>
 </html>

 Notice I am positioning the <canvas> at 0,0 in the style parameter. This positions, sizes
and names the canvas container and gives it a nice border, but it is still an empty canvas,
as they say in the art world. Remember the <canvas> element has no drawing capabilities
of its own just like a real canvas needs a brush and paint. Canvas is only a container for
graphic design; you must use JavaScript to actually draw graphics in real-time.

 JavaScript has a getContext() method to return an object that provides methods and
properties for drawing on the canvas. These methods (functions) and properties (variables)

http://dx.doi.org/10.1007/978-1-4302-6536-8_17

CHAPTER 19 ■ HTML5 REAL-TIME RENDERING: USING THE <CANVAS> TAG

173

represent the current state of the Canvas surface at any time, which is logically referred to
as the context of the object, hence, the getContext() method name. For instance, there’s a
 save() to save the current context, as well as a restore() to restore it.

 The properties and methods of this getContext(“2d”) object, which are used to draw
text, lines, boxes, circles, paths, polygons, ellipses, and such on a canvas, are covered in the
next section. Afterward, you look at using 3D with the <canvas> using WebGL and WebGL 2.

 Drawing on a Canvas: 2D Methods and Properties
 Let’s take a look at some of the method groupings, and then some of the properties that
allow you to draw 2D graphics on the HTML5 <canvas> element. If you wanted to see an
example of 2D content, being drawn in real-time using this <canvas> tag and JavaScript,
refer to the clock JavaScript, in Chapter 17 .

 The first table containing JavaScript methods, shown in Figure 19-2 contains two
methods used in image compositing.

 If you wanted to learn about digital image compositing , check out my Digital Image
Compositing Fundamentals (Apress, 2015). Compositing involves the layering of imagery,
which uses alpha channels to create one perceived image from several (even hundreds) of
image layers. The two methods (see Table 19-2) allow you to control canvas transparency
using globalAlpha() , and compositing , using globalCompositeOperation() to
composite layers.

 Table 19-2. HTML5 <canvas> Tag Methods for Compositing

 Canvas Drawing Method Canvas Drawing Method’s Usage

 globalCompositeOperation Sets or returns how the new image is drawn on top of
(or under) existing image

 globalAlpha Sets or returns a current alpha channel, or transparency
values, for the draw operation

 Table 19-3. Four HTML5 <canvas> Methods for Drawing Rectangles

 Canvas Drawing Method Canvas Drawing Method’s Usage

 rect Creates a 2D rectangle object on the canvas

 fillRect Fills a 2D rectangle object on the canvas

 strokeRect Strokes a 2D rectangle object on the canvas

 clearRect Clears an area in the 2D rectangle object

 There are four rectangle methods (see Table 19-3) that allow you to create, fill, stroke,
and erase portions of a basic 2D rectangular (and thus square) drawing objects.

 There are four line styling methods (see Table 19-4) that allow you to style line
objects, which are drawn using Path commands. You can control line caps, the way that
lines join, line width, and miter length.

http://dx.doi.org/10.1007/978-1-4302-6536-8_17

CHAPTER 19 ■ HTML5 REAL-TIME RENDERING: USING THE <CANVAS> TAG

174

 Table 19-4. Four HTML5 <canvas> Methods Used for Styling Lines

 Canvas Drawing Method Canvas Drawing Method’s Usage

 lineCap Sets or returns the type of line cap used

 lineJoin Sets or returns the type of line corner created where two
lines meet

 LineWidth Sets or returns the current line width used

 miterLimit Sets or returns a maximum line miter length

 Table 19-5. Four HTML5 <canvas> Methods for Filling 2D Shapes

 Canvas Drawing Method Canvas Drawing Method’s Usage

 createPattern Repeats a specified element in the specified direction to
create a pattern fill or stroke

 createLinearGradient Creates a linear gradient to use on canvas

 createRadialGradient Creates a radial gradient to use on canvas

 addColorStop Specify color and stop positions in gradient

 There are four methods for filling (and stroking) shapes using patterns and gradients
(see Table 19-5). They allow you to create patterns , linear and radial gradients, and
gradient stops , which control where gradient colors start and stop.

 There are six properties that control the application of the stroke, fill, and shadows
 characteristics (see Table 19-6). These allow you to set up strokes , fills , shadow color ,
and shadow blur , which controls the shadow edge softness and the x and y shadow
distance (offset value) from the text or shape.

 Table 19-6. Six HTML Canvas Methods for Fill, Stroke, and Shadow

 Canvas Draw Property Canvas Draw Property’s Usage

 fillStyle Sets or returns the color, gradient, or pattern used to fill the
drawing object

 strokeStyle Sets or returns the color, gradient, or pattern used to stroke
the drawing object

 shadowColor Sets or returns the color to use for shadows

 shadowBlur Sets or returns the blur value for shadows

 shadowOffsetX Sets or returns the horizontal distance of the shadow from
the shape or text shadowed

 shadowOffsetY Sets or returns the vertical distance of the shadow from the
shape or text shadowed

CHAPTER 19 ■ HTML5 REAL-TIME RENDERING: USING THE <CANVAS> TAG

175

 There are five methods for transforming 2D shape objects in 2D space, such as move
(translate), rotate, or scale (see Table 19-7). These allow you to change, or animate, the 2D
shapes, lines, paths, new media, or even other canvas objects using timelines (animation)
or interactively.

 Table 19-7. Five HTML5 Canvas Methods for 2D Transformations

 Canvas Drawing Method Canvas Drawing Method’s Usage

 scale() Scales the current canvas drawing surface

 rotate() Rotates the current canvas drawing surface

 translate() Remaps the (0,0) position for your canvas

 transform() Replaces the current transformation matrix

 setTransform() Resets the current transform to the identity matrix and then
calls the transform() method

 Table 19-8. Six HTML Canvas Methods for Text and Font Usage

 Canvas Drawing Method Canvas Drawing Method’s Usage

 font Sets or returns the current font properties

 textAlign Sets or returns the current text alignment

 textBaseline Sets or returns the current text baseline

 fillText() Draws filled text on the canvas

 strokeText() Draws text on the canvas (no fill)

 measureText() Returns an object that contains text width

 There are six methods for using text or fonts (see Table 19-8). They define the text
object font, text alignment, baseline, filled text, stroked (outlined) text, and text width.
A text object is a line object that uses a font to show the canvas how to draw the lines, so
it’s really a type of polygon.

 There are seven methods allowing you to work with visual new media assets
such as digital images, digital video, or even another canvas object instance, as
shown in Table 19-9 . These allow you to draw an image or video asset on the canvas in
real-time using the drawImage() method, as well as extract pixel data from the image
and determine its dimensions (height, width). You can also create an empty ImageData
object using the createImageDate() method and copy current canvas data into an
ImageData object, using the getImageData() method. You can also put ImageData onto
the canvas, using the putImageData() method.

CHAPTER 19 ■ HTML5 REAL-TIME RENDERING: USING THE <CANVAS> TAG

176

 Finally, there are a dozen methods that deal with 2D Path objects (see Table 19-10).
They allow you to fill and stroke paths, and create straight lines, arcs, cubic Bézier and
quadratic Bézier curves, clip areas, and path-related utilities such as beginPath, closePath,
and isPointInPath. They let you create 2D scalable vector graphics (SVG) type illustrations
and similar artwork, which can be combined with image, text, and styling methods to
create powerful 2D graphic imagery using the HTML5 <canvas> element as a drawing
surface. It’s important to note that you can also use the HTML5 <canvas> element for 3D
and i3D graphics with WebGL and WebGL 2, which you see in the next section. I wanted to
show you some of these powerful 2D JavaScript methods first.

 Table 19-10. Twelve HTML Canvas Methods for Lines and Paths

 Canvas Drawing Method Canvas Drawing Method’s Usage

 fill() Fills the current Path object

 stroke() Strokes the current Path object

 beginPath() Begins a Path object or Resets a Path object

 moveTo() Moves the Path object to a specified point in the canvas,
without creating any lines

 closePath() Creates a Path object from the current point back to the
starting point to close the Path

 lineTo() Adds a new point and creates a line to that point from the last
specified point in the canvas

 clip() Clips a region of any shape and size from the original canvas

 quadraticCurveTo() Creates a quadratic Bézier curve

 bezierCurveTo() Creates a cubic Bézier curve

 arc() Creates an arc/curve (used to create circles, or parts of circles)

 arcTo() Creates an arc/curve between two tangents

 isPointInPath() Returns true if the specified point is in the current path, otherwise false

 Table 19-9. Seven HTML Canvas Methods for Digital New Media

 Canvas Drawing Method Canvas Drawing Method’s Usage

 drawImage() Draws an image, canvas, or video onto canvas

 width Returns the width of an ImageData object

 height Returns the height of an ImageData object

 data Returns an object that contains image data of a specified
ImageData object

 createImageData() Creates a new, blank ImageData object

 getImageData() Returns an ImageData object that copies the pixel data for
a specified area on a canvas

 putImageData() Puts the image data (from a specified ImageData object)
back onto the canvas

CHAPTER 19 ■ HTML5 REAL-TIME RENDERING: USING THE <CANVAS> TAG

177

 If you are an object-oriented programming (OOP) expert, you already know how
to use these method calls and parameters. If you are not an OOP expert and you want
to create the HTML5 new media applications that stand apart from the crowd, go to the
Apress website (www.apress.com) to purchase a JavaScript title or two!

 Next, let’s take a look at one of the most powerful and underused APIs available for
HTML5, called WebGL. This month, a WebGL 2 version was released that takes 3D and
i3D to an all new level, and it is already supported in Firefox and Chrome, so by the time
you read this, the <canvas> element support WebGL or WebGL 2 in most of the major
browsers and HTML5 operating systems.

 Interactive 3D: WebGL or WebGL 2 3D Rendering
 We’ve covered a lot of cool things so far in this book, such as i2D, speech synthesis,
semantic web, new media support, and the like, but i3D is one of the coolest things that
HTML5 supports. It allows user experiences similar to Halo 4 and Madden NFL to be
done in HTML5 browsers and operating systems. It will probably be in place via WebGL 2.0
by the time that you read this book. What’s even cooler is that few developers are even
leveraging these new i3D technologies, leaving HTML5 wide open for conquering.

 I’ve been doing i3D since Acrobat 3D came out, so I’m especially excited for real-
time i3D rendering to come to HTML5. With iTV Sets having quad-core and octa-core
CPUs with GPU support, as with smartphones, tablets, and laptops, there are literally
billions of potential i3D HTML5 players accumulating out there, waiting for this type
of content to be produced. This is why I am exposing you to this technology before this
chapter on the HTML5 <canvas> element comes to an end, so that you know all about it
if you want to push the leading-edge of what can be done using the HTML5 canvas real-
time drawing and rendering engine.

 The History of WebGL: Mozilla in 2006 and Opera in 2007
 The WebGL API has been evolving for the past decade. It started with i3D experiments
using the HTML <canvas> undertaken by Mozilla’s engineering director, Vladimir
Vukic’evic’, in 2006. By the end of 2007, Opera had made its own separate WebGL
implementation. By early 2009, non-profit technology consortium The Khronos Group
had created the WebGL Working Group, which had initial participation from Apple
(Safari), Google (Chrome), Mozilla (Firefox), Opera, and others. Version 1.0 of the WebGL
specification was released in March of 2011. The Working Group is chaired by Ken Russell.

 Development of the WebGL 2 specification started in 2013 and finished three years
later. The WebGL 2 specification is based on OpenGL ES 3, whereas WebGL is based on
OpenGL ES 2. This WebGL, or Web Graphics Library, is the JavaScript API for rendering
interactive 3D, or i3D, computer graphics, as well as i2D graphics, on any compatible
web browser and without the use of any plug-in! WebGL allows GPU-accelerated
physics simulations, real-time image processing, and special effects as part of the HTML5
canvas element.

http://www.apress.com/

CHAPTER 19 ■ HTML5 REAL-TIME RENDERING: USING THE <CANVAS> TAG

178

 WebGL elements can be seamlessly combined with your HTML content by using the
<canvas> element and alpha channels, so that other HTML5 elements are composited
with interactive 3D content. CSS3 allows all elements to take advantage of z-index,
opacity, alpha channels (masked transparency), SVG filters, and Porter-Duff modes,
essentially turning HTML5 into a compositing engine. It does most of what Photoshop or
GIMP can do for you.

 The WebGL API has i3D scene graph asset management. It controls code written
in JavaScript. It also controls code for rendering and shaders executed on the computer
graphics processing unit (GPU). If WebGL or WebGL 2 is not working on an HTML5
device, you need to make sure that the 3D hardware support is present. AMD has a CPU
series called APU , which includes 3D GPU. You can learn more at the following website:

 http://www.pricewatch.com/cpu/

 If you are interested in seeing the complete definition for the WebGL 2 specification,
please visit the following website:

 https://www.khronos.org/registry/ webgl /specs/latest/ 2.0 /

 The complexities of i3D programming in WebGL 2 go far beyond the scope of this
book. If you are interested in this area, I suggest that you buy a book or two on WebGL
and WebGL 2 from the Apress website.

 Summary
 This chapter discussed the HTML5 <canvas> tag, which allows you to render 2D, 3D,
i2D, and i3D graphics in real-time on an advanced drawing surface inside your HTML5
document, website, or application.

 The next chapter looks at the object, embed, and applet HTML5 elements.

179© Wallace Jackson 2016
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_20

 CHAPTER 20

 HTML5 Plug-ins: Using
the <object>, <embed>,
<applet>, and <param> Tags

 Now let’s talk about the tags in HTML5 that allow developers to plug in non-JavaScript
content that does not use the <canvas> tag to render to the screen. This includes older
technologies such as Shockwave Flash or newer technologies such as JavaFX, which
is now integrated with Java. Java is used for the Android OS and all desktop operating
systems; it also works in browsers.

 This chapter looks at three powerful tags in HTML5 that allow you to seamlessly plug
in external content to your HTML5 content. These include the embed <embed> tag, the
Java applet <applet> tag, and the object <object> tag. You’ll learn when to use each of the
tags and what they allow you to add to your content production, publishing, and delivery
work process. The related <param> tag is also covered.

 Plug-in Applications: The EMBED Tag
 The <embed> tag defines an area that serves as a container for any external application or
interactive content that you want to seamlessly integrate with your HTML5 markup and
HTML design. Sometimes this is referred to as a plug-in , or a Java applet . The <embed>
tag is “technically” a new tag (element) in HTML5, although most of the popular web
browsers have supported this <embed> tag across several legacy HTML versions.
Interestingly, the <embed> tag was not a part of the HTML 4.01 specification. This
means that the <embed> tag is new to HTML5, as far as markup validation is concerned,
and therefore, <embed> now validates inside your HTML5 pages. However, if you use
<embed> in your legacy HTML 4.01 pages, those pages will not validate!

CHAPTER 20 ■ HTML5 PLUG-INS: USING THE <OBJECT>, <EMBED>, <APPLET>, AND <PARAM> TAGS

180

 Table 20-1 describes the four parameters supported by the <embed> tag.

 Table 20-1. Four HTML5 <embed> Tag Parameters

 Embed Tag Parameter Embed Tag Parameter’s Usage

 height Defines the height of the embedded application

 src Defines the source of the embedded application

 type Defines embedded application Media (MIME) type

 width Defines the width of the embedded application

 Here’s an example of how you should embed Shockwave Flash content into your
HTML5 markup:

 <!DOCTYPE html><html>
 <head><title>Exotic and Domestic Cars</title></head>
 <body>
 <section id="x-shockwave-flash-example">
 <h1>Embedded Shockwave Flash Application</h1>
 <embed src ="shockwave-flash-example.swf"
 type ="application/x-shockwave-flash"
 width ="480" height ="320"
 id ="javaScriptID" class ="cssStyleClassName" />
 </section>
 </body>
 </html>

 Let’s spend the rest of this chapter looking at a couple alternatives to using the
<embed> tag, including when you want to use these alternatives for plugging external
content into your HTML5 content creations.

 Next, let’s discuss the <applet> tag, which is not supported in HTML5 . But many
developers still use it to embed Java applets. This is because it has more cross-browser
support and because HTML5 browsers utilize HTML4 elements, even if they have been
deprecated in HTML5.

CHAPTER 20 ■ HTML5 PLUG-INS: USING THE <OBJECT>, <EMBED>, <APPLET>, AND <PARAM> TAGS

181

 Java or JavaFX Applets: The APPLET Tag
 The <applet> tag was originally designed to embed Java applets in HTML4 web pages.
Browsers have always supported Java applets and probably will continue to do so.
Table 20-2 shows 11 parameters supported by the <applet> tag.

 Table 20-2. Eleven HTML4 <applet> Parameters Deprecated in HTML5

 Parameter Parameter Data Value Applet Tag Parameter’s Usage

 code URL Specify Java applet class file name

 object name Specify reference to a serialized representation
for the applet

 alt text Specify alternate text for applet

 align left, right, top,
bottom, middle,
or baseline

 Specify an alignment for an applet

 archive URL Specify remote JAR archive location

 codebase URL Specify the relative base URL for the applet
specified in your code attribute (use if class isn’t
local)

 height pixels Specify the height for the applet

 hspace pixels Define the horizontal spacing around the applet

 name name Define the name for the applet (used in
JavaScript, or other referencing)

 vspace pixels Define the vertical spacing around the applet

 width pixels Specify the width for the applet

 The applet element was deprecated in HTML4 when the more generalized object
element was introduced. I cover objects in the next section. Interestingly, since those
browsers or operating systems that moved to support object introduced bugs related
to embedding Java applications, the <applet> tag currently is more stable, and a more
reliable method for Java applet embedding for “legacy” applications. Going out, for
HTML5 and 5.1, applet support is being deprecated, and discontinued in favor of HTML5
internal programming language JavaScript. Use Java for Android!

 The <applet> code parameter specifies the name of the Java .class file that contains a
 compiled applet. This value is relative to your URI, specified using a codebase attribute.
For installations that have an applet .class file in a server root, a codebase attribute need
not be specified as a path; and “base URI” is not necessary for referencing the location of
an asset.

CHAPTER 20 ■ HTML5 PLUG-INS: USING THE <OBJECT>, <EMBED>, <APPLET>, AND <PARAM> TAGS

182

 The width and height attributes are needed to define the dimensions for your Java
applet. These values should be specified using pixels (picture elements), or a percentage
of your parent element that contains the <applet> child tag’s width or height. Let’s take a
look at some sample HTML5 markup for this <applet> tag.

 You can define a basic <applet> element using a code and archive parameter to
reference your .class and .jar files that contain a Java (or JavaFX) applet. You can also use
a name parameter to reference an <applet> element and the dimensions for your applet’s
canvas, which are defined by using the width and height parameters. This is shown in the
following HTML5 markup example:

 <!DOCTYPE html><html>
 <head>
 <title>Basic Java Applet Element Insertion Example</title>
 </head>
 <body>
 <section id="Java or JavaFX Applet Object Example">
 <h1>Java or JavaFX Applet HTML Markup Example</h1>
 <applet code ="javaAppletName" archive ="javaAppletName.jar"
 width ="1024" height ="600"
 alt ="Your HTML5 Browser, or OS, does not support Java!"
 codebase ="https://www.YourRemoteServerURLgoesHere.net"
 name ="appletTagsName" align ="middle">
 <param name="permissions" value="sandbox" />
 ALERT: Your HTML5 Browser, or OS, does not support Java!
 </applet>
 </section>
 </body></html>

 As you can see, the alt parameter provides alternate text for HTML5 platforms that
recognize the applet element, but don’t support Java or don’t have Java enabled. It’s
important to note that developers could also provide this alternate text content between
<applet> start and ending tags, as shown. This is a better method than using the alt
attribute, because it allows developers to provide additional HTML5 markup in the
alternate content. This approach also works in HTML2 or HTML 3.2 browsers that don’t
yet support this <applet> element, but will still process this text.

 An archive parameter specifies a comma-separated list of archived files. However,
Java developers usually provide one single jar (Java archive) file, the standard archive
format for Java files. Jar files are created by a jar tool included in the Java SE Development
Kit, which you learn how to download and install in the appendices (A through C) of
this book.

 It is important to note that some browsers don’t support an archive parameter, so
all necessary JAR files should also be provided as .class files and referenced using a code
parameter.

 An align attribute specifies an alignment for the applet to specify data values of
top, middle, bottom, left, right, and baseline. These set applet position with respect to
surrounding content on its left and right.

CHAPTER 20 ■ HTML5 PLUG-INS: USING THE <OBJECT>, <EMBED>, <APPLET>, AND <PARAM> TAGS

183

 The align=“middle” in the example aligns the vertical center of the applet with the
current baseline. The left and right align values specify a floating applet. In this use-case,
an applet is set at the left or right margin; the surrounding content flows around the applet.

 The hspace and vspace parameters allow HTML5 developers to specify horizontal or
vertical whitespace, respectively, around an applet. The data value must be in pixels and
applies to both left and right sides (or top and bottom) of the applet.

 Finally, the object parameter (rather than the code parameter) specifies a serialized
Java applet, like this:

 <applet object="serializedJavaAppletName.ser"
 width="1024" height="600"
 alt="Your HTML5 Browser, or OS, does not support Java!"
 codebase="https://www.YourRemoteServerURLgoesHere.net"
 name="appletTagsName" align="middle">
 <param name="permissions" value="sandbox" />
 ALERT: Your HTML5 Browser, or OS, does not support Java!
 </applet>

 When this <applet> tag configuration is encountered, an HTML5 parsing engine
creates an applet by deserializing it. This allows an applet to be shipped in a pre-
initialized state. When an applet is deserialized, an init() method is not invoked, allowing
initialization to be performed on the client side.

 The <object> tag is provided for HTML5 to replace the <applet> tag in HTML 4.01
(and previous versions).

 Embed Objects in HTML5: The OBJECT Tag
 The <object> tag defines any embedded objects within your HTML5 documents.
You can use this element to embed multimedia assets , such as digital audio, digital
video, Java and JavaFX applets, Active-X controls, Adobe Acrobat PDF documents,
and Shockwave Flash applications within your HTML5 documents, websites, and
applications. It is interesting to note that you can also use the <object> tag to embed
another web page into an HTML5 document. You can also use a child <param> tag to
pass parameters to plug-ins that you have embedded using the <object> tag. Images
should use the tag instead of the <object> tag.

 Your <object> elements need to appear inside the <body> element, since they are
local objects and not global (<head>) settings. The text between <object> and </object> is
alternate text for browsers that don’t support this tag. One of the data or type parameters
also needs to be specified. The form parameter is new in HTML5, because objects can be
submitted in HTML5 forms.

 Objects can no longer appear in the <head> tag in HTML5. Table 20-3 describes 17
parameters supported by the <object> tag or element.

CHAPTER 20 ■ HTML5 PLUG-INS: USING THE <OBJECT>, <EMBED>, <APPLET>, AND <PARAM> TAGS

184

 You can define a basic <object> element using a type and data parameter to reference
the asset data and object MIME type along with a width and height parameter defining
the dimensions for your object canvas, as shown in the following HTML5 markup:

 <!DOCTYPE html><html><head><title>Acrobat PDF Object Example</title></head>
 <body>
 <section id="PDF-ObjectInsertionExample">
 <h1>Adobe Acrobat Object is Inserted Below</h1>
 <object data ="abc.pdf" type ="application/pdf" name ="objectTagName"

 Table 20-3. Seventeen Supported HTML5 <object> Tag Parameters

 Parameter Parameter Data Value Object Tag Parameter’s Usage

 align top Specifies an alignment of an <object> element
to its surrounding elements

 archive URL Space separated URL list to archive of relevant
object resources

 border pixels Specifies a width for object’s border

 classid class_ID Defines a class_ID value, as set in the Windows
Registry, or in the URL

 codebase URL Defines the base URL , referencing where to find
the .class code for object

 codetype media_type The media type of the code referred to by the
classid attribute

 data URL Specifies the URL for a data resource

 declare declare Defines the object should only be declared not
instantiated (created)

 form form_ id Specifies the forms object belongs to

 height pixels Specifies the height for the object

 hspace pixels Specifies the whitespace on the left and right
sides of the object

 name name Specifies the name for the object

 standby text Defines text value to display while the object is
streaming or loading

 type media_type Specifies a media type for the data specified in
the data attribute

 usemap #mapname Specifies the name of a client-side image map
to be used with the object

 vspace pixels Specifies the whitespace on top and bottom of
an object

 width pixels Specifies the width for the object

CHAPTER 20 ■ HTML5 PLUG-INS: USING THE <OBJECT>, <EMBED>, <APPLET>, AND <PARAM> TAGS

185

 standby ="Loading, please wait..."
 width ="1024" height ="600">
 <embed src="abc.pdf" type="application/pdf">
 <noembed>HTML5 Browser/OS doesn't support Java object type!</noembed>
 <embed>
 </object>
 </section>
 </body>
 </html>

 You can also add a standby parameter for a “please wait” message to display
while the object is loading. You can use <embed> inside of <object> to support legacy
browsers! The <param> tag is a child tag, which adds parameters to the tags not covered
in this chapter. Doing so adds capabilities that don’t have to be parameters of the parent
tag. Let’s take a look at the <param> tag next, before we finish up.

 Declaring Parameters : Using the PARAM Tag
 The parameter < param > tag is used with the <applet> tag to pass parameters. It is also
used with the <object> tag to specify the object parameters, as seen in the previous
HTML5 markup example. Table 20-4 describes four <param> tag parameters.

 Table 20-4. Four <param> Tag Parameters

 Param Tag Parameter Param Tag Parameter’s Usage

 name Defines the name of the parameter

 value Defines the value of the parameter

 type Defines a media (MIME) type (no HTML5 support)

 valuetype Defines a value type (not supported in HTML5)

 Let’s use <param> to embed a Java applet using <object>.

 <!DOCTYPE html><html>
 <head><title>Java Object Insertion Example</title></head>
 <body>
 <section id="Java-JavaFXObjectInsertionExample">
 <h1>Java or JavaFX Application Object is Inserted Below</h1>
 <object type=" application/x-java-applet " name="objectTagName"
 standby="Object is loading, please wait..."
 width="1024" height="600">
 <param name="code" value="classNameHere.class" />
 <param name="archive" value="archiveNameHere.jar" />
 <param name="scriptable" value="true" />
 <param name="mayscript" value="true" />

CHAPTER 20 ■ HTML5 PLUG-INS: USING THE <OBJECT>, <EMBED>, <APPLET>, AND <PARAM> TAGS

186

 ALERT: Your HTML5 Browser or OS doesn't support a Java object type!
 </object>
 </section>
 </body>
 </html>

 Next, let’s discuss the rules of thumb on when to use one embedding approach vs.
another.

 To Embed or Not to Embed: Tag Selection
 One of the most active discussion topics regarding HTML5 tags concerns <embed>
versus <object> versus <applet> versus <iframe> when it comes to embedding content in
HTML5 documents and applications.

 The <applet> tag is deprecated, but developers still use it; the other three are part of
an HTML5 specification, but each has its own following. You need to discover how each
works for your own purposes. These tags are almost as complex as the <canvas> tag and
WebGL 2.

 Oracle discusses the rules of thumb on its Java 8 website at:

 docs.oracle.com/javase/8/docs/technotes/guides/jweb/applet/using_tags.html

 Use the <applet> tag if an HTML5 web page is accessed through the Internet. If the
HTML5 web page is accessed through a corporate intranet, use the <object> tag or the
<embed> tag.

 When deploying applets for specific HTML5 browsers, use the <object> tag for
Internet Explorer only. Use an <embed> tag for the Mozilla family of browsers. If you must
deploy an applet in a mixed- browser environment, follow these guidelines.

 When using a pure HTML approach to deploy applets in a mixed-browser
environment, note the following regarding IE and Mozilla:

 Internet Explorer recognizes the <object> tag and ignores the contents of the
 <comment> tag, as shown in this markup:

 <!DOCTYPE html><html><head><title>Acrobat PDF Object Example</title></head>
 <body>
 <section id="PDF-ObjectInsertionExample">
 <h1>Adobe Acrobat Object is Inserted Below</h1>
 <object data="abc.pdf" type="application/pdf" name="objectTagName"
 standby="Loading, please wait..."
 width="1024" height="600">
 <comment>

CHAPTER 20 ■ HTML5 PLUG-INS: USING THE <OBJECT>, <EMBED>, <APPLET>, AND <PARAM> TAGS

187

 <embed src="abc.pdf" type="application/pdf">
 <noembed>HTML5 Browser/OS doesn't support Java object type!</noembed>
 <embed>
 </comment>
 </object>
 </section>
 </body>
 </html>

 Mozilla browsers ignore the <object> tag using the classid attribute and interpret
the contents of a <comment> tag, so consider using the previous PDF example code for
HTML5, where an <embed> tag is used inside a <comment> tag in the <object> tag.

 The moral of this chapter is to test all of your plug-in assets and applications
carefully! Testing is the best way to actually ascertain how HTML5 application and
embedded assets ultimately work together.

 Summary
 In this chapter, you learned about tag support in HTML5 for plugging in or embedding
external application or document assets, including the <embed>, <applet>, <object>, and
<param> tags. In the next chapter, you explore the HTML5 template <template> tag and
learn how to use HTML5 templates.

189© Wallace Jackson 2016
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_21

 CHAPTER 21

 HTML5 Frames: Using the
<iframe> Tag

 Now let’s cover tags from the golden days of HTML , when framesets and frames were
commonly used to define areas on the screen. One of these frame-related tags, the
<iframe> tag, is still in use today. It allows developers to add pages in other websites into
an internal frame, or iframe, in their HTML5 design. This is sometimes called embedding
content , but it is different from the <embed>, <object>, and <applet> elements.

 In this chapter, you look at three frame-related tags. Two of these are legacy tags
not supported in HTML5; they are not recommended for use. They were used heavily in
HTML2 and HTML 3.2, so I am including them here for the sake of completeness. One of
the tags, the <iframe> tag, is still supported in HTML5, and that is what we’ll focus on for
most of this chapter.

 In this chapter, you look at the frameset <frameset> tag, the related frame <frame>
tag, and the iframe <iframe> tag which is still supported for use in HTML5.

 HTML Frame Legacy: The FRAMESET and
FRAME Tags
 The < frameset> tag used to be a popular way in the legacy HTML specifications to
create areas in a website that would change shape and size as you resized the browser
window. As HTML advanced over the years, other tags such as <div> and and CSS
elements such as center, auto and fit-content were introduced for doing this, and became
the recommended way of doing things. Framesets and frames are not recommended for
use in HTML anymore, and that goes tenfold for HTML5, where they are not supported.
So, here I cover <frameset> and its child tag <frame> briefly, and then get into <iframe>,
which is still supported in HTML5.

 The <frameset> tag defines the frame set, which then holds several <frame>
elements. Each <frame> element holds a separate document, using a src parameter to
reference the document source HTTP location.

 A <frameset> element specifies the number of columns or rows there are in the
frame set, and the distribution of space, using a percentage or pixel value. These indicate
the amount of space each frame occupies in the HTML document or website.

CHAPTER 21 ■ HTML5 FRAMES: USING THE <IFRAME> TAG

190

 If you wanted to validate any page containing frames, be sure that your <!DOCTYPE>
is set to either HTML Frameset DTD or to XHTML Frameset DTD.

 Table 21-1 shows two frameset tag parameters supported in legacy HTML.

 Table 21-1. Two Frameset Parameters

 Menu Parameters Menu Parameters’ Usage

 cols Specifies the number and size of columns in a frameset

 rows Specifies number and size of rows in a frameset

 Here is an example of how you would create a frame set in HTML using the <frame>
child tag to hold the frame definitions :

 < frameset cols ="25%,*,25%"> <!-- 25% outer column width, center scales -->
 < frame src ="frame_one.html" />
 < frame src ="frame_two.html" />
 < frame src ="frame_three.html" />
 </frameset>

 Next, let’s take a look at the <iframe> tag, which shows another HTML5 page in a
frame in HTML5.

 HTML5 Frames: Using the IFRAME Tag
 The <iframe> tag defines an area in an HTML document design to show a remote HTML
page; it’s kind of like a portal that encapsulates another HTML document inside of your
own HTML5 document, website, e-book, or application designs. An <iframe> tag is in
somewhat similar to the <embed>, <object>, and applet tags, but instead of apps or plug-
ins, the <iframe> embeds another HTML document design. Technically, the <iframe>
tag specifies an inline frame , which seamlessly embeds another document within your
current HTML5 document. To support browsers that do not support <iframe>, you add
text between the opening <iframe> tag and the closing </iframe> tag. You can use CSS3 if
you want to style an <iframe> element. For instance, you may want to include scrollbars.
This is done by using the CSS3 overflow property set to the value of scroll in the following
CSS3 style:

 iframe { overflow: scroll; }

 Table 21-2 shows 11 <iframe> tag parameters. The first six are new to HTML5 and
the second five are acceptable parameters in legacy HTML projects, but they are not used
in HTML5.

CHAPTER 21 ■ HTML5 FRAMES: USING THE <IFRAME> TAG

191

 Let’s add the Apress website to the HTML5 example using an <iframe> named
"apress" that is 800 × 600 resolution. This is accomplished in the following HTML5 markup:

 <iframe src =http://www.apress.com width ="800" height ="600" name ="apress">
 ALERT: If you can see this message, your browser doesn't support iFrame
 </iframe>

 You can use your sandbox parameter to "sandbox" external content for testing.
The sandbox attribute enables an extra set of restrictions , for content displayed inside of
your <iframe>.

 When the sandbox attribute is present, it treats your HTML5 content as if it comes
from a unique origin. It blocks form submissions and JavaScript execution. The sandbox
parameter disables any APIs and prevents any links from targeting another browsing
context. The sandbox prevents content from using plug-ins through <embed>, <object>,

 Table 21-2. Eleven HTML5 iFrame Parameters (six new in HTML 5)

 iFrame Parameter iFrame Parameter Usage

 src Specifies an HTTP URL address of an HTML document to
embed in your <iframe> element

 width Specifies the width for your <iframe> in pixels

 height Specifies the height for your <iframe> in pixels

 name Specifies the name for your <iframe> element

 sandbox Enables the extra set of restrictions for your content in an
<iframe> options include: allow-forms, allow-pointer-lock,
allow-popups, allow-same-origin, allow-scripts, and allow-top-
navigation

 srcdoc Specifies actual HTML content values for the page you want to
show in the <iframe>

 align Specifies the alignment of an <iframe> according to other
surrounding HTML elements

 frameborder Specifies whether or not to display a border around your
<iframe> element

 longdesc Specifies a URL to a page that contains a long form description
of the content of an <iframe>

 marginwidth Specifies the left and right margin for the content in your
<iframe> element

 marginheight Specifies the top and bottom margin for the content in your
<iframe> element

 scrolling Specifies whether to display scrollbars for your <iframe>
element. Parameter options include yes, no, and auto

CHAPTER 21 ■ HTML5 FRAMES: USING THE <IFRAME> TAG

192

and <applet>. It also prevents content from navigating to a top-level browsing context and
blocks automatically triggered features, such as automatically playing video streams or
automatically setting focus to form controls.

 The value of the sandbox attribute is simply the keyword sandbox , as shown in the
following example. All restrictions are applied. Here the Apress website is added to the
HTML example by using an <iframe> with a sandbox parameter:

 <iframe src =http://www.apress.com width ="800" height ="600" sandbox >
 ALERT: If you can see this message, your browser doesn't support iFrame
 </iframe>

 You could also specify a value for the sandbox parameter, which contains a
space-separated list of pre-defined values. This allows you to turn off any of those specific
restrictions.

 Let’s add the Apress website to the current HTML5 example using an <iframe>
that allows forms, pop-ups, and JavaScript. This is accomplished in the following
HTML5 markup:

 <iframe src =http://www.apress.com width ="800" height ="600" name ="apress"
 sandbox ="allow-forms allow-popups allow-scripts" >
 ALERT: If you can see this message, your browser doesn't support iFrame
 </iframe>

 Rather than the <iframe> tag, some HTML5 developers use the <object> tag with
a type=text/html parameter to load external HTML content. Let’s revisit this discussion
again, as you did in the previous chapter with embed vs. applet vs. object.

 Using Object or iFrame: More Discussion
 Some HTML5 developers are bound to make the assumption that the <object type="text/
html"> element declaration is the same as using an <iframe>, and some may go as far
as to assume that <object> is more powerful because it also allows a nesting of <param>
(parameter passing) child tags. However, HTML5 developers would be incorrect in
making this assumption.

 The primary "under the hood" difference is that <iframe> establishes a real-time
link between your two HTML5 pages, such that it establishes "dynamic updating"
between those two servers and the content they establish. Indeed, that sandbox
parameter, that we looked at in the previous section, proves this out, and the <object> tag
does not have this internal "DOM wiring" as it was originally purposed with connecting
HTML5 with non-HTML5 content types, and not with "other-HTML5 content" types.
This is your primary difference between <object> and <iframe>, and, between <embed>
and <iframe> for that matter, if you want to look at something using a blanket, high-level
assumption.

 The moral of this story is to use <iframe> for real-time embeds of inter-HTML5,
real-time linked content, to insert other HTML and HTML5 content (if it is not your
intellectual property (IP), be sure to get written permission) into your HTML 5 or HTML
5.1 documents, websites, e-books, iTV Sets, and applications.

CHAPTER 21 ■ HTML5 FRAMES: USING THE <IFRAME> TAG

193

 Summary
 This chapter explained legacy <frameset> and <frame> tags, and support in HTML5 for
the <iframe> tag. It discussed embedding differences among the <iframe>, the <object>,
and <embed> tags. In the next chapter, you look at the new support in HTML5 for ruby
annotations.

195© Wallace Jackson 2016
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_22

 CHAPTER 22

 HTML5 Ruby Annotations:
Using the <ruby> Tag

 Now let’s discuss a brand-new tag in HTML5 that allows developers to provide ruby
annotations, which allow you to provide small text helpers for your HTML5 users to help
them understand your primary content. Oftentimes this is translation assistance for
foreign languages or technical jargon.

 In this chapter, you look at three powerful tags in HTML5 that allow you to
implement ruby annotations content seamlessly for HTML5 content. These include the
ruby annotation <ruby> tag, the ruby parenthesis <rp> tag, the ruby text <rt> tag, the
ruby base <rb> tag and the ruby text container <rtc> tag. You’ll learn when to use each of
the tags and what they allow you to add to your HTML5 content production, publishing,
and work delivery process.

 Currently, ruby annotations don’t have widespread browser support. This chapter
is included as a quick reference. That said, ruby annotations are something that many of
you want to know about.

 Ruby Annotations: The RUBY Tag
 A <ruby> tag specifies a ruby annotation. It has zero relationship to the popular Ruby
programming language! A ruby annotation is a small, extra snippet of text attached to the
primary text. It indicates a pronunciation for, or alternate meaning of, the corresponding
characters that it is connected to. This kind of annotation is often used in Japanese,
Chinese, Korean, or Arabic publications.

 You can use a <ruby> tag as a parent container to define ruby annotations by
using the <rt> child tag with an <rp> child tags to define the annotation itself. A <ruby>
element consists of one character, or a series of characters, which requires the technical
explanation, or possibly some pronunciation details.

 Inside a parent <ruby> tag, you have an <rt> tag that contains your pronunciation
information. You may also have an optional ruby parenthesis or <rp> element. This
defines what to show in browsers that do not currently support ruby annotations. The
hope is that browser or HTML5 OS manufacturers move quickly to support the ruby
annotation convention, because it should be especially useful for consumer electronics
devices such as UHD iTV Sets, smartphones, e-book readers, and tablets.

CHAPTER 22 ■ HTML5 RUBY ANNOTATIONS: USING THE <RUBY> TAG

196

 Table 22-1 shows the six ruby annotation tags that are currently supported in HTML5.

 Table 22-1. Six HTML5 Ruby Annotation Tags All Are New in HTML5

 HTML5 Ruby Tag HTML5 Ruby Annotation Tag’s Usage

 <ruby> Defines a ruby annotation definition (parent)

 <rt> Defines a ruby annotation text element (child)

 <rtc> Defines a ruby text container (child)

 <rp> Defines a ruby annotation parenthesis (child)

 <rb> Defines a ruby base text element (child)

 <rbc> Defines a ruby base container (child)

 Here’s an example of how you use a ruby annotation to define the word
 colloquialism using the primary three HTML5 <ruby> tags, supported across all of the
browsers, in the HTML5 markup for a basic dictionary word entry and pronunciation:

 <ruby>
 col·lo·qui·al·ism
 <rp>(</rp>
 <rt> kə'lōkwēə

'
lizəm </rt>

 <rp>)</rp>
 </ruby>

 The parent ruby tag contains the word colloquialism, and surrounds this word with
the semantic tag, to bold it. This shows the user that this is a word that is central
to your content, and is the word which is going to be defines using the ruby annotation
which follows it in parenthesis.

 After this is your <rp> tag to add the left parenthesis, and then the <rt> tag
containing your pronunciation text, and then the <rp> tag again to add the right
parenthesis, and then the closing </ruby> tag to end the ruby annotation definition.

 I am not sure if the publisher is using the UFT-16 character set to publish the book,
but here is an example of the Japanese word Kanji defined using a <ruby> annotation:

 <ruby>
 漢 <rp>(</rp>
 <rt> Kan </rt>
 <rp>)</rp>
 字 <rp>(</rp>
 <rt> ji </rt>
 <rp>)</rp>
 </ruby>

CHAPTER 22 ■ HTML5 RUBY ANNOTATIONS: USING THE <RUBY> TAG

197

 If you want to see <ruby> in action mixing together the Japanese Kanji , Chinese,
Korean, and Arabic examples, you have to look at these online to get an idea as to how
ruby annotations work with foreign languages, which each have completely different
 character sets. Simply enter a search for “ruby annotation example” and you will find
some examples. Next, let’s cover some of the more complex ruby annotation child tags
that allow you to build advanced ruby annotations.

 Advanced Ruby Annotations: Ruby Containers
 The ruby text container <rtc> element can be used as the container for <rt> elements, in
more advanced ruby annotations. One or two <rtc> elements may appear inside a <ruby>
element to associate ruby texts with a single base text, represented by an <rbc> element,
which you look at next. No more than two <rtc> tags can appear inside a ruby element.
Here is an HTML5 example of the parent-child relationship for these tags:

 <ruby>
 <rtc>
 <rt>さい</rt>
 <rt>とう</rt>
 <rt>のぶ</rt>
 <rt>お</rt>
 </rtc>
 </ruby>

 The ruby base container <rbc> element serves as the container for ruby base <rb>
elements for ruby annotation. Only one <rbc> element is allowed to appear inside of a
ruby tag.

 This ruby base <rb> element marks up base text. In simple ruby annotation only one
<rb> element may appear. In complex ruby annotation, multiple <rb> tags may appear
inside an <rbc> element, as is shown in the following HTML5 markup:

 <ruby>
 <rbc>
 <rb>斎</rb>
 <rb>藤</rb>
 <rb>信</rb>
 <rb>男</rb>
 </rbc>
 </ruby>

 Each <rb> tag is associated with your corresponding <rt> element yielding fine-
grained control for ruby annotation. The <rb> element contains in-line elements or
character data as its content. The <ruby> element isn’t allowed as a child tag because it
can only be used as a container tag (i.e., the parent tag).

CHAPTER 22 ■ HTML5 RUBY ANNOTATIONS: USING THE <RUBY> TAG

198

 Once you put these together, you get a complex definition, where the <rbc> construct
holds base text for the base language and the <rtc> holds the ruby text definition in
the translation language. When rendered, the <rb> text is on the bottom and the <rt>
characters are at the top, in a smaller font, defining the <rb> characters using a different
language character set:

 <ruby>
 <rbc>
 <rb>斎</rb>
 <rb>藤</rb>
 <rb>信</rb>
 <rb>男</rb>
 </rbc>
 <rtc>
 <rt>さい</rt>
 <rt>とう</rt>
 <rt>のぶ</rt>
 <rt>お</rt>
 </rtc>
 </ruby>

 Expect ruby annotations to gain support as the HTML5 OS continues to proliferate
and HTML5 continues to internationalize due to increased sales of HTML5 iTV Sets and
smartphones.

 Summary
 In this chapter, you looked at the <ruby> tag support in HTML5 for defining ruby
annotations, including the <ruby>, <rt>, <rtc>, <rb>, <rbc>, and <rp> tags. In the next
chapter, you look at the new HTML 5.1 OS features tags, which ultimately allow HTML5
to implement application features, such as menuing and dialogs .

199© Wallace Jackson 2016
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8_23

 CHAPTER 23

 HTML 5.1 Tags: Using Menu
and Dialog Design Elements

 Finally, let’s discuss the tags that are new in HTML 5.1 that allow developers to add
elements such as menu structures and dialogs that are used in HTML5 applications.
These have been added because HTML5 is now being used for at least half a dozen major
consumer electronics operating systems, including Mozilla’s Firefox OS, Canonical’s
Ubuntu Touch OS, Opera OS, Jolla’s Sailfish OS, Google’s Chrome OS, and Linux
Foundation Tizen OS.

 This chapter looks at three powerful tags that are new in HTML 5.1 allowing
implementation of application user interface elements seamlessly in HTML 5.1 OS
content. Note that current browsers may not have implemented these as yet; an exception
to this is your Firefox browser. This is probably due to Mozilla’s aggressive expansion of
the Firefox OS worldwide.

 The menu <menu> tag, a related menu item <menuitem> tag, and the dialog
 <dialog> tag are all new. You see how to use these tags and what they allow you to add
to HTML5 applications for use on consumer electronics products, such as smartwatches,
UHD iTV Sets, e-book readers, tablets, laptops, and smartphones.

 HTML5 Application Menu: The MENU Tag
 The < menu> tag in the new HTML 5.1 specification creates menuing systems. This works
in documents, websites, e-books, and HTML5 applications, though it’s necessary only for
HTML5 applications, as HTML 5.1 needed to add launch icons, menuing, and dialogs at
a minimum to achieve the required user interface elements in order to be taken seriously
as an operating system. The underlying Linux kernel provides the rest of those “under the
hood” OS features that are necessary.

 A <menu> tag can be used to define a list of commands or a menu filled with
commands. The <menu> tag is used for context menus, toolbars, or for lists of form
controls or command lists.

CHAPTER 23 ■ HTML 5.1 TAGS: USING MENU AND DIALOG DESIGN ELEMENTS

200

 Table 23-1 shows two < menu>tag parameters supported in HTML 5.1 when it is
released in the fourth quarter of 2016, a few months after this reference title is published.

 Here is an example of how you can create an empty pop-up context (right-click)
menuing structure using the primary HTML 5.1 <menu> tags inside of a standard HTML5
markup structure:

 <menu type ="context" id ="emptymenu" label ="Click For Sub-Menu">
 <menu label ="submenu1">
 <menuitem/>
 <menuitem/>
 </menu>
 <menu label ="submenu2">
 <menuitem/>
 <menuitem/>
 </menu>
 <menu label ="submenu3">
 <menuitem/>
 <menuitem/>
 </menu>
 </menu>

 Next, let’s take a look at the <menuitem> tag, which populate menus or submenus
with menu option items.

 Populating HTML5 Menus: Using a MENUITEM Tag
 The < menuitem> tag defines a command or a menu item that your users select using
a pop-up menu (context right-click or list left-click) or a toolbar menu (a graphical
menu representation). You can make your <menuitem> commands execute JavaScript
functions or DOM API calls by using the onclick parameter that we looked at earlier in
the book. To give the <menuitem> a text label, you’ll use the required label parameter. It
is also important to note that the <menuitem> tag is currently supported only in Mozilla
Firefox and that even in the Firefox OS and browser, it currently only works for context
menus. Expect label menu and toolbar support to arrive shortly!

 Table 23-2 shows the seven <menuitem> tag parameters that should be well
supported when HTML 5.1 comes out in 2016.

 Table 23-1. HTML 5.1 Menu Parameters Supported in HTML 5.1

 Menu Parameter Menu Parameter’s Usage

 label Defines a menu label using a text value

 type Defines a menu type (list, context, or toolbar)

CHAPTER 23 ■ HTML 5.1 TAGS: USING MENU AND DIALOG DESIGN ELEMENTS

201

 Let’s add three <menuitem> tags to a <menu> tag, to show you how this works with
the Italian car example.

 Since this <menuitem> tag only holds parameters, you can use the <menuitem
parameter-list /> tag format, rather than the <menuitem parameter-list > </menuitem>
format, which would also be valid markup, if you prefer to use that markup approach:

 <menu type="context" id="carmenu" label="Italian Cars">
 <menuitem label ="Lamborghini"
 icon ="lamborghini_icon.png"
 type ="command" />
 <menuitem label ="Maserati"
 icon ="maserati_icon.png"
 type ="command" />
 <menuitem label ="Ferrari"
 icon ="ferrari_icon.png"
 type ="command" />
 </menu>

 You can use the other parameters to add selection check markings, default menu
items, disable menu items, radio button groups, and icon graphics, just like menus in
advanced operating systems such as Android, Solaris, Windows, Linux, and Macintosh
OS/X. HTML5 operating systems that began as browsers should be added to this list,
including Firefox OS, Opera OS, Tizen OS, and Chrome OS.

 Table 23-2. Seven HTML5 MenuItem Parameters All New in HTML 5.1

 MenuItem Parameter MenuItem Parameter Usage

 label (Required) Specifies your text for your command/menu item , as it is
shown to the users of your menu

 checked Specifies that this command/menu item should be checked
(selected) when your page loads. Only use this for type=“radio”
and type=“checkbox”

 default Specifies a command or menu item as being your default
command or menu item

 disabled Specifies that the command or menu item should be disabled
(greyed-out, and not selectable)

 icon Specifies the icon URL for a command/menu item

 radiogroup Specifies the name of a group of commands that is toggled
when the command or menu item itself is toggled. This is for
type=“radio”

 type Defines a menuitem type (check box, command or radio)
default is command

CHAPTER 23 ■ HTML 5.1 TAGS: USING MENU AND DIALOG DESIGN ELEMENTS

202

 Creating Sub-Menus: Nested MENU Tag Usage
 To create a sub- menu you would simply nest a <menu> tag, as demonstrated in the
following HTML5 markup for this example:

 <menu type="context" id="carmenu">
 <menu label="Italian Cars">
 <menuitem label="Lamborghini"
 icon="lamborghini_icon.png"
 type="command" />
 <menuitem label="Maserati"
 icon="maserati_icon.png"
 type="command" />
 <menuitem label="Ferrari"
 icon="ferrari_icon.png"
 type="command" />
 </menu>
 <menu label="German Cars">
 <menuitem label="Porsche"
 icon="porsche_icon.png"
 type="command" />
 <menuitem label="Audi"
 icon="audi_icon.png"
 type="command" />
 <menuitem label="Volkswagen"
 icon="volkswagen_icon.png"
 type="command" />
 </menu>
 <menu label="American Cars">
 <menuitem label="Chevrolet"
 icon="chevy_icon.png"
 type="command" />
 <menuitem label="Ford"
 icon="ford_icon.png"
 type="command" />
 <menuitem label="Jeep"
 icon="jeep_icon.png"
 type="command" />
 </menu>
 </ menu>

 Next, let’s take a look at how we can add HTML5 dialogs!

CHAPTER 23 ■ HTML 5.1 TAGS: USING MENU AND DIALOG DESIGN ELEMENTS

203

 HTML5 Application Dialog: A Dialog Tag
 Dialogs are another important component for applications, and a dialog component is
just as important for an operating system to support as a menu component or application
launch icons. The <dialog> tag can be used to define a dialog box or a dialog window.
This <dialog> element allows developers to create pop-up dialogs and modal dialogs in a
document, e-book, web page, or application. The browsers which currently support this
HTML 5.1 tag include Opera or Chrome, but interestingly, not Firefox as yet. Table 23-3
shows the one parameter that is currently supported for the <dialog> tag (element), which
specifies that a dialog be open initially.

 Table 23-3. One HTML5 Dialog Parameter That Is New in HTML 5.1

 Dialog Parameter Dialog Parameter’s Usage

 open Defines an initial open dialog state for dialog

 To create an open dialog with some text information, you would use the following
HTML 5.1 markup, using the Italian Cars example using a basic table of car models with
standard colors:

 <table>
 <tr>
 <th>Ferrari <dialog open> Ferrari Cars Are Usually Red! </dialog> </th>
 <th>Lamborghini</th>
 <th>Maserati</th>
 </tr>
 <tr>
 <td>Red</td>
 <td>Yellow</td>
 <td>Black</td>
 </tr>
 </table>

 Expect <dialog> support in the other HTML5 engines soon.

 Summary
 In this final chapter, you looked at the new <menu> and <dialog> tag support in HTML 5.1
for defining HTML5 application components for the upcoming explosion of HTML5
operating systems, of which there are currently half a dozen in use. You looked at the
<menu>, <menuitem>, and <dialog> tags, and how to create basic menus and dialogs.

 I hope you have enjoyed this HTML5 Quick Markup Reference manual as much as
I have enjoyed writing it! Best of luck with your HTML5 development endeavors.

205© Wallace Jackson 2016
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8

 APPENDIX A

 NetBeans: Set up an HTML5
Integrated Development IDE

 Let’s pull together your foundation for a highly professional, HTML5-friendly, NetBeans 8.1
integrated development environment (IDE). Your development workstation is the most
important combination of PC hardware and software, allowing you to reach the goal of
HTML5-compatible applications development. Let’s take an appendix to consider your
hardware HTML5 software development workstation needs.

 Let’s first get all of the tedious setup tasks out of the way. If you already have your
workstation configured, you can proceed to Chapter 1 for an overview of HTML. If you
already are familiar with HTML, start with Chapter 2 .

 Everything that you learn over the course of this book needs to be experienced equally
by each reader. In Appendix D, you learn where to go to download and how to install
several of the most impressive, professional, open source new media software packages
on the face of this planet! You are about to “max out” your HTML5, CSS3, and JavaScript
development workstation, so be sure to hold on tight and enjoy this virtual download ride!

 Create a HTML Development Workstation
 The first thing to do after looking at hardware requirements is to download and install
the entire Java software development kit (SDK) , which Oracle calls Java SE 8 JDK (Java
Development Kit). The NetBeans 8.1 IDE uses the Java 8 SE (Standard Edition) runtime,
which is one of the components of the Java Development Kit.

 The second thing to do is download and install the NetBeans 8.1 IDE from
 www.netbeans.org . The NetBeans 8.1 IDE allows you to develop HTML5-compatible
applications with all of the popular programming languages, including C, C++, Java, PHP,
Python, JavaFX, Ruby, HTML5, CSS3, ECMAscript, and JavaScript.

 After your HTML5 application development environment is set up, you can then
download and install new media asset development tools, as outlined in Appendix D.
These are used in conjunction with NetBeans for image editing (GIMP) or non-linear
digital video editing (Lightworks); visual effects or VFX (Fusion 8); digital audio sweetening
or editing (Audacity 2.1.2); i3D modeling and animation (Blender); SVG digital illustration
(Inkscape); and even a open source office business productivity suite (Apache OpenOffice).

http://dx.doi.org/10.1007/978-1-4302-6536-8_1
http://dx.doi.org/10.1007/978-1-4302-6536-8_2
http://www.netbeans.org/

APPENDIX A ■ NETBEANS: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

206

 This appendix can take your development to an all-new level, showing you how to
create the HTML5 development and markup workstation that runs your HTML5 design
business.

 All of these software development tools come close to matching the primary feature
sets of expensive paid software packages, such as those from Apple (FCP-X), Autodesk
(3D Studio Max 2016), Adobe (Photoshop, Illustrator, After Effects), Avid (ProTools), and
Nuke, and all at zero cost to your production company!

 Open source software is free to download, install, and upgrade, and it continuously
adds features. It’s becoming more like professional software every day. You will be
completely amazed at how professional open source software packages have become
over the last decade or so.

 Development Workstations: Hardware Foundation
 Since you will put together the foundation of your HTML5-capable application
development workstation that will be used for the duration of this book, I want to
take a moment to review NetBeans 8’s HTML5 development workstation hardware
requirements. This is a factor that influences your development performance (speed).
This is clearly as important as the software itself, since hardware is what is actually
running the software package’s algorithms.

 Minimum requirements for NetBeans 8.1 IDE include 512MB of memory, 750MB of
hard disk space, and XGA (1024 × 768) display.

 Now let’s discuss what you need to make the NetBeans 8 HTML IDE usable. Let’s
start with upgrading the 1024 × 768 XGA display to an HDTV (1920 × 1080 at 120FPS
refresh rate) or UHD (4096 × 2160 at 120FPS refresh rate) widescreen display. These are
now affordable and give you 4 to 16 times the display “real estate” of an XGA display.
HDTVs are now $250 to $500 and UHDTV displays are now under $1,000.

 I recommend using, at a bare minimum, the Intel i7 quad-core processor, or, the
 AMD 64-bit octa-core processor. Install at least 8GB of DDR3-1600 memory. I’m using
a 64-bit, octa-core AMD 8350, with 16GB of DDR3-1600. Intel also has a hexa-core i7
processor. This would be the equivalent of having twelve cores, as each i7 core can
host two threads. Similarly, an i7 quad-core should look like eight cores, to your 64-bit
operating system’s thread-scheduling algorithm.

 There are also DDR3-1800 and DDR3-2133 clock speed memory module components
available. A high number signifies fast memory access speeds. To calculate actual
megahertz speeds the memory is cycling at, divide the number by 4 (1333 = 333MHz,
1600 = 400MHz, 1800 = 450MHz, 2133 = 533MHz).

 Memory access speed is a massive workstation performance factor, because your
processor is usually bottlenecked by the speed at which processor cores can access your
data (in memory).

 With the high-speed processing and memory access going on inside the workstation,
it’s extremely important to keep everything cool so that you do not experience thermal
problems . I recommend using a wide, full-tower enclosure with 120mm or 200mm cooling
fans (one or two at least), as well as a captive liquid induction cooling fan on the CPU.

 It is important to note that the cooler the system runs, the faster it can run, and the
longer it will last, so load the workstation up with lots of silent high-speed fans!

APPENDIX A ■ NETBEANS: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

207

 If you really want a maximum performance, install an SSD (solid-state drive) as your
primary disk drive, where your applications and operating system software load. Use
legacy HDD hardware for your D:\ hard drive for the slower data storage (long-term). Put
your current project files on the SSD.

 I am using a 64-bit Windows 8 operating system, which is fairly memory efficient.
The Linux 64-bit OS is extremely memory efficient. I recommend using any 64-bit OS, so
you can address more than 3.24GB of system memory.

 HTML5 Development Workstation: Open Software
 To create your well-rounded HTML5 application development workstation, you’ll be
installing all of the primary genres of open source software that comprises a professional
development workstation. First, you install Java SE 8 and NetBeans 8.1. I also show you
how to download GIMP, Lightworks, Fusion, Blender3D, and Audacity, which are also all
open source software packages, in case your HTML applications are going to be using a
graphical front end. Thus, we’ll be putting together a 100% open source workstation for
you. I’ll also recommend other free software at the end of Appendix D so you can put
together the production workstation that you have always dreamed of.

 Open source software recently reached the close parallel to the level of
professionalism of “paid” development software packages that cost thousands of dollars
each to acquire. Using open source software packages like Java 8, NetBeans 8, Blender,
GIMP, Audacity, Lightworks, Fusion, OpenOffice, and others, you can put together a free
application development workstation and rival paid software workstations that would
have cost you thousands!

 For those readers who have just purchased their new HTML development
workstation PC, and who are going to put the entire development software suite together
completely from scratch, we’ll go through the entire work process.

 Java 8: Installing the Foundation for NetBeans 8.1
 The first thing that you want to do is to visit the NetBeans website (www.netbeans.org)
to find out what you’ll need to run this IDE. When you get to the homepage, click the
 Download button, shown on the far right side of Figure A-1 .

http://www.netbeans.org/

APPENDIX A ■ NETBEANS: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

208

 As you can see, there are nine different download options to consider; six support
JavaScript, which HTML is based on. I suggest the All version, which supports all of your
 popular programming languages, all of which HTML works with. If you are wondering
why some of these downloads offer 32-bit, and 64-bit, versions, and some do not, as you
can see in the bottom of Figure A-2 , this is because the ones with both versions have
been pre-compiled , whereas the other three require a Java 8 JDK to be installed. If you
use the All version so that any programming languages you want to use with HTML are
supported, you have to first install Java SE 8.

 Figure A-1. Go to netbeans.org and click Download

APPENDIX A ■ NETBEANS: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

209

 Open Google Chrome and Google “Java JDK” (see Figure A-3). Look for the Java SE
Development Kit 8 - Downloads search result. Click it to open the Oracle Java 8.

 Figure A-2. Download one of the HTML5/JavaScript IDE versions

 Figure A-3. Google “Java JDK ” and then click the Downloads link

APPENDIX A ■ NETBEANS: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

210

 Go to the Oracle website to download and install the latest Java JDK environment,
which at the time of this writing, is Java SE Development Kit 8u77 (see Figure A-4).

 Figure A-4. The Oracle TechNetwork Java SE JDK Download website

 The URL is in the address bar in Figure A-4 and opens the download page for Java SE
Development Kit, version 8u77.

 I put the link here as well, in case you wanted to simply cut and paste it, copy it, or
click it to launch:

 www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

 You should pull your scrollbar (on the right side of the webpage) halfway down the
page to display the Java Development Kit download links table (see Figure A-4).

 Once you click the Accept License Agreement radio button on the top-left of this
download links table, you’ll be able to click the link that you wish to use. If you’re on
Windows 10 and your OS is 64-bit, use the Windows x64 link, otherwise, use a Windows x86
link. I am using what is described in these links as “Windows x64,” which is a 64-bit version
of Windows, for my hexa-core Windows 7 and octa-core Windows 10 workstations.

 Make sure that you use this Java SE Development Kit 8u77 downloading link, and do not
use the JRE download (Java Runtime Edition) link. This JRE is part of JDK 8u77, so you do not
have to worry about getting Java Runtime Edition (JRE) separately. In case you are wondering,
you do indeed use the Java Runtime Edition to launch and run NetBeans IDE. You use this
JDK inside of that software package, to provide the Java core class foundation that can also be
used as a foundation for the Android OS Java-based API classes and for Java 8 or JavaFX apps.

 Before you run this installation, you should remove your older versions of Java from
your Windows Control Panel by using Add or Remove Programs (XP) or Programs and
Features (Windows Vista, 7, 8, or 10), shown selected in blue in Figure A-5 .

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

APPENDIX A ■ NETBEANS: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

211

 Figure A-5. Launch your Control Panel ➤ Programs and Features

 Figure A-6. Find old versions of Java, right-click and Uninstall

 This is necessary, especially if your workstation is not brand new. We do this so
that only your latest Java SE 8u77 and JRE 8u77 are the Java versions that are currently
installed on your HTML development workstation.

 Select all the older Java versions, right-click each one, and select the Uninstall
option, as seen in the bottom-right of Figure A-6 .

 Figure A-7. Setup, Custom Setup, and Extraction install dialogs

 Once you have done this and downloaded your installation executable, locate it, and
install this latest Java SE 8u77 JDK on your system, by double-clicking on the .exe file to
launch a Setup dialog, seen on the left-hand side of Figure A-7 . You can also right-click
your installer file and then select the Run as administrator option.

APPENDIX A ■ NETBEANS: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

212

 Figure A-8. Destination, Progress, and Complete install dialogs

 Click the Next button to access the Custom Setup dialog, shown in the middle of
Figure A-7 . Accept the default settings, and then click the Next button again, to access the
 Extracting Installer progress dialog seen on the right side of Figure A-7 .

 Once you’ve extracted the installation software, you can select a Java JDK software
installation folder. Use the default C:\ProgramFiles\Java\jre1.8.0_77 in the Destination
Folder dialog as shown on the left-hand side of Figure A-8 . Actually, the screenshots in
Figures A-7 and A-8 were taken when I installed Java 8u66 for my JSON Quick Syntax
Reference (2016) book; so just use your imagination and turn the 66 into a 77!

 JSON is also related to HTML5 development, so if you are interested in this topic,
you can find a book of mine on the Apress website. If you enter “Wallace Jackson” in the
search bar, it should bring up my books on new media, Java, JavaFX, game development,
and Android.

 Click the Next button, to install a Java Runtime Edition (JRE) edition in the default
specified folder. Interestingly an installer won’t ask you to specify the JDK folder name
for some reason, probably because it wants your Java JDK to always be in a set or fixed
(locked in the same location) folder name.

 The JDK folder is named C:\ProgramFiles\Java\jdk1.8.0_77. Notice that internally
Java 8 is referred to as Java 1.8.0. Thus, Java 6 is 1.6.0, and Java 7 is 1.7.0. This is useful to
know if you are looking for Java versions using a search utility, for example, or want to
show off your knowledge of legacy Java version numbering.

 Once you click the Next button, you get the Java Setup Progress dialog, shown in
the middle of Figure A-8 . Once Java 8 is finished installing, you see your Complete dialog,
which is seen on the right-hand side of Figure A-8 . Congratulations! You have successfully
installed Java 8!

 Remember that the reason that you did not download a JRE is because it is part
of this JDK 8u77 installation. The Java 8 Runtime Edition is the executable (platform)
which runs the Java software app once it has been compiled into an application and also
the latest JRE is needed to run NetBeans 8, which as you now know, is 100% completely
written using the Java SE 8 development platform.

 Once Java 8u77 or later is installed on your workstation we can then download and
install the latest NetBeans 8 software installer from the NetBeans website.

 You can also use that same Programs and Features (or Add or Remove Programs)
utility in your Control Panel to remove older Java or NetBeans versions, or even to
confirm the success of this latest Java 8 install.

 Now you are ready to add the second layer of the NetBeans 8.1 IDE software on top
of Java.

APPENDIX A ■ NETBEANS: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

213

 NetBeans 8.1: Download the NetBeans HTML IDE
 The second step in the process is to visit the NetBeans website (https://www.netbeans.org/
sdk/) to download and install the All version of the software (see Figure A-2).

 Click the Download button found at the bottom of the All column on the webpage.
This starts the browser download function, which should put the netbeans-8.1-windows.
exe file in your Downloads folder.

 Find this executable file on your workstation and either double-click it or right-click
it, and select the Run as administrator option. This opens a Welcome to the NetBeans
IDE 8.1 Installer dialog, shown on the left side of Figure A-9 .

 Figure A-9. NetBeans install Welcome, License Agreement dialogs

 Figure A-10. NetBeans Summary, Installation, and Complete dialog

 Click the Next button and select the I accept the terms in the license agreement
option, and then click the Next button. I accepted the default Windows Program Files
folder locations for all software installations, and again, clicked the Next button.

 This gives you the Summary dialog (see Figure A-10), where you select Check for
Updates , and then click the Install button to start the NetBeans 8.1 installation.

 Once the setup is complete, click the Finish button. Launch the software to make
sure that it works (see Figure A-11). I get into how to use NetBeans 8.1 to create a HTML
project in Appendix B.

https://www.netbeans.org/sdk/
https://www.netbeans.org/sdk/

APPENDIX A ■ NETBEANS: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

214

 If you’re going to create new media–compatible HTML applications, you need to get
seven more open source packages, so that you can create new media assets referenced by
HTML and JavaScript (or Java, JavaFX, PHP, C++, AJAX, JSON, or similar).

 These span the new media genres, including digital image compositing, 3D
modeling and 3D animation, digital illustration and digital painting, digital audio editing,
visual effects (VFX), and digital video editing, and are covered in Appendix D.

 Summary
 You set up a NetBeans HTML5 workstation by downloading and installing the open
source Java 8 JDK and NetBeans 8.1 integrated development software to code HTML
applications. In Appendix B, you learn how to set up an Eclipse 4.5.1 Mars HTML
workstation in much the same fashion . I show you how to set up your IntelliJ IDEA 2016
HTML workstation in Appendix C if you are an Android Studio 2.2 developer and prefer to
use that IDEA instead.

 Figure A-11. Launch NetBeans and explore using Learn & Discover

215© Wallace Jackson 2016
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8

 APPENDIX B

 Eclipse: Set up an HTML5
Integrated Development IDE

 Let’s put together your foundation for a professional, HTML5-friendly, Eclipse 4.5.2
(Mars) integrated development environment (IDE). Your development workstation is the
most important combination of PC hardware and software, allowing you to reach the goal
of HTML5–compatible applications development.

 Let’s first get all of the tedious setup tasks out of the way. If you already have your
workstation configured, you can proceed to Chapter 1 for an overview of HTML. If you
already are familiar with HTML, start with Chapter 2 .

 I will outline all of the steps to put together an Eclipse Mars IDE–based HTML5
content development workstation.

 Everything that you learn over the course of this book needs to be experienced
equally by each reader. In this appendix, you learn where to go to download and how to
install several of the most impressive, professional, open source software packages on the
face of this planet!

 You’re about to “max out” your HTML, HTML5, CSS3, and JavaScript development
workstation—so hold on tight and enjoy the ride!

 Set up an HTML Development Workstation
 The first thing to do after taking a look at hardware requirements is download and install
the entire Java software development kit (SDK), which Oracle calls the Java SE 8 JDK (Java
Development Kit). Eclipse 4.5.2 , which is called the Mars IDE, uses the Java 8 SE (SE
stands for Standard Edition).

 The second thing to do is download and install the Eclipse Mars IDE from
 www.eclipse.org . It allows you to develop HTML-compatible applications using all of
the popular programming languages, including Java EE, Java SE, Java Server Faces (JSF),
JavaFX, HTML5, CSS3, and JavaScript.

 After your HTML5 application development environment is set up, you can then
download and install new media asset development tools. These are used, in conjunction
with Eclipse Mars, for things such as image editing (GIMP) and non-linear digital
video editing (Lightworks), special effects (Fusion), digital audio sweetening, or editing

http://dx.doi.org/10.1007/978-1-4302-6536-8_1
http://dx.doi.org/10.1007/978-1-4302-6536-8_2
http://www.eclipse.org/

APPENDIX B ■ ECLIPSE: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

216

(Audacity), i3D modeling, rendering, animation (Blender), digital illustration (Inkscape),
and a business productivity suite (Open Office). I cover installation of these software
packages in Appendix D.

 This appendix should take your development to an all-new level, showing you how
to create the media development and programming workstation that will run your HTML
business.

 All of these software development tools, which you’ll be downloading and installing,
come close to matching all the primary feature sets of expensive paid software packages,
such as those from Apple (Final Cut Pro), Autodesk (3D Studio Max), Adobe (Photoshop,
Illustrator, After Effects), Avid (ProTools), and all at zero cost to your content production
company!

 Open source software is free to download, install, and upgrade. It is continuously
adding features. It’s becoming more like professional software every day. You will be
completely amazed at how professional your open source software packages have
become over the last decade or so.

 Development Workstations: Hardware Foundation
 Since you will put together the foundation of your HTML5-capable application
development workstation, which will be used for the duration of this book, I want to
take a moment to review Eclipse Mars’ HTML5 development workstation hardware
requirements first. This is a factor that influences your development performance
(speed). This is clearly as important as the software itself, since hardware is what is
actually running the software package’s algorithms.

 Minimum requirements for Eclipse Mars IDE include 2GB of memory, 900MB of
hard disk space, and WXGA (1280 × 768) display.

 Next let’s discuss what you need to make an Eclipse Mars HTML5 IDE usable. Let’s
start by upgrading the 1280 × 768 WXGA display to an HDTV (1920 × 1080 at 120FPS
refresh rate) or UHD (4096 × 2160 at 120FPS refresh rate) widescreen display. These are
now affordable and give you 3 to 12 times the display “real estate” of a WXGA display.
HDTVs are now $250 to $500 and UHDTV displays are now under $1,000.

 I recommend using, at a bare minimum, the Intel i7 quad-core processor, or, the
 AMD 64-bit octa-core processor. Install at least 8GB of DDR3-1600 memory. I’m using
a 64-bit, octa-core AMD 8350, with 16GB of DDR3-1600. Intel also has a hexa-core i7
processor. This would be the equivalent of having twelve cores, as each i7 core can
host two threads. Similarly, an i7 quad-core should look like eight cores to your 64-bit
operating system’s thread-scheduling algorithm.

 There are also high-speed DDR3-1800 as well as DDR3-2133 clock speed memory
module components available, as well. A high number signifies fast memory access
speeds. To calculate actual megahertz speeds the memory is cycling at, divide the
number by 4 (1333 = 333MHz, 1600 = 400MHz, 1800 = 450MHz, 2133 = 533MHz).

 Memory access speed is a massive workstation performance factor, because your
processor is usually “bottlenecked” by the speed at which processor cores can access your
data (in memory).

 With the high-speed processing, and memory access, going on inside the
workstation while it is operating, it’s extremely important to keep everything cool so
that you do not experience thermal problems . I recommend using a wide full-tower

APPENDIX B ■ ECLIPSE: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

217

enclosure with 120mm or 200mm cooling fans (one or two at least), as well as a captive
liquid induction cooling fan on the CPU.

 It is important to note that the cooler the system runs, the faster it can run, and the
longer it will last, so load the workstation up with lots of ultrawide, silent, high-speed fans!

 If you really want a maximum performance, install an SSD (solid-state drive) as your
primary disk drive, where your applications and operating system software load. Use
legacy HDD hardware for your D:\ hard drive for the slower data storage (long-term). Put
your current project files on the SSD.

 I’m using a 64-bit Windows 10 operating system, which is fairly memory efficient.
The Linux 64-bit OS is extremely memory efficient. I recommend using any 64-bit OS, so
you can address more than the 3.24GB of system memory, which is the capacity that’s
allowed by 32-bit memory addressing schema.

 HTML5 Development Workstation: Open Software
 To create a well-rounded, HTML5 application development workstation, you’ll
be installing all of the primary genres of open source software, which comprises a
professional development workstation. First, you install Java SE 8 and Eclipse Mars. I also
show you how to download GIMP, Lightworks, Fusion, Blender3D, and Audacity, which
are all open source software packages if your HTML5 applications are going to be using
a graphical front-end. Thus, you’ll be putting together a 100% open source workstation
for you. I’ll also recommend other free software at the end of the chapter, so you can put
together the “super” production workstation that you have always dreamed of.

 Open source software has reached a close parallel to the level of professionalism
of paid software that costs thousands of dollars to acquire. By using open source
software packages like Eclipse, NetBeans, Blender3D, GIMP, Audacity, Inkscape,
Fusion, Lightworks, and OpenOffice, you can assemble a free application development
workstation that rivals paid software workstations!

 For those readers who have just purchased their new HTML development
workstation PC, and who are going to put the entire development software suite together
completely from scratch, we go through the entire work process in this appendix.

 Java 8: Installing the Foundation for Eclipse Mars
 The first thing that you do is visit the Eclipse website (www.eclipse.org). Click the orange
 Download button on the homepage, as seen on the top right hand side of Figure B-1 .

http://www.eclipse.org/

APPENDIX B ■ ECLIPSE: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

218

 Figure B-1. Go to eclipse.org; click the orange Download button

 As you can see, there is a multitude of download options to consider. One can
support JavaScript, which HTML5 is based on. I suggest this Java EE version, which
supports all of your popular Java programming languages, with Web applications, each
of which HTML works with. Each of the downloads offers 32-bit and 64-bit versions, as
you can see in the bottom of Figure B-2 . This is because these have been pre-compiled ,
whereas your other NetBeans IDE install required Java 8 JDK to be installed. This tells
you that although Eclipse Mars was created with Java SE 8, it is distributed in a Windows
Binary format, not in Java ByteCode format, like NetBeans is. You can see further proof of
this in Figure A-2, where non-Java versions of NetBeans 8.1 are also compiled out to OS
binary format whereas the Java versions use the Java ByteCode format binaries and do not
specify a bit-level, as the Java SE 8 environment is doing this for you.

APPENDIX B ■ ECLIPSE: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

219

 Since HTML5 works with Java 8 just like with JavaScript, let’s get the Java 8 JDK just
to be thorough in our development system coonfiguration work process. If you wanted an
 Enterprise Edition (EE) version of Java 8 then download the Java 8 EE JDK, otherwise, if
you are only going to use the HTML5 features, you can simply install the Java SE JDK and
not use the Eclipse Java EE features.

 Open Google Chrome and Google “Java JDK” (see Figure B-3). Look for the Java SE
Development Kit 8 - Downloads search result. Click it to open the Oracle Java SE site
(see Figure B-4), which is located at

 www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

 Figure B-2. Download the JavaEE with HTML5/JavaScript version

 Figure B-3. Google “Java JDK” and then click the Downloads link

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

APPENDIX B ■ ECLIPSE: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

220

 Figure B-4. Oracle TechNetwork Java 8 SE JDK downloads website

 Go to the Oracle website and download the latest Java 8 JDK environment, which at
the time of the writing of this book, was Java SE Development Kit 8u77 (see Figure B-4).
The URL listed earlier opens the download page for Java SE 8 Development Kit JDK 8u77.

 You should pull your scrollbar, on the right side of the page, halfway down the page,
to display the Java SE Development Kit 8u77 (or any later version) download links table,
as can be seen on the very bottom of Figure B-4 .

 You can also read the explanation of the new CPU and PSU Java release versions
which is located right above the download link table. I’m going to be using the latest Java
8u77 version.

 Once you click the Accept License Agreement radio button, the links become bold
and you are able to click the link that you wish to use. If you are on Windows, and your
OS is 64-bit, use the Windows x64 link, otherwise use the Windows x86 link. I am using
what is described in these links as Windows x64, the 64-bit versions of Windows, for my
Windows 7/8/10 workstations.

 Make sure that you use this Java SE Development Kit 8u77 downloading link, and do
not use the JRE download (Java Runtime Edition) link. This JRE is part of your JDK 8u77,
so you do not have to worry about getting the Java Runtime separately.

 Before you run this installation, you should remove your older versions of Java from
your Windows Control Panel by using Add or Remove Programs (XP) or Programs and
Features (Windows Vista, 7, 8, or 10), shown selected in blue in Figure B-5 .

APPENDIX B ■ ECLIPSE: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

221

 Figure B-5. Launch your Control Panel ➤ Programs and Features

 This is necessary especially if your workstation is not brand new. We do this so
that only your latest Java SE 8u77 and JRE 8u77 are the Java versions that are currently
installed on your HTML development workstation. You also do this for any older IDEs
that you have (NetBeans, Eclipse, or IntelliJ).

 Select all the older Java versions, right-click each one, and select the Uninstall
option (see Figure B-6). You could also perform this work process before installing other
software packages although traditional media production software packages should
“replace” older versions automatically, as part of their install process.

 Figure B-6. Find old version of Java, right-click and Uninstall

 Once you have downloaded your installation executable, install it on your system
by double-clicking the .exe file to launch a Setup dialog (seen on the left-hand side
of Figure B-7). You can also right-click your installer file and then select the Run as
administrator option, which gives you better file access so that you have all of those OS
“permissions” granted, such as read, write, overwrite, append, or delete, which a installer
may need to have access to in order to complete the installation.

APPENDIX B ■ ECLIPSE: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

222

 Figure B-7. Setup, Custom Setup, and Extraction install dialogs

 Click the Next button to access the Custom Setup dialog, shown in the middle of
Figure B-7 . Accept the default settings, and then click the Next button again, to access the
 Extracting Installer progress dialog seen on the right side of Figure B-7 .

 Once you’ve extracted the installation software, you can select a Java JDK software
installation folder. Use the default C:\ProgramFiles\Java\jre1.8.0_77 in the Destination
Folder dialog, as shown on the left-hand side of Figure B-8 . You have to use your
imagination with Figures B-7 and B-8 . I created these two screenshots because I was
installing Java8u66 for my JSON Quick Syntax Reference (Apress, 2016). JSON works hand
in hand with HTML5, CSS3, and JavaScript.

 Figure B-8. Destination, Progress, and Complete install dialogs

 Click the Next button, to install a Java Runtime Edition (JRE) edition in the default
specified folder. Interestingly an installer won’t ask you to specify the JDK folder name
for some reason, probably because it wants your Java JDK to always be in a set or fixed
(locked in the same location) folder name.

 The JDK folder is named C:\ProgramFiles\Java\jdk1.8.0_77. Notice that internally
Java 8 is referred to as Java 1.8.0 . Thus, Java 6 is 1.6.0 and Java 7 is 1.7.0. This is useful to
know if you are looking for Java versions using a search utility, for example, or want to
show off your knowledge of legacy Java SE version numbering.

 Once you click the Next button, you get the Java Setup Progress dialog, shown in the
middle of Figure B-8 . Once Java 8 is finished installing, you’ll finally see your Complete
dialog, which is seen on the right-hand side of Figure B-8 . Congratulations! You have
successfully installed Java 8!

 Remember that the reason that you did not download a JRE is because it is part of this
JDK 8u77 installation. The Java 8 Runtime Edition is the executable (platform) that runs
the Java software app once it has been compiled into an application and also the latest

APPENDIX B ■ ECLIPSE: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

223

JRE will be needed to run NetBeans 8, which as you now know, is 100% completely written
using the Java SE 8 development platform, as well as to work with Android Studio 2.

 Once Java 8u77 (or later) is installed on your workstation, you then download and
install the latest Eclipse software installer from the Eclipse website.

 You can also use the same Programs and Features (or Add or Remove Programs)
utility in your Control Panel to remove older Eclipse or Java versions or even to confirm
the success of the latest Java 8 install.

 Now you are ready to add the second layer of the Eclipse 4.5.2 Mars IDE software.

 Eclipse 4.5: Installing the Eclipse Mars HTML IDE
 The second step in this process is to install the JavaEE version of the software, which you
saw in Figure B-2 .

 Find this executable file on your workstation and either double-click it, or right-click
it, and select the Run as administrator option. This should open the Security Warning:
Do you want to run this file? dialog (see Figure B-9).

 Figure B-9. NetBeans install Welcome, License Agreement dialogs

 Click the Run button to launch the installation. You see the Eclipse Installer by
Oomph loading screen, as shown in Figure B-10 .

APPENDIX B ■ ECLIPSE: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

224

 Once the installer has loaded into memory, your software version selector dialog
appears (see Figure B-11). You want to select the version that supports JavaScript (Web
Applications), which is the Eclipse IDE for Java EE Developers .

 Figure B-11. Click Eclipse IDE for Java EE Developers option

 Figure B-10. Eclipse Installer by Oomph loading screen

 In the next Installation Folder dialog, accept a default folder name offered by
Eclipse and select the create start menu entry , and create desktop shortcut option (if
needed), for your workstation. These are shown on the left side of Figure B-12 .

APPENDIX B ■ ECLIPSE: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

225

 Click the Install button, and in your Eclipse Foundation Software User Agreement
dialog, seen in Figure B-13 , select the I accept the terms in the license agreement
option, after you (or legal department) have reviewed these terms and conditions, which
specify what you can and cannot do using this software.

 Figure B-12. Select launch options , default installation folder

 Figure B-13. Click the Accept Now button to agree to the terms

 Acceptance of the licensing terms and conditions is accomplished by clicking the
 Accept Now button.

APPENDIX B ■ ECLIPSE: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

226

 Once you agree to the terms of your licensing agreement, you get an Installing dialog
with a green progress bar (see Figure B-14).

 Figure B-14. Your Installing progress bar can be seen in green

 Once the installation is completed, Eclipse Mars should launch automatically,
showing you the branded start-up screen, which can be seen in Figure B-15 . This is
shown as the software loads into memory from your hard disk drive for the first time.

 Figure B-15. Eclipse Mars launch

APPENDIX B ■ ECLIPSE: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

227

 I selected the default C:\Users\Walls\workspace directory as I felt that name was
acceptable. As you can see in Figure B-17 , if you have a previous version of Eclipse
installed, you should get an Older Workspace Version dialog, prompting you to update.

 Once Eclipse Mars launches, it displays the Workspace Launcher dialog, which
prompts you to select your Workspace location for your hard disk drive (see Figure B-16).

 Figure B-16. Select Workspace folder name for Eclipse projects

 Figure B-17. Update older version of workspace (if necessary)

 After all of this is complete, Eclipse Mars launches using the Eclipse Mars loading
screen (see Figure B-18).

APPENDIX B ■ ECLIPSE: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

228

 Figure B-19 shows Eclipse Mars with the sample FirstApp .

 Summary
 In this appendix, you set up your HTML5 workstation by downloading and installing
open source Java 8 JDK and Eclipse Mars 4.5 IDE software to code HTML5 applications.

 Figure B-18. Eclipse Mars loading screen

 Figure B-19. Eclipse IDE on start-up, with FirstApp sample app

229© Wallace Jackson 2016
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8

 APPENDIX C

 IntelliJ: Set up an HTML5
Integrated Development IDE

 Let’s put together the foundation for a highly professional, HTML5-friendly, IntelliJ
IDEA . Your development workstation is the most important combination of PC hardware
and software, allowing you to reach the goal of HTML5 compatible applications
development. Let’s spend an appendix to consider your hardware and HTML5 software
development workstation needs.

 Let’s first get all of the tedious setup tasks out of the way.
 If you already have your workstation configured, you can proceed to Chapter 1 for an

overview of HTML. If you already are familiar with HTML, start with Chapter 2 .
 Everything that you learn over the course of this book needs to be experienced

equally by each reader. In this appendix, you learn where to go to download and how to
install several of the most impressive, professional, open source software packages on the
face of this planet!

 You’re about to “max out” your HTML, HTML5, CSS3, and JavaScript development
workstation so hold on tight and enjoy the ride!

 Set up an HTML Development Workstation
 The first thing to do after looking at hardware requirements is to download and install
the entire Java software development kit (SDK), which Oracle calls: Java SE 8 JDK (Java
Development Kit). IntelliJ IDEA , which is called the IntelliJ IDE, uses Java 8 SE (SE
stands for Standard Edition).

 The second thing to do is download and install the IntelliJ IDEA from www.jetbrain.org .
IntelliJ IDEA (integrated development environment application) allows you to develop
HTML-compatible applications with all of the popular programming languages,
including Java EE, Java SE, JavaScript, HTML5, CSS3, JavaFX, Android Studio 2, XML, XSL,
PHP, and SQL.

 After your HTML5 application development environment is set up, you can
then download and install new media asset development tools, if you wish. These
are used in conjunction with IntelliJ for image editing (GIMP) and non-linear video
editing (Editshare Lightworks 12), VFX (Fusion 8), digital audio sweetening, or editing

http://dx.doi.org/10.1007/978-1-4302-6536-8_1
http://dx.doi.org/10.1007/978-1-4302-6536-8_2
http://www.jetbrain.org/

APPENDIX C ■ INTELLIJ: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

230

(Audacity), i3D modeling, renderer, animation (Blender), digital illustration (Inkscape),
and even a complete business productivity suite (Open Office).

 This appendix should take your HTML development to an all-new level, showing
you how to create a media development and programming workstation that runs your
HTML business.

 All of these software development tools come close to matching all the primary
feature sets of expensive paid software packages, such as those from Apple (Final Cut
Pro), Autodesk (3D Studio Max), Adobe (Photoshop, Illustrator, After Effects), Avid
(ProTools), and all at zero cost to your production company!

 Open source software is free to download, install, and upgrade, and continuously
adds features. It’s becoming more like professional software every day. You will be
completely amazed at how professional open source software packages have become
over the last decade or so.

 Development Workstations: Hardware Foundation
 Since you’ll put together the foundation for your HTML5 application development
workstation that is used for the duration of this book, I want to take a moment to review
IntelliJ’s hardware requirements first. This is a factor that influences development
performance (speed). This is clearly as important as the software itself because hardware
is what is actually running your software package’s algorithms.

 Minimum requirements for IntelliJ IDEA include 1GB of memory, 300MB of hard
disk space, and a Java 6 JDK , or higher.

 Next, let’s discuss what you need to make your IntelliJ HTML IDE usable. Let’s start
by upgrading your 1280 × 768 WXGA display to an HDTV (1920 × 1080 at 120FPS refresh
rate) or UHD (4096 × 2160 at 120FPS refresh rate) widescreen display. These are now
affordable and give you 3 to 12 times the display “real estate” of a WXGA display. HDTVs
are now $250 to $500 and UHDTV displays are now under $1,000.

 I recommend using, at a bare minimum, the Intel i7 quad-core processor, or, the
 AMD 64-bit octa-core processor. Install at least 8GB of DDR3-1600 memory. I’m using
a 64-bit, octa-core AMD 8350, with 16GB of DDR3-1600. Intel also has a hexa-core i7
processor. This would be the equivalent of having twelve cores, as each i7 core can
host two threads. Similarly, an i7 quad-core should look like eight cores, to your 64-bit
operating system’s thread-scheduling algorithm.

 There are also DDR3-1800 and DDR3-2133 clock speed memory module components
available. A high number signifies fast memory access speeds. To calculate actual megahertz
speeds the memory is cycling at, divide the number by 4 (1333 = 333MHz, 1600 = 400MHz,
1800 = 450MHz, 2133 = 533MHz).

 Memory access speed is a massive workstation performance factor, because your
processor is usually bottlenecked by the speed at which processor cores can access your
data (in memory).

 With the high-speed processing and memory access going on inside the workstation,
it’s extremely important to keep everything cool so that you do not experience thermal
problems . I recommend using a wide full-tower enclosure with 120mm or 200mm cooling
fans (one or two at least), as well as a captive liquid induction cooling fan on the CPU.

 It is important to note that the cooler the system runs, the faster it can run, and the
longer it will last, so load the workstation up with lots of silent high-speed fans!

APPENDIX C ■ INTELLIJ: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

231

 If you really want a maximum performance, install an SSD (solid-state drive) as your
primary disk drive, where your applications and operating system software load. Use
legacy HDD hardware for your D:\ hard drive for the slower data storage (long-term). Put
your current project files on the SSD.

 I’m using a 64-bit Windows 10 operating system, which is fairly memory efficient.
The Linux 64-bit OS is extremely memory efficient. I recommend using any 64-bit OS, so
that you are able to physically address more than 3.24GB of system memory, which is a
limitation with your 32-bit operating system that does not exist once you have upgraded
to 64-bit OS, and have that full 64-bits of memory addressing headroom.

 HTML Development Workstation: Open Software
 To create your well-rounded HTML application development workstation, you’ll be
installing all the primary genres of open source software that comprises a professional
development workstation. First we’ll install JavaSE 8u77 and IntelliJ IDEA. I also show
you how to download GIMP, Lightworks, Fusion, Blender3D and Audacity, which are also
all open source software packages, in case your HTML applications are going to be using
a graphical “front end.” Thus, we’ll be putting together a 100% open source workstation
for you. I’ll also recommend other free software at the end of the chapter, so you can put
together the mega production workstation that you have always dreamed of.

 Open source software has reached a close parallel to the level of professionalism
of paid software, which costs thousands of dollars to acquire. Using open source
software packages like Eclipse, NetBeans, Blender3D, GIMP, Audacity, Inkscape,
Fusion, Lightworks, and OpenOffice, you can assemble a free application development
 workstation that rivals paid software workstations!

 I go through the entire work process for those readers who have just purchased
their new HTML development workstation PC and who are going to put the entire
development software suite together completely from scratch.

 Java 8: Installing the Foundation for IntelliJ IDEA
 The first thing you do is visit the IntelliJ website (www.jetbrains.com/idea/) and then
click the black Download button in the center of the IntelliJ IDEA homepage (see
Figure C-1).

http://www.jetbrains.com/idea/

APPENDIX C ■ INTELLIJ: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

232

 As you can see, there are two different download options; but only one that supports
JavaScript, which HTML is based on. I am therefore forced to suggest the Ultimate
version! This supports all the popular programming languages which work with HTML.
If you don’t want to purchase IntelliJ IDEA Ultimate, use their 30-day trial version or use
NetBeans 8.1 (Appendix A), or use Eclipse 4.5.1 Mars (Appendix B) both of which are
free. The two different versions of IntelliJ IDEA are shown in Figure C-2 along with the
different programing features they each support.

 Figure C-1. Load the jetbrains.com/idea/ and click Download

APPENDIX C ■ INTELLIJ: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

233

 Figure C-2. Download the IntelliJ Ultimate 30-day trial version

 If you’re wondering why the IntelliJ IDEA download isn’t offered in 32-bit and 64-bit
versions, this is because the IDEs which do this have both versions pre-compiled , whereas
IntelliJ IDEA requires the Java 6 (or later Java 8) JDK to be installed.

 If you want to use the IntelliJ IDEA version, so that any programming languages that
you want to use with HTML are supported, you have to first install Java SE 6 or later. In
our case, this should be Java 8.

 This is very similar to what you will see using NetBeans 8.1 (see Appendix A), as both
of these use a Java ByteCode JAR file to run off of, by using the Java Runtime Edition (JRE).

 This approach allows the bit-versions to be handled by a JRE bit-version, so be sure
to install the correct JDK version, either 32-bit for Windows Vista and XP or 64-bit for
Windows 7, 8.1 or 10. Note that there are other bit versions of these OSes and that I am
just generalizing here; XP and Vista were 32-bit, and Windows 7, 8, and 10 are 64-bit, due
to when they came out.

 Download IntelliJ. After that is completed, get the latest Java 8 SE JDK so that you can
run IntelliJ.

 Open Google Chrome and Google “Java JDK” (see Figure C-3). Look for the Java SE
Development Kit 8 - Downloads search result. Click it to open the Oracle Java website.

APPENDIX C ■ INTELLIJ: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

234

 Figure C-3. Google “Java JDK” and then click Downloads link

 Download and install the latest Java 8 JDK, which at the time I wrote this book was
Java SE 8u77, as seen in Figure C-4 .

 The URL is in the address bar in Figure C-4 ; it opens the download page for Java SE
Development Kit 8u77. I put this link here as well, in case you want to simply cut and
paste it, copy it, or click it to launch the site:

 www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

 You should pull your scrollbar on the right side of the webpage halfway down the
page, to display the Java Development Kit 8u77 (or a later version) download links table,
as seen at the very bottom of Figure C-4 . You should also read the explanation of a new

 Figure C-4. The Oracle TechNetwork Java SE JDK Download website

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

APPENDIX C ■ INTELLIJ: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

235

CPU and PSU Java release versions, located just above the download link table. I’m going
to use Java 8u77.

 Once you click the Accept License Agreement radio button, these links become
bold. You should be able to click the links that you wish to use. If you’re on Windows and
your OS is 64-bit, use the Windows x64 link; otherwise, use the 32-bit Windows x86 link.
I am using what’s described in these links as Windows x64. This is a 64-bit versions of
Windows, for my Windows 10 workstation.

 Make sure that you use this Java SE Development Kit 8u77 downloading link, and
do not use a JRE download (a Java Runtime Edition) link. The JRE is part of the JDK 8u77,
thus you do not have to worry about getting the Java Runtime separately.

 In case you are wondering, you indeed use this Java Runtime Edition (JRE), to launch
and run your IntelliJ IDE, and you’ll use the JDK inside of that IntelliJ software package, to
provide the Java SE 8 core class foundation that is used as the foundation for JavaFX and
for Android’s Java-based API classes.

 Before you run this installation, you should remove your older versions of Java from
your Windows Control Panel by using Add or Remove Programs (XP) or Programs and
Features (Windows Vista, 7, 8.1, and 10). This is shown selected in blue in Figure C-5 .
This opens a Windows utility that manages installed software packages and allows you to
remove them from your operating system.

 Figure C-5. Launch your Control Panel ➤ Programs and Features

 This is necessary, especially if your workstation is not brand new. We do this so
that only your latest Java SE 8u77 and JRE 8u77 are the Java versions that are currently
installed on your HTML development workstation.

 Select all the older Java versions and then right-click each one. Select the Uninstall
option (see Figure C-6).

APPENDIX C ■ INTELLIJ: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

236

 As you can see, I am more than one hundred versions old, as I am at Java 7, update
71! If you install different versions of Java SE JDK on your system, they will not replace
each other, but instead exist in parallel, or next to each other.

 The reason for this is you might have older projects and software (such as IDEs),
which use these older versions of Java without crashing. For instance, Android 4.4 and
earlier use the Java 6 SDK, Android 5.x or 6.x (64-bit Android) use Java 7 SDK, and JavaFX,
and everything else uses Java 8, and soon, Java 9!

 Once you have downloaded your installation executable, install it on your system by
double-clicking the .exe file to launch a Setup dialog (see the left-hand side of Figure C-7).
You can also right-click your installer file and then select the Run as administrator option
to assure that you have proper files access.

 Figure C-6. Find old versions of Java .right-click . and Uninstall

 Figure C-7. Setup, Custom Setup, and Extraction install dialogs

 Click the Next button to access the Custom Setup dialog, shown in the middle of
Figure C-7 . Accept the default settings, and then click the Next button again, to access the
 Extracting Installer progress dialog seen on the right side of Figure C-7 .

 Once you’ve extracted the installation software, you can select a Java JDK software
installation folder. Use the default C:\ProgramFiles\Java\jre1.8.0_77 in the Destination
Folder dialog, as shown on the left-hand side of Figure C-8 .

APPENDIX C ■ INTELLIJ: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

237

 Click the Next button, to install a Java Runtime Edition (JRE) edition in the default
specified folder. Interestingly an installer won’t ask you to specify the JDK folder name
for some reason, probably because it wants your Java JDK to always be in a set or fixed
(locked in the same location) folder name.

 The JDK folder is named C:\ProgramFiles\Java\jdk1.8.0_77. Notice that internally
Java 8 is referred to as Java 1.8.0. Thus, Java 6 is 1.6.0 and Java 7 is 1.7.0. This is useful to
know if you are looking for Java versions using a search utility, for example, or want to
show off your knowledge of legacy Java version numbering.

 Once you click the Next button, you get the Java Setup Progress dialog, shown in the
middle of Figure C-8 . Once Java 8 is finished installing, you see your Complete dialog (see
the right-hand side of Figure C-8). Congratulations! You have successfully installed Java 8!

 Remember that the reason that you did not download a JRE is because it is part
of this JDK 8u77 installation. The Java 8 Runtime Edition is the executable (platform)
which runs the Java software app once it has been compiled into an application and also
the latest JRE is needed to run NetBeans 8, which as you now know is 100% completely
written using the Java SE 8 development platform.

 Once Java 8u77 or later is installed on your workstation you can then download and
install the latest IntelliJ software installer from www.jetbrains.com/idea/ .

 You can also use the Programs and Features (or Add or Remove Programs) utility
in your Control Panel to remove older Java or IntelliJ versions, or to confirm the success of
the latest Java 8 install.

 Now you are ready to add the second layer of the IntelliJ IDEA software, which runs
on top of the Java 8 environment.

 IntelliJ IDEA: Download the IntelliJ IDEA for HTML
 The second step in this process is to install IntelliJ (see Figure C-2). The download
function should have put the ideaIU-15.0.3.exe or later 2016 version file into your
C:\Users\Your-Name-Goes-Here\Downloads\ folder.

 Find this executable file on your workstation and double-click it or right-click it. Select
the Run as administrator option. This opens a Security Warning: Do you want to run
this file? dialog, shown on the left side of Figure C-9 . The two steps are numbered in red.

 Figure C-8. Destination, Progress, and Complete. install dialogs

http://www.jetbrains.com/idea/

APPENDIX C ■ INTELLIJ: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

238

 Click the Run button and launch the installer. This provides you with the IntelliJ
IDEA Setup Wizard dialog (see Figure C-10). Click Next to continue, as the dialog
instructs you and in the Choose Install Location dialog, select a default value provided
for the Destination Folder data field. Click the Next button, which allows you to proceed
with your install.

 Figure C-10. Start your install and accept the default location

 Figure C-9. Right-click IDEA installer and Run as administrator

 In the Installation Options dialog, select the shortcuts that you want to have created
for you, as well as specifying an association for Java and Groovy files that you wish to have
put into your system registry (see Figure C-11). Click the Next button to enter the Choose
Start Menu Folder dialog. Select the default JetBrains Start Menu folder name. Then click
the Install button to start your installation process.

APPENDIX C ■ INTELLIJ: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

239

 The Installing dialog shows you a progress bar along with the files that are being
installed and the percentage of completion, as shown in the left-hand side of Figure C-12 .

 Figure C-11. Select Installation Options , and Start Menu Folder

 Figure C-12. Select Run IntelliJ IDEA after install completes

 Once the IDEA installation is complete, you see the Completing the IntelliJ IDEA
Setup Wizard dialog (see Figure C-12). Notice that I have selected the Run IntelliJ IDEA
option, so I can show you the IDE itself.

 Once you click the Finish button to exit the install, you see the IntelliJ IDEA 15
loading screen (see Figure C-13). This is shown every time you start IntelliJ IDEA.

APPENDIX C ■ INTELLIJ: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

240

 If you have a previous version of IntelliJ IDEA, you can import your previous IntelliJ
IDEA version’s settings using the Complete Installation dialog, which is shown in
Figure C-14 .

 Figure C-13. IntelliJ IDEA 15 software loading start-up screen

 Figure C-14. Complete Installation dialog

APPENDIX C ■ INTELLIJ: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

241

 Once you click the OK button, you get the IDEA License Activation dialog, shown in
Figure C-15 . If you want to purchase IntelliJ IDEA click the Buy IntelliJ IDEA and enter an
 Activation code into the data field for this dialog. Otherwise, click the Evaluate for free
for 30 days button on the right.

 Figure C-15. IDEA License Activation

 Figure C-16. License Agreement dialog

 In the next dialog, click Accept to accept the licensing agreement on the JetBrains
website’s store, so that you can use the IDEA software for your HTML development.

APPENDIX C ■ INTELLIJ: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

242

 Figure C-17. IntelliJ Set UI theme dialog

 Accept the default IntelliJ UI theme, or choose the dark version, and click the Next
button, as shown in Figure C-17 .

APPENDIX C ■ INTELLIJ: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

243

 I left all of the IntelliJ capabilities enabled and then clicked the Next: Featured
plugins button (see Figure C-18).

 If there are any featured plug-ins you want to add in to IntelliJ, select them in your
 Download featured plugins screen, seen in Figure C-19 and click Start using IntelliJ
IDEA button.

 Figure C-18. Tune IDEA to your tasks dialog

APPENDIX C ■ INTELLIJ: SET UP AN HTML5 INTEGRATED DEVELOPMENT IDE

244

 The first time IntelliJ launches, you get the screen shown in Figure C-20, where you
have Create New Project options and configuration and help options. Click the Create
New Project option highlighted in light blue to create a new empty project to make sure
that IntelliJ IDEA is working.

 Now you are ready to develop HTML5 applications!

 Summary
 You set up your HTML5 workstation by downloading and installing the open source Java
8 JDK and the IntelliJ 2016 IDEA software to code HTML5 applications. You can also set
up new media content production applications. See Appendix D if you plan to develop
multimedia HTML5 applications and documents.

 Figure C-19. Download featured plug-ins dialog

245© Wallace Jackson 2016
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8

 APPENDIX D

 Multimedia: Set up Your New
Media Content Development

 Let’s put together your foundation for a highly professional, HTML5-friendly, new media
content development workstation . Your content development workstation is an important
fusion of PC hardware and software, allowing you to reach your goal of interactive HTML5
multimedia application development. Let’s use this appendix to consider your new media
hardware and the software infrastructure needs. You will then have everything you need to
develop new media content for Chapter 8 and Chapter 17 of this book, no matter what type
of HTML5 application you want to develop for your end users!

 Let’s get all of these tedious setup tasks out of the way.
 If you already have your workstation configured, you can proceed to Chapter 1 for an

overview of HTML, or if you already are familiar with HTML, start with Chapter 2 .
 In this appendix, I outline the steps to put together a multimedia production

workstation to work with the IDE HTML5 development workstations that you created in
the first three appendices.

 Everything that you learn over the course of this book needs to be experienced
equally by each reader. Here you’ll learn where to download and how to install several of
the most professional, open source software packages on the face of this planet. You are
about to max out your HTML5 workstation!

 Set up a New Media Content Workstation
 The first thing to do after looking at hardware requirements is to download and install
new media asset development tools, if you wish. These are used in conjunction with
NetBeans, Eclipse, or IntelliJ for things such as image editing (GIMP), non-linear
digital video editing (Lightworks), special effects (Fusion), digital audio sweetening
or editing (Audacity), i3D modeling, rendering, and animation (Blender), digital
illustration (Inkscape), and business productivity (OpenOffice). This appendix takes your
development to an all-new level, showing you how to create the new media development
and HTML5 programming workstation that will run your HTML5 application
development business.

http://dx.doi.org/10.1007/978-1-4302-6536-8_8
http://dx.doi.org/10.1007/978-1-4302-6536-8_17
http://dx.doi.org/10.1007/978-1-4302-6536-8_1
http://dx.doi.org/10.1007/978-1-4302-6536-8_2

APPENDIX D ■ MULTIMEDIA: SET UP YOUR NEW MEDIA CONTENT DEVELOPMENT

246

 All of these software development tools come close to matching all the primary
feature sets of expensive paid software packages, such as those from Apple (Final Cut
Pro), Autodesk (3D Studio Max), Adobe (Photoshop, Illustrator, After Effects), Avid
(ProTools)—and all at zero cost to your production company!

 Open source software is free to download, install, and upgrade, and it continuously
adds features. It’s becoming more like professional software every day. You will be
completely amazed at how professional your open source software packages have
become over the last decade or so.

 New Media Content Production: Hardware is Key!
 I want to take a moment to review new media content development workstation
hardware requirements. It is a factor that influences your development performance
(speed). This is clearly as important as the software itself, since hardware is actually
running the software package’s algorithms.

 Let’s discuss what you need to make a multimedia content production workstation
usable. You need an HDTV (1920 × 1080 resolution using a 120FPS refresh rate) or UHD
(4096 × 2160 at a 120FPS refresh rate) widescreen display. These are affordable and give
you 4 to 16 times the display "real estate" of the XGA displays typically utilized. HDTV is
now $200 to $400 and UHDTV displays are now well under $1,000.

 I recommend, at a bare minimum, the Intel i7 quad-core processor, or, the AMD
64-bit octa-core processor. Install at least 8GB of DDR3-1600 memory. I’m using a 64-bit,
octa-core AMD 8350, with 16GB of DDR3-1600.

 Intel also has a new hexa-core i7 processor. This is the equivalent of having twelve
cores, as each i7 core can host two threads. Similarly, the i7 quad-core should look like
eight cores to a 64-bit operating system thread-scheduling algorithm.

 There are DDR3-1800 and DDR3-2133 clock speed memory module components
available, as well. A high number signifies fast memory access speeds. To calculate actual
megahertz speeds the memory is cycling at, divide the number by 4 (1333 = 333MHz,
1600 = 400MHz, 1800 = 450MHz, 2133 = 533MHz).

 Memory access speed is a massive workstation performance factor, because your
processor is usually “bottlenecked” by the speed at which processor cores can access your
data (in memory) which that processor core needs to process.

 With the high-speed processing, and memory access, going on inside the
workstation while it is operating, it’s extremely important to keep everything cool so that
you do not experience thermal problems . I recommend a wide full-tower enclosure with
120mm or 200mm cooling fans (one or two at least), as well as a captive liquid induction
cooling fan on the CPU.

 It is important to note that the cooler the system runs, the faster it can run, and the
longer it will last, so load the workstation up with lots of silent high-speed fans!

 If you really want a maximum performance, install an SSD (solid-state drive) as your
primary disk drive, where your applications and operating system software load. Use
legacy HDD hardware for your D:\ hard drive for the slower data storage (long-term). Put
your current project files on the SSD.

 As far as the operating system goes, I’m using 64-bit Windows 10 operating system,
which is fairly memory efficient. The Linux 64-bit OS is extremely memory efficient. I
recommend any 64-bit OS, so you can address more than 3.24GB of system memory.

APPENDIX D ■ MULTIMEDIA: SET UP YOUR NEW MEDIA CONTENT DEVELOPMENT

247

 New Media Content Development: Open Source
 To create a well-rounded, HTML5 application development workstation, you’ll install
all the primary genres of software needed to create a professional content production
workstation. I show you how to download GIMP, Lightworks, Fusion, Blender3D and
Audacity, which are also all open source software packages, in case your HTML5
applications use a graphical front-end. Open source software has reached level a parallel
to the professionalism of paid software packages that cost thousands of dollars each.
Open source software packages offer you a free application development workstation that
rivals any paid application development software workstation! Let’s get started!

 GIMP 2.8 : Digital Image Editing and Compositing
 The GIMP project offers a professional imaging software package that allows you to do
digital image editing. Download this software package from www.gimp.org . GIMP is
currently at version 2.8.16, but version 3.0 is just around the corner—a preview (2.9.2)
of it is available! GIMP 2.10 should come out just about the time that this book becomes
available. The GIMP homepage, with its red download button, is shown in Figure D-1 .

 If you want to learn more about digital image compositing, check out my Digital
Image Compositing Fundamentals (Apress, 2015) book.

 Blender : 3D Modeling, Rendering, and Animation
 The Blender Foundation project offers a professional i3D software package called
Blender. It allows you to do 3D object modeling, rendering, and animation. Download
this software package at www.blender.org . Blender’s homepage with its blue download
button is shown in Figure D-2 .

 Figure D-1. Go to www.gimp.org to download GIMP 2.8.16

http://www.gimp.org/
http://www.blender.org/
http://www.gimp.org/

APPENDIX D ■ MULTIMEDIA: SET UP YOUR NEW MEDIA CONTENT DEVELOPMENT

248

 This is a professional-level software package with many of the same features as 3D
Studio Max , Maya, XSI, and Lightwave.

 Inkscape : Digital Illustration and Digital Painting
 The Inkscape Project offers a professional digital illustration software package
called Inkscape. It can also do digital painting. Download this software package at
www.inkscape.org . Inkscape’s homepage with download button is shown in Figure D-3 .

 Figure D-2. Go to blender.org and download the latest version

 Figure D-3. Go to inkscape.org and download the latest version

 If you want to learn about digital illustration and painting, check out my Digital
Illustration Fundamentals (Apress, 2015) and Digital Painting Techniques (Apress, 2015)
books.

http://www.inkscape.org/
http://www.inkscape.org/

APPENDIX D ■ MULTIMEDIA: SET UP YOUR NEW MEDIA CONTENT DEVELOPMENT

249

 Audacity : Digital Audio Editing and Special Effects
 The Audacity team offers a professional digital audio software package called Audacity,
which specializes in digital audio editing, sweetening, and special effects. You can
download this software package from www.audacityteam.org . The Audacity homepage
with its Download Audacity 2.1.2 link is shown in Figure D-4 . Audacity offers many
of the same digital audio editing features as professional audio editors. It adds new
64-bit capabilities and professional features every month. The next major version will
have a more professional user interface. If you want to learn more about digital audio
editing, synthesis, and special effects, check out my Digital Audio Editing Fundamentals
(Apress, 2015). Digital audio can greatly enhance the user experience with any HTML5
application.

 Next, let’s take a look at the free Fusion 8 VFX package.

 Visual Effects : BlackMagic Design Fusion 8.0 VFX
 BlackMagic Design’s Fusion 8 is a professional visual effects (VFX) software package
used in film and television. Download this software package from https://
www.blackmagicdesign.com/products/fusion/ . Fusion 8’s homepage with its blue
Download button is shown in Figure D-5 . If you want to learn more about VXF pipelines,
check out my Visual Effects (VFX) Fundamentals (Apress, 2016) book at www.apress.com .

 Figure D-4. Go to audacityteam.org and download version 2.1.2

http://www.audacityteam.org/
https://www.blackmagicdesign.com/products/fusion/
https://www.blackmagicdesign.com/products/fusion/
http://www.apress.com/

APPENDIX D ■ MULTIMEDIA: SET UP YOUR NEW MEDIA CONTENT DEVELOPMENT

250

 Next let’s take a look at the free digital video editing software package called
 Lightworks 12.6 from EditShare. This software package has been used to create a large
number of feature films. So I’m not just setting you up with any software package, but
with software used in professional and commercial projects. That goes for each of the
new media software packages I’m having you download and install. We’re not messing
around in this HTML5 book!

 Digital Video Editing : EditShare Lightworks 12.6
 EditShare Lightworks is a professional digital video editing software package that
includes special effects. Download the software package from www.lwks.com after signing
up for the download. Lightworks’ homepage and Downloads tab are shown in Figure D-6 .
I recommend 64-bit OS and software so that you can use 8MB of memory. If you want to
learn more about digital video editing, optimization, and special effects, check out my
Digital Video Editing Fundamentals (Apress, 2016).

 Figure D-5. Go to blackmagicdesign.com, and download Fusion 8.0

http://www.lwks.com/

APPENDIX D ■ MULTIMEDIA: SET UP YOUR NEW MEDIA CONTENT DEVELOPMENT

251

 Office Productivity Suite: Apache OpenOffice 4.1.2
 Apache OpenOffice , originally Sun Microsystems’ StarOffice, was acquired by Oracle
and released as open source. It provides HTML5 content development businesses with
professional office and business productivity software support. Download this software
package from www.openoffice.com . The Apache OpenOffice homepage with download
button is shown in Figure D-7 . I recommend 64-bit OS and software so that you can use
8MB of memory.

 Figure D-6. Go to lwks.com and download Lightworks for your OS

 Figure D-7. Download Apache OpenOffice 4.1.2 at OpenOffice. org

http://www.openoffice.com/

APPENDIX D ■ MULTIMEDIA: SET UP YOUR NEW MEDIA CONTENT DEVELOPMENT

252

 Summary
 In this appendix, you set up your open source new media content production
workstation . You did this by downloading and installing professional open source new
media content development software packages. These included GIMP , Inkscape , Blender ,
 Lightworks , Fusion , Audacity , and the Open Office integrated office-productivity suite
software.

253© Wallace Jackson 2016
W. Jackson, HTML5 Quick Markup Reference, DOI 10.1007/978-1-4302-6536-8

 A
 Anchor tag

 non-HTML5 parameters
 charset , 51
 coords , 51
 name , 52
 rev , 52
 shape , 52

 parameter
 download , 47
 href , 46
 hrefl ang , 46–47
 media , 47
 rel , 48–50
 target , 47–48
 type , 51

 tag attributes , 45–46
 Apache OpenOffi ce , 251
 Audacity , 249

 B
 Bidirectional override <bdo> tags , 96
 BlackMagic Design Fusion 8.0 , 249–250
 Blender , 247–248
 Block quote <blockquote> tag , 98

 C
 Canvas tag

 2D drawing
 digital new media , 176
 2D transformations , 175
 image compositing , 173
 lines and paths , 176

 line styling methods , 173–174
 patterns and gradients , 174
 rectangle methods , 173
 stroke, fi ll, and shadows , 174
 text and font usage , 175

 2D methods and properties , 173
 drawing surface , 171
 gaming applications , 171
 HTML5 declaration , 172–173
 methods , 171
 parameters , 171–172
 WebGL/WebGL 2 3D

rendering , 177
 Cascading style sheets (CSS)

 CSS2 and 4 , 166
 CSS3 (see CSS3)
 HTML and XHTML , 165
 in-line CSS3 code , 168
 MIME/media type

designation , 167
 scoped parameter , 167
 script tag, parameters , 166–167

 Classes , 152
 Content organization tags, HTML5

 address tag , 70–71
 heading level tags , 68–69
 horizontal rule and address area , 67
 horizontal rule tag , 69–70

 CSS2 , 166
 CSS3

 MIME/media type designation , 167
 modules , 166
 script tag , 166–167
 style parameter , 168

 CSS4 , 166
 CSS . See Cascading style sheets (CSS)

 Index

■ INDEX

254

 D
 Dialog tag , 203
 Digital Image Compositing

Fundamentals , 173
 Digital video editing , 250–251
 Division/div tag

 background color , 153–154
 class parameter , 154
 CSS3 style defi nitions , 153
 seamless image stitching , 154–157

 Document areas defi nition
 display property

 block , 153
 hybrid types , 153
 in-line , 153
 none , 153

 div tag (see Division/div tag)
 Document defi nition tags

 body tag , 10–11
 !DOCTYPE Tag , 5
 head tag , 9–10
 HTML4 document types , 7–8
 HTML tag , 9
 XHTML document types , 6–7

 E
 Eclipse 4.5

 eclipse installer, Oomph , 223–224
 Eclipse Mars launch , 226
 IDE, Java EE developers option , 224
 launch options , 225
 licensing terms acceptance , 225
 NetBeans install , 223
 project creation , 227–228

 Eclipse Mars IDE
 hardware requirement , 216–217
 Java 8 installation

 destination, progress, and
complete , 222

 eclipse.org , 217
 Google “Java JDK” , 219
 JavaEE , 218
 Oracle TechNetwork , 220
 setup, custom setup, and

extraction , 221–222
 uninstalling old version , 220–221

 open software , 217
 Embedding content , 189
 Embed objects , 183–185

 External link fi les
 author profi le linking , 22–23
 CSS3 advantages , 19
 CSS3 style , 21–22
 favicon , 20–21
 link tag , 23–24
 relationship parameter , 20

 F
 Favicon , 20–21
 Forms creation

 autocomplete and novalidate feature , 133
 child tags , 133
 content groups

 fi eldset tag , 140–141
 legend tag , 141–142
 TextArea , 139–140

 datalist tag , 146
 drop-down lists

 optgroup , 144
 select and option , 143–144

 form tags , 132–133
 HTML forms design content tag , 132
 input tag , 134–137
 keygen tag , 146–147
 label tag , 138–139
 output tag , 147
 parameters, input tag , 135–137
 user interface buttons , 144–146

 Frames
 frameset tag , 189–190
 iframe tag , 190–192

 G
 GIMP 2.8 , 247

 H
 HTML4 document types , 7–8
 HTML5

 defi nition and syntax , 2–3
 OS , 3
 syntax, comments , 3
 tag categories , 4

 HTML 5.1 , 1, 3
 HTML5 global parameters

 contenteditable , 36
 contextmenu , 37
 data , 37–38

■ INDEX

255

 draggable , 38
 dropzone , 38
 hidden , 39
 legacy attributes

 accesskey , 40
 class , 40–41
 dir , 41
 id , 41
 lang , 42
 style markup , 42
 tabindex , 42
 title, content element , 42

 parameter and purpose , 35–36
 spellcheck , 39
 translate , 39–40

 HTML5 new media support
 API , 55
 <audio> tag (digital audio) , 58–60
 <canvas> tag and WebGL

(Interactive 3D) , 64
 digital imagery (tag)

 alt parameter , 57
 client-side digital image map

asset , 58
 crossorigin parameter , 58
 CSS , 57
 digital image asset , 57
 HTML 2.0 , 56
 HTML5 , 57
 ismap parameter , 58
 longdesc parameter , 58
 parameters supported , 57
 server-side image mapping , 58
 width and height parameters , 56–57

 digital painting , 64
 direct tag support , 56
 genres and data format support , 56
 JavaScript , 56
 multimedia applications , 56
 <svg> tag (digital illustration)

 child tag elements support , 63
 CSS3 style information , 64
 interactive 2D artwork , 63
 rounded rectangle , 64
 style parameter , 64
 SVG XML data , 62
 width and height parameters , 64

 <video> tag (digital video)
 autoplay parameter , 61
 digital audio asset fi le name, and

controls , 60

 digital illustration , 62
 digital video asset , 61
 loop parameter , 62
 metadata , 62
 parameters supported , 61
 poster parameter , 62
 preload parameter , 62
 video transport user interface , 60

 visual eff ects (VFX) , 56, 65
 web speech API , 56, 65

 HTML development workstation
 hardware foundation , 206
 NetBeans 8.1 IDE (see NetBeans 8.1)
 Open Software , 207

 HTML, history , 1

 I
 Identifi ers , 151
 Inkscape , 248
 IntelliJ IDEA

 hardware requirement , 230
 HTML installation

 options and start menu folder , 239
 project creation , 244
 run IntelliJ IDEA, selection , 239
 start-up screen , 240

 IDEA License Activation , 241
 installation process, Java 8

 destination, progress, and
complete , 237

 uninstalling old version , 235–236
 Java 8 download

 Google “Java JDK” , 234
 offi cial site , 232–233
 Oracle TechNetwork Java

SE JDK , 234
 open source software , 230–231
 Set UI theme dialog , 242

 Internet Engineering
Task Force (IETF) , 2

 J, K
 Java/JavaFX applets

 align attribute , 182
 archive parameter , 182
 hspace and vspace , 183
 object parameter , 183
 parameter , 181
 width and height attributes , 182

■ INDEX

256

 JavaScript
 character set , 161
 getContext , 172
 hiding

 HTML comments , 164
 XHTML comments , 164

 in-line JavaScript code , 161–163
 MIME Type , 161
 parsing synchronization , 160
 restore() , 173
 save() , 173
 script tag , 159–160

 JavaScript programming
 noscript tag , 30–31
 parameter

 async , 29
 charset , 30
 defer , 28
 SRC , 26–27

 script tag , 26, 31–32
 Java software development kit (SDK) , 205

 L
 List creation

 dd tag , 117
 description list , 115
 dl tag , 116
 dt tag , 117
 HTML content publishing tags , 112
 li tag , 112–113
 ordered and bulleted lists , 112, 114–115
 unordered lists , 113–114

 M
 Media Content Development

 Apache OpenOffi ce , 251
 audacity , 249
 blender , 247–248
 EditShare Lightworks 12.6 , 250–251
 GIMP 2.8 , 247
 hardware , 246
 Inkscape , 248
 open source , 247
 visual eff ects , 249–250

 Menu
 menuitem tag , 200–201
 menu tag , 199–200
 parameters , 200
 sub-menu creation , 202

 N, O
 Name attribute , 152
 NetBeans 8.1

 accept license agreement , 211
 download options

 Google Java JDK , 209
 HTML5/JavaScript IDE versions , 209
 netbeans.org , 208
 Oracle TechNetwork

Java SE JDK , 210
 hardware requirements , 206
 java installation , 211–212
 NetBeans HTML IDE , 213–214
 uninstalling older versions Java , 211

 P, Q
 Parameters declaration , 185–186
 Phrase tags

 code tag , 108
 code variables , 109
 dfn tag , 104–105
 em tag , 106
 HTML Text Content , 103–104
 input

 keyboard , 107
 teletype , 107

 samp tag , 108–109
 strong tag , 105–106

 Plug-in non-JavaScript content
 applet tag

 align attribute , 182
 archive parameter , 182
 object parameter , 183
 parameter , 181
 width and height attributes , 182

 embed tag , 179–180
 object tag , 183–184
 param tag , 185–186
 tag selection , 186

 R
 Ruby annotations

 ruby tag , 195–197
 ruby text container , 197

 S
 Scalable vector graphics (SVG) , 176
 Scripting . See JavaScript

■ INDEX

257

 Search engine optimization (SEO) , 1
 base tag , 17
 head tags

 meta tag , 14–15
 title , 13–14

 http-equiv parameter , 16–17
 Semantic content organization, HTML5

 content type semantic
defi nition tags

 <article> tag , 80–81
 <aside> tag , 81–82
 <main> tag , 78–79
 <nav> tag , 79–80

 document detail defi nition tags
 <details> tag , 84–85
 <mark> tag , 85–86
 <summary> tag , 84–85
 <time> tag , 85–86

 document structure , 75
 <footer> tag , 77–78
 <header> tag , 76–77
 <section> tag , 75–76
 new media fi gure defi nition tags

 <fi gcaption> tag , 82–83
 <fi gure> tag , 82–83

 new media tags , 74
 sectional tags , 75
 tags , 74

 Semantic search , 73
 SEO . See Search engine

optimization (SEO)
 Standard Generalized Markup Language

(SGML) , 2
 Style tag, CSS , 32–33

 T, U, V
 Tables

 body and caption , 120
 caption tag , 122
 column defi nition , 128–129
 content defi nition

 headings , 123–125
 tr parameters , 123

 HTML content publishing tags , 120
 parameters , 121
 sorted tag , 124
 table element, tags , 120–121
 tabular information , 119
 tbody tag , 126, 128
 tfoot tag , 127
 thead tag , 125

 Tag selection , 186–187
 Text content publishing tags, HTML5

formatting
 bidirectional text tags , 96–97
 break tags

 line break , 93–94
 word break , 93–94

 child tags, semantic tags , 87
 internet–semantic search , 87
 quote and block quote tags , 97–98
 special circumstances text , 99–100
 text citations (<cite>) , 98–99
 text formatting

 <abbr> tag , 90–91
 align parameter , 88
 header paragraph , 89
 paragraph <p> tag , 88
 <pre> tag , 89–90

 text size (small, superscript, and
subscript) , 95–96

 text styling (bold, italics and
underline) , 92–93

 Text spans
 in-line , 149
 parameter

 event handler , 150
 id/class , 149
 language , 150

 W
 WebGL/WebGL 2 3D rendering , 177–178

 X, Y, Z
 XHTML document types , 6–7

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: HTML5 History: The Past and Future of HTML Markup
	The History of HTML: Reveal Codes Tags
	What Is HTML5? A Definition and Syntax
	More Syntax for HTML5: Using Comments
	The Future of HTML: HTML5 OS and HTML 5.1
	HTML5 Quick Reference: Tag Categories
	Summary

	Chapter 2: HTML5 Documents: Top-Level Document Definition
	The HTML5 Document Definition Tags
	The !DOCTYPE Tag: Defines HTML Document Type
	The XHTML Document Types: XHTML 1.0
	The HTML4 Document Types: HTML 4.01

	The HTML Tag: Defining the Root of the Document
	The HEAD Tag: Configuring the HTML5 Document
	The BODY Tag: Containing the Document Content

	Summary

	Chapter 3: HTML5 Search Engine Optimization: Title and Meta
	The HTML5 HEAD Tags Important for SEO
	The TITLE Tag: Defining the HTML5 Document Title
	The META Tag: Defining Document Characteristics
	The BASE Tag: Configuring a URL for a Document

	Summary

	Chapter 4: HTML5 Referencing: Using External Links and Favicons
	An HTML HEAD Tag to Link External Files
	The LINK Relationship: Types of External Assets
	Linking to an Icon: Using a Favicon in the Document Tab or App
	Link to a Style Sheet: Using an External Style Sheet for CSS3 Style
	Linking to an Author Profile: Putting a Face on a Search Listing

	The LINK Tag: The Optional Link Tag Parameters

	Summary

	Chapter 5: HTML5 Processing: Using CSS and JavaScript
	HTML HEAD Tags to Add Tag Processing
	The SCRIPT Tag: Using JavaScript Programming
	The SRC Parameter: Externalizing JavaScript Program Assets
	The ASYNC and DEFER Parameters: JavaScript Asset Execution
	Deferring JavaScript Processing: The <defer> Parameter
	Parallel JavaScript Processing: The <async> Parameter

	The CHARSET Parameter: Using a Different JS Character Set

	The NOSCRIPT Tag Advises Users: No JS Support
	Using SCRIPT Tags Internally: JavaScript Coding
	The STYLE Tag: Styling HTML5 Markup Using CSS

	Summary

	Chapter 6: HTML5 Parameters: Using Global Tag Attributes
	HTML Global Parameters Across All Tags
	HTML5 Global Parameters: Advanced Attributes
	The CONTENTEDITABLE Parameter: Can I Edit This Content?
	The CONTEXTMENU Parameter: Context Sensitive Menuing
	The DATA- Parameter: Custom Data Definitions for HTML5
	The DRAGGABLE Parameter: Can I Drag This Element Around?
	The DROPZONE Parameter: What to Do When an Element Is Dropped
	The HIDDEN Parameter: Hide Element Content until it is Relevant
	The SPELLCHECK Parameter: Allow Spell-checking for Content
	The TRANSLATE Parameter: HTML5 Global Language Support

	Pre-HTML5 Global Parameters: Legacy Attributes
	The ACCESSKEY Parameter: Adding Keyboard Shortcut Keys
	The CLASS Parameter: Labeling Your Elements for Use with CSS
	The DIR Parameter: Defining the Direction of your Text
	The ID Parameter: Identifying Your Content Elements
	The LANG Parameter: Defining an Element’s Language
	The STYLE Parameter: Using In-Line Stylesheet Settings
	The TABINDEX Parameter: Tab Key Advancement Ordering
	The TITLE Parameter: Adding a Title to your Content Element

	Summary

	Chapter 7: HTML5 Navigation: Using an Anchor Tag for Hypertext
	HTML Anchor Tag Attributes: All Versions
	Anchor Tag HTML5 Parameters: Hypertext’s HREF
	The HREFLANG Parameter: Hypertext Link Language Support
	The DOWNLOAD Parameter: Downloading Files Using the A Tag
	The MEDIA Parameter: What Media Device Does a Link Support?
	The TARGET Parameter: Where to Open a Hypertext Document
	The REL Parameter: Define a Relationship to the Hypertext Link
	The TYPE Parameter: MIME Types, Media Types, and File Types

	Anchor Tag Non-HTML5 Parameters: Legacy Code
	The CHARSET Parameter: Hypertext Link Character Set Support
	The COORDS Parameter: Define Coordinates for Your Image Map
	The NAME Parameter: Naming a Link (Supported Prior to HTML5)
	The REV Parameter: Where to Open a Hypertext Document
	The SHAPE Parameter: Define the Shapes for Your Image Maps

	Summary

	Chapter 8: HTML5 Multimedia: Utilizing New Media Assets
	HTML5 New Media Support: Nine Genres
	Digital Imagery: Using the Tag
	Digital Audio: Using the <audio> Tag
	Digital Video: Using the <video> Tag
	Digital Illustration: Using the <svg> Tag
	Interactive 3D: Using a <canvas> Tag and WebGL
	Digital Painting: Digital Painting using JavaScript
	Visual Effects: Creating VFX using JavaScript
	Web Speech: Speech Synthesis and Recognition

	Summary

	Chapter 9: HTML5 Organization: Document Content Hierarchy
	HTML5 Content Organization Tags
	Heading Level Tags: Segmenting Content Logically
	Horizontal Rule Tag: Dividing Text Content Visually
	The Address Tag: Specifying Address Information

	Summary

	Chapter 10: HTML5 Semantics: Defining Semantic Documents
	HTML5 Semantic Content Organization
	HTML5 Sectional Tags: Segment Content Logically
	The SECTION Tag: Define Document Sections
	The HEADER Tag: Define Introductory Content for the Document
	The FOOTER Tag: Footnote Information Referencing the Content

	HTML5 Content Type Semantic Definition Tags
	The MAIN Tag: Defining the Top Level of the Document Content
	The NAV Tag: Defining the Navigation UI for Your Document
	The ARTICLE Tag: Defining Articles within an HTML5 Document
	The ASIDE Tag: Defining Information Sidebars in Your Document

	HTML5 Semantic New Media Figure Definition Tags
	The FIGURE and FIGCAPTION Tags: Adding Captioned Imagery

	HTML5 Semantic Document Detail Definition Tags
	The DETAILS and SUMMARY Tags: Adding Pop-up Information
	The MARK and TIME Tags: Adding More Information

	Summary

	Chapter 11: HTML5 Formatting: Publish Text-Based Content
	Create HTML5 Text Content for Publishing
	HTML5 Text Formatting: Paragraph, Pre, and Abbr
	HTML5 Text Styling: Bold, Italics, and Underline
	HTML5 Break Tags: Line Break and Word Break
	HTML5 Text Size: Small, Superscript, and Subscript
	HTML5 Text Direction: The Bidirectional Text Tags
	HTML5 Text Quotes: Quote and Block Quote Tags
	HTML5 Text Citations: The CITE Tag
	HTML5 Special Circumstances Text: Other Tags

	Summary

	Chapter 12: HTML5 Phrase Tags: Using Non-Standard Text
	HTML5 Phrase Tags: Special Text Content
	HTML5 Phrase Styling: Highlighting Important Text
	The DFN Tag: Definition Terminology for the HTML5 Document
	The STRONG Tag: Defining Important Text and Terminology
	The EM Tag: Emphasizing Important Text and Terminology

	HTML5 Phrase Input Tags: Keyboard and Teletype
	The KBD Tag: Defining Keyboard Input
	The TT Tag: Defining Teletype Input

	HTML5 Phrase Coding Tags: Code and Variables
	The Code Tag: Code Sample Listings and Code Fragments
	The SAMP Tag: Adding Sample Code Output
	The VAR Tag: Adding Code Variables

	Summary

	Chapter 13: HTML5 Lists: Numbered, Bulleted, and Definition Lists
	HTML5 List Tags: Ordered Information
	HTML5 Stylized Lists: Ordered and Bulleted Lists
	The LI Tag: The Core List Tag Used to Define Each List Item
	The UL Tag: Defining and Styling an Unordered List Container
	The OL Tag: Defining and Styling an Ordered List Container

	HTML5 Description Lists: Lists of Terms with Data
	The DL Tag: Defining the Description List Parent Container
	The DT Tag: Defining Each Description Term Child Element
	The DD Tag: Defining Each Description Data Child Element

	Summary

	Chapter 14: HTML5 Tables: Constructing Data in a Tabular Format
	HTML5 Table Tags: Tabular Information
	Top Level HTML Table Creation: Table and Caption
	The TABLE Tag: The Core Tag Used to Create the Table Element
	The CAPTION Tag: Adding a Caption to Your Table

	HTML5 Table Content Definition: TR, TH, and TD
	The TH Tag: Defining the Table Heading Cells in the Table Row

	Complex Table Definition: THEAD, TBODY, TFOOT
	The THEAD Tag: Defining Each Description Term Child Element
	The TBODY Tag: Defining Each Description Data Child Element
	The TFOOT Tag: Defining Each Description Data Child Element

	Table Column Definition: COL and COLGROUP

	Summary

	Chapter 15: HTML5 Forms: Creating Forms Using HTML5 Tags
	HTML5 Form Tags: Interactive Information
	Basic HTML Form Creation: Form, Label, and Input
	The FORM Tag: The Core Tag Used to Create the Form Element
	The INPUT Tag: Adding Data Input Fields to the Form
	The LABEL Tag: Fixed Text Label Definitions for Input Elements

	HTML Form Content Groups: TextArea or FieldSet
	The TEXTAREA Tag: Define a Block or Paragraph of Text Input
	The FIELDSET Tag: Grouping Data Fields and Input Controls
	The LEGEND Tag: Adding a Legend to the Field Set Groupings

	HTML Form Option Selection: Select and Option
	The SELECT and OPTION Tags: Defining Drop-Down Lists
	The OPTGROUP Tags: Grouping the Drop-Down List Options

	The BUTTON Tag: Creating User Interface Buttons
	New HTML5 Form Tags: DataList, KeyGen, Output
	The DATALIST Tag: Defining Each Description Term Child Elem
	The KEYGEN Tag: Defining Each Description Data Child Element
	The OUTPUT Tag: Defining Each Description Data Child Element

	Summary

	Chapter 16: HTML5 Position: Document Layout and Text Spanning
	Defining Text Spans: Using the SPAN Tag
	Use of id, vs. Name, vs. Class
	Identifiers: Use an id for JavaScript and Fragments
	Classes: Use CLASS to Classify CSS3 Selectors
	Names: Naming Forms, Controls and UI Elements

	Define Document Areas: Using a DIV Tag
	The DISPLAY Property: Block, In-Line, and None
	The Division or DIV Tag: Core Properties
	Seamless Image Stitching: Using DIVs with CSS3

	Summary

	Chapter 17: HTML5 Scripting: Using JavaScript and <script> Tag
	Using JavaScript: The HTML5 SCRIPT Tag
	JavaScript Execution: Parsing Synchronization
	JavaScript Formats: MIME Type and Character Set
	In-Line JavaScript Code: Using the SCRIPT Tag

	Hiding JavaScript: To Do or Not to Do?
	HTML Comments: Use <!-- and --> to Hide JS Code
	XHTML Comments: Use <!-- and --> to Hide JS Code

	Summary

	Chapter 18: HTML5 Styling: Using the <style> Tag to Access CSS3
	Cascading Style Sheets: A History of CSS
	Using CSS3 with HTML5: The STYLE Tag
	CSS3 Formats: MIME or Media Type Designation
	The SCOPED Parameter: Tag-Local HTML5 Styling
	In-Line CSS3 Code: Using the STYLE Parameter

	Summary

	Chapter 19: HTML5 Real-Time Rendering: Using the <canvas> Tag
	Using the CANVAS Tag: New for HTML5
	Declaring an HTML5 Canvas: Using Parameters
	Drawing on a Canvas: 2D Methods and Properties
	Interactive 3D: WebGL or WebGL 2 3D Rendering
	The History of WebGL: Mozilla in 2006 and Opera in 2007

	Summary

	Chapter 20: HTML5 Plug-ins: Using the <object>, <embed>, <applet>, and <param> Tags
	Plug-in Applications: The EMBED Tag
	Java or JavaFX Applets: The APPLET Tag
	Embed Objects in HTML5: The OBJECT Tag
	Declaring Parameters: Using the PARAM Tag
	To Embed or Not to Embed: Tag Selection
	Summary

	Chapter 21: HTML5 Frames: Using the <iframe> Tag
	HTML Frame Legacy: The FRAMESET and FRAME Tags
	HTML5 Frames: Using the IFRAME Tag
	Using Object or iFrame: More Discussion
	Summary

	Chapter 22: HTML5 Ruby Annotations: Using the <ruby> Tag
	Ruby Annotations: The RUBY Tag
	Advanced Ruby Annotations: Ruby Containers

	Summary

	Chapter 23: HTML 5.1 Tags: Using Menu and Dialog Design Elements
	HTML5 Application Menu: The MENU Tag
	Populating HTML5 Menus: Using a MENUITEM Tag
	Creating Sub-Menus: Nested MENU Tag Usage

	HTML5 Application Dialog: A Dialog Tag
	Summary

	Appendix A: NetBeans: Set up an HTML5 Integrated Development IDE
	Create a HTML Development Workstation
	Development Workstations: Hardware Foundation
	HTML5 Development Workstation: Open Software
	Java 8: Installing the Foundation for NetBeans 8.1
	NetBeans 8.1: Download the NetBeans HTML IDE

	Summary

	Appendix B: Eclipse: Set up an HTML5 Integrated Development IDE
	Set up an HTML Development Workstation
	Development Workstations: Hardware Foundation
	HTML5 Development Workstation: Open Software
	Java 8: Installing the Foundation for Eclipse Mars
	Eclipse 4.5: Installing the Eclipse Mars HTML IDE

	Summary

	Appendix C: IntelliJ: Set up an HTML5 Integrated Development IDE
	Set up an HTML Development Workstation
	Development Workstations: Hardware Foundation
	HTML Development Workstation: Open Software
	Java 8: Installing the Foundation for IntelliJ IDEA
	IntelliJ IDEA: Download the IntelliJ IDEA for HTML

	Summary

	Appendix D: Multimedia: Set up Your New Media Content Development
	Set up a New Media Content Workstation
	New Media Content Production: Hardware is Key!
	New Media Content Development: Open Source
	GIMP 2.8: Digital Image Editing and Compositing
	Blender: 3D Modeling, Rendering, and Animation
	Inkscape: Digital Illustration and Digital Painting
	Audacity: Digital Audio Editing and Special Effects
	Visual Effects: BlackMagic Design Fusion 8.0 VFX
	Digital Video Editing: EditShare Lightworks 12.6
	Office Productivity Suite: Apache OpenOffice 4.1.2

	Summary

	Index

