
Owen Yamauchi

Hack &
HHVM
PROGRAMMING PRODUCTIVITY WITHOUT BREAKING THINGS

www.allitebooks.com

http://www.allitebooks.org

PHP

Hack and HHVM

ISBN: 978-1-491-92087-9

US $34.99 CAN $40.99

“	Hack	is	remarkable	not	
only	for	the	elegance	and	
power	of	its	type	system	
and	concurrency	model,	
but	because	it	provides	
existing	PHP	applications	
a	thoughtful,	iterative	
migration	strategy	that	
can	be	executed	at	
scale.	Yamauchi's	survey	
of	the	language	and	its	
runtime	is	clear,	expert,	
and	essential.	Highly	
recommended.”

—Ori Livneh
Principal Performance Engineer,

Wikimedia Foundation

Twitter: @oreillymedia
facebook.com/oreilly

How can you take advantage of the HipHop Virtual Machine (HHVM) and
the Hack programming language, two new technologies that Facebook
developed to run their web servers? With this practical guide, Owen
Yamauchi—a member of Facebook’s core Hack and HHVM teams—shows
you how to get started with these battle-tested open source tools.

You’ll explore static typechecking and several other features that separate
Hack from its PHP origins, and learn how to set up, configure, deploy,
and monitor HHVM. Ideal for developers with basic PHP knowledge or
experience with other languages, this book also demonstrates how these
tools can be used with existing PHP codebases and new projects alike.

 ■ Learn how Hack provides static typechecking while retaining
PHP’s flexible, rapid development capability

 ■ Write typesafe code with Hack’s generics feature

 ■ Explore HHVM, a just-in-time compilation runtime engine with
full PHP compatibility

 ■ Dive into Hack collections, asynchronous functions, and the
XHP extension for PHP

 ■ Understand Hack’s design rationale, including why it omits
some PHP features

 ■ Use Hack for multitasking, and for generating HTML securely

 ■ Learn tools for working with Hack code, including PHP-to-Hack
migration

Owen Yamauchi is a software engineer at Facebook, where he works on the
Hack and HHVM teams. Before joining the company in 2009, he worked as a
software engineer at Apple and served as an intern at VMware.

www.allitebooks.com

http://www.allitebooks.org

Owen Yamauchi

Boston

Hack and HHVM
Programming Productivity

Without Breaking Things

www.allitebooks.com

http://www.allitebooks.org

978-1-491-92087-9

[LSI]

Hack and HHVM
by Owen Yamauchi

Copyright © 2015 Facebook, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Allyson MacDonald
Production Editor: Melanie Yarbrough
Copyeditor: Rachel Head
Proofreader: Jasmine Kwityn

Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Ellie Volkhausen
Illustrator: Rebecca Demarest

September 2015: First Edition

Revision History for the First Edition
2015-09-02: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491920879 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Hack and HHVM, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491920879
http://www.allitebooks.org

Table of Contents

Foreword. ix

Preface. xi

1. Typechecking. 1
Why Use the Typechecker? 1
Setting Up the Typechecker 2

Autoload Everything 3
Reading Error Messages 3

Type Annotation Syntax 4
Function Return Types 4
Function Parameters 5
Properties 6

Hack’s Type System 6
Typechecker Modes 14
Code Without Annotations 16
Calling into PHP 17

Rules 18
Using Superglobals 18
Types of Overriding Methods 19
Property Initialization 20
Typed Variadic Arguments 23
Types for Generators 24
Fallthrough in switch Statements 25

Type Inference 26
Variables Don’t Have Types 26
Unresolved Types 26
Inference Is Function-Local 28

iii

www.allitebooks.com

http://www.allitebooks.org

Refining Types 29
Refining Nullable Types to Non-Nullable 30
Refining Mixed Types to Primitives 32
Refining Object Types 32
Inference on Properties 35

Enforcement of Type Annotations at Runtime 36

2. Generics. 39
Introductory Example 39
Other Generic Entities 41

Functions and Methods 41
Traits and Interfaces 42
Type Aliases 42

Type Erasure 43
Constraints 45
Unresolved Types, Revisited 47
Generics and Subtypes 49

Arrays and Collections 50
Advanced: Covariance and Contravariance 51

Syntax 51
When to Use Them 52

3. Other Features of Hack. 57
Enums 57

Enum Functions 59
Type Aliases 60

Transparent Type Aliases 60
Opaque Type Aliases 61
Autoloading Type Aliases 64

Array Shapes 64
Lambda Expressions 66
Constructor Parameter Promotion 68
Attributes 69

Attribute Syntax 69
Special Attributes 71

Enhanced Autoloading 73
Integer Arithmetic Overflow 77
Nullsafe Method Call Operator 77
Trait and Interface Requirements 78
Silencing Typechecker Errors 80

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

4. PHP Features Not Supported in Hack. 83
References 83

The global Statement 84
Top-Level Code 84

Old-Style Constructors 85
Case-Insensitive Name Lookup 86
Variable Variables 86
Dynamic Properties 87
Mixing Method Call Syntax 88
isset, empty, and unset 88
Others 89

5. Collections. 91
Why Use Collections? 93
Collections Have Reference Semantics 94
Using Collections 96

Literal Syntax 96
Reading and Writing 97

Type Annotations for Collections 102
Core Interfaces 102
General Collection Interfaces 106
Specific Collection Interfaces 107
Concrete Collection Classes 110

Interoperating with Arrays 112
Conversion to Arrays 112
Use with Built-In and User Functions 112

6. Async. 117
Introductory Examples 118
Async in Detail 121

Wait Handles 121
Async and Callable Types 123
await Is Not an Expression 124
Async Generators 125
Exceptions in Async Functions 127
Mapping and Filtering Helpers 129

Structuring Async Code 132
Data Dependencies 133
Antipatterns 135

Other Types of Waiting 140
Sleeping 140
Rescheduling 140

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

Common Mistakes 143
Dropping Wait Handles 143
Memoizing Async Functions 145

Async Extensions 147
MySQL 147
MCRouter and memcached 151
cURL 153
Streams 154

7. XHP. 157
Why Use XHP? 157

Runtime Validation 158
Secure by Default 159

How to Use XHP 161
Basic Tag Usage 161
Attributes 163
Embedding Hack Code 164
Type Annotations for XHP 164
Object Interface 165
Validation 167

Creating Your Own XHP Classes 168
Attributes 169
children Declarations 171
Categories 173
Context 174
Async XHP 175
XHP Helpers 176

XHP Best Practices 178
No Additional Public API 179
Composition, Not Inheritance 179
Don’t Make Control Flow Tags 180
Distinguish Attributes from Children 181
Style Guide 182

Migrating to XHP 182
Converting Bottom-Up 183
Getting Around XHP’s Escaping 184

XHP Internals 185
The Parser Transformation 185
The Hack Library 186

8. Configuring and Deploying HHVM. 189
Specifying Configuration Options 189

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Important Options 190
Server Mode 192
Warming Up the JIT 193
Repo-Authoritative Mode 194

Building the Repo 195
Deploying the Repo 196

The Admin Server 196

9. hphpd: Interactive Debugging. 199
Getting Started 199
Evaluating Code 202
The Execution Environment 203

Local Mode 204
Remote Mode 205

Using Breakpoints 207
Setting Breakpoints 208
Navigating the Call Stack 211
Navigating Code 213
Managing Breakpoints 217

Viewing Code and Documentation 218
Macros 222
Configuring hphpd 223

10. Hack Tools. 227
Inspecting the Codebase 227

Scripting Support 230
Migrating PHP to Hack 231

The Hackificator 231
Inferring and Adding Type Annotations 234

Transpiling Hack to PHP 236
Conversions 237
Unsupported Features 239

Index. 241

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Foreword

In 2012, I started working on a project called “strict-mode” with Alok Menghrajani.
The goal was, in a nutshell, to build a statically typed version of PHP on top of
HHVM.

The success of that project (which later became Hack) has amazed me ever since.
What began as a basic typechecker has become a full-blown programming language
with industrial-strength tools to back it up.

Looking back, we have come a long way. When we first pitched the idea to the
HHVM team, I am pretty sure they thought we were crazy. But somehow, we con‐
vinced them to join us in the adventure.

At the end of June 2012, Facebook deployed Hack code to production for the first
time. Just like that, without any management approval, without any process of any
kind, Facebook had a new language in production.

At that time, I was expecting someone to knock on our door to stop us, but somehow
that day never came.

Many engineers followed after that, and before we knew it, most new code within
Facebook was written in Hack. We then decided to automatically convert the rest of
our PHP codebase to Hack. We went from a dynamically typed to a statically typed
codebase at a gigantic scale (tens of millions of lines).

That process was especially challenging given the client/server architecture that we
adopted for the typechecker. We wanted instantaneous response times from the type‐
checker, because PHP developers were used to a very fast edit/refresh cycle. That’s
why we needed the Hack typechecking server: a daemon maintaining the typing
information in the background at all times. Of course, the tricky part was to keep the
state of the server consistent with the filesystem.

It took many sleepless nights to stabilize the typechecking server, but that approach is
really what makes Hack so special today. The typechecker response times are instan‐

ix

taneous (so fast we use it for auto-complete), and it can keep up with a huge volume
of updates.

I am very pleased that there’s now a definitive reference book on Hack and HHVM.
Owen has done a very good job of explaining even the subtlest parts of the language
(such as type inference), and everything else you need to know to be productive in
Hack/HHVM (debugging, etc.).

Have fun with Hack and HHVM!

—Julien Verlaguet, creator of Hack

x | Foreword

Preface

For most of its history, Facebook has held internal hackathons every few months. For
hackathons, engineers are encouraged to come up with ideas that aren’t related to
their day jobs—they form teams and try to make something cool in the span of a day
or two.

One hackathon in November 2007 resulted in an interesting experiment: a tool that
could convert PHP programs into equivalent C++ programs and then compile them
with a C++ compiler. The idea was that the C++ program would run a lot faster than
the PHP original, as it could take advantage of all the optimization work that has
gone into C++ compilers over the years.

This possibility was of great interest to Facebook. It was gaining a lot of new users,
and supporting more users requires more CPU cycles. As you run out of available
CPU cycles, unless you buy more CPUs, which gets very expensive, you have to find a
way to consume fewer CPU cycles per user. Facebook’s entire web frontend was writ‐
ten in PHP, and any way to get that PHP code to consume fewer CPU cycles was wel‐
come.

Over the next seven years, the project grew far beyond its hackathon origins. As a
PHP-to-C++ transformer called HPHPc, in 2009 it became the sole execution engine
powering Facebook’s web servers. In early 2010, it was open sourced under the name
HipHop for PHP. And then, starting in 2010, an entirely new approach to execution
—just-in-time compilation to machine code, with no C++ involved—grew out of
HPHPc’s codebase, and eventually superseded it. This just-in-time compiler, called
the HipHop Virtual Machine, or HHVM for short, took over Facebook’s entire web
server fleet in early 2013. The original PHP-to-C++ transformer is gone; it is not
deployed anywhere and its code has been deleted.

The origins of Hack are entirely separate. Its roots are in a project that attempted to
use static analysis on PHP to automatically detect potential security bugs. Fairly soon,
it turned out that the nature of PHP makes it fundamentally difficult to get static
analysis that’s deep enough to be useful. Thus the idea of “strict mode” was born: a

xi

modification of PHP, with some features, such as references, removed and a sophisti‐
cated type system added. Authors of PHP code could opt into strict mode, gaining
stronger checking of their code while retaining full interoperability.

Hack’s direction since then belies its origin as a type system on top of PHP. It has
gained new features with significant effects on the way Hack code is structured, like
asynchronous (async) functions. It has added new features specifically meant to make
the type system more powerful, like collections. Philosophically, it’s a different lan‐
guage from PHP, carving out a new position in the space of programming languages.

This is how we got where we are today: Hack, a modern, dynamic programming lan‐
guage with robust static typechecking, executing on HHVM, a just-in-time compila‐
tion runtime engine with full PHP compatibility and interoperability.

What Are Hack and HHVM?
Hack and HHVM are closely related, and there has occasionally been some confusion
as to what exactly the terms refer to.

Hack is a programming language. It’s based on PHP, shares much of PHP’s syntax,
and is designed to be fully interoperable with PHP. However, it would be severely lim‐
iting to think of Hack as nothing more than some decoration on top of PHP. Hack’s
main feature is robust static typechecking, which is enough of a difference from PHP
to qualify Hack as a language in its own right. Hack is useful for developers working
on an existing PHP codebase, and has many affordances for that situation, but it’s also
an excellent choice for ground-up development of a new project.

Beyond static typechecking, Hack has several other features that PHP doesn’t have,
and most of this book is about those features: async functions, XHP, and many more.
It also intentionally lacks a handful of PHP’s features, to smooth some rough edges.

HHVM is an execution engine. It supports both PHP and Hack, and it lets the two
languages interoperate: code written in PHP can call into Hack code, and vice versa.
When executing PHP, it’s intended to be usable as a drop-in replacement for the stan‐
dard PHP interpreter from PHP.net. This book has a few chapters that cover HHVM:
how to configure and deploy it, and how to use it to debug and profile your code.

Finally, separate from HHVM, there is the Hack typechecker: a program that can
analyze Hack code (but not PHP code) for type errors. The typechecker is somewhat
stricter than HHVM about what it will accept, although HHVM will become stricter
to match the typechecker in future versions. The typechecker doesn’t really have a
name, other than the command you use to run it, hh_client. I’ll refer to it as “the
Hack typechecker” or just “the typechecker.”

As of now, HHVM is the only execution engine that runs Hack, which is why the two
may sometimes be conflated.

xii | Preface

http://php.net

Who This Book Is For
This book is for readers who are comfortable with programming. It spends no time
explaining concepts common to many programming languages, like control flow,
data types, functions, and object-oriented programming.

Hack is a descendant of PHP. This book doesn’t specifically explain common PHP
syntax, except in areas where Hack differs, so basic knowledge of PHP is helpful. If
you’ve never used PHP, you’ll still be able to understand much of the code in this
book if you have experience with other programming languages. The syntax is gener‐
ally very straightforward to understand.

For those with PHP experience, there’s nothing here that you won’t understand if
you’ve never worked on a complex, high-traffic PHP website. Hack is useful for code‐
bases of all sizes—from simple standalone scripts to multimillion-line web apps like
Facebook.

There is some material that assumes familiarity with typical web app tasks like query‐
ing relational databases and memcached (in Chapter 6) and generating HTML (in
Chapter 7). You can skip these parts if they’re not relevant to you, but they require no
knowledge that you wouldn’t get from experience with even a small, basic web app.

I hope to make this book not just an explanation of how things are, but also of how
they came to be that way. Programming language design is a hard problem; it’s essen‐
tially the art of navigating hundreds of trade-offs at once. It’s also subject to a surpris‐
ing range of pragmatic concerns like backward compatibility, and Hack is no
exception. If you’re at all interested in a case study of how one programming lan‐
guage made its way through an unusual set of constraints, this book should provide
what you’re looking for.

Philosophy
There are a few principles that underlie the design of both Hack and HHVM, which
can help you understand how things came to be the way they are.

Program Types
There is a single observation about programs that informs both HHVM’s approach to
optimizing and executing code, and Hack’s approach to verifying it. That is: behind
most programs in dynamically typed languages, a statically typed program is hiding.

Consider this code, which works as both PHP and Hack:

for ($i = 0; $i < 10; $i++) {
 echo $i + 100;
}

Preface | xiii

Although it’s not explicitly stated anywhere, it’s obvious to any human reader that $i
is always an integer. The computer science term for this is that $i is monomorphic: it
only ever has one type. A typechecker could make use of this property to verify that
the expression $i + 100 makes sense. An execution engine could make use of this
property to compile $i + 100 into efficient machine code to do the addition.

A loop variable may seem like a trivial example, but it turns out that in real-world
PHP codebases, most values are monomorphic. This makes intuitive sense, because
you can’t do much with a value—do arithmetic on it, index into it, call methods on it,
etc.—without knowing what its type is. Most code, even in dynamically typed lan‐
guages, does not check the type of each value before doing anything with it, which
means that there must be hidden assumptions about the types of values. If the code
mostly runs without runtime type errors, then those hidden assumptions must be
true most of the time.

HHVM’s approach is to assume that this observation usually holds, and to compile
PHP and Hack to machine code accordingly. Because it compiles programs while
they are running, it knows the types flowing through each piece of code it’s about to
compile. It outputs machine code that assumes those types: in the previous code
example when compiling the expression $i + 100, HHVM would see that $i is an
integer and use a single hardware addition instruction to do the addition.

The purpose of Hack, meanwhile, is to bring the hidden statically typed program into
the light. It makes some types explicit with annotations, and verifies the rest with type
inference. The idea is that Hack doesn’t significantly constrain existing PHP pro‐
grams; rather, it makes the behavior that the programs already had explicit, and expo‐
ses it to robust static analysis.

This point is worth repeating: Hack’s static typing is not supposed to require a differ‐
ent style of programming. The language is designed to give you a better way to
express the programs you were already writing.

Gradual Migration
Hack originated in the shadow of a multimillion-line PHP codebase. There’s no way
to convert a codebase of that size from one language to another in one fell swoop, no
matter how similar the languages are, so Hack has evolved with very gradual migra‐
tion paths from PHP. Hack code can use functions and classes written in PHP, and
vice versa. For every feature of Hack, there is a seamless way for code that uses it to
interact with code that doesn’t use it.

In addition, the standard Hack/HHVM distribution comes with tools to do automa‐
ted migration of PHP to Hack. It also includes a tool that transpiles Hack into PHP,
for use by library authors who want to migrate to Hack while preserving a way for
non-HHVM users to use their code. These tools are described in detail in Chapter 10.

xiv | Preface

HHVM, for its part, is intended to run PHP code identically to the standard PHP
interpreter. The first step in migrating a PHP codebase to Hack is to switch to run‐
ning that PHP code on HHVM. The only significant code changes that should be
required in this step are around extensions: not all PHP and Zend extensions are
compatible with HHVM. There should be no changes required because of differing
behavior in the core language.

Make no mistake, though: despite its origins, Hack is an excellent choice if you’re
starting a new project from scratch. In fact, you’ll get the most benefit out of Hack
that way: the language is at its best when a codebase is 100% Hack.

How the Book Is Organized
The central feature of Hack is static typechecking. It cuts broadly across all of Hack’s
other features, and is the most significant difference between Hack and PHP. The
book starts by exploring that topic in detail in Chapter 1. Almost everything else in
the book depends on an understanding of the content in that chapter, so if you
haven’t seen Hack before, I very strongly recommend reading it thoroughly. That
content is supplemented by Chapter 2, which discusses a particularly interesting part
of Hack’s type system.

The rest of Hack’s features are mostly orthogonal to each other. Chapter 3 explains
several of Hack’s smaller features. Chapter 4 shows the few PHP features that are gone
from Hack, and explains why. Chapter 5 explains how and why to use Hack’s collec‐
tion classes. Chapter 6 explains Hack’s support for multitasking, and Chapter 7
explains Hack’s syntax and library for generating HTML sanely and securely.

Chapter 8 covers the process of setting up, configuring, deploying, and monitoring
HHVM. Chapter 9 covers the HHVM interactive debugger, hphpd. And finally,
Chapter 10 explores some of the tools for working with Hack code, including a PHP-
to-Hack migration tool and an interactive debugger.

Versions
This book is about Hack and HHVM version 3.6, which was released on March 11,
2015. (HHVM and the Hack typechecker live in the same codebase, and are released
as a single package.) By the time you read this, there will already be newer versions
available. However, 3.6 is a long-term support release; it will be updated with security
and bug fixes for 48 weeks after its release.

Preface | xv

1 The matching minor version numbers are a coincidence. There’s no relationship between HHVM/Hack and
PHP version numbers, in general.

HHVM 3.6 implements PHP 5.6 semantics.1 It supports all of the features new in
PHP 5.6—constant scalar expressions, variadic functions, the exponentiation opera‐
tor, etc. These features are present in Hack 3.6 as well. In general, as new versions of
PHP come out, HHVM adds support for the new features and semantics, for Hack
code as well as PHP code.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

xvi | Preface

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/hack-and-hhvm.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Preface | xvii

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://www.safaribooksonline.com
http://bit.ly/hack-and-hhvm
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
First and foremost, this book obviously wouldn’t exist without the efforts, spanning
many years, of everyone who has worked on HipHop, HHVM, and Hack. This
includes both current and former Facebook employees, as well as members of the
open source community. There are far too many to name them all here, but all of
their contributions helped make Hack and HHVM what they are today.

Not only do these projects represent the product of a huge amount of effort, but they
are also the rewards for significant risks. None of these projects were “sure things”
when they were started, and all of them have spent a fair bit of time fighting for their
own continued existence. The story I know best, from experience, is HHVM’s. For
the better part of two years, the HHVM team strove to get HHVM’s performance up
to parity with HipHop, knowing that if they didn’t succeed, they would forfeit all of
that work. The engineers and managers who drove the projects forward, despite such
risks, deserve special recognition; it’s never easy to stake years of one’s own and oth‐
ers’ careers on speculative things like this. Particular thanks are due to the creators:
Haiping Zhao, of HipHop; Keith Adams, Jason Evans, and Drew Paroski, of HHVM;
and Julien Verlaguet, of Hack.

Now, about this book. I’m grateful to have gotten the chance to write it; I suspect that
not a lot of software companies or teams would be thrilled at the idea of letting one of
their engineers spend seven months writing prose instead of software. A few individ‐
uals deserve credit for helping get this thing off the ground and shepherding it along.
In alphabetical order, they are: Alma Chao, Todd Gascon, Joel Marcey, James Pearce,
Joel Pobar, and Paul Tarjan.

Big thanks are also due to the Hack and HHVM team members who reviewed this
book’s early drafts. In alphabetical order, they are: Fred Emmott, Bill Fumerola,
Eugene Letuchy, Alex Malyshev, Joel Marcey, Jez Ng, Jan Oravec, Dwayne Reeves,
Julien Verlaguet, and Josh Watzman. This book was immensely improved by their
feedback. Any mistakes are mine, not theirs.

xviii | Preface

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1

Typechecking

The typechecker is the flagship feature of Hack. It analyzes Hack programs statically
(i.e., without running them) and checks for many different kinds of errors, which
prevents bugs at an early stage of development and makes code easier to read and
understand. To enhance the typechecker’s ability to do this, Hack allows program‐
mers to explicitly annotate the types of some values in their programs: function
parameters, function return types, and properties. The typechecker will infer the rest.

The choice between statically typed languages and dynamically typed languages is
endlessly debated among programmers. It’s often presented as a choice between the
robustness of static typing and the flexibility of dynamic typing. The philosophy of
Hack rejects this as a false dichotomy. Hack retains the flexible, rapid-development
character of PHP, a dynamically typed language, while adding a layer of robust,
sophisticated typechecking.

In this chapter, we’ll see why you should use the typechecker, how to use it, and how
to write type annotations for it.

Why Use the Typechecker?
The argument in favor of Hack typechecking sounds similar to the argument often
used in favor of statically typed languages. The typechecker is able to look for mis‐
takes without running the program, so it can catch problems even with codepaths
that aren’t run during testing. Because it doesn’t need to run the program, it catches
problems earlier in development, which saves development time. Static analysis capa‐
bility makes refactoring easier, as it can ensure that there are no breakages at module
boundaries.

In the classic debate, the disadvantage that supposedly accompanies these features is a
drag on development speed. Before you can run your program, you have to wait for it

1

1 A Hack file is also allowed to start with a shebang line like #!/usr/bin/hhvm, but the <?hh must be the next
non-blank line.

to compile, and depending on the language and the size of the program, that can take
a long time. You also have to write out types everywhere, making your code more
verbose and harder to change.

These downsides aren’t present in Hack, for two reasons. First, the typechecker is
designed for instant feedback, even when working in very large codebases. It uses a
client/server model: the typechecking server runs in the background and monitors
the filesystem for changes. When you edit a file, the server updates its in-memory
analysis of your codebase. By the time you’re ready to run your code, the analysis is
already done; the client simply queries the server and displays results almost instanta‐
neously. It can easily be integrated into text editors and IDEs, giving you feedback in
real time.

Second, Hack type annotations are designed to be gradual. You can use as many or as
few as you want. Type-annotated code can interoperate seamlessly with non-
annotated Hack code and with PHP code. In addition, you don’t annotate local vari‐
ables; the typechecker infers their types from their surroundings.

Setting Up the Typechecker
Before we look at the syntax and semantics of Hack type annotations, we’ll get the
typechecker set up.

The first thing you need is an .hhconfig file. As well as holding project-wide configu‐
ration settings, this file serves to mark the top-level directory of your codebase, so the
typechecker knows which files to include in its analysis.

For now, we don’t need any configuration; our .hhconfig file can just be empty. So,
navigate to the top-level directory of your project, and do this:

$ touch .hhconfig
$ hh_client

Running hh_client first checks for a running hh_server process. If there isn’t one,
the client will start one, so you should never have to start one yourself. The server will
find the .hhconfig file and analyze every Hack file it finds in the directory containing
that file and all directories below it.

A Hack file is one whose contents start with <?hh.1 This is an adaptation of PHP’s
“opening tag” syntax. After the <?hh at the beginning (possibly supplemented by a
mode, as described in “Typechecker Modes” on page 14), the rest of the file is Hack

2 | Chapter 1: Typechecking

code. Unlike in PHP, the closing tag ?> is not valid in Hack; you can’t use Hack with
PHP’s templating-language syntax.

Filename extensions are irrelevant: it’s fine to name Hack files with the exten‐
sion .php, although .hh is also conventional.

Once the typechecking server is started, if you have no Hack files in your project (i.e.,
all of your code is inside <?php tags instead of <?hh), running hh_client should sim‐
ply print No errors!. This is because the typechecker only looks at Hack files; it
doesn’t do anything with PHP files.

Autoload Everything
One key assumption that the typechecker makes is that your project is set up so that
any class, function, or constant in your codebase can be used from anywhere else in
the codebase. It makes no attempt to analyze include or require statements to make
sure that the right files have been included or required by the time their contents
are used. Instead, it assumes that you have autoloading set up.

This both sidesteps a difficult static analysis problem and reflects modern best prac‐
tice. “Autoload everything” is the approach taken by Composer, a popular package
manager for PHP and Hack. Note that autoloading isn’t mandatory—you can write
your code using require and include, and the typechecker won’t complain—but it’s
strongly recommended, because the typechecker won’t protect you from missing
require or include statements.

PHP provides autoloading for classes, and HHVM supports this, through both
__autoload() and spl_autoload_register(). HHVM provides an additional fea‐
ture that allows autoloading for functions and constants in both PHP and Hack, plus
autoloading for type aliases (see “Type Aliases” on page 60) in Hack only. See
“Enhanced Autoloading” on page 73 for full details on the HHVM-specific API.

Reading Error Messages
The typechecker’s error messages are designed to be both detailed and easy to under‐
stand. Here’s some example code with an error:

<?hh
function main() {
 $a = 10;
 $a[] = 20;
}

We’ll put this in a file called test.hh and run the typechecker:

$ hh_client
/home/oyamauchi/test.hh:4:3,6: an int does not allow array append (Typing[4006])
 /home/oyamauchi/test.hh:3:8,9: You might want to check this out

Setting Up the Typechecker | 3

Each line shows the full path to the file with the error, followed by the line number
and the column numbers where the erroneous code starts and ends. The first error
message line explains what the actual problem is—“an int does not allow array
append”—and gives a number that uniquely identifies this error message (see “Silenc‐
ing Typechecker Errors” on page 80 to find out how this is used). The line and col‐
umn numbers are pointing to the code $a[].

The next line of the error message is indented, to show that it’s not a separate error
but is elaborating on the previous line. It explains why the typechecker thinks $a is an
int: it’s pointing to the code 10, which gets assigned to $a.

Type Annotation Syntax
This section explains the syntax for the three places where you can put type annota‐
tions. We haven’t seen the full range of type annotations that Hack supports yet—that
will be covered in “Hack’s Type System” on page 6—but for now, all you need to know
is that int and string are valid type annotations.

The three places where you can put type annotations are on function return types,
function parameters, and properties.

Function Return Types
The syntax for function return types is the simplest. After the closing parenthesis of a
function’s parameter list, add a colon and a type name. You can do this with functions
and methods, as well as body-less method declarations in interfaces and abstract
classes. For example:

function returns_an_int(): int {
 // ...
}
function returns_a_string(): string {
 // ...
}

Whitespace is allowed between the closing parenthesis and the colon. It’s common to
put a newline between them in function signatures that are too long to fit on one line.

Closures can also have their return types annotated:

$add_one = function ($x): int { return $x + 1; };
$add_n = function ($x): int use ($n) { return $x + $n; };

This syntax is compatible with the return typehint syntax that will be released in PHP
7, except for the case of closures with lists of captured variables. In PHP 7, the return
typehint goes after the list of captures, but in Hack, it goes after the list of parameters.

4 | Chapter 1: Typechecking

Function Parameters
Annotating function parameters uses exactly the same syntax as PHP uses for param‐
eter typehints—just put the type name before the parameter name:

function f(int $start, string $thing) {
 // ...
}

Default arguments are supported as usual, but of course the default value must satisfy
the type annotation. In regular PHP, there is a special allowance for a default value of
null for a typehinted parameter, so that this is valid:

function f(SomeClass $obj = null) {
 // ...
}

This is not valid in Hack—it conflates the concept of an optional argument with that
of a required argument that allows a placeholder value. In Hack, you can express the
latter by making the parameter type nullable (see “Hack’s Type System” on page 6).

Parameters Versus Arguments
These terms are often used interchangeably in casual talk among programmers, but
they aren’t the same thing. The difference between them is the same as the difference
between variables and values. Parameters are variables, and arguments are the values
that get assigned to parameters when a function is called. Consider this code:

function add_one($x) {
 return $x + 1;
}

echo add_one(10);

$x is a parameter of the function add_one(). 10 is an argument that gets assigned to
the parameter $x.

We say that a function has parameters, but it’s also correct to say that it takes argu‐
ments, because you pass arguments to a function when you call it.

Variadic functions
A variadic function is one that can take a variable number of arguments. In PHP, all
functions are implicitly variadic; passing a function more arguments than it has
parameters doesn’t result in an error, and any function can access all arguments that
were passed to it using the built-in functions func_get_args(), func_get_arg(), and
func_num_args().

Type Annotation Syntax | 5

In Hack, by contrast, passing excess arguments to a function is an error, unless the
function is explicitly declared as variadic. The Hack syntax for making a function var‐
iadic is to put ... as the last argument in the function signature. Within such a func‐
tion, you can access the arguments with func_get_args(), func_get_arg(), and
func_num_args(), the same way as in PHP:

function log_error(string $format, ...) {
 $varargs = func_get_args();
 // ...
}

The variadic arguments are allowed to be of any type. The first argument to
log_error() must be a string, but the subsequent arguments can be of any type and
the typechecker will accept it.

Properties
In the declaration of a property (either static or non-static), the type annotation goes
immediately before the property name:

class C {
 public static int $logging_level = 2;
 private string $name;
}

Initial values are supported (like 2 for $logging_level in the example), and the ini‐
tial value must satisfy the type annotation.

Initialization of properties with type annotations actually has sev‐
eral more rules, to avoid situations where code can access a prop‐
erty that hasn’t been initialized. See “Property Initialization” on
page 20 for details.

Hack’s Type System
Hack provides a multitude of powerful ways to describe types. It builds on PHP’s
basic type system of booleans, integers, strings, arrays, etc., and adds many new ways
to combine them or make them more expressive:

Primitive types
These are the same as PHP’s primitive types: bool, int, float, string, array,
and resource. All these are valid Hack type annotations.

In PHP, there are additional names for these types: boolean, integer, real, and
double. These are not valid in Hack. The six mentioned above are the only
acceptable primitive types in Hack.

6 | Chapter 1: Typechecking

There are two other types that express a simple combination of primitive types:
num, which is either an integer or a float; and arraykey, which is either an integer
or a string.

Object types
The name of any class or interface—built-in or non-built-in—can be used in a
type annotation.

Enums
Enums are described more fully in Chapter 3. For our purposes here, it’s enough
to know that an enum gives a name to a set of constants. The name of an enum
can be used as a type annotation; the only values that satisfy that annotation are
the constants that are members of the enum.

Tuples
Tuples are a way to bundle together a fixed number of values of possibly different
types. The most common use for tuples is to return multiple values from a func‐
tion.

The syntax for tuple type annotations is simply a parenthesis-enclosed, comma-
separated list of types (which may be any of the other types in this list, except
void). The syntax for creating a tuple is identical to the array() syntax for creat‐
ing arrays, except that the keyword array is replaced by tuple, and keys are not
allowed.

For example, this function returns a tuple containing an integer and a float:

function find_max_and_index(array<float> $nums): (int, float) {
 $max = -INF;
 $max_index = -1;
 foreach ($nums as $index => $num) {
 if ($num > $max) {
 $max = $num;
 $max_index = $index;
 }
 }

 return tuple($max_index, $max);
}

Tuples behave like a restricted version of arrays. You can’t change a tuple’s set of
keys: that is, you can’t add or remove elements. You can change the values in a
tuple, as long as you don’t change their type. You can read from a tuple with
array-indexing syntax, but it’s more common to unpack them with list assign‐
ment instead of reading individual elements.

Under the hood, tuples really are arrays: if you pass a tuple to is_array(), it will
return true.

Hack’s Type System | 7

mixed

mixed means any value that can possibly exist in a Hack program, including null.

void

void is only valid as a function return type, and it means that the function
returns nothing. (In PHP, a function that “returns nothing” actually has a return
value of null, but in Hack, it’s an error to use the return value of a function
returning void.)

void is included within mixed. That is, it’s legal for a function with return type
mixed to return nothing.

this

this is only valid as a method return type—it’s not a valid return type for a bare
function. It signifies that the method returns an object of the same class as the
object that the method was called on.

The purpose of this annotation is to allow chained method calls on classes that
have subclasses. Chained method calls are a useful trick. They look like this:

$random = $rng->setSeed(1234)->generate();

To allow for this, the class in question has to return $this from methods that
have no logical return value, like this:

class RNG {
 private int $seed = 0;

 public function setSeed(int $seed): RNG {
 $this->seed = $seed;
 return $this;
 }

 // ...
}

In this example, if RNG has no subclasses, you can use RNG as the return type
annotation of setSeed(), and there will be no problems. The trouble begins if
RNG has subclasses.

The typechecker will report an error in the following example. Because the return
type of setSeed() is RNG, it thinks that the call $rng->setSeed(1234) returns a
RNG, and calling generateSpecial() on a RNG object is invalid; that method is
only defined in the subclass. The more specific type of $rng (which the type‐
checker knows is a SpecialRNG) has been lost:

class SpecialRNG extends RNG {
 public function generateSpecial(): int {
 // ...

8 | Chapter 1: Typechecking

 }
}

function main(): void {
 $rng = new SpecialRNG();
 $special = $rng->setSeed(1234)->generateSpecial();
}

The this return type annotation solves this problem:

class RNG {
 private int $seed = 0;

 public function setSeed(int $seed): this {
 $this->seed = $seed;
 return $this;
 }

 // ...
}

Now, when the typechecker is calculating the type returned from the call
$rng->setSeed(1234), the this annotation tells it to preserve the specific type of
the expression to the left of the arrow. That way, the chained call to
generateSpecial() is valid.

Static methods can also have the this return type, and in that case, it signifies
that they return an object of the same class that the method was called on—that
is, the class whose name is returned from get_called_class(). The way to sat‐
isfy this type annotation is to return new static():

class ParentClass {
 // This is needed to reassure the typechecker that 'new static()'
 // is valid
 final protected function __construct() {}

 public static function newInstance(): this {
 return new static();
 }
}

class ChildClass extends ParentClass {
}

function main(): void {
 ParentClass::newInstance(); // Returns a ParentClass instance
 ChildClass::newInstance(); // Returns a ChildClass instance
}

Hack’s Type System | 9

Type aliases
Described fully in “Type Aliases” on page 60, type aliases are a way to give a new
name to an existing type. You can use the new name as a type annotation.

Shapes
Shapes, described in “Array Shapes” on page 64, are a special kind of type alias,
and their names can also be used as type annotations.

Nullable types
All types except void and mixed can be made nullable by prefixing them with a
question mark. A type annotation of ?int indicates a value that can be an integer
or null. mixed can’t be made nullable because it already includes null.

Callable types
Although PHP allows callable as a parameter typehint, Hack does not. Instead,
Hack offers a much more powerful syntax that allows you to specify not only that
a value is callable, but what types it takes as arguments and what type it returns.

The syntax is the keyword function, followed by a parenthesis-enclosed list of
parameter types, followed by a colon and a return type, with all of that enclosed
in parentheses. This mirrors the syntax of type annotations for functions; it is
essentially a function signature without a name and without names for the
parameters. In this example, $callback is a function taking an integer and a
string, and returning a string:

function do_some_work(array $items,
 (function(int, string): string) $callback): array {
 foreach ($items as $index => $value) {
 $string_result = $callback($index, $value);
 // ...
 }
}

There are four kinds of callable values that satisfy callable type annotations: clo‐
sures, functions, instance methods, and static methods. Let’s take a look at how to
express them:

• Closures simply work as is:
function do_some_work((function(int): void) $callback): void {
 // ...
}

function main(): void {
 do_some_work(function (int $x): void { /* ... */ });
}

• To use a named function as a callable value, you have to pass the name
through the special function fun():

10 | Chapter 1: Typechecking

www.allitebooks.com

http://www.allitebooks.org

function do_some_work((function(int): void) $callback): void {
 // ...
}

function f(int $x): void {
 // ...
}

function main(): void {
 do_some_work(fun('f'));
}

The argument to fun() must be a single-quoted string literal. The type‐
checker will look up that function to determine its parameter types and
return type, and treat fun() as if it returns a callable value of the right type.

• To use an instance method as a callable value, you have to pass the object and
the method name through the special function inst_meth(). This is similar
to fun() in that the typechecker will look up the named method and treat
inst_meth() as if it returns a callable value of the right type. Again, the
method name must be a single-quoted string literal:

function do_some_work((function(int): void) $callback): void {
 // ...
}

class C {
 public function do_work(int $x): void {
 // ...
 }
}

function main(): void {}
 $c = new C();
 do_some_work(inst_meth($c, 'do_work'));
}

• Using static methods is very similar: pass the class name and method name
through the special function class_meth(). The method name must be a
single-quoted string literal. The class name can be either a single-quoted
string literal, or the Hack-specific construct ::class appended to an unquo‐
ted class name:

function do_some_work((function(int): void): $callback): void {
 // ...
}

class C {
 public static function prognosticate(int $x): void {
 // ...

Hack’s Type System | 11

 }
}

function main(): void {
 do_some_work(class_meth(C::class, 'prognosticate'));

 // Equivalent:
 do_some_work(class_meth('C', 'prognosticate'));
}

At runtime, ClassName::class simply evaluates to 'ClassName’.
There’s another way to create a callable value that calls instance methods,
which is meth_caller(). It creates a callable value that calls a specific
method on objects you pass to it. You pass it a class name and a method
name (there is a restriction that the method must have no parameters, but
this will be lifted in a future version):

class C {
 function speak(): void {
 echo "hi!";
 }
}

function main(): void {
 $caller = meth_caller(C::class, 'speak');
 $obj = new C();
 $caller($obj); // Equivalent to calling $obj->speak();
}

This is in contrast to inst_meth(), which bundles together a specific object
and a method to call on it. meth_caller() is especially useful with utility
functions like array_map() and array_filter():

class User {
 public function getName(): string {
 // ...
 }
}

function all_names(array<User> $users): string {
 $names = array_map($users, meth_caller(User::class, 'getName'));
 return implode(', ', $names);
}

There is one kind of value that is callable in PHP, but isn’t recognized as such
by the Hack typechecker: objects with an __invoke() method. This may
change in the future.

12 | Chapter 1: Typechecking

Generics
Also known as parameterized types, generics allow a single piece of code to work
with multiple different types in a way that is still verifiably typesafe. The simplest
example is that instead of simply specifying that a value is an array, you can spec‐
ify that it’s an array of strings, or an array of objects of class Person, and so on.

Generics are an extremely powerful tool, and there’s quite a bit to learn about
them. They’re fully described in Chapter 2.

For this chapter, though, it’s enough to understand the syntax for generic arrays.
It consists of the keyword array followed by either one or two types inside angle
brackets. If there’s just one type inside the angle brackets, that is the type of the
values in the array, and the keys are assumed to be of type int. If there are two
types, the first one is the type of the keys, and the second one is the type of the
values. So, for example, array<bool> signifies an array with integer keys map‐
ping to booleans, and array<string, int> signifies an array with string keys
mapping to integers. The types inside the angle brackets are called type parame‐
ters.

One very important thing to note is that in Hack, you can’t create any values that you
can’t create in PHP. The underlying bits are all the same between PHP and Hack;
Hack’s type system just gives you ways to express interesting unions and subsets of
the possible values.

More concretely, consider this code:

function main(): void {
 f(10, 10);
}

function f(mixed $m, int $i): void {
 // ...
}

Within the body of f(), we say that $m is of type mixed and $i is of type int, even
though they’re storing exactly the same bits.

Or consider this:

function main(): void {
 $callable = function(string $s): ?int { /* ... */ };
}

Although we say that $callable is of type (function(string): ?int), under the
hood, it’s still just an object, like any other closure. It’s not a magical “function
pointer” value that is only possible in Hack, or anything like that.

In general, saying that some expression “is of type X” is a statement about what the
typechecker knows, not about what the runtime knows.

Hack’s Type System | 13

2 A named entity is a function, class, interface, constant, trait, enum, or type alias.
3 require, include, require_once, and include_once.
4 Defining constants with const syntax is allowed, but doing so with define() is not allowed.

Typechecker Modes
The Hack typechecker has three different modes: strict, partial, and decl. These
modes are set on a file-by-file basis, and files in different modes can interoperate
seamlessly. Each file declares, in a double-slash comment on its first line, which mode
the typechecker should use on it. For example:

<?hh // strict

If there is no comment on the first line (i.e., the first line is just <?hh), then partial
mode is used.

There are several differences between the modes, and we’ll see many of them as we
look at the typechecker’s features. Here’s the general idea of each mode:

Strict mode: <?hh // strict
The most important feature of strict mode is that all named functions (and meth‐
ods) must have their return types and all parameter types annotated, and all
properties must have type annotations. In other words, anywhere there can be a
type annotation, there must be one, with a few exceptions:

• Closures don’t need their parameter types or return types annotated.
• Constructors and destructors don’t need return type annotations—it doesn’t

make sense for them to return anything.

There are three major restrictions in strict mode:

• Using any named entity2 that isn’t defined in a Hack file is an error. This
means that strict-mode code can’t call into PHP code. Note that strict-mode
code can call into partial-mode or decl-mode Hack code.

• Most code at the top level of a file results in an error. The require family of
statements3 is allowed, as are statements that define named entities.4

• Using reference assignment (e.g., $a = &$b), or defining a function or
method that returns by reference or takes arguments by reference, results in
an error.

There are a few smaller differences, too; we’ll cover those as we get to them.

To take full advantage of the typechecker, you should aim to have as much of
your code in strict mode as possible. Strict-mode Hack is a sound type system.
That means that if 100% of your code is in strict mode, it should be impossible to

14 | Chapter 1: Typechecking

incur a type error at runtime. This is a very powerful guarantee, and the closer
you can get to achieving it, the better.

Partial mode: <?hh
Partial mode relaxes the restrictions of strict mode. It does all the typechecking it
can, but it doesn’t require type annotations. In addition:

• If you use functions and classes that the typechecker doesn’t see in a Hack
file, there’s no error. The typechecker leniently assumes that the missing
entity is defined in a PHP file. See “Calling into PHP” on page 17 for details.

• Top-level code is allowed, but not typechecked. To minimize the amount of
unchecked code you have, ideally you should wrap all your top-level code in
a function and have your only top-level statement be a call to that function.
That is, instead of this:

<?hh

set_up_autoloading();
do_logging();
$c = find_controller();
$c->go();

Do this:
<?hh

function main() {
 set_up_autoloading();
 do_logging();
 $c = find_controller();
 $c->go();
}

main();

Even better, put the definition of main() in a strict-mode file.
• References are allowed, but the typechecker essentially pretends they don’t

exist and doesn’t try to model their behavior. In this example, after the last
line the typechecker still thinks $a is an integer, even though it is really a
string:

$a = 10;
$b = &$a;
$b = 'not an int';

Put simply, you can use references in partial mode, but they break type
safety, so it’s best to avoid them.
Even in a project written in Hack from the ground up, there are uses for par‐
tial mode. In any script or web app, there has to be some amount of top-level

Hack’s Type System | 15

code to serve as an entry point, so you’ll always have at least one partial-
mode file. You’ll also need partial mode for access to superglobals like $_GET,
$_POST, and $argv; we’ll learn more about that in “Using Superglobals” on
page 18.

Decl mode: <?hh // decl
In decl mode, code is not typechecked. All the typechecker does is read and index
the signatures of functions and classes defined in the file. (There can still be
errors in decl mode, for things like invalid type annotation syntax.)

The purpose of decl mode is to be a transition aid when migrating an existing
PHP codebase to Hack: it provides a stepping stone between PHP and the other
Hack modes. Changing a PHP file into decl-mode Hack is generally a very easy
step, and has significant benefits over leaving the file as PHP. First, typechecking
around calls to PHP code is very loose (see “Calling into PHP” on page 17), but
calls to decl-mode Hack can be typechecked much more rigorously. Second,
strict-mode Hack can’t call into PHP at all, but it can call into decl-mode Hack.

If you’re writing a new codebase that is 100% Hack from the beginning, you
shouldn’t use decl mode at all.

Code Without Annotations
There’s one type that I didn’t mention in the list earlier. It’s the type signified by the
absence of an annotation. For example, it’s the type of $x inside this function:

function f($x) {
}

This type doesn’t have a name that you can write in code. Among the Hack team, it’s
referred to as “any.”

The typechecker treats this type specially. It can never be involved in a type error.
Every value that can possibly exist in a Hack program satisfies this type “annotation,”
so you can pass anything at all to the function f() in this example without a type
error. In the other direction, a value of this type satisfies every possible type annota‐
tion, so within f(), you can do anything at all with $x without a type error.

This may sound similar to mixed, but there is a very important difference. Every pos‐
sible value satisfies mixed, but a value of type mixed does not satisfy every possible
type annotation. If you want to pass a value of type mixed to a function that expects
an int, for example, you must either make sure it’s an integer (see “Refining Mixed
Types to Primitives” on page 32) or cast it.

Values of the “any” type work the same way in all Hack modes. In strict mode, you
can’t write code without annotations, but you can call into code without annotations,

16 | Chapter 1: Typechecking

defined in partial or decl mode. Another way to phrase the “everything that can be
annotated must be annotated” restriction of strict mode is: code in strict mode may
use values of this special type, but it’s not allowed to produce them.

Calling into PHP
In partial and decl modes, if you use a named entity that the typechecker doesn’t see
defined in any Hack file, there will be no error. (In strict mode, there will be an
“unbound name” error.) This may seem like a strangely loose behavior, but its pur‐
pose is rooted in Hack’s easy migration path from PHP. This allows code in Hack files
to use code in PHP files: to call functions, to use constants, and to instantiate and
extend classes. You are on your own in cases like this—remember, the typechecker
makes no attempt at all to analyze PHP files, not even to see what functions they
define.

You can also make this an error in partial mode with a configuration option. The
option is called assume_php (as in: “assume missing entities are defined in PHP”), and
it’s turned on by default. You can turn it off by adding this line to your .hhconfig file
and restarting the typechecker server with the command hh_client restart:

assume_php = false

If you’re just starting to migrate a large PHP codebase to Hack, it will be easier if you
leave assume_php on. Later on, as more of the codebase becomes Hack, it’s a good
idea to turn it off, to get the benefit of stricter checking. If you’re starting a new Hack
codebase, you should turn it off (i.e., set assume_php = false) from the very begin‐
ning.

The use of unknown functions and classes hamstrings the typechecker somewhat, as
it has to make generous assumptions around them:

• Calls to unknown functions are typechecked as if they could take any number of
arguments of any type, and had no return type annotation.

• Unknown constants are assumed to be of the special “any” type—as if they were
the result of calling a function with no return type annotation.

• Instantiating an unknown class results in a value that is known to be an object.
Any method call on an object like this is valid, and is typechecked like a call to an
unknown function. Any property access on an object like this is valid too, and
returns a value of the special “any” type.

• A Hack class that has any unknown ancestor, or uses any unknown trait, or has
any ancestor that uses an unknown trait, is very similar to an unknown class. A
single unknown trait or class will cripple the typechecker in the entire hierarchy
it’s part of. Calling any unknown method on such a class is valid, and so is access‐
ing any unknown property.

Hack’s Type System | 17

However, if the typechecker can resolve a method call or property access to a
method or property defined in Hack (even in decl mode), it will typecheck the
call or access appropriately. For example:

class C extends SomeClassNotDefinedInHack {
 public int $known_property;

 public function known_method(string $s) {
 // ...
 }
}

function main(): void {
 $c = new C();
 $c->unknown_method(); // No error
 $c->known_method(12); // Error: int not compatible with string

 $c->unknown_property->func(); // No error
 $c->known_property->func(); // Error: can't call method on an int
}

Rules
The rules enforced by the typechecker are largely quite straightforward, and its error
messages are designed to explain problems clearly and suggest solutions. There are a
few cases that are more subtle, though, and this section explains them.

Using Superglobals
Superglobals are global variables that are available in every scope, without the need
for a global statement. There are nine of them, special-cased by the runtime:

• $GLOBALS

• $_SERVER

• $_GET

• $_POST

• $_FILES

• $_COOKIE

• $_SESSION

• $_REQUEST

18 | Chapter 1: Typechecking

• $_ENV

Hack’s strict mode doesn’t support superglobals; if you try to use one, the typechecker
will say the variable is undefined. However, to write nontrivial web apps and scripts,
you’ll need to use them.

The simplest thing you can do is to write accessor functions in a partial-mode file,
and call them from strict-mode files:

function get_params(): array {
 return $_GET;
}

function env_vars(): array {
 return $_ENV;
}

// ...

That approach doesn’t contribute any type safety to your codebase, though, and it’s
easy to do better. With HTTP GET and POST parameters especially, you often know the
type of the value you expect, and you can use this knowledge to get more strongly
typed code:

function string_param(string $key): ?string {
 if (!array_key_exists($_GET, $key)) {
 return null;
 }
 $value = $_GET[$key];
 return is_string($value) ? $value : null;
}

// Alternative, stronger version: throw if wrong type
function string_param(string $key): ?string {
 if (!array_key_exists($_GET, $key)) {
 return null;
 }
 $value = $_GET[$key];
 invariant(is_string($value), 'GET param must be a string');
 return $value;
}

We’ll see the invariant() function in more detail in “Refining Types” on page 29. For
now, it’s enough to know that it throws an exception if its first argument is false.

You can write similar accessors for other superglobals, and for other value types.

Types of Overriding Methods
Inheritance is one of the more complex interactions between pieces of code in Hack.
The complexity arises from the action-at-a-distance phenomenon that inheritance

Rules | 19

creates. For example, if you have an object that has been type-annotated as SomeClass
and you call a method on it, you could enter a method in any class that descends from
SomeClass. The call still has to be typesafe, though, which means there have to be
rules around the types of methods that override other methods.

In an overriding method, parameter types must be exactly the same as in the overrid‐
den method. This is mainly due to a behavior inherited from PHP. In PHP, any
method that is overriding an abstract method, or a method declared in an interface,
must match the overridden method’s parameter types exactly. This is likely to change
in future versions of Hack, to instead allow overriding methods’ parameter types to
be more general.

Return types, on the other hand, do not have to be the same when overriding. An
overriding method may have a more specific return type than the overridden method.
For example:

class ParentClass {
 public function generate(): num {
 // ...
 }
}

class ChildClass extends ParentClass {
 public function generate(): int { // OK
 // ...
 }
}

Despite the changed return type, polymorphic callsites are still typesafe:

function f(ParentClass $obj) {
 $number = $obj->generate();
 // Even if $obj is a ChildClass instance, generate() still returns a num,
 // because ChildClass::generate() returns an int, and all ints are nums.
}

Overriding with a more general return type isn’t valid—for example, if ChildClass’s
version of generate() were declared to return mixed, the typechecker would report
an error.

Property Initialization
To maintain type safety, the typechecker enforces rules about how type-annotated
properties are initialized, in both strict and partial modes. The overarching aim is to
ensure that no property is ever read from before it is initialized to a value of the right
type.

20 | Chapter 1: Typechecking

For static properties, the rule is simple: any non-nullable static property is required to
have an initial value. Nullable properties without an explicit initial value are implicitly
initialized to null.

Non-static properties have a more complex set of rules. The typechecker has to make
sure that it’s not possible to instantiate an object with an uninitialized non-nullable
property. To that end, any non-nullable non-static property without an initial value
must be initialized in the class’s constructors:

class Person {
 private string $name;
 private ?string $address;

 public function __construct(string $name) {
 $this->name = $name;
 }
}

This code will pass the typechecker: the property $name is properly initialized, and
$address is nullable so doesn’t need to be initialized.

The typechecker will make sure that all possible codepaths through the constructor
result in all properties being initialized. For this code:

class Person {
 private string $name;

 public function __construct(string $name, bool $skip_name) {
 if (!$skip_name) {
 $this->name = $name;
 }
 }
}

the typechecker will report this error:

/home/oyamauchi/test.php:5:19,29: The class member name is not always properly
initialized
Make sure you systematically set $this->name when the method __construct is
called
Alternatively, you can define the type as optional (?...)
 (NastCheck[3015])

Another component of the typechecker’s enforcement of this rule is that you aren’t
allowed to call public or protected methods from within the constructor until after all
properties are initialized. For this code:

class C {
 private string $name;

 public function __construct(string $name) {
 $this->doSomething();

Rules | 21

 $this->name = $name;
 }

 protected function doSomething(): void {
 // ...
 }
}

the typechecker will raise this error (you would, however, be allowed to call
$this->doSomething() after the assignment to $this->name):

/home/oyamauchi/test.php:6:14,18: Until the initialization of $this is over,
you can only call private methods
The initialization is not over because $this->name can still potentially be
null (NastCheck[3004])

You are allowed to call private methods in that situation, but any private methods you
call will be checked to make sure they don’t access potentially uninitialized properties.
Non-private methods can’t be checked in this way, because they may be overridden in
subclasses, so it’s invalid to call them in this situation. For the following code:

class C {
 private string $name;

 public function __construct(string $name) {
 $this->dumpInfo();
 $this->name = $name;
 }

 private function dumpInfo(): void {
 var_dump($this->name);
 }
}

the typechecker will raise this error (again, however, you would be allowed to call
$this->dumpInfo() after assigning to $this->name):

/home/oyamauchi/test.php:11:21,24: Read access to $this->name before
initialization (Typing[4083])

Properties declared in abstract classes are exempt from these rules. However, concrete
child classes will be required to initialize their ancestors’ uninitialized properties. For
this code:

abstract class Abstr {
 protected string $name;
}
class C extends Abstr {
}

the typechecker reports this error:

/home/oyamauchi/test.php:5:7,7: The class member name is not always properly
initialized

22 | Chapter 1: Typechecking

Make sure you systematically set $this->name when the method __construct is
called
Alternatively, you can define the type as optional (?...)
 (NastCheck[3015])

Lastly, for simple cases like the examples in this section, where the property is simply
initialized with a parameter of the constructor, you should use constructor parameter
promotion (see “Constructor Parameter Promotion” on page 68). It cuts down on
boilerplate code, and you don’t have to think about property initialization issues:

class C {
 public function __construct(private string $name) { }
}

Typed Variadic Arguments
As we saw earlier, Hack has syntax to declare that a function is variadic:

function log_error(string $format, ...) {
 $args = func_get_args();
 // ...
}

PHP 5.6 introduced a different variadic function syntax, which has two features
beyond Hack’s—it packs variadic arguments into an array automatically, and it allows
a typehint on the variadic parameter:

function sum(SomeClass ...$args) {
 // $args is an array of SomeClass objects
}

This syntax also exists in Hack. The typechecker supports the syntax, and typechecks
calls to such functions correctly. HHVM supports the syntax too, but only without the
type annotation. HHVM doesn’t support checking the types of the variadic argu‐
ments, so it will raise a fatal error if it encounters a type annotation on a variadic
parameter, to avoid giving the impression that the annotation is having an effect.

This creates a conflict. In strict mode, the Hack typechecker won’t allow a parameter
without a type annotation—even a variadic parameter—but HHVM won’t run code
that has an annotated variadic parameter.

There are two possible solutions to the conflict:

• Omit the annotation, and use partial mode.
• Omit the annotation, use strict mode, and add an HH_FIXME[4033] comment (see

“Silencing Typechecker Errors” on page 80). This is the preferred solution, as
strict mode should always be preferred over partial mode when possible.

Rules | 23

Types for Generators
There are three interfaces you can use when adding return type annotations to gener‐
ators: Iterator, KeyedIterator, and Generator. All three are generic. We won’t
cover generics in full until Chapter 2, but we’ll see some basics here.

Use the first two when you don’t expect to call send() on the generator. Use Iterator
when you’re only yielding a value, and KeyedIterator when you’re yielding a key as
well:

function yields_value_only(): Iterator<int> {
 yield 1;
 yield 2;
}

function yields_key_and_value(): KeyedIterator<int, string> {
 yield 1 => 'one';
 yield 2 => 'two';
}

The return type annotation Iterator<int> means that the generator is yielding val‐
ues of type int, and no keys. The annotation KeyedIterator<int, string> means
that the generator is yielding keys of type int and values of type string. This is simi‐
lar to array types, which we’ve already seen; for example, array<int, string> means
an array whose keys are integers and whose values are strings.

If you will be calling send() on the generator, use the annotation Generator:

function has_send_called(): Generator<int, string, User> {
 // Empty yield to get first User
 $user = yield 0 => '';
 // $user is of type ?User

 while ($user !== null) {
 $id = $user->getID();
 $name = $user->getName();
 $user = yield $id => $name;
 }
}

function main(array<User> $users): void {
 $generator = has_send_called();
 $generator->next();

 foreach ($users as $user) {
 $generator->send($user);
 var_dump($generator->key());
 var_dump($generator->current());
 }
}

24 | Chapter 1: Typechecking

The return type annotation Generator<int, string, User> means that the genera‐
tor yields int keys and string values, and expects values of type User to be passed to
its send() method.

Note that the value resulting from the yield is not of type User, but rather ?User.
This is because it’s always possible for the caller of the generator to call next() instead
of send(), which makes the corresponding yield evaluate to null. You have to check
that value against null before calling methods on it; see “Refining Nullable Types to
Non-Nullable” on page 30 for details.

Fallthrough in switch Statements
There’s a common mistake in switch statements of having one case that unintention‐
ally falls through to the next. Hack adds a rule that catches this mistake—it’s an error
to have a case that falls through to the next case, unless the first one is empty:

switch ($day) {
 case 'sun':
 echo 'Sunday'; // Error
 case 'sat':
 echo 'Weekend';
 break;
 default:
 echo 'Weekday';
}

switch ($day) {
 case 'sun': // OK: this case falls through, but is empty
 case 'sat':
 echo 'Weekend';
 break;
 default:
 echo 'Weekday';
}

If the fallthrough is intentional, put the comment // FALLTHROUGH as the last line of
the falling-through case:

switch ($day) {
 case 'sun':
 echo 'Sunday';
 // FALLTHROUGH
 case 'sat':
 echo 'Weekend';
 break;
 default:
 echo 'Weekday';
}

Rules | 25

This requires action on the part of the programmer, which greatly reduces the chan‐
ces that the fallthrough is an oversight.

Type Inference
Type inference is central to Hack’s approach to static typechecking. Like in PHP, local
variables are not declared with types. However, being able to typecheck operations on
locals is crucial to getting a useful amount of coverage.

Hack closes the gap with type inference. The typechecker starts with a small set of
known types, from annotations and from literals, and then follows them through
operators and function calls, deducing and checking types for everything down‐
stream.

The way Hack’s type inference works isn’t always obvious at first glance. Let’s take a
look at the details.

Variables Don’t Have Types
In most statically typed languages, a local variable is given a type when it comes into
existence, and the variable can only hold values of that type for its entire lifetime.
This example code could be C++ or Java, and in either case, there is a type error—
because x was declared as an int, it can never hold values that aren’t integers:

int x = 10;
x = "a string"; // Error

This is not the case in Hack. Like in PHP, local variables are not declared in Hack.
You create a local variable simply by assigning a value to it. You can assign a new
value to any local variable, regardless of what type of value the variable already holds:

$x = 10;
$x = "a string"; // OK

The key difference is that in Hack, local variables don’t have types. Local variables
hold values, which have types.

At each point in the program, the typechecker knows what type of value each variable
holds at that point. If it sees a new value assigned to a variable, it will update its
knowledge of what type of value that variable holds.

Unresolved Types
The fact that variables don’t have types means that the typechecker needs a way to
deal with code like the following:

if (some_condition()) {
 $x = 10;
} else {

26 | Chapter 1: Typechecking

 $x = 'ten';
}

This pattern is not uncommon in PHP code, and it’s legal in Hack. The question,
then, is: after the end of the conditional, what does the typechecker think the type of
$x is?

The answer is that it uses an unresolved type. This is a construct that the typechecker
uses to remember every type that $x could have. In this case, it remembers that $x
could be an integer, or it could be a string.

After the conditional, you can do anything with $x that you could do with an integer
and with a string, and you can’t do anything that would be invalid for either an integer
or a string. For example:

if (some_condition()) {
 $x = 10;
} else {
 $x = 'ten';
}

echo $x; // OK: you can echo ints and strings
echo $x + 20; // Error: can't use + on a string
echo $x->method(); // Error: can't call a method on an int or a string

Most importantly, $x will satisfy any type annotation that includes both integers and
strings—like arraykey and mixed—and it won’t satisfy anything else:

function takes_mixed(mixed $y): void {
}

function takes_int(int $y): void {
}

function main(): void {
 if (some_condition()) {
 $x = 10;
 } else {
 $x = 'ten';
 }

 takes_int($x); // Error: $x may be a string
 takes_mixed($x); // OK
}

This situation also commonly arises with class and interface hierarchies:

interface I {
}
class One implements I {
 public function method(): int {
 // ...
 }

Type Inference | 27

}
class Two implements I {
 public function method(): string {
 // ...
 }
}

function main(): I {
 if (some_condition()) {
 $obj = new One();
 } else {
 $obj = new Two();
 }

 $int_or_string = $obj->method(); // OK

 return $obj; // OK
}

Here, the call $obj->method() is valid, because both classes One and Two have a
method with the right name and the right number of parameters. The type returned
from the call is itself an unresolved type consisting of both possibilities: int or
string.

The return statement is also valid, because both possibilities for $obj satisfy the
return type annotation I.

We’ll see unresolved types again when we discuss generics in “Unresolved Types,
Revisited” on page 47.

Inference Is Function-Local
A fundamental restriction of Hack’s type inference is that when analyzing one func‐
tion, it will never look at the body of another function or method. For example, sup‐
pose the following code is your entire codebase:

function f($str) {
 return 'Here is a string: ' . $str;
}

function main() {
 echo f('boo!');
}

main();

Two facts are clear to a human reader: that $str is always a string, and that f()
always returns a string. However, the Hack typechecker will not infer these facts.
While inferring types within f(), it will not go looking for callers of f() to find out
what types of arguments they’re passing. While inferring types within main(), it will

28 | Chapter 1: Typechecking

5 Except when it doesn’t. See “Integer Arithmetic Overflow” on page 77.

not go look at the body of f() to find out what type it returns. It will look at the sig‐
nature of f() for a return type annotation, though, and find none, so it will treat f()
as returning the special “any” type (see “Code Without Annotations” on page 16).

This restriction exists for performance reasons. Forcing inference in one function to
stay within that function puts a strict upper bound on the amount of computation it
takes to analyze one function, and by extension, an entire codebase. In
computational-complexity terms, the type inference algorithm is superlinear in com‐
plexity, so it’s important to give it many small inputs instead of one huge input, to
keep the total running time manageable.

For large codebases—such as Facebook, the one Hack was originally designed for—
this property is absolutely crucial. When the body of one function is changed (but not
its signature), the typechecking server needs only to reanalyze that one function to
bring its knowledge up to date, and it can do that almost instantaneously. When a
function signature changes, the typechecking server reanalyzes that function and all
of its callers, but not their callers, which puts a fairly low cap on the amount of work
required.

There is one pseudoexception to this restriction: closures. Although a closure is tech‐
nically a separate function from the one it’s defined within, type inference on a func‐
tion containing a closure is allowed to look inside the closure. Consider the following
example:

$doubler = function ($x) { return $x + $x; };
var_dump($doubler(10)); // int(20)
var_dump($doubler(3.14)); // float(6.28)

Even though the closure has no annotations (which is valid even in strict mode), the
typechecker can infer that the type of $doubler(10) is int—it analyzes the closure’s
body under the assumption that $x is an integer, and infers the return type because
the addition operator applied to two integers results in an integer.5 Similarly, it can
infer that the type of $doubler(3.14) is float.

Incidentally, it’s because type inference can look inside closures that strict mode
allows closures to forgo type annotations.

Refining Types
Suppose you have a value of type ?string, and you want to pass it to a function that
has a parameter of type string. How do you convert from one to the other? Or sup‐
pose you have an object that may or may not implement the interface Polarizable,

Refining Types | 29

6 This is because, for example, null == "0" is true, which makes the null check at least slightly nonsensical.

and you want to call polarize() on it if it does. How can the typechecker know when
the polarize() call is valid?

The task of establishing that a value of one type is also of another type is common in
well-typed code. It may seem like a chore that you have to do to placate the type‐
checker, but this is really the key to how Hack catches mistakes early in development.
This is how Hack prevents things like calling methods that don’t exist, finding null in
unexpected places, and other common annoyances of debugging a large PHP code‐
base.

You refine types using three constructs that the typechecker treats specially: null
checks, type-querying built-in functions like is_integer(), and instanceof. When
these constructs are used in control flow statements like loops and if statements, the
type inference engine understands that this means types are different on different
control flow paths.

Refining Nullable Types to Non-Nullable
Null checks are used to refine nullable types into non-nullable types. This example
passes the typechecker:

function takes_string(string $str) {
 // ...
}

function takes_nullable_string(?string $str) {
 if ($str !== null) {
 takes_string($str);
 }
 // ...
}

Inside the if block, the typechecker knows that $str is a non-nullable string, and
thus that it can be passed to takes_string(). Note that null checks should use the
identity comparison operators === and !== instead of equality comparison (== and !
=) or conversion to a boolean; if you don’t use identity comparison, the typechecker
will issue an error.6 The built-in function is_null() also works, as do ternary expres‐
sions:

function takes_nullable_string(?string $str) {
 takes_string($str === null ? "(null)" : $str);
 // ...
}

You can also use this style, where one branch of control flow is cut off:

30 | Chapter 1: Typechecking

www.allitebooks.com

http://www.allitebooks.org

function processInfo(?string $info) {
 if ($info === null) {
 return;
 }
 takes_string($info);
}

The typechecker understands that the call to takes_string() will only be executed if
$info is not null, because if it is null, the if block will be entered and the function
will return. (If the return statement were a throw instead, the effect would be the
same.)

Here’s a slightly bigger example that demonstrates more complex control flow sensi‐
tivity:

function fetch_from_cache(): ?string {
 // ...
}

function do_expensive_computation(): string {
 // ...
}

function get_data(): string {
 $result = fetch_from_cache();
 if ($result === null) {
 $result = do_expensive_computation();
 }
 return $result;
}

At the point of the return statement, the typechecker knows that $result is a non-
null string, so the return type annotation is satisfied. If the if block was entered,
then a non-null string was assigned to $result; if the if block wasn’t entered, then
$result must have already been a non-null string.

Finally, Hack includes a special built-in function called invariant(), which you can
use essentially to state facts to the typechecker. It takes two arguments—a boolean
expression, and a string describing what’s being asserted (for human readers’ benefit):

function processInfo(?string $info) {
 invariant($info !== null, "I know it's never null somehow");
 takes_string($info);
}

At runtime, if the first argument to invariant() turns out to be false, an
InvariantException will be thrown. The typechecker knows this and infers that in
the code after the invariant() call, $info cannot be null, because otherwise an
exception would have been thrown and execution wouldn’t have reached that code.

Refining Types | 31

7 This is because is_object() returns true for resources. The lack of support for is_object() isn’t a problem
in practice, because you can’t really do anything useful with an object without knowing its class.

Refining Mixed Types to Primitives
For each primitive type, there is a built-in function to check whether a variable is of
that type (e.g., is_integer(), is_string(), is_array()). The typechecker recog‐
nizes all of them specially, except for is_object().7 You’ll often be using them on val‐
ues of type mixed, or of a generic type.

The way you use these built-ins to give information to the typechecker is largely the
same as the way you use null checks—the typechecker is control flow–sensitive, you
can use invariant(), and so on. However, the type information these built-ins carry
is more complex than just “null or not null,” so there’s a bit more detail in how
inference works with them.

First, the typechecker doesn’t remember negative information like “this value is not a
string.” For example:

function f(mixed $val) {
 if (!is_string($val)) {
 // $val is of type "mixed" here -- we don't remember it's not a string
 } else {
 // $val is of type "string" here
 }
}

In practice, this isn’t much of a hindrance: there’s little that could usefully be done
with a value that we know is “anything but a string,” other than refine its type further.

Second, the type-querying built-ins are the only way to refine types down to primi‐
tives. Even doing identity comparison against values of known type doesn’t work:

function f(mixed $val) {
 if ($val === 'some string') {
 // $val is of type "mixed" here
 // Only is_string would tell the typechecker it's a string
 }
}

Refining Object Types
Finally, the typechecker understands using instanceof to check if an object is an
instance of a given class or interface. Like null checks and type-querying built-ins, the
typechecker understands instanceof in conditional statements and in invariant():

class ParentClass {
}

32 | Chapter 1: Typechecking

class ChildClass extends ParentClass {
 public function doChildThings(): void {
 // ...
 }
}

function doThings(ParentClass $obj): void {
 if ($obj instanceof ChildClass) {
 $obj->doChildThings(); // OK
 }
}

function unconditionallyDoThings(ParentClass $obj): void {
 invariant($obj instanceof ChildClass, 'just trust me');
 $obj->doChildThings(); // OK
}

There are more details to cover here. Unlike null checks and the type-querying built-
ins, instanceof deals with types that can overlap in complex ways, and the type‐
checker’s ability to navigate them is slightly limited.

This example demonstrates the limitations—we have an abstract base class, with pos‐
sibly many subclasses, some of which implement the built-in interface Countable and
some of which don’t:

abstract class BaseClass {
 abstract public function twist(): void;
}

class CountableSubclass extends BaseClass implements Countable {
 public function count(): int {
 // ...
 }
 public function twist(): void {
 // ...
 }
}

class NonCountableSubclass extends BaseClass {
 public function twist(): void {
 // ...
 }
}

Then we have a function that takes a BaseClass, calls count() on it if it’s Countable,
and then calls a method that BaseClass declares. This is a fairly common pattern in
object-oriented codebases, albeit with interfaces other than Countable:

function twist_and_count(BaseClass $obj): void {
 if ($obj instanceof Countable) {
 echo 'Count: ' . $obj->count();
 }

Refining Types | 33

 $obj->twist();
}

On the last line, there is a type error. This probably seems entirely unexpected, so let’s
go into detail about why.

The key to understanding the error is that when the typechecker sees an instanceof
check, the information it derives from this is exactly what the check says, and it doesn’t
take inheritance hierarchies, interfaces, or anything else into account. It may even be
the case that the condition is provably impossible to satisfy (e.g. if Countable were
not implemented by BaseClass or any of its descendants), but the typechecker
doesn’t consider that.

At the beginning of the function, the typechecker thinks the type of $obj is Base
Class, because of the annotation. But then, within the if block, the typechecker
thinks that the type of $obj is Countable—not a BaseClass instance that implements
Countable; just Countable. It has forgotten that $obj is also a BaseClass.

Then we come to the part after the if block. Here, the type of $obj is an unresolved
type (see “Unresolved Types” on page 26) consisting of either BaseClass or
Countable. So when it sees $obj->twist(), it reports an error, because it thinks there
are possible values of $obj for which the call isn’t valid—ones that are Countable but
not BaseClass. You, the human reader, know that this isn’t possible, but the type‐
checker doesn’t.

The workaround for this is to use a separate local variable for the instanceof check.
This prevents the typechecker from losing type information about $obj, which is the
root cause of the problem:

function twist_and_count(BaseClass $obj) {
 $obj_countable = $obj;
 if ($obj_countable instanceof Countable) {
 echo 'Count: ' . $obj_countable->count();
 }
 $obj->twist();
}

34 | Chapter 1: Typechecking

8 As we’ve seen, the typechecker pretends that references don’t exist; if you pass a local variable as a by-
reference argument to a function, the typechecker assumes that it won’t be changed.

In all of the situations just described, the condition in the if state‐
ment or invariant() call must be just a single type query. Com‐
bining multiple type queries with logical operators like || isn’t
supported by the typechecker. For example, this is a type error:

class Parent {
}
class One extends Parent {
 public function go(): void {}
}
class Two extends Parent {
 public function go(): void {}
}

function f(Parent $obj): void {
 if ($obj instanceof One || $obj instanceof Two) {
 $obj->go(); // Error
 }
}

A good way to work around this is with interfaces. Create an inter‐
face that declares the go() method, make One and Two implement
it, and check for that interface in f().

Inference on Properties
All our examples of inference so far have been on local variables. This is easy: the
typechecker can be confident that it can see all reads and writes of local variables,8 so
it can make fairly strong guarantees when doing type inference on them.

Doing inference on properties is more difficult. The root of the problem is that,
whereas local variables can’t be modified from outside the function they’re in, proper‐
ties can. Consider this code, for example:

function increment_check_count(): void {
 // ...
}

function check_for_valid_characters(string $name): void {
 // ...
}

class C {
 private ?string $name;

 public function checkName(): void {
 if ($this->name !== null) {

Refining Types | 35

 increment_check_count();
 check_for_valid_characters($this->name);
 }
 }
}

This code will not pass the typechecker. It will report an error:

/home/oyamauchi/test.php:16:34,44: Invalid argument (Typing[4110])
 /home/oyamauchi/test.php:6:37,42: This is a string
 /home/oyamauchi/test.php:11:11,17: It is incompatible with a nullable type
 /home/oyamauchi/test.php:15:7,29: All the local information about the member
 name has been invalidated during this call.
This is a limitation of the type-checker, use a local if that's the problem.

The error points to the call to check_for_valid_characters(). The error message
gives a brief explanation of the problem. After the null check, the typechecker knows
that $this->name is not null. However, the call to increment_check_count() forces
the typechecker to forget that $this->name is not null, because that fact could be
changed as a result of the call.

You, the programmer, might know that the value of $this->name won’t change as a
result of the call to increment_check_count(), but the typechecker can’t find that out
for itself—as we’ve seen, inference is function-local. The workaround for this is, as
the error message says, to use a local variable. Copy the property into a local variable
and use that instead:

public function checkName(): void {
 if ($this->name !== null) {
 $local_name = $this->name;
 Logger::log('checking name: ' . $local_name);
 check_for_valid_characters($local_name);
 }
}

You could also make the copy outside of the if block, and null-check the local
instead. Either way, the typechecker can be sure that $local_name is not modified,
and so it can remember its inferred non-nullable type.

Enforcement of Type Annotations at Runtime
Even if the typechecker reports no errors in a Hack codebase, there may still be errors
at runtime. The most obvious way for this to happen is through decl mode: because
code in decl mode isn’t typechecked, it can do things like call functions with the
wrong types of arguments.

In future releases, HHVM’s runtime typechecking will likely become much stricter,
but for now it has only partial support for checking type annotations at runtime.

36 | Chapter 1: Typechecking

9 “Catchable fatal” may sound like an oxymoron. These errors do have odd behavior: the only way to “catch”
them is with a user error handler, which you can set using the built-in function set_error_handler().

First of all, HHVM ignores property type annotations. You can assign anything you
like to a type-annotated property, and HHVM won’t complain.

Parameter type annotations behave just like PHP typehints: if they’re violated, a
catchable fatal error will be raised.9 Return type annotations behave the same way.

You can make any parameter or return type annotation raise a warning instead of a
catchable fatal error if violated, by putting an @ before it. This is called a soft annota‐
tion. Soft annotations are meant solely as a transitional mechanism while adding new
annotations to existing code (see “Inferring and Adding Type Annotations” on page
234). They shouldn’t be used in new code, and existing hard annotations should cer‐
tainly never be made soft.

In both parameter type annotations and return type annotations, some of the details
of Hack type annotations are not enforced:

• Any annotation of a primitive type, object type, num, or arraykey is enforced
exactly as is.

• The return type void is not enforced. That is, a function with return type void
can return an actual value, and no error will occur at runtime.

• Callable type annotations are not enforced at all.
• Annotations of tuples and shapes are enforced as if they said only array. The

inner types aren’t checked.
• Annotations of enums are enforced as if they were the underlying type of the

enum. At runtime, values will not be checked to make sure they’re valid values of
the enum.

• Generic type annotations are enforced without their type parameters. That is, an
annotation of array<string, MyClass> is enforced as if it just said array. The
inner types aren’t checked.

• Nullable types are enforced correctly.

Enforcement of Type Annotations at Runtime | 37

1 It’s not as useless as it may seem, though—this is a good way to have something resembling reference seman‐
tics for primitive types. This is more useful in Hack than in PHP, because PHP-style references aren’t allowed
in Hack.

CHAPTER 2

Generics

Generics are a powerful feature of Hack’s type system that allow you to write typesafe
code without knowing what types will be flowing through it. A class or function can
be generic, which means that it lets the caller specify what types flow through it.

The best examples of generic constructs are arrays and collection classes (see Chap‐
ter 5 for more information on collection classes). Without the ability to specify the
type of an array’s contents, it would be impossible to infer a type for any value that
results from indexing into an array, and setting a value in an array couldn’t be type‐
checked. These operations are pervasive in PHP and Hack code, and generics let the
typechecker understand and verify them.

In this chapter, we’ll look at all the features that generics offer, and how to use them.

Introductory Example
We’ll start with a very simple example: a class that just wraps an arbitrary value. You
would probably never write such a thing in practice,1 but it’s a good gentle introduc‐
tion to generics. We’ll use it as a running example throughout this chapter.

To make a class generic, put an angle bracket–enclosed, comma-separated list of type
parameters immediately after the name of the class. A type parameter is simply an
identifier whose name starts with an uppercase T. Inside the definition of a generic
class, you can use the type parameters in type annotations, in any of the three normal
positions (properties, method parameters, and method return types).

39

Here’s our example generic class:

class Wrapper<Tval> {
 private Tval $value;

 public function __construct(Tval $value) {
 $this->value = $value;
 }

 public function setValue(Tval $value): void {
 $this->value = $value;
 }

 public function getValue(): Tval {
 return $this->value;
 }
}

// There can be multiple type parameters
class DualWrapper<Tone, Ttwo> {
 // ...
}

To use a generic class, you simply instantiate it as normal, and use the resulting object
like any other:

$wrapper = new Wrapper(20);
$x = $wrapper->getValue();

In this example, thanks to Wrapper being generic, the typechecker knows that $x is an
integer. It sees that you’re passing an integer to the constructor of Wrapper, and infers
that it should typecheck usages of that particular Wrapper instance as though the class
definition said int instead of Tval everywhere.

The typechecking that you get in this situation is just as strong as it would be if you
used this class instead of Wrapper:

class WrapperOfInt {
 private int $value;

 public function __construct(int $value) {
 $this->value = $value;
 }

 public function setValue(int $value): void {
 $this->value = $value;
 }

 public function getValue(): int {
 return $this->value;
 }
}

40 | Chapter 2: Generics

The generic version, though, has the significant benefit that you can use it with any
type. If you pass a string to the constructor of Wrapper, the return type of getValue()
on that instance is string. If you pass a value of type ?float to the constructor of
Wrapper, the return type of getValue() on that instance is ?float. And so on, with
any other type you can think of.

This is the true power of generics: you can write a single implementation of Wrapper
that wraps a value of any type, but that is still completely typesafe.

As the final piece of this introduction, here’s how to write a type annotation for an
instance of a generic class. The syntax is the name of the class, followed by an angle
bracket–enclosed, comma-separated list of type annotations. Each annotation in the
list is called a type argument:

function wrapped_input(): Wrapper<string> {
 $input = readline("Enter text: ");
 return new Wrapper($input);
}

The relationship between type parameters and type arguments is the same as the rela‐
tionship between function parameters and function arguments: the type arguments
are substituted for the uses of the type parameters in the generic class definition. In
this case, the function is returning an instance of Wrapper, telling the typechecker
that it should typecheck usages of this object as if the class definition said string
instead of Tval everywhere.

Other Generic Entities
Classes aren’t the only kind of entity that can be made generic.

Functions and Methods
A generic function has a list of type parameters between its name and the opening
parenthesis of its parameter list. It can be called like any other:

function wrap<T>(T $value): Wrapper<T> {
 return new Wrapper($value);
}

function main(): void {
 $w = wrap(20);
}

As this example shows, a generic function’s type parameters can be used in the func‐
tion’s parameter types and return type.

Methods may also be generic. If a method is in a generic class or trait, it can use its
enclosing class’s type parameters, as well as introducing its own:

Other Generic Entities | 41

class Logger {
 public function logWrapped<Tval>(Wrapper<Tval> $value): void {
 // ...
 }
}

class Processor<Tconfig> {
 public function checkValue<Tval>(Tconfig $config, Tval $value): bool {
 // ...
 }
}

Traits and Interfaces
Both traits and interfaces can be generic. The syntax is very similar to generic class
syntax, with the type parameter list after the name:

trait DebugLogging<Tval> {
 public static function debugLog(Tval $value): void {
 // ...
 }
}

interface WorkItem<Tresult> {
 public function performWork(): Tresult;
}

Anything that uses a generic trait, or implements a generic interface, must specify
type arguments:

class StringProducingWorkItem implements WorkItem<string> {
 use DebugLogging<string>;

 // ...
}

A generic class can pass along its type parameters to interfaces that it implements or
traits that it uses:

class ConcreteWorkItem<Tresult> implements WorkItem<Tresult> {
 use DebugLogging<Tresult>;

 // ...
}

Type Aliases
See “Type Aliases” on page 60 for full details on type aliases. They can be made
generic by adding a list of type parameters immediately after the alias name:

type matrix<T> = array<array<T>>;

42 | Chapter 2: Generics

2 The lone exception is in the return types of async functions. See Chapter 6.

There is an interesting application of generics to type aliases in which you don’t use
the type parameter on the right hand side. A good example is serialization:

newtype serialized<T> = string;

function typed_serialize<T>(T $value): serialized<T> {
 return serialize($value);
}

function typed_unserialize<T>(serialized<T> $value): T {
 return unserialize($value);
}

This alias lets the typechecker distinguish between the serialized versions of various
types, whereas the normal untyped serialize() API loses information about the
type of the serialized value. It works without typechecker errors because it’s essentially
unchecked: unserialize() has no return type annotation, so the typechecker simply
trusts that whatever you do with its return value is correct (see “Code Without Anno‐
tations” on page 16).

Here, the typechecker knows that $unserialized is a string:

$serialized_str = typed_serialize("hi");
$unserialized = typed_unserialize($serialized_str);

You can also make guarantees about the type of a serialized value:

function process_names(serialized<array<string>> $arr): void {
 foreach (typed_unserialize($arr) as $name) {
 // $name is known to be a string here
 // ...
 }
}

Type Erasure
Generics are a purely typechecker-level construct—HHVM is almost completely
unaware of their existence.2 In effect, when HHVM runs generic code, it’s as if all type
parameters and type arguments were stripped. This behavior is known as type era‐
sure.

This has important consequences for what you can and can’t do with type parameters
inside the definition of a generic entity. The only thing you can do with a type param‐
eter is to use it in a type annotation. Here are things you can’t do with a type parame‐
ter that you can do with some other types:

Type Erasure | 43

• Instantiate it, as in new T().
• Use it as a scope, as in T::someStaticMethod() or T::$someStaticProperty or
T::SOME_CONSTANT.

• Pass it type arguments, as in function f<T>(T<mixed> $value).
• Put it on the right hand side of instanceof, as in $value instanceof T.
• Cast to it, as in (T)$value.
• Use it in place of a class name in a catch block, as in:

function f<Texc>(): void {
 try {
 something_that_throws();
 } catch (Texc $exception) { // Error
 // ...
 }

• Use it in the type of a static property, as in:
class SomeClass<T> {
 // Also illegal because the property is uninitialized,
 // but there would be no possible valid initial value anyway
 public static T $property;
}

When type parameters are used as type annotations, they are not enforced at runtime.
In this example, we use decl mode so that the typechecker doesn’t report errors on the
method calls in f():

<?hh // decl

class GenericClass<T> {
 public function takes_type_param(T $x): void {
 }

 public function takes_int(int $x): void {
 }
}

function f(GenericClass<int> $gc): void {
 // Both calls below would be typechecker errors,
 // but this file is in decl mode

 // No runtime error
 $gc->takes_type_param('a string');

 // Runtime error: catchable fatal
 $gc->takes_int('a string');
}

44 | Chapter 2: Generics

Constraints
Within the definition of a generic entity, the typechecker knows nothing about the
type parameters—that’s the whole point of generics. This means you can’t do much
with a value whose type is a type parameter, other than pass it around. You can’t call
it, call methods or access properties on it, index into it, do arithmetic operations on
it, or anything like that—the one significant exception is that equality and identity
comparisons (==, ===, !=, and !==) are allowed.

You can change that, though, by adding a constraint to the type parameter. A con‐
straint restricts what the type parameter is allowed to be. The syntax is to add the key‐
word as and a type annotation after the identifier in the type parameter list. Let’s
return to the introductory example of the Wrapper class, and add a constraint to its
type parameter:

class Wrapper<Tval as num> {
 private Tval $value;

 public function __construct(Tval $value) {
 $this->value = $value;
 }

 public function setValue(Tval $value): void {
 $this->value = $value;
 }

 public function getValue(): Tval {
 return $this->value;
 }
}

With that, any code that uses the class can only do so with a value whose type is com‐
patible with num:

function f(int $int, float $float, num $num,
 ?int $nullint, string $string, mixed $mixed): void {
 $w = new Wrapper($int); // OK
 $w = new Wrapper($float); // OK
 $w = new Wrapper($num); // OK
 $w = new Wrapper($nullint); // Error
 $w = new Wrapper($string); // Error
 $w = new Wrapper($mixed); // Error
}

This also means that within the definition of Wrapper, the allowable operations on
values of type Tval are the same as the allowable operations on values of type num. So
we can add a method like this:

class Wrapper<Tval as num> {
 private Tval $value;

Constraints | 45

 public function add(Tval $addend): void {
 // $this->value is known to be a num, so we can use the += operator on it
 $this->value += $addend;
 }

 // ...
}

You can use any valid type annotation as the constraint. The most common case is to
use the name of a class or interface, which lets you call methods declared by the class
or interface:

interface HasID {
 public function getID(): int;
}

function write_to_database<Tval as HasID>(Tval $value): void {
 $id = $value->getID();
 // ...
}

Each type parameter can have at most one constraint. If you want to restrict a type
parameter to only classes that implement multiple specific interfaces, you can create
an interface that combines them by extending all of them, and use that as your con‐
straint:

interface HasID {
 public function getID(): int;
}
interface HasHashCode {
 public function getHashCode(): string;
}

interface HasIDAndHashCode extends HasID, HasHashCode {
}

function write_to_cache<Tval as HasIDAndHashCode>(Tval $value): void {
 $id = $value->getID();
 $hash_code = $value->getHashCode();
 // ...
}

There’s no way to express a constraint like Tval must implement this interface or that
interface.

As we’ve seen, a constraint type can be any valid type annotation; this includes other
type parameters, and even type parameters from earlier in the same parameter list.
For example, these usages of constraints are valid:

class GenericClass<Tclass> {
 public function genericMethod<Tmethod as Tclass>(): Tmethod {

46 | Chapter 2: Generics

 // ...
 }
}

function lookup<Tvalue, Tdefault as Tvalue>(string $key,
 ?Tdefault $default = null): Tvalue {
 // ...
}

Unresolved Types, Revisited
In the introductory example, we saw that the typechecker is able to infer type argu‐
ments for generic classes when you use them. Here, the typechecker knows that
Wrapper is being instantiated with int substituted for the type parameter Tval:

$w = new Wrapper(20);

The exact details of the inference algorithm are beyond our scope here, but it has
some consequences that you need to know about.

Should the typechecker accept this code?

function takes_wrapper_of_int(Wrapper<int> $w): void {
 // ...
}

function main(int $n): void {
 $wrapper = new Wrapper($n);
 takes_wrapper_of_int($wrapper);
}

Intuitively, it seems like it should be allowed, and in fact it is. The typechecker knows,
on the last line of main(), that $wrapper is a wrapper of an integer, and allows the
call.

What about this?

function main(string $str): void {
 $wrapper = new Wrapper($str);
 takes_wrapper_of_int($wrapper);
}

It seems as if this shouldn’t be allowed, and indeed it isn’t.

What if we try the following instead?

function main(int $n, string $str): void {
 $w = new Wrapper($n);
 $w->setValue($str);
}

As we saw in the first example, the typechecker seems to understand that $wrapper is
a Wrapper<int> after the first line. So it seems like the typechecker should report an

Unresolved Types, Revisited | 47

error: you shouldn’t be able to pass a string as an argument to setValue() on a Wrap
per<int>. But in fact, this code is legal.

This is another place where the typechecker uses unresolved types. We first saw them
in “Unresolved Types” on page 26, where they were used as a way for the typechecker
to track a variable that could have multiple different types at a single point in a pro‐
gram, depending on the path taken to get there. With generics, the typechecker uses
unresolved types to remember types that haven’t been explicitly specified, while
retaining the freedom to adjust them as it sees more code.

After the first line, the typechecker is certain that $w is a Wrapper, but there has been
no explicit indication of what its type argument is. It remembers that it has seen this
object being used in a way that’s consistent with it having the type Wrapper<int>, but
that type argument of int is an unresolved type. Then, upon seeing the call
$w->setValue('a string'), the typechecker looks at the type of $w to see if the call
is legal. When it sees the unresolved type argument, instead of raising an error, it
adds string to the unresolved type. So, as far as the typechecker is concerned, $w
could be either a Wrapper<int> or a Wrapper<string>.

To the human reader, this is unintuitive: obviously there’s a string inside $w. But the
typechecker is unaware of the semantics of Wrapper: it doesn’t understand that Wrap
per only holds a single value. All the typechecker knows is that it has seen $w being
used as if it were a Wrapper<int>, and also as if it were a Wrapper<string>.

An unresolved type argument becomes resolved when it is checked against a type
annotation. This example brings everything together:

function takes_wrapper_of_int(Wrapper<int> $w): void {
 // ...
}

function main(): void {
 $w = new Wrapper(20);
 takes_wrapper_of_int($w);
 $w->setValue('a string'); // Error!
}

This time, the typechecker reports an error on the last line. When $w is passed to
takes_wrapper_of_int(), it has to be checked against the function’s parameter type
annotation. At that point, the type of $w is resolved; the typechecker has seen concrete
evidence that $w is supposed to be a Wrapper<int>. Now that the type is resolved, the
typechecker will not be lenient in checking calls to setValue(). Calling setValue('a
string’) on a Wrapper instance with resolved type Wrapper<int> is invalid, so the
typechecker reports an error.

48 | Chapter 2: Generics

Generics and Subtypes
Let’s return to the introductory example of the Wrapper class. Should the typechecker
accept this code?

function takes_wrapper_of_num(Wrapper<num> $w): void {
 // ...
}

function takes_wrapper_of_int(Wrapper<int> $w): void {
 takes_wrapper_of_num($w);
}

The question is whether it’s valid to pass a wrapper of an integer to something that
expects a wrapper of a num. It seems like it should be: int is a subtype of num (mean‐
ing any value that is an int is also a num), so it seems that Wrapper<int> should like‐
wise be a subtype of Wrapper<num>.

In fact, the typechecker reports an error for this example. It would be incorrect for
the typechecker to assume that the subtype relationship of int and num transfers over
to the subtype relationship between Wrapper<int> and Wrapper<num>.

To illustrate why, consider that takes_wrapper_of_num() could do this:

function takes_wrapper_of_num(Wrapper<num> $w): void {
 $w->setValue(3.14159);
}

That, by itself, is valid: setting the value inside a Wrapper<num> to a value of type
float. But if you pass a Wrapper<int> to this version of takes_wrapper_of_num(), it
will end up not being a wrapper of an integer anymore. So the typechecker can’t
accept passing a Wrapper<int> to takes_wrapper_of_num(); it’s not typesafe. Note
that that’s a hard rule—the typechecker doesn’t consider what takes_wrap

per_of_num() is actually doing. Even if takes_wrapper_of_num() were empty, the
typechecker would still report an error.

Now for another example: should the typechecker accept this?

function returns_wrapper_of_int(): Wrapper<int> {
 // ...
}

function returns_wrapper_of_num(): Wrapper<num> {
 return returns_wrapper_of_int();
}

Again, although this intuitively seems fine, the typechecker reports an error. The rea‐
soning is similar. Suppose we fill in the blanks like this:

function returns_wrapper_of_int(): Wrapper<int> {
 static $w = new Wrapper(20);

Generics and Subtypes | 49

3 It doesn’t hold for key types because of variance rules (see “Advanced: Covariance and Contravariance” on
page 51). The key type parameter appears in contravariant positions, like the parameter of get(), so it can’t be
covariant. This is likely to change in the future, as a special case.

 return $w;
}

function returns_wrapper_of_num(): Wrapper<num> {
 return returns_wrapper_of_int();
}

function main(): void {
 $wrapper_of_num = returns_wrapper_of_num();
 $wrapper_of_num->setValue(2.71828);
}

This is clearly invalid—after main() executes, any call to returns_wrapper_of_int()
will return a wrapper of something that’s not an int. So, again, the typechecker has to
report an error for the return statement in returns_wrapper_of_num().

Arrays and Collections
Arrays and immutable Hack collection classes—ImmVector, ImmMap, ImmSet, and Pair
—behave differently. They follow the intuitive notion that, for example, array<int> is
a subtype of array<num>. This usage of arrays, for example, is valid:

function takes_array_of_num(array<num> $arr): void {
 // ...
}

function takes_array_of_int(array<int> $arr): void {
 takes_array_of_num($arr); // OK
}

Similar behavior holds for the value types3 of immutable collection classes, regardless
of whether you annotate them with their own names or (as is recommended) with
interface names like ConstVector:

function takes_constvector_of_num(ConstVector<num> $cv): void {
 // ...
}
function takes_constvector_of_int(ConstVector<int> $cv): void {
 takes_constvector_of_num($cv); // OK
}

function takes_constmap_of_arraykey_mixed(ConstMap<string, mixed> $cm): void {
 // ...
}
function takes_constmap_of_string_int(ConstMap<string, int> $cm): void {

50 | Chapter 2: Generics

 takes_constmap_of_arraykey_mixed($cm); // OK
}

Why is this valid for arrays and immutable collections, but not for Wrapper?

In the case of immutable collections, the reason is simply that they’re immutable.
Even if you pass an ImmVector<int> to a function that takes an ImmVector<num>, that
function has no way to get a non-integer value into the vector. There’s nothing it can
do to violate the contract that the vector must only contain integers.

In the case of arrays, the reason is similar. For this purpose, arrays behave very much
like immutable collections because of their pass-by-value semantics. In the previous
example, from the perspective of takes_array_of_num(), the array in the body of
takes_array_of_int() actually is read-only. takes_array_of_num() can’t cause that
array to have non-integers in it, because it doesn’t have access to the original array; it
only has access to a copy.

Advanced: Covariance and Contravariance
Unless you’re writing some very general, collection-like library, it’s very unlikely that
you need to read past here. For the vast majority of use cases, all you need is to know
that the rules just discussed exist, and to understand why. This section is about how
to modify those rules when you need to.

The concept of how the subtype relationships of generic types are affected by the sub‐
type relationships of their type arguments is called variance. There are three kinds of
variance. Suppose we have a generic class called Thing, with a type parameter T. Then
(using int and num as example type arguments):

• If Thing<int> is a subtype of Thing<num>, we say that Thing is covariant on T.
Arrays are covariant on both their type parameters, and immutable collection
classes are covariant on their value type parameters.

• If Thing<num> is a subtype of Thing<int>, we say that Thing is contravariant on T.
Counterintuitive though it may be, there are real applications for contravariance.

• If neither of the above is true, we say that Thing is invariant on T.

Syntax
The syntax to make a generic type covariant on a type parameter is to put a plus sign
before the type parameter. You only do this in the parameter list; within the defini‐
tion, just use the type parameter’s name as before. Similarly, to make a generic type
contravariant on a type parameter, put a minus sign before the type parameter. For
example:

Advanced: Covariance and Contravariance | 51

4 Note that Wrapper could have read/write functionality that doesn’t involve Tval, and Tval could still be cova‐
riant. The read-only nature of Tval is what counts, not the read-only nature of Wrapper.

class CovariantOnT<+T> {
 private T $value; // No + here
 // ...
}

class ContravariantOnT<-T> {
 private T $value; // No - here
 // ...
}

class InvariantOnT<T> {
 private T $value;
 // ...
}

A class is allowed to have type parameters with different variances:

class DifferentVariances<Tinvariant, +Tcovariant, -Tcontravariant> {
 // ...
}

Here are some memory aids you can use to remember the terms and the syntax:

Covariance
The prefix co- means “with,” and the subtype relationship of a generic type goes
with—“in the same direction as”—the subtype relationship of arguments to a
covariant type parameter. Because they go together, the symbol is a plus sign.

Contravariance
The prefix contra- means “against,” and the subtype relationship of a generic type
goes against the subtype relationship of arguments to a contravariant type
parameter. Because they go in opposite directions, the symbol is a minus sign.

When to Use Them
Most classes you write won’t use covariance or contravariance. These features are use‐
ful in a few specific situations:

• Covariance is for read-only types. For example, if we remove the setValue()
method from Wrapper, then it’s read-only with respect to its type parameter Tval
—that is, it only outputs values of type Tval; it never takes them as input except
in the constructor. So, Wrapper can be covariant on Tval.4

52 | Chapter 2: Generics

• Contravariance is for write-only types. For example, a generic class that serializes
values of type T to a logfile might be write-only with respect to values of type T—
that is, it only takes values of type T as input; it never outputs them.

The typechecker enforces this by setting restrictions on how you can use covariant
and contravariant type parameters. Specifically, each kind of type parameter is only
allowed to appear in certain places in the code, called covariant positions and contra‐
variant positions.

First, the simple part:

• Public and protected property types are restricted to invariant type parameters
only.

• Return types are restricted to invariant or covariant type parameters. These are
covariant positions.

• Function and method parameter types, except constructors, are restricted to
invariant or contravariant type parameters. These are contravariant positions.

• Private property types and constructor parameter types have no type parameter
restrictions.

Now, the slightly tricky part. It is possible to have a contravariant position inside
another contravariant position, in which case the inner contravariant position is
actually covariant. Here’s an example:

class WriteOnly<-T> {
 private T $value;

 public function __construct(T $value) {
 $this->value = $value;
 }

 // Error!
 public function passToCallback((function(T): void) $callback): void {
 $callback($this->value);
 }
}

The contravariant type parameter T appears in a parameter type (the type of $call
back) inside another parameter type (the type of passToCallback()). This is a con‐
travariant position inside another contravariant position, so it’s covariant, and thus
invalid.

You can see why this is, intuitively: the way passToCallback() is written makes it
possible for something outside of WriteOnly to get a value of type T out of a Write
Only instance, which makes it not actually write-only.

Advanced: Covariance and Contravariance | 53

A covariant position inside a covariant position is still covariant. Covariance and
contravariance work somewhat like positive and negative numbers under multiplica‐
tion: positive times positive is positive, but negative times negative is also positive.

Covariance

Let’s remove setValue() from Wrapper, and make its type parameter covariant:

class Wrapper<+Tval> {
 private Tval $value;

 public function __construct(Tval $val) {
 $this->value = $val;
 }

 public function getValue(): Tval {
 return $this->value;
 }
}

The covariant type parameter Tval appears as the type of a private property, a param‐
eter to the constructor, and a return type; all of these are positions where covariant
type parameters are allowed. The typechecker will accept this code without error.

The next example is also accepted now. The restrictions placed on the covariant type
parameter ensure that there’s no way to break type safety while treating a
Wrapper<int> as a Wrapper<num>:

function takes_wrapper_of_num(Wrapper<num> $w): void {
 // ...
}

function takes_wrapper_of_int(Wrapper<int> $w): void {
 takes_wrapper_of_num($w); // OK
}

If you add a method to modify the value, the typechecker will report an error, saying
that a covariant type parameter is appearing in a non-covariant position:

class Wrapper<+Tval> {
 public function setValue(Tval $value): void { // Error
 $this->value = $value;
 }

 // ...
}

Similarly, if you change the $value property’s access modifier to public or
protected, the typechecker will report an error, saying that a non-private property is
always an invariant position—i.e., you can’t use covariant or contravariant type
parameters there.

54 | Chapter 2: Generics

Contravariance
Contravariant types are less common, simply because write-only types are less com‐
mon than read-only types. We’ll look at contravariance through a class that builds up
a buffer of values and then writes them as JSON to a stream:

class JSONLogger<-Tval> {
 private resource $stream;
 private array<Tval> $buffer = array();

 public function __construct(resource $stream) {
 $this->stream = $stream;
 }

 public function log(Tval $value): void {
 $buffer[] = $value;
 }

 public function flush(): void {
 fwrite($this->stream, json_encode($this->buffer));
 $this->buffer = array();
 }
}

Note that the contravariant type parameter Tval only appears in a method parameter
and a private property, so the typechecker accepts this code. If you were to make
$buffer public or protected, or add a method with Tval in the return type, the type‐
checker would report an error.

The contravariant type parameter means that JSONLogger<num> is a subtype of JSON
Logger<int>, which may seem counterintuitive. This code demonstrates:

function wants_to_log_ints(JSONLogger<int> $logger): void {
 $logger->log(20);
}

function wants_to_log_nums(JSONLogger<num> $logger): void {
 wants_to_log_ints($logger); // OK
 $logger->log(3.14);
}

The code here is passing a JSONLogger<num> to something that expects a
JSONLogger<int>. This is fine, because a JSONLogger<num> can do anything that a
JSONLogger<int> can (and more). Because there’s no way to get a value of type Tval
back out of a JSONLogger, no code outside the class can get a value from it of a type
that it doesn’t expect.

Advanced: Covariance and Contravariance | 55

CHAPTER 3

Other Features of Hack

Hack has four major features that make the language different from PHP in funda‐
mental ways: typechecking, collections, asynchronous (async) functions, and XHP.
Beyond those, though, there’s a wide range of smaller features that are designed to
simplify certain common patterns or to address minor gaps.

Enums
An enum (short for enumeration) is a collection of related constants. Unlike simply
creating global constants or class constants, creating an enum results in a new type:
you can use the names of enums in type annotations. They also offer functionality
like getting an array of all valid names or values, without resorting to heavyweight
reflection APIs.

The syntax for an enum is the keyword enum, followed by a name for the enum, then
a colon, then either int or string (which will be the enum’s underlying type), then a
brace-enclosed, semicolon-separated list of enum members. Each member is a name,
followed by an equals sign and then a value (which must match the enum’s underly‐
ing type):

enum CardSuit : int {
 SPADES = 0;
 HEARTS = 1;
 CLUBS = 2;
 DIAMONDS = 3;
}

Enum names have the same restrictions as class names (with regard to what charac‐
ters they may contain, etc.), and it’s an error to have a class and an enum with the
same name.

57

The names of enum members have the same restrictions as class constant names. The
names must be unique within the enum; if there are two members with the same
name, the typechecker will report an error, and HHVM will raise a fatal error.

The values of enum members must be scalars; that is, it must be possible to evaluate
them statically. This is the same restriction that applies to class constants. The values
don’t have to be unique within the enum. The only wrinkle if you have non-unique
values is that calling getNames() on the enum (see “Enum Functions” on page 59)
will throw an InvariantException.

You access the values with syntax similar to the syntax for class constants:

function suit_for_card_index(int $index): CardSuit {
 if ($index < 13) {
 return CardSuit::SPADES;
 } else if ($index < 26) {
 return CardSuit::HEARTS;
 } else if ($index < 39) {
 return CardSuit::CLUBS;
 } else {
 return CardSuit::DIAMONDS;
 }
}

Enums are distinct types. For example, even though the underlying type of CardSuit
is int, you can’t treat an int like a CardSuit, and vice versa:

function takes_int(int $x): void {
}

function takes_card_suit(CardSuit $suit): void {
}

function main() {
 takes_int(CardSuit::SPADES); // Error
 takes_card_suit(1); // Error
}

To convert a value of enum type to its underlying type, just use a regular PHP cast
expression. To convert in the other direction, use the special enum functions
assert() or coerce(), described in “Enum Functions” on page 59.

You can make it so that an enum type can be implicitly converted to its underlying
type by adding the keyword as and repeating the underlying type just before the
opening curly brace:

enum CardSuit : int as int {
 SPADES = 0;
 HEARTS = 1;
 CLUBS = 2;
 DIAMONDS = 3;

58 | Chapter 3: Other Features of Hack

}

function takes_int(int $x): void {
}

function main(): void {
 takes_int(CardSuit::HEARTS); // OK
}

One benefit of enums over class constants is that when a value of enum type is used
as the controlling expression of a switch statement, the typechecker can ensure that
all cases are handled. If some cases aren’t handled, the typechecker will report an
error, telling you which cases are missing:

<?hh // strict
enum CardSuit : int {
 SPADES = 0;
 HEARTS = 1;
 CLUBS = 2;
 DIAMONDS = 3;
}

function suit_symbol(CardSuit $suit): string {
 switch ($suit) {
 case CardSuit::SPADES:
 return "\xe2\x99\xa4";
 case CardSuit::CLUBS:
 return "\xe2\x99\xa7";
 }
}

The typechecker reports the following error:

/home/oyamauchi/test.php:10:13,17: Switch statement nonexhaustive; the
following cases are missing: HEARTS, DIAMONDS (Typing[4019])
 /home/oyamauchi/test.php:2:6,13: Enum declared here

Adding a default label will silence the error; you don’t have to explicitly handle all
the enum members. Note that if you explicitly handle all cases and also have a
default label, the typechecker will warn you that the default is redundant.

Enum Functions
As we’ve seen so far, enums act like pseudoclasses. They share classes’ namespace, and
their members are accessed with the same syntax. There’s one more similarity: every
enum has six static methods that are used for getting information about the enum’s
members and converting arbitrary values to the enum type.

For example, if you’re passed an int and you want to use it as a CardSuit, you can do
this:

Enums | 59

function takes_card_suit(CardSuit $suit) {
 // ...
}

function legacy_function(int $suit) {
 $enum_suit = CardSuit::coerce($suit);
 if ($enum_suit !== null) {
 takes_card_suit($enum_suit);
 }
}

These are all the methods. The return types assume that the enum is named
ExampleEnum:

• assert(mixed $value): ExampleEnum returns $value cast to the enum type if
$value is of the enum’s underlying type and is a member of the enum. If it’s not,
this throws an UnexpectedValueException.

• assertAll(Traversable<mixed> $value): Container<ExampleEnum> calls
assert() with every value in the given Traversable (see “Core Interfaces” on
page 102) and returns a Container of the resulting correctly typed values (or
throws an UnexpectedValueException if any of the values aren’t members of the
enum).

• coerce(mixed $value): ?ExampleEnum is like assert(), but returns null if
$value isn’t a member of the enum instead of throwing an exception.

• getNames(): array<ExampleEnum, string> returns an array mapping from the
enum members’ values to their names. This will throw an InvariantException if
the values are not unique within the enum.

• getValues(): array<string, ExampleEnum> returns an array mapping from
the enum members’ names to their values.

• isValid(mixed $value): bool returns whether $value is a member of the
enum.

Type Aliases
Type aliases are a way to give a new name to an existing type. There are two kinds of
type alias—transparent and opaque—corresponding to two different reasons why you
might want to rename a type.

Transparent Type Aliases
If you’re frequently using a complex type, you can give it a simple alias, both to
reduce visual complexity and character count and to make its true meaning clearer.

60 | Chapter 3: Other Features of Hack

For example, if you use the type Map<int, Vector<int>>, it may be clearer to give it
an alias like UserIDToFriendIDsMap. This is what transparent aliases are for.

The syntax is simple, consisting of the keyword type, followed by the new name for
the type, an equals sign, and the type you’re renaming (which is called the underlying
type):

type UserIDToFriendIDsMap = Map<int, Vector<int>>;

This declaration must be at the top level of a file, not inside any other statements. The
type on the right of the equals sign can be any valid type annotation. Once the type
alias is defined, the new name can be used in type annotations. Type aliases share a
namespace with classes: it’s an error to have a type alias with the same name as a class.

Transparent type aliases can be implicitly converted to their underlying types, and
vice versa:

type transparent = int;

function make_transparent(int $x): transparent {
 return $x; // OK: implicit conversion of int to transparent
}

function takes_int(int $x): void {
}

function main(): void {
 $t = make_transparent(10);
 takes_int($t); // OK: implicit conversion of transparent to int
}

Opaque Type Aliases
The other reason to create a type alias is if you’re using a primitive type with a special
meaning. A very common example of this is using integers as user IDs. You can make
a type alias called userid to distinguish integers being used as user IDs from other
integers, which can help prevent mistakes where an integer representing something
else, like a count or a timestamp, is used as a user ID.

Another example of this is with string types. You could define a type alias of string
called sqlstring and use it in the interface to your SQL database, to prevent acciden‐
tally using a query string that hasn’t been properly escaped. (Another example of this
kind of distinction is in “Secure by Default” on page 159.)

Opaque aliases are meant for this purpose. The difference between transparent and
opaque aliases is that an opaque type alias cannot be converted to its underlying type
(or vice versa), except in the file where the alias is defined.

Type Aliases | 61

The syntax for opaque aliases is the same as for transparent aliases, except that the
keyword type is replaced by newtype:

newtype userid = int;

The same restrictions apply: the type alias can’t have the same name as a class, and the
declaration must be at the top level of a file.

To demonstrate how to use an opaque alias, suppose we have one file that defines the
alias, plus a conversion function:

newtype opaque = int;

function make_opaque(int $x): opaque {
 return $x;
}

Note that the code in this file is allowed to implicitly convert the underlying type to
the alias type—it returns a value of type int from a function whose return type is
opaque, and the typechecker allows this.

In another file, we try to use it:

function takes_int(int $x): void {
}
function takes_opaque(opaque $x): void {
}

function main(): void {
 takes_int(make_opaque(10)); // Error
 takes_opaque(20); // Error
}

As this example shows, if you want an opaque alias to be useful outside its file, you
have to define some way to convert between the alias type and the underlying type, in
the same file. Otherwise, there will be no way for code in other files to convert
between them, or to create values of the alias type.

As opaque aliases are meant to be used for semantically significant aliases—like alias‐
ing int as userid—forcing the use of an explicit conversion function is a feature, as it
prevents accidental usage of a garden-variety integer as a user ID. The conversion
function is also a good place to do verification: for example, you could check that the
passed-in integer is a plausible user ID by making sure it’s not negative.

Start Your User IDs High
If you’re starting a new web app from scratch (i.e., with a blank database), here’s a
very simple thing you can do that will instantly eliminate a whole class of insidious
bugs for the rest of the app’s life. If you’re allocating user IDs using an autoincrement
column in a database table (which is a very typical, reasonable thing to do), set the

62 | Chapter 3: Other Features of Hack

autoincrement value to something astronomically high before adding any rows to it.
By “astronomically high,” I mean 248 or something in that neighborhood. (You can
express that in code as 1 << 48.)

This way, it’s very unlikely that you’ll have non–user ID integers that look like user
IDs floating around your code. Array indices, array counts, and string lengths cannot
be that high in PHP and Hack. Unix timestamps probably won’t be that high either,
unless you’re dealing with dates 8.9 million years in the future. And there’s no need to
worry about wasting too much ID space—starting at 248 still leaves you with 9 billion
billion possible IDs.

Having done that, you can define an opaque type alias newtype userid = int, verify
in the conversion function that the supposed user ID is greater than 248, and be
almost certain that it’s valid.

An opaque alias can have a constraint type added to it, which allows code outside the
file where the alias is defined to implicitly convert the alias type to the constraint type,
but not vice versa. Often, the constraint type is the same as the underlying type.

The syntax for this is to add, between the type alias name and the equals sign, the
keyword as and a type annotation (the constraint type).

For example, in one file, we define aliases:

newtype totally_opaque = int;
newtype with_constraint as int = int;

function make_totally_opaque(int $x): totally_opaque {
 return $x;
}
function make_with_constraint(int $x): with_constraint {
 return $x;
}

In another file, we try to use them:

function takes_int(int $x): void {
}
function takes_totally_opaque(totally_opaque $x): void {
}
function takes_with_constraint(with_constraint $x): void {
}

function main(): void {
 takes_int(make_totally_opaque(20)); // Error
 takes_int(make_with_constraint(20)); // OK

 takes_totally_opaque(20); // Error
 takes_with_constraint(20); // Error
}

Type Aliases | 63

This feature is useful when bridging legacy code with new code that uses opaque
aliases. You can make an opaque alias userid with underlying type int, but you may
still have legacy code that passes around user IDs as integers. To make things easier,
you can add a constraint to the type alias so you can seamlessly pass values of type
userid to functions that expect int.

Autoloading Type Aliases
Type aliases can be autoloaded by HHVM’s enhanced autoloading system, which is
described in “Enhanced Autoloading” on page 73.

Array Shapes
There’s a very common pattern in PHP codebases of using arrays as pseudo-objects.
For example, instead of defining a User class with properties for the user’s ID and
name, code will simply pass around arrays with keys 'id' and 'name' to represent
users.

Array shapes are a way to tell the Hack typechecker about the structure of an array in
cases like this. The typechecker can verify that the array has the right set of keys and
that the keys map to values of the right types.

The syntax for an array shape declaration is the keyword shape, followed by a
parenthesis-enclosed, comma-separated list of key/value pairs. Each pair is a key—
either a string literal or a class constant whose value is an integer or a string—fol‐
lowed by the token =>, followed by a type annotation. The only place where a shape
expression is legal is on the righthand side of a type alias (see “Type Aliases” on page
60):

type user = shape('id' => int, 'name' => string);

A shape is really just an array with special tracking by the typechecker. To create a
shape, use the same syntax as the array() syntax for creating arrays, but use the
shape keyword instead:

function make_user_shape(int $id, string $name): user {
 return shape('id' => $id, 'name' => $name);
}

// This works also
function make_user_shape(int $id, string $name): user {
 $user = shape();
 $user['id'] = $id;
 $user['name'] = $name;
 return $user;
}

64 | Chapter 3: Other Features of Hack

The resulting value is an array whose keys and value types are tracked. If you pass a
shape to is_array(), it will return true.

Note that within the body of the second version of the function, the value $user
doesn’t conform to the user shape declaration until after the third line. This is not a
problem; the typechecker only enforces conformance with the shape declaration
when it’s checked against a type annotation—in this case, at the point of the return
statement.

In the user example, both fields are required. If either of them is absent from the
shape when it’s checked against an annotation, the typechecker will report an error:

<?hh
type user = shape('id' => int, 'name' => string);

function make_user_shape(int $id, string $name): user {
 $user = shape();
 $user['id'] = $id;
 return $user;
}

The typechecker reports the following error:

/home/oyamauchi/test.php:7:10,14: Invalid return type (Typing[4057])
 /home/oyamauchi/test.php:6:3,19: The field 'name' is missing
 /home/oyamauchi/test.php:4:24,27: The field 'name' is defined

There’s currently no way to make a field truly optional. The closest available option is
to make a field’s type nullable. In that case, the typechecker won’t complain if the field
is absent when the shape is checked, but then reading from the field at runtime will
result in an E_NOTICE-level error (undefined index). The best option is to make the
field’s type nullable, and explicitly store null to the field if there’s no real value to
store.

When reading fields of a shape, the typechecker will report an error if the field you’re
accessing isn’t part of the shape’s declaration. The following examples assume the
same definition of user as earlier:

function log_user_data(user $user): void {
 $id = $user['id'];
 $name = $user['name'];
 $is_admin = $user['is_admin']; // Error: the field 'is_admin' is missing
 printf("%d(%s)(%d)", $id, $name, $is_admin);
}

When a shape is checked for conformance with a shape declaration, it will fail if it has
any keys that aren’t part of the declaration:

$user = shape();
$user['id'] = 123;
$user['name'] = 'Your Benefactor';

Array Shapes | 65

$user['is_admin'] = true;
log_user_data($user); // Error: the field 'is_admin' is defined

If you use hh_client --type-at-pos on a shape, it will only say [shape]. To reiter‐
ate: a shape is just an array whose keys are tracked by the typechecker. No enforce‐
ment is done until a shape has to pass through a type annotation (i.e., when it’s passed
to a function, returned from a function, or assigned to a property).

To facilitate tracking for shapes, the typechecker puts some restrictions on what you
can do with them:

• You can’t read or write with unknown keys. That is, you can’t do things like echo
$shape[$key] or $shape[$key] = 10, even if $key is known statically. The
expression between the square brackets must be either a string literal or a class
constant whose value is an integer or a string—the same restriction as is placed
on the keys in the shape description.

• You can’t use the append operator, as in $shape[] = 10.
• Shapes don’t implement Traversable or Container (see “Core Interfaces” on

page 102). As such, you can’t iterate over a shape with foreach.

Lambda Expressions
Lambda expressions offer a straightforward simplification of PHP closure syntax,
which has the downside that you have to name all the variables that the closure
should capture from the enclosing scope. Lambda expressions create closures with all
the necessary variables automatically captured.

For example, suppose we have an array of user IDs and we want to use array_map()
to look up a User object for each ID:

$id_to_user_map = /* ... */
$user_ids = /* ... */
$users = array_map(
 $user_ids,
 function ($id) use ($id_to_user_map) { return $id_to_user_map[$id]; }
);

We can rewrite the closure in the last line as a lambda expression, like this:

$users = array_map($user_ids, $id ==> $id_to_user_map[$id]);

Notice that there’s no function keyword, no use list, no return keyword, and no
curly braces. The variable $id_to_user_map is automatically captured from the
enclosing scope, with no need to explicitly specify it. All captured variables are cap‐
tured by value; it’s not possible to capture by reference using lambda expressions.

66 | Chapter 3: Other Features of Hack

The syntax is based around the new operator ==>. To its left is the list of arguments to
the closure. If there’s only one argument without a type annotation, all you need is a
variable name, as in this example. If you have zero arguments, more than one argu‐
ment, any argument with a type annotation, or a return type annotation, you have to
put parentheses around the argument list. Here’s an example with two type-annotated
arguments and a return type annotation:

usort(
 $players,
 (Player $one, Player $two): int ==> $one->getScore() - $two->getScore()
);

To the right of the ==>, you can have one of two things: either an expression, or a
brace-enclosed list of statements. If it’s just an expression, the value of that expression
is what gets returned from the closure, as in this example. If it’s a list of statements,
you can use a normal return statement to return a value.

Here’s an example of the list-of-statements syntax:

array_map($players, $player ==> {
 $total = 0;
 foreach ($player->getScores() as $score) {
 $total += $score;
 }
 return $total;
});

In addition to the lack of capturing by reference, there’s one more thing that you can
do with regular closure syntax but not with lambda expressions: use variable vari‐
ables. The language runtime has to inspect the closure’s body statically to determine
which variables to capture, and in the presence of variable variables, it can’t do so.
Consider the following code:

$one = /* ... */
$other = /* ... */
$local_reader = function ($index) use ($one, $other) {
 $name = ($index === 0 ? 'one' : 'other');
 return $$name;
};

With a lambda expression, the language runtime would have no way of knowing it
should capture $one and $other, and there would be no way to tell it. If you rewrote
the closure in the example as a lambda expression, the variables $one and $other
would be undefined in the lambda’s body and reading from them would result in
“undefined variable” warnings.

Lambda Expressions | 67

Constructor Parameter Promotion
Constructor parameter promotion is a simple feature designed to reduce boilerplate
code in constructors. If your codebase uses classes heavily, you probably have a lot of
code like this:

class Employee {
 private $id;
 private $name;
 private $department;

 public function __construct($id, $name, $department) {
 $this->id = $id;
 $this->name = $name;
 $this->department = $department;
 }
}

This is bad because everything the class needs to store is repeated in four places: once
as a property, once as a parameter of the constructor, and twice in the assignment
expression in the body of the constructor. Constructor parameter promotion reduces
the four down to one. The preceding code can be rewritten like this:

class Employee {
 // Nothing needed here

 public function __construct(private $id, private $name, private $department) {
 // Nothing needed here
 }
}

The syntax is very simple: all you have to do is put one of the access modifier key‐
words private, protected, or public before a parameter of the constructor. Promo‐
ted parameters can coexist with regular parameters, and they can be interleaved.

In addition to declaring a parameter of the constructor, the syntax declares a property
of the same name with the given access modifier, and assigns the argument to the
property. You can still put code in the body of the constructor, and it will run after the
assignments are done.

This is compatible with type annotations: just put the type annotation between the
access modifier keyword and the name. The type annotation applies to both the prop‐
erty and the parameter. You can also add default values for promoted parameters:

class User {
 public function __construct(private int $id, private string $name = '') {
 }
}

68 | Chapter 3: Other Features of Hack

Attributes
Attributes are a syntactic extension that let you add metadata to functions, methods,
classes, interfaces, and traits. You can access this metadata through small additions to
the normal PHP reflection APIs.

Attributes are a structured substitute for information that is often encoded in docu‐
mentation comments. Instead of requiring a separate program to extract this infor‐
mation, it becomes available programmatically through reflection. Here is an example
showing documentation comments versus attribute usage:

/**
 * MyFeatureTestCase
 *
 * @owner oyamauchi
 * @deprecated
 */
class MyFeatureTestCase extends TestCase {
 // ...
}

/**
 * MyFeatureTestCase with attributes
 */
<<Owner('oyamauchi'), Deprecated>>
class MyFeatureTestCaseWithAttributes extends TestCase {
 // ...
}

Attribute Syntax
Each attribute is a key mapping to an array of values. The keys are strings, and values
are scalars (null, boolean literals, numeric literals, string literals, or arrays of those).

The syntax is very simple. Immediately before a function, method, class, interface, or
trait, put attributes inside two pairs of angle brackets. Each attribute, at its simplest, is
just a key (an unquoted string):

<<DarkMagic>>
function summon_demon() {
 // ...
}

Attribute keys beginning with two underscores are reserved for
special use by the runtime and typechecker. Three such attributes
exist in Hack/HHVM 3.6 (described in the next section), and there
may be more in the future.

Attributes | 69

To access this attribute, use the getAttributes() or getAttribute() method of
ReflectionFunction (ReflectionClass and ReflectionMethod have the same
methods):

$function = new ReflectionFunction('summon_demon');

echo "All attributes: \n";
var_dump($function->getAttributes());

echo "Just DarkMagic: \n";
var_dump($function->getAttribute('DarkMagic'));

All attributes:
array(1) {
 ["DarkMagic"]=>
 array(0) {
 }
}
Just DarkMagic:
array(0) {
}

If you call getAttribute() to read an attribute that isn’t there, it will return null with
no error. Aside from that, calling getAttribute($name) is otherwise equivalent to
calling getAttributes() and indexing into the returned array with $name.

To add attribute values, include a parenthesis-enclosed, comma-separated list of
scalars immediately after the attribute name:

<<Magic('dark')>>
function summon_demon() {
 // ...
}

<<Magic('curse', 'dark')>>
function banish_to_eternal_void() {
 // ...
}

$function = new ReflectionFunction('banish_to_eternal_void');

var_dump($function->getAttributes());

array(1) {
 ["Magic"]=>
 array(2) {
 [0]=>
 string(5) "curse"
 [1]=>
 string(4) "dark"
 }
}

70 | Chapter 3: Other Features of Hack

www.allitebooks.com

http://www.allitebooks.org

You don’t have to declare attribute names anywhere before using them. They’re really
little more than parseable comments.

Special Attributes
There are three attributes that are treated specially by the Hack typechecker and by
HHVM. The two leading underscores in their names indicate that they’re special (this
convention is reserved for use by special built-in attributes):

__Override

When this attribute is applied to a method, the Hack typechecker will check that
the method is overriding a method from one of its ancestor classes. If it’s not
overriding, the typechecker will report an error. Note that the method being
overridden must be in a Hack file; if the method being overridden is in a PHP
file, the typechecker can’t see it, and it will report an error.

__Override can be applied to methods defined in traits. The restriction won’t be
enforced in the trait itself, but it will be enforced in any class that uses the trait—
consistent with traits’ copy-and-paste semantics.

HHVM doesn’t treat this attribute specially; it won’t cause any runtime errors.

__ConsistentConstruct

In Hack, a child class’s __construct() method doesn’t have to have a signature
that matches its parent class’s __construct() method. This is intentional; it’s per‐
fectly reasonable for a child class to have different needs for its constructor. This
can hide problems, though, in cases where constructors are being called poly‐
morphically — as in new static().

A good example is in the factory pattern. The following example shows an
abstract base class with several static factory methods, each of which calls new
static(). Each child class is supposed to implement a constructor with the same
signature:

<<__ConsistentConstruct>>
abstract class Reader {
 protected function __construct(resource $file) { }

 public static function fromFile(string $path): this {
 return new static(fopen($path, 'r'));
 }

 public static function fromString(string $str): this {
 $tmpfile = tmpfile();
 fwrite($tmpfile, $str);
 fseek($tmpfile, 0);
 return new static($tmpfile);

Attributes | 71

 }

 abstract public function readItem(): mixed;
}

class BufferedReader extends Reader {
 protected function __construct(resource $file) {
 // Fill buffer ...
 }

 public function readItem(): mixed {
 // ...
 }
}

class TokenReader extends Reader {
 // ...
}

Without __ConsistentConstruct, a child class could have the wrong constructor
signature and the Hack typechecker wouldn’t be able to report an error for it.
Because the typechecker can’t tell which constructor will be invoked by the new
static() call, it can’t fully typecheck the call. But with __ConsistentConstruct,
the typechecker will report an error for constructors with non-matching signa‐
tures, so you know (indirectly) that the new static() call is typesafe.

This attribute is only significant to the typechecker; HHVM doesn’t treat it spe‐
cially.

__Memoize

Unlike the other two special attributes, this one is treated specially by HHVM but
ignored by the Hack typechecker. It lets you use the common pattern of memoi‐
zation, with assistance from the runtime that makes it more efficient than it can
be with PHP or Hack code alone.

Memoization is a pattern of caching the result of a time-consuming computation.
It’s often implemented like this:

function factorize_impl($num) {
 // Some factorization algorithm
}

function factorize($num) {
 static $cache = array();
 if (!isset($cache[$num])) {
 $cache[$num] = factorize_impl($num);
 }
 return $cache[$num];
}

72 | Chapter 3: Other Features of Hack

Most of the code shown in this example is boilerplate, and the __Memoize
attribute lets you remove all of that. Here’s the alternative, which lets the runtime
manage the cache for you:

<<__Memoize>>
function factorize($num) {
 // Some factorization algorithm
}

You can memoize functions or methods, but there are a few restrictions:

• You can’t memoize variadic functions (i.e., functions that take a variable
number of arguments).

• You can’t memoize functions that take any arguments by reference.
• All arguments to the memoized function must be one of these types: bool,
int, float, string, the nullable version of any of the previous types, an
object of a class that implements the special interface IMemoizeParam, or an
array or collection of any of the previous types.
IMemoizeParam declares a single non-static method: getInstanceKey():
string. The job of this method is to turn the object into a string that can be
used as an array key in the memoization cache.

There are some things to watch out for when using __Memoize. First, be aware
that it’s a time/memory trade-off. It can make code faster by reducing the amount
of computation it does, but it will also increase memory usage. This is not always
desirable.

Second, HHVM makes no guarantees about when it will actually execute a
memoized function, as opposed to simply returning a value from the cache.
Don’t assume that the body of the function will only execute once for a given
argument. HHVM is allowed, for example, to delete entries from the cache to
free up memory—in fact, this is an advantage of using __Memoize instead of
implementing memoization yourself.

Finally, note that HHVM doesn’t try to make sure that the function you’re
memoizing has no side effects, or that it returns the same result for the same
arguments no matter how many times it’s called. Both of these properties are
important for a function being memoized; if they don’t hold, memoization might
visibly change the program’s behavior.

Enhanced Autoloading
PHP provides autoloading for classes, and HHVM supports this, through both
__autoload() and spl_autoload_register(). HHVM provides an additional fea‐

Enhanced Autoloading | 73

ture that allows autoloading for functions and constants in both PHP and Hack, plus
autoloading for type aliases (see “Type Aliases” on page 60) in Hack only.

This feature has another advantage over PHP’s autoloading mechanisms: it can do its
job without running any PHP code, so its performance is generally better. A success‐
ful autoload can be done entirely within the runtime, using just two hashtable look‐
ups. For that reason, if you’re using HHVM, using this feature instead of PHP
autoloading is strongly recommended.

The interface to this enhanced autoloading is the function autoload_set_paths(), in
the HH namespace. It takes two arguments: an autoload map (which is an array), and a
root path (which is a string). When HHVM needs to autoload something, it will per‐
form the lookups in the autoload map.

The autoload map is an array. There are five optional string keys that are significant:

• The keys 'class', 'function', 'constant', and 'type' each map to arrays.
Those inner arrays—submaps—have keys that are names of entities (classes,
functions, constants, and types, respectively), and values that are file paths where
the corresponding entities can be found.

• The key 'failure' maps to a callable value—the failure callback—that will be
called if lookup in the above keys fails.

Here’s an example that sets up the autoload map and calls a function that isn’t loaded:

function autoload_fail(string $kind, string $name): ?bool {
 // ...
}

function setup_autoloading(): void {
 $map = array(
 'function' => array('extricate' => 'lib/extricate.php')
);

 HH\autoload_set_paths($map, __DIR__ . '/');
}

setup_autoloading();
extricate();

When the function extricate() is called, the runtime looks in the 'function' sub‐
map of the autoload map for the 'extricate' entry. When it finds the entry, it
appends the file path to the root path, loads the file at that combined path, and con‐
tinues execution.

If anything about that procedure fails—if the 'function' submap isn’t present, or the
'extricate' entry isn’t present, or the file doesn’t exist, or the file doesn’t actually
contain a definition of extricate()—the failure callback is called. If it returns true,

74 | Chapter 3: Other Features of Hack

the runtime tries to call extricate() again, assuming the failure callback loaded it. If
it didn’t , or if the failure callback returns false or null, the runtime declares failure,
and raises a fatal error for an undefined function.

The failure callback gets passed two arguments: first, a string identifying the kind of
entity being autoloaded ('class', 'function', 'constant', or 'type'), and second,
a string with the entity’s name.

The most intuitive way to understand the whole algorithm is with a flowchart; see
Figure 3-1.

There are two situations in which the algorithm is slightly different:

• If the entity being autoloaded is a class, returning false from the failure callback
causes different behavior from returning null. If the callback returns false, the
behavior is the same as in the function case: a fatal error is immediately raised.
But if the callback returns null, HHVM falls back to the standard PHP autoload
mechanisms: __autoload() and the SPL autoload queue.

• If the entity being autoloaded might be a type alias, HHVM will first try the
'class' submap, then the 'type' submap, then the failure callback with first
argument 'class', then the failure callback with first argument 'type'. This is
because any entity that could be a type alias can also be a class.
The only time an entity to autoload might be a type alias is during enforcement
of a parameter type annotation or a return type annotation.

As a final note, the failure callback shouldn’t be routinely used for actual loading; it
should be used mostly for error logging. The whole autoloading process is slower if
the runtime has to fall back to the failure callback.

Enhanced Autoloading | 75

Figure 3-1. Autoloading a function

76 | Chapter 3: Other Features of Hack

1 The mathematical phrase is “integers are closed under addition, subtraction, and multiplication.”

Integer Arithmetic Overflow
In PHP, if integer arithmetic operations overflow, the result is a float:

var_dump(PHP_INT_MAX + 1); // float (9.2233720368548E+18)

This is bad for performance: it means that almost every arithmetic operation in a pro‐
gram has to be checked for overflow, even though overflow is extremely unlikely in
practice. It’s also questionable from a program-logic standpoint: in the preceding
example of PHP_INT_MAX + 1, the conversion to float causes an immediate loss of pre‐
cision.

HHVM includes a mode to make integer arithmetic follow the rules of two’s comple‐
ment arithmetic at runtime. This means the result of adding, subtracting, or multiply‐
ing two integers is always an integer.1 The configuration option to turn this mode on
is hhvm.ints_overflow_to_ints.

The Hack typechecker, in fact, always treats integer arithmetic operations as if they
followed the rules of two’s complement arithmetic, and this is not configurable. The
justification is that if the typechecker were to follow PHP’s behavior, it would become
very difficult to meaningfully typecheck anything involving the results of arithmetic
operations. Besides that, the overflow-to-float behavior isn’t used in any other main‐
stream programming language, and it often surprises newcomers to PHP.

Nullsafe Method Call Operator
Hack adds a new operator for calling methods on an object that may be null. The
operator is ?->, in contrast to the usual method call operator ->:

interface Reader {
 public function readAll(): string;
}

function read_everything(?Reader $reader): ?string {
 return $reader?->readAll();
}

If the value on the lefthand side of the operator is null, there is no warning or error,
and the whole expression evaluates to null. Therefore, the type of this expression is
the nullable version of the actual method’s return type.

This operator is very well suited for chained method calls, because it allows any
method in the chain to return null without requiring null checks everywhere, while
still being safe from BadMethodCallException. For example:

Integer Arithmetic Overflow | 77

$name = $comment?->getPost()?->getAuthor()?->getName();

Trait and Interface Requirements
Traits are one of the trickiest areas for the typechecker to navigate. A trait is essen‐
tially a bundle of code taken out of context. To be useful, traits must be able to refer to
properties and methods that they don’t define—the classes that use the traits will sup‐
ply them.

To allow for stronger typechecking of traits, Hack provides a feature that allows you
to restrict what classes may use a trait. Inside the definition of a trait, you can specify
that any classes using it must extend a certain class, or implement a certain interface.
This way, the typechecker can verify a property access or method call in a trait by
checking it in the context of the classes and interfaces that are allowed to use the trait.

The syntax is require extends ClassName or require implements InterfaceName.
These statements go at the top level of the trait definition:

class C {
 public function methodFromClass(): void { }
}

interface I {
 public function methodFromInterface(): void;
}

trait NoRequire {
 public function f(): void {
 $this->methodFromInterface(); // Error: could not find method
 $this->methodFromClass(); // Error: could not find method
 }
}

trait HasRequire {
 require extends C;
 require implements I;

 public function f(): void {
 $this->methodFromInterface(); // OK
 $this->methodFromClass(); // OK
 }
}

If a class uses a trait and doesn’t fulfill the trait’s requirements, the typechecker will
report an error. Continuing from the previous example:

class Bad {
 use HasRequire; // Error: failure to satisfy requirement
}

78 | Chapter 3: Other Features of Hack

Note that require extends really does mean extends; that is, it’s an error for the class
named in a trait’s require extends declaration to use that trait. Any class using the
trait must be a descendant:

trait T {
 require extends C;
}

class C {
 use T; // Error
}

In addition to these declarations, Hack also allows traits to implement interfaces.
When a trait that implements an interface is used, it behaves as if the “implements”
declaration were transferred onto the class using the trait, and all the attendant
restrictions are enforced. This is very similar to using require implements in the
trait:

interface I {
 public function methodFromInterface(): void;
}

trait T implements I {
 public function f(): void {
 $this->methodFromInterface(); // OK
 }
}

class C {
 use T; // Error: must provide an implementation for methodFromInterface()
}

Finally, require extends works in interfaces as well. Only classes that descend from
the named class are allowed to implement the interface (again, this excludes the
named class itself):

interface I {
 require extends ParentClass;
}

class ParentClass {
 // It would be an error for this class to implement I
}

class ChildClass extends ParentClass implements I { // OK
}

class OtherChild implements I { // Error
}

Trait and Interface Requirements | 79

Silencing Typechecker Errors
Suppose you have a core function, without type annotations, used all over the code‐
base, and you want to add annotations to it. This might cause type errors at a lot of
the function’s callsites. The typechecker gives you a way to add the annotations to the
core function anyway, and silence the errors at each callsite that turns out to have an
error. That way, you get the annotations in (so that new code using that function will
be well-typed) but remain error-clean, while the places you need to fix are easily
searchable. This is the purpose of the HH_FIXME comment.

Every error message reported by the typechecker has a numerical error code, shown
at the end of the message. For example, consider this code:

<?hh // strict

function core_function(): int {
 return 123;
}

function some_other(): string {
 return core_function();
}

This generates the following error from the typechecker:

/home/oyamauchi/hack/test.php:8:10,24: Invalid return type (Typing[4110])
 /home/oyamauchi/hack/test.php:7:24,29: This is a string
 /home/oyamauchi/hack/test.php:3:27,29: It is incompatible with an int

The error code is 4110, the number shown in square brackets. (The word “Typing”
just denotes the general category of the error, and isn’t part of the error code—there’s
only one error 4110 across all categories.)

To silence this error, add the comment /* HH_FIXME[4110] */ either before the
function signature or before the return statement. You should also add an explana‐
tion of why the error needs to be silenced within the comment, after the closing
square bracket.

Any of the following versions of some_other() will silence the error:

function some_other(): int {
 /* HH_FIXME[4110] from core_function return type */
 return core_function();
}

function some_other(): string {
 /* HH_FIXME[4110] from core_function return type */ return core_function();
}

/* HH_FIXME[4110] from core_function return type */
function some_other(): string {

80 | Chapter 3: Other Features of Hack

 return core_function();
}

/* HH_FIXME[4110] core_function return type */ function some_other(): string {
 return core_function();
}

The syntax of the comment is precise. It must be a C-style /* */ comment; shell-style
comments and C++-style ∕∕ comments won’t work. It has to start with HH_FIXME
followed by the error code in square brackets.

An HH_FIXME will silence the given error on the line containing the first non-
whitespace, non-comment character after the end of the HH_FIXME comment. (In the
preceding example, there are two pieces of code that work together to cause the error:
the return statement and the return type annotation. Silencing either piece silences
the whole error.)

You can apply multiple HH_FIXME comments to a single line by having multiple
HH_FIXME comments before the line in question. For example, this code:

function f(?void $nonsense): int {
 return 'oops';
}

produces the following error output:

/home/oyamauchi/test.php:2:12,16: ?void is a nonsensical typehint (Typing[4066])
/home/oyamauchi/test.php:3:10,11: Invalid return type (Typing[4110])
 /home/oyamauchi/test.php:2:26,28: This is an int
 /home/oyamauchi/test.php:3:10,11: It is incompatible with a string

To silence both, errors do this:

/* HH_FIXME[4110] just an example */
/* HH_FIXME[4066] just an example */
function f(?void $nonsense): int {
 return 'oops';
}

Only the specific error(s) identified in the comment(s) will be silenced, which is ideal
—if some other error crops up on the silenced line, you’ll still hear about it. The error
codes will remain stable across versions of the typechecker, so these comments won’t
break with new versions.

Silencing Typechecker Errors | 81

CHAPTER 4

PHP Features Not Supported in Hack

Hack has many features that PHP doesn’t, and it is also missing a few of PHP’s fea‐
tures. The choices to omit these features weren’t made lightly: there are deep techni‐
cal reasons behind most of them, stemming from concerns about type safety and
performance.

It’s important to note, though, that these restrictions only apply to Hack. When
HHVM is running PHP code (i.e., code in any file with <?php at the top), it produces
the same results as the PHP interpreter from PHP.net. PHP code that uses a feature
absent from Hack can still interoperate seamlessly with Hack code.

In this chapter, we’ll explore these unsupported features, analyzing why they are hard
or impossible to implement static type analysis for and why they’re hard to compile
into efficient native code. If you’re simply looking to get started with Hack, it’s
enough to skim the section headers of this chapter.

Once more, to be clear: HHVM supports all of these features when running regular
PHP code.

References
Of the features that Hack doesn’t support, references are the most fundamental. They
are a cross-sectional language feature: they have a deep influence on how PHP
engines represent program values, on how variables are handled, on function call and
return mechanisms, and on memory management.

References make it very difficult to do sound static analysis. They allow the possibility
of “action at a distance,” where innocuous-looking code can have unknowable effects.
Passing a variable to a function by reference means that anything can happen to that
variable, and the typechecker has no way of knowing what it is (because type infer‐

83

https://php.net

ence is function-local, as described in “Inference Is Function-Local” on page 28). This
makes it impossible to ensure type safety around references, and difficult to execute
code around them efficiently.

Another example of “action at a distance” making type inference difficult is the prob‐
lem of object properties. As we saw in “Inference on Properties” on page 35, the type‐
checker must be very conservative with its inference around object properties,
because there are so many ways to act upon properties at a distance. This problem is
even worse with references, which is why Hack simply ignores them.

There’s a separate, small way in which references are bad for performance: accessing a
variable that is a reference requires an additional pointer dereference, compared to
accessing a regular variable. This means an additional memory access, which puts
pressure on cache memories and incurs more roundtrips to main memory.

Garbage Collection
Another thing that makes references troublesome is that they allow PHP code to
observe the runtime’s copy-on-write optimization of array copying, by taking a refer‐
ence to an element in an array. Apart from any philosophical arguments about why
this is bad, there’s a practical one too: the fact that copy-on-write is observable by
PHP code makes it hard, if not impossible, to implement tracing garbage collection in
a PHP engine.

As it is, if PHP engines don’t use naïve reference counting, they’ll cause observable
behavior differences (also known as “bugs”). This means that there’s very little free‐
dom to experiment with other memory management algorithms, which closes off a
source of possibly significant performance gains.

The global Statement
The global statement is forbidden in Hack, because it’s implemented with references
under the hood. The statement global $x is syntactic sugar for $x =&

$GLOBALS['x'].

In partial mode, you can read from and write to the $GLOBALS array without refer‐
ences, so you can use that to work around the lack of a global statement. (In strict
mode, Hack will report an error, saying $GLOBALS is an undefined variable.)

Top-Level Code
As a corollary to the ban on the global statement, most top-level code is forbidden in
strict mode. (It is allowed, but not typechecked, in partial mode.) You’re allowed to

84 | Chapter 4: PHP Features Not Supported in Hack

1 Or not, depending on where the file is included from—another reason it’s hard to typecheck.

define named entities (functions, classes, etc.) and use the require/include family of
statements at the top level in all modes.

This is simply because top-level code exists in global scope,1 so any read or write of a
local variable is actually a read or write of a global variable.

You can get rid of top-level code that doesn’t rely on being in global scope simply by
wrapping it in a function. If it does rely on being in global scope, it’ll need a more
substantial rewrite to become valid Hack.

Every program, whether a script or a web app, starts execution in top-level code, so
every program will need at least one partial-mode file to serve as an entry point. Ide‐
ally, that one partial-mode file will only have one top-level statement other than
require and definitions—a function call that is the gateway to the bulk of the pro‐
gram’s logic:

<?hh

require_once 'lib/autoload.php';

function main() {
 setup_autoload();
 do_initialization();
 $controller = find_controller();
 $controller->execute();
}

main();

Old-Style Constructors
An old-style constructor is a method that has the same name as its enclosing class:

class Thing {
 public function Thing() {
 echo 'constructor!';
 }
}

$t = new Thing(); // prints 'constructor!'

This design was presumably inspired by C++ and Java, but was replaced in PHP 5 by
the “unified” constructor __construct. Hack’s ban on old-style constructors is to
avoid a potentially confusing, and in this case redundant, feature. The interactions of

Old-Style Constructors | 85

old-style and new-style constructors, especially in the presence of inheritance, are
complex and inconsistent, and there’s no reason to have both.

This isn’t just a Hack change; a future release of PHP will remove the feature as well.

Case-Insensitive Name Lookup
In PHP, function and class names are looked up case-insensitively. That is, if you
define a function named compute, you can call it by writing CoMpUtE(). If you try to
do that in Hack, however, the typechecker will report an error, saying the function
CoMpUtE is undefined.

Note, however, that although Hack is case-sensitive, it’s not valid to define two func‐
tions (or two classes, etc.) that have names differing only in casing. That’s because
Hack has to be able to interoperate with PHP, in which name lookups are still case-
insensitive.

This restriction actually has nothing to do with either type safety or performance. It
would have been very simple to implement case-insensitive name lookup in the Hack
typechecker, and it wouldn’t affect the typechecker’s ability to do type inference.

Rather, it’s a philosophical decision. Most general-purpose programming languages
are case-sensitive, including PHP’s spiritual ancestors: Perl, C, and Java. It makes code
marginally easier to read, and makes it no harder to write.

On the performance side, case-insensitive lookup is slightly less efficient than case-
sensitive lookup, because the target string must undergo case normalization before
being used as the key in a hashtable lookup. In HHVM, it also incurs a small memory
penalty, because each function and class must store both the original name from
source code (for use in error messages and reflection) and a case-normalized version
of the name (for use in hashtable lookups).

Variable Variables
Variable variables look like this:

$name = 'x';
$x = 'well this is silly';
echo $$name; // Prints 'well this is silly'

This isn’t allowed in Hack because, in general, it’s impossible to infer types around a
construct like that. When the typechecker sees an expression like $$name, it has no
idea what the type of that expression is, or even whether that’s a valid variable access.

And that’s just in the case of reading a variable variable. An expression like $$name =
10 could, in general, change the type of any local variable in scope, and the type‐
checker has no hope of understanding the possible effects.

86 | Chapter 4: PHP Features Not Supported in Hack

This reasoning echoes the reasons why references aren’t allowed in Hack. Variable
variables allow action at a distance. They allow code to read and write local variables
through a layer of abstraction that is opaque to the typechecker.

There’s also a performance concern. While converting PHP and Hack to bytecode,
HHVM assigns each local variable a number, starting at 0 and increasing. At runtime,
it stores all of a function’s local variables consecutively in memory, in numerical
order, and it can access each one with a single machine instruction. If variable vari‐
ables aren’t involved, at runtime HHVM doesn’t need to remember local variable
names; each usage of a local variable is replaced with its number, and that number is
all that’s needed to find the variable’s contents in memory. But if variable variables are
involved, HHVM has to set up and tear down a mapping of local variable names to
memory locations when entering and exiting the function. This takes extra time and
memory.

Dynamic Properties
In PHP, you can create an object property by assigning something to it, in much the
same way you can create a local variable:

<?php

class C {
}

function f(): void {
 $c = new C();
 $c->prop = 'hi';
 echo $c->prop; // Prints 'hi'
}

In Hack, this isn’t valid; you have to declare all properties. If you know all the proper‐
ties an object will have in advance, declare them; if you don’t, use a shape (see “Array
Shapes” on page 64) or a Map (see Chapter 5) instead of an object.

This is for both type safety and performance. In general, it’s impossible for the type‐
checker to infer the types of dynamic properties, or even whether a given dynamic
property exists when it’s read from.

The performance concern is that HHVM reserves slots within an object’s memory for
declared properties, allowing it to access a declared property by looking at a known,
constant offset from the beginning of an object’s memory. No hashtable lookups are
involved. It can’t do this with dynamic properties; it has to store those in a hashtable,
incurring hashtable lookups every time a dynamic property is read or written. (This
is very similar to the performance concern around variable variables.)

Dynamic Properties | 87

2 This restriction applied to empty as well, until PHP 5.5.

Mixing Method Call Syntax
In PHP, you can call static methods with non-static method call syntax, and you can
call non-static methods with static method call syntax:

class C {
 public function nonstaticMethod() { }
 public static function staticMethod() { }
}

C::nonstaticMethod(); // Allowed in PHP

$c = new C();
$c->staticMethod(); // Allowed in PHP

Both of these are invalid in Hack. Static methods can only be called with :: syntax,
and non-static methods can only be called with -> syntax.

The main reason why Hack forbids this behavior is that if a non-static method is
called with :: syntax, then $this is null inside the method. That’s problematic; it’s
not reasonable to expect a non-static method to tolerate $this being null. There will
be an error as soon as it tries to call a method or access a property on $this. If the
method doesn’t use $this, then it probably shouldn’t be a non-static method in the
first place.

The distinction between static and non-static methods exists for a reason—does the
method need an object context to work in, or not? Allowing this distinction to be
erased at callsites makes the distinction useless, and gains us nothing.

isset, empty, and unset
The isset, empty, and unset expressions are allowed in partial mode, but not in
strict mode.

All three of them are irregularities in PHP’s syntax and semantics. They look like nor‐
mal functions, but they’re not. They’re special-cased in PHP’s grammar so that it’s
possible to pass undefined variables and index expressions (like $nonexistent['no
nexistent']) without incurring warnings. They are also unusual in that the argu‐
ments you pass to isset and unset cannot be arbitrary expressions;2 you can only
pass expressions that would be valid lvalues (i.e., expressions that could appear on the
lefthand side of an assignment expression). This “looks-like-a-function-but-isn’t”
phenomenon hurts language cleanliness, which is one argument against these fea‐
tures.

88 | Chapter 4: PHP Features Not Supported in Hack

In Hack, there’s no reason to use isset or empty to test whether a variable is defined:
it should be knowable, statically, whether a variable is defined at a given position.

For testing the existence of array elements, use the built-in function
array_key_exists() instead of isset or empty. Don’t worry about performance:
HHVM heavily optimizes calls to array_key_exists().

unset is a bit different. There’s simply no reason to use it on a variable in Hack. If you
want to get the same effect, just assign null to the variable. In PHP, there’s one other
reason to use unset on a variable—to break a reference relationship—but in Hack
this isn’t necessary because references aren’t supported.

The one hole in functionality that this restriction creates is that you can’t remove ele‐
ments from an array in strict mode. The preferred alternative is to use a collection
(see Chapter 5) instead of an array. If that’s not feasible, you can work around this by
defining, in a partial-mode file, a helper function that uses unset.

Others
Other PHP features not supported in Hack include:

eval() and its close relative, create_function()
The effects of these functions are, of course, impossible to analyze statically. It’s
also generally bad programming practice to use functions like these. Usages of
eval() generally fall into two categories: simple enough that eval() isn’t neces‐
sary (in which case, the code can just be written normally instead); or complex
enough that they pose a significant correctness or security risk.

The extract() function
Using this function won’t result in an error from the typechecker, in any mode.
However, the typechecker makes no attempt to track its effects on the local vari‐
able environment; it will assume that all local variables have the same value after
a call to extract() as they did before.

The goto statement
This statement is the subject of a famous old debate among programmers, many
of whom have strong opinions one way or the other. There’s no point in rehash‐
ing the whole debate here; the important thing is that the Hack team comes down
on the “no” side, so Hack doesn’t allow goto.

Arguments to break and continue
The break and continue statements are not allowed to take arguments in Hack.
(In PHP, arguments are used to break or continue out of multiple nested loops—
e.g., break(2).)

Others | 89

Incrementing and decrementing strings
In Hack, the operators (++ and ––) can’t be applied to strings. In regular PHP,
doing this has a variety of interesting behaviors: ++ applied to "9" yields "10",
applied to "a" it yields "b", and applied to "z" it yields "aa". There is little practi‐
cal use for this sort of behavior, but if you need it, your only option is to code it
manually.

The and, or, and xor operators
Instead of the first two, use && and ||, respectively. Beware, though, they fall in a
different place in the order of operator precedence. Use parentheses to make sure
your expression is parsed the way you expect. There’s no exact alternative to the
xor operator. The closest alternative is the ^ operator, which implements bitwise
XOR as opposed to logical XOR; it also has different precedence.

90 | Chapter 4: PHP Features Not Supported in Hack

CHAPTER 5

Collections

PHP has only one built-in collection type: array. It presents an interface that is a set
of ordered key/value pairs. This interface allows it to serve the purpose of several dif‐
ferent data structures that programs in most languages typically use: vectors, sets, and
maps (also known as dictionaries).

Hack has several classes that provide specialized vector, set, and map functionality.
They allow for better understanding by both the Hack typechecker and human read‐
ers of code.

There are seven collection classes in Hack:

Vector

A mutable, ordered sequence of values, indexed by integers. The indices are the
integers between 0 and n–1, where n is the number of elements in the vector.

Map

A mutable, ordered set of unique keys, each of which maps to a value. The keys
may be integers or strings, and the values can be of any type. Unlike the map
types in many other programming languages, Hack Maps remember the order in
which their values were inserted. Of all the collection classes, Map is the most sim‐
ilar to PHP arrays.

Set

A mutable, ordered set of unique values. The values may be integers or strings.

Pair

An immutable sequence of exactly two values, indexed by the integers 0 and 1.
Pairs are a detail of the API to the other collection classes, and you generally
shouldn’t create them yourself; use tuples instead (see “Hack’s Type System” on
page 6).

91

ImmVector, ImmMap, and ImmSet
Immutable versions of Vector, Map, and Set, respectively.

Vector, Map, Set, and Pair represent the overwhelming majority of use cases for PHP
arrays.

In this chapter, we’ll see why and how to use Hack collection classes.

I’ll be using lowercase-v “vector” and capital-V Vector distinctly in
this chapter, and similarly for “map,” “set,” and “pair.” I’ll use “vec‐
tor” to refer to the general concept of an ordered sequence of val‐
ues, common to many programming languages. I’ll use Vector to
refer specifically to the class that Hack provides.
When I use the word “array” in this chapter, it specifically means
the PHP/Hack data type, used with the array keyword.

Why Does Map Retain Insertion Order?
This decision was a difficult one, and the factors behind it are a great demonstration
of how the pragmatic concerns of software engineering can override principles.

When Hack collections were first being developed, Map did not retain insertion order.
If an engineer needed to keep an ordering over the keys in a Map, the solution was a
Map plus a Vector, or something similar. From a language and library designer’s per‐
spective, this was ideal, affording maximum flexibility in Map’s implementation.

Then, two factors led to the creation of a new class, StableMap, which was a Map that
retained insertion order. The first factor was the desire to programmatically convert
array usage sites into collection usage sites. It’s practically impossible for a program to
tell whether a given array usage site depends on the array retaining insertion order, so
any such conversion would have had to use StableMap.

The second factor was interoperability. As with other Hack features, a primary goal
for the design of Hack collections was to make it easy to interoperate with existing
code that used arrays. We expected there to be a lot of conversions between arrays and
Maps, and if Map didn’t retain insertion order, these conversions would be lossy.

The presence of both StableMap and Map created a cognitive burden for engineers. In
PHP, nobody had ever had to think about whether to use an array with order reten‐
tion or without, because there was no choice. With collections, this became a signifi‐
cant choice. There was also API friction: if one module uses Maps and another module
uses StableMaps, how do they talk to each other? (There are interfaces like ConstMap
and MutableMap that could be used to mitigate this API friction, but that would only
have been more complexity for PHP and Hack engineers to deal with.)

92 | Chapter 5: Collections

In view of all this, we ultimately decided to make Map retain insertion order, and
delete StableMap. The calculus would have been quite different if retaining insertion
order everywhere had been bad for performance, but fortunately, it turned out not to
be. In HHVM, we were able to apply implementation tricks from regular PHP arrays
to erase the performance difference between StableMap and Map.

There’s an interesting nuance to the performance consideration: in practice, had we
decided to keep both Map and StableMap, we would have had to go out of our way to
make Map not appear to retain insertion order, to avoid people depending on that
behavior. That would have had a performance cost too.

Why Use Collections?
There is a single underlying reason to use collections instead of arrays: PHP arrays
are extremely flexible, but in practice, applications use them in one of a small number
of highly specific patterns: vectors, maps, and sets. Using the right type of collection
instead makes life easier for both humans and computers.

For human readers of code, seeing the names of specific collection classes makes it
clearer what their purpose is. This advantage becomes much more potent when com‐
bined with Hack’s type annotations: the purpose of a collection is made clear at every
abstraction boundary it passes through. This prevents mistakes and makes develop‐
ment faster and easier.

For computers, the smaller a collection’s set of functionality is, the easier it is to
understand the code around it. Arrays are particularly difficult for the Hack type‐
checker to understand, because they can be used in such a wide variety of ways. For
example, if you’re using an array as a vector and you pass it to a function that expects
a map-like array, that should be a type error, but the typechecker can’t tell when this
happens: it’s not possible, in general, to tell how an array is being used.

Hack is gradually adding solutions to this problem—shapes (see “Array Shapes” on
page 64) are part of this effort—but collections provide immediate relief.

There can be performance benefits to using specific collection classes too. As an
example, arrays generally allocate more memory than they use, so that they don’t have
to allocate more memory every time a value is added. However, some arrays are never
modified, so this extra capacity is wasted; there’s no way for a programmer to express
that an array is immutable. Hack collection classes do have this feature.

The higher-level reason to use collections is simply that collections are more in keep‐
ing with Hack’s general pro–static typing philosophical stance. The more you can
express a program’s behavior through static types, the better, for both humans and
computers. Collections are a wide-ranging, high-leverage way to do so.

Why Use Collections? | 93

1 It is not actually copied in memory at that point, either in standard PHP or in HHVM; instead, it is only
copied when it is modified. This is called copy-on-write. You may have heard statements like “PHP arrays are
copy-on-write,” which is true but describes implementation rather than semantics. Well, sort of. Copy-on-
write should be an implementation detail—it behaves as if the array were copied at the time of the assignment
—but it’s not quite. There are some obscure corner cases where the copy-on-write is detectable, although
those cases are arguably bugs in the language.

Collections Have Reference Semantics
If you’re writing a project in Hack from the ground up, the Hack collection classes
should be your first choice when you need collection functionality, for the reasons
documented previously.

If you’re working with a significant amount of preexisting PHP code, though, con‐
verting it to use collection classes instead of arrays can be quite challenging. The rea‐
son is one major semantic difference between arrays and collections: arrays have
value semantics, whereas collections have reference semantics.

These two concepts are represented by the two possible answers to this question: in
the following example, does the last statement print 'original' or 'new'?

$var_one = array('original');
$var_two = $var_one;
$var_two[0] = 'new';
echo $var_one[0];

The answer is 'original', which is consistent with value semantics. When you
assign the array to $var_two, the array is copied,1 so modifications to $var_two are
not reflected in $var_one (and vice versa).

Collections are the opposite; they have reference semantics, like all objects do in Hack
and PHP. If $var_one in our example were a Vector instead, the last statement would
print 'new'. The assignment $var_two = $var_one doesn’t copy the Vector, so the
modification to $var_two is reflected in $var_one.

This may seem like a fairly minor difference at first, but it has far-reaching implica‐
tions, and you need to be aware of it if you’re converting code that uses arrays to use
collections instead. In typical code, the pseudo-copying of arrays (as in the preceding
example) is ubiquitous: it happens any time you pass an array to a function, or return
an array from a function.

Here’s an example of a situation in which you need to consider this difference:

function get_items(): array<string> {
 static $cache = null;
 if ($cache === null) {
 $cache = do_expensive_fetch();
 }

94 | Chapter 5: Collections

 return $cache;
}

function main(): void {
 $items = get_items();
 $items[] = some_special_item();

 foreach ($items as $item) {
 // ...
 }
}

main() is modifying the value returned from get_items(), which caches the result of
do_expensive_fetch() in a static local variable. Because get_items() returns an
array, this code is correct: main() is working on a separate copy of the array from the
one stored in the static variable in get_items().

However, if this code is mechanically converted to use collections instead, so that
do_expensive_fetch() and get_items() return Vector<string> instead, the code
breaks. The Vector is never copied, so main()’s modification of the Vector will be
visible to any other caller of get_items().

Note that this is an example of memoization; you need to be aware of this issue when
using the special attribute __Memoize as well (see “Special Attributes” on page 71).

The first line of defense against this problem is immutability. get_items() should be
returning an immutable Vector, capturing the contract that callers should not be
modifying it. If they need to modify it, they should make a copy and modify that
instead (which is what is implicitly happening in the array-based code).

This is how get_items() should be implemented using collections (we’ll see the
meaning of the ConstVector type annotation in “Type Annotations for Collections”
on page 102):

function get_items(): ConstVector<string> {
 static $cache = null;
 if ($cache === null) {
 $cache = do_expensive_fetch();
 }
 return $cache->immutable();
}

Every collection class has a method called immutable() that returns an immutable
version of itself. This doesn’t copy the collection’s underlying storage in memory—in
fact, it results in behavior very similar to PHP arrays’ copy-on-write—so it’s cheap.
This way, if any caller of get_items() tries to modify the Vector it returns, an
InvalidOperationException will be thrown, clearly showing you what needs to be
changed.

Collections Have Reference Semantics | 95

Using Collections
With HHVM, the collection classes can be used even in regular PHP files (i.e., non-
Hack files). You have to prefix their class names with the HH namespace (e.g., HH\Vec
tor), whereas in Hack files the namespace isn’t necessary.

Code that uses collections looks almost identical to code that uses arrays. Collections
are built into the language and runtime, so they work seamlessly with many of the
language constructs you already use with arrays—we’ll look at those in this section.
Each collection class also has a full-featured object-oriented interface, the most
important parts of which we’ll see here and in “Type Annotations for Collections” on
page 102.

Literal Syntax
Hack adds special syntax for creating instances of collection classes, called collection
literal syntax. It consists of the name of the class, followed by a brace-enclosed list of
items. The items are separated by commas. In Map literals, each item is the key, fol‐
lowed by =>, followed by the value, just as in PHP array literal syntax:

$vector = Vector {'one', 'two', 'three'};
$map = Map {'one' => 1, 'two' => 2, 'three' => 3};
$set = Set {'one', 'two', 'three'};
$pair = Pair {'one', 'two'};

Collection literal syntax is allowed in any position where regular PHP array() syntax
is allowed, including in the initializer expressions of object and class properties. This
is the reason why it exists: even though collection literal syntax entails object creation
(which usually isn’t allowed in these positions), it is legal anywhere array() is legal.
For example:

class Pluralizer {
 private static Map<string, string> $cache = Map {};
}

Collection literals in this position are not allowed to contain any expression that is
itself not allowed in this position. array() syntax has the same restriction. For exam‐
ple, this is not valid syntax, because function calls are not valid class property initial‐
izers:

class Pluralizer {
 // Syntax error
 private static Map<string, string> $cache =
 Map {'child' => fetch_plural_from_db('child')};
}

Note that although the collection classes are generic, there are no type arguments in
literal syntax:

96 | Chapter 5: Collections

2 This is actually not the same logic as is used when converting strings to integers. The string must be the deci‐
mal representation of an integer between –263 and 263 – 1 inclusive, with no leading or trailing whitespace or
leading zeros. This “feature” is very bad for performance: on every array lookup, which is one of the most
common operations in any PHP or Hack program, the key has to be checked for these conditions. There are
some possible micro-optimizations, but it still incurs a noticeable performance cost.

$vec = Vector<int> {1, 2, 3}; // Syntax error

Instead, the typechecker will silently track the types of the collection’s contents, and
only check for errors when you pass the collection through a type annotation (e.g., by
assigning it to a property with a type annotation). See “Unresolved Types, Revisited”
on page 47 for full details.

Reading and Writing
The square-bracket syntax that you use with arrays is also what you use with Vector,
Map, and Pair:

$vector = Vector {'zero', 'one', 'two'};
echo $vector[1]; // Prints 'one'

$map = Map {};
$map['zero'] = 0;

$pair = Pair {'first', 'second'};
echo $pair[0]; // Prints 'first'

If you try to read an element that doesn’t exist, or to set an element in a Vector that is
beyond the Vector’s bounds, an OutOfBoundsException will be thrown. Accessing
elements by reference (as in $ref = &$array[0] in regular PHP) is not allowed with
collections; doing so results in a fatal error.

You can’t use this syntax to modify Sets. You can use it to read from Sets, but you
shouldn’t. The most common operation on a Set is to test whether a value is in it, and
the square-bracket syntax is unsuitable for that: if the value is not in the Set, it will
throw an OutOfBoundsException. For membership testing, use the contains()
method (see “Type Annotations for Collections” on page 102) instead:

if ($the_list->contains($user_id)) {
 echo "You're on the list";
}

Arrays have a quirky behavior wherein keys that are strings containing the represen‐
tation of an integer2 are treated as the integer instead. For example:

$array = array('3' => 'three');
echo $array[3]; // Prints 'three'

Using Collections | 97

$array = array(3 => 'three');
echo $array['3']; // Prints 'three'

Hack collections do not do this. Map and Set treat the string "3" and the integer 3 as
distinct keys, and if you use anything other than an integer to index into a Vector or
Pair, an InvalidArgumentException will be thrown.

To test whether a key exists in a Map or an element exists in a Set, you can use the
containsKey() and contains() methods, respectively:

$map = Map {'one' => 'un', 'two' => 'deux'};
if ($map->containsKey('two')) {
 echo "We know how to say 'two' in French!";
}

$set = Set {'one', 'two'};
if ($set->contains('one')) {
 echo "'one' is in the set";
}

You can also use isset and empty to test if a key or element exists, but you should
always use containsKey() or contains() if possible. isset and empty aren’t allowed
in Hack strict mode—see “isset, empty, and unset” on page 88 for the reasons why.
The only reason you may want to use them on collections is so that you can write
code that accepts both arrays and collections seamlessly.

Like empty arrays, empty collections of any type evaluate to false when converted to
bool. In particular, they’re treated as false in conditional statements like if and
while, and in ternary expressions:

$vector = Vector {};
if ($vector) {
 // Code in here will not be executed
}

$description = ($vector ? (string)$vector : '[none]');

Iterating

You can iterate over collections with foreach:

$vector = Vector {'zero', 'one'};
foreach ($vector as $value) {
 echo $value;
}

$map = Map {'one' => 'un', 'two' => 'deux'};
foreach ($map as $eng => $fr) {
 echo $eng . ' in French is ' . $fr;
}

98 | Chapter 5: Collections

Adding or removing an item in a collection while iterating over it with foreach is not
allowed; doing that will result in an InvalidOperationException being thrown.

foreach by reference, as in foreach ($vector as &$value), is also not allowed;
doing that will result in a fatal error. You can approximate this behavior by adding the
key or index as an iteration variable, as in foreach ($vector as $index =>

$value), and modifying the value that way:

// Old code with array
$array = array(0, 1, 2);
foreach ($array as &$value) {
 $value *= 10;
}

// Equivalent code with Vector
$vector = Vector {0, 1, 2};
foreach ($vector as $index => $value) {
 $vector[$index] = $value * 10;
}

Adding values

You can append values to Vectors, and add them to Sets, with the normal empty-
square-bracket syntax. In the case of Sets, if the value already exists in the Set, there’s
no effect:

$vector = Vector {'zero'};
$vector[] = 'one';
print_r($vector); // Prints: "HH\Vector Object([0] => zero, [1] => one)"

$set = Set {'eins'};
$set[] = 'eins'; // Value is already in $set; nothing happens
print_r($set); // Prints: "HH\Set Object(eins)"

The same syntax works with Maps, but because you have to specify both a key and a
value, the righthand side of the expression must be a Pair of key and value:

$map = Map {};
$map[] = Pair {'one', 'eins'};
print_r($map) // Prints: "HH\Map Object([one] => eins)"

You can also use the add() method on Vectors and Sets, passing the value to be
added as the only argument. Map has the add() method, too; pass it a Pair of key and
value.

Deleting values

To delete a value from a Vector, use the removeKey() method:

Using Collections | 99

$vec = Vector {'first', 'second', 'third'};
$vec->removeKey(1);
print_r($vec); // Prints: "HH\Vector Object([0] => first, [1] => third)"

Note that the elements that are after the removed one are all shifted down by one
index, so that the index 1 now holds the value 'third'. This is in line with vector
semantics, which state that all indices between 0 and n–1, inclusive, are valid (where n
is the number of elements in the vector).

The method to remove a key from a Map is also called removeKey(). To remove a
value from a Set, use the method remove().

You can also delete items from Maps and Sets using the unset statement:

$map = Map {'one' => 'un', 'two' => 'deux'};
unset($map['one']);
print_r($map); // Prints: "HH\Map Object([two] => deux)"

However, again, you should generally use the methods instead, as unset isn’t allowed
—for good reason—in strict mode. You can use unset if you need to write code that
accepts both arrays and collections seamlessly.

unset does not work with Vectors. This is because the semantics of removing ele‐
ments from Vectors don’t match the semantics of removing elements from arrays.
Unsetting an element of an array (even one that’s being used like a vector) leaves a
“hole,” where the array’s valid indices are not contiguous, thus breaking vector
semantics:

$arr = array('zero', 'one', 'two');
unset($arr[1]);
print_r($arr); // Prints: "Array([0] => zero, [2] => two)"

Operators

Collections can be compared for equality with the == operator. This is how it works:

1. If the two sides are not the same kind of collection (disregarding mutability), the
result is false. For example, a Vector may compare equal to an ImmVector, but it
will never compare equal to a Map.

2. If the two sides are Vectors or ImmVectors, the result is true if and only if both
sides contain the same number of values, and the values at each index compare
equal using ==. For example:

$vector = Vector {1, 2};
$immvector = ImmVector {1, 2};
$strings = Vector {'1', '2'};
$wrong_order = Vector {2, 1};

var_dump($vector == $immvector); // true

100 | Chapter 5: Collections

var_dump($vector == $strings); // true, because 1 == '1', 2 == '2'
var_dump($vector == $wrong_order); // false

3. If the two sides are Pairs, the result is true if and only if the values at each index
compare equal using ==.

4. If the two sides are Sets or ImmSets, the result is true if and only if both sides
contain the same number of values, and every element in one side exists in the
other side. Unlike with Vectors, these existence tests are done with === identity
comparison. Order is irrelevant. For example:

$set = Set {1, 2};
$immset = ImmSet {1, 2};
$strings = Set {'1', '2'};
$wrong_order = Set {2, 1};

var_dump($set == $immset); // true
var_dump($set == $strings); // false
var_dump($set == $wrong_order); // true

5. If the two sides are Maps or ImmMaps, the result is true if and only if both sides
contain the same number of keys, every key in one side exists in the other side
(using identity comparison), and identical keys map to equal values (using ==
comparison). Order is irrelevant. For example:

$map = Map {10 => 20, 20 => 40};
$string_keys = Map {'10' => 20, '20' => 40};
$string_values = Map {10 => '20', 20 => '40'};

var_dump($map == $string_keys); // false
var_dump($map == $string_values); // true

Collections can be compared for identity with the === operator. This only evaluates to
true if both sides of the operator are the same object. If they are distinct objects, ===
comparison will evaluate to false even if the two objects have the same contents:

$vector = Vector {1, 2};
$another_variable = $vector;
var_dump($vector === $another_variable); // true

$other = Vector {1, 2};
var_dump($vector === $other); // false

List assignment with a collection on the righthand side works just as if the collection
were an array. List assignment is shorthand for indexing into the array or collection
on the righthand side with integer keys, so this is the behavior for Maps and Sets (the
internal ordering of the Map or Set doesn’t matter):

$vector = Vector {'one', 'two'};
list($one, $two) = $vector;

Using Collections | 101

$map = Map {1 => 'one', 0 => 'zero'};
list($zero, $one) = $map; // $zero is 'zero' and $one is 'one'

Immutable collections

Vector, Map, and Set have immutable equivalents: ImmVector, ImmMap, and ImmSet,
respectively. (Pair is immutable and has no mutable equivalent.) They don’t imple‐
ment any methods that modify their contents, and they can’t be modified through
square-bracket syntax or unset; if you try to do so, an InvalidOperationException
will be thrown. The contents of immutable collections are fixed when they’re created.
They can be created with literal syntax—just use ImmVector, ImmMap, or ImmSet as the
class name—or through their constructors or conversion from another collection (see
“Concrete Collection Classes” on page 110).

You should generally use immutable collections whenever possible. If some data isn’t
supposed to change, enforcing that contract closes off a possible source of bugs. It
also encodes more information about the program’s behavior in the type system,
which is always a good thing.

Type Annotations for Collections
Most of the time, you shouldn’t use the collection class names themselves in type
annotations. Hack provides a large set of interfaces that describe elements of a collec‐
tion’s functionality, and you should generally use those in type annotations.

For example, if you’re writing a function that takes a set of values as an argument and
doesn’t modify it, you should annotate the argument as ConstSet, an interface, rather
than Set, the concrete class. This increases expressiveness, which helps the type‐
checker catch more mistakes: if you try to modify the set within the function, there
will be a type error. It also makes the function’s contract clear to callers: it wants a set,
and it won’t modify it.

In this section, we’ll see the interfaces that you’re most likely to use. This will double
as a natural way to present the object-oriented interfaces to the collection classes. If
you just want to see the collection class APIs all in one, skip to “Concrete Collection
Classes” on page 110; that section doesn’t have explanations for the methods, but
many of them are self-explanatory, especially with type annotations.

Core Interfaces
The core collection interfaces are:

102 | Chapter 5: Collections

Traversable<T>

Anything that can be iterated over using foreach without a key is Traversable.
Within such a foreach, the iteration variable will have type T. This is the only
thing Traversable guarantees; it does not declare any methods.

The most important thing about Traversable is that regular PHP arrays are
Traversable. This is unusual, because arrays are not objects and, in general, only
objects can implement interfaces. Traversable is special-cased in the runtime to
have this behavior.

In addition to arrays and collections, Traversable includes objects that imple‐
ment Iterator.

Traversable can help bridge the gap between arrays and collections. If the only
thing you do with a function argument is iterate over it using foreach without a
key, irrespective of whether it’s an array, a collection, or something else, you
should annotate it as Traversable.

Note that if you’re implementing your own class that you want to be usable with
foreach, you should not make it implement Traversable. Use Iterable
(described shortly) instead.

KeyedTraversable<Tk, Tv> extends Traversable<Tv>

KeyedTraversable is similar to Traversable, but additionally indicates that it’s
valid to include a key in the foreach statement. Regular PHP arrays are KeyedTra
versable. The following example shows the difference between Traversable and
KeyedTraversable:

function notKeyed(Traversable<T> $traversable): void {
 // Not valid
 foreach ($traversable as $key => $value) {
 // ...
 }
}

function keyed(KeyedTraversable<Tk, Tv> $traversable): void {
 // Valid
 foreach ($traversable as $key => $value) {
 // $key is of type Tk
 // $value is of type Tv
 }
}

Container<T> extends Traversable<T>

Container is exactly like Traversable, except that it does not include objects that
implement Iterator. In other words, it includes only arrays and instances of col‐

Type Annotations for Collections | 103

lection classes. The only thing you can do with a Container is to iterate over it
with foreach.

KeyedContainer<Tk, Tv> extends KeyedTraversable<Tk, Tv>

Similarly, KeyedContainer is like KeyedTraversable, except that it is restricted to
arrays and collection classes other than Set and ImmSet.

Indexish<Tk, Tv> extends KeyedTraversable<Tk, Tv>

Indexish signifies anything that can be indexed into using square-bracket syntax:
$indexish[$key]. It declares no methods. Like Traversable and KeyedTraversa
ble, it is a special interface that is “implemented” by arrays as well as collections
and other objects that support this syntax.

IteratorAggregate<T> extends Traversable<T>

This interface is for objects that can produce an Iterator object to iterate over
their contents. Unlike the previous three interfaces, it is not implemented by
arrays. It’s very unlikely that you’ll ever use IteratorAggregate in type annota‐
tions—either Iterable or Traversable is probably more appropriate. The inter‐
face declares a single method:

• getIterator(): Iterator<T> returns an iterator over the object’s contents.
The Iterator interface is the one from standard PHP.

Iterable<T> extends IteratorAggregate<T>

This is where the real capabilities of collections begin to come in. The Iterable
interface declares several methods:

• toArray(): array converts the collection to an array. Note that the return
value does not have a type argument: it’s simply array instead of array<T>.

• toValuesArray(): array converts the collection to an array but discards the
keys, replacing them with the integers 0 to n–1, in order.

• toVector(): Vector<T> converts the collection to a Vector. This is very
similar to toValuesArray(); if the collection has keys (i.e., is a Map), the keys
will be discarded.

• toImmVector(): ImmVector<T>: converts to an immutable Vector.
• toSet(): Set<T> converts the collection to a Set, discarding the keys, if any.
• toImmSet(): ImmSet<T> converts to an immutable Set.
• values(): Iterable<T> returns an Iterable object yielding the collection’s

values (discarding keys).
• map<Tm>(function(T): Tm $callback): Iterable<Tm> returns an
Iterable object yielding the collection’s values after they have been passed

104 | Chapter 5: Collections

through the given function. It is much like the standard PHP array_map()
function. Here’s an example that multiplies the elements of a Vector by 10:

$nums = Vector {1, 2, 3};
print_r($nums->map(function($x) { return $x * 10; }));

HH\Vector Object
(
 [0] => 10
 [1] => 20
 [2] => 30
)

• filter(function(T): bool $callback): Iterable<T> returns an
Iterable object yielding the values from the collection that make the given
function return true. Here’s an example of picking out even numbers from a
Vector:

$nums = Vector {1, 2, 3, 4};
print_r($nums->filter(function($x) { return $x % 2 === 0; }));

HH\Vector Object
(
 [0] => 2
 [1] => 4
)

• zip<Tz>(Traversable<Tz> $traversable): Iterable<Pair<T, Tz>>

returns an Iterable object that pairs up the values from this collection and
the values from the passed-in Traversable. An example is the best way to
explain it:

$english = Vector {'one', 'two', 'three'};
$french = Vector {'un', 'deux', 'trois'};
print_r($english->zip($french));

This will output:
HH\Vector Object
(
 [0] => HH\Pair Object
 (
 [0] => one
 [1] => un
)

 [1] => HH\Pair Object
 (
 [0] => two
 [1] => deux
)

Type Annotations for Collections | 105

 [2] => HH\Pair Object
 (
 [0] => three
 [1] => trois
)

)

If the two collections have different counts, the resulting Iterable will have
the smaller count.

KeyedIterable<Tk, Tv> extends Iterable<Tv>

This is analogous to Iterable, but with the key’s type included. It adds some new
methods and overrides some from Iterable with different return types. The new
methods are listed first:

• toKeysArray(): array returns an array of the Iterable’s keys.
• toMap(): Map<Tk, Tv> returns the Iterable converted to a Map.
• keys(): Iterable<Tk>* returns an Iterable over this Iterable’s keys.
• mapWithKey<Tm>(function(Tk, Tv): Tm $callback): KeyedItera

ble<Tk, Tm> is like map() but passes keys to the callback function as well as
values.

• filterWithKey(function(Tk, Tv): bool $callback): KeyedItera

ble<Tk, Tv> is like filter() but passes keys to the callback function as well
as values.

• getIterator(): KeyedIterator<Tk, Tv> is an override with a more spe‐
cific return type.

• map<Tm>(function(T): Tm $callback): KeyedIterable<Tk, Tu> is an
override with a more specific return type.

• filter(function(T): bool $callback): Iterable<T> is an override with
a more specific return type.

• zip<Tz>(Traversable<Tz> $traversable): Iterable<Pair<T, Tz>> is an
override with a more specific return type.

General Collection Interfaces
There are three core interfaces that declare the most basic collection functionality.
You’ll essentially never use these in type annotations, as they’re too nonspecific to be
useful that way, but we’ll look at them here to learn these core functions:

106 | Chapter 5: Collections

3 This section is not telling the whole story. There are actually six other interfaces in the picture, called SetAc
cess, ConstSetAccess, and similar. I’m not going into all the details of those because they’re not used in type
annotations and aren’t essential to using collections.

ConstCollection<T>

A read-only collection of values of type T. It says nothing about uniqueness of
values, ordering, underlying implementation, or anything.

Every concrete collection class implements this interface (indirectly). It may seem
unsuitable for Map, because it only has one type parameter and Map needs two
(one for keys and one for values), but Maps do implement ConstCollection: a
Map with key type Tk and value type Tv implements ConstCollection<Pair<Tk,
Tv>>.

This interface declares three methods:

• count(): int returns the number of values in the collection.
• isEmpty(): bool returns whether the collection is empty.
• items(): Iterable<T> returns a value that can be iterated over using
foreach, and will yield every value in the collection.

OutputCollection<T>

This interface declares two methods that allow adding values to the collection
(every mutable collection class implements this):

• add(T $value): this adds the given value to the collection and returns the
collection itself.

• addAll(?Traversable<T> $values): this iterates over the given
Traversable and adds each resulting value to the collection. It returns the
collection itself.

Collection<T> extends ConstCollection<T>, OutputCollection<T>

This interface declares no methods; it just serves to combine the read-only
behavior of ConstCollection and the write-only behavior of OutputCollection.

Specific Collection Interfaces
Now, at last, we’ll get into specific collection functionality. We’ll look at six collection
interfaces and the methods they declare.3 They’re meant to describe functionality
independent of implementation. For now, there’s only one concrete implementation
of each, but there may be others in the future—for example, one can imagine a linked
list–based class that implements MutableVector.

Type Annotations for Collections | 107

4 You may wonder why this interface extends KeyedIterable<mixed, T> instead of KeyedIterable<T, T>. The
reason is a subtle problem with the type of map(). KeyedIterable<T, T> would declare a map<Tm>() function
that returned KeyedIterable<T, Tm>. Then, ConstSet<T> would override it with a version that returned Con
stSet<Tm>. The problem is that these are not compatible: in KeyedIterable<T, Tm>, the key and value types
may be different, but in ConstSet<Tm>, they cannot be different. Making the key type mixed is slightly inele‐
gant, and this may change in the future with additional typechecker functionality.

All of these interfaces either directly or indirectly extend KeyedIterable, which
declares several methods with KeyedIterable as their return type, such as map() and
filter(). All of these interfaces override such methods with specific return types—
for example, ConstVector<T> declares filter(function(T): bool $callback):

ConstVector<T>. These overridden methods are omitted in the following list:

ConstSet<T> extends ConstCollection<T>, KeyedIterable<mixed, T>

This represents a read-only set of values of type T.4 It declares only one method
directly:

• contains(T $value): bool returns whether the given value is in the set.
The semantics are the same as === comparison: the result is true if and only
if there is a value `in the set that compares identical to $value using ===.

MutableSet<T> extends ConstSet<T>, Collection<T>

This represents a modifiable set of values of type T. It extends ConstSet and
declares two methods directly:

• clear(): this removes all values from the set, and returns the set.
• remove(T $value): this removes the given value from the set (doing noth‐

ing if the value is not in the set), and returns the set. As with contains(), the
semantics are the same as === comparison.

ConstVector<T> extends ConstCollection<T>, KeyedIterable<int, T>

This represents a read-only sequence of values of type T, indexed by integers. It
declares three methods directly:

• at(int $index): T returns the value at the given index, or throws an excep‐
tion if the index is out of bounds.

• containsKey(int $index): bool returns whether the given index is in
bounds.

• get(int $index): ?T returns the value at the given index, or null if the
index is out of bounds.

108 | Chapter 5: Collections

MutableVector<T> extends ConstVector<T>, Collection<T>

This represents a modifiable sequence of values of type T. It extends ConstVector
and adds these methods:

• clear(): this removes all values from the vector.
• removeKey(int $index): this removes the value at the given index. In line

with vector semantics, the values at higher indices will all be shifted down by
one, so that the indices remain contiguous.

• set(int $index, T value): this sets the given value at the given index,
throwing an exception if the index is out of bounds. If you want to extend
the vector, use add().

• setAll(KeyedTraversable<int, T> $kt): this iterates over the given Key
edTraversable and calls set() with each key/value pair in it.

ConstMap<Tk, Tv> extends ConstCollection<Pair<Tk, Tv>>, KeyedItera

ble<Tk, Tv>

This represents a read-only mapping of keys of type Tk to values of type Tv. It
declares methods that resemble those of ConstSet and ConstVector:

• at(Tk $key): Tv returns the value for the given key, or throws an exception
if the key isn’t in the map.

• contains(Tk $key): bool returns whether the given key exists in the map.
• containsKey(Tk $key): bool is the same as contains(). The duplication

of methods is just a quirk of the inheritance hierarchy of these interfaces.
• get(Tk $key): ?Tv returns the value for the given key, or null if the key

isn’t in the map.

MutableMap<Tk, Tv> extends ConstMap<Tk, Tv>

This represents a modifiable mapping of keys to values. Again, the methods that
it declares are a combination of the methods from MutableVector and Mutable
Set:

• clear(): this removes all keys and values from the map.
• remove(Tk $key): this removes the value at the given key.
• removeKey(Tk $key): this is exactly the same as remove().
• set(Tk $key, Tv $value): this sets the given value at the given key.
• setAll(KeyedTraversable<Tk, Tv> $kt): this iterates over the given Key
edTraversable and calls set() with each key/value pair in it.

Type Annotations for Collections | 109

Concrete Collection Classes
Finally, to bring all this together, we’ll look at the full type-annotated APIs to all the
collection classes. Each one implements one of the six interfaces from the previous
section, and adds a few more useful methods.

Only methods defined by the classes themselves, and not declared by any of the inter‐
faces we just saw, are listed here:

ImmVector<T> implements ConstVector<T>

• __construct(?Traversable<T> $values) creates a new ImmVector with the
contents of the given Traversable.

• linearSearch(T $value): int performs a linear search for the given value
within the ImmVector and returns the index at which the value was found, or
-1 if it wasn’t found.

• __toString(): string just returns "ImmVector".

Vector<T> implements MutableVector<T>

• __construct(?Traversable<T> $values) creates a new Vector with the
contents of the given Traversable.

• linearSearch(T $value): int performs a linear search for the given value
within the Vector and returns the index at which the value was found, or -1
if it wasn’t found.

• pop(): T removes the last value from the Vector and returns it.
• reserve(int $size): void hints to the Vector that it should reallocate

memory to hold the given number of values. The Vector may not do exactly
that; this is just a hint.

• resize(int $size, T $value): void changes the size of the Vector to the
passed size. If the new size is smaller than the current size, values at the end
of the Vector are removed. If the new size is larger, the new values are set to
$value.

• reverse(): void reverses the Vector in place.
• shuffle(): void randomly rearranges the values in the Vector.
• splice(int $offset, ?int $len = NULL): void removes $len values

from the Vector, starting at $offset. If $len is not passed, it removes every
value from $offset to the end of the Vector. This is similar to the built-in
function array_splice().

• __toString(): string just returns "Vector".

110 | Chapter 5: Collections

ImmSet<T> implements ConstSet<T>

• __construct(?Traversable<T> $values) creates a new ImmSet with the
contents of the given Traversable.

• fromArrays(...): ImmSet<T> is a static method that takes a variable
number of arguments, which must all be arrays, and creates an ImmSet from
all their contents.

• fromItems(?Traversable<T> $items): ImmSet<T> is a static method that
creates an ImmSet from the given Traversable.

• __toString(): string just returns "ImmSet".

Set<T> implements MutableSet<T>

• __construct(?Traversable<T> $values) creates a new ImmSet with the
contents of the given Traversable.

• fromArrays(...): Set<T> is a static method that takes a variable number of
arguments, which must all be arrays, and creates an ImmSet from all their
contents.

• fromItems(?Traversable<T> $items): Set<T> is a static method that cre‐
ates an ImmSet from the given Traversable.

• removeAll(?Traversable<T> $values): Set<T> removes all the values in
the given Traversable from the set, and returns the set itself.

• __toString(): string just returns "Set".

ImmMap<Tk, Tv> implements ConstMap<Tk, Tv>

• __construct(?KeyedTraversable<Tk, Tv> $values) creates a new ImmMap
with the contents of the given Traversable.

• fromItems(?Traversable<Pair<Tk, Tv>> $items): ImmMap<T> is a static
method that creates an ImmMap from the given Traversable.

• __toString(): string just returns "ImmMap".

Map<Tk, Tv> implements MutableMap<Tk, Tv>

• __construct(?KeyedTraversable<Tk, Tv> $values) creates a new ImmMap
with the contents of the given Traversable.

• fromItems(?Traversable<Pair<Tk, Tv>> $items): ImmMap<T> is a static
method that creates an ImmMap from the given Traversable.

• __toString(): string just returns "Map".

Type Annotations for Collections | 111

Interoperating with Arrays
Like other Hack features, collections were designed with interoperability in mind. A
codebase can be gradually converted from using arrays to using collections.

Conversion to Arrays
All Hack collections can be converted to arrays with a cast expression, or with the
toArray() method:

$vector = Vector {'first', 'second'};
print_r((array)$vector); // Prints: Array([0] => first, [1] => second)
print_r($vector->toArray()); // Same

The conversions are straightforward:

• Vectors and ImmVectors convert to arrays where the keys are the integer indices
of the values, in the same order.

• Maps and ImmMaps convert to arrays with the same key/value pairs, in the same
order.

• Sets and ImmSets convert to arrays with each key mapping to itself, in the same
order.

• Pairs convert to arrays with the keys 0 and 1 (integers) in that order, mapping to
the corresponding values.

There is a small wrinkle in the case of integer-like string keys (see “Reading and Writ‐
ing” on page 97) in Maps and Sets. If the Map or Set contains keys that conflict with
each other in this way, an E_WARNING-level error will be raised. The conflicting keys
will reduce to one integer key in the resulting array, and it will map to the last value
under the conflicting keys:

<?php
$map = Map {10 => 'int', '10' => 'string'};
$array = (array)$map;
// Warning: Map::toArray() for a map containing both int(10) and string('10')
var_dump($array); // Prints: array(1) { [10]=> string(6) "string" }

$set = Set {10, "10"}
$array = (array)$set;
// Warning: Set::toArray() for a map containing both int(10) and string('10')
var_dump($array); // Prints: array(1) { [10]=> string(2) "10" }

Use with Built-In and User Functions
Hack has a lot of built-in functions that can take arrays as arguments. There are sev‐
eral different ways in which these have been adapted to work with collections.

112 | Chapter 5: Collections

The sort built-ins
Hack has a wide variety of functions that are used to sort arrays. All of these have
been adapted to work with collections as well, but each one only works with certain
types of collections.

• Vectors only work with sort(), rsort(), and usort(). All the other sorting
functions are concerned with keys, which doesn’t make sense for a Vector.

• Maps and Sets only work with asort(), arsort(), ksort(), krsort(), usort(),
uasort(), uksort(), natsort(), and natcasesort(). Note that for Sets, sorting
by key is the same as sorting by value.

• Immutable collections and Pairs aren’t supported because they’re immutable,
and these functions sort in place. Make a mutable copy of the collection and sort
that instead.

Other built-ins
The remaining built-ins that deal with arrays take a variety of approaches. There are a
few specific kinds to look at first:

• Four built-ins that modify arrays have been adapted to work with collections:
— array_pop()

— array_push()

— array_shift()

— array_unshift()

The rest have not. Note that array_push() and array_unshift() support only
Vector and Set.

• Built-ins that read or modify arrays’ internal pointers, such as current() and
reset(), don’t work with collections at all, because collections don’t have an
equivalent of Hack arrays’ internal pointers.

• Debugging and introspection functions produce output for collections similar to
what they produce for arrays. For example, this:

var_dump(array(10, 20));
var_dump(Vector {10, 20});

produces:
array(2) {
 [0]=>
 int(10)
 [1]=>
 int(20)

Interoperating with Arrays | 113

5 For efficiency, some of these built-ins have been adapted to use the collection directly, without converting it to
an array, but the effect is exactly the same.

}
object(HH\Vector)#1 (2) {
 [0]=>
 int(10)
 [1]=>
 int(20)
}

The functions are:
— debug_zval_dump()

— print_r()

— var_dump()

— var_export()

• serialize() can serialize collections, but the resulting serialized string can only
be unserialized by HHVM. (Collections aren’t serialized the same way as other
objects.)

The most common case among the remaining built-ins is that they have a parameter
that must be an array and is not by-reference. Examples of this include count() and
array_diff(). In cases like this, if you pass a collection as that parameter, it will be
automatically converted to an array,5 with no warning or error.

The last, and trickiest, category of built-ins consists of the ones that adapt their
behavior based on the types of the arguments they’re passed. apc_store() is an
example: if the first argument is a string, a single value is stored in the Alternative
PHP Cache (APC); but if it’s an array, all the key/value mappings in the array are
stored in APC. In general, built-ins like these do not support collections. The lone
exception in HHVM 3.6 is implode().

Non-built-in functions

Non-built-in functions with an array typehint will implicitly convert passed-in col‐
lections to arrays, but there will be an E_NOTICE-level error when doing so. The
rationale for this behavior is that this code is likely under your control, so you can
modify it to have a collection typehint, or Indexish, or Traversable, or whatever is
appropriate. However, it may not be under your control (e.g., it could be in a third-
party library), so making this a hard error like a fatal or an exception is too strict. For
example, this code:

114 | Chapter 5: Collections

function examine(array $items) {
 if (is_array($items)) {
 echo "It's an array!";
 }
}

examine(Vector {1, 2, 3});

produces the following output:

Notice: Argument 1 to examine() must be of type array, HH\Vector given;
argument 1 was implicitly cast to array
It's an array!

By contrast, if you pass an array to a user function that expects a collection, no
implicit conversion will happen, and the typehint will fail.

Interoperating with Arrays | 115

CHAPTER 6

Async

Typical web apps will need to start time-consuming external operations and wait for
them to finish. They make queries to databases, which can involve waiting for a
server across a network to read from a spinning disk. They might use external APIs,
which can involve making HTTP or HTTPS requests across the Internet. These can
take a lot of time, and if the app can’t multitask, it will waste time waiting for those
operations to finish, as it can’t do anything useful in the meantime.

It gets worse: if a non-multitasking app has multiple time-consuming operations that
could be done simultaneously (e.g., two independent database queries), it can’t. It has
to wait for one to finish, then start the next and wait for that to finish, and so on. This
inefficiency adds up quickly and is tremendously wasteful; for high-traffic web apps,
some form of multitasking that gets around these problems is a necessity. Some PHP
extensions, like cURL and MySQLi, have support for executing multiple operations at
a time, but they don’t interoperate with each other.

In Figure 6-1, for example, the two queries could run in parallel, but with no way to
multitask, they must run one at a time.

Figure 6-1. Two database queries, without async

Like PHP, Hack doesn’t support multithreading, so web apps in Hack need some
other form of multitasking.

117

That’s the purpose of async. It offers a way to implement cooperative multitasking, in
which tasks voluntarily and explicitly cede the CPU to one another. The opposite is
preemptive multitasking, in which tasks are forcibly interrupted by the task manager.

Cooperative multitasking has several advantages over preemptive multitasking. Pre‐
emptive multitasking requires significant care to use safely. In the preemptive model,
concurrency safety has to be pervasive; you have to protect critical sections and syn‐
chronize access to shared memory. In cooperative multitasking, none of that applies.
Because each task gets to control when it yields to other tasks, it doesn’t have to go
out of its way to protect critical sections: all it has to do is avoid breaking them.

Async provides syntax for giving up the CPU to other async tasks, as well as infra‐
structure within HHVM (the scheduler) that manages the cooperative multitasking,
deciding which async tasks to run and when. Figure 6-2 shows how cooperative
multitasking can significantly reduce the end-to-end time of the two queries from
Figure 6-1, by doing the second query while waiting for the first to complete.

Figure 6-2. The same two queries, with async

In this chapter, we’ll see what async functions look like, how to use them, how to
structure your code around them, and how to use the async extensions that HHVM
provides.

Introductory Examples
In this section, we’ll look at a few small examples of async functions, just to give you
an idea of what they look like and how async code is structured. We’ll gloss over most
of the details for now, and get into all the specifics in the rest of the chapter.

There are two syntactic differences between async functions and regular functions.
Async functions have the async keyword immediately before the function keyword
in their headers, and they can use the await keyword in their bodies. Here’s the sim‐
plest possible example of an async function:

async function hello(): Awaitable<string> {
 return 'hello';
}

Methods, both static and non-static, can be async as well:

118 | Chapter 6: Async

class C {
 public static async function hello(): Awaitable<string> {
 return 'hello';
 }
 public async function goodbye(): Awaitable<string> {
 return 'goodbye';
 }
}

Closures can also be async, whether they use PHP closure syntax or Hack lambda
expression syntax (see “Lambda Expressions” on page 66):

$hello = async function(): Awaitable<string> { return 'hello'; };
$goodbye = async () ==> 'goodbye';

There are two important things to note about all these examples. First, async func‐
tions don’t necessarily need to be inherently asynchronous at all; the examples are all
returning a constant result. Second, async functions have a special return type. The
bodies of these functions look as if they’re returning strings, but at runtime, that’s not
what happens. A call to an async function returns an object that represents a result
that may or may not be ready—an object that implements the interface Awaitable, as
the return type annotations say. From that object, you can retrieve the value that the
async function gives to its return statement.

The return types of async functions are unique in that the type
argument to Awaitable is not erased at runtime. The runtime
checks values passed to return statements in async functions
against that type argument, and raises catchable fatal errors if the
checks fail, like it does with any other runtime type annotation fail‐
ure:

<?hh // decl
// Decl mode to silence typechecker error

async function f(): Awaitable<string> {
 // Catchable fatal error at runtime
 return 100;
}

You get the value out of the Awaitable object by using the other part of the async
function infrastructure: awaiting. An async function can use the keyword await to
await the result of an asynchronous operation. The expression after the keyword
must evaluate to an object that implements the interface Awaitable. An obvious
example of such an object is the return value of another async function:

async function hello(): Awaitable<string> {
 return 'hello';
}

Introductory Examples | 119

async function hello_world(): Awaitable<string> {
 $hello = await hello();
 return $hello . ' world';
}

In the function hello_world(), the first expression to be evaluated is the function
call hello()—an ordinary function call. As you can see, this returns not the string
'hello', but an object that represents a result that may or may not be ready. Then the
await keyword declares to the runtime, “Wait for that result to be ready, and then
return it.”

The runtime handles checking to see if the result is ready, and waiting if it isn’t ready.
If it’s not ready, the runtime can suspend the execution of hello_world(): it stops
executing the function, saves its execution state, and picks up execution somewhere
else—in another async function that’s waiting to run, if any.

Once the result is ready—that is, once the function hello() has executed a return
statement—the scheduler can resume the execution of hello_world(). It restores the
saved execution state of hello_world() and begins running the body of
hello_world() at the point after the await expression. The await expression evalu‐
ates to whatever hello() passed to its return statement—that is, the string 'hello'.
That value is assigned to the local variable $hello, and execution continues as normal
from there.

This is a trivial example, though. Moving up from the syntax level, there are two
things you have to do in order to reap benefits from async: use async extension func‐
tions, and await multiple asynchronous operations simultaneously.

HHVM provides async extension functions for four kinds of operations: queries to
MySQL databases, queries to memcached, cURL requests, and reads and writes of
stream resources. Here are examples of the async MySQL and cURL APIs:

async function fetch_from_web(): Awaitable<string> {
 return await HH\Asio\curl_exec('https://www.example.com/');
}

async function fetch_from_db(int $id): Awaitable<string> {
 $conn = await AsyncMysqlClient::connect(
 '127.0.0.1', 3306, 'example', 'admin', 'hunter2'
);
 $result = await $conn->queryf('SELECT name FROM user WHERE id = %d', $id);
 return $result->mapRows()[0]['name'];
}

Note how similar this async code looks to equivalent non-async code—if you just
removed the new keywords and changed the class and function names to use non-
async extensions, it would be equivalent non-async code. There’s no need to think
about threading or synchronization. The async and await keywords are the only sub‐

120 | Chapter 6: Async

stantial differences: instead of simply calling a function that performs a long-running
operation, you await it.

The other key to benefiting from async is to await multiple asynchronous operations
at the same time. Running the two preceding async functions at the same time looks
like this:

async function fetch_all(): Awaitable<string> {
 list($web, $db) =
 await HH\Asio\v(array(fetch_from_web(), fetch_from_db(1234)));
 return $web . $db;
}

We’ll examine everything going on here in detail in the rest of this chapter, but now
you have a high-level idea of how async code looks.

Async in Detail
Before getting started, if you’re going to use async extensively, we highly recommend
that you install asio-utilities, a library of async helper functions. We’ll look at the
contents of this library as we go. You can use async without it, but it makes code sig‐
nificantly more concise.

The recommended way to download and install the library is through Composer, a
package manager for PHP and Hack. Add this to your composer.json file:

"require": {
 "hhvm/asio-utilities": "~1.0"
}

Wait Handles
The concept of a wait handle is central to the way async code works. A wait handle is
an object that represents a possibly asynchronous operation that may or may not have
completed. If it has completed, you can get a result from the wait handle. If not, you
can await the wait handle.

Wait handles are represented by the generic interface Awaitable. There are several
classes that implement this interface, but they’re implementation details, and you
shouldn’t rely on their specifics.

The two most important kinds of wait handle are:

• Ones representing async functions. To get one of these, simply call an async func‐
tion:

async function f(): Awaitable<int> {
 // ...
}

Async in Detail | 121

http://getcomposer.org

1 These functions are built into HHVM; they’re not part of asio-utilities. You can use them without instal‐
ling the library.

async function main(): Awaitable<void> {
 $wait_handle = f();
 // $wait_handle is a wait handle; a value of type Awaitable<int>

 $result = await $wait_handle;
 // $result is an int; the await "unwraps" the Awaitable
}

• Ones representing multiple other wait handles. To get one of these, use the async
helper functions1 HH\Asio\v() (when you have an indexed list of wait handles,
like a Vector or an array with consecutive integer keys) or HH\Asio\m() (when
you have an associative mapping of wait handles, like a Map or an array with
string keys):

async function triple(float $number): Awaitable<float> {
 return $number * 3.0;
}

async function triple_v(): Awaitable<void> {
 $handles = array(
 triple(3.0),
 triple(4.0),
);
 $result = await HH\Asio\v($handles);

 var_dump($result[0]); // Prints: float(9)
 var_dump($result[1]); // Prints: float(12)
}

async function triple_m(): Awaitable<void> {
 $handles = array(
 'three' => triple(3.0),
 'four' => triple(4.0),
);
 $result = await HH\Asio\m($handles);

 var_dump($result['three']); // Prints: float(9)
 var_dump($result['four']); // Prints: float(12)
}

HH\Asio\v() turns a Vector or array of awaitables into an awaitable Vector.
Likewise, HH\Asio\m() turns a Map or array of awaitables into an awaitable Map.

122 | Chapter 6: Async

2 HH\Asio\join() is part of asio-utilities, but in the future it will be built into HHVM. In general, asio-
utilities is where the team tests new async APIs before building them into HHVM itself.

For a non-async function to get a result out of a wait handle, there’s a function in
asio-utilities called HH\Asio\join().2 It takes one argument, an Awaitable. The
function waits for the awaitable to complete, then returns its result:

async function f(): Awaitable<mixed> {
 // ...
}

function main(): void {
 $result = HH\Asio\join(f());
}

You shouldn’t call HH\Asio\join() inside an async function—if you do, that awaita‐
ble and its dependencies will run to completion synchronously, with none of your
currently in-flight awaitables getting a chance to run. If you’re in an async function,
and you have a wait handle whose result you want, just await it.

Async and Callable Types
In “Hack’s Type System” on page 6, we saw that Hack has syntax for annotating the
types of callable values. In this example, you must pass f() a function that takes an
integer and returns a string:

function f((function(int): string) $callback): void {
 // ...
}

function main(): void {
 $good = function (int $x): string { return (string)$x; };
 f($good); // OK

 $bad = function (array $x): int { return count($x); };
 f($bad); // Error
}

You might now ask: how do you do this for async functions? How would f(), in this
example, specify that you must pass it an async function as a callback?

The answer is that you can’t, for good reason. The async-ness of a function is an
implementation detail of that function. Putting the async keyword on a function does
two things:

• It allows the function to use the await keyword in its body—an implementation
detail, and not something that should matter to any code outside the function.

Async in Detail | 123

• It forces the function’s return type to be Awaitable. The return type does matter
to code outside the function, but what matters is just the return type, not the
function’s async-ness.

To return to the previous example, f() can specify that the callback must return an
Awaitable<string>. This will allow, but not require, an async function to be passed
as the callback:

function f((function(int): Awaitable<string>) $callback): void {
 // ...
}

To make the reason for this restriction clearer, consider another implementation
detail of functions: whether they’re closures or not. Allowing f() in our example to
specify that you must pass it an async function would be just as silly as allowing it to
specify that you must pass it a closure.

For the same reason, you can’t declare abstract methods, or methods in interfaces, to
be async. You can, of course, declare them as non-async, but with Awaitable as their
return type:

interface I {
 public async function bad(): Awaitable<void>; // Error
 public function good(): Awaitable<void>; // OK
}

abstract class C {
 abstract public async function bad(): Awaitable<void>; // Error
 abstract public function good(): Awaitable<void>; // OK
}

await Is Not an Expression
Although await behaves like an expression in several ways, it’s not a general expres‐
sion. There are only three syntactic positions where it can appear:

• As an entire statement by itself:
async function f(): Awaitable<void> {
 await other_func();
}

• On the righthand side of a normal assignment or list assignment statement:
async function f(): Awaitable<void> {
 $result = await other_func();
 list($one, $two) = await yet_another_func();
}

• As the argument of a return statement:

124 | Chapter 6: Async

3 As it is, with the restrictions on where await can appear, there’s no way for an async function to get suspended
in the middle of evaluating an expression. If await could appear anywhere, we would confront the issue of
how to efficiently store the intermediate evaluation state of the expression, which isn’t as straightforward as it
may sound.

async function f(): Awaitable<mixed> {
 return await other_func();
}

If you use await anywhere else, it’s a syntax error. So, for example, you can’t do this:

async function f(): Awaitable<void> {
 var_dump(await other_func()); // Syntax error
}

This restriction may be lifted in the future. It exists now because of implementation
issues.3

Async Generators
Generators were introduced in PHP 5.5. On the surface, they look quite similar to
async functions. Both features introduce a special kind of function that has the ability
to stop executing partway through, in such a way that it can pick up where it left off
later.

However, the two features are orthogonal: like any other functions, generators can be
async. Here’s an example that implements a countdown clock, yielding once per sec‐
ond (we’ll see HH\Asio\usleep() in “Sleeping” on page 140):

async function countdown(int $start): AsyncIterator<int> {
 for ($i = $start; $i >= 0; --$i) {
 await HH\Asio\usleep(1000000); // Sleep for 1 second
 yield $i;
 }
}

The most important thing to note here is the return type annotation: AsyncItera
tor<int>. This signifies that you can iterate over the value returned from count
down(), and the values you get out of the iteration are integers.

However, this is an async iterator, not a regular iterator. There’s some new syntax to
iterate over an async iterator—await as:

async function use_countdown(): Awaitable<void> {
 $async_gen = countdown();
 foreach ($async_gen await as $value) {
 // $value is of type int here
 var_dump($value);

Async in Detail | 125

 }
}

The await as syntax is shorthand for repeatedly doing await $async_gen->next(),
just as the normal foreach syntax is shorthand for repeatedly calling next() on a
normal iterator.

If you want to yield a key from an async generator as well, use the interface Asyn
cKeyedIterator. It has two type arguments: the key type and the value type. To iter‐
ate over one of these, you also use await as:

async function countdown(int $start): AsyncKeyedIterator<int, string> {
 for ($i = $start; $i >= 0; --$i) {
 await HH\Asio\usleep(1000000);
 yield $i => (string)$i;
 }
}

async function use_countdown(): Awaitable<void> {
 foreach (countdown(10) await as $num => $str) {
 // $num is of type int
 // $str is of type string
 var_dump($num, $str);
 }
}

Finally, if you want to call the send() or raise() methods on an async generator, you
need to use the interface AsyncGenerator instead. It has three type arguments—the
key type, the value type, and the type you want to pass to send():

async function namifier(): AsyncGenerator<int, string, int> {
 // Get the first id
 $id = yield 0 => '';
 // $id is of type ?int

 while ($id !== null) {
 $name = await get_name($id);
 $id = yield $id => $name;
 }
}

async function use_namifier(array<int> $ids): Awaitable<void> {
 $namifier = namifier();
 await $namifier->next();

 // Note: this is poorly structured async code!
 // For demonstration only. Don't await in a loop.

 foreach ($ids as $id) {
 $result = await $namifier->send($id);
 // $result is of type ?(int, string)

126 | Chapter 6: Async

 }
}

There are some important things to point out here. First, even though the third type
argument to AsyncGenerator is int, the result of a yield in the async generator is of
type ?int. This is because it’s always valid to pass null to send(). (Doing so is equiv‐
alent to calling next().)

Second, the result of await $namifier->send($id) is of type ?(int, string). The
tuple contains the yielded key and value. The reason it’s a nullable type is that the
generator can always implicitly yield null, by means of yield break.

Third, remember that when calling next(), send(), and raise() on an async genera‐
tor, you have to await them, not just call them.

Fourth, AsyncIterator and friends return actual values from their next() methods,
rather than returning void (as the non-async Iterator and friends do). The same
applies to the send() and raise() methods of AsyncGenerator.

Finally, this code is for demonstration purposes only. Don’t write async code like this.
In particular, don’t await in a loop (see “Awaiting in a loop” on page 136 for details).
Unfortunately, there are few compelling examples of async generator code now,
because there aren’t any extensions that use them. When there are, though, async
generators will be an extremely powerful tool. For example, they could be used to
implement streaming results from network services.

Exceptions in Async Functions
What we’ve seen so far is fairly straightforward: when you call an async function, it
returns a wait handle. When you await a wait handle, you get its result: the value that
the async function passed to its return statement. But what if the async function
throws an exception?

The answer is that the same exception object will be rethrown when the wait handle
is awaited:

async function thrower(): Awaitable<void> {
 throw new Exception();
}

async function main(): Awaitable<void> {
 // Does not throw
 $handle = thrower();

 // Throws an Exception, the same object thrower() threw
 await $handle;
}

Async in Detail | 127

If you’re using HH\Asio\v() or HH\Asio\m() to await multiple wait handles simulta‐
neously, and one of the component wait handles throws an exception, the combined
wait handle will rethrow that exception. If multiple component wait handles throw
exceptions, the combined wait handle will rethrow one of them. All of the component
wait handles will complete, though (whether they finish normally or throw):

async function thrower(string $message): Awaitable<void> {
 throw new Exception($message);
}

async function main(): Awaitable<void> {
 // Does not throw
 $handles = [thrower('one'), thrower('two')];

 // Throws either of the two Exception objects
 $results = await HH\Asio\v($handles);
}

Often, this isn’t what you want. In cases like this, you usually want to get the results of
the wait handles that succeeded and just ignore the rest, or communicate failure in a
different way.

asio-utilities provides an async function called HH\Asio\wrap(), which takes a
wait handle as an argument. It will await the wait handle you pass in, catch any excep‐
tion that it throws, and return an object containing either the result of the passed-in
wait handle if no exception was thrown, or the exception object if one was thrown. It
does this in the form of an HH\Asio\ResultOrExceptionWrapper.

HH\Asio\ResultOrExceptionWrapper is an interface in asio-utilities, defined like
this:

namespace HH\Asio {
interface ResultOrExceptionWrapper<T> {
 public function isSucceeded(): bool;
 public function isFailed(): bool;
 public function getResult(): T;
 public function getException(): \Exception;
}
}

The four methods of ResultOrExceptionWrapper are:

• isSucceeded() indicates whether the inner wait handle exited normally (i.e., by
means of return).

• isFailed() indicates whether the inner wait handle exited abnormally, by means
of an exception.

• getResult() returns the inner wait handle’s result if it exited normally, or
rethrows the exception if not.

128 | Chapter 6: Async

• getException() returns the exception that the inner wait handle threw, or
throws an InvariantException if the inner wait handle didn’t throw an excep‐
tion.

Here’s an example:

async function thrower(): Awaitable<void> {
 throw new Exception();
}

async function wrapped(): Awaitable<void> {
 // Does not throw
 $handle = HH\Asio\wrap(thrower());

 // Does not throw
 $wrapper = await $handle;

 if ($wrapper->isFailed()) {
 // Returns the same Exception object that thrower() threw
 $exc = $wrapper->getException();
 }
}

The examples in this section have had code like this:
$handle = thrower();
await $handle;

This is only to make it clear that calling the async function doesn’t
throw an exception, and awaiting the wait handle does. In general,
you shouldn’t separate the call from the await like this. “Dropping
Wait Handles” on page 143 explains why in detail.

Mapping and Filtering Helpers
When creating multiple wait handles to await in parallel, you’ll often have some col‐
lection of values that each need to be converted into wait handles, or you may need to
filter some of them out. You can use the usual PHP and Hack built-in functions
array_map() and array_filter() (or methods on Hack’s collection classes) to do
this, but this can make your code a bit verbose.

asio-utilities provides a whole slew of concisely named functions for processing
arrays and collections with async mapping and filtering callbacks. They have names
like vm(), vfk(), and mmw(). The names are terse, but these functions are so com‐
monly used in async code that the conciseness is worth the loss of easy readability.

Here’s how to decode the names:

Async in Detail | 129

• The first character is always v or m. This indicates what the function returns: a
Vector or a Map.

• Next, you might see m, mk, f, or fk. These indicate whether the values in the col‐
lection will be passed through a mapping (m and mk) or filtering (f and fk) call‐
back. If the k is present, this indicates that the key from the collection will be
passed to the callback as well.

• Finally, there might be a w. If so, the values from the collection are passed
through HH\Asio\wrap() after any mapping and filtering has been done.

The first argument is always the input array or collection. (The helpers actually accept
Traversable or KeyedTraversable, as appropriate, so you can pass in iterators too.)
If the function requires a callback for mapping or filtering, it is the second argument.
(None of the functions require more than one callback.)

The mapping and filtering callbacks are async functions. Mapping callbacks must
have either one parameter, of the collection’s value type, or two parameters, of the col‐
lection’s key and value types, respectively. They can return any type. Filtering call‐
backs have the same convention for parameters, and they must return booleans.

Mapping, especially, is very common: you’ll have an async function that does an
async operation on a single value, and you’ll map that over an array or collection of
values. For this, you would use vm(), vmk(), mm(), mmk(), or any of these with a w
appended. The basic operation of each helper is: create a wait handle for each value
by passing it to the async callback, then await all those wait handles in parallel, then
put the results into a Vector. Here is an example showing what happens with both a
Vector and a Map:

async function fourth_root(num $f): Awaitable<float> {
 if ($f < 0) {
 throw new Exception();
 }

 return sqrt(sqrt($f));
}

async function vector_with_mapping(): Awaitable<void> {
 $strs = Vector {16, 81};
 $roots = await HH\Asio\vm($strs, fun('fourth_root'));

 // $roots is Vector {2, 3}
}

async function map_with_mapping_wrapped(): Awaitable<void> {
 $nums = Map {
 'minus eighty-one' => -81,
 'sixteen' => 16,

130 | Chapter 6: Async

 };
 $roots = await HH\Asio\mmw($nums, fun('fourth_root'));

 // $roots['minus eighty-one'] is a failed ResultOrExceptionWrapper
 // $roots['sixteen'] is a succeeded ResultOrExceptionWrapper with result 2
}

Filtering is less common. You’ll have an async function that results in a boolean, and
apply it to all elements of a collection in parallel. For this, you would use vf(), vfk(),
mf(), mfk(), or any of these with a w appended. The basic operation of each helper is:
create a wait handle for each value by passing it to the async callback, then filter the
original array or collection with the resulting booleans. For example:

async function is_user_admin(int $id): Awaitable<bool> {
 // ...
}

async function admins_from_list(Traversable<int> $ids): Awaitable<Vector<int>> {
 return HH\Asio\vf($ids, fun('is_user_admin'));
}

Note that HH\Asio\v() and HH\Asio\m() are not part of asio-utilities—they are
built into HHVM and always available for use in Hack code.

Table 6-1 shows the full range of helper functions and what they do.

Table 6-1. asio-utilities helper functions

Name Returns a… Callback Passes key to callback? Wraps exceptions?

v() Vector N/A

vm() Vector Mapping No No

vmk() Vector Mapping Yes No

vf() Vector Filtering No No

vfk() Vector Filtering Yes No

vw() Vector N/A N/A Yes

vmw() Vector Mapping No Yes

vmkw() Vector Mapping Yes Yes

vfw() Vector Filtering No Yes

vfkw() Vector Filtering Yes Yes

Async in Detail | 131

Name Returns a… Callback Passes key to callback? Wraps exceptions?

m() Map N/A N/A No

mm() Map Mapping No No

mmk() Map Mapping Yes No

mf() Map Filtering No No

mfk() Map Filtering Yes No

mw() Map N/A N/A Yes

mmw() Map Mapping No Yes

mmkw() Map Mapping Yes Yes

mfw() Map Filtering No Yes

mfkw() Map Filtering Yes Yes

Lambda expression syntax (see “Lambda Expressions” on page 66) is very convenient
in conjunction with these async helpers; lambdas cut down on the boilerplate
required by closure syntax. To rewrite one of the previous examples:

async function fourth_root_strings(): Awaitable<void> {
 $strs = array('16', '81');
 $roots = await HH\Asio\vm($strs, async $str ==> fourth_root((float)$str));
 // $roots is Vector {2, 3}
}

Structuring Async Code
As we’ve seen, within a single function, async code looks very similar to naïve
sequential code and is just as easy to reason about. On that level, you don’t have to
adapt to an unfamiliar new way of thinking.

To get the most benefit out of async, though, the higher-level organization of your
code—what to put in which functions, and how to tie those functions together—
requires some consideration with regard to data dependencies. This is the idea that in
order to generate one piece of data, you need some other piece of data.

In this section, we’ll look at how to break down a program’s logic in terms of data
dependencies, and how to translate typical data dependency shapes into async code.
We’ll also look at some common antipatterns, and why you should avoid them.

132 | Chapter 6: Async

Data Dependencies
In a blogging application, generating a page of a single author’s posts might require a
series of queries like this:

1. Fetch the IDs of the author’s posts—maybe all of them, maybe only the first 20 or
so.

2. Fetch post data (title, excerpt, etc.) for each post ID.
3. Fetch the comment count for each post ID.

The most intuitive way to understand a set of data dependencies is with a graph.
Figure 6-3 shows the dependency graph for this scenario. The arrows follow the
direction of data flow; for example, each post ID flows into the fetching of post data,
with the direction of the arrow.

Figure 6-3. Dependency graph for “all posts by author” page

Learning how to structure async code well involves learning to recognize patterns in
dependency graphs and translate them into async functions. This scenario has exam‐
ples of some very common patterns:

1. Put each “chain”—a sequence of dependencies with no branching—into its own
async function.

2. Put each bundle of parallel chains into its own async function.
3. Now that each bundle of parallel chains has been reduced to a single function, go

back to the first step—there may be a new chain to reduce.

Note that “its own async function” doesn’t have to mean a named function. It’s often
the best option, in terms of code cleanliness and readability, to use a closure (remem‐
ber, closures can be async).

Structuring Async Code | 133

Your goal should be to fit every asynchronous operation that must happen in the
course of a page request into this scheme. You should only have to call HH\Asio
\join() once, at the very top level of your code, and its result should be all of the
output for the page request.

For the “one author’s posts” page, we’ll use this scheme to break down the asynchro‐
nous operations into these async functions:

• One function for each underlying fetch operation: fetching all of the author’s post
IDs, fetching individual post data, and fetching comment counts.

• One function that bundles together a post-data-and-comment-count pair of
chains. This will be a closure in the top-level function.

• One top-level function that coordinates all the data fetching.

Which Functions Should Be Async?
Don’t be afraid to make a function async, even if it usually doesn’t need to await any‐
thing (or never awaits anything). There’s no performance penalty for doing so. If it
helps the function fit better with your other code, or if it might ever need to be async
in the future, make it async.

So, this is what the code for the “one author’s posts” page might look like:

async function fetch_all_post_ids_for_author(int $author_id)
 : Awaitable<array<int>> {
 // Query database, etc.
 // ...
}

async function fetch_post_data(int $post_id): Awaitable<PostData> {
 // Query database, etc.
 // ...
}

async function fetch_comment_count(int $post_id): Awaitable<int> {
 // Query database, etc.
 // ...
}

async function fetch_page_data(int $author_id)
 : Awaitable<Vector<(PostData, int)>> {
 $all_post_ids = await fetch_all_post_ids_for_author($author_id);

 // An async closure that will turn a post ID into a tuple of
 // post data and comment count
 $post_fetcher = async function(int $post_id): Awaitable<(PostData, int)> {

134 | Chapter 6: Async

4 See “MySQL” on page 147 for details on the async MySQL API.

 list($post_data, $comment_count) =
 await HH\Asio\v(array(
 fetch_post_data($post_id),
 fetch_comment_count($post_id),
));
 return tuple($post_data, $comment_count);
 };

 // Transform the array of post IDs into an array of results,
 // using the vm() function from asio-utilities
 return await HH\Asio\vm($all_post_ids, $post_fetcher);
}

async function generate_page(int $author_id): Awaitable<string> {
 $tuples = await fetch_page_data($author_id);

 foreach ($tuples as $tuple) {
 list($post_data, $comment_count) = $tuple;

 // Render the data into HTML
 // ...
 }

 // ...
}

Smart Data Fetching
It’s important to note that this example is just meant to demonstrate how to structure
async code, using an easy-to-grasp application. Depending on what your storage
backends are and how you have them configured, it might be possible to do this in a
single roundtrip to the database, using JOIN queries and such.

At the very least, this example should be establishing a database connection only once
and passing the connection object around,4 instead of having each fetching function,
like fetch_post_data(), establish a connection itself.

It’s quite possible to use async when communicating with your storage backends and
still be very inefficient. Async doesn’t give you license to stop thinking about things
like caching intelligently, batching fetches, and constructing efficient SQL queries.

Antipatterns
There are a few ways to structure async code that may seem very tempting at first, but
actually hamper the async code’s ability to make efficient use of time.

Structuring Async Code | 135

These antipatterns are such because they create false dependencies; i.e., they cause one
wait handle to wait for another (usually indirectly) even though it doesn’t need to.
Good async code faithfully translates the pure, ideal dependency graph into code.

Awaiting in a loop
Suppose you have an array of numerical user IDs, and an async function that loads
data about a user (from a database, say) given a user ID. You want to turn the array of
user IDs into an array of User objects. It’s tempting to do something like this:

async function load_user(int $id): Awaitable<User> {
 // Call to memcache, database, ...
}

async function load_users(array<int> $ids): Awaitable<Vector<User>> {
 $result = Vector {};
 foreach ($ids as $id) {
 $result[] = await load_user($id);
 }
 return $result;
}

This is entirely defeating the purpose of async functions. All the users will be loaded
in serial, one after the other, with no parallelism at all. This code is creating a depend‐
ency graph that is a single long chain:

These are false dependencies, though: you don’t need to finish loading the first user
before you can start loading the second user. The real dependency graph, in which
none of the individual user loads depends on any others, looks like this:

136 | Chapter 6: Async

5 This may seem odd, because a typical, normalized database schema wouldn’t require the intermediate step of
fetching comment IDs. However, in denormalized schemas—which have their merits, and are used in practice
—this might not be possible.

To express the real dependency graph in code, do this (the vm() function is explained
in “Mapping and Filtering Helpers” on page 129):

async function load_users(array<int> $ids): Awaitable<Vector<User>> {
 return await HH\Asio\vm($ids, fun('load_user'));
}

In general, if you’re tempted to await in a loop, that’s probably because you have some
collection of things to await. In that case, you should use one of the await-a-collection
helpers (supplemented with array_map(), array_filter(), etc.) instead of iterating
over the collection and awaiting in a loop.

This bears repeating: it’s never correct to await in a loop. This is by
far the easiest trap for async beginners to fall into, and it completely
erases the benefits of async. Don’t await in a loop.

The multi-ID pattern
Let’s go back to the “all posts by one author” example. Suppose that instead of two
parallel queries for each post, we need to do two dependent queries; that is, do one
query, and use its result to construct another query.

Let’s say, for example, that we want to display the text of the first comment on each
post, instead of just the count. To start we need to fetch the ID of the first comment
on each post, and then we need to fetch the content of those comments.5

It’s tempting to implement that logic as follows:

async function fetch_first_comment_ids(array<int> $post_ids)
 : Awaitable<array<int>> {
 // Send a single database query with all post IDs
 // ...
}

Structuring Async Code | 137

async function fetch_comment_text(array<int> $comment_ids)
 : Awaitable<array<string>> {
 // Send a single database query with all comment IDs
 // ...
}

async function fetch_all_first_comments(int $author_id)
 : Awaitable<array<string>> {
 $all_post_ids = await fetch_all_post_ids_for_author($author_id);
 $all_comment_ids = await fetch_first_comment_ids($all_post_ids);
 return await fetch_comment_text($all_comment_ids);
}

This has the apparent advantage of guaranteeing only two trips to the database,
regardless of how many posts you need to fetch data for. But this is poorly structured
async code, again because it’s creating false dependencies. Figure 6-4 shows the
dependency graph created by this code. In particular, note that fetching the text for
any comment indirectly depends on fetching every comment ID, which doesn’t make
sense.

Figure 6-4. Dependency graph for bad first-comments code

The telltale sign of this antipattern is async functions that take multiple IDs, or
lookup keys of any form, as arguments. They serve to create these horizontal false
dependencies, which act as bottlenecks.

138 | Chapter 6: Async

The real dependency graph that we should be creating doesn’t have those horizontal
dependencies: fetching each comment’s text depends on fetching that comment’s ID
and nothing else. Figure 6-5 shows what the graph should look like.

Figure 6-5. Correct dependency graph for first-comments page

We can translate this into code by following the guidelines given earlier and grouping
chains of dependencies into their own functions. In this case, we group the chain for
each post into a closure:

async function fetch_first_comment(int $comment_id): Awaitable<int> {
 // Send database query with a single post ID
 // ...
}

async function fetch_comment_text(int $comment_id): Awaitable<string> {
 // Send database query with a single comment ID
 // ...
}

async function fetch_all_first_comments(int $author_id)
 : Awaitable<Vector<string>> {
 $all_post_ids = await fetch_all_post_ids_for_author($author_id);

 $comment_fetcher = async function(int $post_id): Awaitable<string> {
 $first_comment_id = await fetch_first_comment($post_id);
 return await fetch_comment_text($first_comment_id);
 };

 return await HH\Asio\vm($all_post_ids, $comment_fetcher);
}

Structuring Async Code | 139

6 Measuring time on computers is always a tricky business. The timespan for which HH\Asio\usleep() actually
sleeps may not be accurate to the microsecond, for various reasons, not least of which is the fact that the
“clock” that underlies it varies according to what is available in the operating system and hardware where
HHVM is running.

This code has the potential downside of incurring more roundtrips to the database,
because it lacks the ability to send a query for more than one ID at a time. This prob‐
lem can be solved fairly seamlessly with async; see “Batching” on page 141 for details.

The takeaway from these antipatterns should be to always think about the structure of
the data first. Let the data inform how you structure the code; don’t write code first
and work out the dependencies it creates later.

Other Types of Waiting
Most of the wait handles you deal with will be representing async functions and mul‐
tiple other wait handles, but there are two other kinds of waiting that can be useful.

Sleeping
You can use a wait handle to wait for a length of time to pass, while doing nothing on
the CPU. This is akin to calling the usleep() built-in function, except that it allows
other wait handles to run during the sleep period.

asio-utilities provides a function for sleeping: HH\Asio\usleep(). It takes one
argument—the length of time to sleep for, in microseconds:6

async function sleepForFiveSeconds(): Awaitable<void> {
 echo "start\n";
 await HH\Asio\usleep(5000000); // 5 million microseconds = 5 seconds
 echo "finish, at least five seconds later\n";
}

Note that the second echo happens at least five seconds later, not exactly five seconds
later. When this wait handle sleeps, another one might run that uses the CPU for
more than five seconds without awaiting, and the async scheduler can’t interrupt it.

Rescheduling
To reschedule a wait handle means to send it to the back of the async scheduler’s
queue—to voluntarily wait until other pending wait handles have run. There are a
couple of reasons you might want to do this: to interleave polling loops with other
async operations, and to do batching.

140 | Chapter 6: Async

Polling
Ideally, your code would do all asynchronous work through async extensions. How‐
ever, you may need to use some service that doesn’t have a corresponding async
extension. You may be able to use rescheduling to make such services work harmo‐
niously with your async code.

The key is that you must be able to make nonblocking calls to the service. If you can,
you can use rescheduling in your polling loop to allow other wait handles to run after
unsuccessful polls.

asio-utilities provides a function for rescheduling: HH\Asio\later(). It takes no
arguments. All you have to do is call and await it:

async function poll_for_result(PollingService $svc): Awaitable<mixed> {
 while (!$svc->isReady()) {
 await HH\Asio\later();
 }
 return $svc->getResult();
}

If there are no other wait handles running, this amounts to a busy loop of polling.
Depending on how expensive it is to poll, and the expected latency of the service, you
may want to sleep in this situation instead, using HH\Asio\usleep().

Batching
If you’re doing some high-latency operation that can benefit from batching—database
queries are a good example—rescheduling can help you here too. The key is that you
write an async function that does a batched operation after rescheduling, to give
other wait handles a chance to add their items to the batch.

In this example, suppose that our underlying asynchronous operation is a key/value
lookup that requires a roundtrip over a network to a storage server. Each roundtrip is
high-latency, but you can send multiple keys in a single request without increasing
the overall time taken. (memcached behaves somewhat like this, but we won’t use its
specific API.)

The code that uses this operation will look like this:

async function one(string $key): Awaitable<string> {
 $subkey = await Batcher::lookup($key);
 return await Batcher::lookup($subkey);
}

async function two(string $key): Awaitable<string> {
 return await Batcher::lookup($key);
}

async function main(): Awaitable<void> {

Other Types of Waiting | 141

 $results = await HH\Asio\v(array(one('hello'), two('world')));
 echo $results[0];
 echo $results[1];
}

If Batcher::lookup() simply did the lookup operation immediately, executing both
one() and two() would result in a combined total of three roundtrips to the storage
server. However, there’s an optimization opportunity: if we could perform the first
lookup in one() and the lookup in two() in a single roundtrip, we could complete
everything with only two roundtrips, total.

Here’s an implementation of the Batcher class that can do this:

class Batcher {
 private static array<string> $pendingKeys = array();
 private static ?Awaitable<array<string, string>> $waitHandle = null;

 public static async function lookup(string $key): Awaitable<string> {
 // Add this key to the pending batch
 self::$pendingKeys[] = $key;

 // If there's no wait handle about to start, create a new one
 if (self::$waitHandle === null) {
 self::$waitHandle = self::go();
 }

 // Wait for the batch to complete, and get our result from it
 $results = await self::$waitHandle;
 return $results[$key];
 }

 private static async function go(): Awaitable<array<string, string>> {
 // Let other wait handles get into this batch
 await HH\Asio\later();

 // Now this batch has started; clear the shared state
 $keys = self::$pendingKeys;
 self::$pendingKeys = array();
 self::$waitHandle = null;

 // Do the multi-key roundtrip
 return await multi_key_lookup($keys);
 }
}

The private static property $waitHandle represents a batched roundtrip that is about
to start. The public method lookup() checks to see if a batched roundtrip is about to
start; if not, it creates a new one by calling go(). It awaits the batched roundtrip, then
retrieves the result it’s interested in.

142 | Chapter 6: Async

The await HH\Asio\later() in go() is the key to the batching. It functions as a “last
call” for other wait handles that want to do lookups, causing go() to be deferred until
other pending wait handles have run.

Consider the example of one() and two(). The proceedings start with this line:

$results = await HH\Asio\v(array(one('hello'), two('world')));

Both one() and two() are pending. Suppose one() gets to run first. It calls lookup(),
which calls go(), which reschedules. The runtime looks for other wait handles it can
run; two() is still pending, so that runs, calls lookup(), and gets suspended when it
executes await self::$waitHandle (because that wait handle is already running).

After that, go() resumes, does its fetching, and returns its result. Both pending
instances of lookup() receive their results, and pass them back to one() and two().

Common Mistakes
As we’ve seen, writing async code is broadly similar to writing normal sequential
code. However, there are a few common traps you can fall into.

Dropping Wait Handles
When you call an async function, it returns a wait handle. When you await this wait
handle, the async function’s body will execute to completion. But what happens if you
don’t await the wait handle?

async function speak(): Awaitable<void> {
 echo "one";
 await HH\Asio\later();
 echo "two";
 echo "three";
}

async function f(): Awaitable<void> {
 $handle = speak();
 // Don't await or join it; just drop it
}

HH\Asio\join(f());

How much of speak() will execute? In other words, what will be echoed?

The possible answers are nothing, one, and onetwothree. In addition, the answer you
get is not guaranteed to be consistent between runs. It can also change based on the
version of HHVM you’re running, the state of any other in-flight async functions,
and the activities of butterflies flapping their wings on the other side of the world.

Common Mistakes | 143

That is to say, the runtime has a lot of leeway to decide what to do. It is only allowed
to suspend speak() when it encounters an await expression. Within that constraint,
it may suspend and resume speak() as many times as it wants. This is to give the
async scheduler the flexibility to arrange async execution as it sees fit, but it does
mean that you have to be careful to await any wait handle that you create. Failing to
await a wait handle will result in unpredictable behavior. Awaiting a wait handle guar‐
antees that it will run to completion.

You may feel tempted to do something like this to implement detached tasks—that is,
when you want to start a task and let it run, but you don’t want to block anything else
on waiting for it to finish. Nonessential logging in a web application is a common
thing that tempts people to do this. Async doesn’t provide a way to detach tasks. The
only way to force a wait handle to run is to await it, and there’s no way to await a wait
handle without potentially blocking.

Even if you await all wait handles that you create, it’s still possible to see their effects
in different orders. In this example, any side effects (writing to the output buffer, net‐
work or disk I/O, etc.) of some_unrelated_stuff() may happen before or after any
side effects of some_async_function():

async function f(): Awaitable<void> {
 $handle = some_async_function();
 some_unrelated_stuff();
 await $handle;
}

Generally, separating the creating of wait handles from awaiting them is discouraged;
the creation and awaiting of a wait handle should happen as close together as possi‐
ble. The preceding example would be better written as:

async function f(): Awaitable<void> {
 some_unrelated_stuff();
 await some_async_function();
}

Don’t assume, because you observe the “correct” ordering of effects once, that they
will always happen in that order. The ordering can change between two executions of
the same code. To avoid having to be concerned about this, you should generally try
not to write async functions that have side effects whose order is important. If you
want to enforce that two things happen in a specific order, you must create a depend‐
ency between them using await.

144 | Chapter 6: Async

Async Doesn’t Create Threads
From the perspective of Hack code, the world is single-threaded, just like in PHP. An
async function is not a thread; multiple async functions will not run in parallel. A sin‐
gle PHP/Hack environment’s code will not run on multiple CPU cores. (HHVM does
run multiple web requests in parallel using system-level threads, but the PHP/Hack
environments in those threads can’t substantively interact with each other.)

The async extensions may be using threads behind the scenes, but that’s an imple‐
mentation detail, not visible to Hack code.

Of course, there are times when you should use threads for parallelism—i.e., when
you’re doing CPU-intensive work that can be broken down into several tasks that
need to synchronize with each other occasionally. In those cases, async will not help
you, and in fact Hack is probably not the right language for the job.

Memoizing Async Functions
Because async functions are designed to be used with time-consuming operations,
they are a natural fit with memoization. Memoization is a common programming
pattern where the result of an expensive operation is cached, so that it can be
returned cheaply the next time it’s needed:

function time_consuming_op_impl(): string {
 // ...
}

function time_consuming_op(): string {
 static $result = null;
 if ($result === null) {
 $result = time_consuming_op_impl();
 }
 return $result;
}

The special attribute __Memoize (see “Special Attributes” on page 71) will behave cor‐
rectly when applied to an async function. When you want memoization, you should
generally use that attribute. If you have a good reason not to (needing fine control
over the memoization cache, for example), read on.

When manually memoizing async functions, there is a serious potential mistake to be
aware of, which can result in a race condition. The key thing to remember is: memo‐
ize the wait handle, not the result.

Memoizing the result is the most intuitively obvious thing to do, like this:

Common Mistakes | 145

async function time_consuming_op_impl(): Awaitable<string> {
 // ...
}

async function time_consuming_op(): Awaitable<string> {
 static $result = null;
 if ($result === null) {
 $result = await time_consuming_op_impl(); // Wrong! Bad!
 }
 return $result;
}

There’s a race condition here. Suppose there are two other async functions, one() and
two(), that are both in the async scheduler queue, and they are both going to await
time_consuming_op(). Then the following sequence of events can happen:

1. one() gets to run, and awaits time_consuming_op().
2. time_consuming_op() finds that the memoization cache is empty ($result is

null), so it awaits time_consuming_op_impl(). It gets suspended.
3. two() gets to run, and awaits time_consuming_op(). Note that this is a new wait

handle; it’s not the same wait handle as in step 1.
4. time_consuming_op() again finds that the memoization cache is empty, so it

awaits time_consuming_op_impl() again. Now the time-consuming operation
will be done twice.

If time_consuming_op_impl() has side effects—maybe it’s a database write—then this
could end up being a serious bug. Even if there are no side effects, it’s still a bug; the
time-consuming operation is being done multiple times when it only needs to be
done once.

The root cause of the bug is that time_consuming_op() may get suspended between
checking the cache and filling the cache. By checking the cache and finding it empty, it
derives a fact about the state of the world: the operation has not yet completed. But
after awaiting, and thus possibly getting suspended, that fact may no longer be true:
the invariant that was supposed to hold inside the if block is violated.

As I said before, the correct solution is to memoize the wait handle, not the result:

async function time_consuming_op(): Awaitable<string> {
 static $handle = null;
 if ($handle === null) {
 $handle = time_consuming_op_impl(); // Don't await here!
 }
 return await $handle; // Await here instead
}

146 | Chapter 6: Async

7 Async has been extensively used within Facebook for some time, but with internal-only async extensions.

This may seem unintuitive, because the function awaits every time it’s executed, even
on the cache-hit path. But that’s fine: on every execution except the first, $handle is
not null, so a new instance of time_consuming_op_impl() will not be started. The
result of the one existing instance will be shared.

The race condition is gone. The sequence of events listed earlier is no longer possible:
time_consuming_op() can’t be suspended between finding the cache empty and fill‐
ing the cache. one() and two() will end up awaiting the same wait handle: the one
that’s cached in time_consuming_op(). It’s not an error for this to happen; they will
both wait for it to finish, and will both receive the result once it’s ready.

Async Extensions
In this section, we’ll look at each of the four async extensions included with HHVM
3.6: MySQL, MCRouter, cURL, and streams.

The language-level components of async have been around for several versions prior
to 3.6, but these extensions are new in 3.6.7 Some of them aren’t feature-complete yet,
but they’ll improve in future versions.

MySQL
The async MySQL extension is an object-oriented MySQL API, reminiscent of the
mysqli extension that comes with PHP and HHVM. We won’t cover it in full detail
here; we’ll just look at the most important parts—establishing connections, using
connection pools, making queries, and reading results.

Connecting and querying

You start out with the class AsyncMysqlClient. It has a static async method
connect() that creates a connection to a MySQL database. The signature looks like
this:

class AsyncMysqlClient {
 public static async function connect(
 string $host,
 int $port,
 string $dbname,
 string $user,
 string $password,
 int $timeout_micros = -1
): Awaitable<?AsyncMysqlConnection>;
}

Async Extensions | 147

The five required parameters are all the standard MySQL connection parameters:
hostname, port, database name, username, and password. The last parameter is
optional: the connection timeout in microseconds. A value of -1, the default, means
to use the default timeout (which is 1 second in HHVM 3.6); a value of 0 means no
timeout.

connect() results in an AsyncMysqlConnection (or null if there was an error estab‐
lishing the connection). AsyncMysqlConnection has two async methods to query the
database: query() and queryf(). query() just takes a string containing a query, and a
timeout (following the same convention as connect()’s timeout, except that the
default is 60 seconds).

queryf() is what you’ll be using most of the time, because it takes a query string with
placeholders and substitutes values for those placeholders after appropriate escaping.
It’s a variadic method—pass the query string as the first argument, and values for the
placeholders as subsequent arguments:

async function fetch_user_name(int $user_id): Awaitable<string> {
 $conn = await AsyncMysqlClient::connect(
 '127.0.0.1',
 3306,
 'example',
 'admin',
 'hunter2',
);
 if ($conn !== null) {
 $result = await $conn->queryf(
 'SELECT name FROM user WHERE id = %d',
 $user_id
);
 // ...
 }
}

The full range of available placeholders is:

• %T: A table name.
• %C: A column name.
• %s: A string.
• %d: An integer.
• %f: A float.
• %=s: Nullable string comparison. If you pass a string, this will expand to = 'the
string'; if you pass null, it will expand to IS NULL.

• %=d: Nullable integer comparison.
• %=f: Nullable float comparison.

148 | Chapter 6: Async

• %Q: Raw SQL; the string you pass will be substituted in unescaped. This can be
very dangerous, as it opens the possibility of SQL injection, which can be a seri‐
ous security vulnerability. Avoid using it if at all possible.

The Hack typechecker understands queryf() query strings, and typechecks calls to
queryf() to ensure that you’re passing the right number of arguments and that the
arguments have the right types:

async function do_something(AsyncMysqlConnection $conn): Awaitable<void> {
 // Error: too few arguments
 $result = await $conn->queryf('SELECT * FROM user WHERE id = %d');
}

The typechecker intentionally doesn’t recognize the placeholder %Q, to discourage its
use. If you really need to use it, you can silence the error with an HH_FIXME comment
(see “Silencing Typechecker Errors” on page 80).

queryf() will be getting support for more placeholder types in the future, such as the
%L family (%Ld for a list of integers, %Ls for a list of strings, etc.).

Connection pools

An important restriction of AsyncMysqlConnection is that you can’t make multiple
queries over a single connection in parallel. That’s something you’ll often want to do
when using async. The solution is to use AsyncMysqlConnectionPool. A connection
pool is a collection of reusable connection objects; when a client requests a connec‐
tion from the pool, it may get one that already exists, which avoids the overhead of
establishing a new connection.

In HHVM versions earlier than 3.6.3, connection pools have a sig‐
nificant bug that can cause spurious timeouts. If you use connec‐
tion pools, make sure you’re using HHVM 3.6.3 or later.

Create a connection pool like this:

$pool = new AsyncMysqlConnectionPool(array());

The constructor takes one argument, which is an array of configuration options. The
possible options are:

per_key_connection_limit

the maximum number of connections allowed in the pool for a single combina‐
tion of hostname, port, database, and username. Default: 50.

pool_connection_limit

the maximum number of connections allowed in the pool, total. Default: 5000.

Async Extensions | 149

idle_timeout_micros

the maximum amount of time, in microseconds, that a connection will be
allowed to sit idle in the pool before being destroyed. Default: 4 seconds.

age_timeout_micros

the maximum age, in microseconds, that a connection in the pool will be allowed
to reach before being destroyed. Default: 60 seconds.

expiration_policy

a string, either 'IdleTime' or 'Age', that specifies whether connections in the
pool will be destroyed based on their idle time or age. Default: 'Age'.

For example, to create a pool with at most 100 connections with expiration based on
idle time:

$pool = new AsyncMysqlConnectionPool(
 array(
 'pool_connection_limit' => 100,
 'expiration_policy' => 'IdleTime',
)
);

Once you have a pool created, you get connections from it by calling and awaiting its
async method connect(), with the same set of arguments as you would pass to
AsyncMysqlConnection::connect():

<<__Memoize>>
function get_pool(): AsyncMysqlConnectionPool {
 return new AsyncMysqlConnectionPool([]);
}

async function get_connection(): Awaitable<?AsyncMysqlConnection> {
 return await get_pool()->connect(
 '127.0.0.1',
 3306,
 'example',
 'admin',
 'hunter2',
);
}

Query results

The results of query() and queryf() are instances of the class AsyncMysqlResult.
This is an abstract class; its two most important concrete subclasses are AsyncMysql
QueryResult and AsyncMysqlErrorResult.

AsyncMysqlQueryResult has four (non-async) methods for getting results: map
Rows(), vectorRows(), mapRowsTyped(), and vectorRowsTyped(). All four methods
return a Vector of rows. The “map” or “vector” part refers to how each row is repre‐

150 | Chapter 6: Async

sented. mapRows() and mapRowsTyped() return rows as Maps, mapping column names
to values. vectorRows() and vectorRowsTyped() return rows as Vectors, containing
values in the order they were specified in the query. For example:

async function fetch_user_name(AsyncMysqlConnection $conn,
 int $user_id) : Awaitable<string> {
 $result = await $conn->queryf(
 'SELECT name FROM user WHERE id = %d',
 $user_id
);
 invariant($result->numRows() === 1, 'exactly one row in result');

 $map = $result->mapRows();
 // The result you want is in $map['name']

 $vector = $result->vectorRows();
 return $vector[0];
}

The “typed” in the method names refers to how you want values from non-string col‐
umns represented. For example, if you have a column defined as type INTEGER in
SQL, mapRowsTyped() and vectorRowsTyped() will return values from that column
as integers in Hack, whereas mapRows() and vectorRows() will return values from
that column as string representations of integers.

If the query resulted in an error, the result of query() or queryf() will be an Asyn
cMysqlErrorResult object. This class has three important non-async methods for
determining what happened:

failureType()

Returns one of two strings, 'TimedOut' or 'Failed'. The latter signifies any fail‐
ure other than a timeout.

mysql_errno()

The numerical MySQL error code for the problem.

mysql_error()

A human-readable string describing the problem.

Updated documentation for the async MySQL extension is available at the HHVM
site.

MCRouter and memcached
MCRouter is an open source project developed by Facebook. It is a memcached proto‐
col routing library, providing a wide variety of features that aid in scaling a memcached
deployment: connection pooling, prefix-based routing, online configuration changes,

Async Extensions | 151

http://docs.hhvm.com/manual/en/book.hack.async.mysql.php
http://docs.hhvm.com/manual/en/book.hack.async.mysql.php
https://github.com/facebook/mcrouter

8 There are two extensions for talking to memcached. Memcached is newer and supports more memcached fea‐
tures, so it’s generally recommended for use over Memcache.

and many more. It speaks the memcached ASCII protocol and sits transparently
between clients and memcached instances.

A full exploration of how to use MCRouter is beyond the scope of this book. Here,
we’ll simply be using the MCRouter library as a memcached client. The MCRouter
extension mimics the Memcache and Memcached extensions that are part of PHP
and Hack.8 The MCRouter extension doesn’t support all operations that memcached
and MCRouter themselves support (cas, or compare-and-swap, being one of the
major omissions), but this support will improve in future versions.

The extension is centered around the class MCRouter, which represents a memcached
client. There are two ways to get an MCRouter object: through the constructor (more
flexible), or through the static method createSimple() (more convenient). These are
the signatures:

class MCRouter {
 public function __construct(array<string, mixed> $options, string $pid = '');
 public static function createSimple(ConstVector<string> $servers): MCRouter;
}

The constructor behaves differently depending on whether $pid (for persistence ID) is
empty. If $pid is empty, the constructor starts a transient client and returns an object
representing it. If $pid is not empty, the extension looks for a client that already exists
with that persistence ID, and returns one if it finds it; if not, it starts a new client with
that persistence ID. Generally, transient clients should only be used for debugging
and testing, not production.

The $options parameter is used to configure any new clients that are started. It must
have one of the keys 'config_str' (mapping to a JSON configuration string) or
'config_file' (mapping to a string containing the path to a JSON configuration
file). More information on how to configure MCRouter is in the MCRouter source
repository and on its GitHub page.

MCRouter::createSimple() is a streamlined way to create a client; you can simply
pass it a Vector (see Chapter 5) of strings with server addresses where memcached is
running. The strings comprise a hostname, followed by a colon, followed by a port
number, such as '127.0.0.1:11211'.

MCRouter, the class, has async methods with names that mirror commands in the
memcached ASCII protocol. They throw exceptions on failure (which includes things
like getting a key that doesn’t exist), so the function HH\Asio\wrap() from asio-
utilities comes in handy around this API. For example:

152 | Chapter 6: Async

https://github.com/facebook/mcrouter

function fetch_user_name(MCRouter $mcr, int $user_id): Awaitable<string> {
 $key = 'name:' . $user_id;
 $cached_result = await HH\Asio\wrap($mcr->get($key));

 if ($cached_result->isSucceeded()) {
 return $cached_result->getResult();
 }

 // Fall back to querying database
 // ...
}

There are async methods for several core memcached protocol commands:

• get() to read the value for a given key
• set() to write a value, overwriting if a value already exists for the given key
• add() to write a value, but fail if a value already exists for the given key
• replace() to write a value, but fail if the value doesn’t already exist for the given

key
• append() and prepend() to append or prepend data to the value for a given key
• incr() to atomically increment a numeric value
• del() to delete a key
• version() to get the remote server’s version

Updated documentation for the async MCRouter extension is available at the HHVM
site.

cURL
cURL is a library for transferring data to and from resources identified by URLs. In
practice, it’s most often used to make HTTP and HTTPS requests.

The async cURL API in Hack consists of two functions:

async function curl_multi_await(resource $mh, float $timeout = 1.0)
 : Awaitable<int>;

namespace HH\Asio {
 async function curl_exec(mixed $urlOrHandle): Awaitable<string>;
}

HH\Asio\curl_exec() is a convenience wrapper around curl_multi_await(). You
can pass it a cURL handle (i.e., something returned from curl_init()) or a string
containing a URL (in which case, it will create the cURL handle for you), and it will
execute the cURL handle asynchronously and return its result.

Async Extensions | 153

http://docs.hhvm.com/manual/en/book.hack.mcrouter.php
http://docs.hhvm.com/manual/en/book.hack.mcrouter.php

curl_multi_await() is the async equivalent of curl_multi_select(). It waits until
there is activity on any of the cURL handles that are part of $mh, which must be a
cURL multi handle (i.e., something returned from curl_multi_init()). When it
completes, indicating that there was activity on at least one of the cURL handles, you
process it with curl_multi_exec(), just as you do in non-async code.

Streams
This is the simplest of the async extensions. It consists of a single function, called
stream_await(), whose job is to wait until a stream becomes readable or writable:

async function stream_await(resource $fp, int $events, float $timeout = 0.0)
 : Awaitable<int>;

stream_await() takes three parameters:

• $fp is the stream to watch for changes. It must be backed by a normal file, socket,
tempfile, or pipe. Memory streams and user streams aren’t supported.

• $events is one of the global constants STREAM_AWAIT_READ or
STREAM_AWAIT_WRITE, or both of them bitwise-OR’ed together. It signifies what
kind of change to watch for in the stream; that is, whether to watch for it to
become readable (i.e., fread() on the stream will not block) or writable (i.e.,
fwrite() on the stream will not block). Note that a stream that is at end-of-file is
considered readable, because fread() will not block.

• $timeout is the maximum length of time, in seconds, to wait. If this is zero, the
async function completes immediately; it’s really just a query for the status of the
stream.

The result of the function is an integer indicating the current state of the stream,
mapping to one of these four global constants:

• STREAM_AWAIT_CLOSED, indicating that the stream is now closed
• STREAM_AWAIT_READY, indicating that the stream is now readable or writable

(depending on what was passed as $events)
• STREAM_AWAIT_TIMEOUT, indicating that the stream is in the same state as before,

but the timeout triggered
• STREAM_AWAIT_ERROR, indicating that an error occurred

stream_await() is similar to stream_select() in functionality—waiting for a stream
to enter an interesting state—but it doesn’t have the multiplexing functionality of
stream_select(). You can use HH\Asio\v() to await multiple stream wait handles
simultaneously, but the resulting combined wait handle won’t complete until all of its

154 | Chapter 6: Async

constituent stream wait handles have completed. You can work around this by wrap‐
ping the call to stream_await() inside another async function that uses the stream’s
result:

async function read_all(array<resource> $fps): Awaitable<void> {
 $read_single = async function(resource $fp) {
 $status = await stream_await($fp, STREAM_AWAIT_READ, 1.0);

 if ($status == STREAM_AWAIT_READY) {
 // Read from stream
 // ...
 }
 };

 await HH\Asio\v(array_map($read_single, $fps));
}

Async Extensions | 155

CHAPTER 7

XHP

XHP (named to resemble XHTML) is a feature of Hack that allows programmers to
represent an HTML tree as PHP/Hack objects, by means of embedded XML-like syn‐
tax. This eliminates entire classes of bugs as well as a major source of security holes in
web apps. It makes UI code cleaner, more maintainable, and more flexible.

Traditionally in PHP, you output web pages in one of two ways—either by using PHP
templating within HTML:

<tt>Hello <?= $user_name ?>!</tt>

or by concatenating or interpolating strings:

echo "<tt>Hello $user_name!</tt>";

With XHP, the same example looks like this:

echo <tt>Hello {$user_name}</tt>;

This is a normal echo statement, and there are no quotation marks. The HTML-like
syntax is part of the grammar.

XHP is a great foundation for a modern, object-oriented web app UI library. In this
chapter, we’ll see why you should use it, how to use it, how to build on top of it, and
how to convert a legacy codebase to use it.

Why Use XHP?
XHP can help improve the security and correctness of your UI code, with a variety of
ways to prevent you from making common mistakes. It also helps organize your UI
code more sanely, by providing an object-oriented interface to your HTML markup.

157

Runtime Validation
Can you spot the problem with this code?

echo '<div class="section-header">';
echo 'Intro to Death Metal</sapn>';
echo '</div>';

One of the closing tags is misspelled: </sapn>. In real code, you probably wouldn’t
detect a bug like this until you viewed the resulting webpage in a browser, and even
then, depending on the bug, you might not notice it at all.

XHP eliminates this class of errors. The preceding example in XHP, including the
typo, would look like this:

echo
 <div class="section-header">
 Intro to Death Metal</sapn>
 </div>;

When you try to run, include, or require this file, you’ll encounter a fatal error:

Fatal error: XHP: mismatched tag: 'sapn' not the same as 'span' in
/home/oyamauchi/test.php on line 4

XHP offers more sophisticated forms of validation as well. HTML has rules govern‐
ing the allowed relationships between tags: which tags are allowed to have other tags
inside them, which tags are allowed to have text inside them but no tags, and so on.
XHP can check these constraints and raise errors if they’re violated.

For example, the following is not valid HTML, because the <select> tag is not
allowed to have tags inside it other than <option> and <optgroup>:

<select>bold text!</select>

If you try to do this in XHP, you’ll encounter a fatal error, with details on what went
wrong and where:

Fatal error: Element `select` was rendered with invalid children.

/home/oyamauchi/test.php:2

Verified 0 children before failing.

Children expected:
(:option|:optgroup)*

Children received:
:strong

XHP validates many of the rules imposed by the HTML5 draft specification, though
not all. When you extend XHP with custom classes, you can add validation rules for
them. We’ll see how to do that in “children Declarations” on page 171.

158 | Chapter 7: XHP

1 It’s not CSS because that’s Cascading Style Sheets.

Secure by Default
Here’s some code that’s meant to be used as the target of a web form submission. The
user enters her name in a form field and this page displays a personalized welcome
message. What is the problem with it?

$user_name = $_REQUEST['name'];

echo '<html>';
echo '<head><title>Welcome</title></head>';
echo '<body>Welcome, ' . $user_name . '</body>';
echo '</html>';

There is a security vulnerability. If the user submits a string containing HTML
markup, that markup will end up being interpreted by the browser as part of the
document object model (DOM). For example, if the user submits <blink>blinky
text</blink> in the name query parameter, there will be blinking text on the result‐
ing page, and that surely isn’t what the site’s author intended. This is known as a cross-
site scripting (XSS) vulnerability.1

Without XHP, the XSS vulnerability is fixed by adding a call to htmlspecialchars(),
like this:

$user_name = htmlspecialchars($_REQUEST['name']);
// ...

This is still troublesome: you have to remember to properly escape every string that
could contain user input (including strings resulting from database queries and
such). You also have to make sure they’re escaped exactly once, or you’ll see double-
escaping bugs, which aren’t security holes but are still undesirable.

This example is simple to fix, but it’s also particularly egregious. XSS vulnerabilities in
real code are likely to be quite a bit more subtle. Most codebases will have a large
number of functions or methods that output pieces of a complete web page, and they
are called in many different layers to assemble the final page; making sure that all the
necessary escaping is done exactly once amid all the layers is a difficult and delicate
task.

Here’s the same code in XHP:

$user_name = $_REQUEST['name'];

echo
 <html>
 <head><title>Welcome</title></head>
 <body>Welcome, {$user_name}</body>
 </html>;

Why Use XHP? | 159

There are no calls to htmlspecialchars() or any other escaping routines in this
code, and yet there is no XSS vulnerability. XHP escapes reserved characters to
HTML entities in the string before outputting it, replacing < with < and so on.

The root of the problem is that PHP and Hack make no distinction between raw
strings and HTML strings. It’s best to think of these as two completely different data
types, with nontrivial algorithms to convert between them. A raw string is meant for
display as is. An HTML string is a serialized DOM tree, meant to be used as input to
an HTML rendering engine.

XSS vulnerabilities result from incorrectly treating raw strings as HTML strings. The
string that the user types into the form field is a raw string, so it must be converted
into an HTML string (i.e., reserved HTML characters must be escaped) before it gets
used as input to an HTML rendering engine. To fail to do so is, in principle, a type
error. XHP solves the problem by relieving you of the need to deal with HTML
strings at all.

Thinking of HTML as a serialization format, rather than a markup language, makes
this point clearer. Think of JSON, another commonly used serialization format.
When you’re writing code that has to output JSON, you don’t do it by manually piec‐
ing together JSON characters; you build up a structure using PHP/Hack objects or
arrays and then serialize it all to JSON by passing it to json_encode() as the last step.
You, the application developer, are never dealing directly with strings containing
JSON-encoded data.

Similarly, XHP gives you a way to build up a structure using PHP/Hack objects and
then serialize it to HTML, without ever dealing with a serialized HTML string except
to output it to a stream.

Why Is XSS Dangerous?
A full exploration of XSS vulnerabilities is beyond the scope of this book, but here’s a
quick overview. The most pressing danger posed by XSS is that it allows attackers to
execute malicious JavaScript code in the context of a site that the user trusts.

JavaScript code running in a browser can generally access information in other win‐
dows and tabs of the same browser, but only if they are displaying the same site. This
way, if you have your bank’s website open in one tab and a malicious site open in
another, the malicious site’s JavaScript can’t access your banking information. This
restriction is called the same-origin policy.

However, if the bank’s website has an XSS vulnerability, the attacker may be able to
use it to execute JavaScript of his own devising, as if the bank’s website had supplied
it. The JavaScript will have access to the bank site’s DOM, and may, for example, make

160 | Chapter 7: XHP

an HTTP request containing your bank account number to a site controlled by the
attacker.

How to Use XHP
HHVM has support for XHP built in. You can turn it on and off with the configura‐
tion option hhvm.enable_xhp. You can enable XHP without enabling any other Hack
features.

You’ll also need the Hack library for XHP. This contains classes that form the infra‐
structure of XHP, as well as classes that mirror all the tags that HTML5 supports. The
recommended way to integrate this with your project is to use Composer. This will
take care of fetching the source and setting up autoloading the necessary classes, so
you can use XHP immediately.

A full guide to using Composer is outside the scope of this book, but here is what
you’ll need to add to your project’s composer.json file:

"require": {
 "facebook/xhp-lib": "~2.2"
}

This specifies that we require version 2.2 or later.

Basic Tag Usage
We’ve already seen several examples of XHP usage, but we’ll start from the very
beginning here.

XHP is syntactic sugar for creating XHP objects. XHP objects are just like any other
Hack objects: for example, you can call methods on them, and if you pass an XHP
object to the built-in function is_object(), it will return true. The only difference is
that instead of creating XHP objects with the keyword new, you create them with
XHP tags, an HTML-like syntax extension.

XHP objects are instances of XHP classes, which again are like any other Hack classes
except for two things: their names start with a colon (:), which is invalid in PHP and
Hack; and they descend, possibly indirectly, from the core XHP library class :xhp.

XHP objects are meant to form a tree structure. Each object can have any number of
children, each of which is either text or another XHP object. This mirrors the struc‐
ture of HTML documents.

At its most basic, XHP tag syntax consists of an XHP class name without the leading
colon, surrounded by angle brackets (< and >). This is an opening tag. Every opening
tag must be balanced by a matching closing tag, which consists of the same class

How to Use XHP | 161

http://getcomposer.org

name, prefixed with a slash (/), all inside angle brackets. Between the opening and
closing tags can be text, other tags, or embedded Hack code (see “Embedding Hack
Code” on page 164).

This example creates a single XHP object, an instance of the class :strong, and passes
it as an argument to the echo statement. It has a single child, which is the string bold
text:

echo bold text;

Here is a more complex example that creates an XHP object of the class :div with
two children. The first child is the string plain text. The second child is an XHP
object of the class :strong with one child, the string bold text:

echo
 <div>
 plain text
 bold text
 </div>;

One important thing to learn from this example is that whitespace in XHP is mostly
insignificant. In text within XHP, any sequence of whitespace characters (spaces, tabs,
newlines, and carriage returns) will be collapsed into a single space. This is to allow
for the linebreaking and indenting style used in this example, which we recommend
for any XHP code that doesn’t fit on a single line.

Remember that the syntax is meant to describe a tree structure. To make sure it does,
opening and closing tags must be properly nested. That is, if you have a series of
opening tags, their corresponding closing tags must appear in the opposite order. For
example, this is invalid syntax:

echo bold italic text;

The opening tag is inside the tag, but the closing tag is outside
it, which breaks the tree structure: one node in a tree cannot be partially a child of
another one and partially not. In this example, the closing tag must come
before the closing tag . The HTML rendering engines in many web brows‐
ers are permissive about this kind of thing, but XHP is not.

Tags may also be self-closing; this is equivalent to an opening tag followed immedi‐
ately by its closing tag, and is commonly used for XHP objects that don’t have chil‐
dren. Just as in HTML, the syntax for a self-closing tag is a slash immediately before
the closing angle bracket. The space before the slash isn’t necessary; including it is a
stylistic choice:

echo <hr />;

162 | Chapter 7: XHP

HTML character references
HTML character references are a way to encode characters in HTML, as an alterna‐
tive to simply using the literal characters. This is useful when you need to encode a
reserved HTML character like the ampersand (&), or when you need to use a charac‐
ter that is unsupported by the character set you’re using.

You can use HTML character reference syntax in text within XHP, and it will be con‐
verted to the corresponding character during parsing. XHP supports every HTML
entity from the HTML5 draft specification, as well as numeric character reference
syntax.

This example will print a tag containing three hearts. The first uses the entity,
the second uses decimal notation, and the third uses hexadecimal notation. The
resulting string is UTF-8-encoded:

echo ♥ ♥ ♥;

Remember that XHP escapes all reserved HTML characters (there are five: & < >
' "), so if you use this syntax to generate one of those, it will be turned back into an
entity when you convert the XHP object back to a string. This example will output ♥
&:

echo ♥ &;

There is no way to output a string like ♥ directly from XHP.

Attributes
In addition to children, XHP objects can also have attributes. Attributes are key/value
pairs that can hold data for an object. This is similar to HTML, where tags can have
attributes that influence their behavior. Each XHP class defines the attributes that it
can have; each attribute has a type and, optionally, a default value. Attributes may also
be required; that is, it’s an error to not set them.

XHP tag syntax supports attributes, and they look very similar to HTML attributes.
After the tag name, there can be any number of attributes, separated by whitespace.
Each attribute is a name, followed by an equals sign, followed by a value. There must
be no whitespace around the equals sign. The value must be either a double-quoted
string or a curly-brace-enclosed Hack expression (see “Embedding Hack Code” on
page 164). For example:

echo <input type="button" name="submit" value="Click Here" />;

Note that although attribute values are double-quoted strings, they are not subject to
variable interpolation as they are elsewhere. Dollar signs in attribute values have no
special meaning. If you need variable interpolation, use embedded Hack code instead
(see the next section).

How to Use XHP | 163

Embedding Hack Code
You can embed Hack expressions within XHP syntax, to use the values of those
expressions as attributes or children of XHP objects. The syntax is simple: enclose the
Hack expression in curly braces. Here is an example with both ways you can use it, as
an attribute value and as a child:

echo
 getProfileURI()}>
 {$user->getName()}'s Profile
 ;

Apart from allowing you to insert dynamically generated data into XHP trees, this
allows you to build up an XHP tree from individual pieces, instead of as a single
mass:

$linked_profile_pic =
 getProfileURI()}>
 getProfilePicURI()} />
 ;

echo
 <div>
 <div class="profile-pic">{$linked_profile_pic}</div>
 {$user->getName()}
 </div>;

This is exactly equivalent to putting the code for the <a> tag directly inside the <div>
tag.

Type Annotations for XHP
There are two interfaces that you’ll use in type annotations when passing XHP objects
around: XHPRoot and XHPChild.

XHPRoot is any object that is an instance of an XHP class. XHPChild is the set of things
that are valid as the value of $xhpchild in this code:

echo <div>{$xhpchild}</div>;

That means XHP objects, as well as strings, integers, doubles, and arrays of any of
these. It does not include non-XHP objects with __toString() methods. XHPChild is
special in that it is “implemented” by primitive types, so, for example, 123 instan
ceof XHPChild evaluates to true.

Here’s an example of when you might use XHPChild—rendering a UI element that
could be either a link or plain unlinked text:

function render_page_link(Page $page, bool $is_self): XHPChild {
 if ($is_self) {
 return $page->getTitle();

164 | Chapter 7: XHP

 } else {
 return getURI()}>{$page->getTitle()};
 }
}

If you have an XHPChild and you need to pass it to something that requires an
XHPRoot, you can wrap it in the special XHP class x:frag. It’s essentially a transparent
wrapper for XHP content; adding an x:frag as a child to another XHP object is the
same as adding each of the x:frag’s children individually. This class is also what
you’ll use when you need to pass around a bundle of multiple XHP objects without
anything to contain them:

function render_name_with_icon(User $user): XHPRoot {
 return
 <x:frag>
 getIconURI()} />

 {$user->getName()}
 </x:frag>;
}

Object Interface
XHP objects have several public methods that can be used to inspect and modify their
attributes and children. This gives you much more flexibility: when you create an
XHP object, you don’t need to have all of its children and attributes ready. You can
create one and pass it around to other functions so that they can make modifications
to it, or return one from a function so that the caller can customize it. The methods of
an XHP object are:

appendChild(mixed $child): this

Adds $child to the end of the object’s array of children. $child can also be an
array, in which case each of its contained objects will be passed to appendChild()
recursively in turn.

prependChild(mixed $child): this

Adds $child to the beginning of the object’s array of children. $child can also be
an array, in which case each of its contained objects will be passed to prepend
Child() recursively in turn.

replaceChildren(...): this

Takes a variable number of arguments, puts all its arguments in an array, and
replaces the object’s array of children with that array.

getChildren(?string $selector = null): Vector<XHPChild>

If $selector is not passed, this simply returns all of the object’s children. If
$selector starts with %, this will return all children belonging to the category

How to Use XHP | 165

named by $selector (see “Categories” on page 173). Otherwise, this will return
all children that are instanceof the class named by $selector.

getFirstChild(?string $selector = null): ?XHPChild

If $selector is not passed, this returns the object’s first child. Otherwise, it
returns the first child that matches $selector (see getChildren() for details), or
null if no such child exists.

getLastChild(?string $selector = null): ?XHPChild

If $selector is not passed, this returns the object’s last child. Otherwise, it
returns the last child that matches $selector (see getChildren() for details), or
null if no such child exists.

getAttributes(): Map<string, mixed>

Returns the object’s array of attributes. The returned Map is a copy of the object’s
internal attribute array; you can modify it without affecting the object.

getAttribute(string $name): mixed

Returns the value of the attribute named $name. If the attribute is not set, this
returns null if the attribute is not required, or throws an XHPAttributeRequire
dException if it is required. If $name is not the name of a declared attribute, this
throws an XHPAttributeNotSupportedException.

You should only use this method if the name of the attribute you’re reading isn’t
statically known. Otherwise, you should use the $this->:name syntax, because
the typechecker understands it and can give the returned value the right type.

setAttribute(string $name, mixed $val): this

Sets the attribute named $name to $val. The value will be checked against the
attribute’s type, and if the type check fails, this throws an XHPInvalidAttribu
teException. If $name doesn’t contain the name of a declared attribute, this
throws an XHPAttributeNotSupportedException.

Again, if you know the attribute name statically, you should use the $this-
>:name = $value syntax instead of this method.

setAttributes(KeyedTraversable<string, mixed> $attrs): this

Replaces the object’s array of attributes with $attrs. The error conditions from
setAttribute() apply to this method as well.

isAttributeSet(string $name): bool

Returns whether the attribute named $name is set.

categoryOf(string $cat): bool

Returns whether the object belongs to the category named $cat.

166 | Chapter 7: XHP

When using existing XHP classes use, you’ll mostly be using appendChild(), prepend
Child(), and setAttribute(). When writing custom XHP classes (see “Creating
Your Own XHP Classes” on page 168), you’ll mostly be using getChildren() and
getAttribute().

Here’s an example of using the object-oriented interface to build up an HTML list:

function build_list(array<string> $names): XHPRoot {
 $list = ;

 foreach ($names as $name) {
 $list->appendChild({$name});
 }

 return $list;
}

Validation
XHP classes can declare the type and number of children they can have, as well as the
types and names of the attributes they can have. These constraints are validated at
various times:

• Children constraints are validated at render time; that is, when toString() is
called. See “The Hack Library” on page 186 for more detail on this.

• Attribute names and types are validated when the attributes are set, either in an
XHP tag or through setAttribute().

• The presence of @required attributes is validated when the individual @required
attributes are read.

Validation is on by default, and it can be turned off. We recommend that you keep it
on during development and testing, to catch mistakes. If you want to save CPU cycles
in production, though, turning XHP validation off is a quick and easy way to do it.
All you have to do is make sure this line of code runs before you start using XHP:

:xhp::$ENABLE_VALIDATION = false;

How to Use XHP | 167

Syntax highlighting

Generally, the PHP syntax highlighting modules that come with
popular text editors will work fine on files that contain XHP. The
main source of trouble is the use of apostrophes in text within
XHP; syntax highlighters usually end up treating these as opening
single quotes, resulting in text being incorrectly highlighted as a
string literal. This won’t cause a syntax error at runtime, but is con‐
fusing to read in a text editor.
The workaround is to put the apostrophe inside a double-quoted
string inside an embedded code snippet. You can wrap just the
apostrophe, or a larger part of the text, or anything in between:

echo <p>So text editors don{"'"}t get confused</p>;
echo <p>{"This'll work too"}</p>;

There’s no technical advantage to either style, but the first style is
more consistent with text that doesn’t have apostrophes and thus
doesn’t need any kind of quoting.

Creating Your Own XHP Classes
The true power of XHP comes from its extensibility. It comes with classes for each
standard HTML tag, but you can define your own classes to encapsulate your own
rendering logic. For example, you can define an XHP class that represents an alert
box on a web page, or a row in a list of users, or an entire navigation bar.

XHP class names always start with a colon (:) and may include colons in the middle,
as long as there are never two adjacent colons. Colons aren’t allowed in class names in
PHP and Hack; this is one of the changes XHP introduces. XHP class names may also
include hyphens (-), which is also invalid in PHP and Hack.

All you need to do to create a custom XHP class is to extend :x:element and imple‐
ment the protected method render(), taking no arguments and returning an XHP
object. Here’s a minimal example:

class :hello-world extends :x:element {
 protected function render(): XHPRoot {
 return Hello World;
 }
}

echo <hello-world />; // Prints Hello World

It’s important to note that even when you’re defining your own XHP classes, you still
never deal with HTML strings. You implement everything in terms of other XHP
classes, which can be your own classes or the built-in classes that mirror HTML tags.

168 | Chapter 7: XHP

The render() method’s return type must be XHPRoot, so it must return an XHP
object. If you want to return a plain string, wrap it in an x:frag:

class :hello-world extends :x:element {
 protected function render(): XHPRoot {
 return <x:frag>Hello world, plain as can be</x:frag>;
 }
}

Attributes
Your custom XHP classes can declare attributes that they can have. Inside the class
definition, put the reserved XHP keyword attribute, followed by a type, followed by
the attribute name, optionally followed by a default value. Attribute names are con‐
ventionally all lowercase, with no separators between words, mimicking the style used
in HTML:

class :ui:profile-link extends :x:element {
 attribute int profileid;
 attribute bool showpicture = false;
}

XHP has special syntax for accessing the value of an attribute. It looks like regular
property access syntax, with the attribute name as the property name, but the
attribute name is prefixed with a colon:

class :hello extends :x:element {
 attribute string target;
 public function render(): XHPRoot {
 return <x:frag>Hello {$this->:target}!</x:frag>;
 }
}

If the attribute wasn’t set, this returns null, or the default value if there is one.

You can make an attribute required by adding @required after the attribute name in
the declaration. If you try to read a required attribute and that attribute hasn’t been
set, an XHPAttributeRequiredException will be thrown. Note that if the exception
propagates out of the render() method, :x:element will catch it and turn it into a
fatal error. If you want to catch the exception, you must do so inside render(), but
this isn’t recommended; instead, either make sure the attribute is set if it really is
required, or don’t make it required.

The syntax lets you combine @required and default values (put the @required after
the default value), but that doesn’t make sense semantically. If you don’t pass the
attribute, you’ll still get an XHPAttributeRequiredException when you try to read it,
so you’ll never see the default value.

Creating Your Own XHP Classes | 169

Attribute types
The types you can give to attributes are a subset of Hack type annotations. Every
attribute must have a type, and attribute types are checked at runtime, even if the
Hack typechecker is not being used.

Here is the set of acceptable attribute types and what they mean:

• bool, int, float, string, array, and mixed all mean the same as they do in Hack
type annotations (see “Hack’s Type System” on page 6). By default, there is no
coercion; if you don’t pass the exact type the attribute expects, an XHPInvalidAt
tributeException will be thrown.

• Hack enum names (see “Enums” on page 57) are allowed. They’re checked at
runtime with the isValid() enum function. If the check fails, an XHPInvalidAt
tributeException will be thrown.

• There’s another enum syntax that lets you list the acceptable values inline. It looks
like this:

attribute enum {'get', 'post'} formmethod;

There’s no limit to the number of possible values in the list. The values must be
all be scalars (i.e., boolean, numeric, or string literals), and they will all be cast to
strings. enum attributes are checked at runtime against the list of acceptable values
with ===. If the check fails, an XHPInvalidAttributeException will be thrown.
These are entirely unrelated to Hack enums, and you should use Hack enums
instead; they’re more typesafe, and more consistent with non-XHP code.

• Class and interfaces names are allowed. They’re checked at runtime with instan
ceof. If the check fails, an XHPInvalidAttributeException will be thrown.
Of particular note is the special interface Stringish. It’s special in the same way
that XHPChild is: it’s “implemented” by a primitive type, namely strings. It is also
implicitly implemented by any class that has a __toString() method. This is in
contrast to the attribute type string, which only accepts strings, and not objects.

Generic types (see Chapter 2), including array, can take type arguments when used
as attribute types. Type erasure still applies, so although the Hack typechecker will
make use of the type arguments, the runtime will not check them.

In attribute types, type aliases (see “Type Aliases” on page 60) are not resolved. Nulla‐
ble types are not syntactically valid as attribute types, and neither are callable types.

Inheriting attributes
It’s common to find that one class should support all the attributes that some other
class does. The most common case is that you want your custom XHP class to sup‐

170 | Chapter 7: XHP

2 Note that you’ll see classes extending :xhp:html-element instead of :x:element. See “The Hack Library” on
page 186 for more details on that, but you should never need to do this with your own XHP classes.

port all of the attributes of a built-in parent class. For example, if you’re designing an
XHP class that renders a box with a drop shadow on a web page, you may want it to
support all the attributes that the HTML <div> tag does.

The syntax for this is simple—you provide the attribute keyword followed by the
name of another XHP class, including the leading colon:

class :ui:drop-shadow-box extends :x:element {
 attribute :div;
}

Be careful, though. This only declares attributes; it doesn’t include any automatic
transfer of :div attributes to <div> objects that :ui:drop-shadow-box returns from
its render() method. To clarify, the implementation of :ui:drop-shadow-box might
look something like this:

class :ui:drop-shadow-box extends :x:element {
 attribute :div;
 protected function render(): XHPRoot {
 return <div class="drop-shadow">{$this->getChildren()}</div>
 }
}

Code that uses :ui:drop-shadow-box may then do something like this:

echo <ui:drop-shadow-box id="mainBox">{$stuff}</ui:drop-shadow-box>;

In the resulting HTML output, the <div> will not have an id attribute set. The
<ui:drop-shadow-box> has the id attribute set, but its render() method never reads
that attribute, so it’s simply lost. This is almost certainly not what you want.

To get automatic attribute transfer, you can use the XHPHelpers trait, which is fully
described in “XHP Helpers” on page 176.

children Declarations
You can, and should, declare the types that your custom XHP class is allowed to have
as children. The syntax for children declarations resembles regular expression syn‐
tax. To make these examples concrete, I’ll show declarations from some real HTML
tags.2

If there is no children declaration, the class is allowed to have any number of chil‐
dren of any type. Having multiple children declarations in the same class is a syntax
error.

Creating Your Own XHP Classes | 171

The simplest children declaration is empty, meaning the element is not allowed to
have children. For example, classes like :br and :hr would have declarations like this:

class :br extends :xhp:html-element {
 children empty;
 // ...
}

The next step is to name specific XHP classes (leading colon included) and put them
in a sequence, separating them with commas:

class :html extends :xhp:html-element {
 children (:head, :body);
 // ...
}

This means that the <html> tag is required to have a <head> child and a <body> child,
in that order, and no others.

There are two special pseudoclass names that you can use: pcdata, which stands for
“parsed character data” and in practice means any Hack value that can be converted
to a string; and any, which means anything is allowed, whether an XHP object or
parsed character data. Note that these names do not have a leading colon:

class :option extends :xhp:html-element {
 children (pcdata)*;
}

The next step is to use the repetition operators * and +. Put these after another speci‐
fier to mean “zero or more of this” or “one or more of this,” respectively:

class :ul extends :xhp:html-element {
 children (:li)*;
 // ...
}
class :dl extends :xhp:html-element {
 children (:dt+, :dd+)*;
 // ...
}

As you can see in the example of :dl, these constructs can be wrapped in parentheses
and have other constructs applied to them. What :dl’s children declaration says is
that a <dl>’s children must be zero or more groups of a nonempty run of <dt> fol‐
lowed by a nonempty run of <dd>. In plain English, this means that all of its children
must be either <dt> or <dd>, the first one must not be <dd>, and the last one must not
be <dt>.

There’s one other postfix operator, which is ?, meaning “zero or one of this.”

The next major concept is the alternation operator |, which means “this or that”:

172 | Chapter 7: XHP

class :select extends :xhp:html-element {
 children (:option | :optgroup)*;
 // ...
}

This says a <select> can have any number of children, but they must all be either
<option> or <optgroup>.

The last thing to discuss is the use of categories, which we’ll look at in detail in the
next section. In a children declaration, category names can be used anywhere an
XHP class name can be used. They’re prefixed with %:

class :strong extends :xhp:html-element {
 children (pcdata | %phrase)*;
 // ...
}

This means that ’s children can be either text or instances of XHP classes
with the category %phrase.

As a demonstration of how richly these constraints can be described, here’s the
children declaration of the <table> tag, which uses almost every possible construct
and displays some deep nesting:

class :table extends :xhp:html-element {
 children (
 :caption?,
 :colgroup*,
 :thead?,
 (
 (:tfoot, (:tbody+ | :tr*)) |
 ((:tbody+ | :tr*), :tfoot?)
)
);
 // ...
}

Categories
Categories in XHP are similar to interfaces in regular object-oriented programming.
An XHP class can be marked with any number of categories that can then be referred
to from children declarations. They don’t need to be declared anywhere before using
them. The syntax is very simple—list the categories, each prefixed with % and separa‐
ted by commas, after the category keyword:

class :strong extends :xhp:html-element {
 category %flow, %phrase;
 children (pcdata | %phrase)*;
 // ...
}

Creating Your Own XHP Classes | 173

The categories applied to the library-provided HTML tag implementations are taken
directly from the HTML5 specification, and generally shouldn’t be used for your cus‐
tom classes. You may wonder, though, how you can get away with having your cus‐
tom classes be children of built-in tags without adding these categories. For example,
the following is valid:

class :hello-world extends :x:element {
 protected function render() {
 return <x:frag>Hello World</x:frag>;
 }
}

echo <hello-world />;

It doesn’t look like this will pass validation, though, because :strong requires its chil‐
dren to either be pcdata or have the category %phrase, and neither of those is
true :hello-world does neither. The trick is that there are two separate children vali‐
dation stages; this is discussed in much more detail in “The Hack Library” on page
186.

Context
You’ll sometimes find that some XHP object deep down inside a tree needs access to a
piece of information that’s only available at the highest level. For example, a button on
a website may need a different appearance depending on whether it’s being viewed by
an administrator or a regular user. The only way we’ve seen so far for the low-level
object to get such information (if there’s no global way to get it) is to have it passed
down as an attribute through every level above it. This is far from ideal: not only does
it require a lot of tedious duplicated code to define the attributes and pass them on,
but it breaks encapsulation by forcing higher-level objects to have attributes simply
for the sake of their low-level children.

Contexts were introduced to XHP to solve this problem. You can set context informa‐
tion on any XHP object, and when that object is rendered, it will pass its context
down to all of its child objects:

$post_list = <ui:post-list posts={$posts} />;
$post_list->setContext('user_is_admin', $user_is_admin);

On the other end, in the lower-level object, simply call getContext() with the appro‐
priate name to read the value. This class, farther down the stack, renders a post with a
delete button only if the context item user_is_admin is true:

class :ui:post extends :x:element {
 protected function render() {
 $delete_button = null;
 if ($this->getContext('user_is_admin')) {
 $delete_button = <ui:button style="delete">Delete Post</ui:button>;

174 | Chapter 7: XHP

 }
 // ...
 }
}

Other things to note:

• Context is only passed down the tree at render time. If you call setCon
text('key', 'value') on an object and then immediately call getCon

text('key') on its children, it will return null. In general, you should only call
getContext() within a render() method.

• As an object is transferring context to its children during rendering, it does not
overwrite the children’s context if they have context items under the same key.
For example:

$inner = <inner />;
$inner->setContext('key', 'inner-value');
$outer = <outer>{$inner}</outer>;
$outer->setContext('key', 'outer-value');

If the inner object calls getContext('key'), it will return inner-value.

Async XHP
XHP integrates with Hack’s async feature (see Chapter 6). When defining an XHP
class, you can use async in its rendering function with two steps:

1. Use the trait XHPAsync inside the class.
2. Implement the function asyncRender() instead of render(). asyncRender()

should have no parameters, and return an Awaitable<XHPRoot>. For example:
class :ui:external-api-status extends :x:element {

 use XHPAsync;

 protected async function asyncRender(): Awaitable<XHPRoot> {
 $status = await HH\Asio\curl_exec("https://example.com/api-status");
 return <x:frag>Status: {$status}</x:frag>;
 }
}

The XHP infrastructure will detect that your element is async, and use asyncRen
der() instead of render().

Creating Your Own XHP Classes | 175

XHP Helpers
XHP provides a trait called XHPHelpers that implements three very useful behaviors:

• Transferring attributes from one object to the object returned from its render()
method

• Giving each object a unique id attribute
• Managing the class attribute

Transferring attributes
It’s very common for an XHP class to inherit attributes from the XHP class that it will
return from its render() method. For example, a class that implements a box with a
drop shadow will probably inherit attributes from :div, because it will render the box
as a <div>:

class :ui:drop-shadow-box extends :x:element {
 attribute :div;
 protected function render(): XHPRoot {
 return <div class="drop-shadow">{$this->getChildren()}</div>
 }
}

The problem with this code is that any attribute that you set on a ui:drop-shadow-
box instance will simply be lost—the <div> returned from its render() method will
not get those attributes automatically:

$box = <ui:drop-shadow-box title="the best box" />;

// Prints <div class="drop-shadow"></div>
echo $box->toString();

To get attributes transferred automatically, all you have to do is to use the trait
XHPHelpers inside a class that you want this behavior for:

class :ui:drop-shadow-box extends :x:element {
 attribute :div;
 use XHPHelpers;

 protected function render(): XHPRoot {
 return <div class="drop-shadow">{$this->getChildren()}</div>;
 }
}

Now, after the ui:drop-shadow-box is rendered, XHPHelpers will iterate over all the
attributes set on the ui:drop-shadow-box. For each attribute, if the object returned
from render() declares that attribute, XHPHelpers will transfer it over:

176 | Chapter 7: XHP

3 Yes, this means the IDS are not guaranteed to be unique, but the chances of generating the same ID twice on
the same page are vanishingly small.

$box = <ui:drop-shadow-box title="the best box" somename="somevalue" />;

// Prints <div class="drop-shadow" title="the best box"></div>
echo $box->toString();

Note that the attribute somename="somevalue" was not transferred. This is
because :ui:drop-shadow-box box doesn’t declare it, directly or indirectly (through
inheriting attributes from :div).

When transferred, attributes set on the ui:drop-shadow-box will overwrite attributes
of the same name that are set on the resultant <div>. For example:

class :ui:drop-shadow-box extends :x:element {
 attribute :div;
 use XHPHelpers;

 protected function render(): XHPRoot {
 return
 <div class="drop-shadow" title="title on the div">
 {$this->getChildren()}
 </div>;
 }
}

$box = <ui:drop-shadow-box title="title on the box" />;

// Prints <div class="drop-shadow" title="title on the box"></div>
echo $box->toString();

There is one exception to that overwriting behavior: the class attribute. Instead of
simply overwriting the <div>’s value of this attribute, XHPHelpers will append to it
(making sure the classes are separated by spaces):

$box = <ui:drop-shadow-box class="class-on-box" />;

// Prints <div class="drop-shadow class-on-box"></div>
echo $box->toString();

Unique IDs

In web programming, it’s useful to give DOM nodes id attributes, so that CSS selec‐
tors and JavaScript code can refer to them. However, this is significantly less useful if
node IDs aren’t unique.

XHPHelpers provides a method that gets a unique ID for any element. Under the
hood, it is generating random IDs.3 In your render() function, just call getID():

Creating Your Own XHP Classes | 177

class :hello-world extends :x:element {
 protected function render() {
 return getID()}>Hello world;
 }
}

Managing the class attribute

As we just saw, the attribute-transferring logic of XHPHelpers treats the class
attribute specially. That’s because the class attribute of DOM nodes is unlike others:
semantically, its value is a set, not a single value. XHPHelpers provides two methods in
line with those semantics: addClass() and conditionClass().

addClass() takes a string as an argument, and appends that string to the object’s
class attribute. (Of course, the object’s class must declare the class attribute, directly
or indirectly.) It makes sure the existing value of the attribute and the new value being
appended are separated by whitespace:

class :ui:drop-shadow-box extends :x:element {
 attribute :div;
 protected function render(): XHPRoot {
 $div = <div />;
 $div->addClass('drop-shadow');
 $div->appendChild($this->getChildren());
 return $div;
 }
}

conditionClass() takes two arguments, a boolean and a string. If the boolean argu‐
ment is true, it simply calls addClass() with the string argument.

XHP Best Practices
HHVM gives you the syntax, and the Hack library gives you the infrastructure and
HTML tags, but building a good UI library on top of these foundations is left as an
exercise for the reader. There are some open source XHP UI frameworks, and there
will be more over time, but you may find yourself needing to build all or part of one
yourself.

One source of inspiration for good XHP design is XHP-Bootstrap. This is an XHP
interface to Bootstrap, a popular library of common web UI components like buttons,
drop-down menus, navigation bars, etc.

XHP is an unfamiliar paradigm for most PHP and Hack developers, and because it’s
relatively new, there’s not much folk wisdom in the world about how to design good
XHP libraries. This section presents a collection of best practices distilled from expe‐
rience at Facebook, where XHP originated. Facebook’s usage of XHP dates back to
2009, and in 2015, 100% of its web frontend code uses XHP to generate HTML.

178 | Chapter 7: XHP

http://github.com/hhvm/xhp-bootstrap
http://getbootstrap.com

No Additional Public API
XHP classes represent UI components. A user of an XHP class should be able to cre‐
ate it using tag syntax and render it to a string, without calling any methods on it.
(Even methods like appendChild() are just alternatives to tag syntax.)

You shouldn’t put any public methods in XHP classes—that breaks the convention
that they simply represent UI components. The only public API you should add to
XHP classes are attribute and children declarations.

Composition, Not Inheritance
One of the key tenets of XHP class design is to avoid sharing functionality using
inheritance. Facebook’s original non-XHP UI library used inheritance extensively,
and the battle scars we gained from it were what drove us to avoid heavy use of inher‐
itance as we migrated to XHP.

The problem with using inheritance pre-XHP was that it resulted in one of two
things: unmaintainable code, or suboptimal output. The root cause is the need for
parent classes to allow for subclasses to influence their behavior or output. There are
two options for exercising this influence:

• Specify some methods as “can/should be overridden.” This approach does a
decent job of preventing tight coupling between the classes, but can lack flexibil‐
ity because the only possible customizations are those the designers of the parent
class thought of.

• Don’t allow or encourage overriding of protected methods, and instead force
subclasses to modify the HTML returned from parent methods. With this
approach, either the child class has to know details about the parent’s implemen‐
tation, which results in excessively tight coupling and a parent class that is very
difficult to modify, or the child class simply wraps the parent’s output with a
<div> or or similar, which results in poor output.

XHP mitigates the latter problem somewhat by providing an object-oriented interface
to the objects being passed around, but inheritance still isn’t ideal. The main problem
is that it obscures control flow: someone reading the code may have to trace up
through several levels of inheritance to find inherited methods.

A UI library using XHP shouldn’t need inheritance at all. XHP classes can inherit
attributes (see “Inheriting attributes” on page 170), and because of the “no additional
public API” rule, this is all you need to be able to use XHP classes polymorphically—
polymorphism being one of the main benefits of traditional inheritance.

XHP Best Practices | 179

There is one application for inheritance in a good XHP UI library.
A single abstract base class, which all other classes extend directly,
is generally a good idea. XHP-Bootstrap does this, in the form
of :bootstrap:base.

Don’t Make Control Flow Tags
After being introduced to XHP, most developers will eventually feel a very strong
urge to create control flow tags in XHP. If this happens to you, resist the temptation.
XHP isn’t designed to be used for control flow, and trying to do so will result in awk‐
ward, inefficient constructs.

Here’s an example of the usage of a hypothetical <x:if> tag that renders its first child
if its condition is true, and its second child otherwise:

echo
 <x:if cond={is_logged_in()}>
 <ui:logged-in-nav-bar />
 <ui:logged-out-nav-bar />
 </x:if>;

This looks clean and elegant, but there are a couple of things wrong with it. First of
all, you are guaranteed to instantiate a useless object in all cases. Remember that XHP
is syntactic sugar for creating objects; in this case, the code would instantiate both
a :ui:logged-in-nav-bar and a :ui:logged-out-nav-bar, keep them allocated until
render time, and then throw one of them away without rendering it. This is ineffi‐
cient, and it breaks the correspondence between the XHP tree and the eventual
HTML tree.

The other problem is that it doesn’t scale. The preceding example is clear and reada‐
ble, but once the two children of <x:if> start to get complex, readability quickly
diminishes:

echo
 <x:if cond={is_logged_in()}>
 <x:if cond={user_is_admin()}>
 <div>
 <ui:admin-link />
 <ui:logged-in-nav-bar />
 </div>
 <ui:logged-in-nav-bar />
 </x:if>
 <ui:logged-out-nav-bar />
 </x:if>;

So conditional constructs are awkward, but what about loops? Here’s a hypothetical
<x:foreach> class that mimics a foreach loop in Hack:

180 | Chapter 7: XHP

echo

 <x:foreach seq={$items} func={function ($item) {
 return {$item};
 }} />
 ;

This appears to be much more sensible. There are no useless XHP objects being
instantiated, and it will scale well: the closure passed to the <x:foreach> object can
increase in complexity without hurting clarity.

But remember, again, that XHP is just syntactic sugar for object creation. If you look
at what’s going on under the hood, it becomes clear that this <x:foreach> class is a
bad idea. Here’s a “de-sugared” version of the previous code:

echo new xhp_ul(array(
 new xhp_x__foreach(array(
 'seq' => $items,
 'func' => function ($item) {
 return new xhp_li(array($item));
 }
))
));

This scheme is creating an object to represent a loop, which is silly: don’t create an
object to represent a loop, just write the loop! The object superficially resembles a
regular Hack foreach loop when dressed up in XHP syntax, but the reality is quite
different.

The recommended way to do what was just shown is to use appendChild() inside a
regular Hack loop. The result is still quite easy to understand:

$ul = ;
foreach ($items as $item) {
 $ul->appendChild({item});
}
echo $ul;

Distinguish Attributes from Children
When you’re designing XHP classes, you’ll often have to choose what should be an
attribute and what should be a child. The guidance for this choice comes from XHP’s
philosophy of trying to represent the eventual DOM tree: if a value corresponds to a
node in the DOM tree, it should be a child; otherwise, it should be an attribute.

Here are some examples, inspired by XHP-Bootstrap and Facebook’s internal UI
library:

• A class that represents a button might have attributes for visual style (“cancel,”
“default,” etc.) and for disabled-ness, and take its caption as a child.

XHP Best Practices | 181

• A class that represents a dialog box might have an attribute for visual style
(“note,” “warning,” etc.) and take a header, body, and footer as children.

The main corollary to this is that no attribute should ever have a type that is an XHP
class.

Style Guide
XHP has its own set of style guidelines:

• Separate words in XHP class names with hyphens. Class names should be all
lowercase.

• Use colons in XHP class names as a form of namespacing. For example, if you
have desktop and mobile versions of your website in the same codebase, you
might have a class for the navigation bar in each version, named something
like :desktop:nav-bar and :mobile:nav-bar. This is just a convention, how‐
ever; there are no real namespacing semantics. For example, from
within :mobile:nav-bar, you still have to include the prefix when referring to
other XHP classes prefixed with :mobile.

• Each class should only have the attribute keyword once, and all attribute decla‐
rations should follow it, separated by commas:

class :photo-frame extends :x:element {
 attribute
 :div,
 string caption,
 string imgsrc @required,
 enum {'compact', 'full'} style;
}

Migrating to XHP
In an ideal world, we would never have to deal with ugly legacy code. We would be
free to build beautiful, clean abstractions on top of beautiful, clean abstractions,
always choosing the best design for the problem at hand, our code in perfect har‐
mony with the present task.

But we live in the real world, where millions of lines of legacy code are still serving
traffic, and are unlikely to go away any time soon. New tools and abstractions need to
be able to work with old ones. This is fairly easy with XHP, but there are a few things
to watch out for.

182 | Chapter 7: XHP

Converting Bottom-Up
The smoothest way to turn legacy UI code into XHP-using code is to work bottom-
up. That is, take the most basic, low-level components—the ones that don’t depend
on any others—and convert them to XHP. For example, consider this:

function render_profile_link($user) {
 $uri = htmlspecialchars($user->getProfileURI());
 $name = htmlspecialchars($user->getName());
 return "$name's Profile";
}

The least-disruptive way to convert this to XHP is to build the HTML structure and
convert it to a string, all inside the function:

function render_profile_link($user) {
 $link =
 getProfileURI()}>
 {$user->getName()}'s Profile
 ;
 return $link->toString();
}

This change is very easy because it’s self-contained—it doesn’t require you to modify
the function’s callers—but it makes very little meaningful progress toward a broader
conversion. The problem is that it does nothing to change the fact that data is cross‐
ing abstraction boundaries in the form of HTML strings, instead of XHP objects.
Callers still have to be concerned about escaping, and can’t sanely modify the content
returned from render_profile_link(). If you want to convert the next level up—the
components that use render_profile_link()—to use XHP, it’s still awkward because
you will need to bridge the gap between HTML strings and raw strings.

The best alternative is to convert render_profile_link() into an XHP class:

class :ui:profile-link extends :x:element {
 attribute User user @required;
 protected function render(): XHPRoot {
 $user = $this->:user;
 return
 getProfileURI()}>
 {$user->getName()}'s Profile
 ;
 }
}

For convenience, you can keep around a version of render_profile_link() that just
delegates to this XHP class:

function render_profile_link($user): string {
 return (<ui:profile-link user={$user} />)->toString();
}

Migrating to XHP | 183

Be aware that this function is a crutch, though. The real goal is to convert every for‐
mer caller of render_profile_link() to use <ui:profile-link> instead, and then
delete render_profile_link().

Getting Around XHP’s Escaping
As we saw in “Secure by Default” on page 159, any string that you embed in an XHP
structure will have its reserved HTML characters escaped as the XHP object gets
turned into a string. This is a very good thing, as it makes XHP secure by default and
eliminates XSS vulnerabilities.

Sometimes, though, this behavior isn’t what you want. For example, you may be using
a function from a library that returns an HTML string—a library for rendering
markup formats like Markdown, say—that must be output as is, without escaping.

There is a deliberate backdoor in XHP’s infrastructure that allows the creation of
classes (regular classes, not XHP classes) that are exempt from escaping and valida‐
tion. This takes the form of two interfaces:

XHPUnsafeRenderable

This interface declares one method, toHTMLString(). It takes no arguments and
returns a string. You can put objects implementing this interface into an XHP
object tree, and the XHP rendering infrastructure will put the result of calling
toHTMLString() directly into the returned HTML string, without escaping.

XHPAlwaysValidChild

A class that implements this interface is a valid child of any XHP object, unless it
has a declaration of children empty (see “children Declarations” on page 171).
The interface itself declares no methods.

The XHP library doesn’t come with any classes that implement these interfaces
because, ideally, they shouldn’t be needed, and using them has security implications.
We wanted to create a barrier to doing these unsafe things, so that they’re still possi‐
ble, but you have to know the risks before you can do them.

With that stern warning, here’s an example of a class that gets HTML from an exter‐
nal syntax highlighting library, and lets it be added to an XHP tree:

class SyntaxHighlight implements XHPUnsafeRenderable {
 private string $content;

 public function __construct(string $source) {
 $this->content = external_highlighting_function($source);
 }

 public function toHTMLString(): string {
 return $this->content;

184 | Chapter 7: XHP

 }
}

And here’s how to use it:

$code = <div>{new SyntaxHighlight($source)}</div>;

XHP Internals
This section is optional reading for people who want to understand what’s going on
under the hood. You shouldn’t need to understand any of this to be able to use XHP
effectively.

There are two components to XHP: the parser-level transformation that turns tag
syntax into new expressions, and the Hack library that contains the core objects-to-
strings infrastructure and implementations of HTML tags.

The Parser Transformation
As XHP syntax is being parsed, the parser transforms it into regular Hack syntax:

• XHP class names (those starting with colons) are transformed into legal Hack
class names as follows:

1. The leading colon is replaced with xhp_.
2. Colons other than the leading one are replaced with __ (two underscores).
3. Hyphens are replaced with _ (a single underscore).

So, for example, the class name :ui:nav-bar will be transformed to
xhp_ui__nav_bar internally. This transformation applies to XHP class definitions
and where those class names are used.
Error messages will use these transformed names, which is why I’ve described the
transformation in detail.

• children, category, and attribute declarations are transformed into defini‐
tions of protected methods. Each method does nothing but return an array that
contains an encoding of the declaration. The format of this array is an implemen‐
tation detail and should never matter to users of XHP.

• XHP tag syntax is replaced with a new expression. Two arguments will be passed
to the XHP class’s constructor: an array of attributes (names mapping to values),
and an array of children. Here is an example:

echo

 Subscribe to The Dispatch
 ;

XHP Internals | 185

// Is transformed into:
echo new xhp_a(
 array('href' => '/signup.php'),
 array(
 'Subscribe to ',
 new xhp_span(
 array('class' => 'brand'),
 array('The Dispatch')
)
)
)

In fact, you can write code in the second style manually, and it will work.

The Hack Library
The Hack library defines several abstract classes that form the core objects-to-strings
infrastructure of XHP. The class hierarchy is illustrated in Figure 7-1.

Figure 7-1. The hierarchy of XHP’s core classes

Here are the details of the core classes shown in this hierarchy:

:xhp

This defines the interface to XHP objects. It declares several abstract methods
that define the interface to all XHP objects: getting and setting children and
attributes. It has no properties and no non-static methods.

186 | Chapter 7: XHP

:x:composable-element

This extends :xhp and is also abstract, but has a lot of concrete functionality: it
provides implementations of child and attribute management methods, as well as
validation of category, child, and attribute constraints. It has declared properties:
arrays for children, attributes, and context.

:x:primitive and :x:element
These both extend :x:composable-element, and are both abstract. The key dis‐
tinction between them is that :x:primitive expects its subclasses to implement a
method called stringify() that returns a string, whereas :x:element expects its
subclasses to implement a method called render() or asyncRender() that
returns an XHP object. This split is the key: it enables two separate validation
stages, which allows built-in classes to seamlessly mix with custom ones while
still performing meaningful validation.

The key operation is called flushing: converting an :x:element into an :x:primitive
by repeatedly calling render() or asyncRender() on it, and recursively flushing its
children, until it and all its children are :x:primitive objects. The rendering meth‐
ods can return any XHP object, and your :x:element-extending custom classes may
be built up in many layers, but at the bottom of the stack there must be
the :x:primitive-extending classes from the XHP library, so this procedure is guar‐
anteed to terminate eventually.

Flushing an :x:element tree creates an async dependency tree (see “Structuring
Async Code” on page 132) by recursively calling and awaiting asyncRender() on
each element. Multiple elements can be rendering in parallel this way, including ones
from different levels of the tree.

You initiate the process of converting an XHP tree to a string by calling toString()
(or calling and awaiting asyncToString()) on a single XHP object, which is the root
of the tree:

• :x:element’s toString() validates the element’s children (first stage of valida‐
tion), flushes the element, and then calls toString() on the resulting :x:primi
tive.

• :x:primitive’s toString() flushes all of the element’s children (awaiting them
all simultaneously using HH\Asio\m()), validates the flushed children (second
stage of validation), then calls stringify() on each child and concatenates the
resulting strings together.

The last detail is the position of the library classes that represent HTML tags. These
all extend :xhp:html-element, which extends :x:primitive. There are a few sub‐
classes of :xhp:html-element that represent specific archetypes of HTML tags

XHP Internals | 187

(e.g., :xhp:html-singleton, which is not allowed to have children), but these should
be considered as internal to XHP, and not for use outside of the library.

188 | Chapter 7: XHP

CHAPTER 8

Configuring and Deploying HHVM

At the language level, HHVM is meant to be a drop-in replacement for the standard
PHP interpreter. When running scripts from the command line, this promise gener‐
ally holds. However, the way you configure and deploy it to serve web apps is differ‐
ent, not least because of its just-in-time (JIT) compiler.

In this chapter, you’ll learn the basics of setting up HHVM to serve web traffic. Of
course, many details will depend on your specific application and infrastructure, so
this chapter can’t be a complete guide. The aim is to give you a good enough under‐
standing of HHVM that you can figure out how to integrate it with your setup.

This chapter doesn’t cover setting up the Hack typechecker, which is only used during
development. For that, see Chapter 1.

Specifying Configuration Options
HHVM has a vast set of configuration options—far too many to cover them all in
detail in this book. Many of them aren’t meant for end users anyway; they’re for peo‐
ple hacking on HHVM itself. In this section, we’ll cover how to set configuration
options, and what the most important ones are.

HHVM uses configuration files in INI format, which is the same format that the stan‐
dard PHP interpreter uses. You can specify a configuration file with the -c flag:

$ hhvm -c config.ini file.php

INI format is very straightforward. Each option consists of a key/value pair. Each pair
is on its own line in an INI file, with the key and value separated by an equals sign
(whitespace is not significant):

hhvm.dump_bytecode = 1
hhvm.log.file = /tmp/hhvm.log

189

Some configuration options are associative arrays. hhvm.server_variables is an
example; it sets the contents of the $_SERVER variable within PHP and Hack. You
specify such options like this (in INI format):

hhvm.server_variables[ENVIRONMENT] = prod
hhvm.server_variables[A_NUMBER] = 314

Within a PHP or Hack program with this configuration, $_SERVER will have those
values under those keys:

var_dump($_SERVER['ENVIRONMENT']); // Prints: string(4) "prod"
var_dump($_SERVER['A_NUMBER']); // Prints: int(314)

You can also specify options directly on the shell command line. Use the flag -d, fol‐
lowed by an INI-format key/value pair. Make sure that the pair either doesn’t have
whitespace in it or is quoted, or the shell will split it into multiple arguments and
HHVM will misinterpret it:

$ hhvm -d hhvm.dump_bytecode=1 file.php

You can combine multiple config files and direct options in the same command:

$ hhvm -c config1.ini -d hhvm.dump_bytecode=1 -c config2.ini file.php

In this way, the same option can be specified multiple times. HHVM reads the com‐
mand line left to right and config files top to bottom; the value of an option that it
ends up with is the one that it reads last. For example, in the previous command line,
the option -d hhvm.dump_bytecode=1 will override any setting of hhvm.dump_byte
code in config1.ini. If the option is also specified in config2.ini, that setting will win.

Generally, for production use, it’s best to specify all options in a single config file, sim‐
ply to ensure consistency by avoiding this ordering dependence.

Important Options
The following are some of the most important HHVM configuration options:

hhvm.enable_obj_destruct_call (boolean, default off)
If this option is off, as it is by default, HHVM will not run __destruct() meth‐
ods on objects that remain alive at the end of a request. (It will run __destruct()
methods as normal at other times.) If your application can tolerate this, it can be
a significant performance win: instead of having to traverse every array and
object still alive at the end of a request, HHVM can simply deallocate all of the
request’s memory in one shot. If the option is on, HHVM will run all
__destruct() methods as normal, at all times.

hhvm.hack.lang.look_for_typechecker (boolean, default on)
If this option is on, as it is by default, HHVM will refuse to run any Hack file
unless it can find a Hack typechecker server process that is covering that file. In

190 | Chapter 8: Configuring and Deploying HHVM

production, you should turn this off, as you won’t be running the Hack type‐
checker except in development environments. It will be automatically turned off
if you are in repo-authoritative mode (see “Repo-Authoritative Mode” on page
194).

hhvm.jit_enable_rename_function (boolean, default off)
If this option is off, as it is by default, using the built-in rename_function() will
raise a fatal error. Knowing that functions will not be renamed allows for some
powerful optimizations, so if you don’t rely on this functionality, you should keep
this option off.

hhvm.server.thread_count (integer, defaults to twice the number of CPU cores)
This option specifies the number of worker threads that are used to serve web
requests in server mode (see “Server Mode” on page 192). There’s no one-size-
fits-all formula for the ideal thread count. It depends, in complex ways, on the
application’s performance characteristics, and on the machine’s CPU and mem‐
ory specs.

Apps that don’t use async (see Chapter 6) will likely benefit from thread counts
much higher than the default, as threads will spend a good amount of wall time
idle, waiting for I/O. A good starting point might be 15 times the core count.

Apps that use async heavily are likely to be OK with the default thread count, or
slightly higher. Async can help HHVM use the CPU during time that would
otherwise be spent idle.

The best way to tune this value is to experiment. Vary the thread count and
observe the effects on CPU and memory utilization. As you raise the thread
count, utilization of both resources should increase. Try doing this experiment at
peak traffic times, since utilization at peak is the most important determiner of
total capacity. Adjust the thread count to raise utilization up to some defined
limit (70% CPU, say), and stop there.

HHVM uses OS-level threads, unlike PHP-FPM, which uses processes. The over‐
head of increasing HHVM’s thread count is quite low, so don’t worry about that
when increasing it.

hhvm.source_root (string, defaults to working directory of HHVM process)
This option is only relevant in server mode, where it holds the path to the root
directory of the code being served.

Specifying Configuration Options | 191

Server Mode
HHVM has two primary modes: command-line mode and server mode. Command-
line mode is what’s used when you run a command like hhvm test.php; it immedi‐
ately executes the given script and exits when the script terminates.

Server mode is what you’ll use to serve web requests. In this mode, the HHVM pro‐
cess starts up and doesn’t execute anything immediately. It executes code in response
to requests that come in via FastCGI, and stays running after requests finish. It can
process multiple requests simultaneously. JIT-compiled code is kept in memory (in
the translation cache) and shared across requests.

Start HHVM in server mode with the command-line flag -m server:

$ hhvm -m server -d hhvm.server.type=fastcgi -d hhvm.server.port=9000

This is a FastCGI server, so the port number 9000 is conventional.

The next step is to configure a web server to send requests to the HHVM FastCGI
server. You can use any FastCGI-compatible web server software, such as Apache or
nginx. We’ll focus on nginx here, because it’s simpler to configure, but won’t cover
configuring it from the ground up.

The bare minimum for sending FastCGI requests to HHVM is a location directive
like this:

location ~ \.(hh|php)$ {
 include fastcgi_params;
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
 fastcgi_pass 127.0.0.1:9000;
}

fastcgi_params refers to a configuration file that comes with the standard nginx
installation; it passes parameters of the request (HTTP method, content length, etc.)
on to HHVM. The fastcgi_param directive tells HHVM which file to execute. The
fastcgi_pass directive simply means that the request will be passed to the FastCGI
server at the address 127.0.0.1 on port 9000. This configuration will be applied to
any request for a path ending in .hh or .php.

192 | Chapter 8: Configuring and Deploying HHVM

http://httpd.apache.org
http://nginx.org

The wrapper script

HHVM’s command-line interface can be quite complex, so the
package includes a script called hhvm_wrapper that puts a more
convenient interface on some of the more common options.
Run hhvm_wrapper --help to see the options it provides. It can do
things like run a script in repo-authoritative mode (see “Repo-
Authoritative Mode” on page 194) with a single command:

$ hhvm_wrapper --compile test.php

To see what’s going on behind the scenes, add the flag --print-
command to any hhvm_wrapper command line. It will print out the
underlying HHVM invocation, instead of running it.

Warming Up the JIT
The first few requests to an HHVM server will be slower than the rest, because it has
to compile the PHP and Hack code into machine code before executing it. The effect
is noticeable enough that you shouldn’t immediately expose a newly started HHVM
server to production traffic; you should warm it up first, by sending it a few synthetic
requests.

In fact, the server starts out by not compiling code at all. The first few requests are
run in HHVM’s bytecode interpreter. The theory is that the first few requests to a web
server are unusual—initialization is happening, caches are being filled, etc.—and that
compiling those codepaths is bad for overall performance, as they won’t be frequently
taken once the server is warmed up. HHVM also uses these requests to collect some
profiling data about the data types it sees the code using, so it can compile more effec‐
tively later. You can tune this threshold with the option hhvm.jit_pro

file_interp_requests.

This characteristic sometimes confuses people trying to benchmark
HHVM, as they see the first few requests being slower than they
expect—in fact, often slower than running the same scripts from
the command line. (HHVM always compiles code when running
command-line scripts.)
To benchmark a JIT-based execution engine properly, you have to
give it a warmup period. Because doing so is somewhat subtle, the
HHVM team has released a tool that does a lot of it for you, ena‐
bling consistent benchmarking of server workloads. It’s available on
GitHub.

Sending warmup requests can be as simple as using the command-line curl utility,
from a shell script or similar. For best results:

Warming Up the JIT | 193

https://github.com/hhvm/oss-performance
https://github.com/hhvm/oss-performance

• Use requests that are a representative mix of the most common requests you
expect to see in production. For example, if you expect that about 40% of all
requests in production will go to index.php, then about 40% of your warmup
requests should be to index.php.

• Avoid sending multiple warmup requests in parallel. Nothing will break if you do
send multiple parallel requests, but the JIT compiler tends to generate better code
if it is not working on multiple requests at the same time.

Eventually you should have the warmup process scripted so that you can warm up a
server with a single command, but initially, you’ll need to have some manual involve‐
ment. There’s some subtlety to working out a good number of requests to send—it
varies depending on your application.

One way to work out a good number is to keep sending requests until you’re seeing
consistent response times for requests to the same endpoint. Sometime after the JIT
compiler kicks in (after the last warmup request) you’ll see another jump in perfor‐
mance, as it starts recompiling some code with the benefit of profile-guided optimi‐
zation (PGO). There isn’t a single request-count threshold for when PGO begins—it’s
based on how frequently individual pieces of code are run—so you should keep run‐
ning warmup requests until response times level off.

You can also use the admin server (see “The Admin Server” on page 196) to monitor
the sizes of the compiled-code caches. They will grow rapidly when the JIT compiler
starts, but their growth will soon slow down significantly. When that happens, the
server is sufficiently warmed up.

Repo-Authoritative Mode
By default, HHVM continually checks your PHP and Hack source files to make sure
they haven’t been modified since it last read them. When your source files are
deployed to production this can incur significant costs for no benefit, as the source
files are unlikely to be changing frequently.

To fix this, HHVM offers repo-authoritative mode. In this mode, you build a bytecode
file (the repo) from your codebase ahead of time, and deploy that to production,
without source files. Then, the HHVM server process reads from the repo and never
checks the filesystem for source files—that is, the repo is “authoritative.”

As well as reducing the need for filesystem operations, repo-authoritative mode
allows HHVM’s compiler to make significant optimizations that it otherwise couldn’t.
Because of the guarantee that the compiler can see all the code that can possibly exist
in the process’s lifetime, it can do things like function inlining that aren’t normally
possible.

194 | Chapter 8: Configuring and Deploying HHVM

1 A historical artifact.
2 It’s a bit of an oversight that this optimization is enabled by default.
3 There is no human-readable code inside it, but there is human-readable metadata.

However, the inability to introduce new code at runtime means that in repo-
authoritative mode you can’t use eval() or create_function() (which is actually
just a wrapper around eval()).

Building the Repo
Before deploying, you have to build the repo. You do so by passing several flags to
HHVM. We’ll start with the most basic example, building a repo that contains a sin‐
gle file:

$ hhvm --hphp -t hhbc -v AllVolatile=true test.php

The --hphp flag1 signals that we want to do some offline operation, instead of execut‐
ing PHP or Hack code. -t hhbc means “target HHBC”—that is, we want to output
bytecode. -v AllVolatile=true turns on an option that disables a rather aggressive
optimization that takes some care to use correctly.2 Finally, we pass filenames to pro‐
duce bytecode for—in this case, only one.

This results in a file named hhvm.hhbc in the current working directory; this is the
repo. The repo is actually just a SQLite3 database file, so you can use the sqlite3
command-line tool to examine it.3

In practice, it may be awkward to name all the source files that need to be included on
the command line, so HHVM can also accept the name of a file that contains one
source file name per line. Let’s say we have a file called files.txt with the following con‐
tents:

lib/a.php
lib/b.php
index.php

Then we can tell HHVM to use this list as its input:

$ hhvm --hphp -t hhbc --input-list files.txt

The repo captures the file paths that were passed to HHVM when building the repo,
and these paths form a “virtual filesystem,” of sorts for the HHVM process that runs
from the repo. In concrete terms, when HHVM is running from this repo and the
web server gives it a request for some path—say, /some/file.php—HHVM will look in
the repo for a file that was at the path some/file.php when the repo was built.

In view of that, things will generally be easiest if you build the repo from the path that
will correspond to your web server’s document root when deployed. This may vary

Repo-Authoritative Mode | 195

depending on how much path rewriting you intend to do at the web server level,
though.

Deploying the Repo
Copy the hhvm.hhbc file to your production servers. You don’t need to copy source
files; HHVM will run without them. If you have your web server configured to look
in the filesystem to determine what to do with a given request (which is fairly com‐
mon), you may need to copy your source files for that purpose. However, you could
instead just have empty files in a directory structure mirroring your actual codebase,
and that would be enough for the web server.

You must use the same HHVM binary to run from the repo as you do to build the
repo. Repos are not backward-compatible or forward-compatible. When building a
repo, HHVM embeds in it a repo schema ID, unique to each HHVM version. When
using a repo at runtime, HHVM checks the repo’s schema ID against its own, and it
won’t use the repo if the schema IDs don’t match.

It doesn’t matter where you put the repo file, as long as the HHVM process can read
it. Remember the “virtual filesystem” formulation from before—in repo-authoritative
mode, HHVM will never be concerned with the real filesystem, only with the con‐
tents of the repo. This also means that the setting of hhvm.server.source_root is
irrelevant in repo-authoritative mode.

There are two relevant configuration options: one to tell HHVM to use repo-
authoritative mode, and one to tell it where the repo is. This is what you would put in
your INI file (substituting the correct pathname):

hhvm.repo.authoritative = 1
hhvm.repo.central.path = /path/to/hhvm.hhbc

The Admin Server
In server and daemon modes, HHVM provides a mechanism by which you can
inspect and control the running server process. The process listens on a separate port,
over which you can issue commands with HTTP requests. This functionality is called
the admin server. It offers a wide range of commands; we’ll cover the basics but won’t
look at all of them in great detail here.

The admin server is turned off by default. You turn it on by specifying a port number
for it to listen on—the specific port doesn’t matter, as long as it’s free and HHVM can
bind to it. You should always specify a password as well. You’ll give the password
along with every request to the admin server:

hhvm.admin_server.port = 9001
hhvm.admin_server.password = 9UejLK2jVhy

196 | Chapter 8: Configuring and Deploying HHVM

You’ll need to set up your web server to listen on a new port and forward requests to
the admin server’s port as FastCGI requests. In the examples ahead, we’ll assume that
we picked port number 15213 for the web server to listen on.

The admin server is potentially very dangerous, which is why it’s
not enabled by default. Never enable it without a password—a
strong password, which you rotate regularly—and don’t expose its
port to the Internet.

Once the HHVM server process is started, you can use the curl command-line utility
(or a web browser) to send commands to it. In these examples, we’ll assume that we’re
running curl on the same machine as the HHVM server process, and that the admin
server password is the one configured earlier.

Making a request to / on the admin server will show a help message with a list of
possible commands. You don’t need to provide the password to get help:

$ curl http://localhost:15213/
/stop: stop the web server
 instance-id optional, if specified, instance ID has to match
/translate: translate hex encoded stacktrace in 'stack' param
 stack required, stack trace to translate
 build-id optional, if specified, build ID has to match
 bare optional, whether to display frame ordinates
/build-id: returns build id that's passed in from command line
/instance-id: instance id that's passed in from command line
/compiler-id: returns the compiler id that built this app
/repo-schema: return the repo schema id used by this app
/check-load: how many threads are actively handling requests
/check-queued: how many http requests are queued waiting to be
 handled
/check-health: return json containing basic load/usage stats
/check-ev: how many http requests are active by libevent
/check-pl-load: how many pagelet threads are actively handling
 requests
/check-pl-queued: how many pagelet requests are queued waiting to
 be handled
/check-mem: report memory quick statistics in log file
/check-sql: report SQL table statistics
/check-sat how many satellite threads are actively handling
 requests and queued waiting to be handled

... more items omitted ...

Each of the commands is a path that you can add to your admin server request. For
any of these commands, you have to provide the password that you configured the
admin server with, under the GET parameter auth. For example, here’s the command
compiler-id, which shows the Git revision that this HHVM binary was built from:

The Admin Server | 197

$ curl http://localhost:15213/compiler-id?auth=9UejLK2jVhy
tags/HHVM-3.6.2-0-g11e5cecb678453d47ce2cea83997a2c5703abb41

Indented items in the help output, like instance-id under /stop, are the names of
GET parameters that you can provide to the command:

$ curl http://localhost:15213/stop?auth=9UejLK2jVhy&instance-id=INSTANCEID

If you enter the wrong password, the admin server returns the text Unauthorized.

198 | Chapter 8: Configuring and Deploying HHVM

CHAPTER 9

hphpd: Interactive Debugging

HHVM comes with an interactive debugger called hphpd. In case you’re not familiar
with the concept, an interactive debugger is a program that lets you control other
programs, and inspect their state. You can set it to pause the controlled program at
certain points (e.g., when execution enters a specific function, or reaches a specific
line of code). You can look at the values of variables during execution and, in some
cases, modify them. Interactive debuggers are powerful tools, and they can drastically
increase the ease and efficiency of debugging a large, complex program, as compared
to the trial-and-error workflow of printf-debugging.

hphpd is also a read-eval-print loop (REPL) for PHP and Hack. You can interactively
type in PHP and Hack code, in the context of your codebase (so you can use your
library functions and so on), to try out small pieces of code.

If you’ve used other interactive debuggers like GDB or LLDB, you’ll find hphpd quite
familiar. In fact, you may not even need to read this chapter; you can probably get
started just using hphpd’s interactive help command, help.

In this chapter, we’ll see how to use hphpd to debug scripts and web apps, how to
configure it, and how to get the most out of it.

Getting Started
Start hphpd by typing hhvm -m debug at a shell command line. Instead of executing
any code, HHVM will display a welcome message and drop into the debugger prompt:

$ hhvm -m debug
Welcome to HipHop Debugger!
Type "help" or "?" for a complete list of commands.

Note: no server specified, debugging local scripts only.

199

If you want to connect to a server, launch with "-h" or use:
 [m]achine [c]onnect <servername>

hphpd>

Whatever you type will appear after the hphpd> marker on the last line of output, just
like on the shell command line. This is where you type hphpd commands. hphpd’s
command line uses the GNU Readline library, so it remembers your command his‐
tory and supports features like Emacs key bindings and navigation of history using
the up-arrow and down-arrow keys.

Let’s start with the most useful command in hphpd. Simply typing help or ? at the
prompt will show a list of commands:

hphpd> help

 ────────────── Session Commands ──────────────

 [m]achine connects to an HHVM server
 [t]hread switches between different threads
 [s]et various configuration options for hphpd
 [q]uit quits debugger

 ──────────── Program Flow Control ────────────

 [b]reak sets/clears/displays breakpoints
 [e]xception catches/clears exceptions
 [r]un starts over a program
 <Ctrl-C> breaks program execution
 [c]ontinue * continues program execution
 [s]tep * steps into a function call or an expression
 [n]ext * steps over a function call or a line
 [o]ut * steps out a function call

 ────────────── Display Commands ──────────────

 [p]rint prints a variable's value
 [w]here displays stacktrace
 [u]p goes up by frame(s)
 [d]own goes down by frame(s)
 [f]rame goes to a frame
 [v]ariable lists all local variables
 [g]lobal lists all global variables
 [k]onstant lists all constants

 ───────────── Evaluation Commands ────────────

 @ evaluates one line of PHP code
 = prints right-hand-side's value, assigns to $_
 ${name}= assigns a value to left-hand-side
 [<?]php starts input of a block of PHP code
 ?> ends and evaluates a block a PHP code

200 | Chapter 9: hphpd: Interactive Debugging

 [a]bort aborts input of a block of PHP code
 [z]end evaluates the last snippet in PHP5

 ──────── Documentation and Source Code ───────

 [i]nfo displays documentations and other information
 [l]ist * displays source codes
 [h]elp ** displays this help
 ? displays this help

 ───────── Shell and Extended Commands ────────

 ! {cmd} executes a shell command
 & {cmd} records and replays macros
 x {cmd} extended commands
 y {cmd} user extended commands

* These commands are replayable by just hitting return.
** Type "help help" to get more help.

The letter enclosed in square brackets at the beginning of some commands means
that you can invoke that command just by typing that one letter.

You can type help followed by the name of any other command to get more specific
help with that command:

hphpd> help variable

 ─────────────────── Variable Command ───────────────────

 [v]ariable lists all local variables on stack
 [v]ariable {text} full-text search local variables

This will print names and values of all variables that are currently
accessible by simple names. Use '[w]here', '[u]p {num}', '[d]own {num}',
'[f]rame {index}' commands to choose a different frame to view
variables at different level of the stack.

Specify some free text to print local variables that contain the text
either in their names or values. The search is case-insensitive and
string-based.

When getting command help, you can use the commands’ short names too; help v
does the same thing as help variable.

Some commands have subcommands, which select between different behaviors the
command has. For example, the break command can be used to list breakpoints
(break list) or delete them (break clear), among other things. We’ll cover each
command’s subcommands as we go.

Getting Started | 201

Many commands also have arguments, which you pass by typing them at the debug‐
ger prompt after the command itself, separated by whitespace, much like passing
arguments to a shell command.

You can exit hphpd by either using the quit command or typing Ctrl-C at the debug‐
ger prompt. (Typing Ctrl-C while code is executing will pause execution and put you
back at the debugger prompt.)

Evaluating Code
You can use the @ command to evaluate Hack code. Everything that you type between
the @ and the newline that ends the command will be executed. It can be a single
statement or multiple statements (you don’t need to add a semicolon at the end):

hphpd> @echo "hello\n"
hello

hphpd> @function speak() { echo "speaking\n"; }

hphpd> @speak()
speaking

hphpd> @echo "hello "; echo "world\n"
hello world

hphpd doesn’t leave a blank line before each prompt, but they’re
added here for legibility.

You can use the = command to print the value of an expression:

hphpd> = 1 + 2
3

hphpd> = 'hello ' . 'world'
"hello world"

After each = command, the value it evaluated to is stored in the variable $_:

hphpd> = 'beep'
"beep"

hphpd> @echo $_
beep

You can assign a value to a variable just by typing the assignment statement directly
as a command. You could do so with @ as well, but it’s such a common operation that
it’s special-cased in the debugger command syntax:

202 | Chapter 9: hphpd: Interactive Debugging

1 You can use the @ command to evaluate include statements and the like, though.

hphpd> $hello = 'hello'

hphpd> = $hello
"hello"

Finally, there’s a command that lets you inspect all local variables at once, much more
quickly than by using = repeatedly: the variable command. It will print out the
names and values of all local variables:

hphpd> $nums = array(10, 20, 30)
hphpd> $num = $nums[0]
hphpd> $count = count($nums)
hphpd> variable
$count = 3
$num = 10
$nums = Array
(
 [0] => 10
 [1] => 20
 [2] => 30
)

You can pass an argument to the variable command, to filter the local variables that
will be printed. Any variable whose name contains the command’s argument as a sub‐
string will be printed. Continuing from the preceding example:

hphpd> variable num
$num = 10
$nums = Array
(
 [0] => 10
 [1] => 20
 [2] => 30
)

This command will be much more useful once we start executing and debugging real
code.

The Execution Environment
The examples we’ve seen so far were all working in an initially empty execution envi‐
ronment; no source files were loaded.1 The interesting uses of hphpd happen when
working with real codebases.

There are two modes that hphpd can be in: local and remote. Local mode means that
the debugger is working in a PHP/Hack environment within its own process. Remote
mode means that it’s working in a PHP/Hack environment inside a different process:

The Execution Environment | 203

a server-mode or daemon-mode HHVM process. That other process may be on a dif‐
ferent machine, but it doesn’t have to be; connecting to localhost is the most com‐
mon way to use remote mode.

You can tell which mode hphpd is in by the debugger prompt. If it just says hphpd>,
it’s in local mode. If it says something else, it’s in remote mode; that something else is
the hostname of the machine it’s connected to.

You’ll use local mode when you’re just using hphpd as a REPL, or when debugging a
script. Remote mode is for debugging web apps; you’ll connect to the HHVM process
running your app.

Local Mode
When you start hphpd without arguments, as in simply hhvm -m debug, it will start in
local mode, with no program loaded. This is only useful if you want to experiment
with individual bits of PHP and Hack code; none of the code in your source files will
be available.

You can start hphpd with a filename as an argument, as in hhvm -m debug test.php.
This will load that file and prepare to run it. When you issue the run command in
hphpd, it will start executing test.php from the top, just as if you had typed hhvm
test.php at the command line.

Here’s test.php:

<?hh

echo "hello\n";

We’ll load it up in hphpd and run it:

$ hhvm -m debug test.php
Welcome to HipHop Debugger!
Type "help" or "?" for a complete list of commands.

Program test.php loaded. Type '[r]un' or '[c]ontinue' to go.
hphpd> run
hello
Program test.php exited normally.
hphpd>

If you type run again, the program will execute again, starting from the top.

After running the program once, any functions, classes, etc. that get defined in the
course of running the program will be available; you can call them using @ and =
without having the program actually running.

Here’s a new test.php:

204 | Chapter 9: hphpd: Interactive Debugging

<?hh

function func() {
 echo "hello\n";
}

Note that there is no top-level code; just running this script won’t have any visible
effects. We’ll just run it once to load the function, and then use it:

hphpd> run

hphpd> = func()
hello

hphpd>

Now, if you make changes to the file, executing the run command again will reload
the file from the filesystem, and you should see your changes reflected.

Remote Mode
To use hphpd’s remote mode, you need a server-mode or daemon-mode HHVM pro‐
cess to debug. For details on that, see Chapter 8. The process needs to have its debug‐
ger server enabled, so that hphpd can connect to it. It also needs to have sandbox
mode turned on, which we’ll explain later. Here are the configuration options you’ll
need to set to do all that, in INI format:

hhvm.sandbox.sandbox_mode = 1
hhvm.debugger.enable_debugger = 1
hhvm.debugger.enable_debugger_server = 1

By default, the process will listen for incoming debugger connections on port 8089;
this is configurable with the option hhvm.debugger.port.

Once you have a suitable server process, start hphpd in remote mode by passing the
command line argument -h followed by the hostname of the machine to connect to:

$ hhvm -m debug -h localhost
Welcome to HipHop Debugger!
Type "help" or "?" for a complete list of commands.

Connecting to localhost:8089...
Attaching to oyamauchi's default sandbox and pre-loading, please wait...

localhost>

The command prompt shows that we’ve successfully connected to the machine. You
can get out of remote mode and go back to local mode with the disconnect subcom‐
mand of machine.

The Execution Environment | 205

2 This feature was developed specifically to support Facebook’s web development (where multiple developers
share a single development machine), and many aspects of it are still quite Facebook-specific and aren’t well
adapted for life in the outside world. This should get better over time.

You can also enter remote mode from local mode, by using the machine command
with the connect subcommand:

hphpd> machine connect localhost
Connecting to localhost:8089...
Attaching to oyamauchi's default sandbox and pre-loading, please wait...

localhost>

Now we need to take a look at the concept of sandboxes, mentioned earlier. In
HHVM, a sandbox is a set of configuration options including a document root and a
logfile path. HHVM can support multiple sandboxes in a single server-mode process,
essentially allowing a single process to serve multiple different web apps.2 (You may
have heard the term “sandbox” in the context of code isolation for security purposes;
HHVM’s use of the term is unrelated.)

Configuring multiple sandboxes is complex and somewhat beyond our scope here.
What’s relevant here is that sandbox mode must be turned on for hphpd to be able to
debug a server-mode HHVM process, and when you connect to a server-mode
HHVM process, you’ll have to choose a sandbox to attach to.

When you connect to a server-mode process, you’ll attach to a dummy sandbox. This
is a sandbox created specifically for the debugger; it has no document root and so it
has no code loaded. Its only purpose is to provide a PHP/Hack environment to evalu‐
ate code in from the debugger prompt. It’s analogous to hphpd’s local mode with no
program loaded.

You can see all the sandboxes on the server with the list subcommand of machine:

localhost> machine list
1 oyamauchi's default sandbox at /oyamauchi/www/
2 __builtin's default sandbox at /home/oyamauchi/test-site/

The first entry in the list is the dummy sandbox (note that its path may be nonsense;
it’s not actually used). The second one is the real one, representing the configuration
with which the server is serving web requests.

The real sandbox won’t show up if it hasn’t served any requests
since the server started up. If you run machine list and see only
the dummy sandbox, try making a web request to the server.

206 | Chapter 9: hphpd: Interactive Debugging

3 For clarity, we’ll be using the full commands in this book, but remember that you can shorten them to just the
first letter. You can type b test.php:5 instead of break test.php:5, and it will do the same thing.

You need to attach to the real sandbox, which you do with the attach subcommand,
passing the sandbox number as the argument:

localhost> machine attach 2
Attaching to __builtin's default sandbox at /home/oyamauchi/test-site/ and
pre-loading, please wait...

localhost>

Now you’re in the right context, with that web app’s code loaded. You can set break‐
points (see the next section) and view code (see “Viewing Code and Documentation”
on page 218), and hphpd will operate on that codebase.

Using Breakpoints
A breakpoint is a condition that, when met in the program being debugged, will cause
the debugger to stop the program’s execution and drop into the debugger prompt.
There are several conditions that can be used as breakpoints:

• When execution reaches a certain line in a certain file
• When execution enters a certain function or method
• When a web request at a certain URL begins or ends

Let’s start with a simple example. Suppose we have this file, called test.php:

<?hh

function func(string $first, string $second): void {
 echo $first . "\n";
 echo $second . "\n";
}

func('one', 'two');

We’ll start up hphpd, and set a breakpoint between the two echo statements. To set a
breakpoint, you use the hphpd command break, followed by the breakpoint’s condi‐
tion.3 In this case, we’ll set one on line 5, the line containing the second echo state‐
ment—when you set a breakpoint on a line, execution will stop just before any of that
line is executed. We specify the location by typing the filename, followed by a colon,
followed by the line number (with no whitespace):

$ hhvm -m debug test.php
hphpd> break test.php:5
hphpd> run

Using Breakpoints | 207

one
Breakpoint 1 reached at func() on line 5 of /home/oyamauchi/test.php
 4 echo $first . "\n";
 5* echo $second . "\n";
 6 }

hphpd>

The script starts executing, echoes one, and then pauses. The debugger prints out the
source code surrounding the location where execution is stopped, and marks the rele‐
vant line with an asterisk. (If your terminal supports it, the output is colorized as well,
highlighting the relevant line.) Note that two has not been echoed yet.

The debugger prompt is visible, meaning the debugger is waiting for a command.
From here, you can inspect state with variable and evaluation commands, set more
breakpoints, continue execution in small increments, or resume normal execution.
We’ll see how to do all of this in the rest of this section.

Setting Breakpoints
We’ve seen the syntax for setting a breakpoint at a certain line in a certain file. This is
the syntax for setting a breakpoint on a given function:

hphpd> break my_function()
Breakpoint 1 set upon entering my_function()

Regardless of what parameters the function has, you always put an empty pair of
parentheses after the function name.

You may see a message that execution won’t break until the function has been loaded.
This is generally nothing to worry about; as code executes and files are loaded, the
debugger will watch for a function by the given name to be loaded, and when it is, it
will ensure the breakpoint gets set.

To set a breakpoint on a method, the argument to the break command is the class
name, followed by two colons, followed by the method name, followed by an empty
pair of parentheses:

hphpd> break MyClass::myMethod()
Breakpoint 1 set upon entering MyClass::myMethod()

The class-and-method-name pair is resolved lexically; hphpd does not take inheri‐
tance or traits into account. In other words, if a method definition with the specified
name is written inside the class definition with the provided name, the breakpoint
will be set there. If the method is defined in a trait that the class uses, or if it’s inher‐
ited from an ancestor class, the breakpoint won’t be set.

The final form of breakpoint trigger is specific to remote mode, when debugging web
requests. You can break at the beginning or end of a web request, as well as at the

208 | Chapter 9: hphpd: Interactive Debugging

4 “PSP” stands for post-send processing, and is what shutdown functions were originally called in HHVM.
5 For example, in the URI https://www.example.com/something/something.php?key=val, the path part is /some‐

thing/something.php.

beginning of the processing of shutdown functions registered through regis
ter_shutdown_function(). The syntax for these is break start, break end, and
break psp, respectively.4

Each of those three can be modified with a further argument, which is the path part
of a URI.5 In that case, the breakpoint will only trigger on web requests to that path:

hphpd> break start /something/something.php
Breakpoint 1 set start of request when request is /something/something.php

Note that the URL that will be checked is the original request URI—the value stored
in $_SERVER['REQUEST_URI']. It is not the path of the PHP or Hack file that ends up
getting invoked.

Breakpoint expressions and conditions
Any of the preceding forms of breakpoint can have a Hack expression attached to it,
and hphpd will evaluate the expression every time the breakpoint is hit. The most
common use of this is simply to print out some value at the breakpoint, to avoid hav‐
ing to enter a separate command to do so every time.

The syntax for this is to append && and the Hack expression to a normal breakpoint-
setting command. Suppose we have the following code loaded in hphpd:

<?hh

function do_something_expensive(int $level) {
 // ...
}

do_something_expensive(10);

We want to break on the call to do_something_expensive(), and see what $level is.
We can do this as follows:

hphpd> break do_something_expensive() && var_dump($level)
Breakpoint 1 set upon entering func() && var_dump($level)

hphpd> run
Breakpoint 1 reached at do_something_expensive() on line 3 of
/home/oyamauchi/test.php
 2
 3*function do_something_expensive(int $level) {}
 4* // ...
 5*}

Using Breakpoints | 209

https://www.example.com/something/something.php?key=val

 6

int(10)

You can also configure a breakpoint with an expression so that the breakpoint will
only trigger and stop execution if the expression evaluates to true. This is a condi‐
tional breakpoint. To create one, use the same syntax as for a breakpoint with an
expression, but replace the && with if.

Here, we’ll break on do_something_expensive(), but only if its argument is over
9000. Because the argument passed in this script is 10, the breakpoint won’t trigger:

hphpd> break do_something_expensive() if $level > 9000
Breakpoint 1 set upon entering func() if $level > 9000

hphpd> run
Program test.php exited normally.

As this example shows, if you set a breakpoint on entering a function, you can use
that function’s arguments in the breakpoint condition.

Breaking from code
There’s one more way to set breakpoints, which is to call the special function
hphpd_break() in your PHP or Hack code. It can be useful, for example, in situations
where the physical layout of the code makes it awkward to set a breakpoint by line
number. Here’s an example:

function f(): void {
 echo "one\n";
 hphpd_break();
 echo "two\n";
}

If hphpd is attached when the call to hphpd_break() is executed, it will be just as if
you had set a breakpoint on that line: execution will pause and you’ll be given the
debugger prompt. You can step or resume from this breakpoint like any other.

You can also pass a boolean argument to hphpd_break(), and it will work as a break‐
point only if the argument is true. You can use this as a conditional breakpoint:

function f(int $num): void {
 hphpd_break($num < 0);
}

f(1234); // Will not trigger the breakpoint
f(-123); // Will trigger the breakpoint

In code that is not running under hphpd, hphpd_break() does nothing.

210 | Chapter 9: hphpd: Interactive Debugging

Navigating the Call Stack
To orient yourself once stopped at a breakpoint, you can get hphpd to print a stack
trace with the where command. (GDB users will be happy to learn that bt does the
same thing.) This fulfills a common purpose of breakpoints, which is simply to find
out where some piece of code is being called from.

We’ll use this file:

<?hh

function one(string $str) {
 echo $str;
}

function two() {
 one("done\n");
}

function three() {
 two();
}

three();

We’ll set a breakpoint on the echo statement and get a stack trace:

hphpd> break test.php:4
Breakpoint 1 set on line 4 of test.php

hphpd> r
Breakpoint 1 reached at one() on line 4 of /home/oyamauchi/test.php
 3 function one(string $str) {
 4* echo $str;
 5 }

hphpd> bt
#0 ()
 at /home/oyamauchi/test.php:4
#1 one ("done\n")
 at /home/oyamauchi/test.php:8
#2 two ()
 at /home/oyamauchi/test.php:12
#3 three ()
 at /home/oyamauchi/test.php:15

The stack trace shows the values of arguments to the functions. You can turn this off
with a configuration option; see StackArgs in Table 9-2 (in “Configuring hphpd” on
page 223).

Note that in the stack traces, each frame has a number. The deepest frame (i.e., the
one farthest from top-level code) is numbered zero, and the numbers increase as you

Using Breakpoints | 211

get closer to top-level code. You can use these to change which frame the debugger is
operating on. This affects the evaluation commands @ and = (they operate on the cur‐
rent frame) and the inspection command variable. It also affects list, which we
haven’t seen yet but is explained in “Viewing Code and Documentation” on page 218.

Here’s an example, where we’ll set a breakpoint and want to move to a different frame
to see what’s going on:

<?hh

function do_something_expensive() {
 // ...
}

function do_something() {
 $level = get_level();
 if ($level > 10) {
 do_something_expensive();
 }
}

do_something();

// Define get_level
// ...

We’ll run this and see what the value of $level was that resulted in do_some
thing_expensive() being called, by moving up to do_something()’s frame and using
variable:

hphpd> break do_something_expensive()
Breakpoint 1 set upon entering do_something_expensive()

hphpd> run
Breakpoint 1 reached at do_something_expensive() on line 4 of
/home/oyamauchi/test.php
 3 function do_something_expensive() {
 4* // ...
 5 }

hphpd> where
#0 do_something_expensive ()
 at /home/oyamauchi/test.php:10
#1 do_something ()
 at /home/oyamauchi/test.php:14

hphpd> frame 1
#1 do_something ()
 at /home/oyamauchi/test.php:14

hphpd> variable
$level = 9000

212 | Chapter 9: hphpd: Interactive Debugging

Navigating Code
Once you’re stopped at a breakpoint, there are several commands you can use to
move execution forward.

The simplest of these is continue, which will simply resume normal execution. The
script or web request will keep running until it terminates or hits another breakpoint.
(It may hit the same breakpoint you were stopped at, if execution comes through that
code again.) Suppose the following code is loaded hphpd:

<?hh

function func() {
 echo "Starting func\n";
 echo "Ending func\n";
}

f();

We’ll set a breakpoint before the second line of f(), and continue after execution
pauses there:

hphpd> break test.php:5
Breakpoint 1 set on line 5 of test.php

hphpd> run
Starting func
Breakpoint 1 reached at func() on line 5 of /home/oyamauchi/test.php
 4 echo "Starting func\n";
 5* echo "Leaving func\n";
 6 }

hphpd> continue
Leaving func
Program test.php exited normally.

The more interesting commands are step and next. These will execute the line of
code that was about to be executed before the breakpoint was hit, and stop again after
it’s done. The difference between the two is apparent if the line being executed con‐
tains a function or method call. step will enter the function being called, and stop
just before executing its first line; next will just go to the next line, without entering
the function. In other words, the call stack will never be deeper after doing next.

This is a very powerful way of debugging code. Rather than adding logging code at
various places, you can set breakpoints instead and continue execution bit by bit,
inspecting state at each step.

Let’s look at another example:

<?hh

Using Breakpoints | 213

function inner(): void {
 echo "inner\n";
}

function outer(): void {
 echo "outer\n";
 inner();
 echo "done\n";
}

outer();

We’ll set a breakpoint on outer(), and proceed with next:

hphpd> break outer()
Breakpoint 1 set upon entering outer()
But wont break until function outer has been loaded.
hphpd> run
Breakpoint 1 reached at outer() on line 8 of /home/oyamauchi/test.php
 7 function outer(): void {
 8* echo "outer\n";
 9 inner();

hphpd> next
outer
Break at outer() on line 9 of /home/oyamauchi/test.php
 8 echo "outer\n";
 9* inner();
 10 echo "done\n";

hphpd> next
inner
Break at outer() on line 10 of /home/oyamauchi/test.php
 9 inner();
 10* echo "done\n";
 11 }

hphpd> next
done
Break at outer() on line 11 of /home/oyamauchi/test.php
 10 echo "done\n";
 11*}
 12

hphpd> next
Break on line 13 of /home/oyamauchi/test.php
 12
 13*outer();
 14 (END)

hphpd> next
Program test.php exited normally.

214 | Chapter 9: hphpd: Interactive Debugging

Note that execution goes directly from line 9 to line 10: from the call to inner(), to
the echo of done. The call to inner() is being executed—you can see inner() being
echoed—but the debugger is not stopping inside it.

Now let’s do the same thing with step instead:

hphpd> run
Breakpoint 1 reached at outer() on line 8 of /home/oyamauchi/test.php
 7 function outer(): void {
 8* echo "outer\n";
 9 inner();

hphpd> step
outer
Break at outer() on line 9 of /home/oyamauchi/test.php
 8 echo "outer\n";
 9* inner();
 10 echo "done\n";

hphpd> step
Break at inner() on line 4 of /home/oyamauchi/test.php
 3 function inner(): void {
 4* echo "inner\n";
 5 }

hphpd> step
inner
Break at inner() on line 5 of /home/oyamauchi/test.php
 4 echo "inner\n";
 5*}
 6

hphpd> step
Break at outer() on line 9 of /home/oyamauchi/test.php
 8 echo "outer\n";
 9* inner();
 10 echo "done\n";

hphpd> step
Break at outer() on line 10 of /home/oyamauchi/test.php
 9 inner();
 10* echo "done\n";
 11 }

hphpd> step
done
Break at outer() on line 11 of /home/oyamauchi/test.php
 10 echo "done\n";
 11*}
 12

hphpd> step

Using Breakpoints | 215

Break on line 13 of /home/oyamauchi/test.php
 12
 13*outer();
 14 (END)

hphpd> step
Program test.php exited normally.

Now, after we step from line 9, we go to line 4: we’re inside inner(). Once we step to
the end of inner(), we are back in outer(), on line 10 (the line after the call to
inner()).

There is one other command in this category, which is out. It resumes execution until
the function you’re stopped in has exited, either by returning, by throwing an excep‐
tion (or by an exception being thrown through it from something deeper in the call
stack), or, in the case of a generator, by yielding:

hphpd> break outer()
Breakpoint 1 set upon entering outer()
But wont break until function outer has been loaded.
hphpd> run
Breakpoint 1 reached at outer() on line 8 of /home/oyamauchi/test.php
 7 function outer() {
 8* echo "outer\n";
 9 inner();

hphpd> out
outer
inner
done
Break on line 13 of /home/oyamauchi/test.php
 12
 13*outer();
 14 (END)

In this case, we stop at the top of outer(), then do out. hphpd lets the rest of outer()
execute, and stops again in the top-level code, resuming just after the call to outer()
returns.

You can configure hphpd so that step and next will move forward one expression at a
time rather than one line at a time; see “Configuring hphpd” on page 223, and the
SmallSteps option in particular, for details.

To save typing, you can repeat the four flow control commands
(continue, next, step, and out) just by hitting Enter at the next
debugger prompt. In other words, if you hit Enter at the prompt
without typing anything else, and the previous command was one
of the four flow control commands, that previous command will be
repeated.

216 | Chapter 9: hphpd: Interactive Debugging

Note that the frame command does not change the stack frame that
next, step, and out operate in. That is, next will move execution to
the next line to be executed anywhere, not the next line to be exe‐
cuted in the stack frame you’re looking at; the other two commands
are similar. This differs from GDB’s behavior, so take note if you’re
a seasoned GDB user.

Managing Breakpoints
We’ve seen how to set breakpoints by passing a location to the break command. The
same command has several subcommands that you can use to manipulate existing
breakpoints.

First, though, let’s see how to use the list subcommand to list all existing break‐
points:

hphpd> break func()
Breakpoint 1 set upon entering func()

hphpd> break test.php:5
Breakpoint 1 set on line 5 of test.php

hphpd> break list
 1 ALWAYS upon entering func()
 2 ALWAYS on line 5 of test.php

The first field is the breakpoint number; this is just a unique identifier that you use to
refer to that breakpoint in other commands. When hphpd stops at a breakpoint, it
will print that breakpoint’s number. Breakpoint numbers are monotonically increas‐
ing and are not reused, so if you set two breakpoints and then delete breakpoint 1, the
remaining breakpoint will still be number 2. If you then set a new one, it will be num‐
ber 3.

The second field is the breakpoint’s state. There are three possible states: ALWAYS,
ONCE, and DISABLED. An ALWAYS breakpoint will trigger every time execution reaches
it. A ONCE breakpoint will trigger the first time execution reaches it, and then it will
become DISABLED. A DISABLED breakpoint does not trigger.

By default, when you create a breakpoint, its state is ALWAYS. You can create a ONCE
breakpoint by using the subcommand once, followed by a location:

hphpd> break once func()
Breakpoint 1 set upon entering func()

hphpd> break list
 1 ONCE upon entering func()

Using Breakpoints | 217

There are three subcommands to change the state of a breakpoint: enable, disable,
and toggle. enable sets a breakpoint’s state to ALWAYS, and disable sets it to
DISABLED. toggle cycles a breakpoint between the three possible states:

hphpd> break func()
Breakpoint 1 set upon entering func()

hphpd> break toggle 1
Breakpoint 1's state is changed to ONCE.

hphpd> break toggle 1
Breakpoint 1's state is changed to DISABLED.

hphpd> break toggle 1
Breakpoint 1's state is changed to ALWAYS.

hphpd> break disable 1
Breakpoint 1's state is changed to DISABLED.

hphpd> break enable 1
Breakpoint 1's state is changed to ALWAYS.

To delete a breakpoint altogether, use the subcommand clear, along with the break‐
point number:

hphpd> break clear 1
Breakpoint 1 cleared upon entering func()

With the subcommands clear, disable, enable, and toggle, you can also use all in
place of a breakpoint number, in which case the operation applies to all breakpoints:

hphpd> break clear all
All breakpoints are cleared.

You can also pass no argument after one of these subcommands, in which case the
operation applies to the last breakpoint that was hit:

hphpd> break func()
Breakpoint 1 set upon entering func()

hphpd> = func()
Breakpoint 1 reached at func() on line 3 of /home/oyamauchi/test.php

hphpd> break clear
Breakpoint 1 is cleared at func()

Viewing Code and Documentation
If code is currently executing—that is, you’re stopped at a breakpoint or in the midst
of stepping after stopping at a breakpoint—you can use the list command to show
the surroundings of the code being executed. If you’re looking at a different stack

218 | Chapter 9: hphpd: Interactive Debugging

frame with the frame command, list will show the code surrounding the relevant
callsite in that frame:

hphpd> break func()
Breakpoint 1 set upon entering func()

hphpd> r
Breakpoint 1 reached at func() on line 7 of /home/oyamauchi/test.php
 6 function func(): void {
 7* echo "Just kidding, it's pretty boring";
 8 }

hphpd> list
list
 1 <?hh
 2
 3 /**
 4 * This is a very interesting function
 5 */
 6 function func(): void {
 7* echo "Just kidding, it's pretty boring";
 8 }
 9
 10 func();
 (END)

After running a list command, if you hit Enter at the next debugger prompt without
typing anything else, the debugger will show the next few lines of code. You can keep
going that way until the end of the file.

There are a wide variety of arguments you can pass to list, specifying what code you
want to see. Table 9-1 shows all of them.

Viewing Code and Documentation | 219

6 A named entity is a function, class, interface, constant, trait, enum, or type alias.

Table 9-1. Arguments to the list command

To see Command Shows

Line ranges list 34-45 Lines 34 through 45 in the current file

list 34- Line 34 through the end of the current file

list -45 Beginning of the current file up to line 45

list 34 Lines surrounding line 34 in the current file

Line ranges in a file list test.php:

34-45

Same as above, but in test.php. Paths are relative
to sandbox root if attached, or current working
directory if not

list test.php:34-

list test.php:-45

list test.php:34

Named entities list func Source code of the function func()

list ClassName Source code of the class ClassName (also works
for interfaces and traits)

list Class

Name::methodName

Source code of the method methodName in the
class ClassName

You can use the info command to look up documentation comments and signatures.
Pass the name of a named entity6 as an argument to the command. To look up a
method, use the ClassName::methodName notation.

Suppose our test.php file has the following contents:

<?hh

/**
 * A class
 */
class C {

 /**

220 | Chapter 9: hphpd: Interactive Debugging

 * A method inside the class
 */
 public function method(C $obj): void {
 }
}

/**
 * A function
 */
function f(int $x): void {
}

We can get information about the entities defined in the file as follows:

$ hhvm -m debug test.php
hphpd> info C
// defined on line 6 to 13 of /home/oyamauchi/test.php
/**
 * A class
 */
class C {
 // methods
 [doc] public function method(C $obj);
}

hphpd> info C::method
// defined on line 11 to 12 of /home/oyamauchi/test.php
 /**
 * A method inside the class
 */
public function C::method(C $obj);

hphpd> info f
// defined on line 18 to 19 of /home/oyamauchi/test.php
/**
 * A function
 */
function f(HH\int $x);

This also works for built-in functions, classes, and interfaces:

hphpd> info strtoupper
/**
 * Returns string with all alphabetic characters converted to uppercase. Note
 * that 'alphabetic' is determined by the current locale. For instance, in the
 * default "C" locale characters such as umlaut-a will not be converted.
 *
 * @param string $str - The input string.
 *
 * @return string - Returns the uppercased string.
 *
 */
function strtoupper(HH\string $str);

Viewing Code and Documentation | 221

Macros
hphpd has a feature for recording and replaying sequences of commands. These
sequences are called macros. They’re automatically saved to a file called .hphpd.ini in
your home directory, so they persist across hphpd sessions. (That file also holds con‐
figuration for hphpd; see “Configuring hphpd” on page 223.)

The command for working with macros is &. To start recording a macro, use it with
the subcommand start, then just enter the commands you want to record. When
you’re finished, use & with the subcommand end:

hphpd> & start

hphpd> @echo "hi"
hi

hphpd> & end

Now, you can replay that sequence with the subcommand replay. In this example, we
don’t actually type in the @echo statement; it’s executed automatically by hphpd, and
we’re returned to the debugger prompt after it completes:

hphpd> & replay

hphpd> @echo "hi"
hi

hphpd>

You can give a macro a name when you start to record it, by passing an argument to
the start subcommand. If you don’t give it a name, it will have the name default.
This means that if you record one macro without a name, then record another
without a name, the first one will be overwritten:

hphpd> & start some_name

hphpd> @echo "some named macro"
some named macro

hphpd> & end

You can pass a name to the replay subcommand to replay the named macro. It
replays the default macro by default:

hphpd> & replay some_name

hphpd> @echo "some named macro"
some named macro

You can see all existing macros with the subcommand list:

222 | Chapter 9: hphpd: Interactive Debugging

hphpd> & list
 1 default
 > @echo "hi"
 2 some_name
 > @echo "some named macro"

The output shows the number, name, and contents of each macro.

Finally, you can delete a macro with the subcommand clear, but using the macro’s
number, not its name:

hphpd> & clear 1
Are you sure you want to delete the macro? [y/N] y

hphpd> & list
 1 some_name
 > @echo "some named macro\n"

Note that, unlike breakpoint numbers, macro numbers are not permanently associ‐
ated with macros. We deleted macro 1, and the former macro 2 slid up to become the
new number 1. This is a quirk of macros’ implementation; if you find it strange and
inconsistent, you’re right.

The macro name startup is treated specially. When hphpd launches and loads set‐
tings, it will look for a macro called startup; and if it finds one, it will replay that
macro immediately, before taking any input from the debugger prompt.

You may find that there’s some collection of utility functions or classes that you often
use when debugging. If you put these all in a file, you can include that file from a
startup macro, so they’re available every time you start hphpd.

Configuring hphpd
The last major command we haven’t covered yet is set. This allows you to change
some of the configuration options that control hphpd’s behavior. Most of them con‐
trol aspects of hphpd’s output. Table 9-2 shows all the available options.

Table 9-2. hphpd configuration

Name Short name Possible values Default value

BypassAccessCheck bac on, off off

LogFile lf off or a file path off

PrintLevel pl Integers 5

ShortPrintCharCount cc Integers 200

Configuring hphpd | 223

Name Short name Possible values Default value

SmallSteps ss on, off off

StackArgs sa on, off on

MaxCodeLines mcl Integers -1

If you run the set command with no arguments—that is, just type set and nothing
else—hphpd will show all the options and their current values. To set an option, pass
two arguments to the set command: first, either the name or the short name of the
option; and second, the value to set it to (e.g., set bac on or set LogFile off). Let’s
take a closer look at the options:

BypassAccessCheck

Turning this on will make hphpd ignore the protected and private access mod‐
ifiers in code that is invoked from the debugger prompt. Code running in web
requests won’t be affected.

LogFile

If the value of this option is anything other than off, it will be interpreted as a file
path, and hphpd will transcribe all of its output to that file. It doesn’t capture your
input.

PrintLevel

This controls the maximum amount of object and array nesting that the print
command will print. If it’s zero or negative, there is no maximum; objects and
arrays will be printed in full, unless there’s recursive nesting. If there is recursive
nesting, printing will still be truncated when the recursion starts, regardless of
this option’s value.

ShortPrintCharCount

This controls the maximum number of characters that will be printed in a single
= command. If it’s zero or negative, there is no maximum. If an = command
would result in more characters than the maximum, hphpd will ask if you want
to see the rest; you answer, as is usual with interactive command lines, by typing
either y or n.

SmallSteps

This controls the behavior of the step and next commands. If it’s turned off (as it
is by default), those commands will take you to (approximately) the next line,
whereas if the option is turned on, they will take you to (approximately) the next
expression that gets evaluated.

224 | Chapter 9: hphpd: Interactive Debugging

StackArgs

If this option is turned on, the backtraces printed by the where command will
show the arguments that were passed to the functions in the backtrace.

MaxCodeLines

When hphpd stops at a breakpoint, or after a step or next command, it will print
out the source code where it’s stopped, with the relevant part highlighted. In
some cases, this can be a lot of code that spans a lot of lines—a large array expres‐
sion with each element on its own line, for example. This option can be used to
limit the number of lines that get printed in these situations, to avoid overwhelm‐
ing your terminal.

If this option is set to 0, no code will be printed when stopping at a breakpoint. If
it’s negative (as it is by default), there is no limit.

hphpd saves your settings in a file in your home directory called .hphpd.ini, and will
reload them the next time you run hphpd. You can edit this file manually to change
your saved settings.

Configuring hphpd | 225

CHAPTER 10

Hack Tools

A programming language’s features are only part of what makes it good. To be useful,
a language needs to have a good tooling ecosystem around it: editor and IDE support,
debuggers, analysis and linting tools, etc. The Hack typechecker is built on a powerful
static analysis platform that can support many of these uses.

The standard HHVM/Hack installation ships with several tools for inspecting code,
as well as for migrating code from PHP to Hack and transpiling Hack code to PHP.
This chapter is about those tools.

Inspecting the Codebase
The core of the Hack typechecker’s infrastructure is a server that remembers a set of
facts about the codebase. Checking for type errors with hh_client is but one way of
querying this set of facts. This section describes other options available to hh_client
to query data:

--search

Use this flag to perform a fuzzy search for a given symbol name. Pass a single
argument after the flag as the string to search for. Note that this will search built-
in symbols as well:

$ hh_client --search wrap
File "/home/oyamauchi/hack/test.php", line 58, characters 7-13: Wrapper,
class

The search is very responsive: the typechecker server indexes the codebase and
doesn’t need to read any source files to do the search.

There are several related flags that can be used to restrict the kinds of symbols
that will be returned: --search-class, --search-function, --search-constant,

227

and --search-typedef (which searches type aliases). Each of these is used the
same way as plain --search and returns output in the same format.

--type-at-pos

Use this flag to ask the typechecker what it thinks the type of an expression is.
Pass a filename, line number, and column number on the command line, separa‐
ted by colons, to inspect the expression at that position:

$ cat test.php
<?hh // strict

function reversed_digits(int $x): string {
 return strrev((string)$x);
}

function main(): void {
 $f = fun('reversed_digits');
 echo $f(123);
}
Get type of $x within reversed_digits
$ hh_client --type-at-pos test.php:4:25
int

Get type of result of string cast
$ hh_client --type-at-pos test.php:4:17
string

Get type of $f in main()
$ hh_client --type-at-pos test.php:8:3
(function(int $x): string)

The type given is for the innermost expression at the given position. For example,
if you query at the character a in the expression $a + $b, the result will be the
type of $a, not of $a ＋ $b. In this case, if you want the type of the whole expres‐
sion, you have to query at the character +.

Note that the output of --type-at-pos may not be a valid type annotation; it’s
purely for informational purposes. Most notably, for values of the special “unan‐
notated” type (see “Code Without Annotations” on page 16), --type-at-pos out‐
puts _ (a single underscore).

--find-refs and --find-class-refs
Use --find-refs to search for references to a given function or method, and --
find-class-refs to search for references to a given class. Pass the name of the
class, function, or method to search for as the single argument after the flag:

$ cat test.php
<?hh // strict

228 | Chapter 10: Hack Tools

class C {}

class D extends C {}

function main(): void {
 $c = new C();
}

$ hh_client --find-class-refs C
File "/home/oyamauchi/hack/test.php", line 8, characters 12-12:
 C::__construct
File "/home/oyamauchi/hack/test.php", line 5, characters 17-17: C
2 total results

--inheritance-ancestors and --inheritance-children
Use these flags to print all the ancestors or descendants of a given class, respec‐
tively. Despite the name, --inheritance-children really does print all descend‐
ants, not just direct children:

$ cat test.php
<?hh // strict

class GrandparentClass {}

class ParentClass extends GrandparentClass {}

class ChildOne extends ParentClass {}

class ChildTwo extends ParentClass {}

$ hh_client --inheritance-ancestors ChildOne
File "/home/oyamauchi/hack/test.php", line 7, characters 7-14: ChildOne
 inherited from File "/home/oyamauchi/hack/test.php", line 5,
 characters
 7-17: ParentClass
File "/home/oyamauchi/hack/test.php", line 7, characters 7-14: ChildOne
 inherited from File "/home/oyamauchi/hack/test.php", line 3,
 characters
 7-22: GrandparentClass

$ hh_client --inheritance-children
GrandparentClass
File "/home/oyamauchi/hack/test.php", line 3, characters 7-22:
GrandparentClass
 inherited by File "/home/oyamauchi/hack/test.php", line 9,
 characters 7-14:
 ChildTwo
File "/home/oyamauchi/hack/test.php", line 3, characters 7-22:
GrandparentClass

Inspecting the Codebase | 229

 inherited by File "/home/oyamauchi/hack/test.php", line 7,
 characters 7-14:
 ChildOne
File "/home/oyamauchi/hack/test.php", line 3, characters 7-22:
GrandparentClass
 inherited by File "/home/oyamauchi/hack/test.php", line 5,
 characters 7-17:
 ParentClass

Scripting Support
The typechecker client can produce the output for any of its commands in JSON,
which lets you easily integrate it with other tools: editors, IDEs, code linters, refactor‐
ing tools, etc. Just add the flag --json to any hh_client command line, before all
other arguments:

$ cat test.php
<?hh // strict

function main(): void {
 $var = 1 + "3";
}

$ hh_client --json
{
 "passed": false,
 "errors": [
 {
 "message": [
 {
 "descr": "Typing error",
 "path": "/home/oyamauchi/hack/test.php",
 "line": 4,
 "start": 14,
 "end": 16,
 "code": 4110
 },
 {
 "descr": "This is a num (int/float) because this is used in an
 arithmetic operation",
 "path": "/home/oyamauchi/hack/test.php",
 "line": 4,
 "start": 14,
 "end": 16,
 "code": 4110
 },
 {
 "descr": "It is incompatible with a string",
 "path": "/home/oyamauchi/hack/test.php",
 "line": 4,
 "start": 14,

230 | Chapter 10: Hack Tools

 "end": 16,
 "code": 4110
 }
]
 }
],
 "version": "0939324e1252832cf6f65c51ff2cb811dad307ba Mar 8 2015 23:44:12"
}

The output shown here has been formatted for legibility; hh_client’s JSON output
has no extraneous whitespace.

Migrating PHP to Hack
Hack’s creators know better than most how difficult it is to do an en-masse conver‐
sion of a large codebase. When Hack was first conceived, Facebook had a PHP code‐
base of tens of millions of lines, being worked on simultaneously by hundreds of
engineers.

The benefits of Hack are compounded when most of a codebase is in Hack. For Face‐
book, this meant that some way to automatically migrate large swaths of code was
essentially a hard requirement for Hack to gain any traction. The codebase was too
large, and changed too quickly, for a manual approach to be workable.

As a result, the standard HHVM/Hack installation includes several tools for automa‐
ted migration of PHP code to Hack.

The Hackificator
The first measure to take in converting a PHP codebase to Hack is to use the Hackifi‐
cator, which performs an initial broad-strokes conversion. It scans a directory for
PHP files, and performs two steps in those files:

1. It makes some simple, mechanical changes to preempt Hack errors. For example,
typehinted parameters with null default values are changed to make the type‐
hints nullable. That is, function f(int $x = null)—valid in PHP, a type error
in Hack—would be changed to function f(?int $x = null).

2. It changes the opening <?php tag to <?hh, with the strictest mode that doesn’t
introduce any typechecker errors. This will usually be partial or decl mode.

The Hackificator doesn’t touch anything else. Its purpose is to do the minimum possi‐
ble to make code visible to the Hack typechecker.

Before running the Hackificator, there must be no typechecker errors in any files that
are already Hack. That is, running hh_client must output No errors!. The Hackifi‐
cator will refuse to run if there are errors.

Migrating PHP to Hack | 231

1 In strict mode, of course, there is an error: doWork() has no return type annotation.

Top-down or bottom-up migration
An important point to note is that the Hackificator processes files one at a time, in
undefined order. The result of the run can therefore be different depending on the
order in which it ends up processing files.

To illustrate this, let’s take a reduced version of a fairly common situation. In one
PHP file, we have an abstract superclass. Scattered across many other PHP files are
concrete subclasses—tens or even hundreds of them. In this example, we’ll just look
at one.

Suppose we have files WorkItem.php:

<?php

abstract class WorkItem {
 abstract public function doWork();
}

and AckermannWorkItem.php:

<?php

class AckermannWorkItem extends WorkItem {
 public function doWork() {
 $this->running = true;
 // ...
 }
}

The first thing to note is that if we turn both files into partial-mode Hack files, there
will be errors: the concrete subclass is using a property that isn’t declared. Therefore,
the best we can do is to have one file in partial mode, with the other either in decl
mode or in PHP.

If hackificator processes WorkItem.php first, it will put that file in partial mode.
Because the subclass is still in PHP, it’s invisible to the typechecker, and WorkItem.php
by itself has no errors in partial mode.1 Then, when it processes AckermannWorkI‐
tem.php, it can only put the file in decl mode: because the superclass is in Hack, it can
analyze the whole hierarchy and determine that the property running isn’t declared,
which is an error in anything other than decl mode.

If hackificator processes AckermannWorkItem.php first, it will put that file in partial
mode. Its superclass is still in PHP so it’s invisible to the typechecker. The typechecker
assumes that the property running is declared in the superclass, and doesn’t report an
error. Then, when it tries converting WorkItem.php to Hack, undeclared property

232 | Chapter 10: Hack Tools

errors pop up in AckermannWorkItem.php, because its superclass is now visible to the
typechecker. Then hackificator has to revert WorkItem.php back to PHP; it can’t go
back to AckermannWorkItem.php to back off to decl mode (which would silence the
error) after processing it.

The first pattern, migrating the superclass first, is a top-down migration to Hack. The
advantage of this is that any new subclasses can start off in Hack and get the benefit of
thorough typechecking with knowledge of their superclass, even while other sub‐
classes have yet to be migrated. The fully typechecked portion of the hierarchy stead‐
ily, linearly increases from 0% to 100% as the migration proceeds.

The second pattern, migrating the superclass after all of its subclasses are in Hack, is a
bottom-up migration. The advantage of this is that it gets more code into Hack
sooner. However, the typechecker is handicapped in the subclasses, because it has no
knowledge of their superclass. Much of the hierarchy is checked with this handicap
from the beginning of the migration, with almost none of it checked without handi‐
cap until the very end.

Because of the way the Hackificator works, it’s far more likely to produce bottom-up
conversions, simply because there are many subclasses and one superclass, so it’s
more likely to encounter a subclass first. If you want to ensure a top-down conver‐
sion, convert the superclass manually before running the Hackificator.

Neither pattern is strictly better than the other, and you can use both within the same
codebase, on different class hierarchies. We’re discussing them here mostly so that
you know what to expect when using the Hackificator, and to help you make a con‐
sidered choice.

Facebook’s Migration to Hack
When Facebook migrated its codebase to Hack, it was done bottom-up. It didn’t come
to be that way as part of some master plan; it was an emergent phenomenon. The
thinking about top-down versus bottom-up was an output of this experience, not an
input.

Facebook’s bottom-up migration had some pitfalls. The codebase had a core
WorkItem-like class with over 25,000 descendants. Even when most of the descend‐
ants had been successfully migrated, putting the superclass of the whole hierarchy
into Hack was still a large undertaking, because a lot of typechecker errors were
exposed by finally making the entire hierarchy fully checkable.

To get around this, we ended up defining a trait called CrippleHackTypechecking in
a PHP file and using that trait from WorkItem descendants that started showing errors
when WorkItem itself was put in Hack. The trait had no functionality; its purpose was
to selectively handicap the typechecker in some descendants.

Migrating PHP to Hack | 233

From there, the rest of the migration was essentially a second, top-down pass: gradu‐
ally fixing descendants and removing CrippleHackTypechecking from them.

Facebook has never done a large-scale, fully top-down PHP-to-Hack migration, so it
remains unknown whether that approach would have revealed pitfalls.

Upgrading typechecker modes
There’s another conversion the Hackificator can do, which is to inspect Hack files
(but not PHP files) and upgrade them to the strictest mode that doesn’t cause type‐
checker errors. Activate this with the command-line flag -upgrade (single hyphen).

This will often come in useful because the Hackificator’s default behavior will almost
never produce a strict-mode file. This is because strict mode requires all return types
to be annotated, but Hack’s return type annotation syntax is illegal in PHP (in all 5.x
versions and earlier).

It can be useful to combine hackificator -upgrade with hh_server --convert,
described in the next section. That tool adds annotations, which may get a partial-
mode file into a state where it can be upgraded to strict mode cleanly.

Inferring and Adding Type Annotations
Adding type annotations is trickier, and requires a fair bit more manual work. The
typechecker includes a mode in which it tries to infer the types of unannotated val‐
ues, by working backward from annotated and known types, and annotates the infer‐
red types in the code.

It’s important to note that this process isn’t perfect. The inferred type annotations are
guaranteed not to cause typechecker errors, but they may turn out to be wrong at
runtime. Because of that, all of the added type annotations are soft, so that they’ll
cause warnings instead of fatal errors at runtime.

To deal with the resulting proliferation of soft typehints, there are two other tools that
complement this one: one that reads a logfile and removes soft typehints that have
produced warnings in the log, and another which that all soft typehints in a file.

Adding annotations
The tool to add annotations only works on Hack files (any mode). It’s part of the
typechecker server, and you invoke it as follows:

$ hh_server --convert my_project my_project

After the --convert flag, there are two arguments: first, the directory in which to
actually make modifications; and second, the top-level directory of the project. The
separation of the two allows you to restrict the modifications to a subset of the

234 | Chapter 10: Hack Tools

project, which helps keep the work in manageably sized chunks when dealing with a
large codebase. The two arguments are allowed to be the same, and it’s best if they
are: the more code the tool can work with at once, the more effective it can be.

This inference process is considerably slower than the one the typechecker uses for
Hack files, because it’s not function-local. For example, when processing a function
with unannotated parameters, it will find that function’s callsites to see what argu‐
ments are passed. If it finds consistent argument types, it will add the appropriate
annotations.

Removing incorrect annotations
Once these annotations are added, try them out. Running tests is the best starting
point. The added annotations don’t change any behavior except for warnings, so they
shouldn’t cause tests to fail, but running tests is a convenient way to run the code. In
addition, run any command-line scripts you can; if your project is a web app, start up
a web server and visit some pages. The aim here is to exercise as much of your code
as possible.

While doing this, you have to capture error messages. If you’re running scripts or
tests from the command line, the error messages go to standard out. You can just
redirect standard out to a file:

$ hhvm testfile.php > errors.log

This will capture everything from standard out, including output from the script, but
that’s not a problem. The annotation-removal tool uses regular expressions to search
for very specific error messages, so the script’s output shouldn’t interfere.

If you’re running HHVM as a server, error messages again go to standard out by
default. You can use a configuration option to have error messages written to a file
instead:

$ hhvm -m server -d hhvm.log.file=errors.log

After running your code, if any soft type annotations failed, you’ll see error messages
in the log that look like the following example—these are what the annotation-
removal tool looks for:

Warning: Argument 1 to f() must be of type @int, string given in
/home/oyamauchi/hack/testfile.php on line 5
Warning: Value returned from function f() must be of type @int, string given in
/home/oyamauchi/hack/testfile.php on line 6

It’s important to note that the annotation-removal tool extracts the file path from the
error message and looks for the file at exactly that path. If the file path in the logs is
relative, the tool will resolve it relative to its current working directory.

Migrating PHP to Hack | 235

HHVM outputs absolute file paths in error logs by default. This can be a problem if,
for example, you gather logs from one machine and do the annotation removal on
another machine with your project’s source at a different path. To deal with this, you
can strip the path to the project root from the log messages using a tool like sed (the
full usage of which is beyond the scope of this book):

$ sed -e 's!/home/oyamauchi/hack/!!g' < errors.log > errors-relative-paths.log

Finally, with a suitable log file, removing the incorrect annotations is very simple. If
the error log has relative paths, make sure you’re in the right working directory. Then,
use the command hack_remove_soft_types:

$ hack_remove_soft_types --delete-from-log errors.log

Hardening annotations
When you’re confident that the remaining annotations are correct, you can make all
the remaining annotations hard. This is also done with hack_remove_soft_types:

$ hack_remove_soft_types --harden lib/core.hh

The tool only accepts a single file as an argument for now. If you want to apply the
operation to all the files in a directory, you can use the find utility. This example
applies it to every file whose name ends with .hh in the directory lib and all of its sub‐
directories, recursively:

$ find lib -type f -name '*.hh' -exec hack_remove_soft_types --harden '{}' ';'

Transpiling Hack to PHP
HHVM is currently the only execution engine that supports Hack. This means that
anyone who can’t make the switch to HHVM can’t run Hack code. If you’re the
author of a PHP library, this probably seems like a good reason not to migrate your
code to Hack—there would be no sense in migrating when doing so would shut out
many of your potential users.

The Hack transpiler was developed by the Hack team to assuage these concerns. The
transpiler is a tool that automatically converts the codebase into PHP. The purpose
isn’t to convert a Hack codebase to PHP so that you can develop it in PHP. Rather, the
transpiler is meant to be used as a build step: you develop in Hack, and transpile to
PHP as the final step before packaging. You ship two versions of your code: the origi‐
nal Hack version, for people who use HHVM and Hack; and the transpiled PHP ver‐
sion, for people who don’t.

The transpiler ships with HHVM, and you run it with the command h2tp. Give it the
path to your Hack codebase, and a path where it can put the resulting PHP code. It

236 | Chapter 10: Hack Tools

will inspect any file with the extension .php or .hh. Any other files will be copied to
the destination directory unmodified:

$ ls -a my_project
. .. .hhconfig main.hh

$ h2tp my_project my_project_transpiled
The Conversion was successful

$ ls -a my_project_transpiled
. .. .hhconfig main.php

The output PHP code is not meant to be edited. All comments are stripped, and for‐
matting isn’t guaranteed to be preserved. The code isn’t needlessly obfuscated,
though, so it shouldn’t be hard to understand a stack trace from the PHP code.

Once the PHP code has been generated, there is one more setup step. The generated
code will make use of Hacklib, a collection of support functions and classes that are
used by the transpiled code. Hacklib comes as part of the Hack/HHVM installation
and is installed, by default, at path /usr/share/hhvm/hack/hacklib.

First, copy Hacklib into the directory containing your project’s transpiled PHP code:

$ cd my_project_transpiled

$ cp -r /usr/share/hhvm/hack/hacklib .

Second, add a line of code that will be executed before any of the generated files are
loaded (via include, require, etc.). Put the path to Hacklib’s main file in the global
variable HACKLIB_ROOT. For example, if the Hacklib code was copied to the top-level
directory of the project:

$GLOBALS['HACKLIB_ROOT'] = __DIR__ . '/hacklib/hacklib.php';

Conversions
This section won’t go into full detail about all of the conversions that the transpiler
does, but will explain enough to give you an idea of what to expect in the generated
PHP code.

It’s important to note that the transpiled PHP code will run less efficiently than the
original Hack code, even on the same execution engine. As we’ll see in this section,
some common Hack constructs have to be replaced with less efficient PHP constructs
—for example, some equality comparisons have to be replaced with function calls.

The transpiler will try to convert all Hack files, and won’t touch PHP files. It deter‐
mines what language a file is in by its opening tag—<?hh or <?php—not by its file
extension.

Here are the most important things the transpiler does:

Transpiling Hack to PHP | 237

• All type annotations are removed. This also means that type aliases can simply be
deleted, as type annotations are the only place where they’re used.

• Collection literals (see “Literal Syntax” on page 96) are replaced with new expres‐
sions, where supported. The collection classes can still be used in PHP.

• Lambda syntax (see “Lambda Expressions” on page 66) is replaced with regular
closure syntax. The typechecker finds which variables need to be captured from
the enclosing scope and generates the appropriate use list.

• Enums (see “Enums” on page 57) are converted into classes, with the enum
members as class constants. The special enum functions are provided by a trait
from Hacklib.

• Shapes (see “Array Shapes” on page 64) and tuples are replaced with arrays.
• Attributes (see “Attributes” on page 69) are removed, except __Memoize, which is

not supported; see the next section.
• Trait requirements (see “Trait and Interface Requirements” on page 78) are

removed.
• Constructors with promoted arguments (see “Constructor Parameter Promo‐

tion” on page 68) are unfolded to declare the necessary properties and assign to
them in the constructor’s body.

• The nullsafe method call operator (see “Nullsafe Method Call Operator” on page
77) is simulated using a Hacklib class with the magic method __call().

• Because the collection classes’ behavior in casting and equality comparisons isn’t
special-cased in PHP like it is in Hack, some instances of those constructs have to
be modified. For example, here is Hack code that relies on empty collections eval‐
uating to false when cast to booleans:

function average(Vector<num> $nums): num {
 if (!$nums) {
 throw new InvalidArgumentException(
 "Can't average an empty vector"
);
 }

 // ...
}

To get equivalent behavior in PHP, the transpiler will use a helper function from
Hacklib:

function average($nums) {
 if (!\hacklib_cast_as_boolean($nums)) {
 throw new InvalidArgumentException(
 "Can't average an empty vector"
);

238 | Chapter 10: Hack Tools

 }

 // ...
}

Unsupported Features
There are several Hack features that the transpiler can’t convert to PHP. If it encoun‐
ters any of these, the transpiler will give up on the entire file. It will never partially
convert a file, or produce PHP code that doesn’t behave the same as the original Hack
code.

The PHP code that the transpiler generates to simulate Hack features is compatible
with PHP versions 5.4 and later. However, if you use features from a later version of
PHP, such as generators (introduced in PHP 5.5), the transpiler will not touch those,
and the output will only run on PHP 5.5 and later.

Here are the features that the transpiler doesn’t support:

• Async functions (see Chapter 6). Running async functions requires extensive
support from the runtime, and it’s not possible to simulate this in pure PHP in a
reasonable way. It’s possible to convert async functions by simply removing the
async and await keywords; this would produce correct results, but with no par‐
allelism. The transpiler may start doing that in the future.

• The __Memoize special attribute (see “Special Attributes” on page 71). Unlike
other attributes, which are simply removed, __Memoize will cause a conversion
failure. This attribute requires runtime support, and is tricky to simulate in pure
PHP. The memoization pattern is easy to implement manually, though, as a
workaround.

• Traits that implement interfaces (see “Trait and Interface Requirements” on page
78).

• Collection literals as initial values for non-static properties (see “Literal Syntax”
on page 96). This is because a collection literal has to be converted to a new
expression in PHP, and those aren’t allowed as property initializers. The restric‐
tion only applies to non-static properties because the initializers for static proper‐
ties can simply be moved outside the class.

Transpiling Hack to PHP | 239

Index

Symbols
" " (quotes, double), enclosing apostrophe in

text in XHP, 168
& command, working with macros in hphpd,

222
& list, 222
& replay, 222
& start and & end, 222

&& operator, 90
&&, appending to breakpoint-setting com‐

mand, 209
' (apostrophe) in text in XHP, 168
* (repetition) operator (XHP), 172
+ (repetition) operator (XHP), 172
-> method call syntax, 88
: (colon) in XHP class names, 168
:: method call syntax, 88
= command in hphpd, 202, 204
== (equality) operator, use with collections, 100
=== (identity) operator, use with collections,

101
==> operator, 67
? (repetition) operator (XHP), 172
?-> (nullsafe method call) operator, 77
@ command in hphpd, 202, 204
@required attributes, 167, 169
[] (square brackets)

appending values to Vectors, Sets, and
Maps, 99

use with collections, 97
__ (double underscore) in special attribute

names, 71
| (alternation) operator (XHP), 172
|| operator, 90

‸ (caret), bitwise xor operator, 90

A
admin server, 196

security practices with, 197
sending commands via curl utility, 197

Alternative PHP Cache (APC), 114
and operator, 90
any attribute specifier (XHP), 172
any pseudotype, 16
arguments

parameters versus, 5
typed variadic arguments, typechecker rules

for, 23
array shapes, 64-66
array type, 6

in PHP, 91
arraykey type, 7
arrays

collections interoperating with, 112
converting collections to arrays, 112
use with built-in and user functions, 112

copy-on-write in PHP, 94
generic, syntax of, 13
implementing Traversable in PHP, 103
keys containing string representations of

integers, 97
subtypes and generics, 50
tuples as, 7
using collections instead of, 93
value semantics, 94

array_diff() function, 114
array_filter() function, 129
array_key_exists() function, 89

241

array_map() function, 129
array_pop() function, 113
array_push() function, 113
array_shift() function, 113
array_unshift() function, 113
asio-utilities library, 121

HH\Asio\join() function, 123
mapping and filtering helper functions, 129

assignment statement as command (hphpd),
202

assume_php configuration option, 17
async keyword, 118

putting on a function, results of, 123
AsyncGenerator interface, 126
asynchronous (async) functions, 117-155, 239

and callable types, 123
async extensions, 147

cURL, 153
MCRouter and memcached, 151-153
MySQL, 147-151
streams, 154

async generators, 125-127
async XHP, 175
await, not an expression, 124
common mistakes, 143

dropping wait handles, 143
memoizing async functions, 145

examples, introductory, 118-121
exceptions in, 127-129
mapping and filtering helper functions,

129-132
other types of waiting, 140

batching, 141
polling, 141
rescheduling, 140
sleeping, 140

structuring async code, 132-140
antipatterns, 135
awaiting in a loop (antipattern), 136
data dependencies, 133
multi-ID antipattern, 137

threads and, 145
wait handles, 121

getting with async helper functions, 122
AsyncIterator interface, 125
AsyncKeyedIterator interface, 126
AsyncMysqlClient class, 147
AsyncMysqlConnection class, 148, 149
AsyncMysqlConnectionPool class, 149

AsyncMysqlErrorResult class, 151
AsyncMysqlResult class, 150
asyncRender() function, 175
attributes, 69-73

special, 71
syntax, 69
XHP classes, 169

attribute types, 170
class attribute, 178
distinguishing from children, 181
inheriting attributes, 170
parser transfomation of declarations, 185
transferring with XHPHelpers, 176
validation of, 167

XHP objects, 163
autoloading, 3

enhanced, 73-75
type aliases, 64

autoload_set_paths() function, 74
await as, 125
await keyword, 118

syntactic positions, correct, 124
Awaitable interface, 119
awaiting (async functions), 119

awaiting in a loop, 136

B
Batcher class, 142
batching data fetching, 141
bool type, 6
Bootstrap library, 178
bottom-up migration, 233

Facebook's migration to Hack, 233
to XHP, 183

break list command (hphpd), 217
break statement, arguments to, 89
breakpoints, 207

managing, 217
breakpoint state, 217
changing breakpoint state, 218
deleting breakpoints, 218

navigating code, 213-217
navigating the call stack from, 211
setting, 207-210

BypassAccessCheck option (hphpd), 224

C
call stack, navigating from hphpd breakpoint,

211

242 | Index

callable types, 10
async and, 123

case-insensitive name lookup, 86
categories

in custom XHP classes, 173
in XHP children declarations, 173
parser transformation of declarations, 185

chained method calls, 8
chains of dependencies, 133
character references (HTML), 163
child objects (XHP), 161

distinguishing attributes from, 181
passing context to, 174
XHPAlwaysValidChild interface, 184

children declarations, XHP classes, 171
parser transfomation of, 185

class attribute, managing with XHPHelpers,
178

classes
collection, 110
enums as pseudoclasses, 59
looking up documentation in hphpd, 221
using traits, restrictions on, 78
XHP, 161

core classes, hierarchy of, 186
creating your own, 168-178
distinguishing attributes from children,

181
no additional public API, 179

closing tags (XHP), 161
closures

as callable type, 10
async, 119
return type annotations, 4
simplification with lambda expressions, 66
type inference on functions containing, 29

Collection interface, 107
collection literals, 96, 239
collections, 91-115

adding values to, 99
advantages of using, 93
await-a-collection helpers, 137
classes in Hack, 91
concrete classes, 110
deleting values from, 99
equality comparisons with == operator, 100
general collection interfaces, 106
identity comparisons with === operator,

101

immutable, 102
interoperating with arrays, 112

conversion to arrays, 112
use with built-in and user functions, 112

iterating over with foreach, 98
reading and writing, 97
reference semantics, 94
specific collection interfaces, 107
subtypes and generics, 50
type annotations for, 102

core interfaces, 102
command-line interface (HHVM), wrapper

script for, 193
command-line mode, 192
comments

documentation comments versus attributes,
69

HH_FIXME, syntax of, 81
Composer package manager, 121, 161
conditional breakpoints, 210
configuring HHVM, 189

admin server, 196
repo-authoritative mode, 194

building the repo, 195
deploying the repo, 196

server mode, 192
specifying configuration options, 189

important options, 190
warming up the JIT, 193

configuring hphpd, 223
connection pools (MySQL async extension),

149
connections, database (MySQL async exten‐

sion), 147
__ConsistentConstruct attribute, 71
ConstCollection interface, 107
ConstMap interface, 109
constraint type, adding to opaque type alias, 63
constraints on generic type parameters, 45-47
constructor parameter promotion, 68
constructors, old-style, 85
ConstSet interface, 108
ConstVector interface, 95, 108
Container interface, 103
contains() method, 98
containsKey() method, 98
contexts in XHP, 174
continue command (hphpd), 213

repeating, 216

Index | 243

continue statement, arguments to, 89
contravariance, 51

syntax for generic type parameters, 51
use cases, 53

example, 55
contravariant positions, 53
control flow tags, avoiding in XHP, 180
cooperative multitasking, 118
copy-on-write (arrays), 94
count() function, 114
covariance, 51

syntax for generic type parameters, 51
use cases, 52

examples, 54
covariant positions, 53
create_function() function, 89
cross-site scripting (see XSS)
cURL async extension, 120, 153
curl utility, sending commands to HHVM

admin server, 197
current() function, 113

D
data dependencies (async code), 133

dependent queries, 137
false dependencies, 136

from awaiting in a loop, 136
from multi-ID antipattern, 138

databases, fetching data from, 135
debugger prompt, 199

local or remote mode, 204
debugging functions, use with collections, 113
debugging, interactive (see hphpd interactive

debugger)
debug_zval_dump() function, 114
decl mode, 16
dependencies (see data dependencies)
dependent queries, 137
__destruct() methods, 190
documentation, viewing for code in hphpd, 220
dummy sandboxes, 206
dynamic properties, 87
dynamic typing versus static typing, 1

E
empty() function, 88, 98
enumerations (see enums)
enums, 7, 57-60

as controlling expression for switch state‐
ment, 59

attribute types in XHP, 170
enum type and underlying type, 58
methods of, 59
syntax, 57

error messages, Hack typechecker, 3
errors

silencing typechecker errors, 80
using collections with non-built in func‐

tions instead of arrays, 114
escaping HTML special characters, 159

getting around escaping in XHP, 184
eval() function, 89
exceptions in async functions, 127-129
execution environment (hphpd), 203

local mode, 204
remote mode, 205

extract() function, 89

F
Facebook, migration to Hack, 233
fallthrough in switch statements, typechecking

rules for, 25
false dependencies in async code, 136
FastCGI server, 192
fastcgi_param directive, 192
fastcgi_pass directive, 192
filtering helpers (async), 129-132
float type, 6
flushing (XHP), 187
foreach statement

iterating over collections, 98
Traversable interface and, 103

frame command (hphpd), 217, 219
fun() function, 10
function keyword, 10, 118
function parameters, type annotations, 5
function return types, type annotations, 4
functions

as callable type, 10
async and regular, syntactic differences, 118
autoloading, 75
deciding to make async, 134
generic, 41

covariance and contravariance, 53
looking up documentation in hphpd, 221
memoizing, 73
setting breakpoints on, 208

244 | Index

taking arrays as arguments, using collec‐
tions instead, 112

type inference, restrictions on, 28

G
garbage collection, problems with references,

84
generators

async, 125
types for, 24

generics, 13, 39-55
attribute types in XHP, 170
constraints on type parameters, 45-47
covariance and contravariance, 51

syntax for, 51
use cases, 52

example generic class, 39-41
functions and methods, 41
generator types, 24
subtypes and, 49

arrays and collections, 50
traits and interfaces, 42
type aliases, 42
type erasure, 43-44

global statement, 84
goto statement, 89

H
h2tp command, 236
Hack

defined, xii
embedding Hack code in XHP, 164
file opening symtax, 2
gradual migration from PHP, xiv
library of core XHP classes, 186
origins of, xi
program types, xiii
static typechecking, xv
tools, 227-239

inspecting the codebase, 227-231
migrating PHP to Hack, 231-236
transpiling Hack to PHP, 236-239

type system, 6-18
typechecker, xii, 1

(see also typechecker)
version 3.6, xv

Hackficator tool, 231
top-down or bottom-up migration with, 232
upgrading typechecker modes, 234

Hacklib, 237
hack_remove_soft_types command, 236
help or ? command (hphpd), 200
.hhconfig file, 2

assume_php option, 17
HHVM (HipHop Virtual Machine), xi

async extension functions, 120
async extensions in version 3.6, 147
async helper functions, 122
autoloading support, 3
configuring, 189

admin server, 196
repo-authoritative mode, 194
server mode, 192

defined, xii
generics and, 43
gradual migration from PHP, xv
memoized functions and, 73
program types, xiii
runtime typechecking, 36
version 3.6, xv

hhvm -m debug command, 199
hhvm.enable_obj_destruct_call option, 190
hhvm.enable_xhp option, 161
hhvm.hack.lang.look_for_typechecker option,

190
hhvm.hhbc file, 195

deploying to production servers, 196
hhvm.jit_enable_rename_function option, 191
hhvm.jit_profile_interp_requests option, 193
hhvm.repo.authoritative option, 196
hhvm.repo.central.path option, 196
hhvm.server.source_root option, 196
hhvm.server.thread_count option, 191
hhvm.source_root option, 191
hhvm_wrapper script, 193
HH\Asio\curl_exec() function, 153
HH\Asio\join() function, 123, 134
HH\Asio\later() function, 141, 143
HH\Asio\m() function, 122
HH\Asio\ResultOrExceptionWrapper interface,

128
HH\Asio\usleep() function, 125, 140
HH\Asio\v() function, 122, 154
HH\Asio\wrap() function, 128, 152
hh_client tool, 227

options for inspecting the codebase, 227
--find-class-refs, 228
--find-refs, 228

Index | 245

--inheritance-ancestors, 229
--inheritance-children, 229
--search, 227
--search-class, 227
--search-constant, 227
--search-function, 227
--search-typedef, 227
--type-at-pos, 228

scripting support, 230
--json flag, 230

HH_FIXME comment, 80
syntax, 81

hh_server --convert, 234
HPHPc transformer, xi
hphpd interactive debugger, 199-225

configuring, 223
evaluating code, 202
execution environment, 203

local mode, 204
remote mode, 205

getting started, 199
exiting hphpd, 202
help with commands, 201
subcommands, 201
useful commands, 200

macros, 222
read-eval-print loop (REPL) for Hack and

PHP, 199
using breakpoints, 207

managing breakpoints, 217
navigating code, 213-217
navigating the call stack, 211
setting breakpoints, 208-210

viewing code and documentation, 218
hphpd.ini file, 225
hphpd_break() function, 210
HTML

categories in XHP classes, 174
character references, 163
as serialization format, 160
validation using XHP, 158

HTML strings, 160
htmlspecialchars() function, 159

I
id attributes, 177
ImmMap class, 91, 102, 111

conversion to arrays, 112
ImmSet class, 91, 102, 111

conversion to arrays, 112
immutable collections, 102

built-in sort functions and, 113
immutable() method, collection classes, 95
ImmVector class, 91, 102, 110

conversion to arrays, 112
implode() function, 114
Indexish interface, 104
indices

array, and removing array elements, 100
vector, 91, 100

info command (hphpd), 220
inheritance, preferring composition over, 179
INI format (configuration files), 189
instance methods

as callable type, 11
calling with meth_caller(), 12

instanceof operator, 32
inst_meth() function, 11
int type, 6
integer arithmetic overflow, 77
interactive debugging (see hphpd interactive

debugger)
interfaces

collection
core interfaces, 102
general interfaces, 106
specific collection functionality, 107

generic, 42
looking up documentation in hphpd, 221
require extends statement in, 79
required implementation by class using a

trait, 78
traits implementing, 79
using as generic constraint, 46

introspection functions, use with collections,
113

invariance, 51
invariant() function, 19, 31
isset() function, 88, 98
Iterable interface, 104
Iterator interface, 104
IteratorAggregate interface, 104
iterators, async, 125

J
JIT-based execution engines, benchmarking,

193
JSON, 160

246 | Index

hh_client output in, 230

K
KeyedContainer interface, 104
KeyedIterable interface, 106, 108
KeyedTraversable interface, 103

L
lambda expressions, 66

using with async helper functions, 132
list command (hphpd), 218

arguments specifying code to view, 219
local mode (hphpd), 203
location directive, 192
LogFile option (hphpd), 224
loops, avoiding in XHP, 180

M
machine command (hphpd), 205
macros in hphpd, 222
Map class, 91, 111

adding values to, 99
awaitable Map, 122
conversion to arrays, 112
literal syntax, 96
removing items from, 100
retention of insertion order, 92
testing whether a key exists, 98
using with built-in sort functions, 113

mapping and filtering helpers (async), 129-132
MaxCodeLines option (hphpd), 225
MCRouter async extension, 151-153

MCRouter class, 152
async methods for core memcached

commands, 153
memcached, MCRouter async extension and,

151-153
memoization, 72, 95

async functions, common mistake in, 145
__Memoize attribute, 72, 145, 239
method calls, chained, 8
methods

as callable type, 11
async, 118
enum, 59
generic, 41

covariance and contravariance, 53
looking up documentation in hphpd, 220

memoizing, 73
mixing method call syntax, 88
nullsafe method call operator, 77
overriding, types of, 19
return type annotations, 4
setting breakpoints on, 208

meth_caller() function, 12
microseconds, 140
mixed type, 8

any pseudotype versus, 16
refining to primitives, 32

monomorphic, xiv
MutableMap interface, 109
MutableSet interface, 108
MutableVector interface, 109
MySQL async extension, 120, 147-151

connecting to and querying the database,
147

connection pools, 149
documentation, 151
query results, 150

N
name lookup, case-insensitive, 86
named entities, 14

typechecker mode and, 17
new expression, replacing XHP tag syntax, 185
next command (hphpd), 213, 224

repeating, 216
nginx web servers, 192
null values, function parameter annotations

and, 5
nullable types, 10

refining to non-nullable, 30
nullsafe method call operator, 77
num type, 7

O
object types, 7

refining, 32
type inference around object properties, 84

objects
PHP/Hack, serializing to HTML, 160
XHP, 161

attributes, 163
methods for manipulating, 165

opaque type aliases, 61
opening tags (XHP), 161
or operator, 90

Index | 247

out command (hphpd), 216
repeating, 216

OutputCollection interface, 107
__Override attribute, 71
overriding methods, types of, 19

P
Pair class, 91, 99

built-in sort functions and, 113
conversion to arrays, 112

parameterized types, 13
(see also generics)

parameters
arguments versus, 5
typechecking, 5

variadic functions, 5
types in overriding methods, 20

parser transformation (XHP), 185
partial mode, 15

allowing entry into top-level code, 85
reading from/writing to $GLOBALS, 84

pcdata attribute specifier (XHP), 172
PGO (profile-guided optimization), 194
PHP

calling into PHP code from Hack, 17
conversion to C++, xi
features not supported in Hack, 83-90

case-insensitive name lookup, 86
dynamic properties, 87
isset, empty, and unset, 88
mixing method call syntax, 88
old-style constructors, 85
other miscellaneous features, 89
references, 83-85
variable variables, 86

function parameter typehints, 5
gradual migration from, with Hack, xiv
Hack and, xiii
Hack and HHVM versions and, xvi
migrating to Hack, 231-236

Hackficator tool, 231-234
hardening type annotations, 236
inferring and adding type annotations,

234
removing incorrect annotations, 235

primitive types, 6
return typehint in version 7, 4
transpiling Hack to, 236-239

conversions, 237

unsupported Hack features, 239
variadic functions in version 5.6, 23

polling, 141
preemptive multitasking, 118
primitive types in Hack, 6

refining mixed types to, 32
PrintLevel option (hphpd), 224
print_r() function, 114
profile-guided optimization (PGO), 194
program types, xiii
properties

acting upon object properties at a distance,
84

covariant and contravariant type parame‐
ters, restrictions on, 53

dynamic properties in PHP, 87
inference on, 35
initialization, typechecker rules for, 20
type annotations, 6

Q
query results (MySQL async extension), 150
queryf() query string with placeholders, 148

R
raw strings, 160
read-eval-print loop (REPL), hphpd, 199
reference semantics, 94
references, 83-85

allowing possibility of action at a distance,
83

garbage collection and, 84
global statement, 84
restrictions with typechecker in strict mode,

14
top-level code, 84
unset() function in PHP, 89
use with typechecker in partial mode, 15

register_shutdown_function(), 209
remote mode (hphpd), 203, 205

exiting or entering, 205
sandboxes, 206
starting hphpd in, 205

rename_function() function, 191
render() method, XHP, 168
repo schema ID, 196
repo-authoritative mode, 194

building the repo, 195
require extends ClassName statement, 78

248 | Index

require implements InterfaceName statement,
78

@required attributes, 167, 169
rescheduling a wait handle, 140
reset() function, 113
resource type, 6
ResultOrExceptionWrapper interface, 128
return types

async functions, 119
Awaitable, 124
covariant and contravariant type parame‐

ters, restrictions on, 53
in overriding methods, 20
type annotations, 4

run command (hphpd), 204

S
same-origin policy, 160
sandbox mode, 205
sandboxes, 206
scripting support, hh_client, 230
sed, 236
self-closing tags (XHP), 162
serialization formats, 160
serialization, of generic type aliases, 43
serialize() function, using with collections, 114
server mode, 192

configuring web server to send requests to
HHVM FastCGI server, 192

starting HHVM in, 192
$_SERVER variable, 190
Set class, 91, 111

adding values to, 99
conversion to arrays, 112
testing for membership in, 97
testing whether an element exists, 98
using with built-in sort functions, 113

set command (hphpd), 224
shape keyword, 64
shapes, 10
shell command line, specifying configuration

options for HHVM, 190
ShortPrintCharCount option (hphpd), 224
sleeping, async, 140
SmallSteps option (hphpd), 224
soft annotations, 37
sort built-in functions, using with collections,

113
SQLite3, 195

StableMap class, 92
stack trace, printing in hphpd, 211
StackArgs option (hphpd), 225
startup macro (hphpd), 223
static methods

and mixing method call syntax in PHP, 88
this return type, 9
using as callable type, 11

static typing versus dynamic typing, 1
step command (hphpd), 213, 215, 224

repeating, 216
storage backends, fetching data from, 135
streams async extension, 154
stream_await() function, 154
stream_select() function, 154
strict mode, 14
string type, 6
Stringish interface, 170
strings

array keys representing integers, 97
incrementing and decrementing, not sup‐

ported in Hack, 90
raw versus HTML strings, 160

style guidelines for XHP, 182
subcommands in hphpd, 201
subtypes, generics and, 49
superglobals, typechecking rules for, 18
switch statements

fallthrough in, 25
value of enum type as controlling expres‐

sion, 59
syntax highlighting in text editors, 168

T
tags

HTML, rules for relationships, 158
XHP

attributes in, 163
parser transformation of, 185
self-closing, 162
syntax, 161

$this, static versus non-static method calls, 88
this return type, 8
thread count in server mode, 191
threads, async functions and, 145
time measurements on computers, 140
top-down migration, 233
top-level code

global scope and, 84

Index | 249

with typechecker in partial mode, 15
traits, 239

generic, 42
requirements for, 78

transparent type aliases, 60
transpiling Hack to PHP, 236-239

conversions, 237
unsupported Hack features, 239

Traversable interface, 103
tuples, 7
two's complement arithmetic, integer arith‐

metic as, 77
type aliases, 10, 60-64

autoloading, 64
generic, 42
opaque, 61
transparent, 60

type annotations, 2, 4
collections, 102

core interfaces, 102
general interfaces, 106

for instance of a generic class, 41
function parameters, 5

variadic functions, 5
function return types, 4
hardening, 236
incorrect, removing, 235
inferring and adding in PHP to Hack migra‐

tion, 234
properties, 6
soft annotations, 37
XHP, 164

type arguments, 41
for generic traits or interfaces, 42

type erasure, 43
type inference, 26

functional-local restriction on, 28
unresolved types, 26

use with generics, 48
variables not having types, 26

type parameters, 13, 39
for generic functions or methods, 41
restrictions on, 43

typechecker (Hack), xii, 1
adavantages of using, 1
autoloading everything, 3
error messages, 3
modes, 14
setting up, 2

silencing errors, 80
upgrading modes with Hackficator, 234

typechecking
calling into PHP, 17
code without annotations, 16
enforcement of type annotations at runtime,

36
generic covariance and contravariance,

restrictions on, 53
refining types, 29

inference on properties, 35
mixed types to primitives, 32
nullable types to non-nullable, 30
object types, 32

restrictions on shapes, 66
rules, 18-26

fallthrough in switch statements, 25
property initialization, 20
typed variadic arguments, 23
types for generators, 24
types of overriding methods, 19
using superglobals, 18

traits, requirements for, 78
types

attribute types in XHP, 170
Hack type system, 6

callable types, 10
enums, 7
generics, 13
object types, 7
primitive types, 6
tuples, 7

in Hack and PHP, 13
monomorphic, xiv
statically typed versus dynamically typed, 1

U
underlying type

for enums, 57
converting enum type to, 58
enum type versus, 58

for type aliases, 61
opaque type aliases, 62
transparent type aliases, 61

unresolved types, 27
use with generics, 48

unset() function, 88
deleting values from Maps and Sets, 100

user functions, using collections with, 114

250 | Index

usleep() function, 140

V
validation

runtime validation with XHP, 158
XHP code, 167

value semantics, 94
variable command (hphpd), 203
variables

capture by lambda expressions, 66
superglobals, typechecking rules for, 18
type inference and, 26
variable, 86

variadic functions, 5
typed arguments, 23

variance, 51
var_dump() function, 114
var_export() function, 114
Vector class, 91, 110

adding values to, 99
awaitable Vector, 122
conversion to arrays, 112
deleting values using removeKey(), 99
using with built-in sort functions, 113

void return type, 8

W
wait handles in async code, 121

dropping, 143
memoizing, 145
non-async function getting result from, 123
representing multiple other wait handles,

122
waiting, other useful types of, 140

batching, 141
polling, 141
rescheduling, 140
sleeping, 140

web server, configuring to send requests to
HHVM, 192

where command (hphpd), 211, 225
whitespace in XHP, 162

X
:x:frag class, 165
XHP, 157-188

advantages of using, 157
attributes, 163
basic tag usage, 161

HTML character references, 163
best practices, 178-182

composition, not inheritance, 179
no additional public API, 179
not making control flow tags, 180
style guidelines, 182

creating your own classes, 168
attribute types, 170
attributes, 169

embedding Hack code, 164
internals, 185

Hack library, 186
parser transformation, 185

migrating to, 182
bottom-up conversion, 183
getting around XHP's escaping, 184

objects, public methods for manipulating,
165

runtime validation with, 158
security for web apps, 159
type annotations for, 164
using, 161
validation of, 167
writing your own classes

async in its rendering function, 175
categories, 173
children declarations, 171
context, 174
XHPHelpers, 176-178

:xhp class, 161
XHP-Bootstrap, 178
XHPAlwaysValidChild interface, 184
XHPAsync trait, 175
XHPChild interface, 164
XHPHelpers trait, 171, 176-178

getting unique IDs for elements, 177
managing the class attribute, 178
transferring attributes with, 176

XHPRoot interface, 164
XHPUnsafeRenderable interface, 184
xor operator, 90
XSS (cross-site scripting), 159

dangers of, 160
treating raw strings as HTML strings, 160

Index | 251

About the Author
Owen Yamauchi is a software engineer at Facebook, where he works on the HHVM
team. Before joining Facebook in 2009, he interned at VMware and Apple. Owen
grew up in Belgium and earned his BS in computer science at Carnegie Mellon.

Colophon
The animal on the cover of Hack and HHVM is a gray fox (Urocyon cinereoargenteus),
which is one of the two only living species of the genus Urocyon, considered to be
among the most primitive canids. The other is the Channel Island fox. The gray fox is
an omnivore found from southern Canada to the northern part of South America. It
feeds on the eastern cottontail, shrews, birds, rodents, and jackrabbits, depending on
where it lives. In some areas in the western United States, the gray fox eats primarily
insects and vegetation; all gray foxes eat a diet rich in fruits.

The gray fox is known for having grizzled upper parts, a black tip on its tail, and a
strong neck. Males and females are very similar, save for the female’s slightly smaller
size. The gray fox typically measures from 76 to 112.5 cm (29.9 to 44.3 in) in length
including its tail, which takes up about 27.5 to 44.3 cm (108 to 17.4 in) of that length;
this species weighs between 3.6 to 7 kg (7.9 to 15.4 lb).

The gray fox has the exceptional ability to climb trees, which it shares with the Asian
raccoon dog, also a canid. This is its tactic for escaping many predators—domestic
dogs or coyotes—or reach tree-bound food sources. It ascends using its strong,
hooked claws to scramble up trees, and can climb vertical trunks without branches up
to 18 meters. It descends trees by jumping from branch to branch or by climbing
slowly backwards. The gray fox is nocturnal and nests in hollow trees or stumps,
sometimes up to 30 feet off the ground.

The gray fox is monogamous, mating in early March in the north and in February in
the south. Gestation lasts up to 53 days, and litter sizes range from 1 to 7 kits. At three
months old, offspring begin hunting with its parents, and at four months, kits can
forage on their own. In the autumn, the young leaves its family group, having reached
sexual maturity.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Wood’s Animate Creation. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Foreword
	Preface
	What Are Hack and HHVM?
	Who This Book Is For
	Philosophy
	Program Types
	Gradual Migration

	How the Book Is Organized
	Versions
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Typechecking
	Why Use the Typechecker?
	Setting Up the Typechecker
	Autoload Everything
	Reading Error Messages

	Type Annotation Syntax
	Function Return Types
	Function Parameters
	Properties

	Hack’s Type System
	Typechecker Modes
	Code Without Annotations
	Calling into PHP

	Rules
	Using Superglobals
	Types of Overriding Methods
	Property Initialization
	Typed Variadic Arguments
	Types for Generators
	Fallthrough in switch Statements

	Type Inference
	Variables Don’t Have Types
	Unresolved Types
	Inference Is Function-Local

	Refining Types
	Refining Nullable Types to Non-Nullable
	Refining Mixed Types to Primitives
	Refining Object Types
	Inference on Properties

	Enforcement of Type Annotations at Runtime

	Chapter 2. Generics
	Introductory Example
	Other Generic Entities
	Functions and Methods
	Traits and Interfaces
	Type Aliases

	Type Erasure
	Constraints
	Unresolved Types, Revisited
	Generics and Subtypes
	Arrays and Collections

	Advanced: Covariance and Contravariance
	Syntax
	When to Use Them

	Chapter 3. Other Features of Hack
	Enums
	Enum Functions

	Type Aliases
	Transparent Type Aliases
	Opaque Type Aliases
	Autoloading Type Aliases

	Array Shapes
	Lambda Expressions
	Constructor Parameter Promotion
	Attributes
	Attribute Syntax
	Special Attributes

	Enhanced Autoloading
	Integer Arithmetic Overflow
	Nullsafe Method Call Operator
	Trait and Interface Requirements
	Silencing Typechecker Errors

	Chapter 4. PHP Features Not Supported in Hack
	References
	The global Statement
	Top-Level Code

	Old-Style Constructors
	Case-Insensitive Name Lookup
	Variable Variables
	Dynamic Properties
	Mixing Method Call Syntax
	isset, empty, and unset
	Others

	Chapter 5. Collections
	Why Use Collections?
	Collections Have Reference Semantics
	Using Collections
	Literal Syntax
	Reading and Writing

	Type Annotations for Collections
	Core Interfaces
	General Collection Interfaces
	Specific Collection Interfaces
	Concrete Collection Classes

	Interoperating with Arrays
	Conversion to Arrays
	Use with Built-In and User Functions

	Chapter 6. Async
	Introductory Examples
	Async in Detail
	Wait Handles
	Async and Callable Types
	await Is Not an Expression
	Async Generators
	Exceptions in Async Functions
	Mapping and Filtering Helpers

	Structuring Async Code
	Data Dependencies
	Antipatterns

	Other Types of Waiting
	Sleeping
	Rescheduling

	Common Mistakes
	Dropping Wait Handles
	Memoizing Async Functions

	Async Extensions
	MySQL
	MCRouter and memcached
	cURL
	Streams

	Chapter 7. XHP
	Why Use XHP?
	Runtime Validation
	Secure by Default

	How to Use XHP
	Basic Tag Usage
	Attributes
	Embedding Hack Code
	Type Annotations for XHP
	Object Interface
	Validation

	Creating Your Own XHP Classes
	Attributes
	children Declarations
	Categories
	Context
	Async XHP
	XHP Helpers

	XHP Best Practices
	No Additional Public API
	Composition, Not Inheritance
	Don’t Make Control Flow Tags
	Distinguish Attributes from Children
	Style Guide

	Migrating to XHP
	Converting Bottom-Up
	Getting Around XHP’s Escaping

	XHP Internals
	The Parser Transformation
	The Hack Library

	Chapter 8. Configuring and Deploying HHVM
	Specifying Configuration Options
	Important Options

	Server Mode
	Warming Up the JIT
	Repo-Authoritative Mode
	Building the Repo
	Deploying the Repo

	The Admin Server

	Chapter 9. hphpd: Interactive Debugging
	Getting Started
	Evaluating Code
	The Execution Environment
	Local Mode
	Remote Mode

	Using Breakpoints
	Setting Breakpoints
	Navigating the Call Stack
	Navigating Code
	Managing Breakpoints

	Viewing Code and Documentation
	Macros
	Configuring hphpd

	Chapter 10. Hack Tools
	Inspecting the Codebase
	Scripting Support

	Migrating PHP to Hack
	The Hackificator
	Inferring and Adding Type Annotations

	Transpiling Hack to PHP
	Conversions
	Unsupported Features

	Index
	About the Author

