

Hello	Web	App:	Intermediate	Concepts

Add	in	the	components	you	need	to	build	a	successful	and
profitable	web	app.

	

Tracy	Osborn
	

©	2015	Tracy	Osborn

To	the	entire	Django	and	Python	community,	since	they’ve	been	nothing	but	welcoming
and	encouraging	and	I	am	truly	grateful	to	work	in	such	a	wonderful	industry.

And	to	my	husband	Andrey,	who	is,	unfailingly,	my	biggest	supporter	and	cheerleader.
Without	him,	I	wouldn’t	be	where	I	am	today.

(Quick	high-five	to	my	cat	and	dog.)

Table	of	Contents

Introduction
Prerequisites
Our	discussion	forum

Creating	a	Contact	Form	and	Working	with	Custom	Forms
Set	up	the	URL
Set	up	the	view
Set	up	the	form
Create	the	template
Set	up	your	local	email	server
Add	the	email	logic
Create	a	template	for	your	email
Improve	the	form	(optional)
Set	up	our	live	email	server	(optional)
Things	that	could	be	improved
Your	contact	form	is	complete!

Adding	a	New	Model	and	Working	With	Multiple	Models
Proper	schema	design:	multiple	tables	can	be	better	than	just	one	big	table
How	to	add	a	new	model	to	your	app
Add	to	your	admin
Access	the	new	view	from	your	views

Adding	Easy	Admin	Emails,	Helpers,	Sitemaps,	and	More
Adding	an	admin	email	shortcut	to	your	views
Adding	created	and	last-modified	dates	using	an	abstract	model
Helper	functions	on	your	model
Adding	sitemaps
A	bit	about	class-based	views	and	Django’s	generic	views

Adding	User-Uploaded	Images
Adding	a	model	for	images
Showing	the	image	in	the	templates
Adding	the	Upload	model	to	your	admin	page
Setting	up	the	template	to	display	images
Uploading	files	in	the	templates

Editing	and	Resizing	Images
Installation	reminder
Testing	out	resizing,	adding	filters,	and	saving	your	images
Updating	your	model’s	save	method	to	resize	images

Setting	Up	Django	Messages	for	Alerts
Add	the	messages	block	to	your	base	template

Sending	over	messages	from	the	view
Other	message	types

Front-End	Fun:	Adding	Gulp,	Sass,	and	Bootstrap
More	about	the	tools	we’re	installing
Installation
Conclusion	and	further	exploration

Reading	Source	Code	And	Setting	Up	a	Form	to	Edit	User	Email	Addresses
Setting	up	the	form
Setting	up	the	view	and	the	template

Adding	Payments	with	Stripe
Quick	note	about	HTTPS	and	securing	your	app
Setting	up	Stripe
A	note	about	test	and	live	keys
Add	your	test	keys	to	your	settings
Determining	the	payment	flow
Set	up	your	templates
Create	the	URL	and	the	view
Add	a	plan	to	Stripe
Update	your	view	to	subscribe	the	customer	to	a	plan
Setting	up	error	catching
Add	a	flag	to	your	model	to	indicate	“upgraded”	objects
All	the	additional	ways	to	improve	the	payment	functionality	on	your	app
Additional	resources	and	information
Congrats,	you’ve	added	payments	to	your	app!

Adding	an	API
The	essence	of	an	API
Installing	Django	REST	Framework
Setting	up	a	very	simple	API
Just	the	tip	of	the	iceberg

Working	with	Sessions
What	are	sessions?
Saving,	accessing,	and	removing	session	data	in	the	view
Some	caveats

Creating	Your	Own	Scripts	and	a	Bit	About	Cron	Jobs
Creating	a	script
Setting	up	scheduling	to	run	the	script	automatically
A	note	about	normal	scripts,	not	Django	management	commands

Database	Pitfalls
Getting	information	about	your	queries	with	the	Django	Debug	Toolbar
Optimizing	queries

Other	optimization	methods

Additional	Information	and	Resources
Different	versions	and	updates	—	what	should	I	do?
Other	resources
Keep	in	touch	with	Hello	Web	App!

Special	Thanks
Super	thanks	to	Hello	Web	App’s	sponsors
Book	reviewers,	editors,	and	testers
Kickstarter	backers

References

Friendly	Note

About	the	Author

Introduction

Welcome	to	Hello	Web	App,	the	sequel!

A	year	ago,	I	wrote	Hello	Web	App,	a	book	that	walks	new	programmers	through	building
their	own	web	app.	It	won’t	help	you	get	a	degree	in	Computer	Science	or	Computer
Engineering,	nor	is	it	a	guide	to	getting	a	job	as	a	developer	or	an	engineer.	Simply,	the
book	helps	people	learn	how	to	build	web	apps.

Readers	can	decide	what’s	next	after	Hello	Web	App:	learn	more	to	become	an	engineer,
hack	on	web	apps	as	side-projects,	or	start	building	a	lifestyle	business	or	a	startup	(I	did
the	last	option	and	it	turned	out	pretty	awesome).	Hello	Web	App	is	the	next	step	in	the
learn-to-code	revolution	—	beyond	learning	how	to	build	a	static	website	with	HTML	and
CSS,	we	can	build	a	fully	functional	web	app	and	start	working	with	customers.

All	of	this	started	after	I	taught	myself	—	painfully	—	how	to	code	half	a	decade	ago
(holy	moly	does	time	fly).	I	was	a	designer	with	an	Art	degree	and	loved	doing	front-end
web	development	work.	I	had	a	lot	of	ideas	for	websites	I	wanted	to	build,	but	didn’t	want
to	hire	someone	to	do	the	back-end	development	work	for	me.

After	a	few	months	of	learning,	I	was	able	to	cobble	together	a	basic	web	app	from	several
Django	tutorials	on	the	web	with	copious	amounts	of	help	from	my	friends,	and	eventually
launched	a	website.	This	website	grew	into	my	startup	(and	I	the	solo	founder	at	the
helm),	which	was	accepted	into	a	prominent	startup	accelerator	and	eventually	raised
funding.

During	the	years	of	refining	my	startup,	I’ve	learned	more	and	more	about	web	app
development.	The	only	tutorials	available	were	frustratingly	aimed	at	other	developers	—
people	who	already	knew	how	to	code	and	who	understood	the	jargon,	references	and
side-notes.	As	I	learned	more	development,	I	began	to	have	mini-epiphanies:	“Why	the
heck	was	it	taught	that	way	when	it	could	be	taught	this	way?”	I	realized	that	we	needed	a
better	way	to	teach	web	app	development	to	those	who	didn’t	already	know	how	to	code.
After	years	of	waiting	for	this	to	be	built	and	seeing	no	progress,	I	decided	to	write	the
book	myself.

Hello	Web	App	was	Kickstarted	in	2014	and	launched	on	May	4th,	2015.	Since	then,
thousands	of	folks	have	used	the	Hello	Web	App	tutorial	to	create	their	first	web	app.	The
goal	was	to	write	a	short,	easy	introduction	to	web	app	development,	meaning	the	original
book	is	the	size	of	a	small	paperback.	Hello	Web	App	takes	you	from	creating	a	project
idea	to	launching	your	app	on	the	internet	so	you	can	start	working	with	real	customers.

Consider	this	book,	Hello	Web	App:	Intermediate	Concepts,	as	the	whipped	cream	on	top
of	a	basic	web	app	sundae.	The	chapters	here	don’t	rely	on	a	chronological	order,	so	you
don’t	need	to	go	directly	from	one	chapter	to	the	next	through	the	end	of	the	book.	Here,
you	can	pick	the	chapter	and	concept	you	want	to	learn	and	just	start	building.

Also	keep	in	mind	that	you	don’t	need	to	have	read	the	original	Hello	Web	App	for	this
book	to	be	of	use	to	you.	Got	a	basic	Django	web	app	and	want	to	take	it	to	the	next	level?
This	book	is	for	you.

This	book	is	not	going	to	have	a	lot	of	Computer-Science-y	acronyms	and	engineering
concepts.	There	are	a	lot	of	tutorials	out	there	that	will	teach	you	Computer	Science	theory
and	best	practices.	Here,	you’ll	learn	how	to	do	something	from	start	to	finish	without	a
lot	of	asides	and	explanation	about	the	why	—	just	the	how.	And	a	tiny	bit	of	theory.

We’re	building	web	apps,	so	we	can	create	cool	side	projects	—	maybe	even	starting	a
lifestyle	business	or	becoming	the	next	startup.	Learning	web	app	development	will	open
up	so	many	doors	for	you.

Prerequisites
As	mentioned	before,	this	is	a	follow-up	to	the	original	Hello	Web	App	but	experience
with	the	original	book	is	not	required.	Do	you	have	a	basic	Django	web	app	and	want	to
build	some	of	the	topics	this	book	covers,	like	payment	functionality?	I	got	you.

One	side-note:	This	book	references	the	command-line	command	touch	to	create	new
files.	Mac	and	Linux	computers	have	this	ability	natively,	but	unfortunately	Windows
computers	don’t.	Either	create	the	new	files	in	your	code-editor	of	choice	by	hand,	or	you
can	use	Git	for	Windows	http://hellowebapp.com/ic/01,	which	installs	Git	on	your
computer	in	addition	to	giving	you	a	command	line	interface	that	lets	you	do	UNIX
commands	such	as	touch.

Our	discussion	forum
If	you	have	any	issues	while	going	through	this	book	and	Googling	your	question	isn’t
giving	you	the	answers	you	seek,	check	out	the	awesome	Hello	Web	App	discussion
forum	here:	http://discuss.hellowebapp.com

Feel	free	to	create	a	new	topic	if	you’re	stuck	and	I’ll	pop	in	to	help	you	within	a	few	days
(or	some	of	the	other	awesome	commentators	may	get	back	to	you	sooner).	I	also
encourage	you	to	share	the	app	you’ve	made	for	feedback,	ask	questions,	or	just	say	hi.

All	right,	let’s	get	started!

http://hellowebapp.com/ic/01
http://discuss.hellowebapp.com

Creating	a	Contact	Form	and	Working	with	Custom
Forms

In	this	walkthrough,	we’re	going	to	build	something	relatively	easy:	a	simple	contact	form
where	your	users	can	enter	their	name,	email	address,	and	message,	which	will	be	emailed
to	you	automatically	by	your	website	(with	the	user’s	email	as	the	reply-to).	In	terms	of
the	big	picture,	this	will	teach	you	how	to	create	custom	forms	using	Django,	as	so	far	in
Hello	Web	App,	we’ve	only	shown	you	how	to	create	a	ModelForm.

Set	up	the	URL
Pretty	much	every	new	feature	that	will	go	into	your	web	app	will	go	through	the	same
process:	set	up	the	URL,	set	up	the	logic,	then	set	up	the	template.	We’re	going	to	set	up	a
simple	page	that	lives	at	/contact/.	Add	the	new	page	to	your	urls.py:
urls.py

1 #	make	sure	you're	importing	your	views

2 from	collection	import	views

3

4 urlpatterns = [

5 ...

6 #	new	url	definition

7 				url(r'^contact/$',	views.contact,	name='contact'),

Set	up	the	view
Now	in	views.py,	we	need	to	start	setting	up	the	logic.	Let’s	set	it	up	to	just	display	a	form
for	now.	Later	on,	we’ll	do	the	rest	of	the	logic	for	after	the	form	is	submitted	in	a	bit:
views.py

	1 #	add	to	the	top

	2 from collection.forms import ContactForm

	3

	4 #	add	to	your	views

	5 def contact(request):

	6 form_class = ContactForm

	7

	8 return render(request, 'contact.html', {

	9 'form': form_class,

10 })

We’re	grabbing	a	form	(which	we	haven’t	defined	yet)	and	passing	it	over	into	the
template	(which	we	haven’t	created	yet).

Set	up	the	form

In	Hello	Web	App,	we	went	over	creating	forms	with	ModelForms,	but	skipped	creating
basic	forms	without	a	model.	But	it’s	just	as	simple	to	create	custom	forms!

In	our	forms.py,	add	the	below	form	code:
forms.py

1 #	make	sure	this	is	at	the	top	if	it	isn't	already

2 from django import forms

3

4 #	our	new	form

5 class ContactForm(forms.Form):

6 contact_name = forms.CharField()

7 contact_email = forms.EmailField()

8 content = forms.CharField(widget=forms.Textarea)

We’re	going	to	define	the	fields	we	want	in	our	form,	which	will	be	just	the	contact’s
name,	their	email,	and	what	they’d	like	to	say	to	you.

All	those	form	fields	were	grabbed	from	Django’s	form	fields	documentation
(http://hellowebapp.com/ic/2),	which	is	pretty	easy	to	read	to	see	what	other	fields	are
available.	We’re	making	all	the	form	fields	required,	using	an	EmailField	for	the	email	so
we	can	take	advantage	of	the	additional	email	formatting	checks	that	Django	provides,	and
making	the	“content”	field	a	Textarea.

Create	the	template
Now	we	need	to	create	the	template	page	to	display	the	contact	form	on	our	website.
We’re	going	to	create	the	form	using	the	form	passed	in	from	our	view.

	1 {% extends 'base.html' %}

	2 {% block title %}Contact - {{ block.super }}{% endblock %}

	3

	4 {% block content %}

	5 <h1>Contact</h1>

	6 <form role="form" action="" method="post">

	7 {% csrf_token %}

	8 {{ form.as_p }}

	9 <button type="submit">Submit</button>

10 </form>

11 {% endblock %}

At	this	point,	we	have	all	the	pieces	in	place	to	display	the	form.	Load	/contact/	and	check
it	out:

http://hellowebapp.com/ic/2

Nice!	Now	let’s	start	adding	the	logic	in	the	back-end	to	handle	the	information	submitted
by	the	user.

Set	up	your	local	email	server
This	will	be	redundant	for	you	if	you’ve	already	finished	already	the	Hello	Web	App
tutorial.	In	case	you	haven’t,	all	you	need	to	do	to	set	up	a	local	email	server	is	add	these
lines	to	the	bottom	of	your	settings.py:
settings.py

1 EMAIL_BACKEND =

2 'django.core.mail.backends.console.EmailBackend'

3 DEFAULT_FROM_EMAIL = 'testing@example.com'

4 EMAIL_HOST_USER = ''

5 EMAIL_HOST_PASSWORD = ''

6 EMAIL_USE_TLS = False

7 EMAIL_PORT = 1025

This	tells	Django	to	output	the	“email”	to	your	console,	where	you	ran	your	python
manage.py	runserver	command.	We’ll	see	what	this	looks	like	in	a	second.

(This	is	only	for	local	development	—	we’ll	get	into	email	servers	for	your	production
web	app	at	the	end	of	this	chapter.)

Add	the	email	logic
Let’s	fill	out	the	rest	of	the	email	logic.	Here’s	the	view	from	before,	now	filled	in:
views.py

4 #	new	imports	that	go	at	the	top	of	the	file

5 from	django.template.loader	import	get_template

6 from	django.core.mail	import	EmailMessage

7 from	django.template	import	Context

views.py

24 #	our	view

25 def contact(request):

26 form_class = ContactForm

27

28 #	new	logic!

29 				if	request.method	==	'POST':

30 								form	=	form_class(data=request.POST)

31

32 								if	form.is_valid():

33 												contact_name	=	form.cleaned_data['contact_name']

34 												contact_email	=	form.cleaned_data['contact_email']

35 												form_content	=	form.cleaned_data['content']

36

37 												#	Email	the	profile	with	the	contact	info

38 												template	=	get_template('contact_template.txt')

39

40 												context	=	Context({

41 																'contact_name':	contact_name,

42 																'contact_email':	contact_email,

43 																'form_content':	form_content,

44 												})

45 												content	=	template.render(context)

46

47 												email	=	EmailMessage(

48 																'New	contact	form	submission',

49 																content,

50 																'Your	website	<hi@weddinglovely.com>',

51 																['youremail@gmail.com'],

52 																headers	=	{'Reply-To':	contact_email	}

53)

54 												email.send()

55 												return	redirect('contact')

56

57 return render(request, 'contact.html', {

58 'form': form_class,

59 })

Phew,	a	lot	of	logic!	If	you	read	it	from	top	to	bottom,	here’s	what’s	happening	if	the	form
was	submitted:

Apply	the	information	from	the	form	to	the	form	class	we	set	up	before.
Make	sure	that	everything	is	valid	(no	missing	fields,	etc.)
Take	the	form	information	and	put	it	in	variables.

Stick	the	form	information	into	a	contact	form	template	(which	we	will	create
momentarily).
Create	an	email	message	using	that	contact	template,	and	send	the	message.
Redirect	to	our	contact	page	(not	ideal,	we’ll	go	into	why	below).
Otherwise,	just	create	the	template	with	a	blank	form.

Create	a	template	for	your	email
Before	we	can	test	our	logic,	we	need	to	create	an	email	template.	Our	email	template	is
going	to	be	simple,	as	it	will	just	show	the	sections	that	our	user	filled	out.	Create	a	new
file	in	your	templates	directory	(touch	contact_template.txt)	and	fill	it	in	with	the	info
below.	Django	will	grab	this	file	and	fill	it	in	using	the	context	we	set	up	in	the	view.
contact_template.txt

1 Contact Name:

2 {{ contact_name|striptags }}

3

4 Email:

5 {{ contact_email|striptags }}

6

7 Content:

8 {{ form_content|striptags }}

(We’re	using	Django’s	template	filter	strip_tags	to	strip	out	HTML	from	the	content.	We
need	to	be	very	careful	with	taking	user	input	and	presenting	it	as	it	was	given.	If	we	don’t
strip	HTML,	then	a	malicious	user	might	put	in	some	evil	JavaScript	in	their	input!)

Improve	the	form	(optional)
In	the	screenshot	of	the	form	from	before,	we	can	see	that	the	labels	of	the	form	aren’t
very	“pretty”	—	for	example,	just	saying	“Contact	name,”	which	is	very	impersonal.

Django	creates	these	names	automatically	from	your	field	names,	but	we	can	set	up	our
own	pretty	label	names	in	the	form	definition	in	forms.py.	To	do	so,	update	your	code	to
the	below:
forms.py

	1 class ContactForm(forms.Form):

	2 contact_name = forms.CharField(required=True)

	3 contact_email = forms.EmailField(required=True)

	4 content = forms.CharField(

	5 required=True,

	6 widget=forms.Textarea

	7)

	8

	9 #	the	new	bit	we're	adding

10 				def	__init__(self,	*args,	**kwargs):

11 								super(ContactForm,	self).__init__(*args,	**kwargs)

12 								self.fields['contact_name'].label	=	"Your	name:"

13 								self.fields['contact_email'].label	=	"Your	email:"

14 								self.fields['content'].label	=	"What	do	you	want	to	say?"

We’ve	added	the	bit	that	starts	with	__init__,	which	might	look	a	bit	confusing.	If	you
ignore	the	first	two	lines,	the	rest	are	pretty	easy	to	read.	We’re	just	grabbing	the	relevant
fields	in	our	form	and	updating	the	label.

We	can	set	more	than	just	the	label	—	we	can	also	set	the	field	as	required,	add	help	text,
and	other	fields	as	well	through	__init__.	You	can	see	more	information	about	updating
form	fields	and	attributes	here	in	this	excellent	post:	http://hellowebapp.com/ic/3

Once	we’ve	reloaded	our	form,	we	can	see	the	new	labels:

http://hellowebapp.com/ic/3

(Of	course,	this	is	minus	any	pretty	CSS	styling	we	need	to	do.)

Once	we	stick	in	some	test	information	and	submit	the	form,	we	can	see	the	“email”	in	our
command	line:

Set	up	our	live	email	server	(optional)
The	local	email	server	will	output	“emails”	to	your	local	server	(what’s	running	in	your
command	line),	so	you	can	confirm	everything	is	working	locally.	But,	when	your	web
app	is	live,	you	obviously	want	those	emails	to	actually	land	in	your	email	inbox,	rather
than	the	server	output.

You	can	do	this	by	setting	up	something	like	Sendgrid	(http://hellowebapp.com/ic/4)	or
Mandrill	(http://hellowebapp.com/ic/5)	—	freemium	email	servers	where	you	should	just
need	to	sign	up	for	an	account	and	set	the	details	of	your	account	in	your	settings.py.

Sendgrid	has	a	great	short	walkthrough	here:	http://hellowebapp.com/ic/6.	If	you’re	at	the
point	in	Hello	Web	App	where	you’ve	set	up	a	production	settings	file,	you	can	stick	the
email	server	stuff	in	there,	and	keep	your	local/test	emails	(using	the	Django	console)	in
your	normal	settings.py	file.	This	way	you	can	“send	emails”	as	you’re	developing	your
app,	but	you	don’t	have	to	worry	about	going	over	the	daily	email	limit	that	these	email
delivery	products	have	in	their	freemium	accounts.

Things	that	could	be	improved
I	mentioned	above	that,	upon	successful	form	submission,	you	will	be	redirected	to	your
app	homepage.	That	would	be	really	confusing	to	the	user,	because	there	is	no	success
message.	You	have	two	options	here:

http://hellowebapp.com/ic/4
http://hellowebapp.com/ic/5
http://hellowebapp.com/ic/6

Set	up	a	separate	template	that	just	says	“Success!”	that	users	are	redirected	to
after	successful	submission.	This	is	the	easiest	option,	but	adding	these	kind	of
templates	tends	to	clutter	up	your	templates	directory.
Utilize	the	Django	messages	framework.	This	is	a	better	option.	In	your	base
template	file,	you	can	add	a	“messages”	block,	and	then	when	you	redirect	to	a	page,
you	could	pass	along	a	message	(e.g.	an	alert,	an	error,	a	warning,	an	info	message,
etc.)	that	will	pop	into	the	top	of	any	page.	It’s	what	I	use	for	my	production	web
apps.	Chapter	6,	Setting	up	Django	Messages	for	Alerts,	goes	into	this	in	detail.

Your	contact	form	is	complete!
You	now	have	a	working	contact	form	that	allows	visitors	to	your	web	app	to	email	you
messages,	and	hopefully	you	learned	some	new	skills	about	creating	forms	in	Django	and
working	with	email.	Congrats!

Adding	a	New	Model	and	Working	With	Multiple
Models

Story	time!	Back	when	I	started	my	first	app	(a	directory	of	wedding	invitation	designers),
I	launched	a	very	small,	very	minimal	version	with	just	enough	features	—	basically
everything	that	was	built	in	the	original	Hello	Web	App	tutorial	—	and	added	more
features	and	functionality	as	the	web	app	grew	in	traffic.

Over	time,	I	added	new	fields	that	the	designers	could	fill	out	for	their	profile	(like	their
social	media	profiles,	and	new	photo	slots),	and	each	of	these	new	profile	fields	was	added
as	a	new	line	in	my	Profile	model.

That	one	model	listed	everything	for	the	profile,	and	at	one	point	(full	disclosure!),	looked
like	this:

#	pro	profiles

is_pro_profile = models.BooleanField(default=False)

twitter_url = models.CharField(max_length=15, blank=True)

facebook_url = models.CharField(max_length=80, blank=True)

banner_image = ImageField(

upload_to=get_profile_image_path('banner.jpg'),

blank=True, null=True)

avatar_image = ImageField(

upload_to=get_profile_image_path('avatar.jpg'),

blank=True, null=True)

#pro	profiles	extra	images

portfolio_image_1 = ImageField(

upload_to=get_profile_image_path('1.jpg'),

blank=True, null=True)

portfolio_image_2 = ImageField(

upload_to=get_profile_image_path('2.jpg'),

blank=True, null=True)

portfolio_image_3 = ImageField(

upload_to=get_profile_image_path('3.jpg'),

blank=True, null=True)

portfolio_image_4 = ImageField(

upload_to=get_profile_image_path('4.jpg'),

blank=True, null=True)

portfolio_image_5 = ImageField(

upload_to=get_profile_image_path('5.jpg'),

blank=True, null=True)

portfolio_image_6 = ImageField(

upload_to=get_profile_image_path('6.jpg'),

blank=True, null=True)

portfolio_image_7 = ImageField(

upload_to=get_profile_image_path('7.jpg'),

blank=True, null=True)

portfolio_image_8 = ImageField(

upload_to=get_profile_image_path('8.jpg'),

blank=True, null=True)

portfolio_image_9 = ImageField(

upload_to=get_profile_image_path('9.jpg'),

blank=True, null=True)

This	is	actual	embarrassing	code	from	my	app	in	2012.	It	worked,	yes.	But	it	wasn’t	a
good	idea,	and	I	didn’t	learn	why	for	a	long	time.	Do	you	know	why	the	above	isn’t	the
greatest	idea?

In	this	chapter,	I’m	going	to	teach	you	what	not	to	do	and	why	so	that	when	building	your
models	and	databases	you	don’t	have	problems	like	the	above	in	your	model.

Proper	schema	design:	multiple	tables	can	be	better	than	just	one
big	table

Eventually,	I	moved	from	one	giant	model	holding	everything	to	three	different	models:
one	holding	only	profile	information,	one	holding	social	media	information,	and	one
holding	images.

There	are	a	couple	different	reasons	why	having	one	big	table	is	not	the	best	idea:

If	a	new,	awesome	social	network	started,	I’d	have	to	add	another	line	to	my	model,
adding	a	new	row	to	the	database.
Same	thing	with	images — I	simply	can’t	have	a	dynamic	number	of	images.	If	I	have
fifteen	slots	allocated	for	images,	then	those	15	slots	will	exist	for	every	object	in	my
database.	If	some	objects	use	just	one	image	or	15	images,	they’ll	both	be	stored	the
same	way — 15	image	columns	per	row.	If	I	wanted	to	support	16	images,	I’d	need	to
run	a	migration	again	to	change	the	schema.	On	the	other	hand,	if	I	used	a	separate
table	to	store	images	(where	each	row	is	one	image	associated	with	a	profile),	then
my	objects	can	have	as	many	(or	as	few)	images	as	needed	without	updating	the
schema	and	running	migrations.

Plus,	there	are	quite	a	few	other	reasons	to	parcel	out	your	user	data	into	multiple	models:

Some	queries	become	a	lot	easier	to	perform,	such	as	“how	many	images	am	I
storing?”	If	you	have	one	giant	model,	you’d	need	to	go	through	every	row	and	check
how	many	of	the	15	image	columns	have	an	image	in	them	and	then	sum	those	up.
By	using	a	separate	table,	you	just	have	to	check	how	many	rows	are	in	that	table	and
then	you’re	done.
Think	of	a	hypothetical	meme-sharing	site.	We	could	have	a	model	for	our	images,	a
model	for	our	contributors’	profiles,	and	a	model	to	hold	captions	for	the	images
contributed	by	our	users.	The	model	with	captions	can	act	as	a	bridge	between	the
profile	model	and	image	models,	as	well	as	storing	extra	information	like	the	caption.
Let’s	say	we	wanted	to	track	votes	for	the	best	memes.	We’d	have	a	profile	table,	the
meme	table,	and	in	between	them	we	would	have	a	vote	table	which	is	an	association
from	the	profile	to	the	meme.	This	lets	us	query	things	like	“What	are	Tracy’s
favorite	memes?”	or	“Which	meme	has	the	most	votes?”	all	while	restricting	people
to	only	vote	once	per	meme	—	something	we	couldn’t	do	if	we	only	stored	a	vote
count	on	the	meme	and	incremented	it	each	time.

Let’s	fix	the	social	media	example	mentioned	above	by	making	a	new	model	to	hold	our
social	media	accounts.

How	to	add	a	new	model	to	your	app
We’ve	been	all	talk	and	no	coding	so	far	in	this	chapter!	Time	to	fix	that.

I’m	going	to	go	through	a	very	simple	demonstration	of	how	to	add	a	new	model	to	your
app	that	will	hold	social	media	information,	essentially	solving	the	first	problem	I	had	in
the	example	above	from	my	old	app.	(We’ll	solve	the	images	problem	in	Chapter	4,
Adding	User-Uploaded	Images.)

Open	up	your	models.py	and	add	the	below	information:
models.py

	1 class Social(models.Model):

	2 SOCIAL_TYPES = (

	3 ('twitter', 'Twitter'),

	4 ('facebook', 'Facebook'),

	5 ('pinterest', 'Pinterest'),

	6 ('instagram', 'Instagram'),

	7)

	8 network = models.CharField(

	9 max_length=255, choices=SOCIAL_TYPES)

10 username = models.CharField(max_length=255)

11 thing = models.ForeignKey(Thing,

12 related_name="social_accounts")

We’re	going	to	have	columns	for	the	network	name	as	well	as	the	username	on	those
accounts,	and	basically	give	an	“owner”	of	this	extra	model	—	tying	it	to	a	parent	Thing.

We’re	also	going	to	do	something	a	bit	new	here,	and	define	a	list	of	social	media	choices
rather	than	allowing	free	form	input.	SOCIAL_TYPES	is	a	“tuple”	of	tuples	(a	tuple	is
like	a	special	list	that	can’t	be	changed	by	the	app	while	it’s	running)	using	Python	with
our	social	media	choices	(I’m	not	listing	all,	feel	free	to	add	more).	Then	we’re	telling	the
model	that	the	acceptable	choices	for	this	field	are	in	that	list.	The	first	element	in	the
tuple	is	the	actual	value	used	in	the	model,	and	the	second	element	is	the	human-readable
version.

Since	we	updated	our	models.py,	we	need	to	run	a	migration:

$ python manage.py makemigrations

Migrations for 'collection':

0006_social.py:

- Create model Social

If	it	was	successful,	then	you	can	migrate	the	app:

Operations to perform:

Synchronize unmigrated apps: registration

Apply all migrations: admin, contenttypes, collection, auth, se

ssions

Synchronizing apps without migrations:

Creating tables...

Installing custom SQL...

Installing indexes...

Running migrations:

Applying collection.0006_social... OK

Add	to	your	admin
Since	you’ve	added	a	new	model,	now	you	need	to	add	it	to	your	Django	admin	in
admin.py	like	usual:
admin.py

	1 #	make	sure	to	import	Social	at	the	top

	2 from collection.models import Thing

	3 from	collection.models	import	Social

	4

	5 #	our	new	admin	for	the	Social	model

	6 class	SocialAdmin(admin.ModelAdmin):

	7 				model	=	Social

	8 				list_display	=	('network',	'username',)

	9

10 #	don't	forget	to	register	at	the	end

11 admin.site.register(Social,	SocialAdmin)

Cool,	now	you	can	see	your	new	model	in	the	admin:

I’m	not	a	fan	of	Django	using	the	name	“Socials”	(it	automatically	takes	your	model
name,	capitalizes	it	and	pluralizes	it	for	the	admin	view.)	It’s	easy	to	change	it,	though.
Just	add	a	Meta	class	to	your	model:
models.py

	1 class Social(models.Model):

	2 SOCIAL_TYPES = (

	3 ('twitter', 'Twitter'),

	4 ('facebook', 'Facebook'),

	5 ('pinterest', 'Pinterest'),

	6 ('instagram', 'Instagram'),

	7)

	8 network = models.CharField(max_length=255,

	9 choices=SOCIAL_TYPES)

10 username = models.CharField(max_length=255)

11 thing = models.ForeignKey(Thing,

12 related_name="social_accounts")

13

14 #	where	we're	overriding	the	admin	name

15 				class	Meta:

16 								verbose_name_plural	=	"Social	media	links"

A	list	of	all	the	Meta	options	you	can	add	to	your	model	can	be	found	here:
http://hellowebapp.com/ic/7

http://hellowebapp.com/ic/7

Refresh,	and	voila,	the	admin	is	updated:

Fun	trick!

Add	a	couple	fake	social	media	accounts	tied	to	an	object	in	your	main	model.	You	can
see	that	the	choices	are	working:

Next,	let’s	see	how	we	can	show	these	social	links	on	our	Thing	pages.

Access	the	new	view	from	your	views
Let’s	update	the	individual	object	page	on	your	app	to	list	out	the	social	media	profiles	it
has.
views.py

	1 def thing_detail(request, slug):

	2 #	grab	the	object…

	3 thing = Thing.objects.get(slug=slug)

	4

	5 #	new	line!	grab	all	the	object's	social	accounts

	6 				social_accounts	=	thing.social_accounts.all()

	7

	8 #	and	pass	to	the	template

	9 return render(request, 'things/thing_detail.html', {

10 'thing': thing,

11 								'social_accounts':	social_accounts,

12 })

We’ve	added	one	new	line	in	which	we’re	grabbing	all	the	social	media	accounts	that	are
tied	to	that	object.	Then,	of	course,	accessing	it	from	the	template	is	easy.	You	just	need	to
add	a	loop	somewhere	in	your	template:
thing_detail.html

	1 {% if social_accounts %}

	2

	3 {% for social_account in social_accounts %}

	4

	5 <a href="http://{{ social_account.network }}.com/{{ socia\

	6 l_account.username }}">

	7 {{ social_account.network|title }}

	8

	9

10 {% endfor %}

11

12 {% endif %}

If	the	list	of	objects	that	we’re	passing	has	social	media	accounts,	then	we	create	an
HTML	list,	and	then	list	out	the	networks,	linking	to	the	account.	Since	the	networks	we
set	in	the	choices	before	are	also	the	URLs	for	those	networks	anyways,	it	allows	us	to
smartly	set	the	URL	for	the	link	to	go	to.

We’ll	talk	more	about	databases	in	Chapter	13,	Database	Pitfalls,	since	there	are	more
important	schema	design	and	database	design	stuff	that	we’ve	glossed	over.	But
essentially,	now	you	know	how	and	why	for	creating	new	models	in	your	app!

Adding	Easy	Admin	Emails,	Helpers,	Sitemaps,	and
More

This	chapter	will	cover	a	lot	of	short,	fun	things	that	wouldn’t	fill	out	a	full	chapter	that	we
can	add	to	our	web	app!	We’re	going	to	quickly	go	over	an	admin	email	shortcut,	abstract
models,	model	helper	functions,	and	sitemaps.

Adding	an	admin	email	shortcut	to	your	views
On	some	occasions,	I	want	my	app	to	send	me	an	email.	For	example,	when	a	user
upgrades	their	account,	I	want	to	be	alerted	immediately	rather	than	having	to
continuously	check	my	admin	dashboard.	We’ve	covered	how	to	set	up	emails	in	the
original	Hello	Web	App	tutorial,	and	there	is	a	much	quicker	shortcut	method	we	can	use
when	sending	emails	to	our	app	admins.

Add	these	settings	to	your	settings.py:
settings.py

1 #	the	email	address	that	the	"server	emails"	will	come	from

2 SERVER_EMAIL = 'app_email@mydomain.com'

3

4 #	the	email	you	want	these	admin	emails	to	go	to	

5 #	(can	add	as	many	as	you	like)

6 ADMINS = [

7 ('your	name', 'me@mydomain.com'),

8]

If	you	add	more	emails	to	the	admins	list,	don’t	forget	to	add	the	trailing	commas.

Then,	in	our	code,	this	is	all	we	need	to	do	in	our	views	to	send	an	email	to	the	admins
listed	in	our	settings:

#	you'll	need	to	import	this

from django.core.mail import mail_admins

#	add	this	anywhere	in	your	views	to	send	a	message

mail_admins("Our	subject	line", "Our	content")

I	use	this	shortcut	all	over	my	views	to	alert	me	immediately	if	anything	happens	that
shouldn’t	happen,	or	if	I	need	immediate	notifications	of	something	good	(like	a	user
signing	up).	Handy	function!

Adding	created	and	last-modified	dates	using	an	abstract	model
In	the	original	Hello	Web	App	tutorial,	I	showed	you	how	to	create	a	basic	model,	but
missed	something	super	useful	—	created	and	modified	dates.	With	these,	you	can	easily

sort	your	database	objects	by	last	added,	first	added,	what	profiles	were	most	recently
updated	(or	not	updated	in	a	long	time)	and	more	time-based	filtering	needs.

We’re	going	to	create	an	abstract	model,	which	we	can	then	tie	to	our	main	model.	Sound
confusing?	Should	be	easy	enough	to	understand	by	looking	at	the	code:
models.py

	1 class	Timestamp(models.Model):

	2 				created	=	models.DateTimeField(auto_now_add=True)

	3 				updated	=	models.DateTimeField(auto_now=True)

	4

	5 				class	Meta:

	6 								abstract	=	True

	7

	8 #	don't	forget	to	update	your	model's	inheritance

	9 class	Thing(Timestamp):

10 name = models.CharField(max_length=255)

11 #	the	rest	of	our	model	fields…

We’ve	added	a	new	model	called	Timestamp	with	two	fields	—	created,	with	a
DateTimeField	with	auto_now_add=True	(which	means	Django	will	update	this	field
automatically	with	the	date	and	time	when	it’s	created);	and	updated,	with	a
DateTimeField	with	auto_now=True	(which	means	Django	will	automatically	update	this
field	whenever	the	model	updates).	We’ve	also	added	a	Meta	class,	setting	abstract=True
—	meaning,	this	isn’t	a	real	model,	don’t	create	a	table	for	it.

Finally,	we	updated	our	main	model	from	inheriting	directly	from	Django’s	models.Model
to	inheriting	from	Timestamp.	It’s	like	we	inserted	Timestamp	in	the	middle	of	our	model
and	Django,	adding	the	extra	Timestamp	fields	on	top	of	our	existing	fields.	If	we	add
other	models	which	also	need	those	timestamps,	we	can	just	inherit	from	Timestamp	rather
than	models.Model	for	those	as	well.	This	means	we’re	repeating	less	code,	which	is
always	a	good	thing	in	programmer-land.

Now,	if	you’re	adding	these	fields	to	an	existing	model	and	make	a	migration	(remember,
python	manage.py	makemigrations)	as	you	should,	you’ll	get	a	fun	error:

$ python manage.py makemigrations

You are trying to add a non-nullable field 'added' to thing

without a default; we can't	do	that	(the	database	needs	something

to populate existing rows).

Please select a fix:

1) Provide a one-off default now (will be set on all

existing rows)

2) Quit, and let me add a default in models.py

Select an option:

Django	says,	“Hey,	this	field	is	required,	but	it	will	be	empty	if	I	add	it	and	that’s	not
allowed.	What	should	I	do?”

Type	1	(we’ll	provide	a	one-off	default)	and	enter:
Select	an	option:	1

Please enter the default value now, as valid Python

The datetime and django.utils.timezone modules are available, so

you can do e.g. timezone.now()

We’re	going	to	use	exactly	what	Django	recommends	—	timezone.now(),	to	fill	in	those
fields.	Now,	that	will	mean	our	created	dates	won’t	actually	be	correct	for	our	existing
data	(because	the	created	date	will	be	set	to	the	current	date	and	time,	rather	than	when
that	object	was	actually	created)	but	it	will	be	correct	for	all	data	going	forward.	Type	in
timezone.now(),	run	through	the	same	process	with	the	other	field	(as	it	will	have	the
same	problem)	and	the	migration	file	should	be	created.

Please select a fix:

1) Provide a one-off default now (will be set on all existing ro

ws)

2) Quit, and let me add a default in models.py

Select	an	option:	1

Please enter the default value now, as valid Python

The datetime and django.utils.timezone modules are available, so

you can do e.g.

timezone.now()

>>>	timezone.now()

Migrations for 'collection':

0004_auto_20150825_0145.py:

- Add field added to thing

- Add field updated to thing

Yay,	now	our	objects	have	created	and	modified	dates	attached	to	them!	Not	only	that,	you
now	know	basically	how	to	fill	in	existing	rows	in	your	database	when	you	make	your
migration	file.

One	last	thing	—	these	dates	will	not	show	up	in	the	admin,	so	you	can’t	update	them
yourself	manually.	The	modified	date	will	change	whenever	data	is	saved	(whether	in	your
app	or	in	the	admin)	and	the	created	date	will	always	stay	the	same,	so	the	data	will
always	be	accurate.

Don’t	forget	to	run	python	manage.py	migrate	after	the	migration	file	is	created.

Helper	functions	on	your	model
When	we’re	querying	for	data	from	our	model,	we	know	we	can	use	the	syntax
modelname.modelfield	to	grab	the	field	from	the	model	—	for	example,	thing.name.	We
can	also	set	up	our	own	fields	that	will	run	some	logic	and	return	extra	information	as
well,	saving	us	some	calculations	and	extra	code	in	our	views.

We’re	going	to	add	a	few	example	helper	methods	to	our	main	model:
models.py

1 class Thing(models.Model):

2 name = models.CharField(max_length=255)

3 description = models.TextField()

4 slug = models.SlugField()

5 user = models.OneToOneField(User, blank=True, null=True)

6

7 #	new	helper	method

8 				def	get_absolute_url(self):

9 								return	"/things/%s/"	%	self.slug

This	isn’t	something	provided	by	Django	—	we’re	writing	it	from	scratch.	The	individual
pages	for	these	things	are	under	the	URL	/things/THING-SLUG/,	and	if	we	ever	needed	to
link	to	the	Thing’s	individual	page	(without	using	Django’s	fancy	URL	helper),	instead	of
putting	<a	href="/things/{{	thing.slug	}}/",	we	could	instead	have	<a	href="{{
thing.get_absolute_url	}}">.

(Also,	“get_absolute_url”	is	a	part	of	Django’s	API.	If	you	use	this	exact	method	name,
the	Django	admin	will	refer	to	it	to	find	the	URL	of	an	object,	and	it	can	use	this	to	create
“view	on	site”	links	to	take	you	from	an	object	in	the	admin	system	to	the	object’s	view	on
the	site.	So,	by	using	this	conventional	name,	you’ll	also	get	this	benefit.	More
information:	http://hellowebapp.com/ic/8)

There	are	all	sorts	of	helpers	you	can	write	to	return	data	from	your	model	in	a	different
fashion.	For	example,	in	my	startup,	I	have	a	lot	of	helpers	like	this:

1 class Profile(models.Model):

2 ...

3 def has_specialized_directory(self):

4 if self.directory in options.SPECIALIZED_DIR_VENDORS_LIST:

5 return True

6 return False

If	this	object’s	directory	type	is	in	a	list,	I	return	True;	otherwise	return	False.	That	means
in	my	templates	and	in	my	views,	I	can	test	if	object.has_specialized_directory	and
do	something	special	depending	on	the	case.	Very	handy	way	to	move	some	of	your	logic
and	computations	into	the	model	and	create	helpers.

Adding	sitemaps
A	sitemap	is	a	file	that	lists	out	every	page	that	is	in	your	website	—	usually	used	to
submit	to	Google	so	Google	can	easily	crawl	every	page	and	add	it	to	the	Google	search
results.	(This	can	happen	on	its	own	but	it’s	faster	if	we	first	tell	Google	what	pages	exist.)

Django	makes	it	pretty	easy	to	add	a	sitemap	file	to	your	website.	First,	we	need	to	add
'django.contrib.sitemaps'	to	our	INSTALLED_APPS:
settings.py

1 INSTALLED_APPS = (

2 ...

3 				'django.contrib.sitemaps',

4 ...

5)

Then	we	need	to	create	a	file	to	hold	our	sitemap	code	in	our	app	(the	directory	with
models.py,	which	is	named	collection	if	you’re	using	the	original	Hello	Web	App	tutorial):

$ cd collection

collection $ touch sitemap.py

Inside	our	sitemap.py,	we’re	going	to	create	sitemap	classes	which	will	basically	group
our	content.	Think	of	your	web	app	as	sections.	For	the	Hello	Web	App	original	tutorial,

http://hellowebapp.com/ic/8

we	have	our	individual	object	pages	(which	can	be	one	section)	and	our	miscellaneous
one-off	pages	(e.g.	homepage,	browse	page,	about,	content,	etc.)	as	another	section.

Here’s	how	the	sitemap	code	will	look	for	those	two	sections:
sitemap.py

	1 import datetime

	2

	3 from django.contrib.sitemaps import Sitemap

	4 from django.core.urlresolvers import reverse

	5 from collection.models import Thing

	6

	7 class ThingSitemap(Sitemap):

	8 changefreq = "weekly"

	9 priority = 0.5

10

11 def items(self):

12 return Thing.objects.all()

13

14 def lastmod(self, obj):

15 return obj.updated

16

17 class StaticSitemap(Sitemap):

18 lastmod = None

19 priority = 0.5

20 changefreq = "weekly"

21

22 def items(self):

23 return ['about', 'contact', 'browse',]

24

25 def location(self, item):

26 return reverse(item)

27

28 class HomepageSitemap(Sitemap):

29 priority = 1

30 changefreq = "daily"

31

32 def items(self):

33 return ['home',]

34

35 def lastmod(self, obj):

36 return datetime.date.today()

37

38 def location(self, item):

39 return reverse(item)

Boom,	that’s	a	lot.	We’ll	get	into	the	explanation	in	a	second,	but	right	now	let’s	just	get	it
up	in	our	browser	so	you	can	see	it	working.

Next,	we	need	to	add	the	URL	to	our	urls.py:
urls.py

	1 #	add	at	the	top

	2 from	django.contrib.sitemaps.views	import	sitemap

	3 from	collection.sitemap	import	(

	4 				ThingSitemap,

	5 				StaticSitemap,

	6 				HomepageSitemap,

	7)

	8 sitemaps	=	{

	9 				'things':	ThingSitemap,

10 				'static':	StaticSitemap,

11 				'homepage':	HomepageSitemap,

12 }

13

14 #	then	add	below	in	your	urlpatterns

15 urlpatterns = [

16 ...

17 				url(r'^sitemap\.xml$',	sitemap,	{'sitemaps':	sitemaps},

18 								name='django.contrib.sitemaps.views.sitemap'),

This	looks	a	little	different	than	our	normal	URLs.	We’re	passing	in	a	dictionary	with	the
sitemap	classes	we	wrote	into	Django’s	sitemap	code,	which	will	build	sitemaps	from	the
items	in	the	dictionary.

Head	over	to	http://localhost:8000/sitemap.xml	and	check	it	out!

Welcome	to	the	sitemap	for	your	website!	You	can	see	that	each	page	in	your	website	(if
added	to	sitemap.py)	is	listed	along	with	these	pieces	of	information:

<loc>:	The	URL	of	the	page.
<lastmod>:	The	last	time	the	page	was	modified	(so	search	engines	know	how	old
the	information	is).
<changefreq>:	How	often	this	page	changes,	which	tells	search	engines
approximately	how	often	to	come	back	and	check	for	new	information.
<priority>:	The	importance	of	the	page	on	your	website,	“1”	being	top	priority.

(Note:	Priority	is	just	our	recommendation	to	Google	and	other	search	engines;	it	isn’t
guaranteed	that	they’ll	listen	to	us!)

Now	that	we	know	this,	we	can	take	a	look	at	our	sitemap.py	and	the	sections	start	making
sense.	You	can	see	each	sitemap	class	allows	you	to	update	the	changefreq,	lastmod,	and
priority	—	either	setting	a	value	for	everything	in	that	sitemap	section,	or	using	data
from	the	database	(see	def	lastmod	on	the	ThingSitemap).

In	each	sitemap,	we	can	also	define	the	items	included.	Take	a	look	at	StaticSitemap	and
HomepageSitemap:	we	use	def	items	to	list	out	the	pages	we	want	to	include	(using	the
page’s	URL	name),	and	then	use	def	location	with	Django’s	reverse	method	which	will
magically	figure	out	the	correct	URL	for	that	page.

In	ThingSitemap,	we’re	grabbing	our	objects	in	the	database.	We	don’t	have	to	set	def
location	because	we	added	get_absolute_url	to	the	model	in	the	last	section,	so	Django

already	knows	how	to	grab	that	information	(through	more	magic).	And	for	defining	our
items,	we	can	use	a	QuerySet.	You	don’t	have	to	use	.all()	—	you	can	change	that	to
.filter()	and	grab	only	objects	you	want	shown.	For	example,	if	you	have	“active”	and
“inactive”	objects	(set	with	a	Boolean	flag	on	your	model),	you’d	probably	only	want	to
include	active	objects	in	your	sitemap.

You	might	be	wondering	why	the	homepage	has	its	own	sitemap.	It’s	just	so	we	can	set
that	one	page	with	a	priority	of	“1”,	since	it’s	the	most	important	page.	Again,	Google	and
other	search	engines	don’t	necessary	follow	this	information	but	it’s	still	good	practice.
Also,	setting	all	sitemaps	to	max	priority	doesn’t	do	much	as	priorities	are	relative	to	one
another	(so	all	max	priorities	actually	means	they’re	all	equally	important,	rather	than
some	pages	being	more	important	than	others).

Yay,	sitemaps!	If	you	don’t	have	a	Google	Webmaster	Tools	account	yet,	head	over	here
and	create	one:	http://hellowebapp.com/ic/9.	Then	you	can	submit	your	new	sitemap
directly	to	Google	so	it	can	crawl	it	faster.

For	more	information	about	sitemaps,	check	out	these	pages:	*	Sitemaps.org,	for	general
information	about	sitemaps	in	general:	http://hellowebapp.com/ic/10	*	Django’s	sitemap
documentation:	http://hellowebapp.com/ic/11

A	bit	about	class-based	views	and	Django’s	generic	views
So	far	in	Hello	Web	App,	I’ve	only	taught	what’s	known	as	“function-based	views”	—	our
views	are	basically	a	top-down	runthrough	of	everything	that’s	happening,	and	generally,
there	is	one	view	per	URL.

There	is	another	style	that	is	popular	with	Django	and	Djangonauts	called	“class-based
views.”	This	concept	is	a	little	harder	to	grok	because	it	deals	with	Python	classes	and
treating	Django	views	as	a	class	rather	than	a	function.	This	means	that	class-based	views
fit	better	with	object-oriented	programming,	and	it	also	explains	why	class-based	views
are	so	popular	with	experienced	programmers	who	already	have	an	extensive	background
coding	in	object-oriented	languages.	If	you’ve	heard	of	class	inheritance	and	mixins,	this
is	where	these	concepts	can	be	beneficial.

If	you	want	to	write	your	own	class-based	views,	check	out	this	resource	for	more
information:	http://hellowebapp.com/ic/12,	but	better,	we	can	use	the	class-based	views
that	Django	provides	us.

Django	comes	with	what’s	known	as	“generic	class-based	views”	(or	GCBVs)	that	we
could	use	in	our	code	to	vastly	cut	down	on	the	amount	of	coding	we	need	to	do.

We’ve	already	used	generic	class-based	views	in	the	original	Hello	Web	App,	I	just	didn’t
bring	attention	to	it.
urls.py

1 from django.views.generic import TemplateView, RedirectView

2

3 urlpatterns = [

4 ...

5 				url(r'^about/$',	

6 								TemplateView.as_view(template_name='about.html'),	

http://hellowebapp.com/ic/9
http://hellowebapp.com/ic/10
http://hellowebapp.com/ic/11
http://hellowebapp.com/ic/12

7 								name='about'),

8 				url(r'^things/$',	

9 								RedirectView.as_view(pattern_name='browse')),	

These	URL	allows	us	to	skip	writing	our	own	views.	For	/about/,	we’re	using
TemplateView	to	show	a	static	template.	For	/things/,	we’re	using	RedirectView	to
redirect	to	/browse/.

More	typically,	Django’s	generic	class-based	views	are	subclassed	in	your	own	views.	For
example:
views.py

1 from django.views.generic.list import ListView

2 from collection.models import Thing

3

4 class ThingListView(ListView):

5 model = Thing

In	this	example,	we’re	using	ListView — a	generic	class-based	view	that	takes	care	of
generating	a	page	with	a	list	of	all	the	objects	of	some	model.	ListView	looks	at	the	model
property	to	determine	which	model	to	list,	so	all	we	need	to	do	is	override	it	and	ListView
takes	care	of	the	rest.	We	can	refer	to	the	documentation	to	see	what	else	we	can	override:
http://hellowebapp.com/ic/13

In	a	nutshell,	these	generic	class-based	views	give	us	shortcuts	for	our	own	code.	The
downside	is	that	they	might	not	feel	as	transparent	as	function-based	views	since
functionality	might	be	stowed	away	in	layers	of	subclasses.	When	used	appropriately,
class-based	views	can	make	re-using	pieces	of	functionality	really	easy	and	convenient.
You’ll	notice	that	they’re	often	the	preferred	approach	of	advanced	developers.

This	is	a	very	short	introduction	that	glosses	over	a	lot	of	concepts	with	class-based	views.
For	more	info,	check	out	these	resources:

Django’s	Introduction	to	Class-Based	Views:	http://hellowebapp.com/ic/14
Classy	Class-Based	Views,	which	lists	out	all	attributes	and	methods	of	Django’s
generic	class-based	views:	http://hellowebapp.com/ic/15
GoDjango’s	video	on	class-based	views:	http://hellowebapp.com/ic/16
Last	but	not	least,	Kenneth	Love	wrote	this	great	blog	post	on	class-based	views	for
Hello	Web	App	readers:	http://hellowebapp.com/ic/17

http://hellowebapp.com/ic/13
http://hellowebapp.com/ic/14
http://hellowebapp.com/ic/15
http://hellowebapp.com/ic/16
http://hellowebapp.com/ic/17

Adding	User-Uploaded	Images

Most	apps	will	want	to	let	their	users	upload	images.	For	my	original	web	app,	an
invitation	designer	directory,	I	needed	to	allow	my	users	to	upload	images	for	their	profile
page.	Unfortunately,	adding	user-uploaded	images	to	your	app	isn’t	the	simplest	of	tasks.

This	chapter	will	walk	you	through	adding	an	image	field	to	your	model,	setting	up	the
form	on	your	templates	to	upload	an	image,	and	adding	a	way	to	delete	images	from	your
templates.	Your	users	will	be	able	to	add	images	to	their	account	and	showcase	them	on
their	page	on	your	website.

Adding	a	model	for	images
We’re	going	to	create	a	separate	model	to	hold	images.	We	could	just	stick	an	ImageField
on	our	main	model	(which	was	named	Thing	in	the	Hello	Web	App	main	book)	but,	in
terms	of	database	design,	it’s	much	better	to	create	separate	models	for	separate	objects.	If
you	haven’t	read	the	previous	chapter,	Adding	a	New	Model	and	Working	With	Multiple
Models,	I’d	recommend	you	do	so	now.

First	through,	we	need	to	install	the	package	Pillow,	which	is	required	by	Django’s	model
field	ImageField.	(We’ll	learn	how	to	use	some	of	Pillow’s	functionality	in	the	next
chapter!)

Make	sure	you’re	in	your	virtual	environment,	then	install	Pillow	with	pip.	This	is	one	of
the	larger	and	more	robust	libraries	so	it’s	going	to	install	a	bunch	of	additional	utilities
and	display	a	lot	of	text.	Eventually,	you	should	receive	this	as	your	output:

	1 $ pip install Pillow

	2 ...

	3 Downloading Pillow-2.9.0-cp27-none-macosx_10_6_intel.macosx_10_9_

	4 intel.macosx_10_9_x86_64.macosx_1 Downloading Pillow-2.9.0-cp27-

	5 none-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macos

	6 x_10_10_intel.macosx_10_10_x86_64.whl (2.9MB): 2.9MB downloaded

	7 Storing download in cache at /Users/limedaring/local/pipcache/h

	8 ttps%3A%2F%2Fpypi.python.org%2Fpackages%2Fcp27%2FP%2FPillow%2FPil

	9 low-2.9.0-cp27-none-macosx_10_6_intel.macosx_10_9_intel.macosx_10

10 _9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl

11 Installing collected packages: Pillow

12 Successfully installed Pillow

13 Cleaning up...

Make	sure	to	add	Pillow	to	your	requirements.txt	too	before	you	forget.

Now	we	can	use	ImageField	in	our	models.	In	your	models.py,	add	the	following:
models.py

1 #	our	helper,	add	above	the	new	model

2 def get_image_path(instance, filename):

3 return '/'.join(['thing_images', instance.thing.slug, filenam

4 e])

5

6 class Upload(models.Model):

7 thing = models.ForeignKey(Thing, related_name="uploads")

8 image = models.ImageField(upload_to=get_image_path)

The	model	Upload	has	two	fields,	the	object	we’re	linking	to	in	the	other	model,	and	the
image	itself.	Note	that	we’re	not	just	adding	the	model,	but	also	a	helper	function	to	set	up
the	path	that	the	file	will	be	uploaded	to.	That	way,	we’ll	have	a	folder	of	images	per
object,	rather	than	all	the	uploaded	files	together	in	one	folder.	Make	sure	to	update	the
ForeignKey	if	your	main	model	is	named	differently.

Tip:	Did	you	go	through	the	previous	chapter?	Feel	free	to	link	your	new	Timestamp
abstract	model	to	add	created	and	modified	model	fields	to	your	Upload	model!

Migrate	your	database
Since	you’ve	added	a	new	model,	you	need	to	migrate	your	database.

$ python manage.py makemigrations

Migrations for 'collection':

0003_image.py:

- Create model Upload

And	then	apply	the	migration:

$ python manage.py migrate

Operations to perform:

Synchronize unmigrated apps: registration

Apply all migrations: admin, contenttypes,

collection, auth, sessions

Synchronizing apps without migrations:

Creating tables...

Installing custom SQL...

Installing indexes...

Running migrations:

Applying collection.0003_upload... OK

Showing	the	image	in	the	templates
Django	won’t	“serve”	user	uploaded	media	by	default,	so	we	need	to	do	a	few	things	first
to	make	it	work.

First,	open	your	settings.py	and	add	this	code	below	your	STATIC_URL	variable	definitions,
which	tells	Django	where	to	store	the	uploaded	images:
settings.py

1 #	add	this	if	you	don't	have	it	already

2 BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file

3 __)))

4

5 #	our	new	lines

6 MEDIA_ROOT	=	os.path.join(BASE_DIR,	'media')	

7 MEDIA_URL	=	'/media/'

Next,	create	a	“media”	folder	in	the	top	level	directory	in	your	project	(same	area	as
manage.py)	that	will	hold	the	user-uploaded	media	files:

$ mkdir media

Finally,	we	need	to	add	a	bit	to	our	urls.py	file	to	tell	it	to	serve	these	user-uploaded
images:
urls.py

	1 #	add	to	the	top	of	the	file

	2 from django.conf import settings

	3

	4 #	add	to	the	bottom	of	your	file

	5 if settings.DEBUG:

	6 urlpatterns += [

	7 url(r'^media/(?P<path>.*)$', 'django.views.static.serve',

	8 {

	9 'document_root': settings.MEDIA_ROOT,

10 }),

11]

We	only	want	to	serve	static	files	like	this	for	development,	but	not	in	on	our
production/live	server.	You’ll	probably	want	to	upload	your	user-uploaded	files	to	a	static
files	hosting	solution	like	Amazon	S3.

If	your	app	is	deployed	to	Heroku,	check	out	this	resource:
http://hellowebapp.com/ic/18
Otherwise,	check	out	Django’s	documentation	on	deploying	static	files:
http://hellowebapp.com/ic/19

Finish	this	chapter	first,	though,	before	investigating	how	to	deploy	your	static	files!

If	we	load	up	our	admin	to	check	out	the	new	model,	it	won’t	show	up	—	we	haven’t
added	it	to	our	admin.py.	Let’s	do	that	now.

Adding	the	Upload	model	to	your	admin	page
Add	the	below	code	to	admin.py,	which	is	located	in	the	same	folder	as	your	models.py:
admin.py

	1 #	don't	forget	to	add	the	model	to	your	model	imports

	2 from collection.models import Thing, Upload

	3

	4 #	our	new	model	to	add	at	the	bottom

	5 class UploadAdmin(admin.ModelAdmin):

	6 list_display = ('thing',)

	7 list_display_links = ('thing',)

	8

	9 #	and	register	it

10 admin.site.register(Upload, UploadAdmin)

Save	the	file,	then	check	out	your	admin:

http://hellowebapp.com/ic/18
http://hellowebapp.com/ic/19

Awesome,	we	have	a	new	image	model!	Something	funny	happens	when	we	try	to	upload
an	image	though:

If	you	went	through	the	original	Hello	Web	App	tutorial,	you	might	see	something	like	the
above	screenshot.	It	would	be	much	better	if	that	dropdown	showed	the	“name”	on	our

Thing	model.	Thankfully	that’s	an	easy	fix	—	we	just	need	to	add	Django’s
__unicode__()	method	to	our	model:
models.py

	1 class Thing(models.Model):

	2 name = models.CharField(max_length=255)

	3 description = models.TextField()

	4 slug = models.SlugField()

	5 user = models.ForeignKey(User, blank=True,

	6 null=True, related_name="users")

	7

	8 #	the	new	code	we're	adding

	9 				def	__unicode__(self):

10 								return	self.name

Don’t	forget	to	add	two	underscores	around	“unicode.”	Once	you	save	and	refresh	the
admin,	you’ll	see	your	object	names	instead.

Go	ahead	and	upload	an	image	to	one	of	your	objects	in	your	database:

Now	that	we’ve	configured	everything	and	added	the	relevant	settings,	we	can	work	on
the	template.

Setting	up	the	template	to	display	images
In	the	original	Hello	Web	App,	we	created	a	view	called	thing_detail	which	displayed
the	individual	object	page.	Update	your	individual	object	view	so	it	grabs	all	the	images
owned	by	the	object:
views.py

	1 def thing_detail(request, slug):

	2 thing = Thing.objects.get(slug=slug)

	3 social_accounts = thing.social_accounts.all()

	4

	5 #	new:	grab	all	the	object's	images

	6 				uploads	=	thing.uploads.all()

	7

	8 #	and	pass	to	the	template

	9 return render(request, 'things/thing_detail.html', {

10 'thing': thing,

11 'social_accounts': social_accounts,

12 								'uploads':	uploads,

13 })

Let’s	head	over	to	our	object	template	(thing_detail.html	in	the	original	Hello	Web	App
tutorial),	and	add	in	a	loop	that	will	go	through	all	the	images	that	we	found	in	our

database	query	in	our	view:
thing_detail.html

1 {% block content %}

2 <h1>{{ thing.name }}</h1>

3 <p>{{ thing.description }}</p>

4

5 {% comment %}	our	new	loop	{% endcomment %}

6 				{%	for	upload	in	uploads	%}

7 				

8 				{%	endfor	%}

We’re	looping	through	every	upload	for	this	object,	and	for	each,	grabbing	the	“url”
attribute	that’s	on	the	image	field	in	the	model.	Django	sets	this	up	for	us	automatically
when	we	use	an	ImageField.

If	you	added	an	image	when	you	were	in	the	admin,	open	up	the	relevant	object	page	on
your	app	to	check	out	the	image:

Awesome,	you	now	have	non-website	static	images	showing	up	in	your	app!	Now	let’s
add	a	page	to	our	website	so	users	can	upload	files.

Uploading	files	in	the	templates
We’re	going	to	set	up	a	page	that	allows	us	to	upload	new	images	and	remove	old	ones,
linked	to	from	our	existing	edit	page.

Following	the	urls-views-template	formula,	let’s	set	up	a	new	URL	first.
urls.py

1 urlpatterns = [

2 ...

3 #	our	new	url

4 				url(r'^things/(?P<slug>[-\w]+)/edit/images/$',	

5 								views.edit_thing_uploads,	name='edit_thing_uploads'),

Next,	head	back	to	our	views	to	set	up	the	logic	for	the	new	page.	Pay	attention	to	the
comments	here:
views.py

	1 #	add	to	the	top

	2 from collection.forms import ThingUploadForm

	3 from collection.models import Upload

	4

	5 #	add	to	the	bottom

	6 @login_required

	7 def edit_thing_uploads(request, slug):

	8 #	grab	the	object…

	9 thing = Thing.objects.get(slug=slug)

10

11 #	double	checking	just	for	security

12 if thing.user != request.user:

13 raise Http404

14

15 #	set	the	form	we're	using…

16 form_class = ThingUploadForm

17

18 #	if	we're	coming	to	this	view	from	a	submitted	form,		

19 if request.method == 'POST':

20 #	grab	the	data	from	the	submitted	form,	

21 #	note	the	new	"files"	part

22 form = form_class(data=request.POST,

23 files=request.FILES, instance=thing)

24 if form.is_valid():

25

26 #	create	a	new	object	from	the	submitted	form

27 Upload.objects.create(

28 image=form.cleaned_data['image'],

29 thing=thing,

30)

31

32 return redirect('edit_thing_uploads', slug=thing.slug)

33

34 #	otherwise	just	create	the	form

35 else:

36 form = form_class(instance=thing)

37

38 #	grab	all	the	object's	images

39 uploads = thing.uploads.all()

40

41 #	and	render	the	template

42 return render(request, 'things/edit_thing_uploads.html', {

43 'thing': thing,

44 'form': form,

45 'uploads': uploads,

46 })

Instead	of	just	saving	the	form,	we’ve	created	a	new	object	from	the	form’s	uploaded
image.	Otherwise,	if	we	were	just	displaying	the	form,	we	would	display	the	already-
uploaded	images	on	the	template.	(This	is	like	what	we	did	for	the	main	page	for	this
object.)	This	makes	it	easy	to	see	what	had	already	been	uploaded.

We	need	to	create	another	form	for	this	page,	so	head	over	to	forms.py:
forms.py

1 #	make	sure	to	import	your	model	at	the	top

2 from collection.models import Upload

3

4 #	add	at	the	bottom

5 class ThingUploadForm(ModelForm):

6 class Meta:

7 model = Upload

8 fields = ('image',)

We’re	going	to	use	a	ModelForm	again,	and	the	only	field	we	need	to	display	on	the	public-
facing	form	is	the	image	field	—	we	don’t	need	to	give	users	the	ability	to	change	the
“owner”	of	the	form.

Finally,	create	a	new	template	to	hold	the	new	form.

$ cd collection/templates/things

collection/templates/things $ touch edit_thing_uploads.html

And	add	the	below	information:
edit_thing_uploads.html

	1 {% extends 'base.html' %}

	2 {% block title %}

	3 {{ thing.name }} {{ block.super }}

	4 {% endblock %}

	5

	6 {% block content %}

	7 <h1> {{ thing.name }} </h1>

	8

	9 <h2> </h2>

10 {% for upload in uploads %}

11

12 {% endfor %}

13

14 <h2> </h2>

15 <form role="form" action="" method="post" enctype="multipart/form\

16 -data">

17 {% csrf_token %}

18 {{ form.as_p }}

19 <input type="submit" value="Submit" />

20 </form>

21 {% endblock %}

Note	that	we’re	adding	enctype="multipart/form-data"	to	our	form	which	will	let	us
upload	files	(our	data	will	be	properly	encoded	to	be	read	by	the	server).

Of	course,	add	a	link	to	this	page	from	your	main	edit	page:
edit_thing.html

1

2

3

Reload	your	app	and	you	should	see	something	like	the	below,	after	logging	in	as	the	user
that	owns	the	object	with	the	image	attached.

Play	around	with	adding	new	images.

What	if	we	went	to	delete	the	images	we	uploaded?	Of	course,	we	can	do	it	in	the	admin
already,	but	let’s	get	the	functionality	built	on	the	front-end.

We’re	going	to	add	a	delete	link	below	every	image	shown	on	the	edit	uploads	page,
which’ll	delete	that	particular	upload.	Rather	than	starting	with	the	URLs,	let’s	add	the
link	first	since	we	already	have	the	template	open.
edit_thing_uploads.html

1 <h2> </h2>

2 {% for upload in uploads %}

3

4 <!--	our	new	button	-->

5 Delete

6 {% endfor %}

We’re	going	to	pass	the	ID	of	the	image	to	a	view	that	will	delete	that	image	and	then
refresh	the	page.	Don’t	refresh	your	templates	just	yet	because	Django	will	throw	an	error
because	we	haven’t	made	the	view	yet.

Back	over	to	urls.py	to	add	the	new	URL:
urls.py

1 urlpatterns = [

2 ...

3 url(r'^things/(?P<slug>[-\w]+)/edit/images/$',

4 views.edit_thing_uploads, name='edit_thing_uploads'),

5 #	the	new	url

6 				url(r'^delete/(?P<id>[-\w]+)/$',	

7 								views.delete_upload,	name='delete_upload'),

And	then	back	over	to	views.py	to	add	the	new	view:
views.py

	1 @login_required

	2 def delete_upload(request, id):

	3 #	grab	the	image

	4 upload = Upload.objects.get(id=id)

	5

	6 #	security	check

	7 if upload.thing.user != request.user:

	8 raise Http404

	9

10 #	delete	the	image

11 upload.delete()

12

13 #	refresh	the	edit	page

14 return redirect('edit_thing_uploads', slug=upload.thing.slug)

We’re	grabbing	the	Upload	from	the	image	ID,	and	after	making	sure	that	the	owner	of	the
Thing	that	the	image	is	under	is	the	logged	in	user,	we’ll	delete	the	image	and	refresh	the
page.

Test	it	out	uploading	new	images	on	the	page	and	deleting.	Unfortunately	right	now,	users
could	upload	a	15MB	image	to	our	app	and	we	won’t	be	able	to	do	any	resizing.	Next
chapter,	we’ll	cover	resizing	and	editing	the	photos	from	our	app!

Editing	and	Resizing	Images

We’re	going	to	be	use	the	library	Pillow	(installed	in	the	last	chapter!)	to	display,	edit,	and
resize	images	uploaded	to	our	app.	It’s	kind	of	like	Photoshop	where	you	can	check	and
change	image	formats	and	create	thumbnails,	but	unfortunately	without	the	lovely	visual
interface.	Instead,	we’ll	be	doing	everything	through	the	command	line!

Installation	reminder
If	you	didn’t	go	through	the	last	chapter	and	haven’t	installed	Pillow	yet,	make	sure	to	do
it	now	(and	add	Pillow	to	your	requirements.txt):

$ pip install Pillow

From	here	on	out,	we’re	going	to	refer	to	Pillow	as	PIL.	Instead	of	building	in	our	app,
we’re	going	to	pop	into	our	Django	shell	to	play	around	with	image	editing.

Testing	out	resizing,	adding	filters,	and	saving	your	images
In	your	top	level	directory	(the	one	with	manage.py)	open	up	your	shell,	which	will	let	us
interact	with	Django.	Note	that	our	indicator	for	the	command	line	changes	from	$	to	>>>;
it’s	not	a	part	of	the	command	you	enter.

$ python manage.py shell

Python 2.7.8 (default, Aug 24 2014, 21:26:19)

[GCC 4.2.1 Compatible Apple LLVM 5.1 (clang-503.0.40)] on darwin

Type "help", "copyright", "credits" or "license" for more informa

tion.

(InteractiveConsole)

>>>

We’re	going	to	use	PIL	to	“open”	an	image	right	in	our	shell,	which	will	allow	us	to
modify	the	image.	First	though,	we	need	to	load	PIL:

>>> from PIL import Image

If	nothing	happens,	it	loaded	successfully!

We	need	to	give	it	the	path	to	an	image	in	our	project.	In	the	previous	chapter,	we	covered
adding	user-uploaded	images,	which	are	stored	in	the	/media/	folder.	Take	a	look	at	the
files	you’ve	uploaded	to	your	project	and	find	an	image	you	wouldn’t	mind	making
updates	to.	Once	you’ve	found	your	image,	load	it	in	your	shell	using	PIL’s	Image:

>>> original = Image.open("media/thing_images/hello/image.jpg")

That’s	the	path	to	an	image	on	my	own	computer	—	“hello”	is	the	name	of	one	of	my
objects.

Now	that	we’ve	“loaded”	the	image,	we	can	start	using	PIL’s	functions	to	inspect	the
image:

>>> original.format

'JPEG'

>>> original.size

(640, 626)

>>> original.mode

'RGB'

Using	PIL	we	can	see	a	bunch	of	the	image’s	attributes,	like	whether	it’s	a	JPEG,	GIF,	PNG,
or	otherwise;	the	size	of	the	image;	and	whether	the	image	is	using	the	RBG	colorspace	or
the	CMYK	colorspace.

Let’s	play	around	with	transforming	the	image.	First,	we’re	going	to	load	ImageFilter,
then	we’ll	create	a	blurred	version	of	our	image	using	the	filter:

>>> from PIL import ImageFilter

>>> blurred = original.filter(ImageFilter.BLUR)

(Note:	If	you	get	an	error,	try	loading	a	JPEG	image	instead	—	some	of	Pillow’s	filters
only	work	on	images	in	RGB	mode.	For	example,	PNGs	are	usually	mode	“P”,	or
“palette.”	You	could	also	look	up	how	to	convert	a	PNG	to	RGB	mode	with	Pillow,	which
is	certainly	possible.)

If	you	check	out	the	saved	images	directory	on	your	computer,	this	new	blurred	image
won’t	show	up.	Run	this	command	though,	and	it	should	pop	up	magically:

>>> blurred.show()

Hey	look,	our	blurred	image	—	very	nice!

We	can	also	rotate	this	image	if	we	wished:

>>> blurred = blurred.rotate(45)

>>> blurred.show()

To	save	this	updated	image,	run	the	following	command	—	but	make	sure	to	give	it	the
same	path	you	had	before	so	it	saves	in	the	correct	directory,	not	the	example	path	you	see
here.	You	can	rename	the	file	here	as	well.	I’ve	named	the	new	file	blurred.jpg.

>>> blurred.save("media/thing_images/hello/blurred.jpg")

Inspect	your	project	and	find	the	new	image!

Well,	it	looks	weird	since	we	blurred	and	rotated	it,	but	you	get	the	idea	on	how	to	inspect,
update,	and	save	images	through	the	shell.

Now	we’re	going	to	write	code	to	check	the	size	of	the	images	that	our	users	upload,	and
then	resize	them	if	they’re	gigantic.	This	way,	someone	won’t	be	able	to	upload	a	40,000
pixel	width	image	and	kill	your	bandwidth!

Updating	your	model’s	save	method	to	resize	images
Django	has	the	fun	ability	to	add	extra	checks	and	logic	whenever	an	object	is	saved.
We’re	going	to	write	a	piece	of	code	that	automatically	checks	uploaded	images	to	make
sure	they’re	not	too	big,	and	resize	the	images	if	necessary.

Add	this	piece	of	code	to	the	model	holding	your	uploaded	images:
models.py

	1 #	add	to	the	top

	2 from	PIL	import	Image

	3

	4 #	our	Upload	model

	5 class Upload(Timestamp):

	6 thing = models.ForeignKey(Thing, related_name="images")

	7 image = models.ImageField(upload_to=get_image_path)

	8

	9 #	add	this	bit	in	after	our	model

10 				def	save(self,	*args,	**kwargs):

11 								#	this	is	required	when	you	override	save	functions

12 								super(Upload,	self).save(*args,	**kwargs)

13 								#	our	new	code

14 								if	self.image:

15 												image	=	Image.open(self.image)

16 												i_width,	i_height	=	image.size

17 												max_size	=	(1000,1000)

18

19 												if	i_width	>	1000:

20 																image.thumbnail(max_size,	Image.ANTIALIAS)

21 																image.save(self.image.path)

The	def	save(self,	*args,	**kwargs):	and	super(Upload,	self).save(*args,
**kwargs)	parts	are	required	when	you	override	a	model’s	save	function,	then	you	can	add
your	new	code	below	those	bits.	We	first	check	to	make	sure	an	image	exists,	then	check
the	size	of	the	image,	then	we	resize	the	image	if	it’s	too	large.

Try	out	your	app,	upload	a	few	gigantic	images,	and	check	out	the	size	after.	Magical
resizing!

There	are	a	lot	more	things	you	can	do	with	the	Pillow	plugin,	such	as	creating	thumbnails
and	avatars,	changing	image	formats,	creating	multiple	sizes	of	one	image,	and	more.

Check	out	some	of	these	resources	for	more	information	on	working	and	editing	images:

Pillow’s	documentation	and	tutorial:	http://hellowebapp.com/ic/20
sorl-thumbnail:	http://hellowebapp.com/ic/21
easy-thumbnails:	http://hellowebapp.com/ic/22
Pillow	video	tutorial:	http://hellowebapp.com/ic/23

Congrats	on	your	new	image	editing	abilities!

http://hellowebapp.com/ic/20
http://hellowebapp.com/ic/21
http://hellowebapp.com/ic/22
http://hellowebapp.com/ic/23

Setting	Up	Django	Messages	for	Alerts

One	handy	built-in	feature	by	Django	is	the	messages	framework.	Using	this	allows	you	to
set	up	success,	error,	info,	etc.	messages	within	your	views	to	display	on	your	templates.
For	example,	if	something	didn’t	work,	you	can	send	over	a	specific	error	message	to
appear	at	the	top	of	a	page	after	a	redirect.

It’s	fairly	easy	to	set	up,	as	well	—	this	will	be	a	short	(yet	sweet)	chapter.

Add	the	messages	block	to	your	base	template
We	want	our	messages	to	show	up	on	any	page	of	our	website,	which	means	you’ll	be
putting	the	template	block	into	your	base.html,	your	layout	template.	I’m	going	to	put	the
block	below	right	under	my	nav:
base.html

	1

	2 </nav>

	3 </header>

	4

	5 {%	if	messages	%}

	6 <ul	class="messages">

	7 				{%	for	message	in	messages	%}

	8 				<li{%	if	message.tags	%}	

	9 								class="{{	message.tags	}}"{%	endif	%}>{{	message	}}

10 				{%	endfor	%}

11

12 {%	endif	%}

Basically,	if	Django	has	any	messages	to	pass	along,	we’re	going	to	display	them	in	an
HTML	list.	The	messages	will	come	with	“tags”	like	“error”	and	“info”	that	will	allow
you	to	mark	up	the	message	block	with	CSS	(e.g.	make	it	red	for	errors,	blue	for	info
messages,	etc.)

Sending	over	messages	from	the	view
We’re	going	to	update	the	edit	view	for	our	object	(edit_thing,	which	we	created	in	the
original	Hello	Web	App	tutorial).	The	example	should	be	pretty	easy	to	follow	for	any
view.
views.py

	1 #	add	to	the	top	of	the	page

	2 from	django.contrib	import	messages

	3

	4 #	the	view	we're	editing

	5 @login_required

	6 def edit_thing(request, slug):

	7 #	grab	the	object…

	8 thing = Thing.objects.get(slug=slug)

	9

10 if thing.user != request.user:

11 raise Http404

12

13 #	set	the	form	we're	using…

14 form_class = ThingForm

15

16 #	if	we're	coming	to	this	view	from	a	submitted	form,		

17 if request.method == 'POST':

18 #	grab	the	data	from	the	submitted	form

19 form = form_class(data=request.POST, instance=thing)

20

21 if form.is_valid():

22 #	save	the	new	data

23 form.save()

24

25 #	our	new	message!

26 												messages.success(request,	'Thing	details	updated.')

27 return redirect('thing_detail', slug=thing.slug)

28

29 #	otherwise	just	create	the	form

30 else:

31 form = form_class(instance=thing)

32

33 #	and	render	the	template

34 return render(request, 'things/edit_thing.html', {

35 'thing': thing,

36 'form': form,

37 })

Right	above	the	redirect,	we	just	added	one	line	(not	to	mention	the	import	statement	at
the	top).	That’s	it!	Open	up	your	app,	log	in	as	the	user	of	an	object,	and	test	it	out.	You
should	get	a	message	at	the	top	of	the	page	once	the	successful	edit	goes	through.	If	you
look	at	the	source	of	the	page,	the	HTML	will	look	like	this:

1 <ul class="messages">

2 <li class="success">

3

4

5

You	can	use	CSS	to	style	the	message	however	you	like.

Other	message	types
There	are	a	bunch	of	different	kinds	of	message	formats	you	can	use.	For	example:

1 messages.debug(request, '%s	SQL	statements	were	executed.' % coun

2 t)

3 messages.info(request, 'Three	credits	remain	in	your	account.')

4 messages.success(request, 'Profile	details	updated.')

5 messages.warning(request, 'Your	account	expires	in	three	days.')

6 messages.error(request, 'Document	deleted.')

And	you	can	pass	along	a	message	whenever	something	happens	in	your	view.	I	use	this
feature	everywhere	in	my	apps	—	to	display	all	my	error,	success,	and	info	messages	for
the	user.	Extremely	handy!

For	more	about	Django	messages,	here’s	the	entire	documentation	page:
http://hellowebapp.com/ic/24

http://hellowebapp.com/ic/24

Front-End	Fun:	Adding	Gulp,	Sass,	and	Bootstrap

So	far	in	Hello	Web	App,	I’ve	explicitly	avoided	doing	anything	with	the	front-end	(the
HTML,	CSS,	and	JavaScript	parts	of	a	website)	other	than	helping	you	add	static	files	in
the	original	tutorial.	We’ve	been	focusing	on	building	an	app.

If	you’re	already	used	to	doing	front-end	development,	you	probably	know	that	we	don’t
just	use	plain	ol’	CSS	anymore.	There	are	a	whole	bunch	of	front-end	tools	like	CSS
preprocessors	(Sass,	LESS),	CSS	postprocessors	(PostCSS,	Pleeease),	build	systems
(Gulp,	Grunt),	JavaScript	frameworks	(AngularJS,	Backbone.js,	Ember.js,	React),	not	to
mention	JavaScript	runtime	environments	that	you	usually	use	with	all	of	the	above
(Node.js).

Phew.

You	might	have	heard	of	the	Bootstrap	front-end	framework,	which	provides	a	ton	of
utilities	to	websites,	like	a	responsive-design	framework	(so	your	website	can	look
smashing	on	large	monitors	and	tiny	phone	screens),	designed	widgets,	and	more.

And	if	you’re	coming	to	Django	with	front-end	experience,	you	might	have	been
wondering	this	whole	time	how	to	add	the	tools	you	already	know	and	use	into	your	app
—	like	Sass	and	Gulp	—	and	how	to	make	everything	play	nicely	with	each	other.	If	so,
this	is	the	chapter	for	you.

We’re	going	to	set	up	Sass	and	Bootstrap,	as	well	as	the	tools	Bootstrap	requires	like
Node.js	and	PostCSS,	and	in	the	process,	we’ll	install	the	Gulp	build	system.	If	you	want
to	install	any	other	tools	beyond	what	we’re	installing,	this	section	will	give	you	good
hints	on	how	to	do	that	as	well.

Quick	note	to	those	who	are	completely	new	to	front-end	development:	I	highly	encourage
you	to	work	with	basic	HTML	and	CSS	first	before	jumping	into	Sass	and	other
complicated	front-end	systems.	Sass	is	basically	advanced	CSS,	and	it	will	be	a	lot	easier
to	understand	CSS	if	you	first	work	with	it	in	its	pure	version.	You	might	want	to	skip	this
chapter	altogether	and	come	back	after	you’ve	worked	with	CSS	for	awhile.	Codecademy
has	a	great	tutorial:	http://hellowebapp.com/ic/25

More	about	the	tools	we’re	installing
Sass	(http://hellowebapp.com/ic/26)	calls	itself	a	CSS	extension	language	—	it’s	pretty
much	CSS	on	steroids.	It	adds	every	feature	you	might	want	in	CSS:	nesting,	variables,
mixins,	and	more	(all	the	things	we’re	using	in	programming!)	If	you’re	not	familiar	with
Sass	yet,	take	a	look	at	the	Sass	basics	page	linked	above.

Bootstrap	(http://hellowebapp.com/ic/27)	is	a	front-end	framework.	It	adds	a	basic,
customizable	design,	a	grid,	responsiveness	(which	allows	your	website	to	work	as
seamlessly	on	a	desktop	computer	as	it	does	on	a	mobile	phone),	lots	of	reusable	HTML
components	(like	navbars,	pagination,	and	progress	bars),	and	lots	of	other	design	and

http://hellowebapp.com/ic/25
http://hellowebapp.com/ic/26
http://hellowebapp.com/ic/27

layout	features.	Bootstrap	jump-starts	the	design	and	markup	of	any	website.	If	you	don’t
know	much	about	design,	you	can	use	the	Bootstrap	defaults	and	get	a	very	decent
(though	generic)	looking	app	—	certainly	leaps	and	bounds	better	than	you	would	get
using	straight	HTML.

If	you	have	some	background	in	design,	you	can	use	Bootstrap	as	a	framework	and	add	a
layer	of	customization	on	top	of	the	default	Bootstrap	styles.	This	way,	your	app	looks
unique	and	you	save	time	by	not	building	everything	from	scratch	(this	is	what	I	do	for	my
own	projects!)

Bootstrap	thankfully	uses	Sass,	so	the	two	tools	play	nicely	with	each	other.

Additional	front-end	tools	we’ll	be	installing
A	lot	of	the	front-end	development	tools	we	mentioned	above	are	not	built	in	Python,	but
rather	in	Ruby	or	Node.js	(which	is	JavaScript).	Unfortunately,	similar	pure-Python
projects	are	not	up	to	par	with	Node.js	at	the	moment.	The	web	front-end	community	is
largely	independent	of	any	particular	web	framework	like	Django,	so	we’ll	have	to	dive
into	some	of	the	tooling	they	settled	on.

Sass	was	originally	Ruby	project,	but	these	days	the	community	is	migrating	to	a	“port”	of
Sass,	written	in	the	C	programming	language	named	Libsass.	Libsass	is	much	faster	than
the	original	Ruby	Sass.	We’ll	get	into	installation	of	Libsass	in	a	second.

Bootstrap’s	particular	usage	of	Sass	relies	on	some	Node.js	components,	and	the	vast
majority	of	the	front-end	tools	I	mentioned	above	are	also	built	using	Node.js.	We’re
going	to	avoid	installing	Ruby	by	using	Libsass	rather	than	Sass,	but	we’re	still	going	to
need	Node.js.	I	suspect	you’ll	want	to	add	other	Node.js	components	we’re	not
referencing	here,	so	it	will	be	good	to	get	you	set	up	with	Node.js	now.

Additionally,	Bootstrap	requires	a	few	other	utilities.	The	full	stack	we’re	going	to	install
is:

1.	 Autoprefixer	(http://hellowebapp.com/ic/28),	which	reads	your	CSS	and	adds
browser-specific	prefixes	to	make	sure	it	works	on	all	browsers.	Sometimes	browsers
have	their	own	CSS	names	—	for	example,	if	in	your	CSS	you	wanted	display:
flex,	normally,	you’d	have	to	type	out	display:	-webkit-box;	display:	-
webkit-flex;	display:	-ms-flexbox;	as	well.	Autoprefixer	does	this	for	you,
using…

2.	 PostCSS	(http://hellowebapp.com/ic/29).	Autoprefixer	is	a	PostCSS	plugin	(a	tool	for
transforming	styles	using	JavaScript),	so	you’ll	need	to	install	this	first,	and	you’ll
install	it	using…,	so	you’ll	need	to	install	this	first,	and	you’ll	install	it	using…

3.	 Gulp	(http://hellowebapp.com/ic/30),	which	automates	front-end	development	tasks
such	as	preprocessing,	transpiling,	minification,	live-reloading,	and	more.	And	Gulp
needs…

4.	 Node.js,	mentioned	before.

Phew,	that	is	a	TON	of	utilities.	If	you’re	asking	yourself	“isn’t	this	rabbit-hole	a	bit
excessive?”	know	that	you’re	not	alone.	Luckily,	we	only	need	to	set	this	up	once,	and

http://hellowebapp.com/ic/28
http://hellowebapp.com/ic/29
http://hellowebapp.com/ic/30

we’ll	rarely	worry	about	it	again.	Let’s	get	started	installing	things,	then	we’ll	see	how	it
all	works	together.

Installation

Libsass
We’re	going	to	use	the	libsass-python	plugin	(http://hellowebapp.com/ic/31)	which	will
add	Sass	functionality	to	your	project.	Install	it	using	the	usual	suspect:

$ pip install libsass

...

Successfully installed libsass

Cleaning up...

Node.js
You	know	how	we	use	pip	to	install	Python	packages?	As	mentioned	before,	a	lot	of
front-end	packages	are	built	using	Node.js,	and	npm	is	the	equivalent	package	installer	for
that	language.	First,	we	need	to	install	Node.js	to	access	the	npm	package	installer,	which
will	let	us	install	Gulp	and	other	utilities.

On	a	Mac?	Have	you	installed	Homebrew?	If	you	followed	the	Hello	Web	App	original
instructions	for	installation,	you	already	have	Homebrew.	In	this	case,	to	install	Node.js,
type	brew	install	node	into	your	command	line.

Otherwise	(if	you’re	on	Mac	or	Linux	without	Homebrew,	or	on	Windows),	follow	these
instructions	to	install	Node.js:	http://hellowebapp.com/ic/32

Want	to	check	whether	everything	is	successfully	installed?	Run	these	commands:

$ node -v

v0.12.0

$ npm -v

2.12.1

You	might	get	different	version	numbers	depending	on	whether	new	versions	came	out
after	the	printing	of	this	book.	Basically,	if	it	doesn’t	give	you	an	error	message,	you’re
good!

Just	like	requirements.txt	which	lists	out	the	Python	packages	required	by	our	project,
we’re	going	to	create	a	package.json	which	lists	out	the	npm	packages	we’ve	installed.
Make	sure	you’re	in	your	top	level	project	directory	(where	manage.py	lives),	and	run	npm
init.	This	will	walk	you	through	creating	your	package	file.	You	only	really	need	to	fill
out	name	and	version	(both	of	which	should	have	smart	defaults	for	you	—	you	can	just
press	return	to	accept	the	default	values).	You’ll	see	something	like	this:

$ npm init

This utility will walk you through creating a package.json file.

It only covers the most common items, and tries to guess sensible

defaults.

See `npm	help	json` for definitive documentation on these fields

and exactly what they do.

http://hellowebapp.com/ic/31
http://hellowebapp.com/ic/32

Use `npm	install	<pkg>	--save` afterwards to install a package and

save it as a dependency in the package.json file.

Press ^C at any time to quit.

name: (hwatest3)

version: (1.0.0)

description: My app

entry point: (index.js)

test command:

git repository:

keywords:

author: Tracy Osborn

license: (ISC)

About to write to /Users/limedaring/projects/hwatest3/package.jso

n:

{

"name": "hwatest3",

"version": "1.0.0",

"description": "My	app",

"main": "index.js",

"scripts": {

"test": "echo	\"Error:	no	test	specified\"	&&	exit	1"

},

"author": "Tracy	Osborn",

"license": "ISC"

}

Is this ok? (yes)

Bootstrap
Now	that	Node.js	is	installed	and	we’ve	created	our	package.json,	let’s	grab	Bootstrap.
There	is	indeed	an	npm	plugin	for	Bootstrap	that	we	could	install,	but	then	that	sets	up	our
static	files	in	a	different	way	than	we’ve	been	doing	so	far	in	Hello	Web	App	(i.e.	if	you
used	the	original	Hello	Web	App	tutorial,	our	static	files	are	in	a	static	directory	within	our
app	folder).

We’re	literally	going	to	just	pull	the	files	from	Bootstrap	directly	and	insert	them	into	our
existing	static	directories.	Head	to	the	Bootstrap	website’s	download	page
(http://hellowebapp.com/ic/33)	and	download	the	source	files	somewhere	on	your
computer,	like	your	Desktop	folder	—	but	not	in	your	project	just	yet.

Click	on	“Download	source”	to	download	the	files	directly	from	Bootstrap:

http://hellowebapp.com/ic/33

Head	into	your	existing	static	directory	and	add	a	new	folder	to	hold	your	Sass	(SCSS)
files:

$ cd collection/static

collection/static $ mkdir scss

Then	you’ll	need	to	move	the	files	over	into	your	project:

1.	 Open	up	your	downloaded	Bootstrap	directory,	and	copy	the	files	under	scss	in	the
Bootstrap	directory	into	your	newly	created	scss	folder.	You	can	do	this	in	whatever
way	you’re	comfortable,	through	the	command	line	or	through	your	file	system
navigator	like	Finder	on	Mac	or	Explorer	on	Windows.

2.	 Once	you’re	finished	with	this,	copy	the	files	in	the	/js/src/	directory	into	your	own	js
directory.

All	other	Bootstrap	files	can	be	ignored	as	we’re	going	to	use	our	own	setup	using	Gulp,
detailed	below!

Gulp,	PostCSS,	and	Autoprefixer
Instead	of	installing	Gulp	just	in	our	project’s	virtualenv,	we’re	going	to	install	it	globally
(so	you	can	use	Gulp	for	any	project	moving	forward:

$ sudo npm install -g gulp

Because	we	used	sudo	(which	is	like	saying,	“I	am	the	admin,	do	this”),	your	computer
will	prompt	you	for	your	password	before	installing	to	ensure	that	you	are	indeed	the

admin.

Once	installed,	we	need	to	save	it	to	our	package.json	file	as	a	dependency	for	our	project:

$ npm install --save-dev gulp

If	you	open	up	your	package.json,	you’ll	see	a	new	section	named	devDependencies	with
Gulp	listed.	The	command	above	automatically	adds	to	this	list.	For	example:

	1

	2

	3

	4

	5

	6

	7 &&

	8

	9

10

11

12

13

14

Now	that	Gulp	is	installed,	we	can	install	our	Gulp	plugins	that	will	add	PostCSS,
Autoprefixer,	and	other	utilities	we	need.	I	split	this	into	two	commands	due	to	the	line
lengths	in	this	book,	but	you	could	do	this	as	one	command	if	you	like.

$ npm install --save-dev gulp-sass gulp-concat gulp-rename

$ npm install --save-dev autoprefixer gulp-postcss

Now	that	Gulp	is	installed,	we	need	to	create	the	file	that	tells	Gulp	what	to	do	—
basically,	take	our	Sass	files	and	make	browser-readable	CSS	from	them.	In	the	same	top-
level	directory	for	your	project	(where	manage.py	lives),	create	gulpfile.js — this	is	the
file	that	tells	Gulp	its	tasks,	what	those	tasks	are,	and	when	to	run	them.

$ touch gulpfile.js

I’m	going	to	give	you	a	basic	Gulpfile,	and	we’ll	walk	through	the	pieces	of	the	file
together.
gulpfile.js

	1 //	Include	gulp

	2 var gulp = require('gulp');

	3

	4 //	Include	Our	Plugins

	5 var sass = require('gulp-sass');

	6 var concat = require('gulp-concat');

	7 var rename = require('gulp-rename');

	8 var autoprefixer = require('autoprefixer');

	9 var postcss = require('gulp-postcss');

10

11 //	Compile	Our	Sass

12 gulp.task('sass', function() {

13 return gulp.src('collection/static/scss/*.scss')

14 .pipe(sass())

15 .pipe(gulp.dest('collection/static/css'));

16 });

17

18 //	Concatenate

19 gulp.task('scripts', function() {

20 return gulp.src('collection/static/js/*.js')

21 .pipe(concat('all.js'))

22 .pipe(gulp.dest('collection/static/js'));

23 });

24

25 //	PostCSS	processor

26 gulp.task('css', function () {

27 var processors = [

28 autoprefixer({browsers: ['last	1	version']}),

29];

30 return gulp.src('collection/static/css/*.css')

31 .pipe(postcss(processors))

32 .pipe(gulp.dest('collection/static/css'))

33 });

34

35 //	Watch	Files	For	Changes

36 gulp.task('watch', function() {

37 gulp.watch('collection/static/js/*.js', ['scripts']);

38 gulp.watch('collection/static/scss/*.scss', ['sass']);

39 gulp.watch('collection/static/css/*.css', ['css']);

40 });

41

42 //	Default	Task

43 gulp.task('default', ['sass', 'css', 'scripts', 'watch']);

Update	the	paths	of	your	static	files	everywhere	collection	is	mentioned	(collection
being	the	default	app	in	Hello	Web	App	land).	Change	the	app	name	and	paths	if	necessary
to	match	your	project.

Running	through	the	file,	this	is	exactly	what	we’re	doing:

First,	at	the	top,	we	tell	Gulp	which	Gulp	plugins	we’re	using.	That’s	the	require()
blocks	at	the	top.	We	then	tell	Gulp	to	use	those	packages	and	we	assign	the	“action”
to	a	variable	that	we	can	use	in	the	instructions.
Then,	we	set	up	tasks.	We	name	the	task	(that’s	the	gulp.task('sass',	part	—	we’re
naming	that	task	“sass”),	then	we	create	a	walkthrough	of	the	parts	of	that	task.	For
example,	in	the	scripts	task,	we	tell	it	to	grab	all	files	in	the	/js/	directory,	use	the
gulp-concat	plugin	to	create	one	big	JavaScript	file	named	all.js,	then	save	that	file
back	in	the	/js/	directory.
The	Gulp	task	watch	that	we	set	up	will	track	changes	made	to	files	and	run	the	tasks
we’ve	set	up	as	needed.	So	if	we	change	something	in	our	JavaScript	files,	Gulp	will
automatically	run	the	task	that	combines	it	into	our	all.js	file	for	us.	This	is	why	our
tasks	are	set	up	in	individual	parts	—	changes	to	JavaScript	files	will	trigger	one	set
of	tasks	while	changes	to	SCSS	files	will	trigger	another	set	of	tasks.
Finally,	we	tell	Gulp	to	run	these	tasks	that	we	set	up	when	we	start	Gulp.

We’re	basically	concatenating	our	JavaScript	files	into	just	one	JS	file	(saving	us	HTTP
requests	that	slow	our	site	down),	as	well	as	running	PostCSS	and	Autoprefixer	on	our
SCSS	files.

So!	At	this	point,	we’ve	installed	Sass,	Node.js,	Gulp,	a	bunch	of	Gulp	plugins,	and
moved	over	the	Bootstrap	files	so	we	can	use	them	in	our	app.	The	last	thing	we	need	to
do	is	copy	over	our	pre-existing	CSS	file	and	make	it	a	new	SCSS	file	so	we	can	start
working	with	Sass	rather	than	CSS:

collection/static/scss $ cp ../css/style.css style.scss

To	include	those	Bootstrap	files	we	added	before,	add	this	import	statement	to	the	top	of
your	style.scss	file.	This	will	import	the	bootstrap.scss	file,	which,	in	turn,	imports	the	rest
of	the	Bootstrap	files.
style.scss

1 /*	add	to	the	top	of	the	file	*/

2 @import "bootstrap";

Like	runserver,	you	need	to	run	Gulp	for	it	to	detect	changes	and	update	files.	You	just
need	to	run	this,	likely	in	another	tab	of	your	command	line,	so	you	can	run	both
runserver	and	gulp	simultaneously:

$ gulp

[14:24:24] Using gulpfile ~/projects/hellowebapp/gulpfile.js

[14:24:24] Starting 'sass'...

[14:24:24] Starting 'css'...

[14:24:24] Starting 'scripts'...

...

Now	you	can	edit	the	new	SCSS	file	to	your	heart’s	content,	and	Gulp	should	detect
changes	to	your	SCSS	files	and	compile	them	automatically	to	style.css,	which	is	already
linked	to	from	your	base	template.	Try	writing	some	SCSS	and	watch	the	output	from	the
Gulp	task	detecting	those	changes	and	writing	to	your	style.css	file	—	then	you	can	load
up	your	app	and	see	the	style	changes	applied.	The	last	thing	you	need	to	do	is	link	to	your
all.js	file	from	your	base	template.

Your	front-end	development	is	significantly	more	powerful	now!

Conclusion	and	further	exploration
There	isn’t	much	in	terms	of	screenshots	to	show	in	this	chapter	—	a	lot	of	it	is	just
installing.	Then	the	exploring	part	is	up	to	you.	If	you	jumped	into	this	chapter	already
knowing	about	Bootstrap	and	Node.js	and	Gulp,	you’re	probably	good	at	this	point.	If
you’re	still	new,	here	are	some	resources:

Bootstrap’s	documentation	is	excellent	and	covers	everything	that	the	framework	has
to	offer:	http://hellowebapp.com/ic/27
There	seem	to	be	a	billion-and-a-half	different	Node.js	and	Gulp	plugins	you	can	use
for	your	development	—	I	deliberately	tried	to	keep	this	chapter	simple,	but	if	you’d

http://hellowebapp.com/ic/27

like	to	explore	more,	check	out	npm’s	plugin	directory
(http://hellowebapp.com/ic/34)	as	well	as	Gulp’s	plugin	directory
(http://hellowebapp.com/ic/35).
In	particular,	you	can	use	gulp-livereload	combined	with	a	browser	plugin	to	refresh
your	web	page	automatically	upon	changes.	More	info	here:
http://hellowebapp.com/ic/36
New	to	Sass?	Here’s	a	good	tutorial:	http://hellowebapp.com/ic/37

You’ll	probably	want	to	add	the	node_modules	folder	to	your	.gitignore	file	—	no	need	to
track	the	plugins	in	git.	Don’t	know	what	a	.gitignore	file	is?	Check	out	this	resource:
http://hellowebapp.com/ic/38

Enjoy	your	front-end	improved	workflow	and	tools!

http://hellowebapp.com/ic/34
http://hellowebapp.com/ic/35
http://hellowebapp.com/ic/36
http://hellowebapp.com/ic/37
http://hellowebapp.com/ic/38

Reading	Source	Code	And	Setting	Up	a	Form	to	Edit
User	Email	Addresses

At	this	point	in	our	web	app	journey,	we’ve	learned	how	to	create	our	own	model,	access
it,	show	the	information	in	it	through	templates,	and	create	forms	to	update	that
information.

What	about	information	outside	our	own	model?	We’re	using	Django’s	User	model,	which
takes	care	of	holding	our	users’	email	addresses,	usernames,	and	passwords	(among	other
things).	How	do	we	update	that	information?

This	chapter	is	mainly	about	how	we	can	look	at	the	code	we’re	importing	and	using	on
Hello	Web	App	and	how	to	figure	out	how	to	change	it.	We	did	a	version	of	this	in	the
original	Hello	Web	App,	in	the	chapter	about	registration:	we	subclassed	one	of	the
methods	in	the	django-registration-redux	plugin.	To	do	this,	we	needed	to	read	the
original	code,	and	we’re	going	to	do	the	same	in	this	chapter.

Let’s	take	a	look	at	the	Django	code	on	GitHub:	http://hellowebapp.com/ic/39
/django/contrib/auth/models.py

366 class User(AbstractUser):

367 """

368 				Users	within	the	Django	authentication	system	are	represented	

369 				by	this	model.

370 				Username,	password	and	email	are	required.	Other	fields	are	

371 				optional.

372 				"""

373 class Meta(AbstractUser.Meta):

374 swappable = 'AUTH_USER_MODEL'

That’s	not	very	helpful,	but	we	can	see	that	the	User	class	is	extending	AbstractUser
(which	basically	means	it’s	an	add-on	to	this	other	model).	Let’s	take	a	look	at
AbstractUser:	http://hellowebapp.com/ic/40
/django/contrib/auth/models.py

297 class AbstractUser(AbstractBaseUser, PermissionsMixin):

298 """

299 				An	abstract	base	class	implementing	a	fully	featured	User	mod\

300 el	with

301 				admin-compliant	permissions.

302 				Username	and	password	are	required.	Other	fields	are	optional.

303 				"""

304 username = models.CharField(

305 _('username'),

306 max_length=30,

307 unique=True,

308 help_text=_('Required.	30	characters	or	fewer.	Letters,	d\

309 igits	and	@/./+/-/_	only.'),

310 validators=[

http://hellowebapp.com/ic/39
http://hellowebapp.com/ic/40

311 validators.RegexValidator(

312 r'^[\w.@+-]+$',

313 _('Enter	a	valid	username.	This	value	may	contain\

314 	only	'

315 'letters,	numbers	' 'and	@/./+/-/_	characters.')

316),

317],

318 error_messages={

319 'unique': _("A	user	with	that	username	already	exists\

320 ."),

321 },

322)

323 first_name = models.CharField(_('first	name'),

324 max_length=30, blank=True)

325 last_name = models.CharField(_('last	name'),

326 max_length=30, blank=True)

327 email = models.EmailField(_('email	address'), blank=True)

328 ...

That	looks	right	—	fields	for	username,	email,	first_name,	and	the	rest	of	the	fields	that
we’re	using	within	our	app.	I’m	only	showing	some	of	the	code	here,	but	I	highly,	highly
encourage	you	to	check	out	the	full	code.

Reading	other	people’s	code	is	important	because	it	will	help	you	realize	all	the	different
ways	something	can	be	done.	I’m	teaching	the	very	basic,	easiest	paths	within	Hello	Web
App,	but	programming	in	general	isn’t	so	simple.	There	isn’t	just	one	solution,	there	are
many.	While	trying	to	read	and	understand	all	that	code	might	sound	intimidating,	it’s	time
well-spent!

You	should	be	able	to	understand	most	of	what’s	going	on	in	the	main	Django	source,
though	I	bet	you	won’t	understand	everything.	That’s	okay	—Â	I	don’t	understand
everything,	either.	However,	being	curious	will	really	help	as	you	learn	how	to	program.	If
you’re	curious	about	why	Django’s	programmers	did	something	a	certain	way,	you	can
start	googling	or	asking	your	friends	why,	and	you’ll	often	learn	something	new.

All	right!	Let’s	get	back	to	setting	up	a	form	so	your	users	can	edit	the	email	addresses
they’ve	saved	on	your	web	app.

Setting	up	the	form
This	is	going	to	be	surprisingly	easy.	Remember	ModelForms?	This	is	all	we	need	to	do:
forms.py

1 #	add	to	the	top

2 from django.contrib.auth.models import User

3

4 #	our	new	form

5 class EditEmailForm(ModelForm):

6 class Meta:

7 model = User

8 fields = ('email',)

This	is	just	like	our	other	ModelForms,	except	now	we’re	creating	a	form	for	a	model	that
we	didn’t	define	ourselves.	We	still	need	to	import	the	model.	Note	the	location	of	the
model	in	GitHub:
https://github.com/django/django/blob/master/django/contrib/auth/models.py.	We’re
importing	User	from	django.contrib.auth.models,	and	the	URL	is
django/contrib/auth/models.	Make	sense	now?

Then	we	tell	Django	we’re	creating	a	form	based	off	of	the	User	model,	and	we	want	the
form	to	have	one	field:	email.	Feel	free	to	add	in	other	fields	here,	based	on	the	fields
listed	in	the	User	source	code.

Setting	up	the	view	and	the	template
At	this	point	you	probably	know	what	to	do,	so	I’m	going	to	run	through	this	quickly.	Add
a	new	URL	for	the	form	in	your	urls.py:
urls.py

1 urlpatterns = [

2 ...

3 				url(r'^things/(?P<slug>[-\w]+)/edit/email/$',	

4 								views.edit_email,	name='edit_email'),

Then,	we’ll	create	the	view,	which	is	very	similar	to	any	other	view	that	updates	a	model
instance.
views.py

	1 #	add	to	the	top

	2 from collection.forms import EditEmailForm

	3

	4 #	our	new	view

	5 @login_required

	6 def edit_email(request, slug):

	7 user = request.user

	8 form_class = EditEmailForm

	9

10 if request.method == 'POST':

11 form = form_class(data=request.POST, instance=user)

12 if form.is_valid():

13 form.save()

14 messages.success(request, 'Email	address	updated.')

15 return redirect('thing_detail', slug=slug)

16

17 else:

18 form = form_class(instance=user)

19

20 return render(request, 'things/edit_email.html', {

21 'form': form,

22 })

Walking	through	the	view,	we:	*	Grab	the	user	who	is	logged	in	and	set	the	form	class	to
the	new	form	we	just	made	(making	sure	to	import	at	the	top).	*	If	the	form	is	submitted,
we	save	the	submitted	info,	display	a	success	message,	and	go	back	to	the	object	that	the

user	owns.	*	Otherwise,	we	just	display	the	form	(filled	in	with	the	current	info)	and	send
that	to	the	template.
Let’s	create	that	template:

$ cd collection/templates/things

collection/templates/things $ touch edit_email.html

And	fill	it	in:
edit_email.html

	1 {% extends 'base.html' %}

	2 {% block title %} {{ block.super }}{% endblock %}

	3

	4 {% block content %}

	5 <h1> </h1>

	6 <form role="form" action="" method="post">

	7 {% csrf_token %}

	8 {{ form.as_p }}

	9 <input type="submit" value="Submit" />

10 </form>

11 {% endblock %}

Open	the	page	in	your	browser	(just	head	straight	to	the	URL	that	you	set	in	urls.py,	after
making	sure	you’re	logged	in	as	a	user	on	your	app).

Nice!	It	should	show	the	current	user’s	email	address.	(Showing	up	blank?	Make	sure	the
user	has	an	email	address	set	in	your	admin.)	You	can	update	it	and	check	to	make	sure	it
worked	in	your	Django	admin.	We	didn’t	add	a	link	to	this	page	from	anywhere	in	the	app
yet,	so	you	should	do	that	now.

Congrats!

That	was	super	easy,	and	hopefully	you	feel	a	bit	more	comfortable	looking	at	Django
code	written	by	others	and	getting	a	feel	for	how	it	works.	It	can	get	a	lot	more
complicated	than	what	we’ve	written	here	in	Hello	Web	App.	Being	curious	about	other
pieces	of	code	and	figuring	out	how	it	works	is	a	great	skill	to	have,	so	don’t	be	afraid	to
look	at	what	else	exists	and	learn	more	about	how	to	use	Django!

Adding	Payments	with	Stripe

One	of	the	biggest	milestones	in	building	an	app	is	getting	your	first	payment	from	a
customer.	Every	now	and	then	I	take	a	step	back	from	the	app	I’ve	built	and	reflect	that
strangers	on	the	internet	have	willingly	sent	thousands	of	dollars	to	me	in	the	past	five
years.	It’s	such	a	great	feeling	to	have	revenue	coming	in.

If	you	want	to	take	credit	card	payments	on	your	app,	the	best	way	is	by	integrating	the
payment	processor	Stripe	(http://hellowebapp.com/ic/41).

In	a	nutshell,	this	chapter	is	going	to	cover	building	a	credit	card	form	on	our	app	to	accept
credit	cards	and	receive	a	“token”	in	response.	The	token	is	essentially	a	temporary
identifier	for	the	credit	card	provided	by	Stripe.	We	can	then	use	the	token	to	charge	our
customers,	either	by	recurring	subscription	or	with	one-time	payments.	This	token	allows
us	to	charge	our	customers	without	actually	seeing	or	storing	their	credit	card	and	private
details	on	our	app	—	it’s	very	important	to	avoid	storing	these	details	ourselves	as	it
increases	our	liabilities	as	a	business.	Thanks	Stripe,	for	taking	care	of	that	for	us!

This	chapter	will	essentially	turn	your	app	into	a	“freemium”	business	model	—	allowing
accounts	to	sign	up	for	free,	and	giving	them	the	ability	to	“upgrade”	their	account	by
paying.	This	will	in	turn	flag	their	account	as	“upgraded,”	which	will	allow	you	to	grant
extra	features.

If	you	want	everyone	to	pay	for	an	account,	it	will	be	easy	enough	to	update	this	tutorial	to
do	so.

Entire	books	have	been	written	about	integrating	Stripe	and	payments	to	web	apps.	This
chapter	is	going	to	be	the	bare	minimum,	the	fastest	way	for	you	to	integrate	customer
payments	on	your	app.	At	the	end	of	the	chapter,	I’ll	have	a	list	of	resources	that	go	into
this	topic	in	much	more	detail	so	you	can	continue	building	out	the	payments	side	of	your
business.

Quick	note	about	HTTPS	and	securing	your	app
You	might	notice	that,	in	your	browser	URL	bar,	some	websites	come	up	as	http://	and
others	come	up	as	https://.	https://	addresses	have	an	additional	layer	of	security
between	you	and	the	server	you’re	connecting	to	—	SSL	encryption	—	meaning	that
interactions	between	you	and	the	website	are	protected	so	that	nobody	else	can	read	them
even	if	you’re	using	a	shared	WiFi	at	a	coffeeshop.

Note:	In	the	context	of	websites,	sometimes	https://	connections	are	referred	to	as
“SSL”	or	“TLS”	connections,	but	we’ll	refer	to	them	as	HTTPS	in	this	guide.

If	you’re	using	Heroku	and	don’t	have	a	custom	domain	(so	your	app	is	live	as
appname.heroku.com,	you’re	good	—	you	can	access	your	app	via	HTTPS	(so,
https://appname.heroku.com).

http://hellowebapp.com/ic/41

However,	if	you’re	using	a	custom	domain,	and	you’re	adding	payments	to	your	app,	you
need	to	have	this	extra	layer	of	security	for	your	users	—	it’s	one	of	the	costs	of	doing
business	online.	Unfortunately,	adding	that	security	is	not	easy.	I’ll	show	you	the	“proper”
way	as	well	as	the	“easy”	way.

To	properly	add	HTTPS	support	to	your	web	app,	you’ll	need	to	generate	an	SSL
certificate	for	your	site	and	install	it	on	your	web	server:

If	you’re	using	Heroku,	they	have	a	guide	here:	http://hellowebapp.com/ic/42
If	you’re	not	using	Heroku,	Google	for	your	server	provider	as	well	as	“ssl
certificate.”	You	should	be	able	to	find	a	guide	to	walk	you	through	adding	SSL	to
your	site.

As	for	the	easy	way	(which	is	good	enough	for	now),	we	can	trust	an	outside	company	to
do	this	part	of	security	for	us,	like	Cloudflare	(http://hellowebapp.com/ic/43).	Cloudflare
provides,	among	other	things,	a	free	web	performance	layer	on	top	of	your	app,	basically
caching	your	website	and	static	files	and	making	your	website	load	faster.	Cloudflare’s
“Universal	SSL”	feature	lets	you	add	HTTPS	to	your	app	without	needing	to	buy	a
certificate	or	setting	it	up	on	your	server.	This	is	technically	not	as	secure	because	we	still
have	to	trust	Cloudflare	to	provide	the	guarantees	they	claim,	but	it’s	a	very	reasonable
compromise	for	getting	started.

Setting	up	Stripe
Once	you’ve	added	HTTPS	to	your	website,	head	to	Stripe	(http://hellowebapp.com/ic/41)
and	sign	up	for	an	account.

Once	you’ve	set	up	a	username	and	password,	you’ll	get	a	lovely	Stripe	dashboard:

http://hellowebapp.com/ic/42
http://hellowebapp.com/ic/43
http://hellowebapp.com/ic/41

This	dashboard	is	one	of	the	reasons	why	they’re	the	best	in	the	industry	for	adding
payments	to	your	site.	In	one	place,	you’ll	be	able	to	see	all	your	paying	customers,	set	up
subscriptions,	refund	payments,	cancel	subscriptions,	and	more.	A	lot	of	Stripe	+	Django
tutorials	will	build	this	functionality	into	your	app	but	I	personally	find	that	the	Stripe
dashboard	has	99%	of	what	we	need	to	manage	the	paying	users	on	our	apps.

We’ll	come	back	to	the	dashboard	in	a	bit.	In	the	meantime,	let’s	install	Stripe	on	our	app
via	pip:

$ pip install stripe

...

Successfully installed stripe requests

Cleaning up...

Don’t	forget	to	add	stripe	to	your	requirements.txt.	It’s	a	good	idea	to	add	a	specific
version	number	—	check	the	version	that	was	installed	by	running	pip	freeze.

A	note	about	test	and	live	keys
Stripe	will	give	you	four	keys,	two	pairs	of	“test”	keys	to	be	used	in	your	local
development,	and	two	pairs	of	“live”	keys	to	be	used	in	production	for	when	you	deploy
your	app.	Back	in	your	Stripe	dashboard,	click	on	your	account	name	in	the	top	right,	then
click	on	“Account	Settings.”	In	your	settings,	there	should	be	a	tab	with	your	API	keys.

Each	pair	has	a	“secret	key”	and	a	“publishable	key.”	The	secret	key	must	never	be
revealed	to	anybody	except	when	speaking	to	the	Stripe	API	(it’s	a	secret	between	you	and

Stripe,	like	a	password).	The	publishable	key	we’ll	be	embedding	in	the	JavaScript	that
our	users	will	run.

It	is	very	important	to	remember	to	never	share	or	publish	your	secret	keys.	This
includes	saving	it	in	your	code	and	pushing	to	a	public	GitHub	repo.	If	you	accidentally
published	your	secret	keys,	then	immediately	go	to	the	Stripe	account	settings	and
generate	a	fresh	pair	of	keys.	Do	this	even	if	you	only	leaked	it	for	a	moment,	because
that’s	all	it	takes.	There	are	numerous	“bots”	sitting	out	there	monitoring	places	like	public
GitHub	repos	so	that	they	can	steal	secret	keys	within	milliseconds	of	being	published.

What	can	someone	do	with	your	secret	keys?	A	malicious	person	with	your	live	key	can
use	your	Stripe	account	and	make	changes,	which	is	very,	very	bad	as	we’re	dealing	with
money	and	the	accounts	of	our	customers.

The	internet	can	be	a	scary	place	sometimes,	but	we’ll	be	just	fine	if	we	practice	good
habits.

There	are	two	ways	to	make	sure	your	code	can	use	your	live	key	without	being
compromised:

1.	 You	can	add	it	to	your	settings	file	in	your	repo,	and	if	you’re	backing	up	your	app	in
the	cloud	(like	on	Bitbucket	or	GitHub),	now	is	the	time	to	make	your	repo	private.
That	way,	if	you	push	your	code	to	the	cloud	for	backup,	your	secret	keys	are	not
public.

2.	 Alternatively,	you	can	set	up	your	app	to	use	environment	variables	—	this	way,	your
keys	won’t	ever	be	saved	in	your	code.	Here’s	an	article	on	how	to	do	this:
http://hellowebapp.com/ic/44.	You’ll	also	need	to	set	up	your	server	to	use
environment	variables	as	well	—	here’s	an	article	about	how	to	do	it	in	Heroku:
http://hellowebapp.com/ic/45

It’s	simpler	to	put	everything	in	settings	files	to	start,	but	it’s	a	better	habit	to	put	things
into	environment	variables	even	though	it’s	a	bit	more	complicated	in	the	beginning.

To	keep	this	tutorial	simple,	we’re	going	to	save	our	keys	in	our	settings	file	—	again,
check	to	make	sure	you’re	not	saving	your	app	publicly	or	sharing	it	with	others.	If
you	can’t	do	that,	I	recommend	using	environment	variables.	If	you	have	any	trouble
setting	them	up,	use	the	Hello	Web	App	discussion	forum	for	help:
http://discuss.hellowebapp.com

Disclaimer	done!	Moving	on.

Add	your	test	keys	to	your	settings
Open	up	your	settings.py	and	add	your	test	keys	at	the	bottom:
settings.py

1 STRIPE_SECRET = 'YOUR	TEST	SECRET	KEY'

2 STRIPE_PUBLISHABLE = 'YOUR	TEST	PUBLISHABLE	KEY'

Replace	the	YOUR	TEST	___	KEY	with	your	specific	keys	from	Stripe,	making	sure	they’re
the	test	keys	(not	live	keys).	Don’t	forget	the	'	characters.

http://hellowebapp.com/ic/44
http://hellowebapp.com/ic/45
http://discuss.hellowebapp.com

Determining	the	payment	flow
Before	we	step	into	major	coding,	let’s	figure	out	what	we’re	building.	In	this	tutorial,
we’re	going	to	add	a	“premium”	tier	to	our	current	users.	We’ve	set	up	the	Hello	Web	App
tutorial	so	we	have	Users	and	Things,	with	a	User	“owning”	a	Thing,	linked	via
ForeignKey.	Users	have	an	edit	page	for	their	Thing,	and	there,	they	can	click	a	button	to
opt	into	a	paid	monthly	subscription.	Once	they’ve	added	their	credit	card	and	made	the
initial	payment,	their	account	will	be	marked	as	“premium.”	You’ll	be	able	to	give	extra
features	to	Things	marked	as	premium.

I’m	going	to	show	you	how	to	set	up	the	code	to	work	with	a	one-time	payment	as	well	as
a	monthly	subscription	payment.	If	that’s	not	what	you	specifically	want	(like	if	you	want
a	yearly	payment),	it	will	be	fairly	easy	to	figure	out	how	to	figure	out	how	to	do	it	once
you’ve	gone	through	this	walkthrough.

Set	up	your	templates
We’re	going	to	use	Stripe	Checkout,	a	widget	provided	by	Stripe	which	takes	care	of
displaying	and	validating	the	credit	card	for	us.	As	mentioned	before,	by	using	the	Stripe
API	and	only	ever	storing	customer	or	card	tokens,	we	can	get	away	without	ever	storing
the	credit	card	information	ourselves.	(If	you	feel	you	might	need	to	store	credit	card
information	specifically,	you’ll	need	to	find	a	different	credit	card	processing	gateway	and
read	up	on	PCI	compliance.)

You	can	read	a	bit	more	about	Stripe	Checkout	here:	http://hellowebapp.com/ic/46

It’s	super	easy	to	add	Stripe	Checkout,	which	also	saves	us	the	trouble	of	designing	the
payment	form.	We’re	going	to	add	the	“upgrade	to	premium”	button	to	our	edit_thing.html
page	that	we	set	up	in	the	original	Hello	Web	App	tutorial	—	the	edit	page	for	our
database	objects	that	is	also	only	accessible	by	the	object’s	owner.

Add	to	the	bottom	of	your	edit	object	page:
edit_thing.html

	1 <h2> </h2>

	2 <script	src="https://checkout.stripe.com/checkout.js"

	3 class="stripe-button"

	4 data-key="{{ key }}"

	5 data-name="Your	App	name"

	6 data-description="Premium	subscription	($19/month)"

	7 data-amount="1900"

	8 data-allow-remember-me="false"

	9 data-label="Upgrade	to	premium">

10 </script>

The	above	code	is	pretty	much	copy/pasted	from	the	Stripe	Checkout	documentation
(http://hellowebapp.com/ic/46).	Basically,	the	fields	we’re	using	are:

data-key:	Your	test	publishable	key.	We’ll	pass	this	in	momentarily.
data-name:	Replace	this	with	your	app	name	and	the	form	will	update.
data-description:	This	is	the	description	that	will	go	at	the	bottom	of	the	form.

http://hellowebapp.com/ic/46
http://hellowebapp.com/ic/46

data-amount:	The	amount	we’re	charging	in	cents.	Since	we’re	charging	$19,	that
means	the	amount	should	be	“1900.”
data-allow-remember-me:	Stripe	allows	users	to	“save”	their	information	among
apps.	Personally	I	find	this	annoying	(as	I	don’t	want	my	users	to	think	the
information	is	saved	by	my	app	rather	than	Stripe)	so	I’ve	set	this	to	false.
data-label:	This	will	be	your	button	text.

Refresh	your	page	and	a	fancy	button	should	have	appeared:

Click	it,	and	oooh	—	what	a	fancy	form:

Want	to	test	the	form?	When	you’re	using	a	test	API	key,	real	credit	cards	won’t	work.
You	can	use	one	of	Stripe’s	test	credit	card	numbers	(such	4242	4242	4242	4242)	and	any
other	info	for	the	rest	of	the	fields.	More	test	credit	card	numbers	can	be	found	here:
http://hellowebapp.com/ic/47

The	test	won’t	work	through	—	Stripe	will	whine	because	we	never	passed	in	our	test	key.
Head	back	to	your	view	powering	the	edit	page,	and	update	it	to	grab	the	test	key	from
your	settings.py	(if	you’re	not	using	environment	variables)	and	pass	it	into	the	template:
views.py

4 #	add	to	the	top	of	the	page	in	the	imports

5 from	django.conf	import	settings

views.py

24 #	add	to	the	edit	object	view:

25 def edit_thing(request, slug):

26 ...

27 return render(request, 'things/edit_thing.html', {

28 'thing': thing,

29 'form': form,

30 #	our	publishable	key!

31 								'key':	settings.STRIPE_PUBLISHABLE,

32 })

http://hellowebapp.com/ic/47

Now,	you	can	use	the	fake	test	credit	card	(4242	4242	4242	4242)	in	the	form	and	it
“works!”	I	wrote	that	in	quotations	because	it	doesn’t	actually	do	anything.	The	Stripe
dashboard	will	have	recorded	no	test	payments.

Something	is	happening	though	—	if	you	click	on	“Logs”	in	the	left	sidebar,	you	can	see
tokens	are	being	created.	Stripe	takes	the	customer’s	credit	card	info,	creates	a	unique
token,	then	passes	it	back	to	us.	We’ll	need	to	create	a	view	that	uses	that	token	to	create	a
charge.	That	might	sound	hard	but	it’s	pretty	darn	easy.

Let’s	wrap	our	payment	button	in	a	form,	then	we	can	create	a	view	to	take	care	of
charging	our	customers.	Don’t	forget	to	add	{%	csrf_token	%}	as	well	since	Django
requires	it	for	security	reasons	on	all	forms.
edit_thing.html

	1 <h2> </h2>

	2 <form action="{% url 'charge' %}" method="POST">

	3 {% csrf_token %}

	4 <script	src="https://checkout.stripe.com/checkout.js"

	5 class="stripe-button"

	6 data-key="{{ key }}"

	7 data-name="Your	App	name"

	8 data-description="Premium	subscription	($19/month)"

	9 data-amount="1900"

10 data-allow-remember-me="false"

11 data-label="Subscribe">

12 </script>

13 </form>

Same	Stripe	script	as	before,	now	wrapped	in	a	form	pointing	to	the	charge	view.	Let’s
create	that	now.

Create	the	URL	and	the	view
Add	your	new	charge	URL	to	urls.py:
urls.py

1 urlpatterns = [

2 ...

3 				url(r'^charge/$',	views.charge,	name='charge'),

Next,	our	logic.	We’re	going	to	start	easy	by	setting	up	a	one-time	$5	charge	just	so	you
can	see	how	it’s	done,	then	we’ll	change	it	to	match	our	template	and	change	it	to	a
recurring	monthly	subscription	of	$19/month.

First,	a	one-time	charge:
views.py

1 import stripe

2 stripe.api_key = settings.STRIPE_SECRET

views.py

	1 #	our	new	view

	2 @login_required

	3 def charge(request):

	4 #	grab	the	logged	in	user,	and	the	object	the	user	"owns"

	5 user = request.user

	6 thing = Thing.objects.get(user=user)

	7

	8 if request.method != "POST":

	9 #	we	only	want	to	handle	POST	requests	here,	go	back

10 return redirect('edit_thing', slug=thing.slug)

11

12 #	check	to	make	sure	we	have	the	proper	response	from	Stripe

13 if not 'stripeToken' in request.POST:

14 #	the	response	from	Stripe	doesn't	have	a	token,	abort

15 messages.error(request, 'Something	went	wrong!')

16 return redirect('edit_thing', slug=thing.slug)

17

18 #	if	we're	cool,	create	a	Stripe	customer

19 customer = stripe.Customer.create(

20 email=request.POST['stripeEmail'],

21 source=request.POST['stripeToken'],

22)

23

24 #	set	the	amount	to	charge,	in	cents

25 amount = 500

26

27 #	charge	the	customer!

28 charge = stripe.Charge.create(

29 customer=customer.id,

30 amount=amount,

31 currency='usd',

32 description='My	one-time	charge',

33)

34

35 messages.success(request, 'Upgraded	your	account!')

36 return redirect('edit_thing', slug=thing.slug)

This	view	isn’t	powering	a	template,	so	we’re	not	going	to	render	anything,	only	redirect
back	to	the	edit	page	with	an	appropriate	error	message.	Essentially,	the	view	is:

Grabbing	the	logged	in	user,	then	grabbing	the	object	in	the	database	that	the	user
“owns.”
Checking	to	make	sure	we’re	submitting	a	form	(if	it’s	not	a	POST	request,	then	we
just	redirect	back	to	the	edit	page).
Making	sure	we’re	getting	a	token	in	the	form	submission,	which	is	the	response
from	Stripe	after	we’ve	submitted	the	user’s	credit	card	details.
Creating	a	“customer”	in	Stripe,	using	that	token.
Setting	up	an	amount	to	charge	(in	cents,	so	“500”	is	$5.00).
Charging	the	customer,	which	is	the	object	we	got	back	from	Stripe	after	creating	the
customer.
Upon	successful	charge,	setting	a	success	message	and	redirecting	back	to	the	edit
page.

Open	up	your	template	and	try	out	the	form	again	with	your	fake	credit	card	number	(4242
4242	4242	4242)	and	any	other	data	for	the	rest	of	the	fields.

Upon	success,	you	can	open	up	your	Stripe	dashboard	and	check	out	the	“Customers”	link
in	the	left	sidebar	to	see	the	new	customer	created,	as	well	as	the	successful	$5	payment.
Poke	around	here	for	a	bit	since	it’s	all	a	test	environment	(you	can’t	break	anything	or
affect	real	money).	You	can	refund	payments	(whole	or	partial),	add	coupons	to	accounts
with	subscriptions,	delete	the	customer,	and	more,	all	through	the	dashboard.	It’s	a	bit	like
the	Django	admin	—	a	super	powerful	interface	for	your	payment	and	paying	customer
information.

If	we	just	wanted	to	set	up	one-time	payments,	we’d	be	golden,	but	we	want	to	set	up	a
monthly	subscription	plan.	Let’s	do	that	now.

Add	a	plan	to	Stripe
You	could	add	extra	code	to	do	this	using	the	Stripe	API,	but	I	find	it	much	easier	to	do
this	through	the	Stripe	dashboard.	Click	on	“Plans”	in	the	left	sidebar	and	add	a
subscription	plan.

The	“ID”	of	the	plan	is	how	we’re	going	to	reference	the	plan	from	our	code.

Update	your	view	to	subscribe	the	customer	to	a	plan
We’re	going	to	update	our	code	to	add	a	plan	(the	one	we	set	up	above)	to	our	customer
that	we’re	creating.	I’m	going	to	comment	out	the	code	to	charge	the	customer	since	we
don’t	need	it	any	more.
views.py

	1 @login_required

	2 def charge(request):

	3 #	grab	the	logged	in	user,	and	the	object	the	user	"owns"

	4 user = request.user

	5 thing = Thing.objects.get(user=user)

	6

	7 if request.method != "POST":

	8 #	we	only	want	to	handle	POST	requests	here,	go	back

	9 return redirect('edit_thing', slug=thing.slug)

10

11 #	check	to	make	sure	we	have	the	proper	response	from	Stripe

12 if not 'stripeToken' in request.POST:

13 #	the	response	from	Stripe	doesn't	have	a	token,	abort

14 messages.error(request, 'Something	went	wrong!')

15 return redirect('edit_thing', slug=thing.slug)

16

17 #	create	a	Stripe	customer	and	add	them	to	a	plan

18 customer = stripe.Customer.create(

19 email=request.POST['stripeEmail'],

20 source=request.POST['stripeToken'],

21 #	our	new	plan!

22 								plan="monthly",

23)

24

25 """	our	commented	out	code	from	before,	no	longer	needed

26 				amount	=	500

27 				charge	=	stripe.Charge.create(

28 								customer=customer.id,

29 								amount=amount,

30 								currency='usd',

31 								description='My	one-time	charge',

32)

33 				"""

34

35 messages.success(request, 'Upgraded	your	account!')

36 return redirect('edit_thing', slug=thing.slug)

Run	another	test	payment	on	your	website,	then	check	out	your	Stripe	dashboard.	You
don’t	need	to	charge	the	customer	their	first	payment.	If	you	have	a	subscription	that
charges	$19/month	and	you	create	a	customer	and	assign	them	to	that	subscription,	Stripe
will	go	ahead	and	charge	them	for	you	(and	will	continue	charging	every	month).	Super
easy!

Unfortunately,	as	written,	our	code	is	fragile.	What	happens	if	you	try	to	subscribe	the
customer	to	a	plan	that	doesn’t	exist?	It	will	give	you	an	error	message	and	throw	up	a	500
server	error	page.	Let’s	strengthen	our	code	in	case	bugs	happen.

Setting	up	error	catching
In	Python,	if	we	think	an	error	is	going	to	happen,	we	can	“catch”	the	error	to	handle	it
and	maybe	display	a	nice	error	message.	We’re	going	to	wrap	the	code	where	we	create	a
customer	in	one	of	these	blocks,	and	then	send	an	admin	email	to	alert	us	that	something
went	wrong	(using	the	same	mail_admins	method	set	up	in	Chapter	3,	Adding	Easy	Admin
Emails,	Helpers,	Sitemaps,	and	More).
views.py

1 #	add	to	the	top

2 from django.core.mail import mail_admins

views.py

	1 #	our	updated	customer	creation	code

	2 def charge(request):

	3 ...

	4 #	create	a	Stripe	customer

	5 				try:

	6 customer = stripe.Customer.create(

	7 email=request.POST['stripeEmail'],

	8 source=request.POST['stripeToken'],

	9 #	the	monthly	plan	was	changed	to	something	that	does\

10 n't	exist

11 												plan="doesnotexist",	#	change	this	back	to	"monthly"	\

12 later

13)

14 				except	stripe.StripeError	as	e:

15 								msg	=	"Stripe	payment	error:	%s"	%	e

16 								messages.error(request,	msg)

17 								mail_admins("Error	on	App",	msg)

18 								return	redirect('edit_thing',	slug=thing.slug)

Here,	we’re	telling	the	code	to	“try”	to	create	a	customer.

If	it’s	successful,	we’re	cool.
If	it	isn’t,	then	show	the	error	to	the	user	and	send	an	email	to	the	admins	with	the
error,	then	refresh	the	page.	This	way	the	app	gives	meaningful	feedback	to	the
customer,	rather	than	going	to	a	500	error	page.

Quick	side-note	about	Python	string	formatting:	When	we	write	msg	=	"Stripe	payment
error:	%s"	%	e,	the	%s	in	the	message	is	a	string	placeholder.	We	pass	in	the	exception	e
as	the	value	for	the	placeholder	by	doing	...	%s"	%	e.	You	can	also	do	multiple
placeholders	like	"%s	%s"	%	(a,	b)

We’re	doing	the	bare	minimum	here	in	terms	of	catching	errors.	We	could	catch	the	more
specific	errors	that	Stripe	is	passing	to	us	and	display	more	accurate	error	messages.	I
encourage	you	to	read	the	Stripe	API	docs	on	errors	here	to	improve	your	app:
http://hellowebapp.com/ic/48

Add	a	flag	to	your	model	to	indicate	“upgraded”	objects
At	this	point,	a	person	could	subscribe	to	the	same	payment	plan	with	us	over	and	over
many	times	since	the	button	doesn’t	disappear	from	their	edit	page.	We	really	should
mark	the	object	as	a	paying	object	or	“upgraded”	so	we	can	hide	the	credit	card	form,	not
to	mention	give	that	paying	user	extra	features.	We’re	going	to	add	a	flag	to	the	model,
which	we’ll	set	to	True	or	False	depending	on	whether	this	object	is	on	a	paying	plan,	as
well	as	saving	the	ID	of	the	customer	created	in	Stripe.

All	we	need	to	do	is	add	these	fields	to	our	object	(Thing	in	Hello	Web	App	land)	in
models.py:
models.py

1 class Thing(Timestamp):

2 ...

3 				upgraded	=	models.BooleanField(default=False)

4 				stripe_id	=	models.CharField(max_length=255,	blank=True)

Since	we’ve	changed	the	model,	we	need	to	create	a	migration	and	migrate	our	database.
Django	is	going	to	ask	you	to	populate	existing	rows	(like	we	did	in	Chapter	3,	Adding
Easy	Admin	Emails,	Sitemaps,	Updating	Forms,	and	More).	Go	ahead	and	choose	option	1
to	provide	a	default	value,	and	then	add	''	as	the	default	value:

$ python manage.py makemigrations

You are trying to add a non-nullable field 'stripe_id' to thing

without a default; we can't	do	that	(the	database	needs	something	

to populate existing rows).

http://hellowebapp.com/ic/48

Please select a fix:

1) Provide a one-off default now (will be set on all

existing rows)

2) Quit, and let me add a default in models.py

Select	an	option:	1

Please enter the default value now, as valid Python

The datetime and django.utils.timezone modules are available, so

you can do e.g.

timezone.now()

>>>	''

Migrations for 'collection':

0007_auto_20151004_0228.py:

- Add field stripe_id to thing

- Add field upgraded to thing

Then	apply	the	migration:

$ python manage.py makemigrations

Migrations for 'collection':

0007_auto_20150727_1110.py:

- Add field upgraded to thing

$ python manage.py migrate

Operations to perform:

Synchronize unmigrated apps: registration

Apply all migrations: admin, contenttypes,

collection, auth, sessions

Synchronizing apps without migrations:

Creating tables...

Installing custom SQL...

Installing indexes...

Running migrations:

Applying collection.0007_auto_20150727_1110... OK

Great,	now	all	objects	in	our	database	have	a	new	field	“upgraded”	which	is	set	to	False
by	default,	and	an	empty	field	to	hold	a	Stripe	ID.	Let’s	set	that	to	True	for	any	account
that	becomes	a	paying	subscriber.	We	just	need	to	add	this	to	our	views.py:
views.py

	1 #	create	a	Stripe	customer

	2 try:

	3 customer = stripe.Customer.create(

	4 email=request.POST['stripeEmail'],

	5 source=request.POST['stripeToken'],

	6 plan="monthly",

	7)

	8 except stripe.StripeError as e:

	9 msg = "Stripe	payment	error:	%s" % e

10 messages.error(request, msg)

11 mail_admins("Error	on	App", msg)

12 return redirect('edit_thing', slug=thing.slug)

13

14 #	set	the	"upgraded"	field	to	True	and	save	the	ID	

15 thing.upgraded	=	True

16 thing.stripe_id	=	customer.id

17 thing.save()

Head	to	your	Django	admin	and	check	out	the	object	after	“subscribing”	to	a	plan,	and
they	should	be	marked	as	upgraded.	Now	we	can	hide	the	form	on	our	template	after
successful	subscription	by	wrapping	it	in	an	if-statement:
edit_thing.html

	1 {%	if	not	thing.upgraded	%}

	2 <h2>Upgrade	to	a	premium	subscription?</h2>

	3 <form action="{% url 'charge' %}" method="POST">

	4 {% csrf_token %}

	5 <script	src="https://checkout.stripe.com/checkout.js"

	6 class="stripe-button"

	7 data-key="{{ key }}"

	8 data-name="Your	App	name"

	9 data-description="Premium	subscription	($19/month)"

10 data-amount="1900"

11 data-allow-remember-me="false"

12 data-label="Subscribe">

13 </script>

14 </form>

15 {%	else	%}

16 <p>Thanks	for	being	an	upgraded	member	of	our	app!</p>

17 {%	endif	%}

Check	it	out	in	action:

All	the	additional	ways	to	improve	the	payment	functionality	on
your	app

You’re	finished	with	the	basics!	However,	there	is	more	that	you	could	(and	probably
should)	build	into	your	app	that	we	don’t	have	room	to	fit	into	this	book,	such	as	the
following:

Send	a	receipt	upon	successful	payments	to	your	customers.
Stripe	can	actually	do	this	for	you	easily:	http://hellowebapp.com/ic/49

You	can	also	do	this	yourself	by	using	webhooks,	which	are	described	below.

Set	up	webhooks
Stripe,	through	their	API,	will	send	out	“events”	via	webhooks	to	notify	you	when	charges
fail,	charges	succeed,	and	more.	It’s	up	to	you	to	set	up	something	to	grab	those
notifications	and	I	highly	recommend	you	do	so.	Two	common	ways:

Set	up	a	URL	on	your	app	for	Stripe	to	send	those	notifications	to.	In	your	views,
you’ll	need	to	grab	the	posted	information,	parse	it,	and	do	something	with	the
information	(for	example,	if	a	charge.failed	notification	was	sent,	you	could	email
the	customer	automatically	in	your	app	and	let	them	know	that	they	need	to	update
their	credit	card	on	file).

http://hellowebapp.com/ic/49

A	bit	easier,	but	not	as	powerful:	You	can	use	Zapier	(http://hellowebapp.com/ic/50)
to	intercept	the	webhook	that	Stripe	sends	out,	and	email	you	what	the	webhook	says.
Zapier	is	free	for	a	certain	number	of	events	per	month	(the	number	of	times	it	has	to
do	something)	—	this	is	a	good	alternative	until	you	have	time	to	build	in	the
automatic	webhook	handling	mentioned	above.

Check	out	Stripe’s	documentation	here	on	webhooks:	http://hellowebapp.com/ic/51

Add	a	form	for	the	customer	to	update	their	credit	card
Often,	charges	will	start	failing	if	a	customer	changes	or	cancels	their	credit	card.	You’ll
probably	want	a	page	on	your	app	for	the	customer	to	submit	a	new	credit	card,	which	will
replace	the	old	one	that’s	on	their	account	in	Stripe.	You	can	use	the	same	Stripe	Checkout
form	(updating	the	headline	and	info	fields),	and	in	your	views,	use	Stripe	to	retrieve	the
customer	using	their	ID	you	saved	in	the	model	(http://hellowebapp.com/ic/52)	and	then
update	their	information	(http://hellowebapp.com/ic/53).

A	cancel/unsubscribe	flow
Add	a	button	for	your	customers	to	press	when	they	want	to	cancel	their	account,	which
will	cancel	the	account	on	Stripe’s	side,	toggle	that	flag	on	their	account	on	your	side,	and
clear	the	stripe_id	field	on	the	object.	Some	hints	on	how	to	do	this	on	Stripe	can	be
found	here:	http://hellowebapp.com/ic/54

Additional	resources	and	information
Phew,	this	was	our	longest	chapter	yet	in	the	history	of	Hello	Web	App,	and	we	didn’t
even	cover	everything.	Payments	are	complex,	but	it’s	incredibly	rewarding	when	you	can
create	a	web	app	and	people	start	paying	you.

Some	additional	resources	to	check	out	and	continue	learning:

Stripe’s	examples	page,	with	links	to	a	lot	of	tutorials:	http://hellowebapp.com/ic/55
dj-stripe,	a	very	comprehensive	and	powerful	plugin	for	Django	for	Stripe
integration:	http://hellowebapp.com/ic/56
GoDjango’s	video	tutorial	on	Stripe.js:	http://hellowebapp.com/ic/57

Congrats,	you’ve	added	payments	to	your	app!
As	always,	make	sure	you’ve	committed	your	work.	(And	again,	never	push	your	private
keys	to	a	public	GitHub	or	similar	cloud	repository!	Remember	my	notes	about
environment	variables	and	whatnot	from	the	beginning	of	the	chapter.)

http://hellowebapp.com/ic/50
http://hellowebapp.com/ic/51
http://hellowebapp.com/ic/52
http://hellowebapp.com/ic/53
http://hellowebapp.com/ic/54
http://hellowebapp.com/ic/55
http://hellowebapp.com/ic/56
http://hellowebapp.com/ic/57

Adding	an	API

Want	your	website	information	to	be	available	to	outside	sources?	An	API	is	what	you
need!	One	of	the	reasons	why	Twitter	got	so	popular	was	their	open	API	when	they	first
launched,	which	allowed	outside	developers	to	take	their	data	and	build	new	platforms
upon	it.	For	example,	the	original	iPhone	Twitter	app	was	built	by	an	outside	developer.
(Sadly	they	don’t	have	an	open	API	any	more.

Thankfully,	Django	(and	open-source	Django	projects)	make	it	easy	for	you	to	add	an	API
to	your	app.	This	chapter	will	walk	you	through	adding	a	very	basic	API	that	will	allow
outside	sources	to	access	your	data,	and	at	the	end	I’ll	point	you	in	the	direction	of
resources	to	help	you	continue	to	build	out	your	API	(e.g.	if	you	want	to	allow	outside
sources	to	modify	rather	than	just	view	data).

If	you’re	not	interested	in	building	an	API	for	your	website,	what	we	do	here	is	easily
removed	so	it	might	be	worth	running	through	this	tutorial	for	the	sake	of	learning.

Let’s	get	started!

The	essence	of	an	API
I’ll	get	into	the	beefy	Django	frameworks	for	building	an	API	in	a	second,	but	first,	I	want
to	show	you	how	easy	it	is	to	create	an	“API.”

Essentially,	an	API	endpoint	(the	URL	that	other	services	can	ping	to	get	data)	simply
returns	data	in	a	JSON	or	XML	format.

All	you	need	to	do	to	provide	data	via	JSON	is	something	like	this	in	your	views:
views.py

1 from django.http import JsonResponse

2

3 def dataview(request):

4 data = {'thing': 'I	am	a	hard-coded	thing.'}

5 return JsonResponse(data)

Want	to	provide	data	from	your	database?	You’ll	need	to	serialize	it	first	(basically,	we’re
translating	the	data	into	JSON	format):
views.py

1 from django.core import serializers

2 from django.http import JsonResponse

3

4 def dataview(request, id):

5 thing = Thing.objects.get(pk=id)

6 data = serializers.serialize('json', [thing])

7 return JsonResponse(data, safe=False)

You	just	need	to	point	people	to	these	URLs	to	have	the	data	returned	in	a	format	where
other	services	can	read	and	use	the	JSON.	This	is	the	essence	of	an	API,	so	if	all	you	need
to	do	is	have	a	page	with	your	objects	in	JSON	format	(and	no	need	for	extra	API	utilities
like	editing,	creating,	and	deleting	objects),	then	you	might	want	to	avoid	a	framework	and
just	build	it	from	scratch.

You’ll	notice	that	this	is	starting	to	look	very	similar	to	our	normal	views,	except	we	return
JSON	instead	of	a	regular	HTML	template.	We	can	pass	in	arguments	as	request
parameters,	like	what	object	we	want	to	query	or	how	many	results	to	limit	to.	We	can
even	check	permissions	the	same	way	as	our	normal	views,	to	make	sure	our	user	is
signed	in	and	should	have	access	to	these	objects.

A	simple	API	is	great	for	our	own	website	to	consume,	but	if	we	want	outside	people	to
access	our	API,	it’s	going	to	take	a	bit	more	work	to	build	ourselves.	We’ll	need	to	handle
API	keys,	error	handling,	throttling,	or	maybe	most	dreadful	of	all — creating	similar
handling	logic	for	many	kinds	of	similar	objects.	What	if	we’re	fetching	a	User?	Fetching
a	Thing?	Fetching	a	Potato?	same	idea	as	far	as	our	API	is	concerned.

Luckily,	there	are	frameworks	that	help	us	skip	building	these	kinds	of	common
operations	by	wrapping	our	models	with	“resources”	that	the	API	responds	to.	You’ll	see
what	I	mean	in	a	second.

Installing	Django	REST	Framework
For	a	full-fledged	API	that	allows	for	creating,	editing,	and	deleting	objects,	we’re	going
to	use	an	excellent	Django	plugin	called	Django	REST	Framework
(http://hellowebapp.com/ic/58)	to	add	API	functionality	to	our	web	app.

FYI,	an	acronym	that	is	used	here	is	CRUD,	which	stands	for	Create,	Read,	Update,	and
Delete	—	and	these	actions	correspond	with	the	HTTP	verbs:	GET	(read),	POST	(create),
PUT	(update),	and	DELETE	(delete).	As	you	continue	your	journey	learning	about	APIs,
this	is	an	important	point	to	know!

We’re	going	to	install	Django	REST	Framework	(as	usual)	via	pip:

$ pip install djangorestframework

Downloading/unpacking djangorestframework

Downloading djangorestframework-3.2.4-py2.py3-none-any.whl (542

kB): 542kB downloaded

Storing download in cache at /Users/limedaring/local/pipcache/h

ttps%3A%2F%2Fpypi.python.org%2Fpackages%2Fpy2.py3%2Fd%2Fdjangores

tframework%2Fdjangorestframework-3.2.4-py2.py3-none-any.whl

Installing collected packages: djangorestframework

Successfully installed djangorestframework

Cleaning up...

Once	that	finishes	installing,	we	need	to	add	it	to	our	INSTALLED_APPS	in	settings.py:
settings.py

1 INSTALLED_APPS	=	(

2 				...

3 				'rest_framework',

4)

http://hellowebapp.com/ic/58

Don’t	forget	to	add	rest_framework	to	your	requirements.txt.

We	also	need	to	add	our	API	permissions	to	our	settings.	We	have	the	option	to	set	our
API	to	be	accessed	by	anyone,	by	only	admins,	by	only	those	with	usernames/passwords,
and	more.	More	info:	http://hellowebapp.com/ic/59
settings.py

	1 REST_FRAMEWORK	=	{

	2 				#	Use	Django's	standard	`django.contrib.auth`	permissions,

	3 				#	or	allow	read-only	access	for	unauthenticated	users.

	4 				'DEFAULT_PERMISSION_CLASSES':	[

	5 								#	we're	going	to	use	this	because	we're	just	showing	data

	6 								'rest_framework.permissions.AllowAny',

	7 								#	BUT	use	this	one	or	another	restricted	permission	if	you

	8 								#	update	your	API	to	allow	update	and	deleting

	9 								#	'rest_framework.permissions.IsAuthenticated',

10],

11 }

Setting	up	a	very	simple	API
We’re	going	to	create	a	very	simple	API	that	will	just	show	off	the	objects	in	your
database.	By	using	Django	REST	Framework,	you’ll	have	the	ability	to	expand	your	API
easily	if	needed.

Let’s	add	a	couple	basic	URLs:
urls.py

1 urlpatterns = [

2 ...

3 				url(r'^api/things/$',	views.api_thing_list,	

4 								name="api_thing_list"),

5 				url(r'^api/things/(?P<id>[0-9]+)/$',	views.api_thing_detail,	

6 								name="api_thing_detail"),

The	first	pattern	we’re	going	to	set	up	will	return	all	the	objects	in	our	database,	and	the
second	pattern	will	just	return	the	details	of	one	object	(using	its	ID).

Next,	we’re	going	to	set	up	our	serializers	file,	which	(as	mentioned	before),	changes	the
data	into	a	format	that	can	be	read	by	APIs.	We’re	going	to	use	the	default	JSON	format.

Add	a	serializers.py	file	to	your	app:

$ cd collection

collection $ touch serializers.py

In	this	file,	we’ll	add	the	following:
serializers.py

1 from rest_framework import serializers

2 from collection.models import Thing

3

4 class ThingSerializer(serializers.HyperlinkedModelSerializer):

5 class Meta:

http://hellowebapp.com/ic/59

6 model = Thing

7 fields = ('name', 'description', 'slug',)

This	looks	pretty	close	to	how	a	ModelFormlooks!	Same	idea	—	tie	in	the	correct	model
and	define	which	fields	can	be	accessed.

The	model	and	fields	are	taken	from	the	model	we	created	in	the	original	Hello	Web	App,
so	update	these	to	match	your	own	model	if	needed.

Last,	we	need	to	create	the	views	we	need.
views.py

	1 #	add	to	the	top

	2 from rest_framework import status

	3 from rest_framework.decorators import api_view

	4 from rest_framework.response import Response

	5

	6

	7 #	add	your	new	view

	8 @api_view(['GET'])

	9 def api_thing_list(request):

10 """

11 				List	all	things

12 				"""

13 if request.method == 'GET':

14 things = Thing.objects.all()

15 serializer = ThingSerializer(things, many=True)

16 return Response(serializer.data)

17

18 @api_view(['GET'])

19 def api_thing_detail(request, id):

20 """

21 				Get	a	specific	thing

22 				"""

23 try:

24 thing = Thing.objects.get(id=id)

25 except Thing.DoesNotExist:

26 return Response(status=status.HTTP_404_NOT_FOUND)

27

28 if request.method == 'GET':

29 serializer = ThingSerializer(thing)

30 return Response(serializer.data)

Here	are	both	our	views,	one	for	displaying	all	objects,	and	one	for	displaying	just	one
object.	We’re	using	a	few	of	Django	REST	Framework’s	utilities	like	a	decorator	which
allows	us	to	specify	allowed	HTTP	methods	for	security	(so	we	can	only	allow	GET,
meaning	rogue	outside	users	can’t	try	to	DELETE	our	data).

In	both	views,	we’re	grabbing	the	data	that	we	want,	passing	it	through	the	serializer	that
we	set	up	to	translate	it	to	JSON,	then	returning	the	response.

Want	to	see	your	API	in	action?	Head	to	http://localhost:8000/api/things/	(or	however	you
named	the	URL)	in	your	browser:

Neat,	Django	REST	Framework	made	a	nice	looking	page	for	us	with	our	data!	This	will
help	the	future	users	of	our	API	use	and	navigate	our	API	and	documentation.

To	interact	with	the	API	like	another	server	would,	let’s	play	with	using	cURL	in	our
command	line	(cURL	is	just	a	command	line	tool	for	accessing	URLs).

$ curl http://localhost:8000/api/things/

[{"name":"Hello","description":"A	new	thing","slug":"hello"},{"na\

me":"Another	thing","description":"And	now	the	desc	is	different.\

","slug":"another-thing"},{"name":"Our	lovely	new	thing!","descri\

ption":"And	this	one	too.","slug":"our-lovely-new-thing"},{"name"

:"spankinnew","description":"spankinnew","slug":"spankinnew"}]

All	of	our	data	is	returned	in	the	JSON	format!	You	can	test	out	your	other	view	too:

$ curl http://localhost:8000/api/things/1/

{"name":"Hello","description":"A	new	thing","slug":"hello"}

Just	the	tip	of	the	iceberg
What	we	built	using	Django	REST	Framework	is	essentially	what	we	built	just	by	writing
our	own	code	to	return	JSON	at	the	beginning	of	this	chapter.	The	advantage	of	Django
REST	Framework	will	come	when	you	start	building	in	more	complicated	utilities	for
your	API,	like	allowing	outside	users	to	create,	update,	and	delete	objects.

To	learn	more	about	APIs	and	how	to	grow	yours,	check	out	these	resources:

Django’s	documentation	on	serialization:	http://hellowebapp.com/ic/60
Django’s	documentation	on	JsonResponse	objects:	http://hellowebapp.com/ic/61
Django	REST	Framework:	http://hellowebapp.com/ic/58
Django	REST	Framework’s	Quickstart	Guide:	http://hellowebapp.com/ic/62
GoDjango’s	post	on	working	with	JSON	and	Django:	http://hellowebapp.com/ic/63
GoDjango’s	video	tutorial	on	starting	an	API	using	Django	REST	Framework:
http://hellowebapp.com/ic/64

Start	extending	your	API	however	you	need	to.	As	always,	if	you	have	any	questions,
check	out	our	discussion	forum	at	http://discuss.hellowebapp.com

http://hellowebapp.com/ic/60
http://hellowebapp.com/ic/61
http://hellowebapp.com/ic/59
http://hellowebapp.com/ic/62
http://hellowebapp.com/ic/63
http://hellowebapp.com/ic/64
http://discuss.hellowebapp.com

Working	with	Sessions

So	far	we’ve	learned	how	to	build	the	front-end	of	our	app	and	tie	in	models,	then	use	our
views	to	grab	information	and	send	it	to	our	templates	to	display	to	our	users.

Sometimes,	though,	we	need	to	set	information	and	carry	it	between	multiple	pages	—
information	that	isn’t	stored	in	the	database.	For	example,	say	you	have	a	registration	form
that	lets	someone	choose	between	a	paid	or	a	free	account.	Obviously,	both	sets	of	users
should	see	a	registration	form.	However,	the	customers	who	indicated	they	want	to	pay
should	also	get	a	payment	form.

How	do	you	“save”	this	information	across	views?	One	option	is	to	stick	it	in	the	database
by	adding	a	True/False	field	to	their	User	model.	That	works,	technically,	but	it	means
we’ll	need	to	access	the	database	and	we	really	should	avoid	doing	that	as	much	as
possible.	There’s	a	much,	much	better	way:	save	the	temporary	data	to	a	session.

What	are	sessions?
Sessions	allow	you	to	save	data	to	the	server	on	a	per-user	basis.	This	isn’t	long	term
(sessions	can	expire),	which	is	why	we	don’t	use	it	for	any	important	data	(which	should
go	in	the	database).	This	works	for	both	logged-in	users	as	well	as	non-logged-in
(anonymous)	users.	Once	I	figured	out	how	to	use	sessions,	I	found	many	ways	to	use	it
for	my	startup	to	save	temporary	data	—	they’re	so	useful.

Sessions	are	enabled	by	default	in	Django	(thanks	Django!).

Saving,	accessing,	and	removing	session	data	in	the	view
Feel	free	to	use	any	view	here	to	practice	saving	and	accessing	session	data.	I’m	going	to
use	our	index	view,	since	it’s	simple.
views.py

1 def index(request):

2 things = Thing.objects.all()

3 return render(request, 'index.html', {

4 'things': things,

5 })

Saving	and	accessing	data	from	the	view
We’re	going	to	save	an	arbitrary	number,	then	access	it:
views.py

	1 def index(request):

	2 things = Thing.objects.all()

	3

	4 				#	set	the	session

	5 				request.session["number"]	=	3

	6

	7 				#	grabbing	the	session

	8 				number	=	request.session["number"]

	9

10 				#	confirming	we	grabbed	it

11 				print	number

12

13 return render(request, 'index.html', {

14 'things': things,

15 })

Refresh	the	homepage	in	your	browser	and	take	a	look	at	your	server	output	in	your
command	line:

Starting development server at http://127.0.0.1:8000/

Quit the server with CONTROL-C.

3

[22/Aug/2015 16:53:42] "GET	/	HTTP/1.1" 200 1462

[22/Aug/2015 16:53:43] "GET	/static/css/style.css	HTTP/1.1" 200 40

Hey,	hey,	there’s	that	3	we	set.	Of	course,	remember	that	with	Python,	numbers	don’t	have
quotes	added	but	strings	do,	so	if	you	update	it	to	a	string,	you	need	the	""	surrounding	it.
views.py

	1 def index(request):

	2 things = Thing.objects.all()

	3

	4 				#	set	the	session	(this	time	we	have	quotes)

	5 				request.session["thing"]	=	"This	thing"

	6

	7 				#	grabbing	the	session

	8 				thing	=	request.session["thing"]

	9

10 				#	confirming	we	grabbed	it

11 				print	thing

12

13 return render(request, 'index.html', {

14 'things': things,

15 })

Then	check	out	your	runserver	output:

Starting development server at http://127.0.0.1:8000/

Quit the server with CONTROL-C.

This	thing

[22/Aug/2015 16:55:57] "GET	/	HTTP/1.1" 200 1462

Yay!

You	don’t	need	to	access	the	session	and	grab	the	data	that	it	holds	from	the	same	view	—
you	can	grab	from	any	view	down	the	line	after	the	initial	data	gets	set.

Grabbing	session	data	that	might	not	exist	yet

If	you	update	the	above	code	to	grab	a	session	that	doesn’t	exist	(like	changing	it	to	thing
=	request.session["nope"],	Django	will	throw	a	KeyError	and	whine	that	it	doesn’t
exist.

You	can	update	that	piece	of	code	to	thing	=	request.session.get("red")	(note	we
added	a	.get	and	changed	the	square	brackets	to	parens),	which,	instead	of	throwing	an
error	if	the	session	doesn’t	exist,	will	instead	return	None	(so	then	thing	will	be	set	to	None
and	essentially	not	exist.)

You	can	also	test	whether	the	data	matches	a	certain	value.	if	thing	=
request.session.get("red",	True)	is	an	if-statement	checking	that	the	session	variable
red	is	set	to	the	boolean	True.

Accessing	the	session	data	in	the	template
Unfortunately,	Django	has	everything	set	up	for	you	to	access	session	data	in	the	views
but	not	in	the	template	by	default.	Head	over	to	your	settings.py	and	add	these	lines:
settings.py

1 import django.conf.global_settings as D_SETTINGS

2

3 TEMPLATE_CONTEXT_PROCESSORS = D_SETTINGS.TEMPLATE_CONTEXT_PROCESS

4 ORS + (

5 'django.core.context_processors.request',

6)

We’re	going	to	import	Django’s	default	settings,	and	basically	“rename”	it	as	D_SETTINGS.
Then,	we’re	going	to	find	the	TEMPLATE_CONTEXT_PROCESSORS	variable,	and	add	(note	the
plus	sign,	rather	than	the	equals	sign)	django.core.context_processors.request	to	the
list.	This	means	we	don’t	have	to	redefine	the	entire	default
TEMPLATE_CONTEXT_PROCESSORS	block,	we’ll	just	make	an	addition	to	it.

With	that	behind	us,	we	can	see	our	session	data	in	the	template!	You	can	access	the	data
using	this	piece	of	Django	template	code:	{{	request.session.SESSION	}}.	In	the
example	we	used	before,	we	called	the	session	thing,	which	means	it	would	be	{{
request.session.thing	}}	in	the	template.	No	need	to	pass	it	along	in	the	render	block
on	the	view!

Removing	or	changing	sessions
Sometimes	you	might	want	to	remove	or	change	a	session.	To	delete	a	session,	just	use
this	in	your	views:
views.py

1 def someview(request):

2 ...

3 				del	request.session['NAME']	

4 				request.session.modified	=	True

(Of	course,	replace	NAME	with	the	name/key	of	your	session.)

For	a	real	life	example,	if	you	have	a	button	linking	to	one	form	and	another	button
linking	to	another	form,	and	each	button	sets	a	session	variable,	someone	could	use	the
back	button	in	their	browser	and	get	both	session	variables,	which	might	confuse	your
code.	In	this	case,	when	you	set	a	session	variable,	you	can	check	for	the	other	variable
first	and	delete	it.

You	can	also	modify	a	session	variable	by	just	reassigning	it,	like	any	other	Python
variable:
views.py

1 def someview(request):

2 ...

3 				request.session.modified	=	'New	name'

Some	caveats
Sessions	are	saved	by	the	browser.	So,	if	you’re	testing	on	one	browser	and	switch	to
another,	the	second	browser	won’t	have	your	saved	session	data.

Another	issue	is	that	the	session	data	sticks	around.	If	you’re	testing	a	flow,	and	need	to
start	over	at	the	beginning,	heading	back	to	the	first	page	of	the	flow	won’t	work	because
the	sessions	from	before	will	still	be	saved.	You	need	to	clear	your	browser	cookies	to	start
over	as	a	“clean”	user.

I	mentioned	this	before,	but	again,	sessions	can	be	lost	if	your	user	clears	their	cookies,	so
they’re	best	for	temporary	information	that	you	want	to	save	between	several	views.

That’s	your	rundown!	Have	fun	using	sessions	as	you	build	your	app.

Creating	Your	Own	Scripts	and	a	Bit	About	Cron	Jobs

A	lot	of	web	apps	will	need	to	run	something	in	the	background	to	perform	a	task
automatically.	For	example,	maybe	you	want	an	email	to	go	out	every	few	months
reminding	customers	to	fill	out	missing	profile	information.	We	could	do	something	like
this	manually,	but	it	would	be	much	better	(and	less	time	consuming	for	us)	to	do	it
automatically.

For	something	like	this,	we	need	to	create	a	script	—	a	piece	of	code	that	lives	on	its	own
—	and	run	it	from	our	command	line.	When	I	learned	how	to	build	web	apps	and	I	created
my	startup,	I	thought	I	was	limited	to	building	views	to	run	web	apps.	But	you	can	use
Python	to	create	pieces	of	code	to	do	things	for	you.

In	order	to	fulfill	the	Hello	Web	App	paperback	book	orders,	I	wrote	a	piece	of	code	that
takes	a	spreadsheet,	creates	labels,	and	outputs	the	images	for	me	to	print	from	my
computer.	Before	this	script	was	created,	I	laboriously	filled	out	individual	forms	on	the
USPS	website.	Being	able	to	program	a	script	to	help	with	these	kinds	of	tasks	has	saved
me	a	ton	of	time	in	the	long	run.

Let’s	say	you	write	a	script	for	your	web	app.	This	script	searches	all	your	user	accounts,
sees	whether	they’ve	logged	in	recently,	and	sends	an	email	encouraging	them	to	come
back	if	they	haven’t.	You	can	run	this	script	manually,	or	schedule	your	web	app	server	to
run	the	script	at	regular	intervals	on	your	behalf.	You	might	have	heard	of	the	term	cron
job	—	Cron	is	the	task	scheduler	that	lives	on	UNIX	servers,	and	a	cron	job	is	the	task	it
runs.

In	this	chapter,	I’m	going	to	walk	you	through	the	process	of	creating	a	Django	command
(essentially	a	script	using	Django),	which	Django	will	run	(just	like	runserver,	we’ll	have
python	manage.py	script_name),	then	we’re	going	to	look	at	how	we	can	run	this	script
automatically	through	our	web	servers.	Let’s	get	started!

Creating	a	script
To	create	scripts	using	Django	(a	management	command),	we	need	to	stick	them	in	a
specific	folder	under	our	app.	Create	a	management	folder	under	your	app,	add	an	empty
init.py	(which	tells	Python	this	is	a	Python	module),	create	a	commands	folder	within
management,	and	finally,	create	an	email_reminder.py	file	as	well	as	another	init.py	file
within	commands.	Phew!

$ cd collection

collection $ mkdir management

collection $ cd management

collection/management $ mkdir commands

collection/management $ touch __init__.py

collection/management $ cd commands

collection/management/commands $ touch email_reminder.py __init__

.py

This	seems	more	complicated	than	it	should	be,	but	that’s	the	way	it’s	set	up	in	Django!

The	name	of	our	file	(email_reminder.py)	will	be	the	name	of	the	command	we’ll	run
using	Django	—	so	it	will	be	python	manage.py	email_reminder.	We’ll	come	back	to
this	in	a	second.

Now	let’s	edit	our	email_reminder.py	to	run	the	task	we	want.
email_reminder.py

	1 from datetime import timedelta

	2

	3 from django.core.mail import send_mail

	4 from django.core.management.base import BaseCommand

	5 from django.contrib.auth.models import User

	6 from django.utils.timezone import now

	7 from django.template.loader import get_template

	8 from django.template import Context

	9

10

11 def email_tardy_users():

12 two_weeks_ago = now() - timedelta(days=14)

13 tardy_users = User.objects.filter(last_login__lt=two_weeks_ag

14 o)

15

16 print "Found	" + str(len(tardy_users)) + "	tardy	users"

17

18 for user in tardy_users:

19 template = get_template('login_reminder.txt')

20 context = Context({

21 'username': user.username,

22 })

23 content = template.render(context)

24 send_mail(

25 'You	have	not	logged	in	in	two	weeks	-	can	we	help?',

26 content,

27 'Your	app	<hi@yourapp.com>',

28 [user.email],

29)

30

31

32 class Command(BaseCommand):

33 def handle(self, *args, **options):

34 print "Emailing	tardy	users"

35 email_tardy_users()

Wowee,	that’s	a	lot!	We’re	also	doing	quite	a	few	things	you	may	not	have	seen	before.
Let’s	walk	through	this:

1.	 Start	reading	at	class	Command	—	it’s	at	the	bottom	of	the	file,	but	this	is	actually
what	Django	will	run	first.	Django	will	look	for	class	Command(BaseCommand),	and
def	handle(self,	*args,	**options)	for	your	script.	Within	handle	we	can	write
what	we	want	to	do.

2.	 We	could	just	start	adding	our	code	under	handle,	but	I	decided	to	put	it	in	its	own
function,	which	handle	then	calls.	With	larger	scripts,	it’s	handy	to	break	out	bits	into
their	own	little	areas,	which	makes	reading	through	the	commands	a	lot	easier.

3.	 Take	a	look	at	email_tardy_users().	We’re	using	some	Django	functions	(loaded	at
the	top)	to	get	the	date	two	weeks	ago	from	today.	Then	we’re	searching	our	User
database	for	users	who	logged	in	before	that	date	(last_login	is	provided	by	Django
on	the	User	model,	and	__lt	means	“less	than”).

4.	 Then,	we’re	looping	through	those	users	and	sending	an	email.
5.	 Also,	I	added	some	print	statements	just	so	we	can	see	some	output	when	we	run	the

command	ourselves.

Before	doing	anything,	create	the	template	we	mentioned	in	the	code:

$ cd collection/templates

collection/templates $ touch login_reminder.txt

login_reminder.txt

1 Hi {{ username }}!

2

3 We noticed it's	been	awhile	since	you	logged	in.	Is	there	anythin\

4 g	we	can	help

5 you with? Feel free to respond to this email and let us know how

6 we can improve!

7

8 Cheers,

9 -The App Team

Cool,	we	should	be	good	to	go!	Head	back	to	your	command	line,	make	sure	you’re	in	the
same	directory	as	manage.py,	and	run	your	new	command:

$ python manage.py email_reminder

Emailing tardy users

Found 3 tardy users

MIME-Version: 1.0

Content-Type: text/plain; charset="utf-8"

Content-Transfer-Encoding: 7bit

...

Note:	your	output	will	likely	be	different	than	the	above	depending	on	the	users	in	your
database.	In	mine,	I	found	three	users	who	hadn’t	logged	in	for	at	least	two	weeks,	then
my	app	sent	emails	to	them.	Yay!

Now	this	was	run	locally,	so	we’re	working	off	test	data.	Once	you	push	this	new
command	to	your	live	app	server	and	run	the	command,	it	will	run	for	real.	If	you’re
deployed	on	Heroku,	you	can	run	heroku	run	python	manage.py	email_reminder,	and
if	you’re	on	a	different	kind	of	web	server,	you’ll	probably	have	to	log	in	first	to	run	the
command.

Now	you	know	how	to	create	new	Django	commands	to	run	processes	—	congrats!

Setting	up	scheduling	to	run	the	script	automatically

This	part	is	a	little	more	difficult	to	explain	succinctly	in	one	chapter.	How	you	schedule
your	tasks	will	be	determined	by	your	host,	and	some	hosts	do	it	differently	than	others.

Heroku
If	you’re	using	Heroku	(http://hellowebapp.com/ic/65)	as	your	host,	they	don’t	use	Cron
—	they	use	a	custom	add-on	called	Scheduler:	http://hellowebapp.com/ic/66

Once	you	install	this	add-on,	you	can	tell	it	(via	the	website	or	through	the	command	line)
to	run	your	task	(python	manage.py	email_reminder)	at	the	interval	you’d	like.	You	can
read	more	about	this	in	a	great	blog	post:	http://hellowebapp.com/ic/67

Other	servers	that	use	Cron
For	the	rest	of	us	that	use	Unix-based	servers	(which	should	be	nearly	everyone),	we	have
a	process	called	Cron,	which	is	weirdly	named	but	pretty	cool.	As	mentioned	before,	cron
jobs	are	tasks	run	on	the	server	and	Cron	is	the	scheduler	itself.

With	these	server	setups,	scheduling	these	tasks	is	a	bit	more	difficult	and	takes	more
manual	work.

First,	we	need	to	set	up	a	configuration	file	called	a	“crontab”	to	hold	the	instructions	for
the	cron	jobs	we	want	to	run	(where	this	file	lives	will	depend	on	your	server).	Each	line
we	add	will	tell	cron	how	and	when	to	run	a	task,	and	it’s	rather	hard	to	understand	at	first.
For	example:

30 11 * * * /your/directory/whatever.pl

Say	it	with	me:	Whaaaaaat.

Basically,	cron	jobs	are	defined	like	this	in	one	non-breaking	line:

minute hour day month day-of-week command-line-to-execute

The	/your/directory/whatever.pl	is	the	command	in	this	example.	The	rest	of	the
numbers	and	asterisks	are	representing	the	date	and	times	to	run	the	command.

First,	think	of	*	as	“every.”	Reading	30	11	*	*	*	then	would	be	“30th	minute,	11th	hour,
every	day	of	the	month,	every	month,	every	day	of	week”	—	so,	this	script	is	set	to	run	at
11:30am	every	day.

What	would	56	18	30	1	*	be?	“56th	minute	on	the	18th	hour	on	the	30th	day	of	the	first
month,	every	day	of	the	week”	—	so	the	script	is	set	to	run	on	January	30th	at	6:56pm	(as
cron	uses	24-hour	time).

The	day	of	the	month	and	the	day	of	the	week	look	like	they	contradict	themselves	—	a
task	set	to	56	18	30	1	3	would	run	on	January	30th	at	6:56pm	and	on	every	Wednesday
(the	third	day	of	the	week.)	In	general,	either	a	specific	date	in	a	month	or	a	specific	date
in	a	week	are	chosen,	rather	than	both	at	the	same	time.	To	run	something	every	Thursday
at	3:00pm,	you	would	set	the	task	to	0	3	*	*	4	—	zeroth	minute	of	the	third	hour,	every
day,	every	month,	on	Thursdays.

Once	you	figure	this	all	out,	it’s	kind	of	cool,	right?

http://hellowebapp.com/ic/65
http://hellowebapp.com/ic/66
http://hellowebapp.com/ic/67

Now	that	we’ve	figured	out	how	to	schedule	the	timing,	we	need	to	tell	it	to	run	the	right
command;	specifically,	the	Django	management	command	we	set	up	earlier.

Now	that	we’ve	gone	through	all	this,	we’re	actually	going	to	(mostly)	throw	it	away	and
use	a	Django	plugin	instead.	You	can	tell	Cron	to	run	your	management	command,	but	it’s
more	complicated	than	I	would	like,	and	an	alternative	exists.	Check	out	django-crontab,
which	allows	you	to	set	up	Cron	tasks	in	your	settings	file	(using	the	timing	notification
we	went	through	above,	so	this	section	hasn’t	been	a	total	waste),	and	point	it	to	your
management	command.

I’m	not	going	to	walk	you	through	this	since	the	documentation	is	pretty	good.	Check	it
out	here:	http://hellowebapp.com/ic/68

Servers	that	don’t	use	Cron	(i.e.	Windows)
Windows	uses	something	called	Scheduled	Tasks	rather	than	Cron.	It’s	even	more	of	a
pain	to	set	up	(sorry).	Thankfully,	it’s	really,	really	rare	that	you’ll	be	running	your	app	on
a	Windows	server.	If	you	happen	to	be	doing	so,	check	out	the	service	EasyCron	to	add
the	Cron	ability	to	your	server:	http://hellowebapp.com/ic/69

A	note	about	normal	scripts,	not	Django	management	commands
Earlier	in	this	chapter,	I	talked	about	how	fun	it	is	to	create	little	programming	scripts	for
myself,	and	a	lot	of	these	don’t	use	Django.	We	went	over	how	to	create	a	Django
management	command	which	uses	your	app,	but	you	can	write	your	own	scripts	using	just
Python.

You	can	create	an	arbitrary	file	placed	anywhere,	like	this	one:
hello_world.py

1 print "hello	world"

Then	you	can	run	this	via	the	command	line	like	so,	which	should	print	out	your	â€œhello
worldâ€�:

$ python hello_world.py

Hello World

This	is	how	you’ll	start	programming	without	being	attached	to	Django!	If	you	already
have	a	lot	of	Python	experience,	you	might	be	thinking,	“Well	duh,”	but	really,	moving
beyond	Django	programming	into	pure	Python	programming	took	me	about	three	years.
Building	web	apps	is	just	too	much	fun!

A	great	resource	on	learning	how	to	use	scripts	to	automate	tasks	is	Automate	the	Boring
Stuff	with	Python	by	Al	Sweigart:	http://hellowebapp.com/ic/70

Now	you	know	how	to	create	a	custom	management	command	that	you	can	run	with
Django,	as	well	as	tips	on	how	to	set	up	that	command	to	run	at	scheduled	times	on	your
server.	Enjoy	your	new	powers!

http://hellowebapp.com/ic/68
http://hellowebapp.com/ic/69
http://hellowebapp.com/ic/70

Database	Pitfalls

Say	you’ve	launched	your	app	(congrats!)	and	people	are	using	it	(super	congrats!).
However,	when	you	load	a	few	pages,	it	takes	forever.	You’ve	already	checked	all	the
usual	front-end	suspects	and	the	size	of	your	website	isn’t	that	big.	What’s	going	on?

Your	database	might	be	slowing	you	down.	Every	time	you	have	to	query	for	information
from	your	database,	your	app	gets	a	little	slower	to	respond.	When	you	have	a	full-fledged
web	app	with	multiple	models,	you	might	be	querying	several	different	databases	on	just
one	page.

What	to	do?

Getting	information	about	your	queries	with	the	Django	Debug
Toolbar

There	is	a	really	great	plugin	called	the	Django	Debug	Toolbar
(http://hellowebapp.com/ic/71)	that	will	help	you	see	your	database	queries	(not	to
mention	a	whole	bunch	of	other	issues).	You	can	install	it	via	pip:

$ pip install django-debug-toolbar

Then	add	to	your	INSTALLED_APPS	in	settings.py,	making	sure	it	comes	after
'django.contrib.staticfiles',:
settings.py

1 INSTALLED_APPS = (

2 ...

3 'django.contrib.staticfiles',

4 ...

5 				'debug_toolbar',

6)

No	need	to	add	debug_toolbar	to	your	requirements.txt	as	we	only	want	to	run	it	locally.
Feel	free	to	add	it	to	your	local	requirements	file	if	you	have	multiple	though!

Now	start	your	local	server	(python	manage.py	runserver)	and	reload	your	local	app:

http://hellowebapp.com/ic/71

Boom,	an	informative	toolbar!	Click	on	some	of	the	tabs	on	the	right	and	check	out	all	the
information	it	gives	you	regarding	your	app.	This	is	a	useful	utility	to	have	enabled	for	all
local	development.

The	main	thing	we’re	looking	at	right	now	is	the	number	of	queries	we’re	performing	on
the	page,	which	you	can	see	under	the	SQL	tab:

Three	queries	for	this	page	isn’t	that	bad.	The	problem	really	starts	happening	once	you
have	multiple	models	(like	what	we	set	up	in	Chapter	2,	Adding	a	New	Model	and
Working	With	Multiple	Models).

Optimizing	queries
Right	now	our	homepage	just	grabs	all	the	objects	in	our	database,	and	lists	them	out.
Here’s	the	view:
views.py

1 def index(request):

2 things = Thing.objects.all()

3 return render(request, 'index.html', {

4 'things': things,

5 })

And	our	HTML	on	our	template:
index.html

1

2 {% for thing in things %}

3 <h2>

4 {{ thing.name }}

5 </h2>

6 <p>{{ thing.description }}</p>

7 {% endfor %}

We’re	going	to	update	that	HTML	to	also	grab	all	the	social	media	accounts	connected	to
the	object	and	list	them	out	too:
index.html

	1

	2 {% for thing in things %}

	3 <h2>

	4 {{ thing.name }}

	5 </h2>

	6 <p>{{ thing.description }}</p>

	7

	8 				{%	if	thing.social_accounts	%}

	9 				

10 								{%	for	account	in	thing.social_accounts.all	%}

11 								{{	account.network|title	}}

12 								{%	endfor	%}

13 				

14 				{%	endif	%}

15 {% endfor %}

Which	totally	works.	But	wait,	what	happened	to	our	database	queries?

Suddenly,	we’re	at	nine	database	queries!	Check	out	the	information	on	the	left	(after	you
click	on	the	SQL	link	in	the	right	sidebar)	—	for	every	Thing	we’re	grabbing	from	the
database,	Django	is	querying	the	Social	database	for	the	Thing’s	accounts.	Basically,

Django	is	going,	“Okay,	grab	all	the	things,	and	then	for	this	thing,	grab	the	social
accounts,	then	for	this	thing,	grab	the	social	accounts,	then	for	this	thing,	grab	the	social
accounts…”

Once	your	web	app	has	hundreds	of	objects,	you	can	imagine	how	doing	a	separate	query
for	each	object	when	you’re	just	rendering	one	template	would	make	things	super	slow.

But	we	can	make	it	better!	We’re	going	to	use	Django’s	prefetch_related
(http://hellowebapp.com/ic/72)	on	our	initial	Thing	query	to	grab	everything	in	advance.
Update	your	view:
views.py

1 def index(request):

2 				things	=	Thing.objects.prefetch_related(

3 								'social_accounts').all()

4 return render(request, 'index.html', {

5 'things': things,

6 })

Refresh	your	page,	and	voilรก	—	the	number	of	queries	drops.

http://hellowebapp.com/ic/72

Now,	Django	is	saying,	“Okay,	grab	all	the	things,	and	while	we’re	here,	grab	all	the	social
accounts	too.”	Instead	of	doing	a	query	on	the	Social	table	every	time	we	display	a
Thing,	we’ve	“prefetched”	the	results	in	one	additional	query.	Now	Django	can	just	list
the	results	out	from	memory.

Other	optimization	methods
prefetch_related	works	best	here	since	we	have	what’s	known	as	a	“reverse
ForeignKey”	relationship	between	Thing	and	Social.	Social	is	linked	to	Thing	using
ForeignKey,	but	technically	Thing	is	not	linked	to	Social	—	it’s	a	one-way	arrow.

In	the	last	example,	we	were	listing	out	Things	and	then	grabbing	the	social	accounts.
Now	say	we	were	grabbing	social	accounts,	and	then	listing	the	Thing’s	descriptions.	As
Social	points	to	Thing	(we’re	going	in	the	same	direction	as	the	connection),	we	can	use
Django’s	select_related	(http://hellowebapp.com/ic/73).	For	example:	socials	=
Social.objects.select_related('thing').all()

select_related	is	better	than	prefetch_related	because	prefetch_related	will	do	two
queries	(one	on	each	database),	but	select_related	will	be	able	to	do	everything	in	one
query	since	we’re	going	along	that	one-way	arrow.

We	also	have	the	ability	to	add	an	index	to	our	database	fields	which	will	help	our
database	run	queries	faster.	An	index	is	like	a	table	of	contents	in	a	book	—	when	you’re
looking	for	a	specific	value,	you	flip	to	the	table	of	contents	and	quickly	look	up	the	page
number	so	you	can	jump	straight	to	it.	Someday	when	there	are	thousands	or	even	millions

http://hellowebapp.com/ic/73

of	rows	in	your	database,	a	query	without	an	index	could	take	minutes.	A	proper	index	can
bring	that	back	down	to	milliseconds.

You	add	an	index	to	a	field	like	this:
models.py

1 class Thing(models.Model):

2 name = models.CharField(db_index=True, max_length=255)

Django	automatically	adds	an	index	to	any	model	field	that	is	a	SlugField,	or	is	set	to
unique=True,	or	is	a	ForeignKey	relationship.	The	above	is	a	great	place	to	add	an	index,
as	it’s	not	a	SlugField,	isn’t	set	to	unique=True,	or	a	ForeignKey	and	we’re	likely	to	run
queries	which	filter	by	our	name	field.

This	really	is	only	the	tip	of	the	iceberg.	Reducing	queries	becomes	a	big	deal	when	your
web	app	makes	it	big	(since	response	and	rendering	time	is	so	crucial)	so	there	are	a	ton	of
ways	to	improve	it.	I	highly	recommend	you	check	out	Django’s	resource	page	on
database	optimization	to	see	what	other	methods	are	available	to	improve	the	number	of
queries	you	make:	http://hellowebapp.com/ic/74

As	you	work	on	your	app,	keep	an	eye	on	the	number	of	queries	your	web	app	makes
using	the	Django	Debug	Toolbar	and	make	improvements	as	necessary	when	your	queries
get	too	large	—	it’s	one	of	the	best	things	you	can	do	for	the	speed	of	your	website!

http://hellowebapp.com/ic/74

Additional	Information	and	Resources

Another	book	down!	Congrats	on	getting	this	far	—	I’m	proud	of	you.	It’s	not	over	yet,
though.	You	need	to	continue	growing	and	improving	your	web	app!	Here’s	a	mishmash
of	information	and	additional	resources	to	help	you	in	moving	forward.

Different	versions	and	updates	—	what	should	I	do?
A	lot	of	wonderful	people	work	on	both	Python	and	Django	and	are	making	improvements
all	the	time.	These	improvements	get	released	periodically	with	a	new	version	number,
sometimes	quite	often	—	I’m	looking	at	you,	Django.	I	started	writing	Hello	Web	App
when	it	was	Django	1.6	and	now	Django	1.9	is	already	out.

Django	updates
When	Django	updates,	what	does	that	mean	for	your	app?	You	don’t	have	to	upgrade.	As
long	as	the	version	that	works	for	your	app	is	specified	in	your	requirements.py,	anyone
who	needs	to	install	your	app	will	know	the	specific	Django	to	use	for	it	to	work.

But,	these	Django	updates	usually	come	with	newer	and	better	functionality,	not	to
mention	security	updates	that	can	be	pretty	crucial.	Thankfully,	Django	developers	are
pretty	savvy	about	making	sure	updates	are	usually	backwards	compatible,	especially	if
it’s	a	minor	version	update	(like	say,	going	from	1.7.1	to	1.7.2).	For	minor	updates	like
these,	you	can	almost	always	just	install	the	new	Django	in	your	app	(pip	install
Django==VERSIONNUMBER	then	update	your	requirements.txt)	and	everything	should	be
peachy.

Major	releases	(like	1.7	to	1.8)	usually	come	with	non-backwards	compatible	updates.	For
these,	the	only	solution	is	to	check	out	the	release	notes	(http://hellowebapp.com/ic/75)	to
see	what	was	updated,	especially	the	section	on	backwards	incompatible	changes.	Then
you’ll	just	need	to	install	the	new	version	of	Django,	see	what	breaks,	and	make	fixes	and
updates	to	your	app.	It	can	be	a	bit	frustrating,	especially	if	your	previously	working	app
suddenly	stops	working	and	you	can’t	figure	out	why.	There’s	always	our	Hello	Web	App
discussion	board	if	you	need	some	help:	http://discuss.hellowebapp.com

Python	3	and	other	updates
Hello	Web	App	uses	Python	2.7,	but	Python	3.4	is	out.	What’s	up	with	that?

The	update	from	Python	2	to	3	was	a	fairly	major	release	and	a	lot	of	beginner	resources
on	the	web	are	still	using	2.7.	It’s	still	used	very	often,	though	slowly	people	are
transitioning	over	to	Python	3.4.	Hello	Web	App	uses	2.7	because	the	majority	of	the
resources	that	you,	dear	reader,	will	be	using	will	probably	still	be	on	Python	2.7	for	at
least	a	few	more	years	as	Python	3	usage	catches	on	and	major	projects	are	migrated.

http://hellowebapp.com/ic/75
http://discuss.hellowebapp.com

That	said,	Hello	Web	App	is	very	nearly	Python	3	compatible	—	one	of	the	biggest
differences	between	Python	2	and	Python	3	is	how	print	statements	work:

#	python	2

print "hello	world"

#	python	3

print("hello	world")

So	that’s	why	we’re	using	2.7	for	now	even	though	a	new	version	of	Python	is	out.	For
more	information	about	the	differences,	check	out	Python’s	page	on	the	differences:
http://hellowebapp.com/ic/76

Curious	about	Python	3?	Here’s	a	good	tutorial:	http://hellowebapp.com/ic/77

Other	resources
Those	notes	out	of	the	way,	onto	more	awesome	tutorials	and	Django	resources!

Books
Two	Scoops	of	Django	by	Audrey	Roy	Greenfeld	and	Daniel	Greenfeld:
http://hellowebapp.com/ic/78

I	recommended	this	in	the	original	Hello	Web	App	book	and	I’m	recommending	it	again
here.	Hello	Web	App	skirts	a	lot	of	“best	practices”	in	favor	of	making	things	easier,	and
Two	Scoops	will	teach	you	those	best	practices	that	we	missed.	This	should	be	a	required
resource	for	any	web	app	programmer	using	Django.

Automate	the	Boring	Stuff	with	Python	by	Al	Sweigart	http://hellowebapp.com/ic/79

We	briefly	mentioned	creating	your	own	scripts	in	Chapter	12,	Creating	Your	Own	Scripts
and	a	Bit	About	Cron	jobs.	This	book	focuses	on	building	programs	that	will	help	you
automate	anything	monotonous.

Effective	Python:	59	Specific	Ways	to	Write	Better	Python	by	Brett	Slatkin
http://hellowebapp.com/ic/80

This	book	will	help	you	move	beyond	just	building	web	apps	with	Django	to	becoming	a
fully-fledged	Python	programmer.	This	book	is	great	for	anyone	who	wants	to	become	a
software	engineer.

Python	Cookbook	by	David	Beazley	and	Brian	K.	Jones

http://hellowebapp.com/ic/81	Another	great	intermediate-level	Python	book	to	help	you
learn	how	to	write	Python	programs	and	algorithms.

Online	courses	and	tutorials
GoDjango:	http://hellowebapp.com/ic/82

A	great	general	resource	with	screencasts	and	video	tutorials	covering	beginner	to
advanced	Django	and	Python.

Learn	the	Command	Line	Codecademy:	http://hellowebapp.com/ic/83

http://hellowebapp.com/ic/76
http://hellowebapp.com/ic/77
http://hellowebapp.com/ic/78
http://hellowebapp.com/ic/79
http://hellowebapp.com/ic/80
http://hellowebapp.com/ic/81
http://hellowebapp.com/ic/82
http://hellowebapp.com/ic/83

We’ve	gone	over	the	basics	of	the	command	line	already,	but	this	tutorial	will	make	you
feel	like	a	badass	wizard	and	really	increase	your	knowledge	about	what	you	can	do
through	the	command	line.

Intro	to	Relational	Databases	Udacity:	http://hellowebapp.com/ic/84

We	started	delving	into	database	design	and	best	practices	and	this	tutorial	will	really
launch	your	understanding	about	what	it	means	to	work	with	databases.

Treehouse:	http://hellowebapp.com/ic/85

This	isn’t	free	(starts	at	$25/month)	but	the	tutorials	are	top	notch.	Covers	almost
everything	in	tech,	from	design,	front-end	development,	Python,	JavaScript,	and	more.

Learn	Regex	The	Hard	Way	by	Zed	A.	Shaw:	http://hellowebapp.com/ic/86

By	the	same	author	of	Learn	Python	the	Hard	Way,	this	is	a	great	way	to	learn	about
Regex	(you	know,	that	funky	bit	in	your	URLpatterns).

Learn	SQL	The	Hard	Way	by	Zed	A.	Shaw:	http://hellowebapp.com/ic/87

Also	by	the	same	author.	You	can	use	this	online	book	to	teach	yourself	SQL,	basically	the
language	of	our	databases.

Keep	in	touch	with	Hello	Web	App!
Check	out	Hello	Web	App’s	website	if	you	haven’t	already	(http://hellowebapp.com)	and
sign	up	for	the	newsletter	—	I	send	announcements	of	workshops,	new	books,	and	free
tutorials	fairly	regularly.

Don’t	forget	about	the	Hello	Web	App	discussion	forums
(http://discuss.hellowebapp.com).	Show	off	your	web	app,	I’d	love	to	see	it!

You	can	also	keep	in	touch	with	me	through	the	Hello	Web	App	Twitter	account
(http://twitter.com/hellowebapp)	or	through	my	personal	Twitter	account
(http://twitter.com/limedaring).

Best	of	luck	building	and	growing	your	web	apps,	and	keep	in	touch!

http://hellowebapp.com/ic/84
http://hellowebapp.com/ic/85
http://hellowebapp.com/ic/86
http://hellowebapp.com/ic/87
http://hellowebapp.com
http://discuss.hellowebapp.com
http://twitter.com/hellowebapp
http://twitter.com/limedaring

Special	Thanks

This	book	would	not	be	possible	without	the	support	of	many	amazing	people	and
organizations.	First	and	foremost,	thank	you	to	the	Django	and	Python	community,	a	truly
tremendous	group	of	people	who	made	this	book	possible.

Super	thanks	to	Hello	Web	App’s	sponsors
I	also	thank	these	amazing	organizations	and	companies	that	sponsored	the	new	book.

Huge	thanks	to	Opbeat	(https://opbeat.com)	for	sponsoring	this	book.	I	got	to	meet	a	few
of	their	team	at	DjangoCon	US	and	they	were	some	of	the	nicest	people	I’ve	ever	met.

In	a	nutshell,	Opbeat	provides	application	monitoring	for	developers.	If	you	have	a	large
app,	Opbeat	helps	you	track	performance	metrics,	release	tracking,	and	error	logging,	and

https://opbeat.com

includes	an	awesome	looking	and	easy	to	use	dashboard.	It’s	a	great	service	to	add	for
anyone	whose	app	has	grown.

Django	Software	Foundation
Another	big	thanks	to	the	Django	Software	Foundation	(https://djangoproject.com/).	The
DSF	(of	which	I	am	a	developer	member)	is	a	non-profit	organization	that	runs,	promotes,
and	supports	Django	and	projects	like	these.

Book	reviewers,	editors,	and	testers
This	book	would	not	be	as	coherent	and	understandable	if	it	weren’t	for	a	veritable	army
of	reviewers,	testers,	and	editors.	The	folks	below	muddled	through	my	drafts	with
patience	and	understanding	and	helped	me	craft	the	content	into	something	a	thousand
times	better.	Thank	you	to	everyone	below	for	taking	the	time	to	help	me:

Andrey	Petrov

Al	Sweigart

Alicia	Lakomski

Jody	Zolli

Joel	Burton

John	F	Croston	III

Kenneth	Love

Lacey	Williams	Henschel

Larry	Ullman

Michael	J.	Metts

Michael	McHugh

Kickstarter	backers
One	of	the	biggest	challenges	of	self-publishing	a	book	is	finding	funding.	Thank	you	to
all	those	who	donated	to	the	second	Hello	Web	App	Kickstarter	campaign	—	your
donations	went	directly	to	the	production	of	this	book	as	well	as	supporting	Hello	Web
App	workshops	worldwide.

https://djangoproject.com/

References

For	reference,	the	shortened	link	URLs	throughout	the	book	and	their	related	long	URL
are	listed	below.

Introduction

1:	https://git-for-windows.github.io/

Chapter	1

2	https://docs.djangoproject.com/en/1.8/ref/forms/fields/

3	http://www.pydanny.com/overloading-form-fields.html

4	https://sendgrid.com

5	https://www.mandrill.com

6	https://sendgrid.com/docs/Integrate/Frameworks/django.html

Chapter	2

7	https://docs.djangoproject.com/en/1.8/ref/models/options/

Chapter	3

8	https://docs.djangoproject.com/en/1.8/ref/models/instances/#get-absolute-url

9	https://www.google.com/webmasters/tools/

10	http://www.sitemaps.org

11	https://docs.djangoproject.com/en/1.8/ref/contrib/sitemaps/

12	http://lgiordani.com/blog/2013/10/28/digging-up-django-class-based-views-1/

13	https://docs.djangoproject.com/en/1.9/ref/class-based-views/generic-display/#listview

14	https://docs.djangoproject.com/en/1.9/topics/class-based-views/intro/

15	https://ccbv.co.uk/

16	https://godjango.com/15-class-based-views-part-1-templateview-and-redirectview/

17	https://hellowebapp.com/news/tutorial-class-based-views

Chapter	4

18	https://devcenter.heroku.com/articles/s3-upload-python

19	https://docs.djangoproject.com/en/1.8/howto/static-files/deployment/

Chapter	5

20	http://pillow.readthedocs.org/en/latest/handbook/tutorial.html

https://git-for-windows.github.io/
https://docs.djangoproject.com/en/1.8/ref/forms/fields/
http://www.pydanny.com/overloading-form-fields.html
https://sendgrid.com/
https://www.mandrill.com/
https://sendgrid.com/docs/Integrate/Frameworks/django.html
https://docs.djangoproject.com/en/1.8/ref/models/options/
https://docs.djangoproject.com/en/1.8/ref/models/instances/#get-absolute-url
https://www.google.com/webmasters/tools/
http://www.sitemaps.org/
https://docs.djangoproject.com/en/1.8/ref/contrib/sitemaps/
http://lgiordani.com/blog/2013/10/28/digging-up-django-class-based-views-1/
https://docs.djangoproject.com/en/1.9/ref/class-based-views/generic-display/#listview
https://docs.djangoproject.com/en/1.9/topics/class-based-views/intro/
https://ccbv.co.uk/
https://godjango.com/15-class-based-views-part-1-templateview-and-redirectview/
https://hellowebapp.com/news/tutorial-class-based-views
https://devcenter.heroku.com/articles/s3-upload-python
https://docs.djangoproject.com/en/1.8/howto/static-files/deployment/
http://pillow.readthedocs.org/en/latest/handbook/tutorial.html

21	https://github.com/mariocesar/sorl-thumbnail

22	https://github.com/SmileyChris/easy-thumbnails

23	https://www.youtube.com/watch?v=_H9uPRJWMNk

Chapter	6

24	https://docs.djangoproject.com/en/1.8/ref/contrib/messages/

Chapter	7

25	https://www.codecademy.com/tracks/web

26	http://sass-lang.com

27	http://getbootstrap.com

28	https://github.com/postcss/autoprefixer

29	https://github.com/postcss/postcss

30	http://gulpjs.com

31	https://github.com/dahlia/libsass-python

32	http://howtonode.org/how-to-install-nodejs

33	http://v4-alpha.getbootstrap.com/getting-started/download/

34	https://www.npmjs.com

35	http://gulpjs.com/plugins/

36	https://www.npmjs.com/package/gulp-livereload

37	http://sass-lang.com/guide

38	https://help.github.com/articles/ignoring-files/

Chapter	8

39
https://github.com/django/django/blob/58195f0b16999245ada6bd010b71c9c5352ae608/django/contrib/auth/models.py#L366

40
https://github.com/django/django/blob/58195f0b16999245ada6bd010b71c9c5352ae608/django/contrib/auth/models.py#L297

Chapter	9

41	https://stripe.com

42	https://devcenter.heroku.com/articles/ssl-endpoint

43	https://cloudflare.com

44	http://andrewtorkbaker.com/using-environment-variables-with-django-settings

45	https://devcenter.heroku.com/articles/config-vars

46	https://stripe.com/checkout

47	https://stripe.com/docs/testing#cards

https://github.com/mariocesar/sorl-thumbnail
https://github.com/SmileyChris/easy-thumbnails
https://www.youtube.com/watch?v=_H9uPRJWMNk
https://docs.djangoproject.com/en/1.8/ref/contrib/messages/
https://www.codecademy.com/tracks/web
http://sass-lang.com/
http://getbootstrap.com/
https://github.com/postcss/autoprefixer
https://github.com/postcss/postcss
http://gulpjs.com/
https://github.com/dahlia/libsass-python
http://howtonode.org/how-to-install-nodejs
http://v4-alpha.getbootstrap.com/getting-started/download/
https://www.npmjs.com/
http://gulpjs.com/plugins/
https://www.npmjs.com/package/gulp-livereload
http://sass-lang.com/guide
https://help.github.com/articles/ignoring-files/
https://github.com/django/django/blob/58195f0b16999245ada6bd010b71c9c5352ae608/django/contrib/auth/models.py#L366
https://github.com/django/django/blob/58195f0b16999245ada6bd010b71c9c5352ae608/django/contrib/auth/models.py#L297
https://stripe.com
https://devcenter.heroku.com/articles/ssl-endpoint
https://cloudflare.com
http://andrewtorkbaker.com/using-environment-variables-with-django-settings
https://devcenter.heroku.com/articles/config-vars
https://stripe.com/checkout
https://stripe.com/docs/testing#cards

48	https://stripe.com/docs/api/python#errors

49	https://stripe.com/blog/improved-email-receipts

50	https://zapier.com

51	https://stripe.com/docs/webhooks

52	https://stripe.com/docs/api/python#retrieve_customer

53	https://stripe.com/docs/api/python#update_customer

54	https://stripe.com/docs/guides/subscriptions#canceling-subscriptions

55	https://stripe.com/docs/examples

56	http://dj-stripe.readthedocs.org

57	https://godjango.com/57-starting-with-stripejs/

Chapter	10

58	http://www.django-rest-framework.org

59	http://www.django-rest-framework.org/api-guide/permissions/

60	https://docs.djangoproject.com/en/1.8/topics/serialization/

61	https://docs.djangoproject.com/en/1.8/ref/request-response/#jsonresponse-objects

62	http://www.django-rest-framework.org/tutorial/quickstart/

63	https://godjango.com/blog/working-with-json-and-django/

64	https://godjango.com/41-start-your-api-django-rest-framework-part-1/

Chapter	12

65	http://heroku.com

66	https://addons.heroku.com/scheduler

67	http://guidovanoorschot.nl/adding-cron-jobs-to-a-django-project-with-heroku-
scheduler/

68	https://github.com/kraiz/django-crontab

69	https://www.easycron.com

70	http://amzn.to/1LQKpvW

Chapter	13

71	http://django-debug-toolbar.readthedocs.org

72	https://docs.djangoproject.com/en/1.8/ref/models/querysets/#prefetch-related

73	https://docs.djangoproject.com/en/1.8/ref/models/querysets/#select-related

74	https://docs.djangoproject.com/en/1.8/topics/db/optimization/

Chapter	14

75	https://docs.djangoproject.com/en/stable/releases/

https://stripe.com/docs/api/python#errors
https://stripe.com/blog/improved-email-receipts
https://zapier.com/
https://stripe.com/docs/webhooks
https://stripe.com/docs/api/python#retrieve_customer
https://stripe.com/docs/api/python#update_customer
https://stripe.com/docs/guides/subscriptions#canceling-subscriptions
https://stripe.com/docs/examples
http://dj-stripe.readthedocs.org/
https://godjango.com/57-starting-with-stripejs/
http://www.django-rest-framework.org/
http://www.django-rest-framework.org/api-guide/permissions/
https://docs.djangoproject.com/en/1.8/topics/serialization/
https://docs.djangoproject.com/en/1.8/ref/request-response/#jsonresponse-objects
http://www.django-rest-framework.org/tutorial/quickstart/
https://godjango.com/blog/working-with-json-and-django/
https://godjango.com/41-start-your-api-django-rest-framework-part-1/
http://heroku.com
https://addons.heroku.com/scheduler
http://guidovanoorschot.nl/adding-cron-jobs-to-a-django-project-with-heroku-scheduler/
https://github.com/kraiz/django-crontab
https://www.easycron.com/
http://amzn.to/1LQKpvW
http://django-debug-toolbar.readthedocs.org/
https://docs.djangoproject.com/en/1.8/ref/models/querysets/#prefetch-related
https://docs.djangoproject.com/en/1.8/ref/models/querysets/#select-related
https://docs.djangoproject.com/en/1.8/topics/db/optimization/
https://docs.djangoproject.com/en/stable/releases/

76	https://wiki.python.org/moin/Python2orPython3

77	http://www.diveintopython3.net

78	http://amzn.to/1JN0NHK

79	http://amzn.to/1OgbQRr

80	http://amzn.to/1OgbXfT

81	http://amzn.to/1jIeAub

82	https://godjango.com

83	https://www.codecademy.com/courses/learn-the-command-line

84	https://www.udacity.com/course/intro-to-relational-databasesâ€“ud197

85	https://teamtreehouse.com

86	http://regex.learncodethehardway.org

87	http://sql.learncodethehardway.org

https://wiki.python.org/moin/Python2orPython3
http://www.diveintopython3.net/
http://amzn.to/1JN0NHK
http://amzn.to/1OgbQRr
http://amzn.to/1OgbXfT
http://amzn.to/1jIeAub
https://godjango.com
https://www.codecademy.com/courses/learn-the-command-line
https://www.udacity.com/course/intro-to-relational-databases%C3%A2%E2%82%AC%E2%80%9Cud197
https://teamtreehouse.com/
http://regex.learncodethehardway.org/
http://sql.learncodethehardway.org/

Friendly	Note

Hello	Web	App	is	entirely	self-published	by	Tracy	Osborn	and	is	purposely	DRM-free.	If
you’ve	come	across	this	book	for	free	and	enjoyed	it,	I	invite	you	to	make	a	donation	at
http://hellowebapp.com/donate.	Your	support	is	appreciated!

http://hellowebapp.com/donate

About	the	Author

Tracy	Osborn	is	a	designer,	developer,	and	entrepreneur	living	in	the	Bay	Area	of
California.	Building	websites	since	she	was	twelve,	she	always	felt	an	affinity	to
computers,	the	internet,	and	what	it	brings	us.

Tracy	graduated	with	a	BFA	in	Art	&	Design	with	a	concentration	in	Graphic	Design	from
California	Polytechnic	State	University,	San	Luis	Obispo,	and	worked	as	a	web	designer
for	five	years	before	teaching	herself	programming	and	launching	her	first	startup,
WeddingLovely.

She’s	also	an	avid	outdoorswoman,	hiking	over	200	miles	on	the	John	Muir	Trail	solo	in
2014.

	Introduction
	Prerequisites
	Our discussion forum

	Creating a Contact Form and Working with Custom Forms
	Set up the URL
	Set up the view
	Set up the form
	Create the template
	Set up your local email server
	Add the email logic
	Create a template for your email
	Improve the form (optional)
	Set up our live email server (optional)
	Things that could be improved
	Your contact form is complete!

	Adding a New Model and Working With Multiple Models
	Proper schema design: multiple tables can be better than just one big table
	How to add a new model to your app
	Add to your admin
	Access the new view from your views

	Adding Easy Admin Emails, Helpers, Sitemaps, and More
	Adding an admin email shortcut to your views
	Adding created and last-modified dates using an abstract model
	Helper functions on your model
	Adding sitemaps
	A bit about class-based views and Django’s generic views

	Adding User-Uploaded Images
	Adding a model for images
	Showing the image in the templates
	Adding the Upload model to your admin page
	Setting up the template to display images
	Uploading files in the templates

	Editing and Resizing Images
	Installation reminder
	Testing out resizing, adding filters, and saving your images
	Updating your model’s save method to resize images

	Setting Up Django Messages for Alerts
	Add the messages block to your base template
	Sending over messages from the view
	Other message types

	Front-End Fun: Adding Gulp, Sass, and Bootstrap
	More about the tools we’re installing
	Installation
	Conclusion and further exploration

	Reading Source Code And Setting Up a Form to Edit User Email Addresses
	Setting up the form
	Setting up the view and the template

	Adding Payments with Stripe
	Quick note about HTTPS and securing your app
	Setting up Stripe
	A note about test and live keys
	Add your test keys to your settings
	Determining the payment flow
	Set up your templates
	Create the URL and the view
	Add a plan to Stripe
	Update your view to subscribe the customer to a plan
	Setting up error catching
	Add a flag to your model to indicate “upgraded” objects
	All the additional ways to improve the payment functionality on your app
	Additional resources and information
	Congrats, you’ve added payments to your app!

	Adding an API
	The essence of an API
	Installing Django REST Framework
	Setting up a very simple API
	Just the tip of the iceberg

	Working with Sessions
	What are sessions?
	Saving, accessing, and removing session data in the view
	Some caveats

	Creating Your Own Scripts and a Bit About Cron Jobs
	Creating a script
	Setting up scheduling to run the script automatically
	A note about normal scripts, not Django management commands

	Database Pitfalls
	Getting information about your queries with the Django Debug Toolbar
	Optimizing queries
	Other optimization methods

	Additional Information and Resources
	Different versions and updates — what should I do?
	Other resources
	Keep in touch with Hello Web App!

	Special Thanks
	Super thanks to Hello Web App’s sponsors
	Book reviewers, editors, and testers
	Kickstarter backers

	References
	Friendly Note
	About the Author

