
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

iOS 6
Foundations

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

A John Wiley and Sons, Ltd, Publication

iOS 6
Foundations

Jesse Feiler

www.allitebooks.com

http://www.allitebooks.org

This edition first published 2013

©2013 John Wiley & Sons, Inc.

Registered office

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for permission to
reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright,
Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright,
Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and prod-
uct names used in this book are trade names, service marks, trademarks or registered trademarks of their respective own-
ers. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed to
provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that
the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required,
the services of a competent professional should be sought.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/ or its
affiliates in the United States and/or other countries, and may not be used without written permission. All trademarks are
the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in
the book.

A catalogue record for this book is available from the British Library.

ISBN 978-1-118-35657-9 (paperback); ISBN 978-1-118-57008-1 (ebook); ISBN 978-1-118-57010-4 (eMobi);
ISBN 978-1-118-57009-8 (ePDF)

Set in Chaparral Pro Light 10/12.5 by Indianapolis Composition Services

Printed in the U.S. by Command Web Missouri

www.allitebooks.com

http://www.allitebooks.org

About the Author
JESSE FEILER is a developer, consultant, and author specializing in Apple technologies.
He is the creator of Minutes Machine for iPad, the meeting management app available
in Apple’s App Store. He is also Software Architect for PlattInfo, the network of walk-up
touch-screen kiosks in downtown Plattsburgh, New York. As a consultant, he has worked
with small businesses and nonprofits on projects such as production control, publishing, and
project management, usually involving FileMaker.

His books include:

• iWork For Dummies

• Dashcode For Dummies

• FileMaker Pro in Depth

• Sams Teach Yourself Core Data in 24 Hours

• Sams Teach Yourself Objective-C in 24 Hours

• The Bento Book

He is heard regularly on WAMC Public Radio for the Northeast’s The Roundtable. He is a
member of the City of Plattsburgh Planning Board and the Saranac River Trail Advisory
Committee. A native of Washington DC, he has lived in New York City and currently lives in
Plattsburgh, NY.

He can be reached at northcountryconsulting.com.

The photos in Chapter 17 show one of the City of Plattsburgh’s PlattInfo kiosks. PlattInfo is
a network of walk-up touch-screen kiosks powered by FileMaker. Jesse Feiler is Software
Architect for PlattInfo. PlattInfo artwork by Kelly Chilton (hey@kellychilton.com or www.
kellychilton.com). You can find out more about PlattInfo at PlattInfo.com.

www.allitebooks.com

http://www.kellychilton.com
http://www.kellychilton.com
mailto: hey@kellychilton.com
http://www.allitebooks.org

Publisher’s Acknowledgments
Some of the people who helped bring this book to market include the following:

Editorial and Production
VP Consumer and Technology Publishing Director: Michelle Leete
Associate Director–Book Content Management: Martin Tribe
Associate Publisher: Chris Webb
Associate Commissioning Editor: Ellie Scott
Development Editor: Kezia Endsley
Copy Editor: Kezia Endsley
Technical Editor: Aaron Crabtree
Editorial Manager: Jodi Jensen
Senior Project Editor: Sara Shlaer
Editorial Assistant: Annie Sullivan

Marketing
Associate Marketing Director: Louise Breinholt
Marketing Manager: Lorna Mein
Senior Marketing Executive: Kate Parrett
Marketing Assistant: Tash Lee

Composition Services
Senior Project Coordinator: Kristie Rees
Compositor: Indianapolis Composition Services
Proofreader: Linda Seifert
Indexer: Potomac Indexing, LLC

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Author's Acknowledgments
Many people have helped to make this book possible. At Treehouse and Wiley, Chris Webb
and Kezia Endsley, brought the book from the initial idea to fruition. My agent, Carole Jelen,
as always has been creatively supportive as the book has proceeded.

The tech editor, Aaron Crabtree, was great to work with, and I appreciate his help enor-
mously. (You can find Aaron on Twitter at @aaron_crabtree and on the web at www.tap
dezign.com.) Notwithstanding the help of so many people, any errors are mine. If you do
find an error, please contact me through northcountryconsulting.com so that we can correct
it in the next printing. And if you register on northcountryconsulting.com, we’ll let you know
of any updates.

www.allitebooks.com

http://www.allitebooks.org

ixT A B L E O F C O N T E N T S

Contents
About the Author . v
Publisher’s Acknowledgments. .vi
Author's Acknowledgments . viii

Introduction . 1
Who Should Read This Book? . 1
What You Will Learn . 2
How to Use This Book . 3

Using This Book with Treehouse . 4

Part 1: Introducing iOS 6

CHAPTER ONE
Getting Started with iOS 6 . 7

Doing Your Homework . 8
Getting Yourself Ready . 8
Adopting a Developer’s Point of View . 8
Exploring the App Store . 9
Reading Reviews . 9

Understanding the App World—Past, Present, and Future . 9
Looking at the Master-Detail Application Template . 10
Registering as a Developer . 15
Introducing Basic Programming Concepts . 16

Object-Oriented Programming in Objective-C . 17
Objects in Objective-C . 17
Messaging in Objective-C . 19

Frameworks . 19
Graphical Coding . 20
Model-View-Controller . 20

Installing and Using Xcode . 21
Summary . 23

CHAPTER TWO
Getting Up to Speed with Xcode . 25

Using the Workspace Window . 26
Exploring the Jump Bar . 27

Related Items Pop-up Menu . 27
Back/Forward Navigation Buttons . 30
Using the Jump Bar to Navigate . 30

i O S 6 F O U N D A T I O N Sx

Exploring the Toolbar . 30
Building and Running Projects . 31
Choosing a Scheme . 31
Enabling and Disabling Breakpoints . 32
Activity Viewer . 32
Editor Buttons . 32
View Buttons . 33
Organizer . 35
Selector Bars . 35

Exploring the Tab Bar . 35
Using Projects . 36
Exploring the Editor Area . 37

Using Editing Preferences . 39
Using Code Completion . 39
Handling Indentation . 39
Using Fix-It . 40
Using Code Completion . 41

Exploring the Navigators . 42
Using the Project Navigator . 42

Using Groups . 43
Spotting Missing Files . 44
Using the Navigator Controls . 44

Using the Search Navigator . 47
Using the Other Navigators . 48

Exploring the Utilities . 49
Using the File Inspector . 49
Using Quick Help . 50
Using Inspectors . 50
Using the Libraries . 51

Summary . 51

CHAPTER THREE
Looking Ahead—Planning Your App . 53

Answering the Money Question . 54
Preparing Version 2 . 55
Submitting the App to the App Store. 55

Identifying Your App and Yourself . 56
Bundle Settings . 57
Settings for the App Store . 57

xi

Setting Marketing Data (Discoverability) . 59
Describing Your App’s Requirements . 61
Specifying Integration Features . 62

Celebrating Learning iOS with Your App! . 62
Summary . 62

CHAPTER FOUR
Designing the Party Planner App. 63

Planning the App: The Choices . 63
Identifying Your App and Yourself . 64
Setting Marketing Data (Discoverability) . 64
Describing Your App’s Requirements . 64
Specifying Integration Features . 65

Designing the App: The Conversation . 65
What Kind of Data Do You Need to Track? . 65
How Persistent Is the Data? . 65
How Much Data Is There? . 65
Is There Anything Else You Need to Consider? . 66

Getting Started with the Template . 67
Choosing the Right Template . 67
Exploring Other Templates . 67
Creating the Project . 68

Getting Started with the Data . 72
Introducing Core Data . 72
Building Your Data Model . 76

Summary . 78

Part 2: Storyboards: The Building Blocks of iOS Apps

CHAPTER FIVE
Walking Through the iPhone Storyboard. 81

Introducing Storyboards . 81
Looking at the Storyboarding Process . 82
Looking at Storyboarding for the Template . 82

Introducing the iOS Simulator . 83
Walking Through the Template and the Storyboard . 88

Looking at a Scene . 88
Considering View Controllers . 88
Considering Views . 90

Looking at a Segue . 90

T A B L E O F C O N T E N T S

i O S 6 F O U N D A T I O N Sxii

Looking at the Storyboard . 90
Looking at the Scenes in the Storyboard . 92
Looking at Segues and Relationships in the Storyboard . 93
Exploring the Navigation Controller . 93

Creating Your Own View Controllers . 94
Adding Objects from the Library . 98
Summary .100

CHAPTER SIX
Working with Storyboard Inspectors . 101

Looking at the Party Planner App .102
Using Outlets and Actions .104

Looking at Outlets .104
Looking at Actions .105

Exploring the Storyboard Inspectors .105
Using the File Inspector .106

Renaming Files and Classes .107
Changing File Location .107
Using Auto Layout .108

Using the Identity Inspector .108
Setting the Class .109
Setting the Label .109

Using the Attributes Inspector .110
Using the Size Inspector .111
Using the Connections Inspector .113

Connecting a Button (Overview) .114
Exploring the Three Icons Below a View Controller .114

Summary .117

CHAPTER SEVEN
Laying Out Your Scenes and Views . 119

Using Springs and Struts .120
Using Auto Layout .123

Understanding Intrinsic Content .124
Using Constraints .125
Working with Content Hugging .125
Using Content Compression Resistance .125

xiiiT A B L E O F C O N T E N T S

Setting and Editing Priorities .125
Working with Menus .126

Summary .128

Part 3: Building the Party Planner App

CHAPTER EIGHT
Building on the Data Model . 131

Expanding the Data Model .132
Expanding the Interface with Entities .132
Filling in the Attributes for the Entities .134
Building Relationships .136

Creating a Basic Relationship .136
Refining a Relationship .139
Next Steps .140

Building the Detail View Controller .142
Creating the Party Class from the Data Model .144

Looking at the Existing KVC Code .144
Creating the Classes from the Data Model .145
Looking at the Code .148

Summary .151

CHAPTER NINE
Building the Detail Data View. 153

Using the Party Class .154
Getting the Core Data Stack Info .155

Setting Up the Managed Object Model .157
Setting Up the Persistent Store Coordinator .158
Setting Up the Managed Object Context .159
Adding the Managed Object Context to the MasterViewController 159

Creating the New Managed Object .162
Setting Attributes of the New Managed Object .163
Saving the Managed Object Context .164

Connecting Interface Elements to Properties .164
Checking Existing Connections .164

Checking a Connection from the .h File .164
Checking a Connection from the Storyboard .166

Removing Existing Connections .166

i O S 6 F O U N D A T I O N Sxiv

Changing Existing Connections .167
Creating New Connections .167

Laying Out the Detail View .170
Cleaning Up the Experiments .170
Adding a Field to the Storyboard. .174
Adding More Fields to the Storyboard .176
Creating and Connecting the Properties .178
Displaying the Data .180

Creating the iPad Interface .180
Summary .181

CHAPTER TEN
Saving and Restoring Data . 183

Understanding the Editing Interface .185
Setting Up the Edit-Done Button .186

Handling Universal Apps .186
Setting Up the iPad Managed Object Context .187
Setting Up the iPhone Managed Object Context .188

Adding the Button .188
Implementing setEditing .189

Adjusting the Interface for Editing .189
Saving the Data .192

Moving the Data to the Party Instance .193
Saving the Data .194

Retrieving Data .198
Testing the App .198
Summary .200

CHAPTER ELEVEN
Testing the App with the Debugger . 201

Exploring the Debugger from a Basic Template .202
Setting Up the Debugger .204

Finding an Error. .204
Configuring Behaviors Preferences .205

Setting a Breakpoint .207
Inspecting Variables .208
Inspecting Objects .211

Writing a Console Message .212
Editing Breakpoints .214
Summary .215

T A B L E O F C O N T E N T S xv

Part 4: Using Table and Collection Views

CHAPTER TWELVE
Exploring the Table View in the Template 219

Introducing Table Views, Protocols, and Delegates .220
Looking at Table Views .220

Using Views on an iPhone .220
Using Views on iPad .225

Using Table Views for Data Display and Editing .228
UITableView High-Level Architecture .229
Introducing Protocols and Delegates .231

Exploring the Issue of Multiple Inheritance .232
Declaring a Delegate that Adopts a Protocol .233
Adopting a Protocol .233
Assigning an Object to a Delegate .233
Declaring a Protocol .234

Tracking Down the Protocol, Delegate, and Data Source Structure in UITableView . . . 235
Looking at the Master View Controller .238

Looking at the .h File. .238
Looking at the .m File .238

Summary .244

CHAPTER THIRTEEN
Formatting Table Cells . 245

Converting the Detail View to a Table View for iPhone .246
Clearing Out the Text Fields on iPhone .248
Adding the Table View on iPhone .252

Converting the Detail View to a Table View on iPad .257
Adding the Table View on iPad .257

Preparing the Prototype Cell in the Storyboard .262
Configuring and Returning a Single Table Cell .265

Setting the Detail Item .266
Using Accessors for Declared Properties. .266
Segues: Exploring the Difference Between Relationship

and Action/Manual Segues .268
Using a Custom Subclass of NSManagedObject for the Detail Item269
Configuring the Detail Item .271

Removing configureView .271
Implementing the Data Source Protocol for the Detail View Controller271
Implementing the Table View Delegate Protocol for the Detail

View Controller .272
Summary .274

i O S 6 F O U N D A T I O N Sxvi

CHAPTER FOURTEEN
Editing Table Views . 275

Modifying the Data Model to Store Row Sequence .276
Looking at the Fetched Results Controller Ordering .276
Adding a displayOrder Attribute .278
Refreshing the Data Store .282

Enabling the Table View Reordering Features .282
Moving the Rows and Saving the New Order .283

Rearranging the Elements in the Table View. .283
Calculating and Saving the displayOrder Property for a Move287

Adding a New Object .290
Deleting an Existing Object .292
Summary .293

Part 5: Interacting with Users

CHAPTER FIFTEEN
Telling Users the News: Alerts and NSError 297

Reviewing User Interaction on iOS .298
Analyzing an Alert .299

Thinking About a Save Alert .299
Planning to Handle the Error .300

Getting the User’s Perspective .300
Adding the Error’s Perspective .300
Adding Your Perspective .301

What You Must Do to Handle Errors .302
Implementing a Data Store Error Alert .303

Handling a Non-Error Error .303
Posting the Alert .305
Adding a Log Message .307

Summary .308

CHAPTER SIXTEEN
Getting Input from Users: Alerts and Action Sheets 309

Using Alerts with Multiple Buttons .312
Adding the Buttons .312
Handling the Buttons .313

Using Action Sheets .315
Looking at Action Sheets .315
Managing Action Sheets .316

Summary .317

T A B L E O F C O N T E N T S xvii

CHAPTER SEVENTEEN
Back to the Storyboard: Enhancing the Interface 319

Cleaning Up Some Loose Ends .319
Setting Up New Objects .320

Using Storyboards Today .320
Using the Utility Application Template .321
Using the Tabbed Application Template .325

Editing Basic Party Data .327
Reusing the Basic Detail Data Code .327
Editing the Storyboard .330
Adding the Segue to the Code .334
Adding the Navigation Bar and Buttons .335
Handling the Date Field .338

Converting the Text Field String to a Date .338
Converting a Date to a Text Field String. .339

Handling Relationships to Guests and Food .339
Handling Relationships with Static Fields .340
Handling Relationships with a Table View .340

Grouping the Detail View .340
Implementing the Guest View Controller .344

GuestViewController.h .345
GuestViewController.m .346
Connect the Guest View Controller to the Accessory View346

Summary .347

Index . 349

www.allitebooks.com

http://www.allitebooks.org

1

GETTING STARTED WITH iOS 6 is easier than ever. Long-time iOS program-
mers who started programming with iPhone OS all those years ago (in 2007) might
scarcely recognize the tools at their disposal. Some people thought that programming
iPhone—and later, iPad—was just too hard. And maybe it was, but the engineers at
Apple were working feverishly to transfer major aspects of app development from
external developers to in-house Apple engineers. The process accelerated with iOS 5
and, with iOS 6, newcomers to iOS development have a wealth of riches in the frame-
works and tools at your command.

Who Should Read This Book?
This book is for people who want to learn about developing iOS apps. It provides a
hands-on tutorial for you to develop your first app. Some people will use the book to
launch themselves on a career as an app developer. For others, the book will serve to
introduce the basics of iOS. This means that managers, clients, marketers, and others
who need to work with iOS can get up to speed.

The assumption in this book is that you know a programming language and the basics
of computer programming and software development. You don’t need an in-depth
knowledge of a programming language, and, in some cases, that may actually be a dis-
advantage. It doesn’t particularly matter which programming language you’re familiar
with, although if it is a modern object-oriented programming language such as C++,

Introduction

i O S 6 F O U N D A T I O N S2

C#, Java Python, and Ruby, that’s great. If you are familiar with the object-oriented features
of Perl and PHP, that knowledge will help you along the way.

What about “the basics of computer programming and software development”? Many people
(including many people in the technology world) don’t understand how software is devel-
oped today. Unfortunately, you can still find many books and courses that begin by teaching
you how to develop a basic program to do something like balance a checkbook. Leaving aside
for the moment the fact that most people don’t balance a checkbook manually any more
(online banking has changed all that), if your goal is to build the next killer app in the music
world or to manage a recycling center or whatever, that checkbook-balancing app may not be
relevant. However, if you want to write innovative apps for the 21st Century and the great
iOS operating system, this book is for you.

What You Will Learn
The first thing that you’ll learn is right here in this paragraph. iOS is the operating system of
iPhone, iPad, and iPod touch. It is written in Objective-C. The iOS software is developed with
the Xcode integrated development environment (IDE). iOS (as well as OS X) is a product of
Apple, as is Xcode. Although Objective-C is not an Apple product (there are several implemen-
tations), most people refer to Apple’s documentation for the last word on Objective-C and its
features. (There is no single published standard other than the Apple documentation.)

As a result of these three points, it is sometimes hard to discern where the operating system
and its frameworks end and the language begins, not to mention which features are imple-
mented in Xcode and which features are part of the framework or even the language. They all
work together in a seamless fashion. Don’t try to tear them apart and learn the language
separately from the frameworks or Xcode. Just remember that they are all part of an extraor-
dinary whole. As you work through the book, you’ll see how things fit together.

In Part I, “Introducing iOS 6,” you’ll see how the key components of your development envi-
ronment fit together. You’ll learn about the structure of iOS 6, and you’ll see how to
use Xcode. You’ll walk through the process of thinking about an app and see how to begin
defining it.

In Part II, “Storyboards: The Building Blocks of iOS Apps,” you get to work designing your
app’s interface. Some people think of the interface as an add-on, thinking that the code you
write is the real thing. Don’t fall into that trap; the interface is your app. It’s what people see
and use. The interface comes first, and the code is used to support it. This is particularly
important with iOS because, as noted previously, the functionality can be implemented in
the iOS framework itself, in the Objective-C language, in Xcode, or in some combination of

I N T R O D U C T I O N 3

them. But the storyboard—a step-by-step walk through the interface—brings them all
together.

And, yes, if you’re wondering if these storyboards are anything like storyboards for movies or
games, you’re right. Today’s storyboards can be traced to the Walt Disney studios in the
1930s. Look up storyboards in Wikipedia and you’ll see that long before iOS, they were used
to plan Gone with the Wind (1939). You’ll also find earlier references such as Constantin
Stanislavski’s use of storyboarding in theatrical productions in the 1890s.

In Part III, “Building the Party Planner App,” you’ll use the Core Data Model editor in Xcode
to build your data store using graphical tools. From there, you’ll move on to customize the
Xcode template that will become your app. In this section, you also learn how to save and
restore data and how to use the debugger.

In Part IV, “Using Tables and Collection Views,” you’ll see how to use a critical component of
iOS. Structuring data and allowing users to edit it is a common task for developers and users.
With the built-in table functionality, much of your work is already done for you.

Finally, in Part V, “Interacting with Users,” you circle back to the world of storyboards. There
are a number of specific user interface elements that need to be covered so that you can com-
plete your app. Here is where you find them.

How to Use This Book
There are no “reading police;” you can read this (or any) book when, where, and how you
want to. (Actually, there is one generally accepted taboo with regard to reading a book — do
not look at the last page of a murder mystery until you’ve read everything that comes before.)

That said, it’s important to note that the practical example in this book—the Party Planner
app— is built, chapter-by-chapter, as you read through the book. However, if you spot some-
thing that you want to explore out of sequence, it’s easy to do so. The example code in each
chapter is posted at wiley.com/go/treehouse/ios6foundations as well as on my web-
site at northcountryconsulting.com. If you want to jump into Chapter 12, for example,
you can download the code from Chapter 11 and modify it as you read on. (Note that the code
posted on the web for each chapter represents the code as it is at the end of the chapter.)

This book describes iOS 6. Many of the concepts have been introduced in previous versions,
but there also are new features that make their debut in iOS 6. This badge identifies those
new features.

i O S 6 F O U N D A T I O N S4

Using This Book with Treehouse

Just to be clear, you don’t have to be a Treehouse member to use this book. However, the
online videos at teamtreehouse.com do supplement the content quite nicely. When there
is a video that covers the same content that is being covered in the book, you will see the
Video icon in the margin and a link to the relevant video. Viewing all the videos and completing
badges is a good way of testing what you have learned in the book (and of showing off your
new skills to others).

If you ever get stuck on a concept in the book, Treehouse has a great community of members
who would be more than happy to help you. You can find them in the official Treehouse
members group on Facebook.

Ready to go? Let’s get started.

http://teamtreehouse.com/

part 1

Introducing
iOS 6

chapter one Getting Started with iOS 6

chapter two Getting Up to Speed with Xcode

chapter three Looking Ahead—Planning
Your App

chapter four Designing the Party Planner App

7

WELCOME! IT’S GREAT to welcome new developers to the world of iOS 6, and
I’m happy to help you get started. For most developers with experience on other plat-
forms, iOS is unlike the development environments they are used to. For starters, it
lets you build apps for some of the most exciting products today (and, indeed, for
many, many days). When you build an app for iPhone, iPod touch, or iPad you become
part of the exciting ecosystem centered on Apple’s extraordinary technologies and
designs. You can find many books, articles, and media stories about Apple, its prod-
ucts, and their designs. There is analysis and prognostication; there are books and
training materials for users. And there are books and training materials for that special
cadre of people who extend Apple’s handiwork: the developers.

This chapter gets you started as quickly as possible. You’ll see how to register as a
developer. After that, you’ll be able to download tools and documentation from
developer.apple.com. In this chapter you learn the basics of the Objective-C
programming language and the highlights of the history of iOS 6—how we got here.
Then you’ll find a high-level overview of the Xcode integrated development environ-
ment (IDE). Before you know it, you’ll be following the steps at the end of the chapter
to build your first iOS 6 app.

chapter one

Getting Started
with iOS 6

i O S 6 F O U N D A T I O N S8

Doing Your Homework
How did you decide to start developing for iOS? Some people use iOS devices and just want
to find out more about what makes them tick. Other people have an idea for a great app and
would like to build it themselves. Still others are IT professionals who want to expand their
skills to this new platform. And others are IT professionals who have been asked to find out
how to port an existing or planned project to iOS devices.

Getting Yourself Ready
No matter which category you find yourself in, you probably need to do a bit of homework
before you start. You should have some background in programming. It can be long ago or
recent, and it can be in advanced languages derived from C or in scripting languages such as
PHP. (As noted in the Introduction, some experience with object-oriented programming can
definitely help.)

You should be familiar with iOS from a user’s perspective. If you plan to develop for only one
of the devices (iPhone or iPad, perhaps), you can just explore that device and its features.
However, to fully understand the iOS ecosystem, it’s good to have both devices and to share
data between them using iCloud.

Apple has fairly aggressively pushed out new versions of its devices on roughly an annual
basis. It has followed a pattern of dramatically lowering the prices on the previous version of
each device as a new one becomes available. You may be able to find a model that is several
years old (you may even know someone who can give you one) that you can use for testing.
As long as you can install iOS 6 on it, you’ll have a test device and not have to worry about
mixing up your actual data with test data.

Adopting a Developer’s Point of View
When people use computers, they usually focus on a task that they need to accomplish. As a
developer, you need to learn a secondary focus: watch how people do things rather than what
they do. Develop this skill and use it to observe how people behave with iOS devices. You
have a perfect test subject: yourself.

When something goes wrong or doesn’t work the way you expect it to, don’t just push on to
try it another way. Take a moment to think back not so much about what you did wrong but
why you did it. Did you mistake one icon for another? (Perhaps the icon’s meaning wasn’t
clear.) Did you assume that an action would be carried out differently than it actually was? It
doesn’t matter if you made a mistake or if the app has a bug in it; in either case, something
broke the chain of logic in the user interface and the app. Get used to spotting and analyzing
these little glitches. Each one is a learning experience if you just pay attention to it before
moving on with the task at hand.

C H A P T E R O N E G E T T I N G S T A R T E D W I T H i O S 6 9

Exploring the App Store
As of this writing, Apple’s App Store has surpassed three quarters of a million apps. There are
all kinds of apps for all kinds of purposes. Explore the App Store to see what people are writ-
ing. If you have an idea for an app, look to see how other people are approaching the topic.

Even if you have an idea for your own app, continue browsing in the App Store in other
genres. Many apps are free, so download and install any that seem interesting in any way. If
you are planning to build an app for people to use for keeping track of livestock breeding, you
may spot an interface element in a game or other app that would be useful in your own app.
You can’t see every app in the App Store, but keep yourself up to date.

Reading Reviews
Read reviews on the App Store as well as reviews in the media, including blogs. Remember at
this point that you’re looking for points that reviewers pick up on, both good and bad. Listen
to friends as they point out what they like and dislike about the apps they use.

Understanding the App World—
Past, Present, and Future
For most people, the app world began in the summer of 2008. On July 10, the App Store
opened (it’s part of iTunes which received an update). The next day, July 11, the iPhone 3G
went on sale. It ran iOS 2.0.1. The phrase “there’s an app for that” was a key part of the mar-
keting of the new iPhone 3G. Before long, people around the world understood the basics of
apps that could be downloaded from iTunes directly onto an iPhone.

The app world is just a few years old. Every day, new people join it as they get their first iOS
device or, as in your case, they decide to start developing apps. As you explore this world,
keep a few critical milestones in mind to help you to make sense of information that you find
in your studies:

• As noted, the first release of iOS to developers was iOS 2 in July of 2008.

• iOS 3 in June of 2009 added new features such as copy-and-paste. (Yes, in case you
didn’t know or have forgotten, you didn’t have them at the start.)

• iOS 4 was released in June of 2010. iOS 4.2.1 in November supported the iPad.

• iOS 5, released in October of 2011 was the first unified release for iPhone, iPad, and
iPod touch.

• iOS 6 (the subject of this book) was released in September 2012.

i O S 6 F O U N D A T I O N S10

Along with new versions of the iOS operating system, the engineers at Apple were updating
OS X as well as Xcode, the tool for developers of both operating systems as well as third-party
apps. (Xcode is discussed later in this chapter and in Chapter 2, “Getting Up to Speed
with Xcode.”)

Xcode changes less frequently than the operating systems, but there have been very signifi-
cant changes accompanying the unification of iOS for all the iOS devices, as well as major
changes to the structure of Xcode itself.

Looking at the Master-Detail
Application Template
All of this background information matters because, as you browse the web and discussion
groups, it’s important that you know what version you’re looking at. Here’s an example of
how the evolution has taken shape. Xcode contains a number of templates that you can use
as the basis for your apps. One of the commonly used templates today is the Master-Detail
Application template for iOS (discussed more later in this chapter). It often serves as the
basis of apps, and it will serve as the foundation of the app that you will build throughout
this book. When you build the app, you can run it on the iPad simulator. Figure 1-1 shows it
running in the simulator in landscape mode.

Figure 1-1 Master-Detail Application template running on the iPad simulator in landscape mode.

What you see in Figure 1-1 is an iPad feature called a split view. It combines two views in one.
(Settings uses this architecture so you may recognize the bare bones of the design.) On the

www.allitebooks.com

http://www.allitebooks.org

C H A P T E R O N E G E T T I N G S T A R T E D W I T H i O S 6 11

left, a master view lets you look at an overview; on the right, a detail view shows details for the
selected item in the master view. When you tap the + at the top of the master view, a new item
is added to the list. By default, the template simply inserts placeholder data (a timestamp).

When you rotate the simulator (you’ll learn how to do that in Chapter 2), you’ll see that the
master view disappears (because there isn’t room for it). Figure 1-2 shows the simulator in
portrait mode.

Figure 1-2 Master-Detail running on the iPad simulator in portrait mode.

However, there’s a Master button in the top bar that will let you open a popover with the
data. Tap the button, and the master view slides in from the left as you see in Figure 1-3. You
can push the master pane back to see whatever it hides.

i O S 6 F O U N D A T I O N S12

Figure 1-3 Tap the button to show the master view in portrait mode.

One of the architectural changes to both Xcode and iOS is the result of the introduction of
storyboards and the concept of universal apps. You can use that combination to write a single
app that behaves and looks right on both iPhone and iPad. Furthermore, with the Auto
Layout features introduced in 2012, apps can also adjust to changing screen sizes, as hap-
pened with iPhone 5 and with iPad mini. Auto Layout lets you handle both changes in screen
size and changes in aspect ratio (the latter being reflected in the difference between iPhone 5
and previous models).

C H A P T E R O N E G E T T I N G S T A R T E D W I T H i O S 6 13

Because the template has universal code in it, you can run the same code on the iPhone
simulator. However, because the screen size in iPhone is smaller than in iPad, you can see
only one view at a time. Figure 1-4 shows the master view.

Figure 1-4 Master-Detail running on the iPhone simulator in portrait mode, in master view.

From the master view, tap on the item you want to switch to the detail view, as shown in
Figure 1-5. You can click the Master button to toggle back.

Also, as part of the template, the views adjust to device orientation as you see in Figure 1-6.

All of this is part of the template: you don’t have to write anything.

The reason for showing you this sneak preview of the tools you have available is to point out
that much of what you’re seeing is very new. In some cases, the best advice from two years
ago is outdated today.

i O S 6 F O U N D A T I O N S14

Figure 1-5 You can toggle between the master and detail screens on iPhone.

Figure 1-6 The views rotate properly.

C H A P T E R O N E G E T T I N G S T A R T E D W I T H i O S 6 15

Registering as a Developer
Have you registered as a developer at developer.apple.com, the website of Developer
Technical Services (DTS)? It’s a simple process, and it formalizes your status in the community
of developers. Actually, there are several statuses for you to choose among. Most people register
as an individual; at the time of this writing, it costs $99 for a year. That entitles you to online
access to Apple’s documentation, the critical development tools that are centered on Xcode,
developer previews of new technologies including the operating systems, and, occasionally, invi-
tations (free or priced) to certain Apple events. Most important to many developers, you gain
access to the App Store so Apple can distribute your apps whether they are free or priced. (And
you get 30 percent off the price of the app as well as 30 percent of the price of in-app purchases.)

In addition, you get two technical support incidents that you can use to ask Apple engineers
for advice. You can send them your code and ask them why something is happening (or why
something isn’t happening). You can purchase more incidents for $50 each. There are sepa-
rate programs for iOS, OS X, and Safari (Safari is free).

When you look at developer.apple.com, you’ll see that you have other choices than an
individual program. You can register as a business (if you are legally constituted as a busi-
ness). You can register through an educational institution that pays the fee for all of its stu-
dents, and you may find other options on developer.apple.com. Take the time now at
least to register on developer.apple.com. You can come back later to choose which
program(s) you want to join. The basic free registration gives you access to the basic resources
(but not the App Store). Free registration consists of providing or creating an Apple ID. At
that time or later, you can associate that developer account with a specific program.

When you become an iOS developer, you’re not alone. There are online communities and
discussion boards where you can meet other developers. In many places, there are local orga-
nizations of developers. You can find a local group by looking on sites such as meetup.com
or by asking in an Apple Store or a third-party store that sells Apple products. If you can’t
find a local group but are planning to travel to a larger city nearby, take the time to inquire in
that city’s Apple Store; you may get a suggestion of a group near you or the email address of
someone else who is interested.

While on the topic of traveling, as a registered developer you may get an invitation to Apple’s
Worldwide Developers Conference (WWDC). It is usually held toward the beginning of June
in San Francisco. As of this writing, it’s limited to 5,000 attendees, and in 2012 it sold out in
less than two hours. To date, the limit on attendees has depended both on the size of the
venue and on the fact that scores of Apple engineers attend both to present sessions during
the week and to be available for consultations with developers. There are drop-in labs for just
about every aspect of the operating systems, where you can ask your questions and ask for
advice. It’s an in-person version of DTS.

If San Francisco seems far away (or tickets are not available), have no worries—videos of
the sessions are posted usually within two weeks of the conference. The entire conference is

http://developer.apple.com

i O S 6 F O U N D A T I O N S16

covered by non-disclosure agreements, so the only legal way to access these videos is by
being a registered developer. (An exception is the keynote opening session; reporters are
invited to it and are invited to write about it. You can usually sit comfortably at home and get
the highlights of the keynote on your TV news.)

WWDC affects every Apple developer because it serves as the annual conference to bring
developers up to date. Having so many developers together either on-site or through video
means that Apple has a chance to preview new features and to explain existing ones. A public
release of one of the operating systems (often OS X) within a month or so after the confer-
ence is common. In 2012, OS X 10.8 Mountain Lion was released a few weeks after WWDC,
and iOS 6 was released three months later. Apple’s hardware announcements have recently
come in the fall and spring.

That’s the crux of what you need to know as a new Apple developer. And here’s a tip for you:
When you meet other developers at any kind of event such as a Meetup, an Apple Store, or
an Apple event, you will always be asked the same question. Don’t be surprised. Now that
you’re part of the community, you’ll be asked if you’re working on an app. The answer is
“Yes.” You’re reading this book and starting on the road to your first app.

Introducing Basic Programming Concepts
Many people begin learning the basics of programming by writing a short program—often
one that displays simple text, such as “Hello, World.” Depending on the language, you can do
this in a single line of code or a few (see the article “Hello world program” on Wikipedia to
find out much more). This is the basic code:

main()

 {

 printf(“hello, world”);

 }

It’s been more than a quarter century since the first days of Hello World, but many people
still learn with this first step in programming. Unfortunately, programming today isn’t the
linear step-by-step process that Hello World suggests. Technology has moved beyond the
linear process of early programming languages into a world of objects and non-linear control.

In its developer documentation, Apple has a 20-page document that shows you how to write
a Hello World program. In part, the difference between 20 pages and three lines of code
reflects the development environments. In order to write a Hello World program, a few lines
of code is sufficient; on the other hand, to use the panoply of developer tools in Xcode and
iOS to do that is overkill. However, what developers have learned over the last decades is
that the line-after-line model of writing code doesn’t scale well. If you want to write an app in
the style of Hello World, you’ll be at it for quite a while.

C H A P T E R O N E G E T T I N G S T A R T E D W I T H i O S 6 17

In order to build the powerful, complex, and attractive apps that people want today, you
need more complex tools than a keyboard and an empty file. In this section, you visit some
of the concepts behind the tools. The details are covered in the remaining chapters of
this book.

Object-Oriented Programming in Objective-C
If you have experience in programming languages (and you should know at least one to get
the most out of this book), you may be put off when you first see the language of iOS,
Objective-C. What jumps out at people the first time is the brackets. Here’s a line of
Objective-C code:

self.detailViewController =

 (DetailViewController *)

 [[self.splitViewController.viewControllers lastObject]

 topViewController];

Don’t panic. Before long you’ll understand the brackets and be able to parse that line of code.

Objects in Objective-C
Object-oriented programming is the predominant programming style today. In it, objects are
created that combine data and logic. A code object often corresponds to a real-world or on-
screen object. In Figure 1-1, you see a split view. At the left, you see a master view, at the
right, you see a detail view, so you have a total of three views. These are objects on the screen
as well as objects in the code.

Objects can refer to other objects, and they do not have to be visible. The three views shown
in Figure 1-1 are each contained within another object—a view controller object that’s not
visible itself. People usually talk about the view controllers rather than the views they con-
tain. Thus, it is appropriate to say that the split view controller in Figure 1-1 contains both a
master view controller and detail view controller. Each of those three view controllers con-
tains a view, and those views are what the user sees.

In Objective-C, an object is defined as a class. You write code for the class. The code defines
the logic of the class, which is embodied in methods. (These are somewhat analogous to func-
tions in C++ and similar languages, but they differ in a critical point, which is explored in the
following section, “Messaging in Objective-C.”) A class may also have properties. These define
data elements (more specifically, they provide accessors to the class’s data elements).

When the code is executed, a class can be instantiated. This means that there is a memory
location set aside for the code and properties of the class. It is real. An instance of a class can
store data in its properties, and it can execute the code in its methods. It is common to have

i O S 6 F O U N D A T I O N S18

multiple instances of a class at runtime, but in some cases there is only one (and in many
cases, you write code for classes that are instantiated only under specific circumstances).

As in any object-oriented language, objects can be based on other objects. In Objective-C, a
built-in class such as a view controller embodies the basic functionality required for all view
controllers. In your own app, you may subclass the built-in UIViewController class that is
part of Cocoa Touch with your own class. In fact, the Master-Detail Application template
does it for you: you have a MasterViewController and a DetailViewController
class. They are subclasses of UIViewController, and they inherit the methods and proper-
ties of UIViewController. You can see these files at the left of the Xcode window shown
in Figure 1-7. (You learn more about Xcode in Chapter 2.)

Figure 1-7 The project’s files are shown at the left of the Xcode window.

You may notice that there are pairs of files for the classes. A file with the .h extension con-
tains the headers—the declarations of the class’s methods and properties. A file with the .m
extension contains the definitions of the properties and methods—the code that imple-
ments them.

This is a very high-level overview of Objective-C. As you read on, you’ll find out more about
these basic principles.

C H A P T E R O N E G E T T I N G S T A R T E D W I T H i O S 6 19

Messaging in Objective-C
The most important point to understand is that Objective-C is a dynamic, messaging lan-
guage. In traditional programming languages such as C, each line of code is executed, one
after another. Control statements let you alter that line-by-line execution. You can go directly
to another line of code (a technique now frowned on) or you can execute code conditionally
or in loops.

You an also write functions or subroutines. They are executed line-by-line, just as your main
program is. However, they can be called from your main program. Thus, in your main pro-
gram, you execute the code line by line, but, if you call a function or subroutine, control
passes to that code and then returns to the next line in your main program.

The printf function in the Hello World program shown earlier is a built-in function of C.
Control is transferred to printf and, when it’s completed, it returns to the main program.

In other object-oriented languages such as C++, you can instantiate an object just as you can
in Objective-C. Once you have an instance of an object, you can call a function within it just
as you call the printf function. When your code is compiled, these links are set up.

Objective-C uses a messaging model rather than a calling model. At runtime, you create an
instance of an object just as you would in another language. However, rather than calling a
function, you send a message to the object. That message causes a method in the object to
execute. It is very similar to calling a function, but there is a critical distinction. When you
call a function in another language, the function you are calling must be defined, and your
main code must identify the function to be called. In Objective-C, you send a message to an
object, and, it is quite possible that what that object is will not be defined until runtime.
Thus, some of the error checking that occurs in the compiler for other languages is done at
runtime. This allows for a great degree of flexibility.

For now, just remember that you are sending messages rather than calling functions. As you
start to develop code, the distinctions will start to make more sense.

Frameworks
When you’re writing an app, you rarely start from a blank piece of paper or an empty file. Xcode
has built-in templates that are functional, so your job is to enhance and customize them. As a
developer, you have access to a great deal of sample code on developer.apple.com. There
is also more code on the web (but remember to be careful to use only current code).

Within iOS, you will find a number of frameworks. These are collections of classes that can
work together to provide functionality. You can also develop your own frameworks, but in
this book, the emphasis is on the provided frameworks. As you start to get a sense for the
major frameworks, you’ll see what is already built into iOS.

i O S 6 F O U N D A T I O N S20

iOS is the operating system for iPhone, iPad, and iPod touch. You implement your apps using
the Cocoa Touch application programming interface (API). Cocoa Touch—the API—is the
language used by developers. iOS is used by developers, marketers, and users.

Graphical Coding
There’s another difference between developing with Xcode and iOS and writing Hello
World—some of your coding doesn’t involve typing code. When you get around to develop-
ing your interface, you draw it with Interface Builder, which is part of Xcode. When you want
to link objects in the interface such as buttons to the code that runs them, you simply drag
from the button to the code in your file.

You also use graphical coding to set up data relationships; you use graphical elements such as
checkboxes to manage your project’s settings. There is a lot of code to type, but there is also
a lot of non-typed coding to do.

Model-View-Controller
The last major concept to think about is model-view-controller (MVC) architecture. It was
developed in the 1970s at Xerox PARC, and was first used in the Smalltalk language. When
Objective-C was designed in the 1980s it adopted MVC, and it remains a linchpin of the
architecture.

MVC organizes the objects in an object-oriented system. This organization creates triplets of
objects that implement a model, a view, and a controller. Simply put, a model is data. A view is
a representation of the data along with the controls to work with it. The model knows nothing
about the view, and the view knows nothing about the model. This makes for highly portable
and maintainable code. It also reflects the fact that with both models and views, you, the
designer, can exercise a great deal of logical control. In addition, as you will see with Xcode,
graphical user interfaces to design your model and your view are available for you.

The complexity lies with the controller object. The controller knows about both the model
and the view. Most of what seems like “real” coding is done in the controller.

You have already seen views in Figure 1-1. Although there is no visual representation of a
view controller itself, you have learned that each view has a view controller. As for the model,
when you build a project from an Xcode template, you often have a choice of using Core Data
for the model or of using another technique.

C H A P T E R O N E G E T T I N G S T A R T E D W I T H i O S 6 21

In the next section, you will see how to set up your data model. It’s not terribly complicated:
just a checkbox. So it’s on to building your first project. It will be the Master-Detail Application
shown in Figures 1-1 to 1-7.

Installing and Using Xcode
Until Xcode 4, installing Xcode was a bit complicated. Now, Xcode is installed just as any
other app from the Mac App Store. Go to the Mac App Store, and search for Xcode. Then
“buy” it, and it will be downloaded and installed automatically. You’re ready to go.

Xcode is free, but the operation of installing software through either app store (Mac or iOS)
is called a purchase even if there is no charge. It is also important to point out that from
time to time, developers have access to pre-release versions of Xcode. They are available for
download from developer.apple.com.

The following steps walk you through an overview of the Xcode process that will enable you
to build the Master-Detail Application and run it as you have seen in this chapter.

 1. Buy and install Xcode.

 2. Launch Xcode. You will see the screen shown in Figure 1-8.

Figure 1-8 The Xcode Welcome screen.

i O S 6 F O U N D A T I O N S22

 3. From the menu, select Create a new Xcode project.

 4. As shown in Figure 1-9, you can select from the built-in templates for iOS and OS X.
Select the Master-Detail Application in iOS, and click Next at the lower right.

Figure 1-9 Select the Master-Detail Application template.

 5. On the next screen, fill in the information requested, as shown in Figure 1-10.

a. The name of the product and your organization name are up to you.

b. By convention, the company identifier is a reverse domain name, which is guaran-
teed to be unique.

c. You can omit the class prefix.

d. For devices, choose universal to create both iPad and iPhone versions.

e. Mark the checkboxes at the bottom to use storyboards and use automatic refer-
ence counting. If you want Xcode to flesh out your model with Core Data, check
that checkbox. (It is not used in the example files you can download for this book.)

 6. Click Next to continue.

 7. On the next screen, choose the location for the project’s files. Click Next. Xcode creates
the files for you and opens the project, as you saw in Figure 1-7.

C H A P T E R O N E G E T T I N G S T A R T E D W I T H i O S 6 23

Figure 1-10 Fill in the project’s options as indicated.

 8. Click the Run button at the top left of the window shown in Figure 1-7 to build and
run the project. Use the pop-up menu to the right of the Run button to choose whether
to run the project on the iPad simulator or the iPhone simulator.

 9. Run your project. You’ll see the precursors of the images you see in Figures 1-1 to 1-6.

Summary
This chapter showed you how to prepare to be an iOS developer. You should practice looking
at apps with a new eye—look at how they do things in addition to what they do. You have
some familiarity with the basic principles and concepts of iOS; you’ll learn more about the
specifics later in the book. You also should have installed Xcode as described in this chapter.
You should follow the steps to build your first project from the built-in Master-Detail
Application template. It’s important to do this now so that if, by some chance, there is an
error in your Xcode installation, you catch it before moving on.

In Chapter 2, you explore Xcode itself. It has powerful tools to help you build your app. (It is
actually the same tool that the engineers at Apple use to build iOS itself.)

25

YOU’LL BE SPENDING a lot of time with Xcode, the integrated development
environment (IDE) for iOS and OS X. Xcode is one of the three interlocking pieces of
iOS development (the other two are the Cocoa Touch framework and the Objective-C
language). This chapter guides you through using Xcode. In Chapter 1, “Getting Started
with iOS 6,” you saw the basics of how to create a new project with Xcode (refer to
“Installing and Using Xcode” in Chapter 1). You even created a fairly complex project
from a template and ran it with a click of the Run button.

Now it’s time to look deeper into Xcode. In this chapter, you’ll look at the Xcode inter-
face and the tools that are available to you. By the end of this chapter, words and
phrases such as “project,” “workspace window,” “navigator,” “inspector,” “library,” and
“utilities” will be familiar to you, and you’ll see how to use these Xcode tools.

One chapter—or even one book—can provide just an introduction to Xcode. Bear in
mind that Xcode is used internally by the engineers at Apple for the software that they
build. This means that it’s designed not only to help you build your own apps, but it’s
also designed to let the engineers build OS X and iOS, too, along with other Apple soft-
ware such as the iWork suite, iBooks Author, and the built-in iOS apps such as
Messages, Calendar, and Reminders. You don’t have to worry about getting stuck
building a project that outpaces Xcode.

chapter two

Getting Up to Speed
with Xcode

I O S 6 F O U N D A T I O N S26

Many tools for analyzing code and performance are built into Xcode or are provided as
additional tools. What you’ll learn in this chapter and in the rest of this book is how to
build a basic iOS app. When you want to move on to more complex apps, Xcode and the
developer.apple.com website will be there for you.

Using the Workspace Window
Xcode has a single window with a multitude of sections, each of which lets you manage dif-
ferent types of operations. It’s called a workspace window. You can show or hide various parts
of the workspace window as you see fit. You can open several workspace windows at a time if
you are working on several projects. Xcode supports full-screen views, and, in fact it is one of
the apps that most benefits from the use of the full screen.

This section introduces the basic controls for showing and hiding the parts of the workspace
window. Following sections delve into the specific areas that you use to edit code, work with
project files, and perform operations on your code and objects.

Most people who use Xcode show and hide the various sections of the workspace window as
they go along. Perhaps the easiest way to introduce you to the window is not to show the full
window with a lot of arrows and labels, but, rather, to start by showing you the smallest pos-
sible workspace window and then show you how you can add components to it.

Figure 2-1 shows you a workspace window. The Editor area takes up most of the window. At
the very top is the jump bar.

Figure 2-1 Editor in a workspace window.

C H A P T E R T W O G E T T I N G U P T O S P E E D W I T H X C O D E 27

Note the full-screen control in the top right of the window. It lets you switch back and forth
between a window view and a full-screen view.

Most people find that to get the most out of Xcode, using the on-screen controls is often
more efficient than using the corresponding menu commands. In this chapter, Xcode and its
workspace window are presented based on what you see. Menu commands, where they exist,
are noted. The first part of this chapter walks you through the interface. In the second part,
you’ll see how to perform common tasks such as editing your code. You may want to switch
back and forth; indeed, you may want to bookmark this chapter and refer to it periodically as
you encounter new tasks in the course of this book.

Exploring the Jump Bar
The jump bar appears above the Editor area at all times. It consists of three basic sections.
From the left, they are the related items pop-up menu, the back/forward navigation buttons,
and the navigation levels.

Related Items Pop-up Menu
Figure 2-2 shows the related items pop-up menu in action. Based on the file that is shown in
the Editor area, you can choose from various types of related files and open them directly
from the pop-up menu.

Figure 2-2 The related items pop-up menu.

I O S 6 F O U N D A T I O N S28

This is an incredibly powerful tool that can save you an enormous amount of time as you are
working in Xcode. However, there is much more you can do to improve your productivity. In
Xcode’s General preferences, shown in Figure 2-3, you can choose the behavior of modifier
keys when you open a file—including from the related items pop-up menu. You open all the
Xcode preferences using Xcode➜Preferences or ⌘-, (comma).

Figure 2-3 Set General preferences.

It is worthwhile exploring the preferences as you work with Xcode because you will gradually
see how they work together. In Figure 2-3, for example, you can see that the option is set for
optional navigation (holding down the Option key) so that the file that you’re opening will
open in a single assistant editor. An assistant editor shows two files side by side (or above
and below) one another. Thus, you can look at an interface file next to its implementation, as
shown in Figure 2-4.

You can also choose a separate assistant editor, as shown in Figure 2-5. This will add another
assistant editor to the window. (Note, too, that editors need not be text only—in Figure 2-5
you see Interface Builder, which lets you use a graphical user interface to edit your app’s
interface.)

C H A P T E R T W O G E T T I N G U P T O S P E E D W I T H X C O D E 29

Figure 2-4 Use a single assistant editor.

Figure 2-5 Add separate assistant editors.

I O S 6 F O U N D A T I O N S30

To revert to the standard editor shown in Figure 2-1, choose View➜Standard Editor➜Use
Standard Editor. Alternatively, use the small X at the top right of each assistant pane to close
that pane. When you close the last pane, the standard editor will be shown.

Back/Forward Navigation Buttons
The related items pop-up menu lets you navigate easily through your code based on the rela-
tionships among your files. Sometimes, you want to simply go back to the previous file. The
back/forward buttons to the right of the related items pop-up menu function the way that
similar buttons work in web browsers.

Using the Jump Bar to Navigate
The main part of the jump bar lets you navigate through the levels of your code. Each of the
levels in the jump bar lets you choose from the relevant files. From the left of the jump bar
levels, the first item lets you choose top-level items such as your project. Next, you can
choose from the groups in your project (groups are discussed in the Navigator area later in
this chapter). From within a selected group you can choose the specific document you want
to view. And, if applicable, a final button will let you choose among the syntactical elements
in that document (methods, for example).

Exploring the Toolbar
Xcode has a toolbar at the top of the window. You can show or hide it in a window view; it is
always shown in full-screen view. If you switch into full-screen view with the control at the
top right of the window, the toolbar will appear, as shown in Figure 2-6. The menu bar at the
very top of the screen appears only when the mouse is over that area. Otherwise, it is hidden.
In a window view, you can show and hide the toolbar with the commands in the View menu.

The toolbar has seven areas.

• Building and running projects

• Choosing a scheme

• Enabling and disabling breakpoints

• Status

• Editor buttons

• View buttons

• Organizer

www.allitebooks.com

http://www.allitebooks.org

C H A P T E R T W O G E T T I N G U P T O S P E E D W I T H X C O D E 31

Figure 2-6 The toolbar is always present in full-screen views.

Building and Running Projects
The most commonly used controls for most people are at the left of the toolbar. The Run but-
ton builds and runs the current project. The Stop button stops it.

There are commands in the Product menu that that also let you build and run the project.
Product➜Build (⌘-B) and Product➜Run (⌘-R) are the most commonly used. Another fre-
quently used command is Product➜Clean (⌘-K), which cleans out all compiled code and
recompiles everything. Sometimes, if you’ve been doing a lot of reorganizing in your code,
cleaning it will get rid of some miscellaneous errors that have arisen.

Choosing a Scheme
The scheme lets you select where your app will run. As part of the standard Xcode installa-
tion, you have a simulator for both iPhone and iPad. You can choose to run it on either one.
You also can attach an iPhone or iPad to your Mac with a cable; in that case, you can choose
to run your app on the iOS device. These options are shown in Figure 2-7.

I O S 6 F O U N D A T I O N S32

Figure 2-7 Select the scheme to use.

Running on a device requires that it be provisioned through developer.apple.com. There
is more information there for registered developers.

Enabling and Disabling Breakpoints
Breakpoints are covered in Chapter 11, “Testing the App with the Debugger.” The Breakpoints
button in the toolbar simply turns them all on or off. It’s often faster than modifying set-
tings in the debugger.

Activity Viewer
In the center of the toolbar, the Activity Viewer lets you see what’s happening inside Xcode.
When you are building an app, a progress bar tracks its progress. If you encounter warnings
or errors, the number of them is shown in the Activity Viewer. You can click on the number
to view the issues.

Editor Buttons
To the right of the Activity Viewer are the three Editor buttons. You use them to switch
among the standard editor, the assistant editor, and the version editor. The standard editor,
shown in Figure 2-1, is where you normally edit and view your source code. As you saw in
Figure 2-4 in the section, “Related Items Pop-up Menu” earlier in this chapter, you can open
related items side by side (or above and below) so that you have multiple files open at a time.

C H A P T E R T W O G E T T I N G U P T O S P E E D W I T H X C O D E 33

I chose to set up the preferences as shown in Figure 2-3. Thereafter, I can simply open the
necessary file. However, if you want, you can use an Editor button to switch between the
standard and assistant editor and then, in a second step, you can choose the file(s) to show.

The version editor is used to compare changes in a single file shown in before and after versions.

View Buttons
There are three View buttons farther along the toolbar to the right. As shown in Figure 2-8,
the first of these shows and hides the Navigator area at the left of the workspace window.

Figure 2-8 Show the Navigator area.

The View button on the right side of this group of buttons shows and hides the right-side
Utility area of the workspace window, as you see in Figure 2-9.

The button in the center lets you show and hide the Debug area below the Editor area. You
can use these buttons in combination. Figure 2-10 shows a full-screen view of the workspace
window with the left-side Navigator area and the right-side Utility area both shown, along
with the Debug area below the Editor area. (The Editor area can never be hidden.)

I O S 6 F O U N D A T I O N S34

Figure 2-9 Show the Utility area.

Figure 2-10 You can show any of the areas as you want.

C H A P T E R T W O G E T T I N G U P T O S P E E D W I T H X C O D E 35

Organizer
The Organizer, shown in Figure 2-11, always opens in its own window. It lets you organize
devices and documentation. You’ll find out more about it later in this chapter in the section
on Quick Help.

Figure 2-11 Use the Organizer.

Selector Bars
Finally, note in Figure 2-10 that at the top of the Editor area, you have the jump bar. At the
top of the other areas, you have small selector bars with options and icons in them that let
you control those areas. These bars will be discussed in the appropriate sections later in this
chapter.

Exploring the Tab Bar
The tab bar, which can be shown or hidden from the View menu, appears just below the tool-
bar and above the jump bar in the Editor area (as well as above the selector bars in the
Navigator and Utility areas if they are shown). You can see the tab bar in Figure 2-12.

I O S 6 F O U N D A T I O N S36

Figure 2-12 Show the tab bar.

You can use General preferences, as shown in Figure 2-13, to open files automatically in tabs.

Figure 2-13 Set preferences to open files in tabs.

Using Projects
When you create a new Xcode project from a template, you may see the project summary, as
shown in Figure 2-14.

C H A P T E R T W O G E T T I N G U P T O S P E E D W I T H X C O D E 37

Figure 2-14 View the project summary.

For most of the templates you’ll be using, you will have a single project and a single target—
both have the name you provide when you create the project, as described in “Installing and
Using Xcode” in Chapter 1. The default settings are usually correct, so you can just continue
to write your code.

You should be aware, however, that Xcode can handle much more complex projects. You can
have a project with multiple targets—for example, different devices or different versions of
iOS. You also can have a workspace that contains several projects. The most common con-
figuration is a workspace that contains one project for OS X and another for iOS. Such a
workspace may often have a third project that contains shared code.

For now, a single project and target is a good way to get started.

Exploring the Editor Area
The heart of Xcode is the Editor area where you edit your code. You have probably used edi-
tors before in other programming environments. Xcode may be a little different. For starters,
the Editor area displays a different editor for each type of file you edit.

Figure 2-15 shows one of the editors: Interface Builder. It lets you build your interface graphi-
cally. You’ll find out more about it in Part II, “Storyboards: The Building Blocks of iOS Apps.”

I O S 6 F O U N D A T I O N S38

Figure 2-15 Set preferences to open files in tabs.

Figure 2-16 shows the Core Data Model editor—another graphical user interface to your
programming. Core Data can be the topic of an entire book, but you’ll find an overview in
Chapter 10, “Saving and Restoring Data.”

Figure 2-16 Core Data Model editor.

C H A P T E R T W O G E T T I N G U P T O S P E E D W I T H X C O D E 39

Using Editing Preferences
Many people use the standard editor with the default settings. This means you can just start
to enter code (or, more likely, modify code in a template). If you do want to customize the
Text Editing preferences, you find them in Xcode➜Preferences. There are two tabs for text
edit: Editing and Indentation. Figure 2-17 shows the Text Editing preferences.

Figure 2-17 Set editing preferences.

Many of these are fairly standard code-editing settings that you may have found in other
development environments, and they are self-explanatory.

Using Code Completion
What is likely to be new to you is the code completion section. Xcode monitors your key-
strokes and can alert you to potential errors. It also can suggest completions for what you’re
typing. You’ll find out more about this in the section called “Using Fix-It,” later in this section.

Handling Indentation
As you can see in Figure 2-18, Xcode is able to smartly indent your code. This is because it is
constantly monitoring what you’re typing to determine what the syntax is. It is important to
note also that you can choose to have the Tab key use tab characters or multiple spaces to
manage indentation.

I O S 6 F O U N D A T I O N S40

Figure 2-18 Set preferences for indentation.

Using Fix-It
As you can see in Figure 2-19, Xcode’s Fix-It feature can flag potential errors and suggests fixes.

Figure 2-19 Fix-It can flag and fix errors.

If you want to accept the Fix-It suggestion, just press the Return key. As you get used to
working with Fix-It, you’ll notice that as you type, Fix-It may discover errors that will be

C H A P T E R T W O G E T T I N G U P T O S P E E D W I T H X C O D E 41

solved as you continue typing. Don’t automatically accept Fix-It suggestions, because some-
times they are just a result of your typing speed. However, you’ll soon see that when that
bulls-eye symbol pops up in the gutter at the left of the editor, you can quickly prevent or fix
an error. In general, the closer the correction is to the moment at which you cause an error,
the easier it is to fix.

Using Code Completion
Code completion (shown in Figure 2-20) suggests one or more completions for the code you
are typing. The more characters you type, the fewer the number of suggestions that are avail-
able to you because you are narrowing the scope of what code completion needs to do.

Figure 2-20 Using code completion.

Code completion often takes the format shown in Figure 2-20. This is the declaration of a
method (the M indicates method). The actual code completion if you press Return or click
that line will be super awakeFromNib because the void is part of the method declaration.
Having the full declaration can help you decide which of several possible completions you
want to use.

I O S 6 F O U N D A T I O N S42

The “Using Quick Help” section, later in this chapter, is relevant to editing code. You may
want to jump ahead to that section now.

Exploring the Navigators
You can show or hide the Navigator area with the View button in the toolbar or by using the
View➜Navigators submenus. The buttons in the selection bar at the top of the navigator
correspond to the submenu commands and their keyboard equivalents:

• Show Project Navigator ⌘-1

• Show Symbol Navigator ⌘-2

• Show Search Navigator ⌘-3

• Show Issue Navigator ⌘-4

• Show Debug Navigator ⌘-5

• Show Breakpoint Navigator ⌘-6

• Show Log Navigator ⌘-7

Using the Project Navigator
The project navigator is where you manage your project’s file. Located at the left of the work-
space window, it can be shown or hidden with the left-most View button at the right of the
toolbar as long as with the keyboard equivalents shown previously for individual navigators.
The keyboard equivalent to hide the Navigator area is ⌘-0.

At the top of the navigator, you will find the project itself. A disclosure triangle lets you open
or close the project. If you select the project, you see the summary shown at the right of
Figure 2-21.

C H A P T E R T W O G E T T I N G U P T O S P E E D W I T H X C O D E 43

Figure 2-21 The project navigator.

Using Groups
You can organize your files into groups in the project. In the project navigator, those groups
are indicated by folder icons that you can open or close. However, if you look on disk, you’ll
see that they do not represent actual folders. This means that you can organize your project’s
groups without regard to where the files actually are on disk. (This is particularly important
on multi-developer projects.) You can drag files around in the project navigator; you can
move them in or out of groups as you see fit.

You can select multiple files in the project navigator and use Control-click to bring up the
shortcut menu shown in Figure 2-22. Use the New Group from Selection command from
that menu or choose File➜New➜Group from Selection to create a new group that contains
your selected file. You can click the group name to change it. (Note that it’s best to change
filenames with the Edit➜Refactor command. It is described in Chapter 4, “Designing the
Party Planner App.”)

I O S 6 F O U N D A T I O N S44

Figure 2-22 Create a new group from selected files.

Spotting Missing Files
Some of the filenames may appear in red. This indicates that the file is missing. When you
first create a project from a template, the app file itself (Test App.app in the figure) is red:
as soon as you successfully build it, the filename appears in black.

Using the Navigator Controls
At the bottom of the navigator, you find a row of controls. The one on the left lets you add
new files to the project, as shown in Figure 2-23.

The first command lets you create a new file from a template (there is an Empty template in
the Other category if you want a blank file). The interface is shown in Figure 2-24.

If you choose to create a new file, you can choose from the templates shown in Figure 2-24.
The details of creating files from templates and setting options are shown in Chapter 4.

C H A P T E R T W O G E T T I N G U P T O S P E E D W I T H X C O D E 45

Figure 2-23 Add new files.

Figure 2-24 Create a new file for your project from a template.

I O S 6 F O U N D A T I O N S46

You can name the file and give it a location on disk just as you would with any file. Once you
have created it, you can move it around in the project navigator. You might want to group
files with similar purposes in their own groups.

Rather than create a new file, you can add an existing file from your project, as shown in
Figure 2-25.

Figure 2-25 Add an existing file to your project.

As you can see in Figure 2-25, you have a choice of copying the added file into your project.
Most of the time, that is the choice you want. Otherwise, you may wind up with project files
all over your hard disk (and maybe on some network disks, too).

Make certain you have checked the target to which you want to add the file (at this point,
most of your projects will probably only have one target, but make sure it’s checked).

To the right of the + button in the bottom controls of the project navigator, there are three
more buttons. They focus the project navigator on certain types of files. Click a second time,
and the focus returns to all files. In order from left to right, here is what they do.

• You can choose to see recently modified files.

• You can see only files that are under source code control (that is an advanced topic not
covered in this book).

• You can see only unmodified files.

C H A P T E R T W O G E T T I N G U P T O S P E E D W I T H X C O D E 47

Finally, to the right of the bottom of the project navigator is a filter. If you type text in there
only those file whose names contain the text will be shown in the project navigator.

Using the Search Navigator
Part of the power of Xcode lies in its sophisticated finding and replacing tools. When you
have a file open in the editor, you can use the Edit➜Find command or the ⌘-F keyboard
equivalent to open the find bar shown in Figure 2-26.

Figure 2-26 Use the find bar.

This is a traditional find. (There are many variations on it in the Edit menu.)

The search navigator is a multi-file tool. It is the third icon from the left at the top of the
project navigator, as shown in Figure 2-27.

This command goes through your project files looking for the string you type in. The results
are listed in the search navigator; you can click on any line to see it highlighted in the editor.

After you have performed a find, you can use the pop-up menu to switch to replace, as shown
in Figure 2-28.

I O S 6 F O U N D A T I O N S48

Figure 2-27 Use the search navigator.

Figure 2-28 Replace text with the search navigator.

Using the Other Navigators
Most people use the other navigators less frequently than the project navigator. They are
covered as needed later in this book.

C H A P T E R T W O G E T T I N G U P T O S P E E D W I T H X C O D E 49

Exploring the Utilities
Unlike the Navigator area, which simply shows one of the seven navigators at a time, the
Utility area has two separate panes. The top pane is for inspectors, and the bottom pane is
for libraries of reusable code, objects, and media.

You can resize either pane; in fact, as shown in Figure 2-29, you can drag the library pane all
the way to the bottom so it disappears. Figure 2-29 shows only the inspectors.

Figure 2-29 Show only the inspectors.

Using the File Inspector
At the top of Figure 2-29 you see the File inspector on the left. It is always there when a file
is shown in the Editor area (which is most of the time). As you can see, it shows you details
about the file.

The most important setting here is the location pop-up menu. This describes how your proj-
ect should deal with the selected file. The settings are:

• Absolute path—The path to this file is used exactly as-is. This may be correct for a
shared file on a multi-developer project. On a simple, one-person project, this can pre-
vent you from moving the project anywhere else without breaking the location path.

• Relative to group—The file is located relative to the group that it is in. This is a good
setting to use if you are using shared groups, but it can cause problems when you move
the project.

I O S 6 F O U N D A T I O N S50

• Relative to project—This is a very commonly used setting. It means you can move
your project folder anywhere you want and all the files within it will continue to func-
tion properly.

• Relative to developer directory, relative to build products, relative to SDK—Use
this setting if you know what those phrases mean. Again, this is mostly a multi-
developer setting or a setting for advanced single developers.

Using Quick Help
To the right of the File inspector is Quick Help. Highlight a word in the Editor area, and
Xcode will attempt to find documentation for you. Figure 2-30 shows the display for the
highlighted word UILabel. Some of the file references are hot: you can click on them to
open the relevant file in the Organizer. Quick Help is smart enough to be able to provide you
with information about methods and properties that you declare within your own project.

Figure 2-30 Use Quick Help.

Using Inspectors
When you are working with Interface Builder or the Core Data Model editor, you work in their
graphical user interfaces. When you highlight an object (an interface element, for example, or

C H A P T E R T W O G E T T I N G U P T O S P E E D W I T H X C O D E 51

a Core Data entity), additional inspectors appear next to Quick Help. The specific inspectors
vary depending on the object you selected. They are discussed in the relevant chapters.

Using the Libraries
The lower pane of the Utility area contains libraries of reusable objects, code, and media.
Choose which one you want with the four icons at the top of the pane. Just below the icons,
a pop-up menu lets you quickly select from the items in the library you have selected. To the
right of the pop-up menu, buttons let you choose to display the items in a list or as icons.

From the left, the icons represent:

• Files—These are the templates you see in the New File sheet.

• Code Snippets—You can drag these into a source code editor and modify them as you
want. Common snippets such as try/catch blocks, switch statements, and even
Objective-C init methods are available. You can add your own snippets.

• Objects—The Object library contains objects such as buttons, views, and labels that
you can drag into Interface Builder documents.

• Media—These are the media files you have added to your project.

Summary
You learned how to work with Xcode, the integrated development environment (IDE) for
iOS, as well as OS X and other Apple software. You saw how the workspace window can be
adjusted to show the Navigator area, Utility area (with its libraries and inspectors), and the
Editor area for editing text as well as editing data models and interfaces with graphical tools.

You saw how preferences can be configured so that mouse clicks and the modifier keys can
work together to open files in preconfigured patterns. With the assistant editor, you can
automatically open related files side by side to compare them.

In the chapters that follow you will find out more about inspectors as they are needed to
work with the code that you write in traditional ways (that is, line after line of code). The
Xcode environment integrates graphical and text code construction methods as you develop
your apps.

53

ARE YOU READY to start thinking about building your own app? By now, you
should have looked at plenty of existing iOS software. You’ve been honing your devel-
oper’s eye for what lies beneath the surface so that you can watch how people use apps
and think about how you can improve on the user experience in your own app. You’re
ready to write your code.

Not yet.

Yes, you can sit down and write code for an app. But then what? What do you do with
it? Do you submit it to the App Store? Do you chalk it up to a “learning experience” and
then start over with a “real” app?

If you want to learn how to write apps and to actually write one, then that’s what you
should do: write an app. Writing a pretend app doesn’t give you reusable experience.
As a great teacher once said to a student, “If you don’t take yourself seriously, how do
you expect anyone else to?” Write a real app and take yourself seriously.

You may think that you just want to learn how to write an app, and you will be glad to
work with someone else who will handle the business end (and someone else to handle
the graphics, and someone else to...). You don’t have to do everything yourself, and
you don’t have to be an expert in everything, but you do need to know how to plan
your app. That’s what this chapter is all about.

chapter three

Looking Ahead—
Planning Your App

i O S 6 F O U N D A T I O N S54

Answering the Money Question
When you tell your friends you’re working on an app, many of them will be excited for you
(and for themselves—they know an app developer!). They or you may dream of fame and
fortune, but, alas, those are not terribly common among app developers. Even for the most
financially successful apps, only a handful of people know who the developers are. And as for
the fortune part, most apps make at most very modest profits.

Writing an app may not make you rich, but it very well may get you more work either as a
writer of apps or in one of the many jobs that are being invented daily in the app ecosystem.
An app that you write can even get you a totally unrelated job, as people see that you know
new technologies and can adapt to them and use them successfully.

The “money question” about apps is one that you have to answer, at least for yourself. And in
order to answer it, you need to think about the ways in which people make money from apps.

There are three cases in which the money you make from the app is a fixed (or nonexistent)
amount. The number of people who buy the app doesn’t affect your remuneration.

• You can give your app away for no purpose other than to entertain people or help them
do something useful.

• You can give your app away in order to promote a cause or business.

• You can be paid to write an app to promote a cause or business that is given away by
the cause or business.

In the following case, your remuneration is directly or indirectly dependent on the number
of people who buy your app.

• You can sell your app and profit directly from the 70% of the price that Apple remits to
the developer. The more people who buy your app, the more money you make.

In the last two cases, your remuneration is dependent both on the number of buyers but also
on the number of users and what they do with the app.

• You can make money from paid advertisements.

• You can make money from in-app sales.

In both of these cases, Apple takes its usual 30 percent share and you get 70 percent or the
revenue from ad revenue and in-app sales. Apple’s Game Center is a powerful tool to help
you get more users (and more repeat users) as well as to provide added benefits for gamers.

C H A P T E R T H R E E L O O K I N G A H E A D — P L A N N I N G Y O U R A P P 55

Think through where you see yourself and your app, and you should be able to organize
your thoughts and your work. If your goal is to make money from in-app purchases or paid
advertisements, remember that you are buying into a money flow that will be dependent on
use and reuse of your app. Game Center can help you there, but you’ll need to constantly
replenish and retain your user base.

If your goal is to just sell your app, you don’t need to retain your users, but you need to find
new users on a constant basis.

In all of these app marketing models, you should consider using the modern tools—a web-
site, social media (often Facebook and Twitter), as well as traditional media such as broad-
cast and print. Setting up a website today need not be a tremendous burden, and setting up
Twitter and Facebook accounts is similarly easy. But as you approach the moment when your
app is approved for sale in the App Store, you will not need those extra tasks. You (or a col-
league) can work on them while you’re developing the app.

Deciding how you will address the money question is important, but it’s not an irrevocable
decision. Many apps have morphed from one model to another. The one point that you have to
remember is that you must never make promises to your users that you can’t fulfill.

Preparing Version 2
Things do move at warp speed in today’s app world, but preparing version 2 before you’ve
even laid out version 1 may seem a bit extreme, but it’s a very good idea. Using a piece of
paper, Reminders, Bento, or your favorite note-taking tool, start a list of features for version 2
as well as possible other versions such as Lite or Pro. As things come to mind, jot them down
on the right list. At the beginning of app development, you (and friends) will often bounce a
number of ideas around. Some won’t pan out, but others will be useful. Just add them to the
appropriate list and refer back to them as needed. Just don’t let the ideas get lost.

Submitting the App to the App Store
Submitting the app to the App Store—isn’t this jumping the gun a bit?

Many experienced developers do start by planning how they will submit their app to the App
Store. As development proceeds, they bounce back and forth between the developing app
and the plans for submitting it to the App Store. As you work on the app, you may discover
that one feature or another is going to be more complicated than you thought. Will you

i O S 6 F O U N D A T I O N S56

stretch out the development cycle or put the feature into an update or new version?
Conversely, you may see how to do something interesting very simply, and you may put it
into your app’s description that will be submitted to the App Store.

Keeping the developing app in sync with the developing App Store description will benefit
both the app and its description. As an important added benefit, as both description and app
mature, you’ll have them to show to friends, colleagues, and testers. One particular problem
facing many new app developers is that they may have developed an app that they can’t eas-
ily describe. If you’ve lived with it night and day for months (even years!), you know what it
does and what it’s for. When someone sees it for the first time, they may be mystified.

Practice what some advisers call an “elevator speech.” In the amount of time you spend
between floors in an elevator, describe your app (or yourself if you’re job hunting) to a pro-
spective buyer (or employer) who is standing next to you in the elevator. You may be com-
fortable describing your app in 20 pages of documentation or a thousand lines of code, but
most people who will want to know about it (even close friends or relatives) want to hear
something much more concise—what does it do? And after that, the basic question is why
should I use it? You’d better have answers for those questions—answers that are relevant
not only to close friends and relatives but also to strangers.

If you look at the information in the App Store, you’ll see that for each app, basic informa-
tion is shown as you see in Figure 3-1.

Figure 3-1 Look at the App Store listings.
Source: Apple App Store.

There is more information behind the scenes that you need to provide to the App Store. This
section shows you the data that you need to provide and that you should be thinking about
from the beginning. As you’ll see, all of the data is intertwined, and most of it directly affects
the app that you will write. Changes you make now will be much simpler than changes you
make later.

Identifying Your App and Yourself
You already began to identify your app and yourself when you first created it in Xcode, as you
can see in Figure 3-2.

C H A P T E R T H R E E L O O K I N G A H E A D — P L A N N I N G Y O U R A P P 57

Figure 3-2 Identification starts when you create your app.

Bundle Settings
Most of the settings in Figure 3-2 can be changed as you work on your app, but most of them
are much, much easier to set properly at the beginning. Perhaps the most important settings
are the product name and company identifier. As you can see, they are combined by Xcode to
create your app’s bundle identifier. You can change the bundle identifier, but if you do so you
often wind up getting involved with changing entitlements and permissions—the settings
that let you use iOS features such as mapping, iCloud, and the App Store itself.

The good news is that, although the bundle identifier is critical, it is not seen by users in the
normal course of events. This means that the product name and company identifier can be
changed easily, but the bundle identifier is not easily changed. Many developers use codes
for the product name. This means that when the product is finally named for distribution, it
can still be referred to internally by the product name, and you won’t be confused. Using
Fall 2013 as a product name is not a great choice.

The organization name shown in Figure 3-2 defaults to the last organization name that you
used in Xcode. You can change it as you go forward with Xcode, but you should use the
search navigator to find and replace all the occurrences.

Settings for the App Store
The App Store settings that identify your app are related to the settings shown in Figure 3-2,
but all of them are set (or overridden) when you submit the app to the App Store.

i O S 6 F O U N D A T I O N S58

The ultimate reference for these settings is the iTunes Connect Developer Guide available
to developers at http://developer.apple.com/library/mac/documentation/
LanguagesUtilities/Conceptual/iTunesConnect_Guide/iTunesConnect_

Guide.pdf.

• Name—This is the full app name. It will be rejected if it suggests that this is an official
Apple product, and it can be rejected for other reasons, such as if it violates Apple’s
rules for developers (see developer.apple.com if you are a registered developer to
get the current rules). This name appears on the App Store listing shown previously in
Figure 1-1.

 Browse the App Store and look at the names of apps—The best names describe the
app; they also often provide additional information such as the author or sponsor if
that is a known brand name. Some apps include the word “free” in their title; if you do
so, make sure you want to keep that pricing policy. Other words that are sometimes
added to titles are “Lite” and “Pro” to distinguish among variations of the same app.
You don’t have to implement all of these—just knowing what you would put in a Lite
or Pro version can help you organize your thoughts and plans.

• Short name—This is the name that appears below the icon on the home screen when
your app is installed. Space is limited there, so you may need to shorten the name. If
you do shorten the name, it should make sense. For example, the popular Disney app,
“Where’s My Water?” is installed as “Water.”

• Seller—The seller is identified in the App Store. This one can be a bit tricky. If you are
registered as an individual developer, the seller will be you: your name will appear here.
If you are registered as a company, your company name will appear here (XYZ
Company, Inc., for example).

 One of the reasons for thinking ahead to the App Store is to make certain that the
seller name is what you want. If you are registered as a company, chances are that’s the
name you want to use. A common situation arises if you are registered as an individual
and want your app to be sold by a company that you own or that you will set up.

 It is possible to change an individual developer registration to a company registration,
but it is not an online click. You will have to submit appropriate documentation. This
is not particularly burdensome, but it means that you have to budget time for it. (There
is no fee for this.) If you set aside a week for this process, that is often enough. If your
legal documents are not readily available (or if you need to go through the legal process
of forming a corporation or partnership), you should add the time for that process.

 By the way, those documentation requirements apply not only to changing a developer
registration but also to registering for the first time as a corporation. The time frames
involved vary by country and jurisdiction within countries. In New York State, creating
a corporation and registering it as a company developer with Apple can take a month,
much of which involves waiting for processing the corporate paperwork. (Expedited
options are available for the corporate paperwork.)

http://developer.apple.com/library/mac/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/iTunesConnect_Guide.pdf
http://developer.apple.com/library/mac/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/iTunesConnect_Guide.pdf
http://developer.apple.com/library/mac/documentation/LanguagesUtilities/Conceptual/iTunesConnect_Guide/iTunesConnect_Guide.pdf

C H A P T E R T H R E E L O O K I N G A H E A D — P L A N N I N G Y O U R A P P 59

• Copyright name and date—This is the name of the copyright holder and the date of
copyright. Because laws differ from country to country, you should consult a legal advi-
sor if you have any questions about the copyright notice. Most people use a line such as

 ©Champlain Arts Corp, 2013.

• Version—This is the version of your app. You normally start with version 1.0. As you
work through this section, you can jot down items for a version 2.0 and even 3.0 along
with suggestions for 1.1 and 1.2. Minor versions (1.1, for example) can be free updates
to correct bugs and to accommodate new features and new hardware. (Note that dur-
ing development, you may start with a version 0.1 and subsequent versions such as 0.2
and 0.3. However, once you are ready to submit your app to the App Store, you should
change the version to 1.0.)

Setting Marketing Data (Discoverability)
As of this writing, there are over 700,000 apps in the Apple App Store. (And there have been
35 billion downloads of them.). People find apps in various ways, including word of mouth,
advertising or publicity in traditional media or on the web, and also by searching the App
Store. You control a great deal of the search process in the App Store (technically, it’s called
discovery). The data in this section helps you fine-tune your discoverability. If you want to be
serious about developing apps, work through this section carefully. The old saying about a
tree falling in a forest causing no sound applies to undiscoverable apps in the App Store.

A lot of the data in this section is entered with checkboxes. Other information is submitted as
text or as files that you upload. One of the reasons for thinking through your discovery fea-
tures at the beginning of the development process is that now, before you have written any
code, you can implement changes to your app’s design. For example, a conversation now
about how you might support various languages in the future even if you don’t support them
now is useful. There are consequences in the code that you’ll write, as you’ll see in Chapter 15,
“Telling Users the News: Alerts and NSError.”

• Price tier—You choose the price tier for your product. It can be free, or it can be in
any of a number of price tiers. The tiers are based on US dollar values—Tier 1, for
example, is $0.99, and Tier 2 is $1.99. After Tier 50 ($49.99), the prices go up in larger
increments. Apple shows your product price on the App Store based on the tier you
select and the store in which it is being viewed (see the following item). When you get
around to actually submitting your app to the App Store, you’ll see that you can set
date ranges for your prices.

• Store(s)—You can choose in which store(s) your app appears. There are online App
Stores for many countries in the world, and more are added over time. As stores in
countries or regions are added, they are removed from the special region—ROW (rest
of world).

i O S 6 F O U N D A T I O N S60

• Languages—You can specify the languages in which your app is available.

• Keywords—You can supply keywords to describe your app. Many developers choose a
mixture of very specific keywords and more general ones. This strategy may work well
if you want experts as well as non-experts to find your app. If you are marketing your
app to experts, the very specific (even jargon-y) keywords may work best, and if you
want to appeal to a broader audience, specific and jargon-y keywords may not work.
Look at other apps and try out searches on the App Store for yourself. Remember
not to use names of products or other apps as keywords unless you have the right to
use them.

• Category—People can browse the App Store by category. You can select a primary and
secondary category. As of this writing, the categories are:

 Books

 Business

 Catalogs

 Education

 Entertainment

 Finance

 Food & Drink

 Games

 Health & Fitness

 Lifestyle

 Medical

 Music

 Navigation

 News

 Newsstand

 Photo & Video

 Productivity

 Reference

 Social Networking

 Sports

 Travel

 Utilities

 Weather

• Icons—Icons are a key part of your discoverability. Although people can’t search on
icons, when your app comes up as the result of an App Store search, the icon is dis-
played. Icon design is a very specialized skill. Some graphic artists specialize in icons,
whereas others simply will not touch them. In a limited space, the icon must convey
something about the nature of the app (is it geared to children, for example) as well as
something compelling about the app itself.

 If you want to know what that phrase, “something compelling about the app itself”
means, that’s exactly the expertise of a skilled icon designer. Sometimes, an app icon
includes graphics from the app itself (this is particularly true of games), but other
times the icon uses none of the app’s graphics or visual conventions. You will need a
variety of icons for various purposes; they are outlined at developer.apple.com.

C H A P T E R T H R E E L O O K I N G A H E A D — P L A N N I N G Y O U R A P P 61

• Description—This is your chance to describe your app and convert people who are
browsing to people who will download the app. There are many references about how
to write good advertising copy on the web and in bookstores and libraries. One of the
most repeated suggestions is to provide the information your user wants rather than
what you want to tell. As you write and refine the description, you may go back to your
app itself and change some of its features.

In writing the description, you may discover that you need to name elements of your user
interface for the first time. For example, a common button in toolbars is a gear wheel, which
brings up choices of actions the user can take. You can put that button there and implement it;
many users will just try it out without knowing precisely what their choices will be. Because
it’s so easy to just click somewhere else, it’s a great interface. But now that you’re writing a
description, you may have to tell people what that is. Do you call it a gear wheel? Do you call
it the Actions button? Or do you follow the lead that you see in Apple’s documentation. In the
Apple documentation for user interface, objects such as this are often not named. Instead, a
small image of the object in question is inserted directly into the text.

• Screenshots—You’ll find details on developer.apple.com for the screenshots
you should provide. They will appear next to your description, so making certain that
they are coordinated will make your app’s listing better. If it’s not immediately clear
what the objects in the screenshots do (a gear wheel for example), consider adding a
few words in your description to explain them.

• Rating—Ratings are based on age. You choose the one that fits your app. Note that
choosing an inappropriate rating can result in rejection of your app from the App
Store. These are the current ratings.

 4+. Suitable for everyone.

 9+. Suitable for ages nine and over. Occasional realistic, fantasy, or cartoon vio-
lence as well as mild mature, suggestive, or horror-themed content is allowed
along with simulated gambling. (Note the use of “occasional” and “mild.”)

 17+. Replace “occasional” and “mild” in the previous section with “frequent” and
“intense.” Add sexual content, nudity, alcohol, tobacco, and drugs.

Describing Your App’s Requirements
The app you submit will provide the information required in this section.

• Devices—iPad, iPhone, iPod touch, or iPad mini.

• Version—These are the versions of the OS you support. This book is relative to iOS 6.
When you build the project in Xcode, you can test it in the simulator under iOS 5,
which may also work for you. Previous versions are unlikely to work.

i O S 6 F O U N D A T I O N S62

Specifying Integration Features
For the sake of completeness, here are the integration features that your app can provide; they
will be listed in the App Store. You will set them up with entitlements as you set up your app
with iTunes Connect, but unfortunately, there isn’t room in this book to cover the details.

• In-app purchases

• iAd advertisements

• Game Center

Celebrating Learning iOS with Your App!
You’ve thought about how you will manage your app and how you will describe it in the App
Store. There’s just one thing missing: the app itself.

You may have your own idea that you’re itching to get started with. That’s great, but you
need a framework to build your first app. If you have your own app idea, just put it aside for
a little time while you work through this app. And if you don’t have an idea for your own app
yet, you can use the one described here to get started.

It’s really quite simple. By the end of this book, you’ll have learned the basics of iOS 6 app
programming. That will be a time to celebrate. It will be a time to invite friends and col-
leagues to join you in a party (maybe friends and colleagues have also been working through
the book and deserve their own party). You’ll need to make a guest list and set the date and
time for your party. Should there be food—light snacks or a meal? What about beverages?
Particularly if several of you are celebrating your new-found familiarity with iOS 6, maybe
you need some music.

That’s a lot to keep track of. As one of the original App Store advertisements said, “there’s an
app for that.”

Actually, there are several, but your very own party-planning app will be up and running by
the end of this book.

Summary
This chapter helped you plan for your app’s App Store listing. The development of the app
and the development of the App Store listing often go hand-in-hand. New ideas for the app
may emerge as you write the description for the App Store, and you may need to change the
description as you get deep into coding the app.

You see the issues you have to reckon with about pricing apps and how to use the various tools
of the App Store to help people discover your app. And, if you’ve followed the suggestions in
this chapter, you have a to-do list for future enhancements to your app once version 1.0 ships.

63

YOU HAVE A basic idea of what your party planner app should do. It was spelled
out in the previous chapter—“You’ll need to make a guest list and set the date and
time for your party. Should there be food—light snacks or a meal? What about bever-
ages? What about music?” That’s not enough for you to start coding. You can apply the
methodology described in the last chapter to categorize your app for the App Store,
but you need to flesh out the details so that you know what you’re coding.

This chapter walks you through the process of getting to a more complete specification
of your app. Most developers find that the process of development is iterative: as you
write more, your to-do list for the current and future versions gets longer. After the
app goes live in the App Store, with luck, the list will get longer still as users ask for
new features.

So it’s time to do some concrete planning.

Planning the App: The Choices
Based on the methodology described in the last chapter, here are the basic choices that
you should consider for this app. The first choice is the money question. You might
want to make this a paid app. Alternatively, you may want to make it a free app to
promote your own (or a friend’s) catering business. You can also use it to promote your
own app-development skills.

chapter four

Designing the Party
Planner App

i O S 6 F O U N D A T I O N S64

As for the App Store settings, here are the choices at the moment.

Identifying Your App and Yourself
These settings identify the app and the seller:

• Name—Party Planner.

• Short name—Party.

• Seller—In the screenshots and in the App Store, the seller is Champlain Arts Corp.
Your version will be yourself.

• Copyright name and date—© Champlain Arts Corp, 2013. Note that this is what
you will see in the screenshots in this book. You should use your own name (either
individual or organization).

• Version—1.0

Setting Marketing Data (Discoverability)
Here is where you describe the app and its requirements:

• Price tier—Free.

• Store(s)—All.

• Languages—English (for now).

• Keywords—Party, entertaining, planning, and celebration.

• Category—Primary—Entertainment. Secondary—Food & Drink.

• Icons—You will need to upload your own icons as described on developer.apple.com.

• Description—Party Planner helps you plan a terrific party. You can make a guest list
and set the date, time, and location of the party. If there’s a theme or a dress code, you
can easily add a note to that effect.

• Screenshots—You will be able to capture your own.

• Rating—4+.

Describing Your App’s Requirements
These settings let potential buyers know if they will be able to run the app on their devices:

• Devices—Universal (iPhone, iPad, iPod touch, and iPad mini).

• Version—iOS 6.

C H A P T E R F O U R D E S I G N I N G T H E P A R T Y P L A N N E R A P P 65

Specifying Integration Features
This app doesn’t use Game Center, iAd, or in-app purchases.

Designing the App: The Conversation
Whenever I start a project to build an app of any kind, a database, or any kind of design, I
start with a conversation so that I begin to understand the problem to be solved and so that
the owner or client can fill me in on any terminology or processes I don’t know. Here are the
kinds of questions I’ll ask about this app, and here are the answers that I’ll receive. This “con-
versation” should give you an idea of the kind of process you’ll go through in building an app.

If you are both client and developer, as is often the case, make sure you cover these points
mentally.

What Kind of Data Do You Need to Track?
Parties, guests, and menus.

How Persistent Is the Data?
Some apps exist only in the moment. A calculator, for example, lets you enter numbers,
operators, and functions. When you press the equals key, you see the result. Many calcula-
tors let you store these results in memory. After a formula is entered, the only data that may
need to persist is a result if you store it in memory. You usually can add a result to memory
(in the sense of addition) or replace the current memory value. The only persistent data is
whatever is in memory, and, possibly, the last result on the screen.

You can build a party planner like that, but you probably want the data to persist so that
when you go back to it next week, all the data is still there.

How Much Data Is There?
If your party data persists, how many parties do you want to keep? For a given party, how
many guests do you want to be allowed to have; how many dishes on a menu?

The answer that I like to give is a fairly standard one: as much data can be stored as there is
room in memory or on disk. From a practical point of view, when people are managing more
than a handful of objects (guests, dishes, parties), they need a sophisticated interface so that
they can keep track of it all. If you’re a professional party planner and you use this app to
keep track of parties, guest lists, and dishes for all of your jobs over the last (or next) 10
years, that’s a lot of data. Is it reasonable to assume that you could fit all of that on an iOS

i O S 6 F O U N D A T I O N S66

device? The answer is yes, provided that the parties themselves are manageable. If you are
planning embassy parties for guest lists of over 1,000 every night, an app just might not be
the right tool.

So, this example assumes a moderate amount of data and a basic interface that uses existing
iOS tools.

Is There Anything Else You Need to Consider?
If you’re working for someone else, always ask this question—repeatedly—during the design
conversation. As for sample data from any existing reports or records. I always tell clients,
“Data doesn’t lie.” You (or a client) may think that some data condition never happens, but
when you look at the data, there it is.

The anomaly may come about because there was some strange outside event such as a flood,
or because the circumstances were unusual (a no-refund policy is often waived if the cus-
tomer has died). By the same token, it is human nature to remember unusual events, so
you’ll find that clients often ask you to prepare for a circumstance that happened once 45
years ago.

There are some other issues you should consider when you’re thinking about (or talking
about) an app. They’re not relevant to the example in this book, but here are some other
questions to consider.

• Is the data shared among a user’s devices? (Consider iCloud for this.)

• Is the data shared with other people? (You might look at the FileMaker products.
FileMaker is a wholly owned subsidiary of Apple, and its database tools run on
Windows, OS X, and iOS.)

Believe it or not, that’s enough information to get started designing the app. There are three
basic steps to designing the app:

• Create the app from an Xcode template, sample code, or an existing app you’ve
worked on—Depending on the specific app you’re building one or another strategy
may be the simplest. The objective should be to start from whatever you can find that
requires the least amount of modification.

• Design the data—This carries on where the conversation described above ends off.
You will need to flesh out more details and refine the general statements you’ve made
and listened to.

• Design the interface—Discover how people will get to the data and manipulate it.

From this point on, it’s a matter of iterating forward and implementing finer and finer parts
of the app until it’s all done.

C H A P T E R F O U R D E S I G N I N G T H E P A R T Y P L A N N E R A P P 67

Getting Started with the Template
You saw a brief overview of creating a new project in Chapter 1, “Getting Started with iOS 6.”
Now, you’ll start over to build your Party Planner app using those steps with a few variations.
As described in Chapter 1, you start in Xcode with File➜New➜Project or from the Welcome
to Xcode window. Both options let you proceed to select a template.

Choosing the Right Template
The Master-Detail Application template is a great template for working with a list of items,
each of which can have details to which you can drill down. It comes in a universal flavor for
both iPhone and iPad. On iPad it uses a split view controller. The data described in the con-
versation has at least three levels:

• The top level will be a list of parties. You’ll be able to create new ones. (Nothing has
been said yet about deleting old ones, but that’s built into the template. Rearranging
the items in the list is not part of the template.) The list is implemented with a
UITableView and the data source protocol, which are discussed in Part IV, “Using
Table and Collection Views.”

• The next level will let you drill down to the details of a single party. That’s part of the
template.

• From the details for a single party, you’ll be able to drill down to the list of guests and
the menu of food. The menu list may be empty, and the guest list, too might be
empty—particularly at the beginning. Drilling down to the next level needs to be
programmed.

For a multi-level data structure that lets you drill down, the Master-Detail Application tem-
plate is a good start for both iPhone and iPad.

Exploring Other Templates
The other template choices for iOS are suited to other needs.

• Single View Application is just that. There is no navigation and no drilling down, but
of course, you can add it.

• Utility Application has two views. On iPhone they are configured as a front and back;
on iPad they are a full-screen display and a popover.

• Tabbed Application can have two or more views. A tab bar lets the user choose one
view or another. Note that the navigation in the Master-Detail Application is hierar-
chical—that is, drilling down from an item in a list to its details. With a tab bar (or a
front/back application like Utility Application), all of the views are at the same logical
level. Instead of drilling down, the user is choosing a different view at the same level.

i O S 6 F O U N D A T I O N S68

• Page-Based Application provides a template for showing views that appear to be
pages in a book. It’s easy to swipe to go to the next or previous page. The interface is
built in; you just have to provide the views for the next and previous page using a data
source much as is the case with a UITableView.

• OpenGL Game is the best template to start a game.

• Empty Application just gives you enough to get started.

Creating the Project
Once you have selected a template, create your project. There are several differences in these
steps from the steps shown in Chapter 1. That is because these will be used to build a real app.

 1. Click the Xcode icon if it’s in the Dock or double-click Xcode in the Applications folder
to launch Xcode. Then choose to create a new project from a template (the first choice
in Figure 4-1). You can also use File➜New➜Project.

Figure 4-1 Begin to create a new project.

 2. Select Master-Detail Application, as shown in Figure 4-2. Click Next.

 3. Set the options as shown in Figure 4-3. Use your own organization name and company
identifier. Set Devices to Universal and check the checkboxes for storyboards, Core
Data, and Automatic Reference Counting (ARC).

C H A P T E R F O U R D E S I G N I N G T H E P A R T Y P L A N N E R A P P 69

Figure 4-2 Use the Master-Detail Application template.

Figure 4-3 Set the project options.

 4. Find a location for your project on your disk as shown in Figure 4-4. You’ll be using
this project frequently, so choose a location you can easily access. If you’re using a Mac,
you might want to store it locally rather than on a shared server that may not always
be available.

i O S 6 F O U N D A T I O N S70

Figure 4-4 Create the project as well as a Git repository.

 Use the option to create a local Git repository. (See the sidebar for a discussion of Git.)
Then, click Create. (Git is pronounced with a hard G.)

 5. Your newly created project will open in Xcode, as shown in Figure 4-5. Remember that
you can change the configuration of the Xcode window, so it may not look precisely
like this. Also, the bundle identifier will incorporate your company identifier that you
set in Step 3. If the project is not open, use the disclosure triangle in the project naviga-
tor at the left to open it.

 6. At the top right of the toolbar, open the Organizer. Show the Repositories tab, as
shown in Figure 4-6. You should see all your files added to the repository. (If you have
other projects in your repository, you may need to select this one from the sidebar
at the left of the window.) At the bottom of Figure 4-6, you see the commit comment
“Initial Commit.” From now on, when you commit changes, you will provide the
comment.

www.allitebooks.com

http://www.allitebooks.org

C H A P T E R F O U R D E S I G N I N G T H E P A R T Y P L A N N E R A P P 71

Figure 4-5 Your project is created.

Figure 4-6 Your files have been added to the repository.

i O S 6 F O U N D A T I O N S72

Getting Started with the Data
As noted, you’re going to need to keep track of some data. For the purpose of the initial con-
versation, this was sufficient: “Parties, guests, and menus.”

Now you need to get a bit more specific. Fortunately, Xcode has a sophisticated and easy-to-
use data model editor. It is integrated with Core Data, a key framework of iOS (and OS X).
Core Data is designed to manage persistent data—data that needs to be managed over time.
In a game, the individual moves represent data, and they often do not need to persist (at
least not once the game is over). What do need to persist are the final score, and, perhaps, the
names of the players.

With Party Planner, you need to manage parties, guests, and menus before the party, and,
perhaps, even afterward when you look back on the party. You need persistent data, and, on
iOS, that typically means Core Data.

Introducing Core Data
You can certainly manage your own data with your own code. Keeping the data over time is a
matter of usually writing it out to your app’s sandbox on iOS or to a website. All of this you
can do.

Using a Git Repository
Git is a source code version-control system. It consists of a database to which you can add
your code as you modify it. When you reach a point at which you want to freeze the code,
you commit the code. Thereafter, you can restore your project back to that point. Git is
tightly integrated into Xcode so that you can use it to keep track of modifications. In this
book, I suggest you get in the habit of using Git. With Xcode, there’s very little extra work
for you to do. Git provides a definitive history of your project, and the comments you add as
you commit files (they’re required) keep track of the ways your app evolves. By relying on
Git, you can get rid of those extra copies of your project in folders labeled “Friday before
restructuring,” “New Interface test,” and so forth.

If you don’t want to use Git, the code samples in this book will still work, but you will lose
the security of the repository. If you want, you can use github.com so that your repository
is available remotely. There is a small fee for private users, but Open Source projects with
open repositories are free.

C H A P T E R F O U R D E S I G N I N G T H E P A R T Y P L A N N E R A P P 73

However, most people find that Core Data is much easier. Core Data is designed to be some-
what agnostic about exactly how the data is stored. Commonly, it uses the built-in SQLite
library, which implements data management functionality. There is something about the
thought of databases that sometimes makes people worry about complexity (in some ways,
it’s similar to the fear some people have of mathematics). Fortunately, not only is Core Data
easy to use for a project like Party Planner; it also is actually easier and less work than using
other techniques. As you’ll see, it can be the same type of analysis that you would do on the
back of an envelope, but with Core Data and its modeling tools, your data model will look
much nicer than scribbles on the back of an envelope.

The Master-Detail Application template keeps track of the master list. Each item in the list
contains a simple piece of data—the timestamp of its creation. You can see this if you run
the app.

You can also look at things from the inside by looking at the data model. You’ll find it in the
project navigator: it’s called Party_Planner.xcdatamodeld. If you select it, you’ll see the
data model as in Figure 4-7.

Figure 4-7 Look at the data model.

i O S 6 F O U N D A T I O N S74

In the lower right of the window, you’ll see a control for editor styles. This is the table style. At
the left of the data model is a sidebar with three sections:

• Entities—These are the main items you will be following. In the template, there is
one: Event. You will have three: Party, Guest, and Menu. (By convention, entities
start with a capital letter.)

• Fetch Requests—These will be requests for data. There are none now, and you may
not need any.

• Configurations—There is only a default configuration. You don’t need to worry about
configurations for a simple app such as this one.

There are three tables to the right:

• Attributes—These are values for the selected entity (Event in this case). They are
comparable to properties in classes.

• Relationships—These are just what the word means in English. You have a relation-
ship between guests and a party just as you have a relationship between menu dishes
and the party.

• Fetched Properties—You don’t need to worry about these.

If you select an attribute and open the Utility area as shown in Figure 4-8, you can see infor-
mation about the data model file if you select the File inspector (the one on the left, shown
in Figure 4-8).

When you have a data model open, the Core Data Model inspector (third from the left at the
top of the Utility area in Figures 4-8 and 4-9 is available). In Figure 4-9, it has been chosen to
inspect the Event entity, which is selected in the sidebar of the data model. You could
change its name in the inspector.

C H A P T E R F O U R D E S I G N I N G T H E P A R T Y P L A N N E R A P P 75

Figure 4-8 Look at the data model File inspector.

Figure 4-9 Look at a selected entity.

i O S 6 F O U N D A T I O N S76

If you select an attribute, as in Figure 4-10, you see its data in the Core Data Model inspector.
You can change its name or type either in the inspector or by clicking in the main window.

Figure 4-10 Examine the attributes.

At the bottom of the Core Data Model inspector, you’ll see that you can add new entities.
You can add new attributes to a selected entity by using the + at the bottom of the attributes
table. You can also add them with the small + on the Add Entity button. You can delete a
selected attribute with the minus sign at the bottom of the Attributes table.

Building Your Data Model
For now, you can make a few changes that will let you get started with your own data model.
You can start from the template’s data model. Here are the changes to make.

 1. Select Event in the entity list.

 2. Double-click its name in the entity list and change it to Party (that capital letter
matters). Alternatively, with it selected, open the Core Data Model inspector and
change its name there.

C H A P T E R F O U R D E S I G N I N G T H E P A R T Y P L A N N E R A P P 77

 Note that either of these methods can be used to change an attribute or entity name.
The details of changing a name are not spelled out each time.

 3. Similarly change the timeStamp attribute to partyName. For the moment, leave its
data type as date; later on you’ll change it to string.

 4. In the search navigator, search for Event as shown in Figure 4-11. If you select the
found line of code, you’ll see it in the file in the Editor area.

Figure 4-11 Search for “Event.”

 5. Using the pop-up menu, change Find to Replace, and enter Party as shown in Figure 4-12.
When you click Replace, you will be asked if you want to take a snapshot of the project.
It’s a good idea to do so.

 6. Similarly, replace timeStamp with partyName. (There should be five occurrences.)
Make sure you use the Replace All button.

i O S 6 F O U N D A T I O N S78

Figure 4-12 Replace “Event” with “Party.”

 7. Build and run the app. Because the partyName field is still a date, the app should run
and show the date. It’s okay to leave it like this for now so that you have something
running with the new data model.

Summary
This chapter shows you how to start from a serious conversation about your app (focusing on
the questions to ask), and then how to move on to creating the project from a template and
building your data model (or, as in this case, modifying the template data model). Most of
your work in this chapter has consisted of filling in forms for the template and using the
Core Data Model editor’s graphical user interface.

In the next part of the book, you’ll move on to use yet another graphical user interface—
storyboards—to create your app’s interface. If you’re itching to write code, have no fear.
You’ll be typing away in the third part of the book.

part 2

Storyboards: The
Building Blocks
of iOS Apps

chapter five Walking Through the iPhone
Storyboard

chapter six Working with Storyboard
Inspectors

chapter seven Laying Out Your Scenes and
Views

81

THE MASTER-DETAIL APPLICATION template gives you a solid basis for the
Party Planner app (as well as many others). With the universal setting for your project,
the template gives you both an iPhone and an iPad interface. They are similar and even
share much of the same code; however, there are a few minor differences that mostly
reflect the different screen sizes and interfaces on the two devices.

With the option to use storyboards, you have the latest and most powerful interface
design tool that the engineers at Apple have produced. Many developers still swear by
the old way of doing things—typing code out by hand. You’ll soon find that graphical
tools such as storyboards and the Core Data Model editor in Xcode save you time and
make your design process faster.

An added benefit of the graphical tools is that you can share them with managers, cli-
ents, and other people who are not comfortable with reading code. Even if you are
developer, manager, client, and user all rolled into one, being able to look at an over-
view of the interface (or data model, for that matter) can help you improve your app.

Introducing Storyboards
Storyboards in Xcode are basically the same as storyboards used in any other type
of project. They have been used for decades to sketch out scenes that may appear in a

chapter five

Walking Through the
iPhone Storyboard

i O S 6 F O U N D A T I O N S82

commercial or film; they also are frequently used to sketch out computer games. The difference
between those two types of storyboards is that in films or commercials, the scenes are sequen-
tial. In a game, the scenes typically require user intervention to go from one to the next.

Since the days of mainframe computers, programmers have often used flowcharts to sketch
out the logical flow of a program or app. There is a great deal of similarity between storyboards
and flowcharts, but the most significant difference is that with storyboards, there is a sketch
of what the screen will look like at each step of the way. With a flowchart, each component is
code, pseudo-code, or a textual description of processing. The graphical representation of the
screen is rarely a part of a flowchart.

Looking at the Storyboarding Process
In the normal scheme of things, you sketch out your app’s interface using simple storyboard-
ing techniques. Most of the time, developers work from the basic app design and then sketch
out at least the key components with paper and pencil or a white board. As you progress
from the general descriptions in your app design to the interface elements in your story-
board, you often wind up changing and adding details to both the app design and the story-
board. (The same process occurs as you sketch out your data model.)

Switching back and forth among overall app design, interface design, and data model design
often is very productive and efficient. In the past, it was common to work on each compo-
nent separately and finish each one before proceeding to the next. Unfortunately, this pro-
cess often turns out to waste time because the needs of each component often require
adjustment as the interface and data model are built and integrated.

Looking at Storyboarding for the Template
Storyboarding lets you develop your interface. Learning how to use the storyboard tools and
terminology to create and describe your interface isn’t hard. In this chapter, you have an
opportunity to look at storyboards in a way that you don’t look at them as you develop an app.
In the Master-Detail Application template, you have a working app on which you can build.
Among the files that are included in the template are two storyboard files—one for iPhone
and one for iPad (if you have chosen to create a universal app as suggested previously).

This means that rather than create the storyboard first and then test it, you have an opportu-
nity to run the template app and see what the interface is and then go back to the storyboard
to see how it has been created. This process is outlined in this chapter.

C H A P T E R F I V E W A L K I N G T H R O U G H T H E I P H O N E S T O R Y B O A R D 83

Introducing the iOS Simulator
The iOS simulator is a critical component of the iOS development process. You launch it
from Xcode with the Run button, which is located at the left of the toolbar at the top of
workspace window. When set to simulate the iPhone, the simulator shows a basic configura-
tion, as shown in Figure 5-1.

Figure 5-1 The iOS simulator shows you a basic device.

The built-in apps on the simulator display varying degrees of functionality. For example, you
can adjust settings as you see in Figure 5-2, but you won’t be able to make telephone calls
with the simulator.

i O S 6 F O U N D A T I O N S84

Figure 5-2 Built-in apps are available in the simulator.

When you are working with an iOS project in Xcode, you can choose to run it using any of the
schemes that you (or, more often, the template) have prepared, as you see in Figure 5-3.

The specific choices of scheme for your project are often generated using your project set-
tings, including which version(s) of the operating system you are targeting. For a universal
project, you are, at least, given the choice of the current iPad and iPhone OS along with a
choice for a connected device—that is, an iPhone or iPad connected by a cable to your Mac.

C H A P T E R F I V E W A L K I N G T H R O U G H T H E I P H O N E S T O R Y B O A R D 85

Xcode will take charge of running the app on the device. Among other things, this will enable
you to debug the app as it runs on a device. (See Chapter 11, “Testing the App with the
Debugger,” for more information.)

Figure 5-3 Choose your scheme for running the project.

Until very recently, the iOS Simulator was referred to as the iPhone simulator because that is
how it started.

When you click Run in Xcode, the simulator will launch and show you a representation of the
device that you have chosen with your app running inside it. Figure 5-4 shows the Party
Planner app as it appears if you have followed the steps in this book.

i O S 6 F O U N D A T I O N S86

Figure 5-4 Launch the Party Planner app in the simulator.

A variety of commands in the Hardware menu let you simulate rotation, shaking, and other
events, as you can see in Figure 5-5.

You will probably use the rotation commands frequently. As you can see in Figure 5-6, when
you first build the Master-Detail Application template (now the Party Planner project), rota-
tion works properly.

C H A P T E R F I V E W A L K I N G T H R O U G H T H E I P H O N E S T O R Y B O A R D 87

Figure 5-5 Use the Hardware menu to simulate actions using the device.

Figure 5-6 Rotation is managed correctly in the template.

i O S 6 F O U N D A T I O N S88

Walking Through the Template
and the Storyboard
Now it’s time to walk through the interface that you have in the template. As you will see,
there is a great deal of functionality already built into it. This section provides parallel walk-
throughs of the interface: a walkthrough of the interface that users see along with a walk-
through of the storyboard that creates the interface. This is just the first exploration of the
interface and storyboard—you will delve deeper into both in the other chapters in this part
of the book.

Storyboards consist of scenes and segues. A scene is a view with its view controller, and a
segue is a transition from one scene to another.

Looking at a Scene
Figure 5-4 shows you the initial scene in the Master-Detail Application template (it’s now
your Party Planner app). The + at the top right lets you add more items to the list in the
scene, and the Edit button at the top left lets you edit the list.

The list is implemented using a table view. You’ll find out more about table views in Part IV,
“Using Table and Collection Views.” For now, there’s one important point to bear in mind
with regard to the Edit button. When you are dealing with a list, the Edit button lets you edit
the list—that means deleting items from the list (you add them with the +). In some apps,
the Edit button also lets you rearrange the items in the list.

If you tap an item in the list, you move to the next scene, a detail view, as shown in
Figure 5-7.

At the top of the scene shown in Figure 5-7, there’s a navigation bar with a button that lets
you move back to the list view shown previously in Figure 5-4.

Considering View Controllers
The scenes shown in Figures 5-4 and 5-7 are managed by view controllers. View controllers are
instances of UIViewController or subclasses of it. View controllers are just that—con-
trollers. They control other view controllers or views.

There are two types of view controllers:

• Content view controllers display content in one or more views.

• Container view controllers manage other view controllers (which usually, in turn,
manage still more view controllers or content).

C H A P T E R F I V E W A L K I N G T H R O U G H T H E I P H O N E S T O R Y B O A R D 89

Figure 5-7 View a detail view, with a navigation bar.

The distinction between content and container view controllers was clearly specified in View
Controller Catalog for iOS first published on developer.apple.com in January 2012.
Older documentation is superseded by this document and its terminology.

Container view controllers must be used in a specified hierarchy. You have seen these view
controllers in iOS apps, and they will be discussed throughout this book. The hierarchy is as
follows.

• Split view controllers (if used) are the top-level view controller. In the Master-Detail
Application template for iPad, there is a split view controller.

i O S 6 F O U N D A T I O N S90

• Tab bar controllers (if used) can be placed within a split view controller or can be a
top-level view controller.

• Navigation controllers (if used) can be placed within a tab bar or split view control-
ler; a navigation controller can be also be a top-level view controller.

Subclasses of these controllers follow the same rules.

Non-standard containment (such as placing a split view controller within a tab bar control-
ler) can be confusing to users. The containment order is specified in iOS 6 documentation.
You will find examples of what is now non-standard containment in various examples on the
web. You should stick to this containment order going forward.

Considering Views
View controllers can control views as well as other view controllers. In Figures 5-4 and 5-7,
you see the views that are managed by the relevant view controller. Each scene has a view
controller, and that view controller may contain one or more views.

Looking at a Segue
Segues are the transitions between scenes. Tapping an item in the list shown in Figure 5-4
launches a segue that takes you to the appropriate detail scene, as shown in Figure 5-7. In
Figure 5-7, tapping the Master button takes you back to the master list shown in Figure 5-4.

Looking at the Storyboard
Figure 5-8 shows you the storyboard behind Figures 5-4 and 5-7. In Figure 5-8, the project
navigator at the left of the workspace window is shown along with the storyboard editor. The
storyboard editor has a canvas on which you can draw your interface. Within the storyboard
editor, you have the option to show or hide the document outline at the left of the canvas. In
Figure 5-8, the document outline is not shown.

The document outline is shown in Figure 5-9.

C H A P T E R F I V E W A L K I N G T H R O U G H T H E I P H O N E S T O R Y B O A R D 91

Figure 5-8 Look at the storyboard without the document outline.

Figure 5-9 Look at the storyboard with the document outline.

i O S 6 F O U N D A T I O N S92

Looking at the Scenes in the Storyboard
If you compare Figures 5-8 and 5-9, you’ll see that the storyboard has three scenes. In the
main section of the storyboard editor, they are labeled:

• Navigation Controller

• Master View Controller—Master

• Detail View Controller—Detail

If the document outline is shown, they are labeled as scenes. In the document outline, each
scene has a root view controller at the top of its section in the document outline. Within the
document outline, disclosure triangles let you open or close the objects within the scenes.
Figure 5-10 shows you the document outline with all of the disclosure triangles opened.

Figure 5-10 Open all the disclosure triangles.

By working with the document outline as well as the canvas, you can switch back and forth
between the hierarchical structure of the view controller in the document outline and the

C H A P T E R F I V E W A L K I N G T H R O U G H T H E I P H O N E S T O R Y B O A R D 93

visual representation of the views on the canvas. When you select a view in either the docu-
ment outline or on the canvas, it is selected and highlighted in both the document outline
and the canvas. (When working with some views, sometimes it is necessary to select them in
the document outline because they are not easily visible on the canvas—either because of
their size or because they are behind another object.)

Looking at Segues and Relationships in the Storyboard
In Figure 5-10, you can see the three scenes of the storyboard. The segues link scenes together
on the canvas and in the document outline. In the document outline, the main view control-
ler is at the top of a scene; at the bottom of the scene, the segue manages the transition to
the next scene and its view controller.

In addition to segues, you sometimes see another type of connection between two scenes.
For example, in Figure 5-10, in the first scene, you see a relationship from a view controller to
the master scene and its view controller. In the third scene, instead of a segue or a relation-
ship, you see an exit from the storyboard. In Figure 5-8, notice at the left of the canvas that
there is an arrow pointing to the first scene. Each storyboard has its own entry point.

Exploring the Navigation Controller
Navigation controllers are a critical part of the iOS interface. They manage a stack of list con-
trollers. The navigation controller provides the functionality that lets you drill down through
a hierarchy of view controllers and pop back up. (This is the behavior shown previously in
Figures 5-4 and 5-7.)

When you look at Figure 5-10, you will see that the navigation controller is the first control-
ler for this storyboard (note the incoming arrow at the left of the navigation controller). The
navigation controller is a container view controller, and it contains the master view control-
ler. The master view controller has a segue to the detail view controller, which displays data
for a specific item in the master list.

In some older documentation both from Apple and third parties, the master view controller
in a navigation controller was sometimes referred to as a root view controller. In usage today,
a root view controller is the root (or top-level) view controller in a containment structure. A master
view controller, as in the Master-Detail Application template, is a specific example of a root view
controller.

If you look closely at Figure 5-10, you’ll see that the navigation bar at the top of the scenes is
part of the navigation controller. When you are using a container view controller, part of the
container view controller is displayed along with the other view controllers in the hierarchy.

i O S 6 F O U N D A T I O N S94

Creating Your Own View Controllers
There is a certain degree of complexity in using container view controllers. Before you worry
too much, this section walks through the actual process you’ll use to create container view
controllers, and you’ll see that much of the work is already done for you. If you’re using an
Xcode template such as the Master-Detail Application template, everything is set up for you.
But if you are starting from scratch, here’s how easy it is to add a container view controller
hierarchy.

 1. Create a new project using the Single View Application in the iOS templates.

 2. Make certain that you choose the Universal devices setting, as shown in Figure 5-11.

Figure 5-11 Create a new application.

 3. Select the iPhone storyboard in the project navigator.

 4. Select the single view on the canvas and delete it with the Delete key.

 5. Open the Utility area, as shown in Figure 5-12. At the bottom of the library (the
lower pane of the Utility area), make certain that you have selected Objects in the pop-
up menu.

 6. Drag a navigation controller into the canvas, as shown in Figure 5-12.

C H A P T E R F I V E W A L K I N G T H R O U G H T H E I P H O N E S T O R Y B O A R D 95

Figure 5-12 Add a navigation controller.

What you’ll see is that the navigation controller object actually consists of two scenes—the
navigation controller as well as a root view controller, which happens to be a table view con-
troller. Together, they implement the basic navigation. (You can see the two scenes both on
the canvas and in the document outline.)

Delete your scenes before continuing.

As you can see in Figure 5-13, something similar happens when you drag a tab bar controller
into your now-empty canvas from the library. In this case, you get the tab bar controller as
well as two view controllers that are already wired up to the tab bar. (You can add others if
you want.)

Switch to the iPad storyboard. In that storyboard there is just one scene; delete it.

i O S 6 F O U N D A T I O N S96

Figure 5-13 A tab bar controller gives you three scenes.

Chapter 9, “Building the Detail Data View,” has more detail about the iPad storyboard.

If you want to create a split view controller (remember it will be the highest level of contain-
ment), drag the split view controller from the library into your empty iPad storyboard. This
time, you get four views, as you can see in Figure 5-14.

Look at the document outline to see the containment. The highest level is the split view con-
troller. Within it, you have a navigation controller and a root view controller. Separately, you
have a detail view for the other part of the split view. (This is what you have in your Party
Planner app).

Figure 5-15 shows the Party Planner app. Note that there are two relationships from the
split view controller—one for each of the parts of the split view.

C H A P T E R F I V E W A L K I N G T H R O U G H T H E I P H O N E S T O R Y B O A R D 97

Figure 5-14 Create a split view controller.

Figure 5-15 There are two relationships in the split view controller.

i O S 6 F O U N D A T I O N S98

You can get rid of the project you have just created. Its only purpose was to show you how to
add complex objects from the library to your storyboard. Now, you’ll return to the Party
Planner app.

Adding Objects from the Library
You’ve seen how to add objects from the library to your storyboard. The most frequent types
of objects that you add are views to display content. Here is how you’ll add them to the Party
Planner app.

 1. Locate the detail view controller either in the document outline or on the canvas of the
iPad storyboard.

 2. Inside the detail view controller, select the View object in the canvas or the document
outline (it may be easier to do this in the document outline, as shown in Figure 5-16).

 You may want to experiment with selecting the view and the detail view controller in
the document outline. Notice how the highlighting on the canvas changes depending
on which is selected.

Figure 5-16 Select the view inside the detail view controller.

C H A P T E R F I V E W A L K I N G T H R O U G H T H E I P H O N E S T O R Y B O A R D 99

 3. Show the Utility area.

 4. Make certain that Objects is selected in the pop-up menu at the top of the library.

 5. Scroll to find the text field in the library.

 6. Drag the text field into the view, as shown in Figure 5-17. (If you can’t drag it in, check
that you have the view selected rather than the detail view controller.)

 You can rearrange the new text field and the existing label. You may need to select
them in the document outline and then move the selected objects on the canvas.

 Guides are shown to help you align the object.

Figure 5-17 Add a text field.

 7. You can add any other objects in the same way. For now, add a round rect button and
notice how the guides appear, as shown in Figure 5-18. (Round rect buttons are
the most commonly used kind of buttons—you see them often as OK and Cancel
buttons.)

i O S 6 F O U N D A T I O N S100

Figure 5-18 Add a round rect button.

Summary
This chapter introduces you to storyboards—the tools for developing your interface. The
terminology of storyboards in Xcode is basically the same as it is in movies and other types of
storyboards: scenes are sketched out and linked together with transitions called segues
in Xcode.

For Xcode storyboards, the scenes are view controllers. There are two types of view control-
lers: container view controllers (they contain other view controllers) and content view con-
trollers (they control views). There is a specified order of containment for container view
controllers, but with Xcode 4 and later, you can fortunately drag containment view controller
structures from the library to your canvas.

You’ve seen how to add objects to your storyboard. As you’ll see in the following chapter, the
Utility area provides you with inspectors that let you adjust and customize their settings.

101

YOU HAVE SEEN the interface of your Party Planner app (based on the Master-
Detail Application template) from the perspective of the user as well as from your per-
spective as an interface designer using storyboards. There’s another perspective to
look at, and it is the perspective of code. In Chapter 5, “Walking Through the iPhone
Storyboard,” you saw how to add objects to your interface (a text field and a button
served as examples).

In this chapter, you’ll see how to work with code that is already part of the Cocoa
Touch frameworks as well as code that you write. With storyboards, this is another set
of graphical user interface tools. They let you connect the objects of the interface to the
code in the frameworks.

The structure of the storyboard and the code that’s behind it is basically simple, but it
may take a little getting used to. Remember that if you’re still thinking about program-
ming as writing line after line of code, you have to adjust to the nonlinear develop-
ment process of Objective-C and Cocoa Touch. Part of that adjustment is understanding
the code that’s already in the template. Once you grasp the basics of storyboard design,
you’ll find that implementing new functionality is often a matter of just using a few
checkboxes and Control-dragging in the Interface Builder editor. There may be a few
lines of code to be written at the end of the process, but that’s the structure you’re
working with: a graphical user interface for app design.

chapter six

Working with Storyboard
Inspectors

i O S 6 F O U N D A T I O N S102

Looking at the Party Planner App
You can now run the Party Planner app as it is at the end of Chapter 5, “Walking Through the
iPhone Storyboard.” As you can see in Figure 6-1, when you move from the master view con-
troller to the detail view controller, the button and text field that you added are visible.

Figure 6-1 Your button and text field have been added to the detail view controller.

If you click the button, it flashes. If you click into the text field, the keyboard rises up, as
shown in Figure 6-2.

Beyond the flashing of the button and the presence of the keyboard, nothing else happens.
The flashing is part of the button object’s built-in behavior as is the keyboard that is available
when you click in the text field.

C H A P T E R S I X W O R K I N G W I T H S T O R Y B O A R D I N S P E C T O R S 103

Figure 6-2 The keyboard is enabled.

When talking and writing about behavior on iOS devices, you tap a button or the text field.
On OS X, you click a button or click in a text field. Because the iOS Simulator is an OS X app,
many people use the OS X terminology and talk about clicks, but they are taps on the actual
devices. This is an issue with the simulator. I have never heard anyone talk about clicking on
an iOS device interface element.

In Chapter 5 you were able to compare the interface of the app with the storyboard. Now,
you can compare both with the code that supports them. And to do that, you’ll need to
explore the storyboard inspectors in the Utility area.

i O S 6 F O U N D A T I O N S104

Using Outlets and Actions
Several of the inspectors let you work with outlets and actions. They are key parts of the links
between the graphical user interface of Interface Builder and the code you write (or that has
been written for you in the template).

Looking at Outlets
Outlets are properties or instance variables that are flagged as being part of the interface.
They are the link between code and interface.

You can declare a property for a class using code such as the following:

@property (weak, nonatomic) IBOutlet

 UILabel *detailDescriptionLabel;

The compiler directive @property introduces the property declaration. Following that,
attributes of the property are placed in parentheses.

Next comes the part that matters: IBOutlet is used to indicate that this property is part of
the interface and can be manipulated with Interface Builder.

Then, the type—UILabel—appears as it does in any C declaration. For objects, you always
declare them as a reference with an asterisk. Finally, the name of the property appears.

If you are declaring instance variables instead of properties, the declaration is even simpler:

IBOutlet UILabel *detailDescriptionLabel;

IBOutlet has no purpose other than to let Xcode know that this will be part of the inter-
face. In fact, the compiler never sees it. IBOutlet is a define that resolves to a blank. When
you declare a property or variable using IBOutlet, Interface Builder will let you connect
objects such as text fields to it. That is the link between object and code.

Behind every property there is an instance variable. Xcode can create them automatically
with its default settings so you don’t have to do anything. If you compare the property for
detailDescriptionLabel with the instance variable declaration, you’ll see that the
instance variable declaration uses the name and the type (as well as the IBOutlet define)
shown in the property. The property has additional information regarding how memory should
be managed for the underlying instance variable. The only thing you do have to know if
you use automatically created instance variables is that they are named from a variation of
the property name. The instance variable (sometimes called the backing variable) for the
detailDescriptionLabel property is _detailDecriptionLabel.

C H A P T E R S I X W O R K I N G W I T H S T O R Y B O A R D I N S P E C T O R S 105

Looking at Actions
Actions are methods that have a common signature. They are flagged with IBAction to let
Interface Builder know that they can be connected to items such as buttons that will trigger
the action. They are the functional side of the link between interface and code.

An action has the following signature:

- (IBAction)myAction:(id)sender;

The keyword IBAction is used as the return type of the method. In fact, as is the case with
IBOutlet, the compiler never sees IBAction. It is processed by Interface Builder, but it is
a define that resolves to void by the time the compiler sees it.

An action has a single argument. It is of type id, which means that it can be any object what-
soever. The name of the action is up to you.

Exploring the Storyboard Inspectors
Depending on what is selected in the current editor of the workspace window, different
inspectors are available. This section provides an overview of the storyboard inspectors; it
also provides highlights of some of the more commonly used settings.

Remember, that inspectors are a key part of the integration of storyboards with code. In fact,
that is their primary task. Just about every inspector setting can also be set programmati-
cally by writing code. However, many people (including the author) find the use of the graph-
ical user interface of inspectors to be faster and easier than writing line after line of code.
Perhaps the most convincing argument for using inspectors is that it’s harder to introduce
typos into your code. When you are writing code manually, you can misspell anything you
want. Although Fix-It in Xcode does catch many typos, there are many others that can’t be
caught. When your options are limited to choices in a pop-up menu or a set of radio buttons,
as is frequently the case with inspectors, you can choose the wrong value, but you can’t type
in an unknown value.

When you are editing a storyboard, there are six inspectors at the top of the Utility area.
Here is a summary of each of them; details are included in the sections that follow. From left
to right, the inspectors are:

• File inspector—This is always the left-most inspector. It provides information about
the file you are editing.

• Quick Help—This provides information about the selected text in the editor. Because
the storyboard editor isn’t text-based, the Quick Help icon appears, but there is no
content for it.

i O S 6 F O U N D A T I O N S106

• Identity inspector—This provides an answer to the question, “What is the selected
object in the storyboard?”

• Attributes inspector—This inspector lets you set and inspect attributes of the
selected object. Perhaps the most important attribute is the name of the class that
implements the code for the selected object. This single attribute is the heart of the
link between the code and the storyboard object.

• Size inspector—This is where you specify the size and layout behavior of the selected
object.

• Connections inspector—Every interface object is an instance of a class that is set in
the Identity inspector. Depending on what that class is, one or more connections may
be available to be set. A connection is declared and implemented in the code for the
class (with Cocoa Touch framework code or your subclass of a Cocoa Touch class). That
connection is drawn graphically in the storyboard editor to an object on the canvas or
in the document outline.

Using the File Inspector
No matter what type of file you’re editing, the File inspector is at the left of the inspectors in
the Utility area, as shown in Figure 6-3.

Figure 6-3 Use the File inspector.

C H A P T E R S I X W O R K I N G W I T H S T O R Y B O A R D I N S P E C T O R S 107

Most of the time you don’t need to change any of the settings in the File inspector. The set-
tings that you may need to check or adjust most often are:

• Filename

• Location

• Auto Layout

Renaming Files and Classes
If you need to rename a file, you should use Edit➜Refactor➜Rename to do so. That com-
mand properly renames files and the references to them. The most common way of doing
this is to open a file that contains the declaration of a class. Select the class name, and then
choose Edit➜Refactor➜Rename. You’ll be asked to approve the process, and then Xcode will
rename the file and all references to it in your project.

Changing File Location
You can specify the location for each file in your project. The full path to the file you are edit-
ing is shown in the full path section. That path is what you are looking at. The small arrow
next to the full path reveals the file in the Finder.

Your choices for location let you manage how Xcode handles files when they move. The pop-
up menu has the following choices:

• Absolute path

• Relative to group

• Relative to project

• Relative to developer directory

• Relative to build products

• Relative to SDK

The first three are most commonly used.

The absolute path is exactly that. When you add a file to a project and set its location to abso-
lute path in the File inspector, that file will be used at all times. If you move the project to
another directory, the original file will continue to be used. Sometimes this setting is used on
multi-person projects whereby a certain file is used at a given path by all of the developers
(there are other, more elegant ways of doing this such as using a multi-project workspace).

More common is the relative to group setting (it’s the default in many Xcode templates).
Files are located based on the group in which they are placed. If the group is moved else-
where, all of the files in it are located based on the group. This setting lets you move your

i O S 6 F O U N D A T I O N S108

project from one directory to another without breaking the links to the files within the proj-
ect: they all will move.

Finally, the relative to project setting keeps all of your project’s files together. You can safely
move the entire project folder to another directory without breaking any links.

Using Auto Layout

The last setting is Auto Layout. This is a new (Xcode 4 and iOS 6) tool that enables you to
specify your view layouts in ways that automatically adapt not only to rotation but also to
various-sized screens. Auto Layout is described in Chapter 7, “Laying Out Your Scenes and Views.”

Using the Identity Inspector
The Identity inspector is available when you have selected an interface element in Interface
Builder. It doesn’t matter whether you select the object in the canvas or in the document
outline: wherever it is selected, its identity will be shown, as you see in Figure 6-4.

Figure 6-4 Use the Identity inspector.

The two most frequently used settings in the Identity inspector are the class and the label.

C H A P T E R S I X W O R K I N G W I T H S T O R Y B O A R D I N S P E C T O R S 109

Setting the Class
As you can see in Figure 6-4, when you select a button on the canvas, the class is initially set
to UIButton—the framework class that implements the button. For many cases, that’s all
you need to do.

However, as you can see in Figure 6-5, if you select an interface element such as the detail
view controller, its initial value is DetailViewController. If you use the drop-down
menu, you can change the class to any of the subclasses of DetailViewController. And
the critical point here is that those subclasses can be in the Cocoa Touch framework or they
can be in your own code in your project. Just declare a subclass of DetailViewController,
and you’ll be able to link it to a specific object on the interface.

Figure 6-5 Use a subclass for an interface element.

Setting the Label
Xcode automatically generates the names of the interface elements shown in the document
outline. You can add your own labels in the document section of the Identity inspector, as
you can see in Figure 6-6. By entering My Button in the label field, you can see it identified
that way in the document outline.

i O S 6 F O U N D A T I O N S110

Figure 6-6 Use labels to make your document outline more readable.

As is the case with all data entry fields in iOS, the data is updated when you click out of a
field. If you just type in a new label name, it will not show up immediately.

Using the Attributes Inspector
The Attributes inspector lets you customize your interface elements, as shown in Figure 6-7.

In Figure 6-7 you may notice that the title of the view controller (shown in a bar below the view
controller) is sometimes replaced by three icons. An unselected view controller displays its
name; the three icons appear when the view controller is selected. You’ll find out how they are
used in “Using the Connections Inspector” later in this section.

C H A P T E R S I X W O R K I N G W I T H S T O R Y B O A R D I N S P E C T O R S 111

Figure 6-7 Use the Attributes inspector to customize your interface elements.

The Attributes inspector’s settings vary depending on the object that you have selected.
When you drag an object from the library into your canvas (or document outline), it arrives
with the default settings. The number of attributes available for the variety of interface
objects is remarkable. Chances are that any interface customization you’re thinking of can be
accomplished with existing attributes. The best way to familiarize yourself with the built-in
attributes is to create a new project and experiment with the interface elements you’re inter-
ested in and their attributes.

Using the Size Inspector
The Size inspector lets you adjust the size of the selected element, as seen in Figure 6-8. As
you are drawing and moving objects on the canvas, guides appear to help you align them, but
for absolute precision, nothing beats the use of actual measurements.

i O S 6 F O U N D A T I O N S112

Figure 6-8 Use the Size inspector to adjust the size of a selected element.

Using Points for Units of Measurement
The units shown in the Size inspector are points. A point is 1⁄72 of an inch; it has been used
in desktop publishing as a standard unit of measurement.

Many computer monitors were built with 72 pixels per inch. As a result, in common usage, pixel
and point were interchangeable. However, only the point is an actual unit of measurement.

With the advent of high-resolution displays, far more than 72 pixels can be used per inch.
Thus, the interchangeability of the two terms no longer applies on high-resolution displays
such as Apple’s Retina Display. You will still find many people who use the two terms inter-
changeably, but for measurement (and the Size inspector), only point is the correct term.

If you are designing an interface, you want the elements to appear in certain places on the
screen, and those places are expressed in points. If you are designing a graphic to be dis-
played in a certain place on the screen, you may very well want to talk about pixels. A
graphic designed for use on a Retina Display may need to have many more pixels in it than
one designed for an older display.

If this is confusing, here’s a summary that works for many people: If you’re using Xcode,
work with points, and if you’re using Photoshop, use pixels.

C H A P T E R S I X W O R K I N G W I T H S T O R Y B O A R D I N S P E C T O R S 113

As you see in Figure 6-8, you can specify the X and Y coordinates for the top-left corner of a
selected element as well as its total width and height. These coordinates are in the units of
the object in which it is contained.

In Figure 6-8, you can see settings for content hugging and compression as well as for con-
straints. These are part of the Auto Layout mechanism introduced with iOS 6. It is discussed
in Chapter 7.

Using the Connections Inspector
Shown in Figure 6-9, the Connections inspector is where you connect outlet and actions in
your code to the interface elements.

Figure 6-9 Use the Connections inspector to connect outlets and actions to the interface elements.

i O S 6 F O U N D A T I O N S114

Connecting a Button (Overview)
With the button selected in Figure 6-9, you can see the events that it can send out. The gen-
eral paradigm for managing these events as follows:

 1. Select an interface element such as a button.

 2. Find the action that you want to use. For example, Touch Up Inside is the usual action
for a tap (the tap consists of two gestures—down and then up).

 3. Control-drag from the circle of the action in the Connections inspector to the object
that you want to affect, such as a text field in the canvas or in the document outline.

 4. When you are over the object, you will see the possible actions that can be triggered.

As the interface is built in Chapter 8, “Building on the Data Model,” you’ll see how to imple-
ment these steps.

Exploring the Three Icons Below a View Controller
As noted previously, when a scene or view controller is selected, its name is replaced by three
icons, as you see in Figure 6-9. In Figure 6-10, you can see the document outline for the
detail view controller. You can tell by the position of the pointer, that the left-most of the
three icons has been selected for the detail view controller scene.

Figure 6-10 Select the file’s owner.

C H A P T E R S I X W O R K I N G W I T H S T O R Y B O A R D I N S P E C T O R S 115

File ’s Owner
That left-most icon below a scene is what used to be called file’s owner. It is the root level view
controller of the scene, and clicking on the icon below the scene also selects it in the docu-
ment outline. It also selects the view controller on the canvas. (You can experiment with the
document outline to see the difference in highlighting of a view controller and the main view
within it.)

In Figure 6-10, look at the Connections inspector for the view controller. You’ll see that now
you have several groups of connections. You can connect them by Control-dragging from
one of them to another interface element.

• Triggered Segues

• Outlets

• Presenting Segues

• Referencing Outlets

• Referencing Outlet Collections

There really are only three types of connections, although there are five items in this list. This
reflects the fact that there are two sides to a connection in many cases. Figure 6-10 shows
the Detail View Controller - Detail Scene. Notice that the presenting segue for this scene is a
push segue from the Table View Cell selection.

Select the Master View Controller - Master Scene, as shown in Figure 6-11, and you’ll see the
connection from the other end. The same connection from the point of view of the Master
View Controller - Master Scene is shown as a triggered segue. It’s the same segue in both
cases, but whether it’s triggered or presenting depends on which way you look at it. Are you
looking at what is happening when an object is selected (that’s the selection in Master View
Controller - Master Scene) or are you looking at how a view controller was presented (that’s
the view from the Detail View Controller - Detail Scene)?

Similarly, in Figure 6-12, you can see that from the viewpoint of the Master View Controller -
Master Scene, the presenting segue for itself comes from the navigation controller.

In much the same way, outlets and referencing outlets are two sides of the same connection.
As you can see in Figure 6-10, detailDescriptionLabel and view are connected respec-
tively to Label - Detail view content goes here and View. Property and variable
names start with lowercase, so you can see that the actual connection is between a property
or instance variable and a label in Interface Builder where initial capital letters are allowed.
(Also, labels for objects in Interface Builder can contain spaces, which cannot appear in prop-
erty and variable names.)

i O S 6 F O U N D A T I O N S116

Figure 6-11 Compare triggered and presenting segues.

Figure 6-12 The navigation controller presents the Master View Controller - Master Scene.

C H A P T E R S I X W O R K I N G W I T H S T O R Y B O A R D I N S P E C T O R S 117

Referencing outlet collections is an advanced topic that is not covered in this book.

First Responder
The middle of the three icons underneath a selected scene is a list of first responders. The
first responder is the action that is at the front of the target chain—that is, the actions for
the hierarchy of selected objects. The first responder might be a button, and if it can’t handle
an action, its view gets a chance to handle the action. Because actions all have the same struc-
ture using IBAction and a single id parameter, Xcode can collect all of the possible first
responders so that you can Control-drag from an action to something that will receive it.
You’ll see more about first responders in Chapter 8.

Exit
Finally, the Exit icon at the right of the selected scene may contain additional connections to
exit the storyboard.

Summary
Storyboards have a series of inspectors for you to adjust their settings and parameters.
Together with the Interface Builder canvas, this gives you a graphical user interface with
which to build your app’s interface.

The storyboards that are part of the built-in Xcode templates are already set up for you. This
means that you’re not starting from scratch to build your own storyboards. However, this
also means that your first step with storyboards (and with the code of the templates) is the
relatively more difficult task of analyzing code that’s been written by other people.

Some developers find it difficult (or just annoying) to work on code written by other people.
In practice, few developers start from a blank piece of paper or an empty file. Between tem-
plates and robust frameworks such as Cocoa Touch, the challenge is understanding what you
have and making your concepts fit in with it.

Now that you’ve seen the basic structure of storyboards, it’s time to build the interface for
your app where you will—finally—start from a blank slate.

119

INTERFACE BUILDER LETS you draw your interface easily. As noted, you can
avoid Interface Builder if you want: you can create and manage all of your interface
elements programmatically. There are many drawbacks to that approach—a signifi-
cant one of them is that, when you use Interface Builder to build your interface, the
files that you build—xib files—are actually composed of XML (you normally don’t see
it, but it’s there). Because your interface files are text-based, you can search them using
the Search navigator in some cases. Also you can use the Edit➜Refactor command to
rename some of the elements just as you would rename a method or class.

Yet another significant benefit of using Interface Builder to build your interface is that,
as you use a graphical interface, you are going to experience some of the same joys and
frustrations that your users will experience. You can become the usability test lab and
keep track of what works for you and what doesn’t.

Laying out your scenes and views with a graphical user interface makes a great deal of
sense: you can place interface elements just where you want them to be shown.
Alignment guides prompt you to easily align the elements. The system by which this
has been accomplished is very powerful, but it does have some limitations. In OS X 10.7
and iOS 6, Auto Layout was introduced to make things easier.

The layout tools that have been used in the past mostly let you manage the size and
position of interface elements within their containers (on a personal computer, the
most common container is a resizable window). iOS and mobile devices introduced a
new issue into the picture: not only can containers be resized, but they also can be

chapter seven

Laying Out Your Scenes
and Views

i O S 6 F O U N D A T I O N S120

rotated as the mobile device itself is rotated. Then, in 2011, further sizing issues entered the
picture with the advent of iPhone 4 and its Retina display, along with the iPad mini. See
“Using Points for Units of Measurement” in Chapter 6, “Working with Storyboard Inspectors.”

To further complicate the issue, Apple is more an international company than ever before. In
the past, products including the operating systems were often released first in the US and then
were rolled out across other countries and regions. Although that still happens, new products
from Apple are increasingly released around the world at almost the same time. This means
that it’s important for software to be released in as many supported languages as possible.

And that’s not all by any means. Each year at the Worldwide Developers Conference (WWDC),
Apple presents design awards to outstanding apps for Mac, iPhone, and iPad. A separate cat-
egory for student apps is also awarded. (https://developer.apple.com/wwdc/
awards/). It’s well worth your time to review these winning apps. They are not necessarily
the most financially successful apps, but Apple has singled them out for their innovative use
of the technologies. Perhaps most valuable to developers such as yourself, on the website
Apple describes exactly what of each app makes it stand out as an example to other develop-
ers. In 2012, the two winners in the student category were:

• daWindci from Reality Twist GmbH, Mimimi Productions at Mediadesign Highschool
of Applied Sciences, Germany

• Little Star from BiBoBox Studio at Dalian Nationalities University, China

International support is important to Apple, Apple developers around the world, and to the
users of devices.

Auto Layout helps developers cope with resizing and rotation of devices and containers as
well as with multiple screen sizes. In this chapter, you’ll see how to use both the old and new
versions of sizing tools. First, you’ll find a high-level overview of the old techniques (springs
and struts), and then you’ll delve into Auto Layout.

In this book, most chapters build on previous chapters and provide groundwork for chapters
that follow. If you have been working through the examples in this book, make a copy of your
Chapter 6 project and work on it. In part because this chapter covers both the old and new
ways of laying out interfaces, your experimentation may provide a hybrid interface that is
useful for learning the tools but is not desirable for a finished app.

Using Springs and Struts
The springs and struts approach to managing a changing interface has been part of Interface
Builder since the days of NeXT. It’s very simple, and, once you get the hang of it, very quick to use.

Working with a copy of your project, you can enable springs and struts. Figure 7-1 shows the
project as it is at the end of Chapter 6. As you can see, in the File inspector there is a setting
for Auto Layout. If it’s on, turn it off so you can use springs and struts.

C H A P T E R S E V E N L A Y I N G O U T Y O U R S C E N E S A N D V I E W S 121

Figure 7-1 Turn off Auto Layout in order to use springs and struts.

Delete the button and the text (select them and press Delete), leaving only the text field.
Select it and use the Size inspector as shown in Figure 7-2. (It’s the next-to-last button at the
right of the inspectors list).

The autosizing control is where you do your work. In the center, a rectangle stands in for
your selected view (no matter what its shape). On each of the outer four sides of the rectan-
gle, you can click to enable or disable the strut. When enabled, that side of your view is
pinned to its container. A common setting is to enable struts for a button or text field so that
it is always in the top left or bottom right of its containing view.

In Figure 7-2, the view is pinned to the right and left sides of its container. What do you
think will happen?

If you run the app on the iOS simulator, you’ll see that the left side of the text field is pinned
to the left edge of the screen. As you rotate the device on the simulator, that pinning will be
preserved. The right side isn’t pinned.

Inside the rectangle, the springs let you control resizing. For example, in Figure 7-3 you see
that the horizontal spring within the rectangle is enabled, allowing it to grow and shrink.

i O S 6 F O U N D A T I O N S122

Figure 7-2 Use the Size inspector.

Figure 7-3 Enable resizing.

C H A P T E R S E V E N L A Y I N G O U T Y O U R S C E N E S A N D V I E W S 123

Now, if you run the app and rotate it, you’ll see that the text field is pinned to each side of the
screen, and in addition, the text field grows and shrinks as shown in Figure 7-4.

Figure 7-4 The text field grows and shrinks.

This works very well, but it is not hard to come up with examples where the behavior is
counterintuitive.

6Using Auto Layout
Auto Layout takes a different approach to layout. Instead of having to specify the relation-
ship between a view and its container, you specify the relationship between two views. In
addition, Auto Layout lets you move beyond simple yes/no choices for springs and struts.
You can allow ranges of values, and, most important, you can prioritize your settings. As the
view is laid out at runtime, the sizes and locations of views may not match any specific values
you have set. Instead, they will reflect the best possible arrangement by taking into account
your preferred settings based on their priorities.

Don’t worry: iOS 6 does most of the work. You just have to define and prioritize your set-
tings. There are three areas that you have to focus on to get the most out of Auto Layout:

• Content Hugging

• Content Compression Resistance

• Constraints

To begin with, turn Auto Layout on (refer to Figure 7-1 to see the control in the File
inspector).

i O S 6 F O U N D A T I O N S124

Understanding Intrinsic Content
As is the case with springs and struts, as you move or resize a view in Interface Builder,
guides appear to help you position the view in any of several possible locations relative to
another view (or views) and the superview (or container). These guides are sensitive to the
edges and centers of views. The basic function of guides is still available with Auto Layout,
but now they are full-fledged objects: they appear in the document outline. They are con-
straints. For an example, look at Figure 7-5.

In Figure 7-5, you see a text field (it’s the one you worked with in Chapter 6). Now that you’re
using Auto Layout, there’s a new way to talk about views.

In the Size inspector in the Utility area, you see its X and Y coordinates as well as its width
and height. (Note that height is dimmed at this point: you’ll see why later.) The width and
height of the selected view make up its intrinsic content size. You specify the intrinsic content
size of a view at the top of the Size inspector just as you always have done. Intrinsic content
size is an attribute of the view.

Related to the intrinsic content is the alignment rect of a view. This is the rect that you use for
aligning a view; it does not include a frame for the view. (And don’t worry—you just specify the
alignment in most cases and you don’t have to worry about how iOS and Xcode implement it.)

Figure 7-5 Position views with Auto Layout.

C H A P T E R S E V E N L A Y I N G O U T Y O U R S C E N E S A N D V I E W S 125

Using Constraints
In Interface Builder, remember that you’re drawing views for the view controller to manage.
The view controller uses constraints to determine how the intrinsic size of a view will be used
or changed at runtime.

In Figure 7-5, there are three constraints shown. As you can see in the document outline, the
partyNameField is selected. Within it, there’s a section of constraints in the document
outline, and within constraints, there is a width constraint set to 97—it is specified at the
top of the Size inspector. You can click on it in the document outline to see how it is shown
on the canvas (it’s the line just below the text field with two vertical endpoints).

The constraints are shown on the canvas and they also are listed under Constraints in the
Size inspector in the Utility area. Note that this width constraint is the first one shown under
Constraints. Note, too, that it is a constraint on partyNameField (you can tell that because
it is shown under Constraints, which is part of partyNameField in the document outline).

The other two constraints shown in the Size inspector are constraints on the View object
itself. You can see them on the canvas: the Vertical Space constraint is the highlighted con-
straint from the top of the view to the top of the text field, and the Center X Alignment
constraint appears exactly as the centering guide has always appeared. (Notice that the word-
ing of the constraints is slightly different in the document outline and in the inspector, but
this just reflects the formatting of the two sections in Xcode.)

Although things look a bit different from previous implementations, your work is much the
same when you are using Auto Layout and constraints rather than guides.

The following sections show you the differences.

Working with Content Hugging
You can set a content hugging priority for the text field in both horizontal and vertical direc-
tions. This means that in both directions, when the view is resized, it stays as close as possi-
ble to its intrinsic content size. (Remember that views are often resized when a mobile device
is rotated; they can also be resized when they are shown on a device with an unanticipated
screen size.)

Using Content Compression Resistance
The content compression resistance priority is the priority that controls the shrinking of a view
in either direction.

Setting and Editing Priorities
Neither priority matters by itself. What matters is which one is higher. For example, in Figure 7-5,
the text field can grow in either direction. You can select any constraint in the document

i O S 6 F O U N D A T I O N S126

outline or on the canvas. In the Size inspector, the selected constraint is highlighted as you see
in Figure 7-5. You can then use the gear wheel to edit it, as shown in Figure 7-6.

Figure 7-6 Edit a constraint.

As you can see, you have a great deal of control over your constraints and views. The best way
to become more familiar with the options is to experiment. And in case the issue of con-
straints is a bit daunting, rest assured that for many purposes you can just position your
views where you want them. The default settings may not be optimal, but they will get you
well on your way.

Working with Menus
For selected views, there are also menu commands you can use with Auto Layout. For exam-
ple, when you have two or more views selected, you can use the Editor➜Align menu shown
in Figure 7-7 just as you can in many drawing programs.

As you see in Figure 7-8, you can pin a selected view in a variety of ways. Pinning is a com-
monly used term for making an object’s position relate to another object. Try out the pin
menu, and you’ll see that it’s a quick way to create the constraints you learned about in the
previous section.

C H A P T E R S E V E N L A Y I N G O U T Y O U R S C E N E S A N D V I E W S 127

Figure 7-7 Align objects.

Figure 7-8 Create a constraint with a Pin command.

i O S 6 F O U N D A T I O N S128

Summary
This chapter shows you the basics of the two layout technologies for iOS: Auto Layout as well
as springs and struts. They can be used together, but the advice from Apple’s engineers is to
use Auto Layout. It accommodates device rotation easily, and, as we have seen with iPhone 5
and iPad mini in 2012, it can make the transition to new device screen sizes easy.

Now it’s time to move on to build the app itself. There’s more to do with the data model, and
there’s work to be done on the detail view controller as well as the master view controller.

part 3

Building the
Party Planner
App

chapter eight Building on the Data Model

chapter nine Building the Detail Data View

chapter ten Saving and Restoring Data

chapter eleven Testing the App with the
Debugger

131

AT THE END of Chapter 4, “Designing the Party Planner App,” you set up the data
model to begin to work with your party data. At the end of Chapter 5, “Walking
Through the iPhone Storyboard,” you experimented with adding a button and a text
field to the storyboard. These are small steps on the road to building your app. In this
chapter, you expand the basic data model and the storyboard and begin to create the
interface for your app.

For some people, the idea of databases and data models seems dauntingly compli-
cated. There’s no reason to worry. The concepts you work with in building the data
model for Party Planner are exactly the same concepts you work with in organizing a
party in real life. You’ll deal with guests, the menu, and details of the party. In the
world of relational databases (including Core Data), the words you use to describe
these are everyday words that you could use to organize your party.

By the end of this chapter, what you will have are:

• An instantiated object from the data model—a party. It might be called some-
thing such as party.

• A view to display the instantiated object. It might be called something such as
partyView.

chapter eight

Building on the
Data Model

i O S 6 F O U N D A T I O N S132

You’ll be able to drill down to the next layer of detail. Within the party object, you’ll have a
number of attributes (in database-speak) or properties (in Objective-C-speak). Each one of
them will be displayed in a view. (Most of them will be text field views.) Similar naming might
identify them as partyName (for the object from the data model) and partyNameView (for
the interface element).

Expanding the Data Model
Some developers like to build the data model first and then design an interface to allow for
user interaction with it. Other developers like to design the interface and then determine
what the data model needs to look like. Still others do it both ways. In general, no matter
how complete your interface design or your data model is, when you actually start to put the
pieces together, you’ll find a few gaps and a few areas where you may need to make adjust-
ments to one or the other.

In this chapter, you’ll see how to expand the data model and then build the interface around
it, but keep in mind that in real life, this nice sequential process is likely to involve some
back-and-forth work on both the data model and the interface at the same time. Fortunately,
Xcode makes such back-and-forth work easy.

Expanding the Interface with Entities
As you can see in Figure 8-1, at the end of Chapter 4 your data model had one entity (called
Party). The Party entity had a single attribute (called partyName), which remained as a
date from the Master-Detail Application template.

In planning your app in Chapter 4, you need two additional entities: Guest and Food. The
simplest way to add them is to use the pop-up menu below the left side of the data model.
Click and hold over the pop-up menu and choose Add Entity. You’ll create a new entity, and
you can immediately change its name from Entity or Entity1 (the default names) to
Guest and Food (see Figure 8-2).

You can also use commands in the Editor menu to add entities.

C H A P T E R E I G H T B U I L D I N G O N T H E D A T A M O D E L 133

Figure 8-1 The data model you’ve created, as of the end of Chapter 4.

Figure 8-2 Add two new entities to the data model.

i O S 6 F O U N D A T I O N S134

Filling in the Attributes for the Entities
You can add attributes for the entities as you go (that is, the attributes for the first entity) or
you can add all the entities and then go back to add attributes to each one. In either case, the
process is the same:

 1. Select the entity.

 2.a. Using the pop-up menu in the center of the editor at the bottom, choose Add Attribute.

 2.b. Use the + under the attributes pane to add an attribute.

 3. In either case, the new attribute will be named Attribute (or Attribute1,
Attribute2, and so on). Select it in the attributes pane and immediately change
its name.

 4. Select the appropriate type, discussed in Chapter 4.

Figure 8-3 shows the Party entity with three attributes. In Chapter 4 you renamed
timeStamp to partyName; now add date and location. location and partyName
should be strings, and date should be a date.

Figure 8-3 Add or rename attributes for each entity.

C H A P T E R E I G H T B U I L D I N G O N T H E D A T A M O D E L 135

Follow these steps again to add an attribute to Food and to Guest. Names must be unique
within an entity, but you can have a name attribute for Food and a separate name attribute
for Guest. Create them and set them both to be strings.

The table view shown in the figures of this chapter so far lets you select an entity and work
with it. The Editor Style control in the bottom right of the data model editor lets you switch
between the table view and a graph view, as shown in Figure 8-4. As you can see, you see all
of the attributes for each of the entities in your data model and not just a single selected
entity.

Figure 8-4 Use the graph view.

You can also use commands in the Editor menu to add attributes.

i O S 6 F O U N D A T I O N S136

Building Relationships
The heart of a relational database is its relations (not surprisingly). In the context of data-
bases, the word relation has exactly the same meanings it has in real life. It can mean a rela-
tive (such as a parent or spouse), but it also more generally describes any kind of connection.

Database relationships are the connections between two tables (in Core Data, entities) in the
database. They can represent real-world objects such as students and classes, or they can
represent concepts such as plans and implementations. In some implementations of rela-
tional databases, relationships are bidirectional. In Core Data, however, a relationship
describes the connection between an entity and another entity, which is referred to as the
destination of the relationship.

Creating a Basic Relationship
You can build a relationship in your data model by following these steps.

 1. Select an entity in your data model, as shown in Figure 8-5 where Party is selected.

Figure 8-5 Select an entity.

C H A P T E R E I G H T B U I L D I N G O N T H E D A T A M O D E L 137

 2. In the relationships pane, create a new relationship by clicking + at the bottom left.

 3. Using the Destination pop-up menu as shown in Figure 8-5, choose the destination of
the relationship—that is, the entity to which the selected entity will be related. As you
can see in Figure 8-5, your choices include the selected entity itself (Party in this
case). That is called a self-join. It’s an advanced topic in data management. (In Step 7,
you will see another way of setting the destination. If you want to follow along, change
the destination to No Value before you move on.

 4. Next, name the relationship. (Relationship names start with lowercase letters in part
to distinguish them from entities, which are always capitalized.) The relationship name
will start out as relationship, relationship1, or the like. Give it a meaningful
name. Often, the name of the relationship is a plural form of the entity involved in the
relationship. Thus, in Figure 8-5, the relationship from Party to Guest is called
guests, because the relationship can encompass many guests.

 5. Select the Core Data Model inspector in the Utility area, as shown in Figure 8-6. As you
can see, you can name (rename) the relationship using the Core Data Model inspector,
and you can also set its destination there (as opposed to the method shown in Step 3).

Figure 8-6 Use the Core Data Model inspector.

i O S 6 F O U N D A T I O N S138

 6. Once you have created a relationship between two entities, you’ll find that you can
select it as an inverse relationship. Thus—either in the Relationships pane or in the Core
Data Model inspector—at this point you can create a new relationship from the Guest
entity to the Party entity. As shown in Figure 8-7, you now can set the inverse rela-
tionship to the guests relationship you created in Steps 1 through 5.

 7. In the Core Data Model inspector, you can further define the relationship as you see in
Figure 8-8. Once again, it is important to point out that these settings aren’t particularly
database-specific: they are real-life issues. They are described in the following section.

Figure 8-7 Set the inverse relationship.

C H A P T E R E I G H T B U I L D I N G O N T H E D A T A M O D E L 139

Figure 8-8 Refine the relationship.

Refining a Relationship
As you can see in Figure 8-8, there are a number of settings you can apply to a relationship.
These are the settings you use most often. (Note that these can only be set in the Core Data
Model inspector—they are not available in the Relationships pane in the center of the editor.)

These settings are an important part of the database because once you have set them, Core
Data will enforce the rules you set. That means that you don’t have to write code to manage
these refinements to your database: it’s done for you.

• Optional—This checkbox means just what it says: is the relationship optional or
required. In the data model being built here, the party relationship from Guest to
Party, is not optional. You cannot have a guest without a party. You could construct
a different data model that keeps track of people even if they are not invited to a party,
but that is a more complex model.

 Note that this is a case in which the direction of the relationship matters. The guests
relationship from Party to Guest is optional because you can have a party without
any guests, as would be the case when you are setting up a party and before you have
invited anyone.

i O S 6 F O U N D A T I O N S140

• To-Many Relationship—There is a database term for this concept: cardinality. It sim-
ply expresses the concept that for one party there can be many guests (that’s a to-
many relationship). In the data structure being built here, for the guests relationship
you will want to set the to-many relationship checkbox. For its inverse, party (the
relationship from Guest to Party), you do not want a to-many relationship because
in this data model, a guest can only be invited to one party. (As noted, allowing multi-
ple guests to be invited to multiple parties is a bit more complex.)

• Delete Rule—This pop-up menu gives you four choices of the behavior for Core Data
to take when an object is deleted. The delete rule defines what happens to the related
objects when the main object is deleted. The choices are:

• No action—This is just what it says: if an object is deleted, the related objects are
not affected. This can cause internal database problems, so be certain that you
know that you want to use it. If you delete a party, for example, and if there is an
inverse relationship from a guest to the party, once the party has been deleted,
the guest has a reference to a non-existent object, and that can cause difficulties
and even crashes.

• Nullify—Continuing with the previous scenario, if you choose the nullify delete
action, the reference to the now-deleted party in the guest data is set to null.
That’s a valid value, and it doesn’t cause a crash.

• Cascade—The cascade delete rule in this case would mean that when a party is
deleted, all of its guests are deleted. That is the behavior you want to use with
Party Planner.

• Deny—Finally, the deny delete rule says that you cannot delete something that is
required. Instead of using the cascade delete rule, you might want to set up a deny
rule for a party so that you have to manually delete each guest before you can
delete the party.

Next Steps
Follow the steps in this section to create relationships from Party to Food and vice versa. If
you assume that the Food entity represents various types of food, the relationship from
Party to Food is a to-many relationship (in most cases). It might be optional if you want to
allow for parties with no food. As is the case with guests, the inverse relationship from Food
to Party is required: you cannot have food in this data model without having a party at
which to serve it.

Table 8-1 shows the relationships that should be created at this time.

C H A P T E R E I G H T B U I L D I N G O N T H E D A T A M O D E L 141

Table 8-1 Relationships for the Party Planner App
Relationship
Name

Entity
(Source)

Destination Inverse Optional To-Many

guests Party Guest party ✓ ✓

menu Party Food party ✓ ✓

party Guest Party guests

party Food Party menu

Figure 8-9 shows the process in action. The menu relationship is the relationship from Party
to Food. Once it is created as shown in Figure 8-9, you can use it as an inverse relationship
for a new relationship from Food to Party that you might want to call party. (You already
have a party relationship from Guest to Party, but because they are based on different
entities, the duplicate names don’t cause problems.)

Figure 8-9 Review the data model.

i O S 6 F O U N D A T I O N S142

Building the Detail View Controller
Now that the data model is expanded, you’ll see how to connect your interface elements to
your code and to one another. If you’re thinking, “There’s a lot of connecting to be done,” you
are right. In a sense, you have parallel interface elements with the objects representing data
working with interface objects in the frameworks as well as those you have created (and will
create). They have to be connected so that, at runtime, they function together as a single entity.

To the users, there is no distinction: a text field displays the name of the party and lets you
modify it. However, from your point of view, you need to remember that these are two dis-
tinct objects. The text field displays and lets the user edit the data; you are responsible for
moving the actual data in the data object to and from the text field.

Because the master view controller functions in the template without changes (at least not at
this time), this chapter and the following one focuses on the work you do in the detail view
controller to display the selected party’s details. The steps you’ll need to take are:

 1. Convert your data model to a Party class in your project.

 2. Modify the app to use your Party class instead of what is already there.

 3. Add a text field to display the partyName attribute of the Party class in the detail
view controller.

The first step is described in this chapter. The second and third are described in Chapter 9,
“Building the Detail Data View.”

In Chapter 10, “Saving and Restoring Data,” you see how to move between the interface
fields and the persistent store.

Creating and Removing the Database
The data model you have built with Xcode and the Core Data Model editor and its inspec-
tors defines your database. In the Master-Detail Application template, the first time you run
the app, a new database is created based on your data model. You don’t have to do any-
thing: the code is already in the template.

However, you may encounter an issue as you continue to build your app. The data model
for your database is incorporated into the database that is created by the template. If you
make changes to the data model and attempt to re-open a database created from a previous
version of the data model, you are likely to get an error. There are ways to manage this in
production apps, but during development, it is often easiest simply to remove an old data-
base file. The template won’t find it when you launch the app for the first time, and so it will
create a new database from your current data model. That code is built into the template.

C H A P T E R E I G H T B U I L D I N G O N T H E D A T A M O D E L 143

Not every change to a data model invalidates existing data files. Furthermore, Core Data
contains migration code that you can use to modify existing data files. This is an advanced
topic, so you might want to look at the relevant documentation on developer.apple.
com. For many developers, it’s easiest to handle data model changes that happen during the
development cycle by just removing the old database. For apps that are in production, the
migration tools make database changes easy for users to handle (because they don’t see the
issue at all).

 1. In the Finder, select your Home directory.

 2. While holding down the Option key, choose Go➜Library. (Unless the Option key is
pressed, the library is not in the Go menu.)

 3. Select Application Support, iPhone Simulator, and then the iOS version number as
shown in Figure 8-10.

Figure 8-10 Open the library.

 4. Continue drilling down to the Applications subfolder.

 5. You’ll find a folder for each of the apps you’ve used on the simulator. The folder names
are strings of letters and numbers. You may have to open several folders to find the
one with your Party Planner app.

 6. Inside the same folder as your Party Planner app, open the Documents folder as shown
in Figure 8-11. Inside it you’ll see the database called Party_Planner.sqlite.
Delete it.

i O S 6 F O U N D A T I O N S144

Figure 8-11 Remove the SQLite file.

 7. The next time you run the app, a new database will automatically be created with the
new data model.

Creating the Party Class from the Data Model
Once you have built your data model, you can easily convert it to classes for your project
using Xcode. Remember that the data model is used to construct your data file, so, as noted
in the sidebar called “Creating and Removing the Database,” when you make a change to the
data model, you must regenerate the classes.

Looking at the Existing KVC Code
The classes that you work with in Core Data are NSManagedObject or subclasses of it.
The Master-Detail Application template uses NSManagedObject classes. This is the
simplest way of handling the data. The template uses key-value coding (KVC) to access the
attributes of the data model entities. In the insertNewObject method of MasterView
Controller.m, a new object is created as an NSManagedObject, and its attribute is set
with KVC.

Key-value coding is a mechanism for accessing the properties of an object (which are the
attributes of an entity) by using the name. You pass in the name to KVC, and you get the
value back. Search for key-value coding on developer.apple.com if you want more infor-
mation. It’s not essential at this point because the template uses KVC, and you’re about to
replace it with another technique.

Here is the code that sets the attribute:

[newManagedObject setValue:[NSDate date] forKey:@”partyName”];

C H A P T E R E I G H T B U I L D I N G O N T H E D A T A M O D E L 145

You pass in the value for the object (a date, in this case), and you specify the key (that is, the
attribute name) using a string. Compare this to the way you set a property on a class, as
shown in the following section. That code would be written like this:

self.newManagedObject.partyName = [[NSDate date] description];

Setting the attribute directly using dot syntax is more efficient than asking the framework to
use a string to find the necessary attribute at runtime. By creating classes for your data model
entities, you can improve the performance of your app; you also can make your code easier to
write. You’ll notice that the KVC version is slightly longer than the dot syntax version.

Creating the Classes from the Data Model
If you have followed the steps in this chapter, your data model now contains three entities—
Party, Food, and Guest—along with the relevant relationships. The simplest way to
convert them to classes is to make a class out of each one. Here are the steps to follow:

 1. Open the data model.

 2. Select the Party entity from the list of top-level components at the left of the data
model editor, as shown in Figure 8-12.

Figure 8-12 Select the Party entity.

i O S 6 F O U N D A T I O N S146

 3. Choose Editor➜Create NSManagedObject Subclass, as shown in Figure 8-12.

 4. If you have selected an attribute for the entity, you are asked which entities to create,
as shown in Figure 8-13. In this case, you can select only Party or all of them. If you
have made changes to any of the subclasses created previously, don’t recreate them
unless it’s absolutely necessary—your changes will be lost. However, in a case such as
this where you have no changes to the previously generated subclasses, your choice
doesn’t matter. Click Next.

Figure 8-13 Select the entities to subclass.

 5. Choose the location for the new files that will be created, as shown in Figure 8-14.

 The scalar option lets you use simple C scalar types rather than Objective-C object
types where possible. This can have a very marginal improvement in performance, but
many developers prefer to stick with the Objective-C types (that means, do not check
the box). You can specify a group into which to place the new files, and you must select
the target (there is only one choice in your app at this point). In this sequence, the new
files will be placed in the basic group of files; that enables you to see how to create a
new group from them in the next step.

 6. Xcode will create a pair of files for each class—Party.h, Party.m, Guest.h,
Guest.m, Food.h, and Food.m. You can see them in the project navigator at the left
of Figure 8-15.

C H A P T E R E I G H T B U I L D I N G O N T H E D A T A M O D E L 147

Figure 8-14 Choose the location for the new files.

Figure 8-15 Select the new files and make them a group.

i O S 6 F O U N D A T I O N S148

 7. Select the new files and use the shortcut menu (Control-click or right-click if your
mouse is set up for two buttons) to choose New Group from Selection, as shown in
Figure 8-15.

 8. A new group will be created from the selected files. Click in the new group name and
edit it, as shown in Figure 8-16. Data Model is a good name.

Figure 8-16 Name the new group something descriptive.

Looking at the Code
The three classes that have been created for you let you access the data directly with proper-
ties. You don’t have to do anything with the code that’s generated, but it’s a good idea to
know what’s going on.

The Party class is the heart of your data model. Listing 8-1 shows the Party.h file.

C H A P T E R E I G H T B U I L D I N G O N T H E D A T A M O D E L 149

Listing 8-1 The Party.h File
#import <Foundation/Foundation.h>

#import <CoreData/CoreData.h>

@class Food, Guest;

@interface Party : NSManagedObject

@property (nonatomic, retain) NSDate * date;

@property (nonatomic, retain) NSString * location;

@property (nonatomic, retain) NSString * partyName;

@property (nonatomic, retain) NSSet *guests;

@property (nonatomic, retain) NSSet *menu;

@end

@interface Party (CoreDataGeneratedAccessors)

- (void)addGuestsObject:(Guest *)value;

- (void)removeGuestsObject:(Guest *)value;

- (void)addGuests:(NSSet *)values;

- (void)removeGuests:(NSSet *)values;

- (void)addMenuObject:(Food *)value;

- (void)removeMenuObject:(Food *)value;

- (void)addMenu:(NSSet *)values;

- (void)removeMenu:(NSSet *)values;

@end

The code begins by importing two Cocoa Touch frameworks. Then, you see a forward refer-
ence to Food and Guest, which will be used by Party. The interface for Party shows that
it is a subclass of NSManagedObject. Following that you see that the Party attributes
from the data model have been changed into properties that you can use in your code.

That’s all that you care about on the data side.

There is a second interface for Party just below the first one. Technically, this is a category
called CoreDataGeneratedAccessors. These are methods that you can call to manipu-
late the class. As you can see, you can add and remove Guest and Menu (Food) objects. You
also can add and remove NSSet objects: these represent relationships.

i O S 6 F O U N D A T I O N S150

The corresponding .m file (shown in Listing 8-2) imports the three main data model files
(Party.h, Food.h, and Guest.h). Its implementation consists of promises to deliver the
Core Data properties at runtime. (That’s code you never see.)

Listing 8-2 The Party.m File
#import “Party.h”

#import “Food.h”

#import “Guest.h”

@implementation Party

@dynamic date;

@dynamic location;

@dynamic partyName;

@dynamic guests;

@dynamic menu;

@end

Listing 8-3 shows you the Food.h file. It is comparable to Guest.h and is much simpler
than Party.h. What is important to note is that you add and remove related objects such as
Guest and Food using the methods in Party. Thus, the main object controls all of the
related objects.

Listing 8-3 The Food.h File
#import <Foundation/Foundation.h>

#import <CoreData/CoreData.h>

@class Party;

@interface Food : NSManagedObject

@property (nonatomic, retain) NSString * name;

@property (nonatomic, retain) Party *party;

@end

Listing 8-4 is comparable to both Guest.m and Party.m.

C H A P T E R E I G H T B U I L D I N G O N T H E D A T A M O D E L 151

Listing 8-4 The Food.m File
#import “Food.h”

#import “Party.h”

@implementation Food

@dynamic name;

@dynamic party;

@end

Summary
This chapter shows you how to build on your initial data model. In particular, you learned
how to build relationships among the model entities. You also learned how to convert your
data model into code using Xcode.

Much of your work up to this point has been with Xcode and its graphical development tools,
including Core Data Model editor and Interface Builder. Now, you’re venturing into writing
code. For some people, that is actually more comfortable than drawing relationships among
entities or drawing interface elements. For others, it’s a bit daunting. No matter which camp
you’re in (or if you’re in neither or both), you’ll see that the Apple engineers have brought the
same ease-of-use standards to the developer tools that they have brought to apps for music,
word processing, and all the other wonderful iOS apps they’ve created.

153

IN CHAPTER 8, “Building on the Data Model,” you expanded the model and con-
verted it to a Party class in your project. As noted, there are two additional steps to
take with your expanded data model:

• Modify the app to use your Party class instead of what is already there.

• Add a text field to display the partyName attribute of the Party class in the
detail view controller.

Once the text field is added, you’ll be able to add fields for the other data elements of
Party. That will go a long way to completing the iPhone interface. At that point, you’ll
learn how to lay out the iPad interface.

These steps are somewhat different from the steps you have previously taken to build
the Party Planner app. Unlike building your data model with the Core Data Model edi-
tor or designing your user interface with storyboards, you’ll have to get out your key-
board and start dealing with code—yes, typed-in code in the great tradition of
programmers for over half a century.

Actually, “typed-in” is not quite accurate. Yes, there’s some typing to do, but much of
the code is pasted in; other sections of code are in the template and they need a little
tweaking. And even when you’re typing in code, Xcode’s Fix-It and code completion
will let you press the Return key or click an option to have Xcode do the work for you.

chapter nine

Building the Detail
Data View

i O S 6 F O U N D A T I O N S154

Nevertheless, you’re now in the world of text-based code for a while, but you’ll return to the
graphical user interface of storyboards to develop the actual interface of the detail view for
both iPhone and iPad.

You’ll see how the universal setting makes it easy for you to modify iPad and iPhone inter-
faces with the minimum of effort and the maximum amount of reused code.

This chapter introduces you to the basics of creating a view and its supporting controller. In
Part IV, “Using Table and Collection Views,” you’ll learn another way of moving data to and
from a view. Many apps use both techniques. The techniques described in this chapter are
often used for relatively small amounts of data, whereas the techniques described in Part IV
are often used for larger amounts of data. The data for an individual party falls in the middle
ground, whereby either technique is valid.

Using the Party Class
In Chapter 8, you used Xcode to create subclasses of NSManagedObject for Party, Food,
and Guest. Now it’s time to use them. In the section called “Looking at the Existing KVC
Code” in Chapter 8, you saw the way in which new NSManagedObject instances are created
and how the initial data is set using KVC. Now it’s time to review that code in detail and con-
vert it to use the new Party class directly rather than with KVC.

You may want to review “Introducing Core Data” in Chapter 4, “Designing the Party Planner
App.” In that section, you modified the template so that it uses your data model with the
Party class and the partyName attribute rather than the Event class and the timeStamp
attribute of the template.

Listing 9-1 shows the code for insertNewObject as it is in the Party Planner app as it
exists at the end of Chapter 8. It incorporates the changes previously mentioned from
Chapter 4. (As is the case with many of the listings in this book, they have been reformatted
in some places to accommodate printed page layouts. In addition, some comments—marked
JF—have been added.)

Listing 9-1 insertNewObject in MasterViewController.m
- (void)insertNewObject:(id)sender

{

 // Get the Core Data stack info JF

 NSManagedObjectContext *context =

 [self.fetchedResultsController managedObjectContext];

 NSEntityDescription *entity =

 [[self.fetchedResultsController fetchRequest] entity];

C H A P T E R N I N E B U I L D I N G T H E D E T A I L D A T A V I E W 155

 // Create the new managed object JF

 NSManagedObject *newManagedObject =

 [NSEntityDescription insertNewObjectForEntityForName:

 [entity name]

 inManagedObjectContext:context];

 // If appropriate, configure the new managed object.

 // Normally you should use accessor methods, but

 // using KVC here avoids the need to add a custom class

 // to the template.

 [newManagedObject setValue:

 [[NSDate date] description] forKey:@”partyName”];

 // Save the context.

 NSError *error = nil;

 if (![context save:&error]) {

 // Replace this implementation with code to

 // handle the error appropriately.

 // abort() causes the application to generate a

 // crash log and terminate. You should not use this

 // function in a shipping application, although it

 // may be useful during development.

 NSLog(@”Unresolved error %@, %@”, error, [error userInfo]);

 abort();

 }

}

As you can see, the code that creates a new managed object has four main sections:

• Getting the Core Data stack info

• Creating the new managed object

• Setting attributes of the new managed object

• Saving the managed object context

This code is generally the same for any managed objects that you use (you’ll see why in the
sections that follow). The only difference is typically in the attributes that you set.

Getting the Core Data Stack Info
This section provides you with information about how the Core Data stack is set up and what it
does. If you are building your app from a template, everything that is described in this section
will be done for you automatically, so, if you want, you can skip over this section and come back
to it at your leisure. If you want a good understanding of what is happening, read it now.

i O S 6 F O U N D A T I O N S156

In the Master-Detail Application, the Core Data stack is set up in AppDelegate.m; it con-
sists of three properties. The properties are:

@property (readonly, strong, nonatomic)

 NSManagedObjectModel *managedObjectModel;

@property (readonly, strong, nonatomic)

 NSManagedObjectContext *managedObjectContext;

@property (readonly, strong, nonatomic)

 NSPersistentStoreCoordinator *persistentStoreCoordinator;

These components of the Core Data stack do most of the work. You saw how to build the
managed object model in Chapters 4 and 8. The persistent store coordinator works with your
persistent stores. In many cases—including this template and the Party Planner App derived
from it—there is one persistent store and the persistent store coordinator serves as a pass-
through to that one persistent store—which is the SQLite database. The managed object
context sits between the managed object model and the persistent store(s). What matters to
you is that when data is retrieved, it is retrieved into a managed object context, and when it
comes time to save data, you actually save the managed object model.

You may also notice references to fetch requests. You can create fetch requests—specific
data elements you want to retrieve—with the Core Data Model editor. In the template so far,
the template code handles fetching the data, so you don’t have to worry about fetch requests
in the Core Data Model editor.

As long as you have properly set up the Core Data stack in AppDelegate.m, as described in
the following sections, you use them as you work with your managed objects. (The template
sets them up, but as noted in the section entitled “Building Your Data Model” in Chapter 4,
you may have to make customizations for the name of your entity.) That is why there is very
little customization needed as you use the code discussed in this section—you’ve already
done it in AppDelegate.m. Assuming you have followed the steps in Chapter 4, here is how
you have set up the core data stack.

In the Master-Detail Application template, the Core Data stack is set up in AppDelegate.m,
but, as you can see in Listing 9-1, the stack is accessed via the fetchedResults
Controller property inside MasterViewController.h. Here is the property declaration:

@property (strong, nonatomic)

 NSFetchedResultsController *fetchedResultsController;

And here are the first two lines of Listing 9-1 that use that property to retrieve the stack objects.

NSManagedObjectContext *context =

 [self.fetchedResultsController managedObjectContext];

NSEntityDescription *entity =

 [[self.fetchedResultsController fetchRequest] entity];

C H A P T E R N I N E B U I L D I N G T H E D E T A I L D A T A V I E W 157

And where does the fetched results controller come from? See “Adding the Managed Object
Context to the MasterViewController,” later in this section.

Setting Up the Managed Object Model
Your managed object model file has the extension xcdatamodeld. In the templates, it is
automatically moved into the app bundle as the app is built. Thus for the Party Planner app,
it is Party_Planner.xcdatamodeld, as you can see in Figure 9-1—look at the window
title. (Spaces in the app name are replaced by underscores automatically.)

Figure 9-1 The data model is in your project.

If you create a new project from a template that supports Core Data, Xcode does this as you
create your app from the template. You don’t need to make any modifications.

You work with the xcdatamodeld in Xcode. During the build process, it is automatically
converted to a momd file (thus, the extension in the code that follows). The momd is a runtime
version of the Xcode data model file. The xcdatamodeld file contains information such as
how you have arranged the graph editor of your data model in the editor. That information is
not needed at runtime.

// Returns the managed object model for the application.

// If the model doesn’t already exist, it is created

// from the application’s model.

i O S 6 F O U N D A T I O N S158

- (NSManagedObjectModel *)managedObjectModel

{

 if (_managedObjectModel != nil) {

 return _managedObjectModel;

 }

 NSURL *modelURL = [[NSBundle mainBundle]

 // name of the data model JF

 URLForResource:@”Party_Planner” withExtension:@”momd”];

 _managedObjectModel = [[NSManagedObjectModel alloc]

 initWithContentsOfURL:modelURL];

 return _managedObjectModel;

}

Setting Up the Persistent Store Coordinator
The persistent store coordinator handles one or more persistent stores—in this app, there is
one (a very common situation). The persistent store coordinator needs to know about the
file(s) that are used to store your data along with the data model that defines their structure.
In AppDelegate.h, this is the code that performs that task. As with the data model, there
is one important line that identifies the file (this time it’s the SQLite file and not the data
model file). As is also the case with the data model, this is created for you automatically when
you create the project from the template.

// Returns the persistent store coordinator for the application.

// If the coordinator doesn’t already exist, it is created and the

// application’s store added to it.

- (NSPersistentStoreCoordinator *)persistentStoreCoordinator

{

 if (_persistentStoreCoordinator != nil) {

 return _persistentStoreCoordinator;

 }

 NSURL *storeURL = [[self applicationDocumentsDirectory]

 // here is the data store name JF

 URLByAppendingPathComponent:@”Party_Planner.sqlite”];

 NSError *error = nil;

 _persistentStoreCoordinator = [[NSPersistentStoreCoordinator

 alloc] initWithManagedObjectModel:[self managedObjectModel]];

 if (![_persistentStoreCoordinator

 addPersistentStoreWithType:NSSQLiteStoreType

 configuration:nil URL:storeURL options:nil error:&error]) {

 /*

 lengthy comment omitted JF

 NSLog(@”Unresolved error %@, %@”, error, [error userInfo]);

C H A P T E R N I N E B U I L D I N G T H E D E T A I L D A T A V I E W 159

 abort();

 }

 return _persistentStoreCoordinator;

}

Setting Up the Managed Object Context
This is done for you using the persistent store coordinator and the data model. As noted
previously, it uses those two objects, but you don’t have to provide specific setups for the
managed object context.

Adding the Managed Object Context to the
MasterViewController
Fetch requests work with the Core Data stack to retrieve data. In the Master-Detail Application
template, you have a single fetch request in the MasterViewController class. It retrieves
all of the Party entities when the app starts to run. (In fact, it retrieves parts of all the Party
entities. When Core Data encounters a partially retrieved entity [known as a fault], you can
use them directly. When necessary, Core Data will retrieve the necessary parts of the full
entity. Faults are not errors; they are an efficiency mechanism.) Listing 9-2 shows you the
code. You can also create fetch requests with the Core Data Model editor.

Listing 9-2 fetchedResultsController in MasterViewController.m
- (NSFetchedResultsController *)fetchedResultsController

{

 if (_fetchedResultsController != nil) {

 return _fetchedResultsController;

 }

 NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];

 // Edit the entity name as appropriate.

 NSEntityDescription *entity = [NSEntityDescription

 // you changed entityForName in Chapter 4 JF

 entityForName:@”Party”

 // use the managed object context of this object JF

 inManagedObjectContext:self.managedObjectContext];

 [fetchRequest setEntity:entity];

 // Set the batch size to a suitable number.

 [fetchRequest setFetchBatchSize:20];

 // Edit the sort key as appropriate.

 NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc]

 //you set the sort key in Chapter 4 JF

i O S 6 F O U N D A T I O N S160

 initWithKey:@”partyName” ascending:NO];

 NSArray *sortDescriptors = @[sortDescriptor];

 [fetchRequest setSortDescriptors:sortDescriptors];

 // Edit the section name key path and cache name if appropriate.

 // nil for section name key path means “no sections”.

 NSFetchedResultsController *aFetchedResultsController =

 [[NSFetchedResultsController alloc]

 initWithFetchRequest:fetchRequest

 managedObjectContext:self.managedObjectContext

 sectionNameKeyPath:nil cacheName:@”Master”];

 aFetchedResultsController.delegate = self;

 self.fetchedResultsController = aFetchedResultsController;

 NSError *error = nil;

 if (![self.fetchedResultsController performFetch:&error]) {

 // Replace this implementation with code to handle the

 // error appropriately.

 // abort() causes the application to generate a crash

 // log and terminate. You should not use this function

 // in a shipping application, although it may be useful

 // during development.

 NSLog(@”Unresolved error %@, %@”, error, [error userInfo]);

 abort();

 }

 return _fetchedResultsController;

}

When you are reusing this code, there are two changes you may need to make:

• You need to supply the name of your entity in entityForName as noted.

• You need to supply the sort order for the fetch request results. This involves identify-
ing the sort key and the sort order.

If you are not using a template but are implementing the Core Data stack for yourself, you
will typically have code such as Listing 9-2 in one or more of your controller objects. You may
have multiple sets of fetch requests in different controllers to manage different data and dif-
ferent contexts. If you do that, you can follow the structure of the Master-Detail Application.
That means:

 1. Set up the Core Data stack in the app delegate as described in this section.

 2. Typically, the app delegate creates one or more view controllers in application:
DidFinishLaunchingWithOptions: as shown in Listing 9-3.

C H A P T E R N I N E B U I L D I N G T H E D E T A I L D A T A V I E W 161

Listing 9-3 application:didFinishLaunchingWithOptions: in
MasterViewController.m
- (BOOL)application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

{

 // Override point for customization after application launch.

 if ([[UIDevice currentDevice]

 userInterfaceIdiom] == UIUserInterfaceIdiomPad) {

 UISplitViewController *splitViewController =

 (UISplitViewController *)self.window.rootViewController;

 UINavigationController *navigationController =

 [splitViewController.viewControllers lastObject];

 splitViewController.delegate =

 (id)navigationController.topViewController;

 UINavigationController *masterNavigationController =

 splitViewController.viewControllers[0];

 MasterViewController *controller = (MasterViewController *)

 masterNavigationController.topViewController;

 // set the managedObjectContext for the new controller JF

 controller.managedObjectContext = self.managedObjectContext;

 } else {

 UINavigationController *navigationController =

 (UINavigationController *)self.window.rootViewController;

 MasterViewController *controller = (MasterViewController *)

 navigationController.topViewController;

 // set the managedObjectContext for the new controller JF

 controller.managedObjectContext = self.managedObjectContext;

 }

 return YES;

}

 3. Declare a managedObjectContext property in each of the new view controllers that
will need it. Note that this will need to be in the .h file rather than the .m file so that
you can use it in Step 4.

 @property (strong, nonatomic)

 NSManagedObjectContext *managedObjectContext;

 4. After each view controller is created, you set its managedObjectContext to the
managedObjectContext in the app delegate. Two view controllers are created in
Listing 9-3, and each has its managedObjectContext set. Comments highlight
those lines.

 // set the managedObjectContext for the new controller JF

 controller.managedObjectContext = self.managedObjectContext;

i O S 6 F O U N D A T I O N S162

If you do not see where view controllers are created in application: DidFinishLaunching
WithOptions:, they may be created directly from your storyboard. You can use self.window
to access the window property of the app delegate. Then use the rootViewController
property to get to the top-level view. This was an important change in iOS 4.0, so you will
still find code around that does not recognize that there is a way to find the root (or top-
level or content) view. The code to use is self.window.rootViewController. In many
templates, the root view controller is a controller created in the template, and you can modify
its code—for example to add and set a property for the managed object context.

Creating the New Managed Object
Now you need to create your new Party object. As described in the previous section, the
Core Data stack and the fetch request identify the Party object. Thus, the code at the begin-
ning of Listing 9-1 has already been set up with the data that is needed. That is why no cus-
tomization is needed to use the new Party object.

However, if you’re going to want to access attributes of the new Party object, you’ll need to
make the following change. As it stands now, the code in insertNewObject: in
MasterViewController.m creates a new NSManagedObject. Because of the settings in
the Core Data stack, it will be a Party object, but the code only identifies it as an
NSManagedObject rather than as the specific subclass that it now is.

The code to create the new object is as follows:

// Create the new managed object JF

NSManagedObject *newManagedObject =

 [NSEntityDescription insertNewObjectForEntityForName:

 [entity name]

 inManagedObjectContext:context];

Simply change MasterViewController.m so newManagedObject is an instance of Party.

In order not to get a compile error, import the header file to the top of Master
ViewController.m:

#import “Party.h”

Here is what the code inside newManagedObject: should look like now:

// Create the new managed object JF

Party *newManagedObject =

 [NSEntityDescription insertNewObjectForEntityForName:

 [entity name]

 inManagedObjectContext:context];

C H A P T E R N I N E B U I L D I N G T H E D E T A I L D A T A V I E W 163

Setting Attributes of the New Managed Object
You usually do need to set the attributes of the new object. Because newManagedObject is
now an instance of Party, you can use this code in insertNewObject: in Master
ViewController.m:

newManagedObject.partyName = [[NSDate date] description];

Note that the partyName attribute is now an NSString, so you need to convert the
NSDate to an NSString. description provides an NSString version of an object, so
that will do for now (eventually you’ll not use a date—you’ll make the party name editable).

You may want to rename newManagedObject to newParty because that is what it is. The
argument for not renaming it is so that you can trace back the code to the template’s code.
Perhaps until you are comfortable with the templates and the frameworks, you may want to
do minimal renaming. Once you’re comfortable, however, objects should be clearly named.

Here is what insertNewObject: should look like now:

- (void)insertNewObject:(id)sender

{

 NSManagedObjectContext *context =

 [self.fetchedResultsController managedObjectContext];

 NSEntityDescription *entity =

 [[self.fetchedResultsController fetchRequest] entity];

 Party *newManagedObject = [NSEntityDescription

 insertNewObjectForEntityForName:[entity name]

 inManagedObjectContext:context];

 // If appropriate, configure the new managed object.

 // Normally you should use accessor methods, but using KVC here

 // avoids the need to add a custom class to the template.

 // Old code - JF

 // [newManagedObject setValue:[NSDate date]

forKey:@”partyName”];

 newManagedObject.partyName = [[NSDate date] description];

 // Save the context.

 NSError *error = nil;

 if (![context save:&error]) {

 // Replace this implementation with code to handle the error

 // appropriately.

 // abort() causes the application to generate a crash log and

 // terminate. You should not use this function in a shipping

 // application, although it may be useful during development.

i O S 6 F O U N D A T I O N S164

 NSLog(@”Unresolved error %@, %@”, error, [error userInfo]);

 abort();

 }

}

Saving the Managed Object Context
Finally, you save the managed object context. As the code in Listing 9-1 shows, this is just a
matter of asking the managed object context to save itself. You do check for errors, and that
will be discussed in Chapter 15, “Telling Users the News: Alerts and NSError.” The mechanics
of saving data are discussed in Chapter 10, “Saving and Restoring Data.”

Connecting Interface Elements to Properties
In previous chapters you have experimented with connecting interface elements to your code.
You may have a property connected to your text field as a result of your experiments. Here is
how to check existing connections, how to remove them, change them, and create them.

Checking Existing Connections
You can check existing connections from either end—that is, from the code side or from the
Interface Builder side.

Checking a Connection from the .h File
A connected property has a filled-in circle to its left in the .h file, as shown in Figure 9-2.

Click in the circle to see the interface element to which the property is connected, as you see
in Figure 9-3. You will see the storyboard filename and the name of the interface element.
This can be a default name as shown in Figure 9-3, or a name you have specified in the label
attribute.

This can be a good way of tracking down problems. In Figure 9-3, you can see that this prop-
erty is connected to the iPad storyboard. If you have followed the steps in this book, you
have worked on the iPhone storyboard. That means that any connections to the iPad story-
board are just experiments. In the next section, you’ll see how to remove this connection.

C H A P T E R N I N E B U I L D I N G T H E D E T A I L D A T A V I E W 165

Figure 9-2 A connection has a dot next to its property.

Figure 9-3 Click the connection symbol to see its destination.

i O S 6 F O U N D A T I O N S166

Checking a Connection from the Storyboard
Control-click an interface element to see what it is connected to, as shown in Figure 9-4.

Figure 9-4 Control-click an interface element to see its connections.

As you are experimenting or even working for real it is quite easy to get incomplete and
incorrect connections as is the case here. Avoid this by providing your own Xcode-specific
labels in the Attributes inspector, as described in Chapter 8. If you wind up with bad connec-
tions, your app will crash, and these crashes are often in places you don’t expect (that’s
because the connection goes somewhere you don’t think it should go).

Removing Existing Connections
Sometimes you have to remove connections from the storyboard file. Figure 9-5 shows a .h
file with an unconnected IBOutlet. The circle to the left of the property is not filled in. This
means either that it was never connected or the connection has been removed.

C H A P T E R N I N E B U I L D I N G T H E D E T A I L D A T A V I E W 167

To remove a connection from the storyboard, control click on the interface element as shown
in Figure 9-4. The name of the interface element is shown at the left. At the right, is its prop-
erty destination. The destination has a small x that you can use to delete it.

Figure 9-5 An unconnected IBOutlet has an empty circle.

Changing Existing Connections
If you have an existing connection you must remove it and draw the new connection.

Creating New Connections
Use the assistant to open the .h file and the storyboard. If either is open, the Automatic set-
ting in the jump bar will open the other. Control-drag from the canvas or document outline
in a storyboard to an IBOutlet property to connect it. Figure 9-6 shows a label object in the
document outline being connected to an IBOutlet property called detailDescription
Field.

i O S 6 F O U N D A T I O N S168

Figure 9-6 Connecting to an IBOutlet.

If you drag to any other place in the class header, you will be prompted to create a new
IBOutlet, as shown in Figure 9-7.

You can then name it as shown in Figure 9-8.

Using the Assistant
The assistant editor lets you open two or more files at the same time. This is useful when
you want to compare two files, but it’s essential when you want to connect an object in a
storyboard to code in a source code file. Open the assistant editor using the center button
in the Editors group at the right of the toolbar or choose View➜Assistant Editor➜Show
Assistant Editor. The file you have been working with is shown at the left or top of the assis-
tant editor (you can control the configuration with View➜Assistant Editor). The jump bar in
the assistant editor pane will let you choose a related file such as the .h file for a storyboard
or the .h file for a .m file, or manually choose a file. There is more on the assistant editor in
Chapter 2, “Getting Up to Speed with Xcode.”

C H A P T E R N I N E B U I L D I N G T H E D E T A I L D A T A V I E W 169

Figure 9-7 Create a new outlet.

Figure 9-8 Name the new outlet.

i O S 6 F O U N D A T I O N S170

You’ll find out more about creating actions in Part V, “Interacting with Users.”

Laying Out the Detail View
Now it’s time to lay out the detail view. As noted previously, you’ll do this here, and then
you’ll learn how to do it in a different way (using table views) in Part IV.

Cleaning Up the Experiments
Begin by getting rid of any experiments in the interface. Depending on what you have
done, your interface may look different from the one shown here. These steps assume
that you have worked only on the detailViewController. (If you have worked on
mainViewController, the app will probably not work so you might want to revert to the
version from Chapter 8.)

Here are the steps to take.

 1. Open the iPhone storyboard.

 2. Select the Detail scene as shown in Figure 9-9. It is probably easiest to work in the
document outline. Delete anything other than the views shown in Figure 9-9. (If party
NameField is not there, don’t worry. You’ll find a step in the following section to
create it.)

 3. Open DetailViewController.h as shown in Figure 9-10.

C H A P T E R N I N E B U I L D I N G T H E D E T A I L D A T A V I E W 171

Figure 9-9 Clean up the iPhone Detail scene.

Figure 9-10 Open DetailViewController.h.

i O S 6 F O U N D A T I O N S172

 4. Delete any properties other than detailItem.

 5. Open the iPad storyboard.

 6. Select the Detail scene as shown in Figure 9-11.

 7. Do not delete the top-level View object, which is the second line in the document out-
line shown in Figure 9-11.

 8. Delete any other fields, labels, or views from within the top-level View object.

 9. You cannot directly delete the constraints. They are automatically deleted as their
views are deleted. For example, Figure 9-12 shows that the width constraint of the text
field is within the text field object (not the position of the disclosure triangles).

 10. Some constraints involving the top-level View object are related to specific fields
within it, as you see in Figure 9-13. Deleting the subviews will delete the constraints.

Figure 9-11 Clean up the iPad Detail scene.

C H A P T E R N I N E B U I L D I N G T H E D E T A I L D A T A V I E W 173

Figure 9-12 Some constraints are within views.

Figure 9-13 Some constraints involve two views.

i O S 6 F O U N D A T I O N S174

 11. Figure 9-14 shows the Detail scene as it should be now in the iPad storyboard.

Figure 9-14 Review the iPad Detail scene.

Adding a Field to the Storyboard
These are the steps to use to add a field to the storyboard. If the partyNameField is not
present, use these steps to create it.

 1. If necessary, select View➜Utilities➜Show Object Library to show the Object library.
(Note that this is an alternate way of showing the Object library from showing the
Utilities area and then selecting the Object library in the bottom pane.)

 2. If necessary, open the iPhone storyboard and locate the Detail scene.

 3. Drag a text field from the Object library into the Detail scene.

 4. Immediately provide a label in the Identity inspector. Figure 9-15 shows the entry of
partyNameField for the selected field.

 5. Widen the field so that it is as wide as the iPhone screen with the recommended insets
at left and right, and so that it is centered, as shown in Figure 9-16.

C H A P T E R N I N E B U I L D I N G T H E D E T A I L D A T A V I E W 175

Figure 9-15 Label the new field.

Figure 9-16 Adjust the field location and width.

i O S 6 F O U N D A T I O N S176

 6. Set the placeholder text to Party Name, as shown in Figure 9-17. That text will appear
if nothing has been typed into the field. It is a common standard to provide the field
content rather than a phrase such as “Enter Party Name Here.”

 7. You can experiment with other settings in the Attributes inspector, but the defaults
shown in Figure 9-17 are a good place to start.

Figure 9-17 Set the placeholder text.

Adding More Fields to the Storyboard
Refer to the Party.h file that you created from the data model to see the list of properties
that need to be entered.

@interface Party : NSManagedObject

@property (nonatomic, retain) NSDate * date;

@property (nonatomic, retain) NSString * location;

@property (nonatomic, retain) NSString * partyName;

@property (nonatomic, retain) NSSet *guests;

@property (nonatomic, retain) NSSet *menu;

@end

C H A P T E R N I N E B U I L D I N G T H E D E T A I L D A T A V I E W 177

In addition to partyName, you need fields for date and location. The related records
(guests and menu) will be entered separately. Because the data model shows them as
optional, you will have no difficulty coming back to them later on (in Part IV).

Here are the steps to follow.

 1. Select the partyNameField and duplicate it twice using Edit➜Duplicate as shown in
Figure 9-18.

Figure 9-18 Duplicate partyNameField twice.

 2. Select all three fields.

 3. Choose Editor➜Align➜Left Edges.

 4. Drag one field to the top of the screen until the guide appears.

 5. Drag the next field up to just beneath the first field until the guide appears.

 6. Repeat with the third field.

 7. As you can see from Figure 9-19, constraints are automatically added for the spacing.
(The constraint is just to the left of the pointer in Figure 9-19.)

i O S 6 F O U N D A T I O N S178

Figure 9-19 Arrange the fields.

 8. Before moving on, set the label for each field appropriately (dateField, location
Field).

 9. Set the placeholder text (Date, Location).

Creating and Connecting the Properties
The final step is creating and connecting the properties. Even if you had a partyNameField,
you deleted its property and connection when you cleaned up detailViewController.h,
so you need to follow the steps for all three fields. They are outlined in “Creating New
Connections” earlier in this chapter.

Using the assistant editor, Control-drag from one of the fields to the DetailView
Controller.h file, as shown in Figure 9-20. If you see Connect Field rather than Create
Outlet or Connection, try again—you may have dragged to an unconnected existing outlet
rather than the list of properties (they can be very close together).

As you see in Figure 9-21, you just need to name the property. The other settings are fine.

If you see different values for any of the entries other than the name, click Cancel and try again.
You may have accidentally Control-dragged from the background view or another object.

C H A P T E R N I N E B U I L D I N G T H E D E T A I L D A T A V I E W 179

Figure 9-20 Begin to create a property and connection.

Figure 9-21 Name the property.

i O S 6 F O U N D A T I O N S180

Displaying the Data
You may need to adjust the configureView method in DetailViewController.m to
use the field name. Here is what configureView looks like at the end of Chapter 8:

- (void)configureView

{

 // Update the user interface for the detail item.

 if (self.detailItem) {

 self.detailDescriptionField.text =

 [[self.detailItem valueForKey:@”partyName”] description];

 }

}

This code uses the old label field (detailDescriptionField) from the template and sets
it to the party name using KVC. Change it to use the newly created and named party
NameField:

- (void)configureView

{

 // Update the user interface for the detail item.

 if (self.detailItem) {

 self.partyNameField.text =

 [[self.detailItem valueForKey:@”partyName”] description];

 }

}

Chapter 10 shows you how to clean up this code when you save and restore the data.

Creating the iPad Interface
Here are the steps to create the iPad interface.

 1. In the iPhone storyboard, select all three fields in the Detail scene from the canvas (not
from the document outline).

 2. Copy them with Edit➜Copy or with the -C shortcut.

 3. In the iPad storyboard, show the Detail scene.

 4. Make sure View is selected in the document outline.

 5. Paste the fields onto the canvas, as shown in Figure 9-22.

 6. All three remain selected, so you can move them together if you want to rearrange them.

C H A P T E R N I N E B U I L D I N G T H E D E T A I L D A T A V I E W 181

Figure 9-22 Paste the fields onto the iPad storyboard.

Finally, connect the iPad fields to the properties you created in detailViewController.h.
This is a critical step; you have separate storyboards for iPad and iPhone, but you have one
set of properties for both. Compare Figures 9-6 and 9-7 in “Creating New Connections” ear-
lier in this chapter to see how the user interface is different when you create a new connec-
tion (Figure 9-7) or add to an existing outlet (Figure 9-6).

Now, when you hover the pointer over the circle to the left of an IBOutlet property, you’ll see
all of the connections. If possible, the connected object is highlighted in the assistant editor.

This technique of starting with the iPhone interface is the fastest way to build a universal
application. Because of the difference in screen sizes, you’ll have extra space on the iPad
interface, but don’t worry about that—you see how to use the larger iPad screen more effec-
tively in Part IV.

Summary
In this chapter, you complete the work of expanding the data model and building the inter-
faces for both the iPhone and iPad storyboards. Because this is the first time you have been
through the process, it may seem overly complex. However, after you have repeated the

i O S 6 F O U N D A T I O N S182

process of building the data model, converting it to a subclass of NSManagedObject, build-
ing a basic interface in a storyboard, and then using the assistant to create properties and
connections, it will go faster and faster and seem very simple. The steps you have carried out
are the heart of modern iOS app building.

(Some developers still swear by old-style .nib and .xib files, but the process shown here is
faster once you get the hang of it.)

You should be able to run both the iPad and iPhone versions of the app. Just remember to
set the Scheme pop-up menu in the top left of the workspace window to the iPad or iPhone
simulator.

Unfortunately, you can’t really test if the app is working because no matter what data you
type in, nothing is stored. That will be corrected in Chapter 10, “Saving and Restoring Data.”

183

THE DETAIL DATA View, as developed through the end of Chapter 9, “Building
the Detail Data View,” provides editable fields for the main data elements of the party
(the party name, location, and date), but it stops there. In this chapter, you continue
on to save and restore data using both the interface and your data store. You’ll see that
there are three related aspects to this task:

• Implementing Edit mode—You can use an edit mode in which the fields are
editable; when not in edit mode, the data fields are read-only. This is done using
a special Edit button. When clicked, it sends you into edit mode, and the button
name changes to Done.

• Saving the data—The click that changes the Edit button to a Done button not
only has to modify the fields to make them editable; it also has to save the data
in the database.

• Retrieving data—When the view is displayed, you want any data from the
database to be shown in the fields.

chapter ten

Saving and Restoring
Data

i O S 6 F O U N D A T I O N S184

Figure 10-1 shows the editing interface on iPad; Figure 10-2 shows the interface on iPhone.
You will implement them in this chapter. (Note that the default data for a new party name is
still a timestamp. You’ll see how to change that in this chapter.)

Figure 10-1 Editing interface on iPad.

C H A P T E R T E N S A V I N G A N D R E S T O R I N G D A T A 185

Figure 10-2 Editing interface on iPhone.

Understanding the Editing Interface
If you are coming to iOS from a background of personal computers, you may have imple-
mented many editing functions in your time. On iOS, the process is somewhat different and
simpler. You may be used to a process in which the user enters an edit mode, makes some
changes (or not), and then clicks Save or Cancel. The edting is often done in a separate dialog.

On iOS, cancelling an operation is often achieved by simply performing another operation. If
the user has unsaved data, it can be automatically discarded, although in some cases, it is
appropriate to ask the user to confirm that the data should be discarded (the choice is usually
made based on the amount of data to be discarded and its significance). Thus, the process
frequently is to enter edit mode right on the current view, let the user make changes, and
then have the user tap Done. Any other action discards the changes.

As you have seen in Chapter 6, “Working with Storyboard Inspectors,” there are many set-
tings available for you to use in customizing views and their interface elements. In-place
editing takes advantage of these settings so that when the user taps an Edit button, the view
becomes editable, and the fact that it is editable is reflected in slight changes to the interface.

i O S 6 F O U N D A T I O N S186

You may be surprised at how subtle interface changes can be noticed by users. Even if they are
not noticed, the user may not worry. Consider the scenario in which a user taps an Edit button.
The user expects data fields to be editable at that point. The button changes to Done, and
when the user taps Done the expectation is that the data is committed. The subtle changes to
the interface just reinforce the behavior that the user expects. You may want to consider the
degree to which you change the interface. For example, if some fields are editable and others
are not, then the change in appearance of the editable fields definitely needs to be noticeable
so that people do not attempt to edit fields that can’t be edited. In any event, there is generally
no need to create a separate view and view controller for editing.

Setting Up the Edit-Done Button
As you saw in Part II, “Storyboards—The Building Blocks of iOS Apps,” you can design your
interfaces graphically. There are separate storyboards for iPhone and iPad apps (if you are
creating a universal application). Clearly, spacing and screen sizes influence the design of
your interface.

Handling Universal Apps
It is also possible to build an interface at runtime using code. Many people (including the
author) believe that using storyboards is more efficient than writing code. One major point is
that with code, you can type anything you want—including syntax errors. When you are
drawing the interface in Interface Builder, you can certainly put the wrong object in the
wrong place, but, by and large, the internal code that is generated will not have typos in it.

However, if you are building a universal app, you do have to build two storyboard interfaces.
Often, as is the case with the Master-Detail Application template, the two interfaces are basi-
cally similar. This means that you can use the storyboard to build them, and then, at runtime,
you can modify them with code. You already saw this in Chapter 9 with Listing 9-3, applic
ation:didFinishLaunchingWithOptions:. In that code, you can see that a check is
made for userInterfaceIdiom. If it is an iPad, it is assumed that there is a split view con-
troller created from the storyboard; otherwise, it is assumed that you are on an iPhone and
there is no split view controller.

If you examine the code carefully, you’ll see that in both cases, an instance of Master
ViewController is created. You’ll find that class in the template, and you’ll see that its
code is basically the same whether it is used on iPhone or iPad. What is different is where
that view controller and its view are placed.

The code shown in Listing 9-3 is used to set the managedObjectContext property of the
MasterViewController to the managedObjectContext of the app delegate. (As noted,

C H A P T E R T E N S A V I N G A N D R E S T O R I N G D A T A 187

this is a common way of sharing the Core Data stack in the app delegate with the view con-
trollers that need it.)

Setting Up the iPad Managed Object Context
In order to find the MasterViewController on iPad, here is the code that is used. It’s in
application:didFinishLaunchingWithOptions: and was shown in Listing 9-3.
Here is the annotated code. You don’t have to make changes to it, but it’s worth understanding
because you will be modifying it for iPhone in the next section.

 1. First locate the splitViewController. Remember, this code is in AppDelegate.m,
so the window property has been set.

UISplitViewController *splitViewController =

 (UISplitViewController *)self.window.rootViewController;

 2. Using the splitViewController, locate the navigationController, which is
the last object in the array of view controllers.

UINavigationController *navigationController =

 [splitViewController.viewControllers lastObject];

 3. Set the splitViewController delegate to the topViewController of the
navigationController:

splitViewController.delegate =

 (id)navigationController.topViewController;

 4. Set the masterNavigationController to the zero-th element of the split
ViewController.viewControllers. (Compare this to Step 2, which uses the last
object of splitViewController.viewControllers rather than the zeroth object.
In fact, there are only two in a split view controller.)

UINavigationController *masterNavigationController =

 splitViewController.viewControllers[0];

 5. Set the local variable controller to the topViewController of the navigation
Controller as a MasterViewController.

MasterViewController *controller = (MasterViewController *)

 masterNavigationController.topViewController;

 6. Now that you have the MasterViewController in the local variable controller,
you can set its managedObjectContext property to the managedObject property
of the app delegate.

// set the managedObjectContext for the new controller JF

controller.managedObjectContext = self.managedObjectContext;

i O S 6 F O U N D A T I O N S188

Setting Up the iPhone Managed Object Context
For iPhone, the MasterViewController is found in a different part of the storyboard’s
view hierarchy, but it’s there, and the code you write for MasterViewController will
work on both iPhone and iPad.

Here’s what happens for iPhone in Listing 9-3. As is the case with the iPad code, this is just
to orient you to the code you will add in the next section.

 1. On iPhone, navigationController is the window’s root view.

UINavigationController *navigationController =

 (UINavigationController *)self.window.rootViewController;

 2. Set the local variable controller to the top view controller of navigation
Controller. This is analogous to Step 5 for iPad.

MasterViewController *controller = (MasterViewController *)

 navigationController.topViewController;

 3. Now that you have the MasterViewController in the local variable controller,
you can set its managedObjectContext property to the managedObjectContext
property of the app delegate. This is identical to Step 6 for iPad.

// set the managedObjectContext for the new controller JF

controller.managedObjectContext = self.managedObjectContext;

It’s important to take away the fact that Step 6 (iPad) and Step 3 (iPhone) are identical. You’ll
add the Edit-Done button by writing code that will be executed on both iPhone and iPad.

Adding the Button
On both iPhone and iPad, MasterViewController is inside a navigation controller.
(You’ll find out more about navigation controllers in Chapter 17, “Back to the Storyboard:
Enhancing the Interface.”)

This button will be needed in DetailViewController. On both iPhone and iPad,
DetailViewController is inside a navigation controller. For now, all that you need to
know is that for any view that is inside a navigation controller, you can get that navigation
controller using the view controller’s navigationItem property. You also need to know
that for every view controller, you have an editButtonItem (the Edit-Done button). You
just have to put them together.

You do this in viewDidLoad, placing the new button at the right of the menu bar (this is
where it is shown in Figures 10-1 and 10-2).

C H A P T E R T E N S A V I N G A N D R E S T O R I N G D A T A 189

- (void)viewDidLoad

{

 [super viewDidLoad];

 // Do any additional setup after loading the view,

 // typically from a nib.

 // Add this line JF

 self.navigationItem.rightBarButtonItem =

 self.editButtonItem;

 [self configureView];

}

You should be able to run the app now and see the button’s behavior.

Implementing setEditing
The button will automatically send a setEditing: animated: message to DetailView
Controller. You’ll need to implement that method. The bare-bones version of it is:

- (void)setEditing: (BOOL)flag animated: (BOOL)animated

{

 [super setEditing: flag animated:animated];

}

Add this code to DetailViewController.m. (Note that it doesn’t need to be exposed in
DetailViewController.h because it is only used within DetailViewController.)

Adjusting the Interface for Editing
Now you need to make whatever changes you want to the interface. Here is an example of the
type of change you may want to make. In Figure 10-3 you see the fields in the app. They are
displayed using a borderStyle of UITextBorderStyleNone. On the right, they are dis-
played using a borderStyle of UITextBorderStyleRoundedRect, which invites editing.

Here are the steps to take:

 1. Check to see if flag (setEditing) is YES or NO.

 2. If it is YES (that is, you are going to be editing), set the field’s borderStyle to
UITextBorderStyleRoundedRect.

 3. If it is NO (that is, display only), set the field’s borderStyle to UITextBorder
StyleNone.

i O S 6 F O U N D A T I O N S190

Figure 10-3 Adjust border styles.

You have to do this for all three fields, so here is what setEditing: animated: looks
like now:

- (void)setEditing: (BOOL)flag animated: (BOOL)animated

{

 [super setEditing: flag animated:animated];

 if (flag == YES) {

 _partyNameField.borderStyle = UITextBorderStyleRoundedRect;

 _locationField.borderStyle = UITextBorderStyleRoundedRect;

 _dateField.borderStyle = UITextBorderStyleRoundedRect;

 _partyNameField.enabled = YES;

 _locationField.enabled = YES;

 _dateField.enabled = YES;

} else {

 _partyNameField.borderStyle = UITextBorderStyleNone;

 _locationField.borderStyle = UITextBorderStyleNone;

 _dateField.borderStyle = UITextBorderStyleNone;

C H A P T E R T E N S A V I N G A N D R E S T O R I N G D A T A 191

 _partyNameField.enabled = NO;

 _locationField.enabled = NO;

 _dateField.enabled = NO;

 }

}

Remember that within DetailViewController, you can access the backing variables of
the properties directly using the underscore notation. If you run the app now, you’ll see that
it looks correct, but there are two problems you should notice.

The first time you run it, you’ll see that the fields are shown with UITextBorder
StyleRoundedRect. Once you start to use the Edit-Done button, all is well, but the default
set in the storyboards is now wrong. As shown in Figure 10-4, change the default for all three
fields in both storyboards to no border style (the dotted border at the left of border styles).

Figure 10-4 Change the default border style in the storyboards.

You’ll also see that even with no border style, you can edit the field. Solve that by disabling
the Content Enabled checkbox in the storyboard for each field, as shown in Figure 10-5.

i O S 6 F O U N D A T I O N S192

Figure 10-5 Disable the fields in the storyboard.

Saving the Data
Now that you’ve set up editing, you need to store the data in the data store. Once again, you
can use setEditing: animated: for the task. As created from the template, the detail
view controller has a detailItem property, which, in this case, will be an instance of Party.
You can see it in the DetailViewController.h file.

#import <UIKit/UIKit.h>

@interface DetailViewController : UIViewController

 <UISplitViewControllerDelegate>

@property (strong, nonatomic) id detailItem;

@property (weak, nonatomic) IBOutlet UITextField *partyNameField;

@property (weak, nonatomic) IBOutlet UITextField *locationField;

@property (weak, nonatomic) IBOutlet UITextField *dateField;

@property (strong, nonatomic)

 NSManagedObjectContext *managedObjectContext;

@end

C H A P T E R T E N S A V I N G A N D R E S T O R I N G D A T A 193

Moving the Data to the Party Instance
What you will need to do is to move the data from the fields into the Party object—that is
detailItem. (As noted previously, you might change detailItem to be a Party object to
avoid casting it, but leaving it as detailItem may make the code more readable as you com-
pare it to other samples. It all depends on you and your level of comfort with the frameworks.)

To move the data into the detailItem object as a Party, you use variations on this syntax:

 ((Party*)_detailItem).partyName = _partyNameField.text;

Add that line and the following two to setEditing: animated: so that it now looks like
this:

- (void)setEditing: (BOOL)flag animated: (BOOL)animated

{

 [super setEditing: flag animated:animated];

 if (flag == YES) {

 partyNameField.borderStyle = UITextBorderStyleRoundedRect;

 locationField.borderStyle = UITextBorderStyleRoundedRect;

 dateField.borderStyle = UITextBorderStyleRoundedRect;

 partyNameField.enabled = YES;

 locationField.enabled = YES;

 dateField.borderStyle enabled = YES;

} else {

 partyNameField.borderStyle = UITextBorderStyleNone;

 locationField.borderStyle = UITextBorderStyleNone;

 dateField.borderStyle = UITextBorderStyleNone;

 partyNameField.enabled = NO;

 locationField.enabled = NO;

 dateField.borderStyle enabled = NO;

 // move the data from the fields to the object - JF

 ((Party*)_detailItem).partyName = _partyNameField.text;

 ((Party*)_detailItem).location = _locationField.text;

 // we will come back to the date

 //_dateField.text = [((Party*)_detailItem).date description];

 }

}

i O S 6 F O U N D A T I O N S194

For now the date will not be stored. It needs to be converted to a date, which you will do in
Chapter 17.

The dot syntax for referencing properties in Party works with a Party instance. What you
have is detailItem, which is of type id. Thus, you coerce it to a Party object. (To do this, you
must be certain that it really is a Party object before you coerce it, which is true in this case.)

Dot syntax was described in Chapter 8, “Building on the Data Model,” in the “Looking at the
Existing KVC Code” section.

Thus, schematically, this is similar to

aParty.partyName = _partyNameField.text;

This code illustrates an instance of Party (called aParty). As an instance of Party, it has a
partyName property. A text field object called partyNameField in the storyboard is an
instance (in the code), and it has a text property. This code moves the NSString that is in
the text property to the partyName property of aParty.

Saving the Data
Having moved the data to the Party instance, you now need to save the context. There is
code in MasterViewController.m for insertNewObject: that does this. The relevant
part of that code is:

// Save the context.

NSError *error = nil;

if (![context save:&error]) {

 // Replace this implementation with code to

 // handle the error appropriately.

 // abort() causes the application to generate a crash log

 // and terminate. You should not use this function in

 // a shipping application, although it may be useful

 // during development.

 NSLog(@”Unresolved error %@, %@”, error, [error userInfo]);

 abort();

}

You’ll see how to refine the error message in Chapter 15, “Telling Users the News: Alerts and
NSError.”

The only problem you have in using this code is that you need a reference to the managed
object context. You’ve already seen how the Core Data stack is created in the app delegate.

C H A P T E R T E N S A V I N G A N D R E S T O R I N G D A T A 195

The reference to the managed object context is passed through into MasterViewController
from the app delegate.

At this point, you now need part of the Core Data stack (the managed object context) in
DetailViewController, and at the moment, it’s only in MasterViewController. The
simplest way to handle this is to follow the same pattern by which it was passed from
AppDelegate to MasterViewController. The app delegate created the Core Data stack.
It then created MasterViewController and set a property in MasterViewController
to the reference to the managed object context from the Core Data stack.

MasterViewController creates DetailViewController. So, following the pattern,
modify MasterViewController to pass its reference to the managed object context
through to DetailViewController. There is a difference here, though. When the iPad
storyboard is loaded, DetailViewController exists. When the iPhone version is loaded,
it does not. So you need two separate sections of code that do the same thing to the same
detail view controller at different times. (There are other ways you could handle this, but this
is simple at this point.)

Here is how you do that for iPad.

 1. Add a managed object context property to DetailViewController.h:

@property (strong, nonatomic)

 NSManagedObjectContext *managedObjectContext;

 2. In MasterViewController, locate viewDidLoad. It now looks like this:

- (void)viewDidLoad

{

 [super viewDidLoad];

 // Do any additional setup after loading the view,

 // typically from a nib.

 self.navigationItem.leftBarButtonItem = self.editButtonItem;

 UIBarButtonItem *addButton = [[UIBarButtonItem alloc]

 initWithBarButtonSystemItem:UIBarButtonSystemItemAdd

 target:self action:@selector(insertNewObject:)];

 self.navigationItem.rightBarButtonItem = addButton;

 if ([[UIDevice currentDevice] userInterfaceIdiom] ==

 UIUserInterfaceIdiomPad) {

 self.detailViewController = (DetailViewController *)

 [[self.splitViewController.viewControllers lastObject]

 topViewController];

}

i O S 6 F O U N D A T I O N S196

 3. Insert the following line as the last line of the method (after self.detailView
Controller has been set).

self.detailViewController.managedObjectContext =

 self.managedObjectContext;

 4. End the if statement for iPad with a bracket.

 5. You can now add the saving code modeled on MasterViewController to set
Editing: animated: in DetailViewController. You can use the underscore
notation for the new _managedObjectContext property.

// Save the context.

NSError *error = nil;

// Use the new managed object context

if (![_managedObjectContext save:&error]) {

 // Replace this implementation with code to

 // handle the error appropriately.

 // abort() causes the application to generate a crash log

 // and terminate. You should not use this function in

 // a shipping application, although it may be useful

 // during development.

 NSLog(@”Unresolved error %@, %@”, error, [error userInfo]);

 abort();

}

On iPhone, the detail view controller doesn’t exist yet, so here is how you set it and pass in
its managed object context.

 1. Find prepareForSegue: in MasterViewController. This is where the segue
from the storyboard is set up.

- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)

sender

{

 if ([[segue identifier] isEqualToString:@”showDetail”]) {

 NSIndexPath *indexPath =

 [self.tableView indexPathForSelectedRow];

 NSManagedObject *object =

 [[self fetchedResultsController]

 objectAtIndexPath:indexPath];

 [[segue destinationViewController] setDetailItem:object];

 }

}

C H A P T E R T E N S A V I N G A N D R E S T O R I N G D A T A 197

 2. After setting the detail item, check to see if you are on an iPhone. If so, set the detail
view controller and its managed object context. Here is what the end of the method
looks like now.

 [[segue destinationViewController] setDetailItem:object];

 if ([[UIDevice currentDevice] userInterfaceIdiom] !=

 UIUserInterfaceIdiomPad) {

 self.detailViewController =

 (DetailViewController*)[segue destinationViewController];

 self.detailViewController.managedObjectContext =

 self.managedObjectContext;

 }

}

Here is what setEditing: animated: looks like in DetailViewController.m now
that it’s completed:

- (void)setEditing: (BOOL)flag animated: (BOOL)animated

{

 [super setEditing: flag animated:animated];

 if (flag == YES) {

 _partyNameField.borderStyle = UITextBorderStyleRoundedRect;

 _locationField.borderStyle = UITextBorderStyleRoundedRect;

 _dateField.borderStyle = UITextBorderStyleRoundedRect;

 _partyNameField.enabled = YES;

 _locationField.enabled = YES;

 _dateField.enabled = YES;

 } else {

 _partyNameField.borderStyle = UITextBorderStyleNone;

 _locationField.borderStyle = UITextBorderStyleNone;

 _dateField.borderStyle = UITextBorderStyleNone;

 _partyNameField.enabled = NO;

 _locationField. enabled = NO;

 _dateField.enabled = NO;

 ((Party*)_detailItem).partyName = _partyNameField.text;

 ((Party*)_detailItem).location = _locationField.text;

 //_dateField.text = [((Party*)_detailItem).date description];

 // Save the context.

 NSError *error = nil;

 if (![_managedObjectContext save:&error]) {

i O S 6 F O U N D A T I O N S198

 // Replace this implementation with code to handle

 // the error appropriately.

 // abort() causes the application to generate a

 // crash log and terminate. You should not use this

 // function in a shipping application, although it may be

 // useful during development.

 NSLog(@”Unresolved error %@, %@”, error, [error userInfo]);

 abort();

 }

 }

}

Retrieving Data
Now you need to do the other side of the picture: move data from the data store into the
fields. The code is a complete reversal of the previous section—set the text attribute of a
field to the appropriate attribute such as partyName of the managed object subclass (Party).

configureView in DetailViewController.m is part of the template, and even help-
fully contains a comment indicating that this is the place to handle moving data into the
interface. You can see that the syntax is basically the reverse used to save data. Add the code
shown here, below the comment.

- (void)configureView

{

 // Update the user interface for the detail item.

 if (self.detailItem) {

 _partyNameField.text = ((Party*)_detailItem).partyName;

 _locationField.text = ((Party*)_detailItem).location;

 _dateField.text = [((Party*)_detailItem).date description];

 }

}

Although the date field isn’t going to be set until the date formatting is discussed in Chapter
17, you can move its (nonexistent) value into the interface now. That will mean one less step
to take later on.

Testing the App
If you haven’t done so already, test the app. As you can see in Figure 10-6, when you run it as
an iPad app in landscape orientation, the master view controller appears on the left and the
detail view controller is on the right.

C H A P T E R T E N S A V I N G A N D R E S T O R I N G D A T A 199

Figure 10-6 Run the app on the iPad simulator.

You can click Edit to edit the data as you see in Figure 10-7.

Figure 10-7 Edit the iPad data.

If you run the app using the iPhone simulator, the results are as you see in Figure 10-8.

i O S 6 F O U N D A T I O N S200

Figure 10-8 Run the app on the iPhone simulator.

Because the data is stored in the iOS Simulator under /Library/Application Support, both
simulators use the same data. In practice, the data would be stored on each device, so enter-
ing data on the iPhone would not affect data on the iPad.

If you use iCloud for both apps, the results would indeed be what you see here. Unfortunately,
iCloud is beyond the basic scope of this book.

Summary
When it comes to editing, saving, and restoring data, you can see one of the best examples of
how the Cocoa Touch framework makes your life easier. Most of the functional components
of the process are built into the framework, ranging from the Edit-Done button to the set
Editing: animated: method that works with it. As you see in this chapter, all that you
need to do is use the Edit-Done button and insert the code for your data model fields and
your interface elements in setEditing: animated:.

At this point, your app runs. Yes, there are additional steps to be taken such as working with
the date field, but the app is starting to be presentable. At this point, it’s good to step back
and have a look at the debugging tools that are provided with Xcode. As bugs and glitches
appear (as they always do), those debugging tools help you track them down and fix them.

With that in mind, it’s on to Chapter 11, “Testing the App with the Debugger.”

201

IT IS DIFFICULT to describe the process of using the debugger because, most of
the time, you need to use the debugger when something untoward has happened. The
app is in an unknown and possibly unstable condition, so you need to try to analyze
and recover from the problem.

In this chapter, you’ll see how to deliberately introduce errors into your code so that
you can “find” them with the debugger. Of course, there’s not too much difficulty in
finding errors that you have introduced yourself. If you are working in a class or with a
group of people, you can pair off to find errors that others have introduced.

Create a new project from the Master-Detail Application template. You’ve used it as
the basis of the Party Planner app, so you know a bit about its structure. By starting
from an untouched version, you can run it with the debugger to get a sense for how
the debugger works. Furthermore, if you want to create code that will generate an
error, you can do so without worrying about damaging your own app.

chapter eleven

Testing the App with
the Debugger

i O S 6 F O U N D A T I O N S202

Exploring the Debugger from
a Basic Template
Starting from an untouched project built from the Master-Detail Application template gives
you a good starting point to explore. You can refer back to “Getting Started with the
Template” in Chapter 4, “Designing the Party Planner App” for more information about cre-
ating the project. Figure 11-1 shows the basic settings you should have.

Use storyboards, automatic reference counting (ARC), and Core Data. Choose a universal
application so that it will run on both iPad and iPhone.

Although these settings should give you a project that matches the text and figures in this
chapter, remember that changes in the template projects often occur from version to version
of Xcode. What you see may differ in some ways.

Using Informal Debugging Techniques
A debugger or a colleague can sometimes pinpoint a problem—perhaps a missing comma—
and you’ll be able to be on your way again. All too often, the most vexing problems aren’t
that simple. Here are some of the techniques that I’ve used. Some are tips from other
developers or teachers, and others are strategies that I’ve discovered work for me.

• Take a break—Have a cup of coffee, walk the dog, go to lunch, or rearrange
the supply closet. If you’re on a deadline, it’s hard to do this, but in the long run,
solving the problem and moving on will save you time.

• Describe the problem—Stop thinking about the problem; instead, describe the
problem out loud. The process of verbalizing the issue may be using a different
part of the brain because it seems to work in many cases. You don’t need an
expert to talk to (although that may help). Describing the problem to a snoring
dog may even help. You just want to get out of the rut that you’re in.

• Plan for never solving the problem—Right at the beginning consider how you
will work around the problem if it can’t be solved. Working on an alternative imple-
mentation may just give you enough perspective to be able to make progress.

• Contact Apple’s Developer Technical Support (DTS)—The standard devel-
oper programs come with two technical support incidents each year. If you
need more, you can buy them in groups of two ($99) or five ($249). Apple engi-
neers will review your code and help you solve the problem. Note that ques-
tions about pre-release software can’t be handled by DTS.

C H A P T E R E L E V E N T E S T I N G T H E A P P W I T H T H E D E B U G G E R 203

Figure 11-1 Create a new project with these basic settings.

Modify the application:didFinishLaunchingWithOptions: in AppDelegate.m.
Add the three lines in bold to the code, as shown here.

// Override point for customization after application launch.

if ([[UIDevice currentDevice] userInterfaceIdiom] ==

 UIUserInterfaceIdiomPad) {

 UISplitViewController *splitViewController =

 (UISplitViewController *)self.window.rootViewController;

 UINavigationController *navigationController =

 [splitViewController.viewControllers lastObject];

 splitViewController.delegate =

 (id)navigationController.topViewController;

 // introduce an error JF

 int x = 0;

 int y = 0;

 y = 5 / x;

 UINavigationController *masterNavigationController =

 splitViewController.viewControllers[0];

 MasterViewController *controller = (MasterViewController *)

 masterNavigationController.topViewController;

 controller.managedObjectContext = self.managedObjectContext;

 } else {

i O S 6 F O U N D A T I O N S204

Setting Up the Debugger
The debugger is built into Xcode. It allows you to run your app in a controlled environment
so that errors that might normally cause the app to crash are caught by the debugger. This
way you can inspect what is going on. There are tools available to you at that time to modify
variables so that you don’t have to wait to recompile your code and start over.

Finding an Error
For example, in Figure 11-2, you can see that a divide by zero has deliberately been inserted
in the code. When it is encountered, the debugger takes over. At the left of the editor in
Figure 11-2, the small green arrow indicates the line of code that has just been executed.
Xcode posts the error at the right.

Figure 11-2 The debugger stops on errors.

C H A P T E R E L E V E N T E S T I N G T H E A P P W I T H T H E D E B U G G E R 205

At the very bottom of the editor, new controls and information appear. Here’s what the con-
trols do (from left).

• Up- or down-pointing arrow—This arrow shows or hides the Debug area. In Figure
11-2, the Debug area is hidden.

• Right-pointing arrow—This arrow continues execution from the line where it
stopped if that is possible. In the case of a divide by zero, continuing is not possible.

• Curved arrow—This arrow lets you step over a line of code. Typically, you step over a
line of code that calls a function or method. The function or method is executed, and
then the next line in the source code is where the control stops again (unless, of course,
an error has been encountered).

• Down-pointing arrow—This arrow lets you step into a function or method. The
debugger stops on the first line of the function or method.

• Up-pointing arrow—This arrow lets you step out of a function or method. From
wherever you are, the function or method continues operation and the debugger stops
on the first line after the return statement.

Next to the arrows, you find a location pointer (it’s pointing to what would be northeast on a
compass). This opens a pop-up menu that lets you choose a location for the simulator to use.

Further to the right, you have the stack and thread structure of where the debugger has stopped.

Configuring Behaviors Preferences
The Xcode debugger has a wide variety of options that you can set. Before exploring them,
here is a suggestion for the settings to get started with. Use Xcode➜Preferences to open the
Preferences window shown in Figure 11-3. Select the Behaviors tab at the top.

Although there are many options to set, the format of the Behaviors preferences are all much
the same. At the left side of the window, you see a variety of triggers that can happen as you
build and run your app. When you select one of them, the actions shown at the right are avail-
able to you. You can turn each action on or off using its checkbox. Some actions are simple,
such as bouncing the Xcode icon in the Dock when the app is inactive. Others have choices
within them.

A common setting (and one that is used in the examples in this chapter) is to set actions for
the pauses trigger when an app is running. Use the checkboxes to turn on the actions that
you want, and, if there are choices, select them. In Figure 11-3, if an app pauses, the Debug
navigator will be shown. You can choose from any of the navigators in Xcode or you can
select whatever the current navigator is.

In addition, you can choose to show the debugger, as shown in Figure 11-4.

i O S 6 F O U N D A T I O N S206

Figure 11-3 The Behaviors tab of the Preferences window.

Figure 11-4 If an app pauses, show the debugger.

C H A P T E R E L E V E N T E S T I N G T H E A P P W I T H T H E D E B U G G E R 207

If it is shown, the debugger appears below the editor. The controls and information shown
originally at the bottom of Figure 11-2 are now at the top of the Debug area. You can drag
them up or down to enlarge or reduce the size of the Debug area.

There are two sections to the debugger as you see in Figure 11-5. At the left, current variables
are shown. At the right, console messages (if any) are shown. You can also view the console
messages by using the Console app inside Applications/Utilities. There is also a setting to
show both panes at the same time (that is the view shown in Figure 11-5) or you can set the
action to use whatever the current configuration is. Controls at the top right of the Debug
area let you choose among these settings when the Debug area is open.

Figure 11-5 Use the debugger.

Setting a Breakpoint
You don’t have to wait for an error to use the debugger. One of the most common ways of
debugging is to set a breakpoint. For example, Figure 11-6 shows the divide by zero code that
dropped the app into the debugger. If this were a more complex case, you might see the
divide by zero, but you might want to backtrack to find out how a variable was set to zero. In
that case, you might set a breakpoint just before the place where the error occurs. In Figure
11-6, a breakpoint has been set just before the code that fails. You set a breakpoint by click-
ing in the breakpoint gutter at the left of the editor. A blue arrow indicates the breakpoint.

i O S 6 F O U N D A T I O N S208

Figure 11-6 Set a breakpoint.

The code that causes the divide by zero is easy to locate because it is set off by spaces from
the basic template code. Remember that this code is used to demonstrate what happens
when an error occurs. In real life, instead of setting a variable to zero and then using it as a
divisor, you’re much more likely to wind up with a divisor of zero that has been set far away
from where the error occurs—perhaps as a return value of a function that actually works
properly but in some cases winds up being called with an invalid argument.

Inspecting Variables
If you run the app with the breakpoint in place, it will pause as shown in Figure 11-7. As
before, the green arrow points to the location where the app has stopped. In this case, it is at
the breakpoint.

When the debugger stops at a breakpoint, there is no error message at the right—rather, it
explains that it has stopped because of a breakpoint as you see in Figure 11-7. What happens

C H A P T E R E L E V E N T E S T I N G T H E A P P W I T H T H E D E B U G G E R 209

next is probably the most likely scenario you’ll use as you debug your software. The break-
point is set just before an error (divide by zero) occurs. Most commonly, you back up a line or
two so you can see the state of affairs before the error occurs.

Figure 11-7 The app stops at the breakpoint.

In the variables pane at the left of the debugger, you see local variables and their values. In
parentheses, you can also see the memory location assigned to the variable. In most cases, all
you care about is whether it is allocated or not. (You can use the pop-up menu currently set
to Auto at the left of the debugger to choose from local variables or all variables—local is the
most common setting to start with.) When a breakpoint is set, the debugger stops just before
the indicated line is executed. (When the debugger stops because of an error, it is after the
line has been executed and the error has occurred.)

Look at the variables, and you’ll see that the locally declared variable x is set to 5955609.
That’s what the debugger says, and that’s probably what its current value is. However,

i O S 6 F O U N D A T I O N S210

remember that this line of code has not yet been executed, so that value is whatever hap-
pened to be in that memory location.

Use the Step Over button to move to the next line of code, as shown in Figure 11-8. The Step
Over button is the curved arrow shown in Figure 11-8. Note that the value of x is now 0
because the line of code has been executed. The number 0 is shown in blue and italic to indi-
cate that it has changed from its last display.

Figure 11-8 Step to the next line of code.

Click Step Over one more time, and you’ll see that x is no longer blue and italicized. Click
Step Over one more time, and you’ll see what is shown in Figure 11-9. The divide by zero
error reoccurs, and you cannot continue the app.

This is the standard process of tracking down an error. If something goes wrong at a certain
point, look to see where the app fails. Then, set a breakpoint a line or two before the error.
When the app stops at the breakpoint, check the variables to see if any of them seem to be
out of line. Zeroes are always danger flags.

C H A P T E R E L E V E N T E S T I N G T H E A P P W I T H T H E D E B U G G E R 211

Figure 11-9 The error happens again.

Inspecting Objects
You can use disclosure triangles to look inside objects, as you see in Figure 11-10. Note that
containerView has never been assigned or created, so it has a zero memory location. In this
case, that’s normal behavior, but often if you are encountering errors, it will be because an object
has not been created, and those zeroes will point you on your way to solving the problem.

You can often use disclosure triangles to move through several levels of objects. For example,
in Figure 11-10, self is an object of the AppDelegate class, and it is stored at memory
location 0x816b060. Its disclosure triangle is closed so you don’t see any of its properties.

On the other hand, the navigationController variable of type UINavigation
Controller has been opened, and you can see its variables. Note that you can see the back-
ing variables for properties (they start with the underscore).

The variables are organized by class. navigationController is an instance of
UINavigationController. Directly beneath its entry, you see a closed disclosure triangle
for UIViewController. That will display the variables of the superclass for navigation
Controller, which is a UIViewController.

i O S 6 F O U N D A T I O N S212

Figure 11-10 Use disclosure triangles to look inside objects.

Writing a Console Message
Sometimes, you want to write messages to the console rather than setting a breakpoint.
There are many reasons for this, but perhaps the most common is to not have to stop at each
breakpoint. As the app is executing, you can have the debugger write out values to the con-
sole and review them at your leisure—or perhaps when you have stopped at a breakpoint
and want to review several steps that have just occurred.

You write out messages using the NSLog function. NSLog is a function built into the
Foundation framework. It functions like an ordinary C print statement, but it has different
features added to it.

The basic function is as follows:

NSLog (@”a format string”, variable1, variable2 ...);

In practice, you use something such as this:

NSLog (@” %@”, navigationController);

C H A P T E R E L E V E N T E S T I N G T H E A P P W I T H T H E D E B U G G E R 213

The %@ format specifier writes out an object’s description or descriptionWith
Locale: depending on which is available. (For that reason, although you can add text to the
format specifiers, you don’t need to identify an object you’re printing out—it’s already
identified in the description text.) Other specifiers such as %@ for an unsigned int are
listed at https://developer.apple.com/library/mac/#documentation/Cocoa/
Conceptual/Strings/Articles/formatSpecifiers.html. When you get into the
debugging phase of your project, you may want to print out that table and leave it next to
your Mac.

You can experiment with a console message by adding a line to the divide by zero code
you inserted into application:didFinishLaunchingWithOptions:, as shown in
Figure 11-2.

NSLog (@”Test NSLog: %@ “, splitViewController.delegate);

int x = 0;

int y = 0;

y = 5 / x;

If you set a breakpoint after the NSLog message, Figure 11-11 shows you what you will see
in the debugger.

Figure 11-11 Write out a console message.

https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/Strings/Articles/formatSpecifiers.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/Strings/Articles/formatSpecifiers.html

i O S 6 F O U N D A T I O N S214

Notice that each console message is time-stamped. You can also add your own string mes-
sages to the output.

Editing Breakpoints
You can edit breakpoints to customize their appearance and behavior. This can save you
from writing special code to assist in debugging. Much of it can be done just by editing a
breakpoint.

Begin by setting a breakpoint as you would normally do. Then, Control-click on the break-
point as shown in Figure 11-12.

Figure 11-12 Start to edit a breakpoint.

You can now edit the breakpoint and its actions, as shown in Figure 11-13.

C H A P T E R E L E V E N T E S T I N G T H E A P P W I T H T H E D E B U G G E R 215

Figure 11-13 Edit the breakpoint and its actions.

To begin with, you can turn the breakpoint on or off with the checkbox in the upper left. If the
breakpoint is disabled, the indicator is dimmed. You can configure the breakpoint to fire on a
specific condition, or after a certain number of iterations. You can add customized actions,
and you can have the app continue after evaluating the breakpoint. This is useful when used in
conjunction with a log message. The app will just keep running and the message will be writ-
ten out. In the example shown in Figure 11-13, you’ll see that the name of the method is dis-
played in the log. No more do you have to write those diagnostics yourself.

Summary
This chapter introduces you to the debugger that’s built into Xcode. You can set breakpoints
and write out console messages to help diagnose problems. Most commonly, you use the
debugger to spot the point in your code where an error occurs. Unless the debugger immedi-
ately shows you what’s wrong, most often you use a combination of setting breakpoints to
find out where the problem is set up, and utilizing a set of console messages to show you
what is happening as the app runs off the rails.

part 4

Using Table
and Collection
Views

chapter twelve Exploring the Table View in
the Template

chapter thirteen Formatting Table Cells

chapter fourteen Editing Table Views

219

YOU HAVE SEEN many of the basics of app development on iOS. For most apps,
the heart of the app is its interface, and you have seen how to use storyboards to create
the interface. When it comes to the data that is displayed and manipulated in the
interface, you have seen how to use a Core Data model to organize the data. Xcode
provides tools to convert a graphically created data model into code in subclasses of
NSManagedObject. The basics of view controllers and views were demonstrated in
the master and detail view controllers described in the previous part. And, of course,
the key aspect of saving and restoring data has also been addressed.

There’s much, much more to iOS, and this part of the book shows you one of the most
important sets of frameworks, classes, and tools—table views. At first, the whole idea
of using table views may seem very specific and not really a major part of iOS develop-
ment. Tables, after all, are just ways of formatting data—aren’t they? You can manage
tables with a word processor (Pages or Microsoft Word, for example). If you want to do
sophisticated things with tables, Numbers, Excel, Bento, or FileMaker let you do what
you need to do.

In this chapter, you see table views in action and learn about their basic components.
Following that, there is a high-level description of how the concepts work together
with table views. Unlike most of the other chapters in this book, this chapter is primar-
ily conceptual: it provides the background information that you’ll use in the other
chapters in this part of the book.

chapter twelve

Exploring the Table View
in the Template

i O S 6 F O U N D A T I O N S220

Introducing Table Views, Protocols,
and Delegates
If you want to understand why tables deserve their own part of this book—with three chap-
ters, no less—stop thinking about tables in the context of word processing and spreadsheets.
In iOS, tables are used to present tabular data—data is organized into cells that are arranged
in rows and a single column. (On OS X, multiple columns are allowed.)

Because there is only one column in an iOS table view, each row consists of a single cell. It is
the cells in the table that you format and use to display data items. The table and its column
are the container for the cells.

Tables are most often implemented using a UITableViewController that is paired with
a UITableView that it controls. These are subclasses of UIViewController and UIView.
They provide a good example of how the building blocks of Objective-C and the Cocoa Touch
frameworks work together. If you approach UITableViewController head-on, it may be
disconcerting at first. However, there is a reason for the structure, and, before long, you’ll see
how it fits together.

The components of this structure—protocols, delegates, and the basic classes of UITable
View and UITableViewController—are basic Objective-C concepts that are used
throughout the frameworks. Because you’ll need to use two separate table views in the Party
Planner app, this is a good context to use to explore these fundamental and critical concepts.

Looking at Table Views
First, it’s a good idea to look at how table views are used, and the Master-Detail Application
template, which is the basis of your Party Planner app, is a good place to start.

Using Views on an iPhone
In Figure 12-1, you can see the Party Planner (as it is at this stage) running on an iPhone. At the
top of the window is the status bar. Just below it, is a navigation bar with an Edit button at the
left and a + button at the right; its title is Master (that’s the default name in the template).

C H A P T E R T W E LV E E X P L O R I N G T H E T A B L E V I E W I N T H E T E M P L A T E 221

Figure 12-1 The master view controller on iPhone.

Beneath the navigation bar, you see a UITableView, which is managed by a UITable
ViewController (as with all view controllers, you don’t see the controller itself). The dim
lines across the table view separate the rows from one another whether or not there is data
to be displayed in them. (Those dim lines are the hallmark of a table view.)

In the first row, you see Party 2, with Party 1 in the second row. At the right of each row, an
accessory view, which in this case is a disclosure indicator, is shown. (The disclosure indicator is
discussed in the following section.)

If you tap Edit, the table view enters Edit mode, as shown in Figure 12-2.

i O S 6 F O U N D A T I O N S222

Figure 12-2 You can edit a table view.

To delete a row, you tap the delete button at the left of the row and then confirm the action
by tapping Delete at the right, as shown in Figure 12-3.

It’s interesting to note that on iOS devices, many of the interruptions that happen on desktop
computers have been banished. You don’t see Cancel buttons. Rather, if you do anything but
tap the button that performs an action, the action is cancelled. Similarly, whereas on a desktop
computer you might be asked to confirm the deletion of an object, on iOS, it is still a two-step
process, but those two steps are less verbal.

C H A P T E R T W E LV E E X P L O R I N G T H E T A B L E V I E W I N T H E T E M P L A T E 223

Figure 12-3 Deleting a row requires two steps.

After you have deleted the row (or not), tap Done and you’re back to the list you saw in
Figure 12-1.

From there, tap a disclosure indicator to move to the details for a given row, as shown in
Figure 12-4.

Now, the navigation bar has a Back button at the left to return you to the master view con-
troller. In the center, the title of this view is Title (that’s a default value in the template), and,
at the right, is an Edit button.

Tap the Edit button now, and you’ll enter Edit mode for the data on the screen, as shown in
Figure 12-5.

i O S 6 F O U N D A T I O N S224

Figure 12-4 Look at the details for a row.

Figure 12-5 You can edit data.

C H A P T E R T W E LV E E X P L O R I N G T H E T A B L E V I E W I N T H E T E M P L A T E 225

Using Views on iPad
In Figures 12-1, 12-2, and 12-3, you see a table view. In Figures 12-4 and 12-5, you see an
ordinary view. In the context of a table view that shows a number of rows of data (Figures
12-1, 12-2, and 12-3), editing means editing the table itself—adding or removing a row.
When a view shows data from within a row (as is the case in Figures 12-4 and 12-5), editing
means editing the data itself rather than the structure of the table.

Although the interface looks different, it is similar on iPad. The biggest difference is that
instead of using a navigation controller, a split view controller is used. Thus, compare Figure
12-6 to Figures 12-1 and 12-4. Because of the larger screen, there’s no need for a disclosure
triangle because both the master view controller and the detail view controller can be seen at
the same time.

Figure 12-6 Edit both parts of a split view controller on iPad.

Even in portrait mode, parts of both views can be seen at the same time, as you see in
Figure 12-7.

i O S 6 F O U N D A T I O N S226

Figure 12-7 In portrait mode, you can see parts of both view controllers.

As you can see in Figure 12-8, each view can be edited separately.

(Note that the relevant Edit-Done button when it is in use is blue even though the color may
not be reproduced on a printed page. Cocoa Touch manages the proper focus of the interface
to indicate which view is being edited with the blue Edit-Done button.)

C H A P T E R T W E LV E E X P L O R I N G T H E T A B L E V I E W I N T H E T E M P L A T E 227

Figure 12-8 Edit the data view.

Figure 12-9 shows the master view controller being edited (compare this to Figure 12-3).

Figure 12-9 You can edit the table view’s structure.

i O S 6 F O U N D A T I O N S228

Using Table Views for Data Display and Editing
When a UITableView displays data, it is highly formatted. When you use your own inter-
face, such as the text fields shown in Figures 12-5 and 12-9, you can place them wherever
you want. Using a table view instead of individual text fields or other interface elements can
make your app’s interface more attractive and easy to use. You can even combine accessory
views such as disclosure triangles with table view cells that display data fields.

Perhaps the best demonstration of the advantages of a table view is found in Settings.
Figure 12-10 shows you the settings for Maps. One of the first things to notice is that
the table view rows are grouped into three groups (Distances, Map Labels, and Label Size).
This immediately makes the data easier to conceptualize. Also, note the absence of an
Edit-Done button. If you want to change the setting for Distances from In Miles, you just tap
In Kilometers, and the checkbox will move. To change the switch controlling map labels
in English, just tap the switch to change it to No. (A different type of interface could let
you select which language you want to use, but that’s not implemented in this version of the
Maps software.)

Figure 12-10 Settings uses grouped rows.

Settings for Safari, shown in Figure 12-11, are more complex. They use a variety of single-tap
interface elements (such as the checkboxes) along with disclosure triangles for other rows.

In Figure 12-12, you can enter text directly using the keyboard. Note the Sign In button that
lets you use the data immediately. (That is a simpler interface than Edit-Done; it’s made
possible by the context of the data. After entering a user ID and password, logging in is a
natural next step.)

C H A P T E R T W E LV E E X P L O R I N G T H E T A B L E V I E W I N T H E T E M P L A T E 229

Figure 12-11 Safari settings are more complex, but still easy to use.

Figure 12-12 You can log into Twitter from Settings.

UITableView High-Level Architecture
As you have seen, UITableView is more than a two-dimensional set of data cells. It man-
ages rows of data for display and entry, but it also provides accessory views to let users drill
down into the data. In addition, in various circumstances it responds to Edit and Done

i O S 6 F O U N D A T I O N S230

actions. In addition to optional accessory views, table views allow you to group rows together
(as in Figures 12-10, 12-11, and 12-12). Furthermore, there are many other formatting and
functional features that have not yet been explored.

The UITableView manages the display and entry of data, but it doesn’t do it alone—it uses
helper objects in the form of a delegate and a data source to do its work. These helper objects
are common in Objective-C; you’ll find out more about them shortly in “Introducing
Protocols and Delegates.”

For full documentation, refer to “Table View Programming Guide for iOS,” which is
downloadable from developer.apple.com.

The UITableView comprises three inter-related objects:

• UITableView is the basic class that manages the display of the table.

• A helper object—technically a delegate—helps with interface management such as
selections, headers, and footers, as well as deleting and reordering cells. It is responsi-
ble for many aspects of what the table view looks like. One of the delegate methods
that you use most frequently is:

– tableView:didSelectRowAtIndexPath:

 This lets you know when the user has tapped in a cell.

• Another helper object—this one a data source—helps with the data. It is responsible
for providing the data to be displayed in the cells. One of its most frequently used
methods is:

– tableView:cellForRowAtIndexPath:

 This returns a specific cell for the table. You commonly use this method in your imple-
mentation of the data source, and, as part of that implementation, you typically insert
and format the data for the cell before returning it. (Other methods let you reuse the
cell with different data, but this is where the cell comes from initially.)

Thus the table view, with its overall structure, works with the delegate to manage the inter-
face and user interactions and with the data source to manage the data. (There’s more on the
details of this in the following section.)

Two points are worth noting before moving on:

• As you can see from both code snippets, cells are identified by their index path. This is
an NSIndexPath instance, which, on iOS, lets you locate a cell by its row and its sec-
tion (see the grouped cells in Figure 12-10). You’ll see NSIndexPath objects in action

C H A P T E R T W E LV E E X P L O R I N G T H E T A B L E V I E W I N T H E T E M P L A T E 231

throughout this part of the book. Although index paths can handle very complex
tables, for your work with iOS tables (remember they have a single column) the index
path is what you use to determine the row and section of a specific cell.

• Remember that the table view with its delegate and data source are all managed by a
view controller—UITableViewController. So that gives you a total of four objects
working together to produce your table view on the iOS device screen. Just remember
that each object has its own role to play. The reason for separating the implementation
into these four objects is so that you avoid having an enormous object with complex
relationships within it. Here, you have one object with two helper objects as well as the
controller for a fourth object. The relationships are simple.

MasterViewController.m in the template implements the two helper objects. These are
the methods that are implemented in the template—the pragma marks have been added to
the template. (The template places them all in a Table View pragma; in the downloadable
sample code for the back, the delegate and data source methods are separated.) From the
method names, you can get a sense for what they do. In a nutshell, the data source works
with data and the delegate works with user interaction. Read on for more details.

#pragma mark - Table View Data Source

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView

- (NSInteger)tableView:(UITableView *)tableView

 numberOfRowsInSection:(NSInteger)section

- (UITableViewCell *)tableView:(UITableView *)tableView

 cellForRowAtIndexPath:(NSIndexPath *)indexPath

- (BOOL)tableView:(UITableView *)tableView

 canEditRowAtIndexPath:(NSIndexPath *)indexPath

- (void)tableView:(UITableView *)tableView

 commitEditingStyle:(UITableViewCellEditingStyle)editingStyle

 forRowAtIndexPath:(NSIndexPath *)indexPath

- (BOOL)tableView:(UITableView *)tableView

 canMoveRowAtIndexPath:(NSIndexPath *)indexPath

#Pragma mark - Table View Delegate

- (void)tableView:(UITableView *)tableView

 didSelectRowAtIndexPath:(NSIndexPath *)indexPath

Introducing Protocols and Delegates
Objective-C has a number of approaches to the classic object-oriented design problem of
multiple inheritance. This is the problem in which you find yourself wishing that a class could
be a subclass of two separate classes at the same time.

i O S 6 F O U N D A T I O N S232

Exploring the Protocol and Delegate Structure
Having worked with and written about iOS and its predecessors since 1997, I’ve had the
opportunity to work with the operating systems, write about them, and help developers
learn how to use them. (It’s been a great experience full of surprises—I can assure you that
in the late 1990s, we weren’t thinking about iPhone.)

I do hate to break in, but I feel that I should let you know that what I’m about to describe is, for
some people, one of the most difficult concepts to grasp. It’s actually not all that complicated,
but it sometimes takes a little bit of thinking about it to realize the impact. Don’t worry if you
have to read this section a few times. It really is not difficult once you get your mind around it.

Exploring the Issue of Multiple Inheritance
For example, take a very concrete example of structuring classes to handle buildings. You
could have an abstract superclass (that is, one that is never instantiated) called
Building. Subclasses of it might be Residential Building, Commercial Building, and Public
Building. You could also subclass the Building class based on construction materials:
Brick Building, Stone Building, and Wooden Building.

Each subclass of Building would have its own characteristics and behaviors. Now, imagine
that you want to build a wood-frame house. Which subclass of Building do you use? You
actually want to subclass both Wooden Building and Residential Building, but in most object-
oriented programming languages you have to pick a unique superclass. This is the problem of
multiple inheritance.

In Objective-C, you cannot have multiple inheritance, but there are several techniques
whereby you can package certain aspects of a class into a reusable set of methods. One such
technique consists of protocols and delegates. Thus, to continue the analogy to buildings, you
could have Brick Building, Stone Building, and Wooden Building, but the features of
Residential, Commercial, and Public Buildings could be packaged up into protocols—sets of
methods. You could then subclass Brick Building from Building, and add a Commercial pro-
tocol—a set of methods that could be applied to Brick, Wooden, or Stone buildings.

Protocols consist of methods—You cannot specify properties inside a protocol. However,
you can specify a protocol with a method that accesses something that is normally thought
of as a property. When you adopt a protocol, you implement its methods using whatever
properties and instance variables you have in the class that is adopting the protocol.

This is a fairly detailed discussion of the protocol and delegate structure. In the following
section, you will see how that structure is used for UITableView. If you want to skip over
the structure described in this section and come back to it later, that’s fine. You can just take it
on faith that the code described in the following section will work rather than working through
the structural details.

C H A P T E R T W E LV E E X P L O R I N G T H E T A B L E V I E W I N T H E T E M P L A T E 233

Declaring a Delegate that Adopts a Protocol
A class often declares a delegate, which must adopt a certain protocol. When the delegate
adopts a protocol, the class that declares the delegate can be assured that the delegate imple-
ments the required methods of the protocol, and the class can safely call those methods, as
you will see.

UIApplication declares a delegate that adopts the UIApplicationDelegate protocol
as a property of UIApplication. Here is the declaration of delegate in UIApplication.h:

id <UIApplicationDelegate> _delegate;

You typically use it through the property in UIApplication:

@property(nonatomic, assign) id<UIApplicationDelegate> delegate

_delegate is of type id—that is, it can be any object—but the object that is assigned to
_delegate must itself adopt the UIApplicationDelegate protocol. (That’s the signifi-
cance of the pointed brackets.)

In most of the templates, a class that conforms to the UIApplicationDelegate protocol
is created for you—it’s called AppDelegate.

Adopting a Protocol
Perhaps the most frequently used protocol in iOS is UIApplicationDelegate. In most of
the Xcode templates for iOS, you’ll find an application delegate class. In the Master-Detail
Application template, it’s called AppDelegate.

In the interface for AppDelegate, you can see that it’s a subclass of UIResponder and also
that it adopts the UIApplicationDelegate protocol, as you see at the top of
AppDelegate.h:

@interface AppDelegate : UIResponder <UIApplicationDelegate>

The pointed brackets indicate the protocol(s) that are adopted by the class being declared
(AppDelegate in this case).

Assigning an Object to a Delegate
If you put the code from the two previous sections together, you’ll see that you can assign an
object of any type to _delegate in UIApplication provided that the object you assign to
_delegate adopts the UIApplicationDelegate protocol.

i O S 6 F O U N D A T I O N S234

In most apps, this particular operation is done in main.m. That’s part of most templates, and
it’s code that you don’t modify. Here is the code as generated in the Master-Detail Application
template:

//

// main.m

// Party Planner

//

// Created by Wiley Publishing on 11/25/12.

// Copyright (c) 2012 Champlain Arts. All rights reserved.

//

#import <UIKit/UIKit.h>

#import “AppDelegate.h”

int main(int argc, char *argv[])

{

 @autoreleasepool {

 return UIApplicationMain(argc, argv, nil,

 NSStringFromClass([AppDelegate class]));

 }

}

The last argument to UIApplicationMain is the AppDelegate class and, as you can see
in the documentation, that class is assigned to the delegate. Thus, the AppDelegate object
in your app that adopts the UIApplicationDelegate protocol is assigned to _delegate
in UIApplication at runtime, and all of the required methods of the protocol are available
for _delegate because they are implemented in AppDelegate.

In a protocol declaration, its methods can be marked as required or optional. If they are not
marked, they are treated as required. All of the methods in UIApplicationDelegate are
optional.

Declaring a Protocol
The UIApplicationDelegate protocol is declared inside UIApplication.h. This is a
common situation—if a class will declare a delegate that must adopt a protocol, the class
usually defines that protocol.

The beginning of the declaration of the UIApplicationDelegate is shown here:

C H A P T E R T W E LV E E X P L O R I N G T H E T A B L E V I E W I N T H E T E M P L A T E 235

@protocol UIApplicationDelegate<NSObject>

@optional

 - (void)applicationDidFinishLaunching:

 (UIApplication *)application;

 - (BOOL)application:(UIApplication *)application

 willFinishLaunchingWithOptions:(NSDictionary *)launchOptions

 NS_AVAILABLE_IOS(6_0);

 - (BOOL)application:(UIApplication *)application

 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions

 NS_AVAILABLE_IOS(3_0);

Note that NS_AVAILABLE_IOS(6_0) means that this method is available in iOS 6 or later.
Similarly, NS_AVAILABLE_IOS(3_0) means the method is available in iOS 3 or later.
For now, these are not important to worry about. If it’s necessary, they are called out in the
documentation.

Tracking Down the Protocol, Delegate, and Data
Source Structure in UITableView
In short, a protocol consists of functionality that is implemented in whatever way a class
that adopts the protocol wishes to do it. What follows is a concrete example of the process in
the Master-Detail Application template (the basis for your Party Planner app). The declara-
tion of a delegate or other helper object specifies a protocol that must be adopted by an
object that is assigned to the delegate. The class that declares the delegate can then safely use
any method declared in the protocol. (If the protocol includes optional methods, you should
check to make certain that the method you want has actually been implemented.)

The delegate is specified by the UITableViewDelegate protocol. The data source is speci-
fied by the UITableViewDataSource protocol. (You can find full documentation in the
Xcode Organizer or on developer.apple.com.) Here is the beginning of the
UITableViewController declaration:

@interface UITableViewController : UIViewController

 <UITableViewDelegate, UITableViewDataSource>

You can see that it is a subclass of UIViewController and that it adopts the
UITableViewDelegate and UITableViewDataSource protocols.

As noted in the previous section, UITableView is the fundamental table class in iOS. Each
table view has two helper objects—a UITableViewDelegate and a UITableView
DataSource. Together they form the table view itself, and, to top things off, a UITableView
Controller manages the whole set of objects. In your implementation, any of these objects

i O S 6 F O U N D A T I O N S236

can be overridden. UITableView isn’t overridden too often, but UITableViewController
is frequently overridden. The two protocols (UITableViewDelegate and UITableView
DataSource) aren’t overridden—They’re implemented in one or more objects that you
assign to the delegate property in your UITableView (or descendant) or to the dataSource
property in your UITableView (or descendant). Most frequently, these assignments are
made using Interface Builder, and, in the Xcode templates such as Master-Detail Application
they are already set up.

Here’s the place where you need to keep track. You can specify that a class adopts a protocol.
If a class adopts a protocol, this means that it must implement the required methods of the
given protocol. A class can adopt more than one protocol. As an example, consider the decla-
ration of UITableViewController:

@interface UITableViewController :

 UIViewController <UITableViewDelegate, UITableViewDataSource>

This means that an instance of UITableViewController or of a subclass of it must
respond to all of the required messages of both of these protocols. If you subclass
UITableViewController (which you frequently do), you have promised to implement
the required methods of the two protocols.

And this is where the piece that’s a little tricky comes into play.

The documentation of UITableView makes it very clear that you must have a data source
and delegate. Here is the relevant section from the UITableView Class Reference.

 “A UITableView object must have an object that acts as a data source and an object that
acts as a delegate; typically these objects are either the application delegate or, more fre-
quently, a custom UITableViewController object. The data source must adopt the
UITableViewDataSource protocol and the delegate must adopt the UITableView
Delegate protocol. The data source provides information that UITableView needs to
construct tables and manages the data model when rows of a table are inserted, deleted, or
reordered. The delegate provides the cells used by tables and performs other tasks, such as
managing accessory views and selections.”

If you use the Xcode Organizer to look up the header for UITableView in UITableView.h,
you’ll find the two properties for these objects declared:

@property(nonatomic,assign) id <UITableViewDataSource> dataSource;

@property(nonatomic,assign) id <UITableViewDelegate> delegate;

C H A P T E R T W E LV E E X P L O R I N G T H E T A B L E V I E W I N T H E T E M P L A T E 237

id is used to declare a weakly-typed variable or property. A weakly-typed variable is a variable
of some type that is not specified in the declaration. You can use introspective functions at
runtime to find out exactly what type or class it actually is. In this case, both the dataSource
and delegate properties are weakly typed.

Each one conforms to a protocol—either UITableViewDataSource or UITableView
Delegate—but it doesn’t matter what the actual class is as long as the object conforms to
the relevant protocol and therefore can implement all the protocol’s required methods.

It doesn’t really matter where they are implemented; you must be able to set two properties
(delegate and data source) to the object that implements them. With these declarations, it
is possible for a UITableViewController (or descendant thereof) to be assigned to the
delegate and/or data source property of a UITableView. (In most cases the controller is
assigned to both properties.) What is important to note is that, although in most cases (and
in the Xcode templates), the table view controller is both the data source and the delegate of
the table view, that doesn’t have to be the case.

Thus, in the structure of a table view you typically have:

• UITableView (the view)

• UITableViewDataSource (a protocol)

• UITableViewDelegate (a protocol)

• UITableViewController (the view controller that manages the view)

In many of the implementations, they are implemented with a UITableView that is designed
and customized with a storyboard and with a subclass of UITableViewController that also
conforms to the two protocols. Thus, when it comes to writing code, you often write the code
only for the subclass of UITableViewController that also includes the two protocols.

Many protocol methods begin with a parameter for the primary object, which is tableView
in many of the methods used here. Because UITableViewController is both the delegate
and the data source, it already knows which table view is the subject of the method. However,
this architecture will work even if some other object is processing the protocol message. In
that case, the implementation of the method would need to find some way to interrogate the
specific table view that is passed in. In this case, however, that isn’t necessary, and, in fact,
if you look at the code you’ll see that the protocol methods can look at the fetched results
controller to find the number of items returned from the fetch and, therefore, the number of
rows in the table. At this point, you don’t need to worry at all about this, but it’s a useful tidbit to
store away in your mind in case you want to pursue delegates and protocols in more depth later.

i O S 6 F O U N D A T I O N S238

Looking at the Master View Controller
The listings in this section show you the structure of the master view controller in the
Master-Detail Application template. This is the complete structure of the file—the code in all
of the methods has been removed. You’ll see how the basic UITableViewController
class code is combined with the code for the UITableViewDataSource and the
UITableViewDelegate. (The annotations can also serve as a review of the syntax
discussed previously.) Remember that those protocols are adopted by UITableView
Controller and are required for the data source and delegate in UITableView. Thus, an
instance of UITableViewController can be the data source or delegate (or both) for a
UITableView.

Looking at the .h File
This is the declaration of MasterViewController in the MasterViewController.h
file:

@interface MasterViewController : UITableViewController

 <NSFetchedResultsControllerDelegate>

As you can see, MasterViewController adopts the NSFetchedResultsController
Delegate protocol, which means that it has promised to implement all required methods
of that protocol (as you will see in Listing 12-5). It is also a subclass of UITableView
Controller, which, as discussed previously in this chapter, has promised to implement the
required methods of the UITableViewDataSource protocol and the UITableView
Delegate protocol. This means that you have three protocols to implement in the .m file
(at least for the required methods).

Looking at the .m File
The beginning of the file, shown in Listing 12-1, includes the standard Xcode-generated com-
ments as well as the necessary #import directives along with a class extension that declares
the configureCell: method. This method is private and won’t be available except to code
in this file. Class extensions are now frequently used in the .m files of classes to keep methods
private.

Class extensions are found in the .m file (before the @implementation section) and always
have this structure:

@interface MasterViewController ()

...

@end

C H A P T E R T W E LV E E X P L O R I N G T H E T A B L E V I E W I N T H E T E M P L A T E 239

After the class extension, you find the implementation of MasterViewController.
Following that, the implementation of the class begins with common methods such as

awakeFromNib

viewDidLoad

didReceiveMemoryWarning

insertNewObject is a common type of method to add new objects to a table view.

Listing 12-1 The beginning of MasterViewController.m
//

// MasterViewController.m

// Party Planner

//

// Created by Wiley Publishing on 11/25/12.

// Copyright (c) 2012 Champlain Arts. All rights reserved.

//

#import “MasterViewController.h”

#import “DetailViewController.h”

#import “Party.h”

@interface MasterViewController ()

- (void)configureCell:(UITableViewCell *)cell

 atIndexPath:(NSIndexPath *)indexPath;

@end

@implementation MasterViewController

- (void)awakeFromNib

{

...

}

- (void)viewDidLoad

{

...

}

continued

i O S 6 F O U N D A T I O N S240

Listing 12-1 continued

- (void)didReceiveMemoryWarning

{

...

}

- (void)insertNewObject:(id)sender

{

...

}

- (void)configureCell:(UITableViewCell *)cell

 atIndexPath:(NSIndexPath *)indexPath

{

...

}

Listing 12-2 shows the code that follows immediately after Listing 12-1. The section of code
is labeled “Table View” in the template, but, in fact, these are methods declared in the
UITableViewDataSource protocol. Note that all of the methods in this protocol are
optional except for the second and third in this listing.

You can see that they must be required. You have to know how many rows there are in at
least the first section. The number of sections is not a required method: the default value is
1. cellForRowAtIndexPath: must be required: without it, nothing could be passed back
to the table view because you wouldn’t know what cell you were looking for. Everything else
is optional.

Listing 12-2 Implementing the UITableViewDataSource methods
#pragma mark - Table View

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView

{

...

}

// the following method is one of two required methods in

// this protocol JF

- (NSInteger)tableView:(UITableView *)tableView

 numberOfRowsInSection:(NSInteger)section

{

C H A P T E R T W E LV E E X P L O R I N G T H E T A B L E V I E W I N T H E T E M P L A T E 241

...

}

// the following method is the other of two required methods

// in this protocol

- (UITableViewCell *)tableView:(UITableView *)tableView

 cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

...

}

- (BOOL)tableView:(UITableView *)tableView

 canEditRowAtIndexPath:(NSIndexPath *)indexPath

{

...

}

- (void)tableView:(UITableView *)tableView

 commitEditingStyle:(UITableViewCellEditingStyle)editingStyle

 forRowAtIndexPath:(NSIndexPath *)indexPath

{

...

}

- (BOOL)tableView:(UITableView *)tableView

 canMoveRowAtIndexPath:(NSIndexPath *)indexPath

{

...

}

Listing 12-3 shows the implementation of a UITableViewDelegate protocol method. All
methods in this protocol are optional, and this is the only one that’s implemented.

Listing 12-3 UITableViewDelegate protocol methods

- (void)tableView:(UITableView *)tableView

 didSelectRowAtIndexPath:(NSIndexPath *)indexPath

{

...

}

Listing 12-4 continues with code that is specific to the Master-Detail Application template. It
is discussed further in Chapter 14, “Editing Table Views.”

i O S 6 F O U N D A T I O N S242

Listing 12-4 Preparing for a segue
- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)

sender

{

...

}

Listing 12-5 shows the code that implements the NSFetchedResultsController
Delegate protocol. This is the protocol that is adopted by MasterViewController.h.
You normally only have to worry about the settings for your fetched results controller.
You made the necessary updates in Chapter 4, “Designing the Party Planner App” in the
“Setting Up the Data Model Section,” but the method is shown here for reference (comments
have been added).

Listing 12-5 Implementing the NSFetchedResultsControllerDelegate
protocol
#pragma mark - Fetched results controller

- (NSFetchedResultsController *)fetchedResultsController

{

 if (_fetchedResultsController != nil) {

 return _fetchedResultsController;

 }

 NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];

 // Edit the entity name as appropriate.

 NSEntityDescription *entity = [NSEntityDescription

 // set your entity to Party - JF

 entityForName:@”Party”

 inManagedObjectContext:self.managedObjectContext];

 [fetchRequest setEntity:entity];

 // Set the batch size to a suitable number.

 [fetchRequest setFetchBatchSize:20];

 // Edit the sort key as appropriate.

 NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc]

 // set your key to partyName - JF

 initWithKey:@”partyName” ascending:NO];

 NSArray *sortDescriptors = @[sortDescriptor];

 [fetchRequest setSortDescriptors:sortDescriptors];

 // Edit the section name key path and cache name if appropriate.

 // nil for section name key path means “no sections”.

 NSFetchedResultsController *aFetchedResultsController =

C H A P T E R T W E LV E E X P L O R I N G T H E T A B L E V I E W I N T H E T E M P L A T E 243

 [[NSFetchedResultsController alloc]

 initWithFetchRequest:fetchRequest

 managedObjectContext:self.managedObjectContext

 sectionNameKeyPath:nil cacheName:@”Master”];

 aFetchedResultsController.delegate = self;

 self.fetchedResultsController = aFetchedResultsController;

 NSError *error = nil;

 if (![self.fetchedResultsController performFetch:&error]) {

 // Replace this implementation with code to handle the error

 // appropriately.

 // abort() causes the application to generate a crash log and

 // terminate. You should not use this function in a shipping

 // application, although it may be useful during development.

 NSLog(@”Unresolved error %@, %@”, error, [error userInfo]);

 abort();

 }

 return _fetchedResultsController;

}

- (void)controllerWillChangeContent:(NSFetchedResultsController *)

 controller

{

...

}

- (void)controller:(NSFetchedResultsController *)controller

 didChangeSection:(id <NSFetchedResultsSectionInfo>)sectionInfo

 atIndex:(NSUInteger)sectionIndex

 forChangeType:(NSFetchedResultsChangeType)type

{

...

}

- (void)controller:(NSFetchedResultsController *)controller

 didChangeObject:(id)anObject

 atIndexPath:(NSIndexPath *)indexPath

 forChangeType:(NSFetchedResultsChangeType)type

 newIndexPath:(NSIndexPath *)newIndexPath

{

...

}

- (void)controllerDidChangeContent:(NSFetchedResultsController *)

 controller

continued

i O S 6 F O U N D A T I O N S244

Listing 12-5 continued

{

...

}

/*

comment deleted

*/

- (void)configureCell:(UITableViewCell *)cell

 atIndexPath:(NSIndexPath *)indexPath

{

...

}

@end

Summary
This chapter shows you how table views work. They’re not just rows and columns—they let
you manage behaviors such as editing and restructuring the table itself. Table views are fre-
quently used in iOS. They’re at the heart of the Master-Detail Application template, which is
the basis for the Party Planner app you’re building. In fact, in the next chapter you’ll see how
to add another table view to the detail view controller.

Settings provides a good overview of table view features. It organizes various settings and
lets you drill down through them to control your iOS device and its behavior. It’s this organi-
zational aspect of tables that will be used in the following chapter.

In looking at the way that table views are implemented, you’ve seen how protocols are used.
Protocols are sets of methods that are declared on their own rather than within a class. Any
class can adopt a protocol, which means that the protocol’s methods must be implemented
by that class. Part of the usefulness of protocols is that, once declared, they can be adopted
by any number of classes. This provides a way around the classic multiple inheritance issue
that is common in object-oriented programming. (As a side note, it’s important to note that
a number of important Cocoa Touch functionalities are implemented as protocols that are
widely adopted both by framework classes as well as by classes you are likely to write, such as
the UITableView delegate and dataSource protocols.)

245

THE STRUCTURE OF the master view controller combines UITableView
Controller as well as the two protocols that it adopts (UITableViewDelegate
and UITableViewDataSource) so that MasterViewController can become the
delegate and the data source of your UITableView. You’ve seen that structure in
Chapter 12, “Exploring the Table View in the Template,” and now it’s time to delve into
a number of the methods that make up this combined object.

A large number of the methods—particularly in the adopted protocols—are self-
explanatory both in their names and their implementations. For example, here’s the
method that controls re-ordering table rows:

- (BOOL)tableView:(UITableView *)tableView

 canMoveRowAtIndexPath:(NSIndexPath *)indexPath

{

 // The table view should not be re-orderable.

 return NO;

}

The comment is part of the Master-Detail Application template, as are comments in
many of the other basic protocol implementations in the template. The only thing that
might be a little perplexing to you is the mechanics of breaking down the NSIndexPath

chapter thirteen

Formatting
Table Cells

i O S 6 F O U N D A T I O N S246

into a row and section, but even that isn’t an issue in many cases (and it’s explained at the
end of this chapter in the “Configuring the Detail Item” section.) This method is called as
needed for each row in the table. Most of the time you want all rows to be re-orderable or for
none of them to be re-orderable. Don’t worry about the value of indexPath—just set the
return value to NO or YES and, most of the time, you’re done.

Other methods let you customize the appearance and content of the cells in the table, and
those methods do require your attention. They are the subjects of this chapter.

Converting the Detail View to
a Table View for iPhone
As you saw in Chapter 12, table views are a good way to organize data entry and display.
Settings, for example, as shown in Figure 13-1, uses table views in a variety of ways to pro-
vide a powerful yet consistent user interface for a variety of types of data.

Figure 13-1 Settings uses table views to organize its interface.

In the Party Planner app as it has been built so far, you use the built-in table view for the master
view controller (shown at the left in the iPad version shown in Figure 13-2). You have changed
the detail view controller (shown at the right in Figure 13-2) to use editable text fields.

On iPhone, a navigation controller combines the functionality of both master and detail
view controllers, as shown in Figure 13-3.

C H A P T E R T H I R T E E N F O R M A T T I N G T A B L E C E L L S 247

Figure 13-2 The detail view controller is implemented using editable text fields.

Figure 13-3 The master view controller on iPhone uses a navigation controller.

i O S 6 F O U N D A T I O N S248

As you explore the workings of table views and their cells in this chapter, you’ll convert the
text field-based interfaces shown in Figures 13-2 and 13-3 to ones based on table views such
as the Settings interface shown in Figure 13-1.

At this point, the interface for a party has three entries:

• Party name

• Location

• Date

Clearing Out the Text Fields on iPhone
Here are the steps to convert the detail view controller to a table view. As you’ll see, it’s a mat-
ter of removing the existing view controller with its text fields and replacing it with a table
view controller with a table view. The methods that now work to configure and save the text
fields need to be emptied of those references in preparation for converting them to use table
views. You can leave the shells of those methods for now—it’ll save some typing later on.

 1. Make certain you save a copy of the project as it is now. You’ll be destroying the cur-
rent detail view controller and you may need to revert to it if something goes wrong.

 2. In Xcode, select the iPhone storyboard. (As in previous chapters, it’s easiest to work
first with the iPhone storyboard and then continue with the iPad storyboard. It’s not
that iPhone storyboards are simpler; it’s just that the screen size is smaller so it’s easier
to see what’s going on in the storyboard as you work.)

 3. In the detail scene of the detail view controller, select the three text fields (party
Name, location, and date). As shown in Figure 13-4, it may be easiest to select
them in the document outline.

 4. Press Delete to delete them. Note that the constraints object is not selectable.
When the text fields have been deleted, it is irrelevant and will automatically
disappear.

 5. In DetailViewController.h, select the three properties for those text fields and
delete them, as shown in Figure 13-5.

C H A P T E R T H I R T E E N F O R M A T T I N G T A B L E C E L L S 249

Figure 13-4 Select the three text fields and delete them.

Figure 13-5 Delete the field properties.

i O S 6 F O U N D A T I O N S250

 6. If you build the app after you delete the properties, you will have a slew of error
messages in DetailViewController.m, as shown in Figure 13-6. These are the
lines of code that reference the now-deleted properties.

Figure 13-6 Without the properties you have a lot of error messages in configureView.

 7. Three of them will be in configureView. configureView is no longer needed, so
you can just delete it. Remember to delete the declaration from the class extension at
the top of the file.

@interface DetailViewController ()

@property (strong, nonatomic) UIPopoverController

*masterPopoverController;

- (void)configureView;

@end

For now, this class extension will become:

@interface DetailViewController ()

@property (strong, nonatomic) UIPopoverController

*masterPopoverController;

@end

 8. There’s another big batch of errors using those properties in setEditing: animated:,
as you see in Figure 13-7.

 9. Delete those lines so that setEditing: animated: looks like Listing 13-1.

C H A P T E R T H I R T E E N F O R M A T T I N G T A B L E C E L L S 251

Figure 13-7 You also have a lot of errors in setEditing: animated:.

Listing 13-1 The altered setEditing: animated:
- (void)setEditing: (BOOL)flag animated: (BOOL)animated

{

 [super setEditing: flag animated:animated];

 if (flag == YES) {

 } else {

 // Save the context.

 NSError *error = nil;

 if (![_managedObjectContext save:&error]) {

 // Replace this implementation with code to handle the

 // error appropriately.

 // abort() causes the application to generate a crash log

 // and terminate. You should not use this function in a

 // shipping application, although it may be useful during

 // development.

 NSLog(@”Unresolved error %@, %@”, error, [error userInfo]);

 abort();

 }

 }

}

i O S 6 F O U N D A T I O N S252

There may still be two references to configureView that are flagged as errors. They will be
removed later.

Adding the Table View on iPhone
Now you add the table view controller that contains the table view. You connect the objects
to new properties as you have done previously. This sequence of steps is repeated over and
over as you add new views to the storyboard, so you’ll soon be quite familiar with it. As you
become more familiar with these steps, you may do them in a slightly different order. As long
as you do all of them, you’ll be okay.

Here are the steps.

 1. Delete the detail view controller from the storyboard. Before doing so, note the segue
shown in Figure 13-8. You can select the segue and show it in the Attributes inspector.

Figure 13-8 Delete the detail view controller.

 2. Add a table view controller to the storyboard. Show the library, and drag a table view
controller into it, as shown in Figure 13-9.

 3. Recreate the segue from the master view controller to the new table view controller.
Control-drag from the prototype cell in the master view controller to the new table
view controller, as shown in Figure 13-10.

C H A P T E R T H I R T E E N F O R M A T T I N G T A B L E C E L L S 253

Figure 13-9 Add a table view controller.

Figure 13-10 Recreate the segue.

i O S 6 F O U N D A T I O N S254

 4. As soon as you release the mouse button you’ll be able to select the type of segue you
want. It should be Push just as it was in Figure 13-8 and Step 1. See Figure 13-11.
(Choose whether you want the segue to occur when the row is selected or only when
the accessory is tapped.)

 5. With the segue still selected, show the Attributes inspector and set its name to show
Detail just as it was in Step 1 and Figure 13-8. (This is so that the existing code will
still work.) Figure 13-12 shows the completed segue.

 6. In DetailViewController.h, change the declaration so that DetailView
Controller is a subclass of UITableViewController instead of UIView
Controller. That is, from this:

@interface DetailViewController : UIViewController

 <UISplitViewControllerDelegate>

 to this:

@interface DetailViewController : UITableViewController

 <UISplitViewControllerDelegate>

 7. With the new table view controller selected in the storyboard, change its class in the
Identity inspector to DetailViewController, as you see in Figure 13-13. (Note that
this is a place where sequence matters—Step 6 must have been done before this step.)

Figure 13-11 Make the segue a Push segue.

C H A P T E R T H I R T E E N F O R M A T T I N G T A B L E C E L L S 255

Figure 13-12 Add an identifier to the segue.

Figure 13-13 Change the class in the storyboard.

i O S 6 F O U N D A T I O N S256

 8. In the Attributes inspector, change the title of the new table view controller to Detail,
as shown in Figure 13-14. (Note that in the document outline, what you type will not
be reflected until after you press Return or otherwise leave the field. Thus, Figure
13-14 shows both halves of the operation—setting the title and the automatic updat-
ing of the document outline.)

Figure 13-14 Set the detail view controller’s title.

 9. In the document outline, Control-click on the table view in the detail view controller to
check that its outlets (dataSource and delegate) are both connected to the new table
view controller. This new table view controller is called Detail View Controller - Detail if
you have followed these steps. Figure 13-15 shows what the table view outlets should be.
(UITableView declares the delegate and dataSource properties, so you must con-
nect those properties to an object that adopts the UITableViewDelegate and
UITableViewDataSource protocols. UITableViewController does so, so your
subclass of UITableViewController—DetailViewController—also adopts
them and implements them in the template and, later, in the code that you will write.)

C H A P T E R T H I R T E E N F O R M A T T I N G T A B L E C E L L S 257

Figure 13-15 Check the table view outlets.

Converting the Detail View to
a Table View on iPad
Converting to a table view on iPad is somewhat different than it is on iPhone. The chief reason
for this difference is that on iPad, the template uses a split view controller so that both master
and detail views can be seen at the same time. If you have not done so already, follow the steps
in “Clearing Out the Text Fields on iPhone” because the steps involving code apply also to
iPad. (If you have worked through the previous section, you’re ready to continue here.)

Adding the Table View on iPad
This process is similar to the process of adding a table view on iPhone, but, as noted, there
are differences because you’re relying on a split view controller rather than on a navigation
interface. Even if your focus is primarily on iPhone or iPad, it is worthwhile to work through
both sets of steps because they will help you to understand the differences between the two
environments. Furthermore, although the iPhone interface is totally reliant on the naviga-
tion structure (there is no split view controller on iPhone), the navigation interface is used
heavily on both iPhone and iPad.

i O S 6 F O U N D A T I O N S258

Here are the steps to add the table view to the iPad storyboard.

 1. Save the project before you make these changes.

 2. Open the iPad storyboard. As usual, you may need to adjust the workspace window. In
Figure 13-16, both the navigation and status areas at left and right of the window are
hidden so you can see the structure of the split view storyboard.

 From the split view’s master view controller (A in Figure 13-16), you have a relation-
ship to a navigation controller (B) and then from there, to the master view controller
(C). (This master view controller is separate from the master view controller that is
part of the split view controller.) From the split view’s detail view controller (D), you
have a relationship to a navigation controller (E) and then from there, to the detail
view controller itself (F).

 In the detail view controller, you may have text fields that you have added as you did in
the iPhone storyboard. You can see these in Figure 13-16.

 3. Select the detail view controller, as shown in Figure 13-17. Remember to select the
detail view controller and not its navigation controller (to its left); also make sure it’s
the detail view controller you have selected and not the view within it.

Figure 13-16 Open the iPad storyboard.

C H A P T E R T H I R T E E N F O R M A T T I N G T A B L E C E L L S 259

Figure 13-17 Select the detail view controller.

 4. Delete the detail view controller. (Once it’s selected, just use the Delete key on
the keyboard. You can also use Edit➜Delete. Alternatively, you can show the docu-
ment outline in the storyboard editor, select it there, and then delete it in either of
those ways.)

 5. Add a table view controller to the storyboard. Show the library, and drag a table view
controller into it, as shown in Figure 13-18.

 6. Recreate the relationship segue from the navigation controller to the new table view
controller. Control-drag from the navigator for the detail view controller (bottom left)
to the new table view controller, as shown in Figure 13-19. (Note that you have a pro-
totype cell in the detail view controller, as shown in Figure 13-19. You will adjust its
contents in the next steps, so don’t worry if it doesn’t show Detail yet.)

 If you are comparing this process with the iPhone sequence, you’ll see that the rela-
tionship segue (Root View Controller) you create in this step is comparable to the
segue you created in Step 4 of “Adding the Table View on iPhone.” It’s comparable but
not identical because instead of a Push for a selection, the segue is a Relationship—the
views don’t move in a split view controller.

i O S 6 F O U N D A T I O N S260

Figure 13-18 Add a table view controller.

Figure 13-19 Recreate the relationship segue.

C H A P T E R T H I R T E E N F O R M A T T I N G T A B L E C E L L S 261

 7. With the new table view controller selected in the storyboard, change its class in the
Identity inspector to DetailViewController, as you see in Figure 13-20.

 Note that Step 6 of “Adding the Table View on iPhone” isn’t needed here. You have to
adjust each of the storyboards (iPhone and iPad), but the code change from Step 6
applies to both of them.

Figure 13-20 Change the class in the storyboard.

 8. In the Attributes inspector, change the title of the new table view controller to Detail,
as shown in Figure 13-21.

You now have a table view controller containing a table view as the detail view controller for
both iPad and iPhone.

i O S 6 F O U N D A T I O N S262

Figure 13-21 Set the new detail view controller’s title.

Preparing the Prototype Cell
in the Storyboard
As a reminder, Figure 13-22 shows the master view controller in action on iPhone (the mas-
ter view controller is on the left; the detail view controller is on the right).

Prototype cells provide basic formatting. You can modify the formatting as you go along, but
most of the time, you use and reuse the prototype cell over and over in the table. This pro-
vides some performance efficiencies, and it also can make the look and behavior of the table
more consistent. In this example, a single prototype cell will be used for the detail view table.
In fact, that is the same structure that you already have in the master view controller. Open
the iPhone storyboard and locate the master view controller. Select the prototype cell and
show the Attributes inspector, as you see in Figure 13-23.

C H A P T E R T H I R T E E N F O R M A T T I N G T A B L E C E L L S 263

Figure 13-22 Master and detail view controllers in the template.

This is the Basic style; there is a disclosure indicator as an accessory view. Perhaps most
important, the prototype has an identifier—in this case Cell. You use that identifier to
access this cell from your code in MasterViewController.m.

If you select the prototype cell in the new detail view controller, you’ll see that it is a Custom
style, with no accessory view. (You can see this in Figure 13-24.)

i O S 6 F O U N D A T I O N S264

Figure 13-23 Examine the master view controller prototype cell.

Figure 13-24 The default style is Custom.

C H A P T E R T H I R T E E N F O R M A T T I N G T A B L E C E L L S 265

You can experiment with different styles. For now, choose Left Detail and no accessory view,
as shown in Figure 13-25. Also, provide an identifier such as Detail Cell.

Figure 13-25 Set the style to Left Detail and provide an identifier.

Apply the same settings to the prototype cell in the detail view controller for iPad.

Configuring and Returning a Single Table Cell
Every cell in a table view is set individually using the tableView: cellForRowAtIndex
Path: method of the UITableViewDataSource protocol. That method returns a
UITableViewCell for the specified index path. It locates the cell using the cell identifier
that you set in the storyboard. It frequently also fills in data to the cell it returns, but all
that’s required is that it return a cell.

In your storyboard, you create one or more prototype cells for your table view. Those proto-
types provide the basic formatting and styling of the cell. (You can have several prototype cells.)

This section shows you how to combine a prototype cell with data and return them all as a
cell to be shown in the table. The sequence of events is just that:

i O S 6 F O U N D A T I O N S266

 1. Create a prototype cell in the storyboard,

 2. On demand, combine a prototype cell with the necessary data.

 3. Return the cell and its data for display in the table view.

In fact, when you look at the code that you wrote to work with the text fields in the previous
version of Party Planner, you’ll see that the second and third steps in this sequence are
already there. Yes, you have to rewrite them to use the table view cells instead of the text
fields, but you have a good basis on which to build. In the previous section, you deleted the
text field code, so now it’s a matter of replacing it.

Setting the Detail Item
In the Master-Detail Application template, there is a property in DetailViewController.m
that contains the selected object:

@property (strong, nonatomic) id detailItem;

Because it is of type id, it can be an instance of any class, so this code can be used as-is in any
apps that you build based on this template.

It is useful to examine exactly how this property in the detail view controller is set. That
examination shows you a number of basic features of Objective-C and the Cocoa Touch
frameworks. Don’t worry, this is not long and complex topic. Rather, this is a set of code
snippets and design patterns that will help you in many cases throughout your development
of iOS apps.

The issues that you follow in tracking down how the detail item is set are:

• Property accessors—Whether you write the accessors or allow Xcode to create them
for you, they manage getting and setting property values.

• Segues—You’ll learn the difference between relationship segues and storyboard segues.

Using Accessors for Declared Properties
A declared property such as detailItem actually encompasses a number of components.
Starting with Xcode 4.4, declared properties are synthesized automatically. Previously, this
was done with a @synthesize compiler directive in the .m file. Synthesizing a property
manages two aspects of the property:

• Backing variable—Every property is backed by an instance variable (or ivar). With
automatic synthesis of declared properties, the backing variable is declared automati-
cally, and it is named by prefixing the property name with an underscore. Thus, the
backing variable for the detailItem property by default is _detailItem. If the
property is declared in the .h file, objects that import the .h file can access it.

C H A P T E R T H I R T E E N F O R M A T T I N G T A B L E C E L L S 267

 The backing variable is visible within the .m file when you use the default naming. That
means that from the .m file—and not from instances of the class that just use the
information in the .h file—you can get to the property by using _myProperty. In all
cases you can also get to the property by using dot syntax (see the following section).

• Accessors—When you use the dot notation (myInstance.myProperty), Xcode
generates two accessors that, by default, retrieve or set the value of the backing vari-
able. (Depending on their function, they are called getters or setters.)

 The accessors are invoked with dot notation. You can write your own accessors that
can do more than simply access the value of the backing variable.

 You can also provide customized names for the accessors. For example, for a property
called myProperty with type id, the default getter is:

- (id)myProperty;

 The default setter is:

- (void)setMyProperty:(id)newProperty

 Note that in the default getter and setter, the lowercase property name is adjusted to
uppercase within the setter method name.

 If you write your own accessors that do more than simply access the value of the back-
ing store, the consequences of using dot notation compared to using the backing vari-
able (_myProperty) may be different. This is explained in the following section.

In the Master-Detail Application template, the detailItem property in DetailView
Controller.h is set with this code in DetailViewController.m:

- (void)setDetailItem:(id)newDetailItem

{

 if (_detailItem != newDetailItem) {

 _detailItem = newDetailItem;

 // Update the view.

 [self configureView];

 }

 if (self.masterPopoverController != nil) {

 [self.masterPopoverController dismissPopoverAnimated:YES];

 }

}

You’ll see that this method adheres to the default syntax for a declared property setter, and
therefore it is the default setter for the detailItem property. If you set a breakpoint at the

i O S 6 F O U N D A T I O N S268

beginning of this method, you’ll see that this method is called when you assign a value to the
property using dot notation; you don’t have to call this method directly. Furthermore, this
method is a good example of a setter that does more than just access the backing variable—it
configures a view and also manages a popover. The view will be discussed more in the follow-
ing section.

After the detail item is set, configureView is called to update the interface. This code is
specific to the template. Now that you’re using a table view for the detail view, you should
use a more general method to update the view. Instead of the template’s configureView,
change that line to

[self.tableView reloadData];

Make the same change to viewDidLoad.

This is a framework method for UITableViewController. This code asks the table view to
reload its data (hence the name). With this one change to setDetailItem:, you are ready
to proceed.

Segues: Exploring the Difference Between Relationship
and Action/Manual Segues
In iOS storyboards, you create a segue by Control-dragging from one view controller to
another. As storyboards and segues have evolved over the last few versions of Xcode, two
varieties of segues have come into focus. Both types were shown previously in Figure 13-19.

• Action/manual—An action or manual segue (Apple documentation uses both terms)
is a segue typically initiated by a user action. Sometimes, it is initiated indirectly by a
user action, but, at the bottom, you’ll usually find a user action. Action/manual segues
describe something that happens.

• Relationship/containment—Other segues are drawn in the same way, but they rep-
resent a state—something that is rather than something that happens.

This matters because the navigation interface of the Master-Detail Application template is
based on navigation—user actions. The split view controller version of the app for iPad is
based on relationships. Both the master view controller and detail view controller are pres-
ent at the same time. They may not be visible together, but there is no moment of transition
from master view controller to detail view controller as there is on the iPhone/navigation
interface version.

This matters if you are building an app on this template or if you are building your own app
that must use both types of interfaces (and, as noted, this means almost any universal app
that runs on both iPhone and iPad). Because of this difference in functionality, there is dif-
ferent code for setting the detail item in the detail view controller. The code is in the
MasterViewController.m, because that is where the detail view controller is set up.

C H A P T E R T H I R T E E N F O R M A T T I N G T A B L E C E L L S 269

For a navigation interface (typically the iPhone interface), you set the detail item in
prepareForSegue:sender:. Here is the default code:

- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)

sender

{

 if ([[segue identifier] isEqualToString:@”showDetail”]) {

 NSIndexPath *indexPath =

 [self.tableView indexPathForSelectedRow];

 NSManagedObject *object = [

 [self fetchedResultsController] objectAtIndexPath:indexPath];

 [[segue destinationViewController] setDetailItem: object];

 }

}

The detail view controller’s detail item is set in the last line:

[[segue destinationViewController] setDetailItem:object];

In the case of the split view controller on iPad, prepareForSegue:sender: is not called
because, as you saw in Figure 13-19, the relationship segue makes the detail view controller
the root view controller instead of launching an action segue. Thus, you override tableView
:didSelectRowAtIndexPath: in MasterViewController.m (but remember that
this is a dataSource protocol method that is implemented by the master view controller).

- (void)tableView:(UITableView *)tableView

 didSelectRowAtIndexPath:(NSIndexPath *)indexPath

{

 if ([[UIDevice currentDevice] userInterfaceIdiom] ==

 UIUserInterfaceIdiomPad) {

 NSManagedObject *object =

 [[self fetchedResultsController]

 objectAtIndexPath:indexPath];

 self.detailViewController.detailItem = object;

 }

}

The detail view controller’s detail item is set in the last line of this method. In both cases, this
code is in the template.

Using a Custom Subclass of NSManagedObject
for the Detail Item
You can make your life easier by changing detailItem from an id to an instance of Party.
This will mean that you will not have to coerce the item each time you access it.

i O S 6 F O U N D A T I O N S270

Here are the steps to change detailItem from an id to an instance of Party:

 1. Add a forward declaration for Party at the top of DetailViewController.h:

@class Party;

 2. Import the .h file at the top of DetailViewController.m:

#import “Party.h”

 3. Change the property declaration in DetailViewController.h from id to Party*.

 4. In the two assignment lines in MasterViewController.m called out in the previous
snippets, coerce object to (Party *) object, as in

self.detailViewController.detailItem = (Party *)object;

With these two methods in place, you are ready to proceed.

Even if you are implementing only one of the universal versions, it can be easier to make both
of these changes now. That way, if you come back to add iPhone to iPad or vice versa, you
won’t have to remember to make this change. And, in the meantime, it does no harm.

Coercing Objects
In object-oriented programming, you can subclass objects. For example, most objects in
Cocoa Touch are subclasses of NSObject. NSManagedObject is one such subclass. As
you saw in Chapter 8, “Building on the Data Model,” you can create a subclass of
NSManagedObject for the entities in your data model. Party, for example, is a subclass
of NSManagedObject; it is also a subclass of NSObject. When you know the class hierar-
chy of an object, you can coerce it to any of the classes or subclasses that it is. For example,
given an object called myObject that happens to be declared as an NSManagedObject,
you can coerce it to be a Party object (provided that you know it is). Here is the code:

(Party*)myObject

Coercing objects can make code more readable. Other benefits may occur at runtime.

C H A P T E R T H I R T E E N F O R M A T T I N G T A B L E C E L L S 271

Configuring the Detail Item
Now that the detail item is set, you can combine the data with the interface. This is easier
than using the code to set individual fields. In Chapter 12, you saw how to set each text field
in configureView:

- (void)configureView

{

 // Update the user interface for the detail item.

 if (self.detailItem) {

 _partyNameField.text = ((Party*)_detailItem).partyName;

 _locationField.text = ((Party*)_detailItem).location;

 _dateField.text = [((Party*)_detailItem).date description];

 }

}

Removing configureView
Instead of addressing the view and each of its fields, a utility method can let you set each
row. configureView is no longer needed, so remove its declaration from the class exten-
sion at the top of DetailViewController.m and remove its definition from the body of
that file. (You may already have done this as described in the section “Clearing Out the Text
Fields on iPhone.”)

Implementing the Data Source Protocol
for the Detail View Controller
There are two required methods in UITableViewDataSource and they are tableView:
InSection: and tableView:cellForRowAtIndexPath:

You may want to add these methods to a new section prefaced with

#pragma mark - Table View Data Source Protocol

How you organize your source code files is up to you. In the sample code that you can
download, the #pragma directives move around from chapter to chapter. This reflects what
seems to be a real-life pattern. Instead of constructing a massively structured file from the
start, the file grows as code is added. The #pragma directives are added and the code is
reorganized as it makes sense to do so.

i O S 6 F O U N D A T I O N S272

• tableView: numberOfRowsInSection:—In the master view controller, the num-
ber of rows in the main section of the table view depends on the number of items in
the fetched results controller, as is the case in the master view controller on the left in
Figure 13-2. In cases when you are using the table view for formatting rather than for
accommodating a variable number of rows, you can hard-code the number of rows (see
Figure 13-3).

 Add tableView: numberOfRowsInSection: to DetailViewController.m.
Compare to Figure 13-3 to see why the return value is 3:

- (NSInteger)tableView:(UITableView *)tableView

 numberOfRowsInSection:(NSInteger)section

{

 return 3;

}

• tableView:cellForRowAtIndexPath:—You have to implement the UITableView
DataSource protocol method tableView:cellForRowAtIndexPath: in order
to return each cell on demand. A utility method can work with it. Thus, as shown
in the following section, if you implement a method called configureCell:at
IndexPath:, you can call it from tableView:cellForRowAtIndexPath:.
Add tableView:cellForRowAtIndexPath: with the prototype cell identifier
added, along with the call to configureCell: atIndexPath: to DetailView
Controller.m.

- (UITableViewCell *)tableView:(UITableView *)tableView

 cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

 UITableViewCell *cell = [tableView

 dequeueReusableCellWithIdentifier:@”Detail Cell”

 forIndexPath:indexPath];

 [self configureCell:cell atIndexPath:indexPath];

 return cell;

}

Implementing the Table View Delegate Protocol
for the Detail View Controller
All of the options in this protocol are optional, so you don’t need to worry about any of them
for now. (You will implement some of them in the next two chapters.)

Consider how you implement configureCell: atIndexPath:. This is not a data source
protocol method, so you may want to put it in a pragma with your other methods. It should
be declared in the class extension at the top of DetailViewController.m so that the
class extension now looks like this:

C H A P T E R T H I R T E E N F O R M A T T I N G T A B L E C E L L S 273

@interface DetailViewController ()

@property (strong, nonatomic) UIPopoverController *

 masterPopoverController;

- (void)configureCell:(UITableViewCell *)cell

 atIndexPath:(NSIndexPath *)indexPath;

@end

Add the definition of configureCell: atIndexPath: to DetailViewController.m.
It may look a bit daunting at first, but it’s really just a sequence of nearly identical case
statements, as you will see.

- (void)configureCell:(UITableViewCell *)cell

 atIndexPath:(NSIndexPath *)indexPath

{

 switch ([indexPath row]) {

 case 0:

 cell.detailTextLabel.text =

 [self.detailItem.partyName description];

 cell.textLabel.text = @”Party Name”;

 break;

 case 1:

 cell.textLabel.text = @”Location”;

 cell.detailTextLabel.text =

 [self.detailItem.location description];

 break;

 case 2:

 cell.textLabel.text = @”Date”;

 cell.detailTextLabel.text = @”value”;

 break;

 default:

 break;

 }

}

The heart of the switch statement is found in the NSObject UIKit Additions Reference.
There you will find three methods to pull out the NSInteger components of the
NSIndexPath objects:

@property(nonatomic, readonly) NSInteger row

@property(nonatomic, readonly) NSInteger section

@property (nonatomic, readonly) NSInteger item;

i O S 6 F O U N D A T I O N S274

Depending on the style of your prototype table cell, you set the text label or detail text label
to the label and the other one to the value. Note that for the date—which is not yet set—the
string constant value is displayed. For the other data elements, you use the properties of the
Party class you created rather than the key-value method for retrieving data. Furthermore,
the description method is used to return a text string.

Summary
This chapter shows you how to format table view cells rather than have to create and set text
fields individually. The result is neater and easier for users to manage; in addition, it can be
easier for you to write.

You may think that formatting table cells is a very specialized topic, but, in fact, it’s one of
the most frequent tasks that you’ll perform. Whether you are displaying data or letting users
manage settings and preferences, being able to quickly convert data from a persistent data
store to a clear interface is a very common task.

As the Party Planner app stands at this point, you can enter data and display it. Thanks to
Core Data, your data is stored when you create a new party. However, there is no way to save
any changes that you make. That will be resolved in the next chapter.

275

ONE OF THE most attractive features of table views is that there is a great deal of
built-in functionality for editing them. Editing a table view means editing the view’s
structure, which can consist of adding or removing rows as well as rearranging them.
Editing the content of a table view is not very much different from editing the text
fields (and other interface elements) in a UIView. (You find out more about editing
table view content in Chapter 17, “Back to the Storyboard: Enhancing the Interface.”)

The default behavior of the master view controller in the Master-Detail Application
template (and your Party Planner app) enables you to add and delete rows in the table
view. However, you can’t rearrange the rows in that table view. By now, you have prob-
ably noticed that in the illustrations of Party Planner at this point, there are two par-
ties: Party 2 and Party 1. They are displayed in that order, and for many people, that
doesn’t make sense. Some automated sorting (alphabetical, by date, or the like) would
be preferable to a sequence that appears out of order.

Depending on the data that you are displaying in a table view, you may want to sort
the rows in some understandable way, or you may want to allow users to rearrange
them. Your choice is dependent on what the data is and how much of it there is. If you

chapter fourteen

Editing Table
Views

i O S 6 F O U N D A T I O N S276

are planning to display a list of 100 items, some form of automated sorting makes sense. For
a smaller list, manual sorting and arrangement may make more sense. In the case of parties,
for example, you may want the ones that you’re working on to be at the top of the list. That
might include a party for today as well as a big party that you’re planning for next summer.
That type of order is something that only a user can do well.

Regardless of how you feel about sorting the list of parties, you should know how to sort the
rows in a table view. It’s something that frequently comes up, and it’s a fundamental skill for
the iOS app developer. Once you know the technique, you can help the user rearrange the
parties in the master view controller. And, just to emphasize the point of how common this
is, when you add table views to display lists of guests and menu items (coming up in Chapter
17), those tables, too, can be rearranged by users.

There are two aspects to rearranging table rows:

• You need to store the row order so that it persists over time.

• You need to implement the reordering interface features. (Mostly, this means turning
on options in the data source protocol.)

When you’ve rearranged the rows as you like them, you then need to save the new sequence.

Modifying the Data Model to
Store Row Sequence
There are three parts to this process:

• Understanding the existing row ordering

• Adding a displayOrder attribute to the data

• Refreshing the data store

Looking at the Fetched Results Controller Ordering
In the master view controller table view—as in many similar table views—the order of the
rows is determined by the sort descriptor in the fetched results controller. This can be one of
the key functions of the fetched results controller. For example, in Listing 14-1 you can see
the code for the fetched results controller in the master view controller as it should look
now. (It returns a fetched results controller if it exists, and, if it doesn’t, it creates it.) Note
that it creates and sets a sort descriptor.

C H A P T E R F O U R T E E N E D I T I N G T A B L E V I E W S 277

There are three primary components of the Core Data stack. The data model describes your
data; the persistent store coordinator manages its storage in one or more persistent stores
(such as an SQLite store); and a managed object context provides temporary storage for
managed objects retrieved with the persistent store coordinator using the data model. A fetch
request interacts with the Core Data stack to retrieve data, which is often then managed by
a fetched results controller. Fetched results controllers typically are used to manage a master
view’s list of objects.

The comments in the template guide you to the main parts of the code.

• Set the entity name. In this case, it’s Party. In the Master-Detail Application tem-
plate, it started out as Event.

• Setting the batch size can help you optimize performance. For most beginning iOS
apps, just leave it as it is.

• Edit the sort key. At this point, it is now partyName, and the sort order is
ASCENDING:NO. Look at your data model to find the attribute on which you want
to sort.

• The section name, key path, and cache name referenced in the fourth comment are not
needed for most basic apps so you can ignore them.

Listing 14-1 shows the fetchedResultsController code.

Listing 14-1 fetchedResultsController
- (NSFetchedResultsController *)fetchedResultsController

{

 if (_fetchedResultsController != nil) {

 return _fetchedResultsController;

 }

 NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];

 // Edit the entity name as appropriate.

 NSEntityDescription *entity =

 [NSEntityDescription entityForName:@”Party”

 inManagedObjectContext:self.managedObjectContext];

 [fetchRequest setEntity:entity];

 // Set the batch size to a suitable number.

 [fetchRequest setFetchBatchSize:20];

 // Edit the sort key as appropriate.

continued

i O S 6 F O U N D A T I O N S278

Listing 14-1 continued
 NSSortDescriptor *sortDescriptor =

 [[NSSortDescriptor alloc]

 initWithKey:@”partyName”

 ascending:NO];

 NSArray *sortDescriptors = @[sortDescriptor];

 [fetchRequest setSortDescriptors:sortDescriptors];

 // Edit the section name key path and cache name if appropriate.

 // nil for section name key path means “no sections”.

 NSFetchedResultsController *aFetchedResultsController =

 [[NSFetchedResultsController alloc]

 initWithFetchRequest:fetchRequest

 managedObjectContext:self.managedObjectContext

 sectionNameKeyPath:nil cacheName:@”Master”];

 aFetchedResultsController.delegate = self;

 self.fetchedResultsController = aFetchedResultsController;

 NSError *error = nil;

 if (![self.fetchedResultsController performFetch:&error]) {

 // Replace this implementation with code to handle the

 // error appropriately.

 // abort() causes the application to generate a crash log

 // and terminate. You should not use this function in a

 // shipping application, although it may be useful during

 // development.

 NSLog(@”Unresolved error %@, %@”, error, [error userInfo]);

 abort();

 }

 return _fetchedResultsController;

}

Adding a displayOrder Attribute
If you want to make it possible for the users to rearrange the rows, you’ll need to add a display
Order attribute to the data store. Users will reorder the row in the master view controller’s
table view by dragging them; the displayOrder attribute will be calculated and stored.

Here are the steps to add the attribute. Before beginning, make certain that you have a
backup copy of the project. Because this involves changing the data model and some other

C H A P T E R F O U R T E E N E D I T I N G T A B L E V I E W S 279

rather major (but simple) changes, you should have a copy that you can fall back to if neces-
sary. Then proceed with these steps. (For more details, review Chapter 8, “Building on the
Data Model,” where this process is explained more fully.)

 1. Select the data model as shown in Figure 14-1.

Figure 14-1 Open the data model.

 2. Select the Party entity.

 3. Click + at the bottom of the Attributes table to add a new attribute.

 4. As you see in Figure 14-1, change its name to displayOrder and its type to
Integer 16.

 5. Create a new subclass of NSManagedObject for Party. You already have one, but
this new one will overwrite it and add the displayOrder attribute. Choose Editor➜

Create New NSManagedObject Subclass, as shown in Figure 14-2.

 6. If you have selected an attribute for the entity, you are asked which entities to create,
as shown in Figure 14-3. In this case, you can either select Party or all of them. If you
have made changes to any of the subclasses created previously, don’t recreate them
unless it’s absolutely necessary: your changes will be lost. However, in a case such as
this where you have no changes to the previously generated subclasses, your choice
doesn’t matter. Then click Next.

i O S 6 F O U N D A T I O N S280

Figure 14-2 Recreate the Party subclass of NSManagedObject.

Figure 14-3 Select the classes to generate.

C H A P T E R F O U R T E E N E D I T I N G T A B L E V I E W S 281

 7. As shown in Figure 14-4, select the group to add the new subclass to. If you have fol-
lowed the steps in this book, Data Model will be your choice.

Figure 14-4 Select the group for your new subclass.

 8. You’ll be warned that files will be overwritten, as shown in Figure 14-5. Just check to
make certain that they are the files you expect.

Figure 14-5 Confirm the files to be overwritten.

 9. As shown in Figure 14-6, you can see that the Party class now contains the
displayOrder property. (Remember, data model attributes are class properties.)

i O S 6 F O U N D A T I O N S282

Figure 14-6 The Party class now includes displayOrder.

Refreshing the Data Store
Follow the steps in the sidebar entitled “Creating and Removing the Database” in Chapter 8
to remove the existing data store. (All of your test data will be removed at this stage.) You
should be able to run the app without noticing any difference in its behavior from the way it
was before you added the displayOrder property.

Enabling the Table View Reordering Features
The table view in the master view controller has access to the reordering features that are
built into UITableView (or, more specifically, built into its UITableViewDataSource
protocol). To enable reordering, you need to take two steps. These changes are in
MasterViewController.m. You may want to put them in a separate #pragma section
such as

#pragma mark - Table View Data Source

Here are the changes:

 1. In tableView:canMoveRowAtIndexPath:, change the result from NO to YES so
that it looks like this.

C H A P T E R F O U R T E E N E D I T I N G T A B L E V I E W S 283

- (BOOL)tableView:(UITableView *)tableView

 canMoveRowAtIndexPath:(NSIndexPath *)indexPath

{

 // The table view should not be re-orderable.

 return YES;

}

 2. Implement an empty tableView:moveRowAtIndexPath:toIndexPath:

method (it is part of the UITableViewDataSource protocol). The template doesn’t
include this method at all, and for the interface to be enabled, you need the method. It
doesn’t have to do anything, as is the case with this code.

- (void)tableView:(UITableView *)tableView

 moveRowAtIndexPath:(NSIndexPath *)sourceIndexPath

 toIndexPath:(NSIndexPath *)destinationIndexPath {

 }

At this point, you can build and run the app. You should see the re-ordering buttons in each
row, as shown in Figure 14-7. You should be able to reorder the rows and see them move
appropriately in the master view controller. But there’s more to do.

All that’s left is to implement tableView:moveRowAtIndexPath:toIndexPath: and
to save the newly calculated displayOrder data.

If you have followed the steps in this chapter and recreated the database to include the
displayOrder property, you will notice that the names of the previous Party entities have
been removed and replaced with the default timestamps. Chapter 17 shows you how to
change this code.

Moving the Rows and Saving the New Order
There are two tasks to be accomplished here:

• You need to rearrange the elements in the table view so that they are in the new order.

• You need to calculate and store the new displayOrder attribute.

Rearranging the Elements in the Table View
A table view’s data source (that is, an object adopting the UITableViewDataSource proto-
col that is set to the table view’s dataSource property) provides the data for the table view.

i O S 6 F O U N D A T I O N S284

How that is done, is up to the data source. (This is typical behavior for an object that adopts
a protocol: the protocol specifies what happens but not how it happens.) Frequently, the ele-
ments of the table view are stored in an array, but, particularly in large table views, the data
is retrieved only on an as-needed basis.

Because the elements of a table view are stored in an array, they normally can’t be
rearranged. That is because NSArray is an immutable class: once you have created an
instance, you cannot modify it. As is the case with many of the Cocoa Touch collection
classes, there is a companion class that is mutable—NSMutableArray. NSMutableArray
is a subclass of NSArray: it adds methods to mutate an NSArray.

You may think that if you are going to need to modify an array that it must be an instance of
NSMutableArray. Strictly speaking that is true, but there is a commonly used design pat-
tern that handles this situation very elegantly and efficiently. If your modifications to an
array are going to be constant and will happen throughout your app, then a mutable array is
quite likely the best choice. However, if your changes are confined to a specific area, such as
reordering the master view controller’s data, the following strategy is often a good choice.

An immutable collection class (such as NSArray) has many opportunities for optimization
in the compiler and at runtime. If the section of your app where you need mutability can be
identified, you can create a mutable copy of the array for use there. Modify the mutable array
as needed, and then, when you have finished, transfer the mutable array to an immutable
NSArray.

At first blush, this may seem like extra work, and it is. However, experience and benchmark
tests have convinced many developers that the efficiencies and optimizations achieved by
using NSArray objects where possible outweigh the added cost of creating a temporary
NSMutableArray.

This is all made possible by the following class method of NSArray:

+ (id)arrayWithArray:(NSArray *)anArray

Using Fetched Results Controllers as Data Sources
When you are using Core Data with a table view, a fetched results controller is frequently
the data source. A fetched results controller has a number of features that make it well-
suited to support a master view controller and its list of detail items. Methods of the
NSFetchedResultsController let you easily access the results of the fetch. You can
access the results using the fetchedObjects property, which can help you build a master
view controller’s list very easily. A fetched results controller contains not only the results of
the fetch that is part of the controller, but it also contains a property for the managed object
context. Thus, a fetched results controller can give you the elements of the Core Data stack
that you need to display and save the results of the fetch.

C H A P T E R F O U R T E E N E D I T I N G T A B L E V I E W S 285

There are other methods that let you create an array from a list of objects or from a file, but
arrayWithArray: is the simplest way to switch from a mutable array to an immutable
array and vice versa. And here is where a fetched results controller comes into the picture.
NSFetchedResultsController lets you access the results of the fetch with the following
property:

@property (nonatomic, readonly) NSArray *fetchedObjects

Because this is an immutable array, it isn’t updated as you add, delete, or modify data. Thus,
if you’re going to be modifying your set of fetched objects, you’ll need to copy fetched
Objects to a mutable array.

An immutable array can (and often does) contain objects. Those objects can be modified while
they are in the immutable array. It is the array itself that cannot be modified. Changing a
property value in one of the array elements is not a change to the array itself as the insertion
or deletion of an element would be.

The main steps in rearranging the elements of the table view now can fall into place.

 1. Declare an NSArray to contain the parties in MasterViewController.m. This can
live easily in the class extension at the top of MasterViewController.m. Add the
orderedParties property to that section as shown here.

@interface MasterViewController ()

@property (strong, nonatomic) NSArray *orderedParties;

- (void)configureCell:(UITableViewCell *)cell

 atIndexPath:(NSIndexPath *)indexPath;

@end

 2. Populate orderedParties. You add this method to MasterViewController.m.

- (void)loadOrderedPartiesArrayFromFetchedResultsController {

 NSSortDescriptor *sortDescriptor =

 [[NSSortDescriptor alloc]

 initWithKey:@”displayOrder”

 ascending:YES];

 NSArray *sortDescriptors = [[NSArray alloc]

 initWithObjects:&sortDescriptor

 count:1];

i O S 6 F O U N D A T I O N S286

 NSMutableArray *myOrderedPartiesArray = [[NSMutableArray

 alloc]

 initWithArray:[self.fetchedResultsController

fetchedObjects]];

 [myOrderedPartiesArray sortUsingDescriptors:sortDescriptors];

 _orderedParties = myOrderedPartiesArray;

}

 You can reuse this code in many places. It creates a mutable array from your fetched
results controller and then sorts the array. The only line you need to customize is

initWithKey:@”displayOrder”

 3. Use loadOrderedPartiesArrayFromFetchedResultsController. A good
place to do that is in viewDidLoad, as shown here.

- (void)viewDidLoad

{

 [super viewDidLoad];

 // Do any additional setup after loading the view,

 // typically from a nib.

 [self loadOrderedPartiesArrayFromFetchedResultsController];

 self.navigationItem.leftBarButtonItem = self.editButtonItem;

 ...more code follows in the template

 4. Now that you have filled your array, use it to display the data rather than using the
fetched results controller. In MasterViewController.m, configureCell:

atIndexPath: currently looks like this:

- (void)configureCell:(UITableViewCell *)cell

 atIndexPath:(NSIndexPath *)indexPath

{

 NSManagedObject *object =

 [self.fetchedResultsController objectAtIndexPath:

 indexPath.row];

 cell.textLabel.text = [[object valueForKey:@”partyName”]

 description];

}

 The first line gets an object from the fetched results controller. Change it to use the array and
row from indexPath:

NSManagedObject *object = [_orderedParties

 objectAtIndex: indexPath.row];

C H A P T E R F O U R T E E N E D I T I N G T A B L E V I E W S 287

 5. Run the app. When you tap Edit on the master view controller, you should be able to
rearrange the rows. There’s still more to do, as you’ll see in the next section.

Calculating and Saving the displayOrder
Property for a Move
The last step in this process is calculating the new value for displayOrder and saving it as
necessary. Each of those steps is implemented in its own method. The code in those methods
is used over and over in Cocoa Touch apps that use table views. As you will see, there are
minor customizations you may need to make to reuse the code, but the logical structures are
reusable.

Here are the steps to calculate and save the displayOrder attribute:

 1. You already have an empty shell of tableView:moveRowAtIndexPath:toIndex
Path: in MasterViewController.m. Now add the implementation code as
shown here.

- (void)tableView:(UITableView *)tableView

 moveRowAtIndexPath:(NSIndexPath *)sourceIndexPath

 toIndexPath:(NSIndexPath *)destinationIndexPath {

 NSMutableArray *myParties =

 [NSMutableArray arrayWithArray:_orderedParties];

 Party* party = [myParties objectAtIndex: sourceIndexPath.

 row];

 [myParties removeObjectAtIndex: sourceIndexPath.row];

 [myParties insertObject:party atIndex:destinationIndexPath.

 row];

 NSInteger start = sourceIndexPath.row;

 if (destinationIndexPath.row < start) {

 start = destinationIndexPath.row;

 }

 NSInteger end = destinationIndexPath.row;

 if (sourceIndexPath.row > end) {

 end = sourceIndexPath.row;

 }

 // this is the code that sets displayOrder

 for (NSInteger i = 0; i <= end; i++) {

 party = [myParties objectAtIndex:i];

 party.displayOrder = @(i);

 }

i O S 6 F O U N D A T I O N S288

 // Because NSMutableArray is a subclass of NSArray,

 // you can assign an instance of NSMutableArray to

 // an NSArray variable.

 _orderedParties = myParties;

}

 If you have taken a basic programming course, this code may look familiar. This is rou-
tine boilerplate code that is used for rearranging elements in an array. Half a century
ago this code (or code very much like it) was written in FORTRAN and COBOL on
mainframe computers.

 To reuse this code, simply replace references to parties with whatever objects you are
dealing with. You’ll notice at the beginning of the method that a new local
NSMutableArray is created from the NSArray that you loaded from the fetched
results controller. The mutable array can be reordered and, in the next step, saved.

 2. Implement setEditing: animated: in MasterViewController.m with this
code. This method is called when you tap the Edit-Done button. (You can set a break-
point on it to confirm that.) When the button displays Edit, this method is called with
editing set to YES. When the button displays Done (that is, while you are editing), the
method is called with editing set to NO. The _orderedParties array is correctly
ordered now, but the displayOrder property needs updating, and that is done here.

 To reuse this code, note the comment about providing a more meaningful error
message. You’ll see how to do that in Chapter 15, “Telling Users the News: Alerts and
NSError.”

- (void)setEditing: (BOOL)editing animated:(BOOL)animated

{

 [super setEditing: editing animated:animated];

 // If editing is finished, save the managed object context

 if (!editing)

 {

 NSManagedObjectContext *context = self.

managedObjectContext;

 NSError *error = nil;

 if (![context save:&error]){

 // Replace this implementation with code to handle the

 // error appropriately.

 // abort() causes the application to generate a crash

 // log and terminate. You should not use this function

C H A P T E R F O U R T E E N E D I T I N G T A B L E V I E W S 289

 // in a shipping application, although it may be useful

 // during development.

 NSLog(@”Unresolved error %@, %@”, error, [error

userInfo]);

 abort();

 }

 }

}

 3. Change tableView:didSelectRowAtIndexPath: to run off of the ordered array.
Here is how it should look now:

- (void)tableView:(UITableView *)tableView

 didSelectRowAtIndexPath:(NSIndexPath *)indexPath

 {

 if ([[UIDevice currentDevice] userInterfaceIdiom] ==

 UIUserInterfaceIdiomPad) {

 Party *party = (Party*)

 [_orderedParties objectAtIndex: indexPath.row];

 self.detailViewController.detailItem = party;

 }

}

 4. Change configureCell:atIndexPath: to also run off the ordered array. Here is
how it should look now:

- (void)configureCell:(UITableViewCell *)cell

 atIndexPath:(NSIndexPath *)indexPath

 {

 Party *party = (Party*)

 [_orderedParties objectAtIndex: indexPath.row];

 cell.textLabel.text = party.partyName;

}

 5. Finally, in fetchedResultsController in MasterViewController.m, make
certain that you sort the fetched results on displayOrder and change ascending
to YES. Here is the relevant section of code with the change made:

// Edit the sort key as appropriate.

NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc]

 initWithKey:@”displayOrder” ascending:YES];

NSArray *sortDescriptors = @[sortDescriptor];

i O S 6 F O U N D A T I O N S290

Adding a New Object
If you run the app on an iPad now, you should be able to rearrange the rows, but you’ll notice
that when you add a party, it’s not shown in the list until the next time you run the app—
that is, until the next time loadOrderedPartiesArrayFromFetchedResults

Controller runs. The solution to this is to update the orderedParties array.

This is a good example of what you should watch out for in testing. Because the split view
controller is used on the iPad template and a navigation controller is used in the iPhone
template, views are presented differently. The problem appears only on iPad. The code change
provided in this section works on both iPad and iPhone.

You can correct this problem by reloading the sorted array in insertNewObject:. When
you do so you’ll also need to set the displayOrder property of the new object. Here are
the steps:

 1. After you create the new object and set its partyName property, set its display
Order property to the count of elements in the sorted array. As you see in this code,
you’ll have to coerce the count, which is an unsigned integer to an NSNumber, which is
the type of displayOrder. Note, too, that displayOrder is zero-relative, so set-
ting it to the count—which is always one value higher than the last zero-relative dis-
playOrder—will work properly.

newManagedObject.partyName = [[NSDate date] description];

newManagedObject.displayOrder =

 [NSNumber numberWithUnsignedInteger:[_orderedParties count]];

 2. Reload the sorted parties array as shown here:

// Reload orderedParties

[self reLoadOrderedPartiesArrayWithNewObject:

newManagedObject];

 Note that this line of code will generate an error message. It uses a new method that is
not yet implemented. (You’ll find the code right after this set of steps.)

 3. Because you’ll be changing the number of objects in the sorted parties array, change
the tableView: numberOfRowsInSection: method to run off that array. Here is
how it should look now:

- (NSInteger)tableView:(UITableView *)tableView

 numberOfRowsInSection:(NSInteger)section

{

 return [_orderedParties count];

}

C H A P T E R F O U R T E E N E D I T I N G T A B L E V I E W S 291

This is how the insertNewObject: method looks now:

- (void)insertNewObject:(id)sender

{

 NSManagedObjectContext *context =

 [self.fetchedResultsController managedObjectContext];

 NSEntityDescription *entity =

 [[self.fetchedResultsController fetchRequest] entity];

 Party *newManagedObject =

 [NSEntityDescription insertNewObjectForEntityForName:

 [entity name] inManagedObjectContext:context];

 // If appropriate, configure the new managed object.

 newManagedObject.partyName = [[NSDate date] description];

 newManagedObject.displayOrder =

 [NSNumber numberWithUnsignedInteger:[_orderedParties count]];

 // Reload orderedParties

 [self reLoadOrderedPartiesArrayWithNewObject: newManagedObject];

 // Save the context.

 NSError *error = nil;

 if (![context save:&error]) {

 // Replace this implementation with code to handle the error

 // appropriately.

 // abort() causes the application to generate a crash log and

 // terminate. You should not use this function in a shipping

 // application, although it may be useful during development.

 NSLog(@”Unresolved error %@, %@”, error, [error userInfo]);

 abort();

 }

}

You need to implement the reLoadOrderedPartiesArrayWithNewObject: method
referred to in Step 2. This is very similar to loadOrderedPartiesArrayFromFetched
ResultsController except that it’s loaded from the orderedParties array. In addition
the new object is added.

- (void)reLoadOrderedPartiesArrayWithNewObject: (Party *)newParty {

 NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc]

 initWithKey:@”displayOrder” ascending:YES];

 NSArray *sortDescriptors = [[NSArray alloc]

 initWithObjects:&sortDescriptor count:1];

i O S 6 F O U N D A T I O N S292

 NSMutableArray *myOrderedPartiesArray =

 [[NSMutableArray alloc] initWithArray:_orderedParties];

 // add the new object

 [myOrderedPartiesArray addObject: newParty];

 [myOrderedPartiesArray sortUsingDescriptors:sortDescriptors];

 _orderedParties = myOrderedPartiesArray;

}

Deleting an Existing Object
Deleting an object is simpler than adding a new one. You do have to manage the two parallel
arrays (the fetched results controller array and the sorted objects array), but you don’t have
to worry about re-ordering the sorted objects array. If the array is ordered correctly at the
beginning, simply removing an object from it will leave the remaining objects correctly
sorted. However, you will need to update the displayOrder property values. Here are
the steps:

 1. Add the method to MasterViewController.m.

- (void)removeObjectFromOrderedPartiesArray: (Party *)

removeParty {

 Party * party = nil;

 NSMutableArray *myOrderedPartiesArray =

 [[NSMutableArray alloc] initWithArray:_orderedParties];

 [myOrderedPartiesArray removeObject: removeParty];

 // recalculate displayOrder

 NSInteger end = [myOrderedPartiesArray count] - 1;

 for (NSInteger i = 0; i <= end; i++) {

 party = [myOrderedPartiesArray objectAtIndex:i];

 party.displayOrder = @(i);

 }

 _orderedParties = myOrderedPartiesArray;

}

 2. This data source protocol method is called when committing changes. You need to call
your new method there, as indicated in the comment.. Here is how the code should
look now:

- (void)tableView:(UITableView *)tableView

 commitEditingStyle:(UITableViewCellEditingStyle)editingStyle

C H A P T E R F O U R T E E N E D I T I N G T A B L E V I E W S 293

 forRowAtIndexPath:(NSIndexPath *)indexPath

 {

 if (editingStyle == UITableViewCellEditingStyleDelete) {

 NSManagedObjectContext *context =

 [self.fetchedResultsController managedObjectContext];

 [context deleteObject:[_orderedParties

 objectAtIndex: indexPath.row]];

 // remove from Ordered Parties ADD THIS CODE jf

 [self removeObjectFromOrderedPartiesArray:[_

 orderedParties

 objectAtIndex: indexPath.row]];

 NSError *error = nil;

 if (![context save:&error]) {

 // Replace this implementation with code to handle the

 // error appropriately.

 // abort() causes the application to generate a crash

 // log and terminate. You should not use this

 // function in a shipping application, although it

 // may be useful during development.

 NSLog(@”Unresolved error %@, %@”,

 error, [error userInfo]);

 abort();

 }

 }

}

 3. You need to update tableView:numberOfRowsInSection: as you did in Step 3 of
“Adding an Object” previously in this chapter. If you have followed along, that code is
already in your project.

Summary
This chapter shows you how to manage editing of a table view—in particular, the techniques
for re-ordering rows in the table. There are several ways you can do this. In all of them, you
have the challenge of using the built-in UITableView methods (and those of the associated
protocols) to manage the visual appearance of the table while at the same time (or, perhaps,
just before saving) you manage a displayOrder attribute in each row that lets you store
and retrieve the ordered rows.

This is a good example of how you frequently work with Cocoa Touch. The framework pro-
vides a rich environment to manage the app’s interface. Sometimes, you subclass the frame-
work classes, but more often, you implement or subclass specific methods that customize

i O S 6 F O U N D A T I O N S294

some of a class’s behavior. The challenge is knowing what to subclass. The documentation
(particularly the class reference documents that you can view in the Xcode Organizer) is a
great place to start. However, it’s a tall order to memorize every detail of every class. There
are several ways to feel more comfortable.

One of the techniques that’s helped me along is to periodically step back and look at the big
picture. Yes, the details of managing a displayOrder attribute are specific to a table view,
but from a broader perspective, managing a derived data element that needs to be set just
before data is stored in setEditing: animated: is a fairly frequent occurrence. If you
look at every technique in isolation you have thousands of things to learn. By abstracting and
generalizing, you can make yourself more comfortable.

This is difficult to do at times, because you’ll naturally be focused on the task at hand and
might resist this periodic stepping back, but it does help you learn the basic principles, archi-
tecture, and design patterns of Cocoa Touch as well as of Objective-C.

part 5

Interacting
with Users

chapter fifteen Telling Users the News: Alerts
and NSError

chapter sixteen Getting Input from Users:
Alerts and Action Sheets

chapter seventeen Back to the Storyboard:
Enhancing the Interface

297

THIS PART OF the book focuses on user interaction. You’ve already seen how to
interact with users through view controllers and interface elements, but the user inter-
action discussed in this part of the book is a different type. These interactions are initi-
ated by the app itself. Some of them not only are initiated by the app but they also take
precedence over what the user may be trying to do at the time. The user indirectly initi-
ates other types of app-initiated interactions. For example, as you will see in Chapter
17, “Back to the Storyboard: Enhancing the Interface,” when a user creates a new object
such as a party, it is common to immediately ask the user to provide a name for that
object. The user action of creating a new object is followed by the app-initiated request
for a name.

There are a variety of tools you can use to communicate with users. This chapter pro-
vides an overview of presenting information to the users. In Chapter 16, “Getting
Input from Users: Alerts and Action Sheets,” you find a discussion of the primary tools
for getting information from users: modal views and popovers (popovers are available
only on iPad).

Of course, alerts, action sheets, modal views, notifications, and badges are each differ-
ent elements of the Cocoa Touch framework. Nevertheless, they are all used to imple-
ment communication with the user, and that interaction is two-way. Although a modal

chapter fifteen

Telling Users the News:
Alerts and NSError

i O S 6 F O U N D A T I O N S298

view may be the easiest way to get several needed items of information from a user (name,
address, and phone number, for example), an alert with a brief message and a single OK but-
ton also sends data from the user to the app. The OK button sends the information that the
user has seen the alert (and, presumably, has read it).

Reviewing User Interaction on iOS
iOS and its human interface guidelines dramatically changed the way people thought about
and used computers. (To be fair, iOS is only one piece of a major transition to mobile com-
puting, but, with the codification of the iOS Human Interface Guidelines, the engineers at
Apple have played an outsized role in shaping expectations for the interfaces of today.)

When computers and application programs were primarily oriented to desktop and laptop
computers, they were much more talkative than today’s mobile apps. It was common for an
app to stop and ask you if you really wanted to do something. Apps periodically informed
you of what they were doing whether or not you wanted to know.

There are many reasons why this style of user interaction has fallen out of fashion (or at least
is much less widely used than it was a decade or two ago). Perhaps the biggest reason for cut-
ting down on messages from apps is the fact that today’s user is likely to be multi-tasking. If
you are running an enormous spreadsheet app and are sorting a spreadsheet with thousands
of rows and columns, periodic updates as to progress are welcome. Without them, you sit
there staring at your computer screen wondering if anything is going on. (And time is a tre-
mendously subjective concept. When you’re sitting there staring at a motionless screen, a
fraction of a second can easily seem like an hour.)

On the other hand, if you start to sort your enormous spreadsheet and immediately send an
email to a friend or check a restaurant review (or both), you generally rely on the fact that
things will just keep working. In this type of multi-tasking environment, the user’s assump-
tion often is that things will work out and if they don’t, the app will alert the user. Users
don’t usually expect routine updates. They expect the software to do its job.

Throughout modern interfaces including iOS, the messages from the OS are shortened.
Perhaps the most significant change is in the use of alerts and other interface elements to
replace dialogs on desktops and laptops. On many dialogs, users expect to see two buttons:
OK and Cancel. On iOS, Cancel buttons often are not found. Tap anywhere outside the alert,
and it goes away. This means that with some exceptions, a message from the OS doesn’t
freeze the system and demand that you answer it. Yes, you can implement this freezing func-
tionality, but it is generally frowned upon.

If you want a general approach to designing good user interactions, don’t think of them as
providing information to the users. Instead, think of them as asking the users to choose.

C H A P T E R F I F T E E N T E L L I N G U S E R S T H E N E W S : A L E R T S A N D N S E R R O R 299

Getting information is a passive activity, whereas making a choice is an active one. And, as is
the case with Cancel buttons and their absence, not making a choice is a form of action. On
iOS, not making a choice generally means that the user has tapped somewhere else—moved
on to another action. Obviously, this has ramifications for your code. It is easier to program
when you control the computer, but when you let the user control the computer, you have to
work around whatever constraints the user sets up for you.

Analyzing an Alert
In the code you have seen so far based on the Master-Detail Application template, there is
standard code (actually a comment) that appears in various places where the managed object
context is stored.

Thinking About a Save Alert
Here is how the Save alert comment appears in MasterViewController.m in the set
Editing: animated: method:

- (void)setEditing:(BOOL)editing animated:(BOOL)animated

{

 [super setEditing:editing animated:animated];

 // If editing is finished, save the managed object context

 if (!editing)

 {

 NSManagedObjectContext *context =

 self.managedObjectContext;

 NSError *error = nil;

 if (![context save:&error]){

 // Replace this implementation with code to handle the

 // error appropriately.

 // abort() causes the application to generate a crash

 // log and terminate. You should not use this function

 // in a shipping application, although it may be useful

 // during development.

 NSLog(@”Unresolved error %@, %@”,

 error, [error userInfo]);

 abort();

 }

 }

}

i O S 6 F O U N D A T I O N S300

How would you go about implementing the suggestions in that comment? The following sec-
tions give you some ideas.

Planning to Handle the Error
This is a good example of a message that your app will generate that is only indirectly due to
a user’s action. The setEditing: animated: message is sent to a view controller in order
to change its editing state. An Edit-Done button invokes it automatically. When you are edit-
ing a view, the button title changes to Done, and the message is sent with a value of NO for
editing (editing is the value to which you want to set the view controller).

Getting the User’s Perspective
If an error occurs, you need to alert the user and provide a graceful way out. However, if you
trace through the code, you can see that the proximate user action that indirectly causes the
error if there is one, is tapping the Done button. Before you can start to work with an error,
you have to perform this kind of analysis so that you (and the user) understand that although
the error may be a failure to save the managed object context, the user action is tapping Done.

In fact, because it is a standard practice in iOS apps that use Core Data to save the managed
object context when it is necessary (rather than asking a user to decide when to save it), it is
easy to get this discontinuity. Most users probably don’t even consider the fact that tapping
Done invokes a Save operation on the persistent data store.

Adding the Error’s Perspective
At this point, you know more than the user does—perhaps much more. The beginning of the
code that handles the error contains two lines that set error handling in motion throughout
Cocoa Touch apps:

NSError *error = nil;

if (![context save:&error]){

A local NSError variable is declared and set to nil. Then, a method is called that may return
an error. Here is the managedObjectContext save method:

- (BOOL)save:(NSError **)error

Note that the error parameter is a pointer to a pointer to the object (that is, it has two
asterisks rather than the single asterisk used for pointers to objects themselves). This means
that the object that is returned in error can be other than the object that is passed in. In
many cases where this syntax is used, the object that is passed in is nil, and the returned
object is created by the method that returns it (save in this case).

C H A P T E R F I F T E E N T E L L I N G U S E R S T H E N E W S : A L E R T S A N D N S E R R O R 301

save returns a BOOL of YES if the save is successful. If it is not successful, a value of NO is
returned, and a new NSError object is created and returned in error. At this point, you can
look inside the NSError object returned in error to find out more about the error. There
are three properties of NSError that are important for you to use in finding out what has
happened, but in practice, as you’ll see in the following section, you don’t have to get involved
with these details.

• domain is an NSString—Domains identify the area where the error occurred. The
basic domains identify the Mach core of OS X (the kernel), POSIX file routines, Carbon,
and Cocoa Touch. Most of the time, you will be dealing with the Cocoa Touch domain.
Additional domains can be declared by frameworks or even by developers. From your
point of view, the domain rarely matters. All that matters is that there is a domain
returned as a property in every NSError object.

• code is an NSInteger—Within a domain, there are numeric error codes. Thus, when
you have a domain identified by the NSError object, the NSInteger for the error
code has meaning. (In other words, for the error code value of 17, different domains
ascribe different errors to that value.)

• userInfo is an NSDictionary—As is the case with all dictionaries, userInfo is a
set of key/value pairs. In the case of an NSError object, they are used to identify the
error and provide possible solutions and next steps.

Here are the parts of NSError that you deal with directly.

• localizedDescription is an NSString.

• localizedFailureReason is an NSString.

• localizedRecoveryOptions is an NSArray consisting of NSString objects. The
strings are designed to be the names of buttons in an alert window that presents the
error information. The first (zeroth) element should be the title of the right-most and
default button; the subsequent strings are the buttons moving leftward from the
default button.

• localizedRecoverySuggestion is an NSString that is suitable for the second
sentence in an alert (that is, the more detailed version of the error messages).

The information is there, but, as you will see in the following section, you may not need to use
it to communicate with the user. You have more specific information to pass on in many cases.

Adding Your Perspective
With the information from the NSError object, you have a great deal of information. You
can use it for debugging and for communicating with the users. However, you may have
more information than is needed in many cases. That’s where you come in.

i O S 6 F O U N D A T I O N S302

As you track down errors during your development process, you often need to look into the
NSError objects—sometimes on a case-by-case basis. Gradually, during development, you
identify and squash bugs that will not recur during production. During this process, you become
more and more familiar with your software and what can go wrong. For example, in the Party
Planner app as it stands now, there is a non-fatal bug that you may have discovered for yourself.

When you select an item in the master view controller, the data for that item is displayed in
the detail view controller, and it is highlighted in the master view controller. When you first
launch the app, no elements of the master view controller are selected. The detail view con-
troller properly shows a placeholder message, but there are cases in which the absence of a
selected object in the master view controller can cause problems. You can remedy this by
either restoring the selection from the last use of the app or by arbitrarily automatically
selecting the first item in the master view controller. Once you know that the absence of a
selected object in the master view controller can cause problems, you can go over your code
to make certain that there is always such a selected object.

It is this type of condition that is unlikely to be caught by an NSError object. You, however,
understand that you built in an assumption that is not always supported in practice. What
can be very important about your perspective is that you can combine the actual error infor-
mation with your knowledge of the app. This means that you can set up two separate com-
munication channels—the detailed one can go into the app’s console messages, and the
user-oriented channel can go to the user.

If you think of these two complementary data flows, you should recognize that the first data
flow is for you, and the second is for the user. The first one may provide you with informa-
tion about what to do, or it may provide you with the raw data to find that information. The
flow to the user, however, should provide the critical information that the user needs to
know and act on—what to do now.

What You Must Do to Handle Errors
You have seen the basic overview of handling errors that may occur. There is a great deal of
information that you can use for yourself and convey—often with edits—to the users. There
is one task to do now and to continue to do as you develop your app.

Any time you call a method that can return an NSError object (as shown in the code snippet
at the beginning of the chapter), make certain that you handle the error. In the code sample
shown here as well as in many of the Xcode templates, handling the returned error is indicated
by a comment. Those comments must be heeded, and you must do something with that error
information. Sometimes you can’t handle the error yet because handling an error may require
code you have not yet written. One habit you can get into is to insert a standard comment into
your code as you encounter possible error conditions. A comment such as this will work:

// handle error

C H A P T E R F I F T E E N T E L L I N G U S E R S T H E N E W S : A L E R T S A N D N S E R R O R 303

Even better is something like this

// handle error: no master view controller item selected

If you use the same comment consistently, you can search your code to find all the error mes-
sages. You can even update them as in the following:

// handle error: no master view controller item selected. JF done

Depending on how you manage the development process, you may want to delete these
notes to yourself when they’re done, or you may want to mark them as done—possibly with
a date. You can also keep that information as comments in your Git repository. In some
cases, revisions are listed in comments at the beginning of a file.

All that really matters is that these to-do items get done.

Implementing a Data Store Error Alert
With the default code you have in the template, you can experiment with alerts. Of course,
you’ll need an error to trigger the alert, and that requires you to actually generate an error.
It’s often easy enough to inadvertently trigger an error when you don’t want to, but generat-
ing an error on demand can be perversely difficult. This section shows you a process that
many developers use for testing. If you follow these steps, do so in a copy of your Party
Planner app after you have saved the actual version in a safe place.

If you are using a source code version control system such as Git, this would be a good place
to create a branch from your main code. You can then delete the branch when you’re done with
your experiment. Another technique is to simply compress your entire project folder into a ZIP
archive. That way, you can recreate it at will. Furthermore, because it’s a ZIP archive, there’s
little chance that you’ll accidentally modify the wrong files: the project files aren’t visible when
they’re in a ZIP archive.

Handling a Non-Error Error
One way to find and handle an error is to take the code that checks for an error, and reverse
the check. Thus, the line in the template that checks to see if the BOOL result of the Save
method is not YES can be reversed. Here is the template code:

NSManagedObjectContext *context = self.managedObjectContext;

NSError *error = nil;

if (![context save:&error]){

i O S 6 F O U N D A T I O N S304

Reverse the test by removing the exclamation point that removes the NOT from the test.
(You may want to comment out the old line of code so that you can revert to it later.)

NSManagedObjectContext *context = self.managedObjectContext;

NSError *error = nil;

if ([context save:&error]){

If you follow through the template code, you’ll see that in the case of an error, there’s a log
message created; after that the app aborts.

NSLog(@”Unresolved error %@, %@”,

 error, [error userInfo]);

abort();

Remove (or comment out) the abort statement. Set a breakpoint on the log message and
run the app to make certain that it enters the error code, as shown in Figure 15-1.

Figure 15-1 Reverse the test for an error.

Step over the next line and you’ll see the log message as shown in Figure 15-2.

This is fine as far as it goes, but the log message only displays the text. The NSError object
and its userInfo property are both null—not unexpected because you reversed the test
and the save actually succeeded. However, for testing the basic functionality of error han-
dling, this is perhaps the fastest way to accomplish your goal.

C H A P T E R F I F T E E N T E L L I N G U S E R S T H E N E W S : A L E R T S A N D N S E R R O R 305

Figure 15-2 View the log message.

Posting the Alert
The comment in the template suggests that you deal specifically with the error, and this sec-
tion shows you one way of doing so. It is the simplest to implement, but that simplicity
comes at the cost of a user interface that is not as good as it can be. (Don’t worry; the next
chapter shows you how to refine it.)

The simplest way of communicating to the users is with an alert, as shown in Figure 15-3.

Until the user dismisses the alert, the app is frozen (that’s the sub-optimal part of it).
Furthermore, in the example shown here, this alert merely talks to the user: there is no
option for the user to continue.

When you want to use an alert, you use an instance of UIAlertView. You create the
instance, allocate it, initialize it, and then show it. You can do those four steps in two lines of
code, but here are the steps shown individually. (The shorter version follows.)

 1. Declare an UIAlertView instance:

UIAlertView *alertView;

 2. Allocate it:

alertView = [UIAlertView alloc];

i O S 6 F O U N D A T I O N S306

Figure 15-3 Post an alert.

 3. Initialize it. As you can see in Figure 15-4, as you type, Xcode prompts you with the
method header.

alertView = [alertView initWithTitle:@”Testing Error”

 message:@”Testing Message”

 delegate:nil

 cancelButtonTitle:@”OK”

 otherButtonTitles: nil];

 4. Show the alert.

[alertView show];

Here is the two-line version:

UIAlertView *alertView =

 [[UIAlertView alloc]initWithTitle:@”Testing Error”

 message:@”Testing Message”

 delegate:nil

 cancelButtonTitle:@”OK”

 otherButtonTitles: nil];

[alertView show];

C H A P T E R F I F T E E N T E L L I N G U S E R S T H E N E W S : A L E R T S A N D N S E R R O R 307

Figure 15-4 Xcode prompts you with the method header.

Adding a Log Message
No matter what type of user message you use, you typically write a companion message to
the log. This is critical during your development process when you are running on the simula-
tor. When you move to production, you often remove these messages for apps. When you
are building an app for a non-public purpose (such as an in-house app), you may leave log
messages in. Also you may have the ability to send messages to a corporate web service where
they can be logged.

Now that you have seen the structure of the NSError object, you can examine the message
that writes it out to the log. NSLog takes a format string followed by a comma-delimited list
of items to be written out according to the format string. Here is the code in the template:

NSLog(@”Unresolved error %@, %@”, error, [error userInfo]);

i O S 6 F O U N D A T I O N S308

The format string consists of these items:

• Unresolved error is text that is displayed as entered.

• %@ displays the description of an NSObject—there are two of these.

Following the string are two objects that correspond to the %@ formats:

• error is the NSInteger error code in the NSError object.

• userInfo is the dictionary returned in the NSError object. All of its key/value pairs
will be displayed.

Summary
This chapter shows you how to handle the simplest error condition: one in which you alert
the user to something that has happened. It is the simplest form of communication, and,
partly because of that, it is the most blunt instrument you can use to communicate with the
user. You have seen how to use the NSError object, which provides information about the
error that has occurred, and you have seen how to extract the numeric error code and user
dictionary of all items returned from the error.

In the next chapter, you’ll learn about more complex ways of communicating with users.
They’re a bit more trouble for you, but they’re much easier for the users. The alerts shown in
this chapter freeze the app in place, thus preventing anything else from happening until the
alert is dismissed. In the next chapter, you’ll see how to use multiple buttons to dismiss and
alert and how to use action sheets. In all of these cases, this will mean that rather than telling
the users what has gone wrong, you’ll be able to offer the user actions to take to ameliorate
or work around the problems.

309

PROVIDING INFORMATION TO users about what’s happening with your app
is an important part of the user experience. As pointed out in Chapter 15, “Telling
Users the News: Alerts and NSError,” software in general is much less talkative and
verbose than it used to be. In part this is because software, computers, and users are all
more sophisticated about what’s going on. No longer do you need to ask a user to con-
firm every little step in a process because you and the user can more frequently
assume—correctly—that things have gone as planned.

When you do need to notify the user of some issue, an alert is a blunt-force tool. It
brings the app to a halt until the user dismisses it. In this chapter, you’ll begin to learn
about the more flexible tools for communicating with the users. Rather than use the
simple alert discussed in the previous chapter and shown in Figure 16-1, you’ll see how
you can allow the user to communicate to you.

 chapter sixteen

Getting Input from Users:
Alerts and Action Sheets

i O S 6 F O U N D A T I O N S310

Figure 16-1 A simple alert presents information with a single button.

The basic tools are:

• Alerts with multiple buttons—As soon as the user can choose between more than
one button, you have provided a communication channel from the user to the app as
shown in Figure 16-2. With one button, the only communication is that the user has
seen the alert, but now the user is empowered to make a choice and take an action.

Figure 16-2 Alerts can have multiple buttons.

C H A P T E R S I X T E E N G E T T I N G I N P U T F R O M U S E R S :
A L E R T S A N D A C T I O N S H E E T S 311

• Action sheets—These dispense with the alert text: they consist only of a title and a set
of buttons, as shown in Figure 16-3. The buttons have to be self-explanatory.

Figure 16-3 Action sheets consist only of actions.

• Modal views—These are standard views that are presented modally. The layout of
text, images, and user interface controls is up to you.

In all of these cases, you get information back from the user. In the case of alerts, the com-
munication is often initiated by the app after something untoward has happened. With
action sheets and modal views, it is commonly the case that the user has tapped a control to
initiate the conversation (creating a new email message, exporting data to a destination to be
determined by an action sheet, and so forth).

Using Modes on iOS
One of the guidelines developers for the original Mac were advised to adopt was to minimize
the use of modes—separate parts of a program with their own rules and even functionality.
In the mid-1980s, one of the complaints most often voiced about personal computers was
that it was too easy to fall into a mode from which you could not escape. Worse, you might
not even realize that you were in a mode that, not unlike a science fiction device, altered the
environmental rules (for example, making it impossible to close a window).

Nevertheless, modes—and particularly modal dialogs—are an important tool. Yes, they put
the user into a place from which only escape is possible (perhaps by clicking OK or Cancel),
but sometimes you want the user to do nothing except handle that issue.

continued

i O S 6 F O U N D A T I O N S312

continued

This need to stop the user from doing anything except handle a specific issue is a valid need
at times, and it is in this context that modes are frequently overused. You should consider
whether there is some other way to handle the issue.

In fact, the human interface guidelines recommend the use of modal views in a very spe-
cific case. One guideline is that there should be a single path to each view. If you have a
view that is presented in a number of different contexts, it often is preferable to present it
either modally or in one of the alert or action sheet styles. That separates it from the
uniquely locatable main content of your app.

As you’ll see in this chapter, alerts and modal views behave similarly on iPhone and iPad.
Action sheets, however, behave differently on iPhone and iPad. On iPhone, they are typically
placed at the bottom of the screen, while on iPad, they are displayed in a popover.

Using Alerts with Multiple Buttons
In Chapter 15, you learned the basics of a one-button alert. The first step to making your
alerts more useful to users (and, thus, to you) is to allow multiple buttons to be used. This
means that rather than presenting information to the user and asking the user to click a but-
ton which can only signify that the alert has been presented, you can ask the user to make a
decision—continue with an action or stop it, for example.

Adding the Buttons
Most developers and users probably would suggest that whenever you leave a choice to a
user, the app is more useful. Of course, when you leave a choice to a user, you have the
responsibility to explain what that choice is. A choice such as “denormalize the database” or
“invert the data matrix” is not particularly user-friendly. What you may find is that coming
up with the wording of the choice that you present takes a good deal of time, but it also helps
you understand the user and the app.

Listing 16-1 shows the code you used in Chapter 15 to present an alert.

Listing 16-1 Showing an alert
UIAlertView *alertView =

 [[UIAlertView alloc]initWithTitle:@”Testing Error”

 message:@”Testing Message”

 delegate:nil

C H A P T E R S I X T E E N G E T T I N G I N P U T F R O M U S E R S :
A L E R T S A N D A C T I O N S H E E T S 313

 cancelButtonTitle:@”OK”

 otherButtonTitles: nil];

[alertView show];

The otherButtonTitles parameter appears to be set to nil. However, if you look in the
documentation, you’ll see that otherButtonTitles is actually a list of button titles that is
terminated by nil. (A function that accepts a variable number of arguments is called a vari-
adic function. This is a broad computer science concept and in Objective-C, it applies both
to functions and to methods.) To add two additional buttons to the alert view, provide the
following list:

otherButtonTitles: @”Cancel”, @”Info”, nil

The result is shown in Figure 16-2.

Handling the Buttons
If you run the app and get into the alert code (remember the simplest way is to make the test
trigger if there is no error), you’ll see that any of the buttons dismisses the alert. (Do remem-
ber for your testing to comment out the abort() call.)

You have to figure out how to determine which button was tapped before the alert disappears.

Once again, a delegate object is used. This delegate adopts the UIAlertViewDelegate pro-
tocol. As always with a protocol, the object that adopts the protocol must implement all
required methods, but how it does so is up to the object that adopts the protocol.

In the case of the UIAlertViewDelegate protocol, all of the methods are optional. The
one that is most frequently used is

- (void)alertView:(UIAlertView *)alertView

 clickedButtonAtIndex:(NSInteger)buttonIndex

Here are the steps for implementing the delegate. It is common for the object that poses the
alert view to name itself as the delegate.

 1. In MasterViewController.h, add the UIAlertViewDelegate protocol to the
class declaration as in the following code:

@interface MasterViewController : UITableViewController

 <NSFetchedResultsControllerDelegate, UIAlertViewDelegate>

i O S 6 F O U N D A T I O N S314

 2. You can reuse the setEditing: animated: method to show an alert view, as you
see in this annotated code.

- (void)setEditing: (BOOL)editing animated:(BOOL)animated

{

 [super setEditing: editing animated:animated];

 // If editing is finished, save the managed object context

 if (!editing)

 {

 NSManagedObjectContext *context = self.

 managedObjectContext;

 NSError *error = nil;

 // reverse this line by removing ! for testing

 if ([context save:&error]){

 // if (![context save:&error]){ -- unreversed line

 // Replace this implementation with code to handle the

 // error appropriately.

 // abort() causes the application to generate a crash

 // log and terminate. You should not use this function in

 // a shipping application, although it may be useful

 // during development.

 // Experiment with alert view

 UIAlertView *alertView = [[UIAlertView alloc]

 initWithTitle:@”Testing Error” message:@”Testing

 Message”

 delegate:self

 cancelButtonTitle:@”OK”

 otherButtonTitles: @”Cancel”, @”Info”, nil];

 [alertView show];

 // NSLog (@”Unresolved error %@ %@”, error, [error

 // userInfo]);

 //abort(); comment out for testing

 }

 }

}

C H A P T E R S I X T E E N G E T T I N G I N P U T F R O M U S E R S :
A L E R T S A N D A C T I O N S H E E T S 315

 3. Implement any of the protocol methods. As noted previously, the most common one
simply responds to a tap. Here it is:

- (void)alertView:(UIAlertView *)alertView

 clickedButtonAtIndex:(NSInteger)buttonIndex

{

 // set a breakpoint here for testing

 // check the value of buttonIndex to determine what to do

}

 4. Run the app and observe the values that are shown in the debugger. (Remember that if
you have followed the code example shown here, the Done button will cause the alert
to be shown.) You’ll see that the bottom-most button (cancelButtonTitle or OK
in this case) is always zero. Numbering then resumes with 1 on the top-most button
(Cancel in this case) and continues down the buttons (Info is 2 in this case).

You can do any processing you want in this method. The alert is dismissed automatically
after you exit the delegate method. There is no dismiss method to call.

Using Action Sheets
Action sheets provide a set of buttons for user choices. Particularly on iPhone, they look a bit
like multi-button alerts without the alert message. However, their behavior is different in
some important ways. In this section, the alert view shown in the previous section is turned
into an action sheet. (You’ll see the code later in this section.)

Looking at Action Sheets
Recall that Figure 16-3 showed an action sheet on an iPad with a split view controller in land-
scape mode. Figure 16-4 shows the same action sheet on an iPad in portrait mode.

If you compare Figure 16-3 with Figure 16-4, you may well wonder if there’s a mistake: they
look different. Specifically, there’s a Cancel button in Figure 16-4 and there is none in Figure
16-3. You specify a Cancel button title when you create an action sheet. When the action
sheet is displayed on an iPad in landscape mode, it is centered on the screen. Its behavior is
like that of a popover—tapping anywhere except inside the popover dismisses it. Thus,
there’s no need for a Cancel button.

When an action sheet is displayed on an iPhone or an iPad in portrait mode, the Cancel but-
ton is displayed and its behavior is needed because tapping anywhere outside the action
sheet has no effect: it’s a modal presentation.

i O S 6 F O U N D A T I O N S316

Figure 16-4 Action sheets display differently in portrait mode than in landscape mode on iPad.

Managing Action Sheets
Action sheets are handled in much the same way as alerts. You implement a delegate that
adopts the UIActionSheetDelegate protocol. Here are the steps for implementing the
delegate and using it. As with alerts, it is common for the object that poses the alert view to
name itself as the delegate.

 1. In MasterViewController.h, add the UIActionSheetDelegate protocol to the
class declaration as in the following code:

@interface MasterViewController : UITableViewController

 <NSFetchedResultsControllerDelegate, UIActionSheetDelegate >

C H A P T E R S I X T E E N G E T T I N G I N P U T F R O M U S E R S :
A L E R T S A N D A C T I O N S H E E T S 317

 2. Implement any of the protocol methods. The most common one simply responds to a
tap. It is similar to the method shown previously in Figure 16-2. Just as you did there,
you may want to implement a shell of the method and place a breakpoint in it.

- (void)actionSheet:(UIAlertView *)actionSheet

 clickedButtonAtIndex:(NSInteger)buttonIndex

{

}

 3. Use a variation of the alert code shown previously in Listing 16-1 to create and show
the action sheet.

UIActionSheet *actionSheet = [[UIActionSheet alloc]

 initWithTitle:@”Testing Sheet”

 delegate:self

 cancelButtonTitle:@”Cancel”

 destructiveButtonTitle:@”Destruct”

 otherButtonTitles:@”Info”, nil];

[actionSheet showInView:self.view];

 This produces the results shown previously in Figures 16-3 and 16-4.

 Two points are worth nothing. First, there is still a nil-terminated list of button titles.
In addition, two special buttons are called out: a Cancel button and a destructive but-
ton. In practical terms, Cancel is the bottom button on iPhone or on a landscape mode
iPad with a split view controller.

 The destructive button may or may not be destructive in the sense of destroying data.
What it definitely is—on both iPhone and iPad—is red so that it warns the user that
something serious will happen if it’s tapped. Either of these special buttons may be set
to nil.

 4. As before, place a breakpoint in the delegate code and run the app. Observe the values
that are shown in the debugger. You’ll see that the buttons are 0 for the destructive
button, 1 to whatever for the other buttons, and the final number (2 in this case) for
the bottom Cancel button on iPhone.

You can do any processing you want in this method. The alert is dismissed automatically
after you have finished your work.

Summary
Chapter 15 showed you how to talk to your users, and this chapter has shown you how
to receive information from them. There still is plenty to talk about in terms of the user
interface. There are many ways to present views to users and many ways to have interface
elements present those views. There is more to say on popovers, and much to say on modal

i O S 6 F O U N D A T I O N S318

views. You are not limited to the brief messages and limited space for buttons on alert views
and action sheets.

You already have used the tool that lets you link interface elements to one another and to
your code: the storyboard. In the next chapter, you’ll see how to return to your storyboard
editing to implement more sophisticated data entry tools for users.

319

YOUR DEVELOPMENT OF the Party Planner app began in Chapter 5, “Walking
Through the iPhone Storyboard” as you explored and then enhanced the storyboard in
the Master-Detail Application template. Storyboards appeared for the first time in iOS
5; in iOS 6 they were dramatically refined and enhanced. Along the way, the engineers
at Apple also implemented new features and concepts such as container views (they
existed all along, but the explicit concept and the details of which container view class
can appear in another container view class arrived in iOS 5).

After an overview of the Xcode templates, this chapter shows you how to work with
the template interface elements to add buttons and other controls. These elements
allow you to implement additional functionality in the Party Planner app.

Cleaning Up Some Loose Ends
In Chapters 15, “Telling Users the News: Alerts and NSError,” and 16, “Getting Input
from Users: Alerts and Action Sheets,” you experimented with user interaction tools
and techniques. To continue on with the Party Planner app, start from a copy of the
version of Party Planner that you created (or downloaded) at the end of Chapter 14,
“Editing Table Views.” Test it to make certain that it works as it did then. You’ll be add-
ing some new features and functionality in this chapter, so make certain you’re start-
ing from a known app.

chapter seventeen

Back to the Storyboard:
Enhancing the Interface

i O S 6 F O U N D A T I O N S320

Setting Up New Objects
There are a few changes you may want to make at this time before you get started. In
MasterViewController.m, you may still have these lines of code to set the name for a
new object:

// If appropriate, configure the new managed object.

// Normally you should use accessor methods, but using KVC here

// avoids the need to add a custom class to the template.

// [newManagedObject setValue:[NSDate date] forKey:@”partyName”];

newManagedObject.partyName = [[NSDate date] description];

You can get rid of unnecessary lines and create a better default name for new party objects
with this code:

// If appropriate, configure the new managed object.

// Normally you should use accessor methods, but using KVC here

newManagedObject.partyName = @”New Party”];

Using Storyboards Today
For many developers today, storyboards are the heart of the development process. They let
you create a draft of an interface that can help to document your ideas both for yourself,
other developers, potential funders and managers, and even for end users. (In this way sto-
ryboards for iOS function very much the same way as storyboards for movies, commercials,
and video games.) The storyboard provides the structure of the interface; you can extend and
customize it with a variety of options for the storyboard elements as well as by subclassing
the various user interface objects that become part of your storyboard.

As you have implemented new features and functionality in the Party Planner app, you may
have come to understand how you work with the Cocoa Touch frameworks. A single feature
often consists of several components that may be a subclass of a framework object here, an
option in a different object there, and perhaps a segue on the storyboard that sets things in
motion. The days of writing line after line of computer code are far behind us.

C H A P T E R S E V E N T E E N B A C K T O T H E S T O R Y B O A R D :
E N H A N C I N G T H E I N T E R F A C E 321

What is also behind us is the pre-storyboard development process on iOS. The built-in Xcode
templates give you powerful starting points for your apps. (Chapter 4, “Designing the Party
Planner App,” contains a list of the templates.) Over the last few versions of iOS and Xcode,
both the IDE and the OS have been refined; at the same time, developers and users have
explored new features and functionality with iOS devices. What is now available in Cocoa
Touch, Xcode, and, particularly, in the Xcode templates is a more mature environment than
was available several years ago. It’s worthwhile to keep in mind that the iPhone first shipped
in June of 2007 and the iPad first shipped in April of 2010. They are still remarkably new.

For many developers, the templates provide a ready-to-use shell of an app. There is no ques-
tion that advanced developers today often build their own navigation interfaces or tab bar
controllers, but many developers use the interfaces that are built into the templates. Those
templates also provide built-in navigation bars (and sometimes toolbars). These are sitting
there just waiting for you to add your own interface controls.

Many long-time iOS developers could tell you that you start your iOS app development from
an Xcode template several weeks ahead of where they were used to starting a few years ago. You
have seen the Master-Detail Application template; this section explores the Tabbed Application
and Utility Application templates. The focus is on those aspects of the interface that you can
use in your own apps. There also are some tips on the differences in interface design between
iPhone and iPad. Later in this chapter, you’ll see how to put these into practice.

Using the Utility Application Template
This template provides two view controllers. As you can see in Figure 17-1, on iPhone, they
appear to be the front and back of a single object. Note that the template has been modified
with some additional interface elements from the library so that you can get an idea of how
you can work with the template.

In Figure 17-2, you see the iPad version.

i O S 6 F O U N D A T I O N S322

Figure 17-1 The Utility Application template on iPhone.

Figure 17-2 The Utility Application template on iPad.

C H A P T E R S E V E N T E E N B A C K T O T H E S T O R Y B O A R D :
E N H A N C I N G T H E I N T E R F A C E 323

Figure 17-3 shows the iPhone storyboard.

Figure 17-3 iPhone storyboard for the Utility Application template.

Figure 17-4 shows the iPad storyboard.

Figures 17-1 through 17-4 show one of the City of Plattsburgh’s PlattInfo kiosks. PlattInfo is
a network of walk-up touch-screen kiosks powered by FileMaker. Jesse Feiler is Software
Architect for PlattInfo. PlattInfo artwork by Kelly Chilton (hey@kellychilton.com or www.
kellychilton.com). You can find out more about PlattInfo at PlattInfo.com.

Even without seeing the names of the two views (main view and flipside view), there’s little
doubt as to which is the subsidiary view. On iPhone, the button in the lower right of the
main view with the italicized i flips the view over. In the navigation bar on the flipside view,
there’s a Done button that flips the view back to the main view with the italicized i button in
the lower right. It’s little touches like this that help the user navigate. The Done button sug-
gests that that view is transient. On iPad, it is shown in a popover.

http://www.kellychilton.com
http://www.kellychilton.com
mailto: hey@kellychilton.com
http://www.PlattInfo.com

i O S 6 F O U N D A T I O N S324

Figure 17-4 iPad storyboard for the Utility Application template.

Note that on iPad there are navigation bars on both views; on iPhone, there’s no navigation
bar on the main view. Space is so precious on the iPhone that using the i in the lower right is
a better choice than a navigation bar—particularly one that exists only to put a single button
on it.

Comparing iPad and iPhone Interfaces
In the Utility Application template, you can see that the interfaces differ between iPad and
iPhone. The idea of a two-sided view fits well onto the small screen of an iPhone. Each
“side” of the view logically is the same size as the other side. (You can refer to this as a
visual metaphor if you want.) When you move to the larger screen of iPad, you can display
much more information on the screen. Thus, in the iPad version of the template, instead of
two equal-sized views, you have a larger primary view and a smaller view that is shown in a
popover at the upper right. The idea of multiple views using popover or split view controllers
is possible on iPad and, in fact, it is a very powerful tool for you to use.

C H A P T E R S E V E N T E E N B A C K T O T H E S T O R Y B O A R D :
E N H A N C I N G T H E I N T E R F A C E 325

Using the Tabbed Application Template
The Tabbed Application template illustrates another way of handling multiple views. They
are controlled from a tab bar at the bottom of the view. Figure 17-5 shows the iPad version.

Figure 17-5 The Tabbed Application template on iPad.

Figure 17-6 shows the iPhone version.

You can see that on iPhone there is no bar at the top: the full screen is available for use. Of
course, there is a trade-off: the tabs at the bottom take up space. Tabs let users switch
between different perspectives on data. Unlike navigation bars or toolbars, they are used
only to select which of several views is shown.

In Figure 17-7, you can see the document outline of the iPad version. Note that in the docu-
ment outline, you can see that in the first view there’s a toolbar and in the second view
there’s a navigation bar. Navigation bars implement the stack behavior of pushing and pop-
ping views. They also have a fairly structured layout for the buttons. Toolbars are much less
structured. If you have a bar that requires a number of buttons, it usually works best as a
toolbar.

i O S 6 F O U N D A T I O N S326

Figure 17-6 The Tabbed Application template on iPhone.

Figure 17-7 Look at the document outline for iPad.

C H A P T E R S E V E N T E E N B A C K T O T H E S T O R Y B O A R D :
E N H A N C I N G T H E I N T E R F A C E 327

Editing Basic Party Data
Now you can address the main point of this chapter: entering and saving data in your Party
Planner app. As you’ll see, you’ll use interface elements and controls such as the ones you
have seen in the figures of this chapter. As a first step consider Figure 17-8: it allows you to
edit the basic party data.

Figure 17-8 Edit the basic party data.

What you’re seeing in Figure 17-8 is a modal view presented in the form style. Modal means
that the view controller stays there until it is somehow removed programmatically: there is
no close box or button for the users.

This may sound strange when you can see both a Save and Cancel button in the navigation
bar, but the point is that those are bar button items just like the Done buttons in Figures 17-1,
17-2, and 17-3. Bar button items are special types of buttons designed for use in a navigation
bar or toolbar. They are linked to actions in your code, and it is those actions that dismiss the
modal view. The modal view is removed programmatically, and it’s your code (not framework
code) that does that.

Reusing the Basic Detail Data Code
In many ways, the contents of the modal view may remind you of Figure 10-1, which is
reproduced here as Figure 17-9.

i O S 6 F O U N D A T I O N S328

Figure 17-9 This example reuses the Chapter 10 view.

This is the version of the app from Chapter 10, “Saving and Restoring Data,” before you
added the table view interface. The table view interface is an excellent way to manage and
display data, but when you want to update the data, sometimes the view in Figures 17-8 or
17-9 is best. Reusing the view from Chapter 10 can save you time and effort; it also provides
a good illustration of how storyboards can make your life easier.

What you can do is to add a detail disclosure accessory to a table cell that displays data. That
accessory will bring up an editable view that uses individual text fields, as is the case in
Figures 17-8 and 17-9. You can use the technique described here to bring up separate views
for each field or you can bring up an editable view that combines several fields—the tech-
niques are the same. You’ll also see how to use a variation of this technique to handle the
related records for menus and guests.

Basically, what you can do is to take the existing storyboard and add the DetailView
Controller from Chapter 10 to it so that it is displayed as a modal view. The only issue
that you have is that you already have a DetailViewController. What you’ll do in the
following steps is copy Chapter 10’s DetailViewController and rename it Editable
DetailViewController. Then you’ll add it to the project and the storyboard.

 1. Copy the DetailViewController.h and DetailViewController.m files from
your copy of the Chapter 10 project or from the downloadable code. Place them in
their own folder somewhere on your computer.

 2. Open them in Xcode.

C H A P T E R S E V E N T E E N B A C K T O T H E S T O R Y B O A R D :
E N H A N C I N G T H E I N T E R F A C E 329

 3. Close any open projects and other files. The only files you want open are these two.

 4. In the Search navigator, search for DetailViewController. There should be six
occurrences.

 5. In the Search navigator, switch to Replace and choose to replace all six occurrences
with EditableDetailViewController, as shown in Figure 17-10.

 Note that normally when you rename an object you use Edit➜Refactor➜Rename.
That doesn’t work in this case because you want to make the change only in these
two files.

Figure 17-10 Change the name to EditableDetailViewController.

 6. Verify the changes, and then close and save the files.

 7. Rename the files EditableDetailViewController.h and EditableDetail
ViewController.m.

 8. Launch Xcode and open your Party Planner project.

 9. Use File➜Add Files to add these renamed files back to your Party Planner project, as
shown in Figure 17-11. Make sure to copy them into the destination and add them to
your target (see the checkboxes at the bottom of the sheet in Figure 17-11).

i O S 6 F O U N D A T I O N S330

Figure 17-11 Add the renamed files.

 10. Verify that the files are in the project. You can now delete the renamed files.

Editing the Storyboard
Now that you have the EditableDetailViewController class in your project you can
create an instance in your storyboard. Here are the steps to do so:

 1. Drag a view controller from the library onto the iPad storyboard. In previous examples
you’ve started with the iPhone storyboard, so this gives the iPad storyboard equal time.

 2. In the Identity inspector, change its class to EditableDetailViewController.

 3. Select the existing DetailViewController, as shown in Figure 17-12. Position the
new EditableDetailViewController to its right.

 4. Add three text fields that will be connected to the dateField, locationField, and
partyNameField properties in EditableDetailViewController. (The proper-
ties should be there already in the file that you copied. This is described in Chapter 9,
“Building the Detail Data View.”)

 5. Control-drag in the document outline to connect the EditableDetailView
Controller to each of the three text fields in turn, as shown in Figure 17-13.

C H A P T E R S E V E N T E E N B A C K T O T H E S T O R Y B O A R D :
E N H A N C I N G T H E I N T E R F A C E 331

Figure 17-12 Add a view controller.

Figure 17-13 Connect the text fields.

i O S 6 F O U N D A T I O N S332

 6. As you connect each one, set its label. A good convention would be to change the label
of the text field that’s connected to dateField to editableDateField.

 7. Control-click on EditableDetailViewController in the document outline to
review its outlets. If any stray connections are left over from the previous incarnation
of this file, remove them so that only the text fields in this new view are referenced.
Figure 17-14 shows what the connections should look like now.

Figure 17-14 Update the connections.

 8. Add labels next to the text fields or set their placeholder text in the Attributes inspec-
tor so that people know what data goes where.

 9. In order to get to the new EditableDetailViewController, add a detail disclo-
sure accessory to the prototype cell on the DetailViewController, as shown in

C H A P T E R S E V E N T E E N B A C K T O T H E S T O R Y B O A R D :
E N H A N C I N G T H E I N T E R F A C E 333

Figure 17-15. Select the prototype cell (there’s only one at this point), and set its acces-
sory to Detail Disclosure.

Figure 17-15 Add a detail disclosure accessory to the prototype cell.

 10. Command-drag from the detail disclosure accessory to the new EditableDetail
ViewController. This will create a segue. Select the segue and set its values using
the Attributes inspector, as shown in Figure 17-16. The values should be:

• Identifier—editableDetailsSegue

• Style—Modal

• Presentation—Form Sheet

• Transition—Default

 11. Use the Animates checkbox.

i O S 6 F O U N D A T I O N S334

Figure 17-16 Connect the detail disclosure accessory to the editable view.

Adding the Segue to the Code
You use segues in storyboards to describe the transition from one view controller to another
graphically. Almost all the time, you match the storyboard segue to code that handles the
data side of that transition. That code normally appears in prepareForSegue: sender:
for the view controller that initiates the segue (the sender).

You saw this in MasterViewController where prepareForSegue: sender was used to
move the managed object context and the detail item itself to the destination view control-
ler. Along the way, you typically coerce the segue’s source and destination view controllers to
your subclasses of UIViewController. Also, to make this work, you typically import the .h
files for your subclasses.

Here’s the code from MasterViewController. It’s for comparison only—it’s already in
your project.

- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)

sender

{

 if ([[segue identifier] isEqualToString:@”showDetail”]) {

 NSIndexPath *indexPath = [self.tableView

 indexPathForSelectedRow];

C H A P T E R S E V E N T E E N B A C K T O T H E S T O R Y B O A R D :
E N H A N C I N G T H E I N T E R F A C E 335

 NSManagedObject *object = [[self fetchedResultsController]

 objectAtIndexPath:indexPath];

 [[segue destinationViewController]

 setDetailItem:(Party*)object];

 if ([[UIDevice currentDevice] userInterfaceIdiom] !=

 UIUserInterfaceIdiomPad) {

 self.detailViewController = (DetailViewController*)[segue

 destinationViewController];

 self.detailViewController.managedObjectContext =

 self.managedObjectContext;

 }

 }

}

For the segue from DetailViewController to EditableDetailViewController,
which you just added, add this line at the top of DetailViewController.m.

#import “EditableDetailViewController.h”

Now add the prepareForSegue: sender: method to DetailViewController.m.

- (void)prepareForSegue:(UIStoryboardSegue *)

 segue sender:(id)sender {

 if ([[segue identifier] isEqualToString:

 @”editableDetailsSegue”]) {

 ((EditableDetailViewController*)segue.

 destinationViewController).managedObjectContext =

 ((DetailViewController*)segue.sourceViewController).

 managedObjectContext;

 ((EditableDetailViewController*)segue.

 destinationViewController).detailItem =

 ((DetailViewController*)segue.sourceViewController).

 detailItem;

 }

}

Adding the Navigation Bar and Buttons
You’ll want a navigation bar with Save and Cancel buttons at the top of your view, as shown
previously in Figure 17-8. Here are the steps to add the navigation bar and the buttons:

 1. Make certain that EditableDetailViewController is centered in the storyboard.

 2. You have to enlarge the view so that it is full size in order to add the navigation bar.

i O S 6 F O U N D A T I O N S336

 3. From the library, drag a navigation bar to the top of EditableDetailView
Controller and place it all the way to the left (it should snap into place). You may
need to do this in two steps: first drag it to the top of the view, and then move it to be
flush with the left edge. The size of your computer display and the mouse/trackpad
parameters as well as your finger dexterity will determine whether it’s one step or two.

 4. Add a bar button item from the library to the left side of the navigation bar (it will snap
into place).

 5. With the button selected, set its identifier to Cancel in the Attributes inspector, as
shown in Figure 17-17.

Figure 17-17 Add a Cancel button at the left.

 6. Similarly, add another button to the right side of the navigation bar and set its identi-
fier to Save.

 7. Using the assistant editor, make certain that the storyboard and EditableDetail
View.h are both visible.

 8. Control-drag from the Cancel button to the interface. You’ll be given a choice of creat-
ing an outlet, an outlet collection, or an action, as shown in Figure 17-18.

 9. Use the pop-up menu to select Action, and then name it cancel (remember that
method names are always lowercase). Figure 17-19 shows the interface.

C H A P T E R S E V E N T E E N B A C K T O T H E S T O R Y B O A R D :
E N H A N C I N G T H E I N T E R F A C E 337

Figure 17-18 Start to create a new action.

Figure 17-19 Specify the action and its name.

i O S 6 F O U N D A T I O N S338

 10. Similarly, create a save method.

 11. In EditableDetailView.m, you’ll see the shells of these two methods (they should
be at the bottom of the file). Add the code shown here to those method shells. Note
that they are identical except that save calls setEditing: animated:.

- (IBAction)cancel:(id)sender {

 [self.presentingViewController

 dismissViewControllerAnimated:YES completion:NULL];

}

- (IBAction)save:(id)sender {

 [self setEditing: NO animated:YES];

 [self.presentingViewController

 dismissViewControllerAnimated:YES completion:NULL];

}

Handling the Date Field
There’s just one more thing to do. All along, that date field has been conspicuous by not being
used. It’s time to use it.

The reason that the date field requires special handling is that the field in the data model is a
date field, and the field in the interface is a text field. You’ll need to convert the string that’s
in the text field to a date and vice versa. As is so often the case with Cocoa and Cocoa Touch
frameworks, decades (literally) of use has given rise to a large number of utility classes and
methods. One such class is NSDateFormatter. Its job is to convert strings to dates and
dates to strings while applying various formatting techniques. The full documentation is
quite extensive, but you can use the code shown here without modification (except for the
name of the text field and the name of the Core Data field).

Converting the Text Field String to a Date
This conversion is needed in EditableDetailViewController.m in setEditing:
animated:. There is already code there from DetailViewController. Find the section
of code that moves the contents of the text fields to the Party object:

((Party*)_detailItem).partyName = _partyNameField.text;

((Party*)_detailItem).location = _locationField.text;

Now, create a date formatter and use it to convert the text field to a date:

NSDateFormatter *dateFormat = [[NSDateFormatter alloc] init];

[dateFormat setDateFormat: @”MM dd yyyy”];

C H A P T E R S E V E N T E E N B A C K T O T H E S T O R Y B O A R D :
E N H A N C I N G T H E I N T E R F A C E 339

NSDate* date = [dateFormat dateFromString:_dateField.text];

((Party*)_detailItem).date = date;

As noted, you can use and reuse this code; just change the name of the text field and the
name of the property. Also note that the formatting string is used precisely, so if you want
slashes or hyphens in it, include them in the string.

Converting a Date to a Text Field String
The reverse transformation needs to take place in DetailViewController.m because
that’s where the data is displayed in the detail view. The code is in configureCell:

atIndexPath:. Look for this code:

case 1:

 {

 cell.textLabel.text = @”Location”;

 cell.detailTextLabel.text =[_detailItem.location description];

 }

break;

Now, rewrite case 2 to match the following code. Note that you’ll need to make this case
into a block with the brackets to avoid a compiler error. Some people simply use the brackets
for all case statements. Remember that the date format delimiters (be they spaces, hyphens,
or anything else) must match the data string.

case 2:

 {

 cell.textLabel.text = @”Date”;

 NSDateFormatter *dateFormat = [[NSDateFormatter alloc] init];

 [dateFormat setDateFormat: @”MM dd yyyy”];

 cell.detailTextLabel.text = [dateFormat

 stringFromDate:self.detailItem.date];

 break;

 }

Handling Relationships to Guests and Food
You still need to add new properties and fields and those steps are the same as you have done
here. But what about guests and menus, which require relationships? There are two ways to
handle relationships in the interface.

i O S 6 F O U N D A T I O N S340

Handling Relationships with Static Fields
When you have a relationship that has a limited number of elements, you can create fields
for each one. For example, if you typically have something like half a dozen or a dozen menu
items, you can create the appropriate number of text fields and handle them just like the text
fields you’ve already used. You now have classes for guests and menus, so just create a new
instance of whichever one you need from the appropriate text field.

For more details, see “Core Data Recipes” on developer.apple.com, which uses this tech-
nique for ingredients.

Handling Relationships with a Table View
If the number of related items is large, you may want to let the user manage a related table
that can have any number of rows. “Core Data Books” on developer.apple.com uses this
technique for books. However, you don’t have to go that far: the master view controller in the
Master-Detail Application template does exactly the same thing when you add a new party.

In this section, you add a new field to the detail view—that field will contain the number of
guests in a related table. In this implementation, the row in the detail view with the number
of guests not only tells you how many guests there are but also provides a home for a detail
disclosure accessory view, which will take you to a table view where you can add the guests
(this will be GuestViewController). Food can work the same way with the related table
containing menu items.

This section shows you the steps to follow to implement the related table. As noted, you
have done these steps previously throughout the book, so they are presented here quickly.

Grouping the Detail View
It makes sense to group the detail view so that the related tables are shown in a separate sec-
tion. There are four steps to grouping the detail view:

 1. Set the grouping style.

 2. Add a second prototype cell to the storyboard.

 3. Update the code.

 4. Connect the GuestViewController to the accessory view.

Set the Grouping Style
Open the iPad storyboard and select the table view in DetailViewController. Using the
Attributes inspector, change the style to Grouped, as shown in Figure 17-20.

C H A P T E R S E V E N T E E N B A C K T O T H E S T O R Y B O A R D :
E N H A N C I N G T H E I N T E R F A C E 341

Figure 17-20 Group the rows.

Add a Second Prototype Cell
Change prototype cells to 2 rather than 1. You will use a second prototype cell for the group
information. The reason you need this separate prototype is so that you can connect its detail
view accessory to the new GuestViewController. Select the new prototype cell and set its
identifier to Grouped Cell in the Attributes inspector (the original prototype cell is called
Detail Cell).

Update the Code
In DetailViewController.m, you need to change cellForRowAt: indexPath: to
use the new prototype cell for section 1.

- (UITableViewCell *)tableView:(UITableView *)tableView

 cellForRowAtIndexPath:(NSIndexPath *)indexPath

{

 UITableViewCell *cell;

 switch ([indexPath section]) {

 case 0:

 {

 cell = [tableView dequeueReusableCellWithIdentifier:

 @”Detail Cell” forIndexPath:indexPath];

 break;

 }

i O S 6 F O U N D A T I O N S342

 case 1:

 {

 cell = [tableView dequeueReusableCellWithIdentifier:

 @”Guest Cell” forIndexPath:indexPath];

 break;

 }

 }

 [self configureCell:cell atIndexPath:indexPath];

 return cell;

}

Likewise, change configureCellAt: indexPath: to accommodate the new section.
Notice the need to convert the NSUInteger to a string for the result of count.

- (void)configureCell:(UITableViewCell *)cell

 atIndexPath:(NSIndexPath *)indexPath

{

 switch ([indexPath section]) {

 case 0:

 {

 switch ([indexPath row]) {

 case 0:

 {

 cell.detailTextLabel.text =

 [self.detailItem.partyName description];

 cell.textLabel.text = @”Party Name”;

 break;

 }

 case 1:

 {

 cell.textLabel.text = @”Location”;

 cell.detailTextLabel.text =

 [self.detailItem.location description];

 break;

 }

 case 2:

 {

 cell.textLabel.text = @”Date”;

 NSDateFormatter *dateFormat =

 [[NSDateFormatter alloc] init];

 [dateFormat setDateFormat: @”MM dd yyyy”];

 cell.detailTextLabel.text = [dateFormat

 stringFromDate:self.detailItem.date];

C H A P T E R S E V E N T E E N B A C K T O T H E S T O R Y B O A R D :
E N H A N C I N G T H E I N T E R F A C E 343

 break;

 }

 default:

 break;

 }

 break;

 } // section 0

 case 1:{

 cell.textLabel.text = @”Guests”;

 NSUInteger theCount = [self.detailItem.guests count];

 cell.detailTextLabel.text =[NSString stringWithFormat:

 @”%d”, theCount];

 } // case of section 1 -- only all rows will use this

 } //end of switch for cases

}

Now change the style in the code to reflect the number of rows and sections. This code needs
to be added; it wasn’t needed when you only had one section because that’s the default.

- (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView {

 return 2;

}

Change tableView: numberOfRowsInSection: to return 3 for section 0 and 1 for the
new section 1 (section numbers are zero-relative):

- (NSInteger)tableView:(UITableView *)tableView

 numberOfRowsInSection:(NSInteger)section

{

 switch (section) {

 case 0:

 {

 return 3;

 break;

 }

 case 1:

 {

 return 1;

 break;

 }

 } // end switch

 return 1; // default shouldn’t get here

}

i O S 6 F O U N D A T I O N S344

Implementing the Guest View Controller
GuestViewController is another UITableViewController—just like DetailView
Controller. Its structure and conventions mirror those of DetailViewController.

Begin by creating a new Objective-C class using File➜New➜File, as shown in Figure 17-21.

Figure 17-21 Create the new file.

Name it GuestViewController and make it a subclass of UITableViewController, as
shown in Figure 17-22.

Figure 17-22 Specify the class name.

C H A P T E R S E V E N T E E N B A C K T O T H E S T O R Y B O A R D :
E N H A N C I N G T H E I N T E R F A C E 345

Save it and add it to your project, as shown in Figure 17-23.

Figure 17-23 Save the file.

GuestViewController.h
Inside this new class, you’ll need the detailItem (the current Party) and the managed view
controller. Just as you have done before, when you connect the new view with the storyboard,
you’ll set this values from the view that presents it. Thus, DetailViewController in its
prepareForSegue: sender: method will do the work to set up GuestViewController.

Here’s how the header file should look (remember to add the forward declaration for Party):

#import <UIKit/UIKit.h>

@class Party;

@interface GuestViewController : UITableViewController

@property (strong, nonatomic) Party * detailItem; //jf

@property (strong, nonatomic) NSManagedObjectContext

*managedObjectContext;

@end

i O S 6 F O U N D A T I O N S346

GuestViewController.m
You need to implement a sorted guests array in memory just as you’ve done before with
sortedParties in MasterViewController. When you download the code for the end
of this chapter, you should take a few minutes to look it over; it should look very familiar.

Because this code is repetitive, it’s not shown again here. You can find it in the downloadable files.

Connect the Guest View Controller to the Accessory View
In the iPad storyboard, create a new table view controller from the library. Position it to the
right of DetailViewController (perhaps below EditableDetailViewController).
Change its class to GuestViewController and set up the prototype cell. You might call it
Guest Cell because you’ll need the identifier for shortly.

Connect the detail disclosure accessory view in the second prototype cell of DetailView
Controller to GuestViewController. Make the connection a Push segue so that the
navigation bar will be shown at the top.

Create an Add button at the right of the navigation bar by dragging a bar button item
from the library and setting its class to Add. Then, Control-drag from it to GuestView
Controller.h to create an Add method.

Update prepareForSegue: sender: in DetailViewController.m to pass the
detailItem and managed object context down to GuestViewController for this segue.

At the top of DetailViewController.m, add:

#import “GuestViewController.h”

Then add code so that prepareForSegue: sender: looks like this:

- (void)prepareForSegue:(UIStoryboardSegue *)segue sender:(id)

sender {

 if ([[segue identifier] isEqualToString:

@”editableDetailsSegue”])

 {

 ((EditableDetailViewController*)segue.

 destinationViewController).managedObjectContext =

 ((DetailViewController*)segue.sourceViewController).

 managedObjectContext;

 ((EditableDetailViewController*)segue.

 destinationViewController).

C H A P T E R S E V E N T E E N B A C K T O T H E S T O R Y B O A R D :
E N H A N C I N G T H E I N T E R F A C E 347

 detailItem =

 ((DetailViewController*)segue.sourceViewController).

 detailItem;

 } else {

 if ([[segue identifier] isEqualToString: @”guestViewSegue”])

 {

 ((GuestViewController*)segue.destinationViewController).

 managedObjectContext =

 ((EditableDetailViewController*)segue.

 sourceViewController).

 managedObjectContext;

 ((GuestViewController*)segue.destinationViewController).

 detailItem =

 ((EditableDetailViewController*)segue.

 sourceViewController).

 detailItem;

 } // if

 } //else

}

The final step is to apply these changes to the iPhone storyboard. It’s basically a process of
repeating the steps. Because the properties and actions were created when you updated the
iPad storyboard, it should just be a matter of making the connections.

Summary
This chapter returns to the starting point: the user interface in your storyboard. As you
implement new features in your apps, you’ll find yourself repeating the steps you’ve seen in
this book. Control-dragging on a storyboard to create a new outlet or action will become
second nature. Xcode provides you with declarations and shells for your methods: you just
have to write the code.

As you explore more of the classes in Cocoa Touch, you’ll find yourself repeatedly subclassing
existing classes and implementing delegates. These processes happen over and over again.
You’ll come to realize that when you want to implement new functionality, it often is merely
a few lines of code; the call to super to get the basic class functionality does most of
the work.

iOS and Cocoa Touch are a new way of developing software for many people. Don’t try to
map these new tools and techniques to older technologies you know. Adopt them, enjoy
them, and use them to provide what Apple so often describes as a “beautiful experience.”

Index

A
abort() call, 313
absolute path setting, 49, 107
accessors

about, 267
using for declared properties, 266–268

accessory view, connecting view controller
to, 346–347

action sheets
about, 309–312
using, 315–317

action/manual segues, compared with
relationship segues, 268–269

actions, 105, 205
Activity Viewer, 32
adding

buttons, 188–189, 312–313
displayOrder attribute, 278–282
error information, 300–301
fields to storyboards, 174–178
log messages, 307–308
managed object context to

MasterViewController class,
159–162

navigation bar and buttons, 335–338
objects, 98–100, 290–292
second prototype cell, 341
segues to code, 334–335
table view

on iPad, 257–262
on iPhone, 252–257

your perspective to error messages,
301–302

adjusting
data model to store row sequence,

276–282
detailItem from an id to an instance of

Party, 270

existing connections, 167
file location, 107–108
interface for editing, 189–192

adopting protocols, 233
alerts

about, 297–298, 309–312
analyzing, 299–302
with multiple buttons, 310, 312–315
posting, 305–307
Save, 299–300

alignment rect, 124
analyzing alerts, 299–302
App Store

about, 9
settings, 57–59
submitting apps to, 55–62

AppDelegate class, 211–212, 233
AppDelegate.h file, 158
AppDelegate.m file, 156, 203
Apple

Developer Technical Support (DTS),
15, 202

Hello World program, 16
Worldwide Developers Conference

(WWDC), 15–16, 120
application:didFinishLaunchingWith

Options:, 161, 162, 187, 203, 213–214
apps (applications)

about, 9–10
describing requirements, 61, 64
identifying, 56–59, 64
submitting to App Store, 55–62
testing, 198–200. See also debugger
universal, 11, 186–188

ARC (automatic reference counting), 202
arrayWithArray:, 285
assigning objects to delegates, 233–234

350 i O S 6 F O U N D A T I O N S

Assistant Editor, 168
attributes

displayOrder, 278–283, 287–290,
292–293

filling in for entities, 134–135
partyName, 153, 177
setting of new managed objects, 163–164

Attributes Inspector
about, 106
using, 110–111

Attributes table, 74
Auto Layout

about, 11, 119–120, 123
constraints, 124, 125
content compression resistance

priority, 125
content hugging, 125
editing priorities, 125–126
intrinsic content, 124
menus, 126–127
setting priorities, 125–126
using, 108, 123–127

automatic reference counting (ARC), 202

B
Back navigation button, 30
backing variable, 104, 266–267
basic template, debugger from, 202–203
Behaviors preferences, configuring, 205–207
borderStyle, 189
breakpoint gutter, 207
breakpoints

disabling, 32
editing, 214–215
enabling, 32
setting(s), 207–212

building
classes from data model, 145–148
connections, 167–169
data models, 76–78
databases, 142
detail view controller, 142–151
iPad interface, 180–181
new managed objects, 162
Party Class from data model, 144–151
projects, 31, 68–72

properties, 178–179
relationships, 136–139, 136–141
split view controller, 96
view controllers, 94–98

bundle settings, 57
buttons

adding, 188–189, 312–313
alerts with multiple, 310, 312–315
Back navigation, 30
connecting, 114
Edit-Done, 186–189
Editor, 32–33
Forward navigation, 30
handling, 313–315
navigation, 335–338
Step Over, 210
View, 33–34

C
calculating displayOrder property for

moves, 287–289
cardinality, 140
Cascade setting, 140
category, 60, 64, 149
cellForRowAtIndexPath:, 240
changing

data model to store row sequence,
276–282

detailItem from an id to an instance
of Party, 270

existing connections, 167
file location, 107–108
interface for editing, 189–192

checking connections
existing, 164–166
from .h file, 164–165
from storyboards, 166

choosing
schemes, 31–32
templates, 67

class extensions, 238
classes

AppDelegate, 211–212, 233
creating from data model, 145–148
declaring properties for, 104
defined, 17

351I N D E X

DetailViewController

adding buttons, 188
adjusting interface for editing, 191
cleaning up experiments, 170
connecting Guest view controller to

accessory view, 346–347
converting dates to text field

strings, 339
creating iPad interface, 181
grouping detail view, 340–341
implementing Guest view controller,

344–347
in Objective-C, 18
reusing basic detail data code, 328
setting classes, 109

EditableDetailViewController,
330–334, 338–339, 346–347

immutable, 284
instantiated, 17
MasterViewController

about, 238, 239
adding managed object context to,

159–162
adding segues to code, 334
formatting table cells, 245
GuestViewController.m, 346
in Objective-C, 18
setting up Edit-Done button, 186
setting up iPad managed object

context, 187
setting up iPhone managed object

context, 188
UITableView high-level

architecture, 231
NSArray, 284
NSDictionary, 301
NSManagedObject, 144, 149, 162,

269–270
Party, 144–151, 153–164, 193–194
renaming, 107
setting(s), 109
UIViewController, 18, 88,

211–212, 220
cleaning up experiments, 170–174
clearing out text fields on iPhone, 248–252
Cocoa Touch, 20

code completion, 39, 41, 148–150
code listing

altered setEditing: animated:, 251
application:didFinishLaunching

WithOptions: in MasterView
Controller.m, 161

fetchedResultsController, 159–160,
277–278

Food.h file, 150
Food.m file, 151
implementing

NSFetchedResultsController

Delegate protocol, 242–244
implementing UITableViewDataSource

methods, 240–241
insertNewObject in

MasterViewController.m, 154–155
MasterViewController.m, 239–240
Party.m file, 150
preparing for segues, 242
showing alerts, 312–313
UITableViewDelegate protocol

methods, 241
Code Snippets icon, 51
coercing objects, 270
comparing

iPad and iPhone interfaces, 324
relationship and action/manual

segues, 268–269
Configurations section, 74
configureCell: atIndexPath:,

272–274
configureCell: method, 238, 272–274
configureCellAt: method, 342
configureView method, 180, 268, 271
configuring

Behaviors preferences, 205–207
detail item, 271
single table cells, 265–274

connecting
buttons, 114
guest view controller to accessory

view, 346–347
interface elements to properties, 164–170
properties, 178–179

352 i O S 6 F O U N D A T I O N S

connections
checking

from .h file, 164–165
from storyboards, 166

creating, 167–169
existing, 164–167

Connections inspector
about, 106
using, 113–117

considerations, data, 66
console messages, writing, 212–214
constraints, 124, 125
container view controllers, 88–90
containerView, 211–212
content compression resistance priority, 125
content hugging, 125
content view controllers, 88
controls

debugger, 205
navigator, 44–47, 90, 93

converting
dates to text field strings, 339
detail view

to table view for iPhone, 246–257
to table view on iPad, 257–262

text field strings to dates, 338–339
Core Data

about, 38, 72–76
migration code in, 143
stack, 155–162, 277

CoreDataGeneratedAccessors, 149
creating

classes from data model, 145–148
connections, 167–169
data models, 76–78
databases, 142
detail view controller, 142–151
iPad interface, 180–181
new managed objects, 162
Party Class from data model, 144–151
projects, 31, 68–72
properties, 178–179
relationships, 136–141
split view controller, 96
view controllers, 94–98

curved-arrow, 205

D
data

considerations, 66
displaying, 180, 228–229
getting started with, 72–78
marketing, 59–61, 64
moving to Party instance, 193–194
for Party Planner app, 72–78
persistent, 65
quantity of, 65–66
retrieving, 183
tracking, 65–66
using table views for displaying, 228–229

data, saving and restoring
about, 183–185, 192–198
adjusting interface for editing, 189–192
Edit-Done button, 186–189
Editing interface, 185–186
retrieving data, 198
testing apps, 198–200

data models
about, 131–132
building

about, 76–78
detail view controller, 142–151
relationships, 136–141

creating
classes from, 145–148
Party Class from, 144–151

expanding interface with
entities, 132–133

filling in attributes for entities, 134–135
modifying to store row sequence, 276–282

data source
defined, 230
implementing for detail view controller,

271–272
protocol in UITableView, 235–237
using fetched results controllers as, 284

data store
implementing error alerts, 303–308
refreshing, 282

databases, 142
dataSource property, 283
date field, 177, 338–339

353I N D E X

debugger
about, 201–202
from basic template, 202–203
controls, 205
editing breakpoints, 214–215
setting breakpoints, 207–212
setting up, 204–207
writing console messages, 212–214

declaring
delegates that adopt protocols, 233
instance variables, 104
properties for classes, 104
protocols, 234–235

delegate object, 313
delegates

about, 231–232
assigning objects to, 233–234
declaring that adopt protocols, 233
defined, 230
protocol in UITableView, 235–237
structure, 232

Delete Rule setting, 140
deleting objects, 292–293
Deny setting, 140
describing apps, 61, 64
description method, 213, 274
descriptionWithLocale:, 213
designing Party Planner app, 65–66
detail data view

about, 153–154
connecting interface elements to

properties, 164–170
creating iPad interface, 180–181
layout, 170–180
Party class, 154–164

detail items
configuring, 271
setting, 266–269

detail view
about, 11
converting

to table view for iPhone, 246–257
to table view on iPad, 257–262

grouping, 340–343

detail view controller
building, 142–151
implementing

data source protocol for, 271–272
table view delegate protocol for,

272–274
detailDescriptionField, 167, 180
detailDescriptionLabel, 104, 115–116
detailItem property, 193, 266–270, 345
DetailViewController class

adding buttons, 188
adjusting interface for editing, 191
cleaning up experiments, 170
connecting Guest view controller to

accessory view, 346–347
converting dates to text field strings, 339
creating iPad interface, 181
grouping detail view, 340–341
implementing Guest view controller,

344–347
in Objective-C, 18
reusing basic detail data code, 328
setting classes, 109

DetailViewController.h file, 178, 192
DetailViewController.m file, 180, 266,

271–274, 341–343
Developer Technical Services (DTS), 15, 202
developers

point of view of, 9
registering as, 15–16

devices, for apps, 61, 64
disabling breakpoints, 32
disclosure indicator, 221
disclosure triangles, 211–212, 228
discoverability, 59–61, 64
displaying

alerts, 312–313
data, 180, 228–229

displayOrder attribute, 278–283, 287–290,
292–293

document outline, 90
down-pointing arrow, 205
DTS (Developer Technical Services), 15, 202

354 i O S 6 F O U N D A T I O N S

E
Edit mode, implementing, 183
EditableDetailViewController class,

330–334, 338–339, 346–347
editButtonItem, 188
Edit-Done button, setting up, 186–189
editing

adjusting interface for, 189–192
Assistant Editor, 168
basic Party data, 327–339
breakpoints, 214–215
priorities, 125–126
storyboards, 330–334
table views. See table views

Editing interface, 185–186
Editing preferences, 39
Editor area

about, 37–39
code completion, 39, 41–42
Editing preferences, 39
Fix-It feature, 40–41
handling indentation, 39–40

Editor buttons, 32–33
"elevator speech," 56
Empty Application template, 68
enabling

breakpoints, 32
table view reordering features, 282–283

entities
expanding interface with, 132–133
filling in attributes for, 134–135

Entities section, 74
error parameter, 300–301
errors

adding perspective, 300–301
finding, 204–205
handling, 302–303
non-error, 303–305

existing connections
changing, 167
checking, 164–166
removing, 166–167

Exit icon, 117
expanding interface with entities, 132–133
experiments, cleaning up, 170–174

F
fault, 159
Fetch Requests section, 74
Fetched Properties table, 74
fetched results controller, 276–278, 284
fetchedObjects property, 284
fetchedResultsController property

about, 156
code listing, 159–160, 277–278

fields, adding to storyboards, 174–178
File inspector

about, 49–50, 105
using, 106–108

files
changing location, 107–108
renaming, 107

Files icon, 51
File's Owner icon, 115
filling in attributes for entities, 134–135
finding

errors, 204–205
missing files, 44

First Responder icon, 117
Fix-It feature, 40–41
flowcharts, 82
focus, 226
Food.h file, 150
Food.m file, 151
formatting table cells. See table cells
Forward navigation button, 30
frameworks, 19
function, 19

G
getters, 267
getting started

about, 7
apps, 9–10
basic programming concepts, 16–21
with data, 72–78
installing and using Xcode, 21–23
Master-Detail Application template, 10–14
registering as a developer, 15–16
research, 8–9

Git, 72, 303

355I N D E X

graphical coding, 20
grouping detail view, 340–343
groups, 43–44
Guest view controller

connecting to accessory view, 346–347
implementing, 344–347

GuestViewController, 341, 344–347
GuestViewController.h file, 345
GuestViewController.m file, 346

H
.h file

about, 238
checking connections from, 164–165

handling
action sheets, 316–317
buttons, 313–315
date field, 338–339
errors, 302–303
indentation, 39–40
non-error errors, 303–305
relationships

with static fields, 340
with table views, 340–343

universal apps, 186–188
Hello World program (Apple), 16
hierarchy of container view

controllers, 89–90

I
IBAction property, 105
IBOutlet property, 104, 105, 167, 168, 181
icons, for your apps, 60, 64
identifying apps, 56–59, 64
Identity Inspector

about, 106
using, 108–110

immutable array, 285
immutable class, 284
implementing

data source protocol for detail view
controller, 271–272

data store error alerts, 303–308
Edit mode, 183
Guest view controller, 344–347

NSFetchedResultsController

Delegate protocol, 242–244
setEditing:, 189
table view delegate protocol for detail view

controller, 272–274
UITableViewDataSource methods,

240–241
indentation, handling, 39–40
inheritance, multiple, 232
insertNewObject:, 154–155, 162, 163,

239, 290
inspecting

objects, 211–212
variables, 208–211

inspectors, 50–51. See also specific inspectors
installing Xcode, 21–23
instance variables, declaring, 104
instantiated class, 17
integration features, specifying, 62, 65
interface

adjusting for editing, 189–192
clean-up, 319–320
comparing iPad and iPhone, 324
connecting elements to properties,

164–170
Editing, 185–186
editing basic Party data, 327–339
expanding with entities, 132–133
handling relationships to guests and food,

339–347
iPad, 180–181
iPhone, 324
storyboards, 320–326

Interface Builder
about, 119–120
Auto Layout, 123–127
springs, 120–123
struts, 120–123

intrinsic content, 124
inverse relationships, 137
iOS 6. See also specific topics

about, 2, 20
getting started, 7–23
reviewing user interaction on, 298–299
using modes on, 311–312
Xcode, 26–51

356 i O S 6 F O U N D A T I O N S

iOS Simulator, 83–87
iPad

adding table view on, 257–262
converting detail view to table view on,

257–262
interface, 180–181, 324
setting up managed object context, 187
using views on, 225–227

iPhone
adding

objects from library, 98–100
table view on, 252–257

clearing out text fields on, 248–252
converting detail view to table view for,

246–257
interface, 324
setting up managed object context, 188
using views on, 220–224

iPhone simulator, 88–93. See also iOS
Simulator

iPhone storyboard
about, 81–82
creating view controllers, 94–98
iOS Simulator, 83–87

iTunes Connect Developer Guide (website), 58

J
jump bar

about, 27
Back/Forward navigation buttons, 30
navigating with, 30
related items pop-up menu, 27–30

K
key-value coding (KVC), 144–145
keywords, for your apps, 64

L
label, setting(s), 109–110
languages, for your apps, 60, 64
layout, 170–180. See also Interface Builder
libraries

adding objects from, 98–100
using, 51

listings, code
altered setEditing: animated:, 251
application:didFinishLaunching

WithOptions: in MasterView
Controller.m, 161

fetchedResultsController, 159–160,
277–278

Food.h file, 150
Food.m file, 151
implementing

NSFetchedResultsController

Delegate protocol, 242–244
implementing UITableViewDataSource

methods, 240–241
insertNewObject in MasterView

Controller.m, 154–155
MasterViewController.m, 239–240
Party.m file, 150
preparing for segues, 242
showing alerts, 312–313
UITableViewDelegate protocol

methods, 241
loadOrderedPartiesArrayFromFetched

ResultsController, 290
Location field, 177
log messages, adding, 307–308

M
.m file, 238–240
mainViewController, 170
managed object context

adding to MasterViewController,
159–162

saving, 164
setting up, 159

managed objects
creating new, 162
setting attributes of new, 163–164
setting up, 157–158

managedObjectContext property, 161, 186
managing

action sheets, 316–317
buttons, 313–315
date field, 338–339
errors, 302–303

357I N D E X

indentation, 39–40
non-error errors, 303–305
relationships

with static fields, 340
with table views, 340–343

universal apps, 186–188
marketing data, 59–61, 64
master view, 11
master view controller

about, 238
.h file, 238
.m file, 238–240

Master-Detail Application template, 10–14, 73
MasterViewController class

about, 238, 239
adding managed object context to,

159–162
adding segues to code, 334
formatting table cells, 245
GuestViewController.m, 346
in Objective-C, 18
setting up Edit-Done button, 186
setting up iPad managed object

context, 187
setting up iPhone managed object

context, 188
UITableView high-level

architecture, 231
MasterViewController.h file, 156
MasterViewController.m file, 239–240,

269, 282–283
measurement, units of, 112
Media icon, 51
menus, working with, 126–127
messaging, in Objective-C, 19–21
methods

configureCell:, 238, 272–274
configureCellAt:, 342
configureView, 180, 268, 271
defined, 17
description, 213, 274
prepareForSegue: sender:, 269, 334,

345–347
tableView: numberOfRowsIn

Section:, 272

tableView:cellForRowAtIndex

Path:, 272
tableView:didSelectRowAtIndex

Path:, 269
tableView:moveRowAtIndexPath:to

IndexPath:, 283
UITableViewDataSource, 235, 237,

238, 240–241, 245, 265, 272, 283
UITableViewDelegate, 235, 237, 238,

241, 245
missing files, finding, 44
modal views, 311
Model-View-Controller (MVC) architecture,

20–21
modes, using on iOS, 311–312
modifying

data model to store row sequence,
276–282

detailItem from an id to an instance
of Party, 270

existing connections, 167
file location, 107–108
interface for editing, 189–192

"money question," 54–55
moving

data to Party instance, 193–194
rows, 283–289

multiple inheritance, 232
MVC (Model-View-Controller) architecture,

20–21

N
navigating

controls, 44–47, 90, 93
with jump bar, 30

navigation bar/buttons, adding, 335–338
navigationController variable, 211–212
navigationItem property, 188
Navigator area

about, 42
project navigator, 42–47
search navigator, 47–48

newManagedObject:, 162
No action setting, 140
non-error errors, 303–305

358 i O S 6 F O U N D A T I O N S

NSArray class, 284
NSDictionary class, 301
NSError object, 297–298, 300–305, 307–308
NSFetchedResultsController, 284, 285
NSFetchedResultsController

Delegate protocol, 238, 242–244
NSIndexPath instance, 231, 273–274
NSInteger, 273–274, 301
NSLog function, 212–214
NSManagedObject class, 144, 149, 162,

269–270
NSMutableArray, 284
NSObject, 270, 273–274
NSString, 301
Nullify setting, 140

O
Objective-C

messaging in, 19–21
object-oriented programming in, 17–21
objects in, 17–18

object-oriented programming, in Objective-C,
17–21

objects
adding, 98–100, 290–292
adding from library, 98–100
assigning to delegates, 233–234
coercing, 270
defined, 17
delegate, 313
deleting, 292–293
inspecting, 211–212
NSError, 297–298, 300–305, 307–308
in Objective-C, 17–18
self, 211–212
setup, 320

Objects icon, 51
on-screen controls, for Xcode, 27
OpenGL Game template, 68
Optional setting, 139
orderedParties array, 290
Organizer, 35
otherButtonTitles parameter, 312–313
outlets, 104

P
panes, resizing, 49
Party class

about, 153
creating from data model, 144–151
moving data to, 193–194
using, 154–164

Party Planner app
about, 63
data, 72–78
designing, 65–66
planning, 63–65
storyboard inspectors, 102–103
template, 67–72

Party.h file, 148–150, 176
Party.m file, 150
partyName attribute, 153, 177
partyNameField, 174–176
persistent data, 65
persistent store coordinator, setting up,

158–159
perspective, adding, 300–302
pinning, 126
planning apps

about, 53, 62
"money question," 54–55
Party Planner, 63–65
submitting apps to App Store, 55–62
version 2, 55

PlattInfo, 323
points, 112
posting alerts, 305–307
#pragma directives, 271
preferences

Behaviors, 205–207
Editing, 39

prepareForSegue: sender: method,
269, 334, 345–347

preparing
prototype cell in storyboard, 262–265
for segues, 242
version 2, 55

price tier, for your apps, 59, 64
printf function, 19
priorities, setting and editing, 125–126

359I N D E X

programming concepts
about, 16–17
messaging in Objective-C, 19–21
objects in Objective-C, 17–18

project navigator
about, 42–43
controls, 44–47
finding missing files, 44
groups, 43–44

projects
about, 36–37
building, 31
creating, 68–72
running, 31
Xcode, 36–37

properties
connecting

about, 178–179
interface elements to, 164–170

creating, 178–179
dataSource, 283
declaring for classes, 104
defined, 17
detailItem, 193, 266–270, 345
fetchedObjects, 284
fetchedResultsController, 156,

159–160, 277–278
IBAction, 105
IBOutlet, 104, 105, 167, 168, 181
managedObjectContext, 161, 186
navigationItem, 188
rootViewController, 162
UIApplication, 233
userInfo, 301, 303–305
weakly-typed, 237

property accessors, 266
@property compiler directive, 104
protocols

about, 231–232
adopting, 233
declaring

about, 234–235
delegates that adopt, 233

structure, 232
prototype cell, preparing in storyboard,

262–265

Q
quantity of data, 65–66
Quick Help, 50, 105

R
rating your apps, 61, 64
reading reviews, 19
rearranging elements in table view, 283–287
refining relationships, 139–140
refreshing data store, 282
registering as developers, 15–16
related items pop-up menu, 27–30
relationship segues, compared with action/

manual segues, 268–269
relationships

building, 136–141
creating, 136–139
handling

with static fields, 340
with table views, 340–343

inverse, 137
refining, 139–140

Relationships table, 74
relative to build products setting, 50, 107
relative to developer directory setting, 50, 107
relative to group setting, 49, 107–108
relative to project setting, 50, 107, 108
relative to SDK setting, 50, 107
removing

configureView, 271
database, 142
existing connections, 166–167

renaming classes/files, 107
reordering features, of table view, 282–283
requirements, describing for apps, 61, 64
research, 8–9
resizing panes, 49
restoring data. See data, saving and restoring
retrieving data, 183, 198
return statement, 205
returning single table cells, 265–274
reusing basic detail data code, 327–330
reviewing user interaction on iOS, 298–299
reviews, reading, 9
right-pointing arrow, 205
root view controller, 93

360 i O S 6 F O U N D A T I O N S

rootViewController property, 162
rotating simulator, 11
rows, 283–289
running projects, 31

S
Save alerts, 299–300
saving

data. See data, saving and restoring
managed object context, 164
row order, 283–289

scenes. See also Interface Builder
about, 88
defined, 88
navigation controller, 93
in storyboards, 92–93
view considerations, 90
view controllers, 88–90

schemes, choosing, 31–32
screenshots, for your apps, 61, 64
search navigator, 47–48
segues

about, 90, 266
adding to code, 334–335
comparing relationship and action/manual,

268–269
defined, 88
navigation controller, 93
preparing for, 242
in storyboards, 93

selecting
schemes, 31–32
templates, 67

selector bars, 35
self object, 211–212
self-join, 137
setEditing:, implementing, 189
setEditing: animated:, 190, 192, 193,

251, 300, 338–339
setters, 267
setting(s)

absolute path, 49, 107
for App Store, 57–59
attributes of new managed objects,

163–164
breakpoints, 207–212

bundle, 57
Cascade, 140
class, 109
Delete Rule, 140
Deny, 140
detail items, 266–269
grouping style, 340–341
label, 109–110
marketing data, 59–61, 64
No action, 140
Nullify, 140
Optional, 139
priorities, 125–126
relative to build products, 50, 107
relative to developer directory, 50, 107
relative to group, 49, 107–108
relative to project, 50, 107, 108
relative to SDK, 50, 107
To-Many Relationship, 140

setup
debuggers, 204–207
Edit-Done button, 186–189
iPad managed object context, 187
iPhone managed object context, 188
managed object context, 159
managed object model, 157–158
objects, 320
persistent store coordinator, 158–159

showing
alerts, 312–313
data, 180, 228–229

simulator, rotating, 11
Single View Application template, 67
Size inspector

about, 106
using, 111–113

sortedParties, 346
specifying integration features, 62, 65
split view, 10–11
split view controllers

about, 89
creating, 96

springs, 120–123
static fields, handling relationships with, 340
Step Over button, 210
store(s), for your apps, 59, 64

361I N D E X

storyboard inspectors
about, 102, 105–107
actions, 104–105
Attributes inspector, 110–111
Connections inspector, 113–117
File inspector, 106–108
Identity inspector, 108–110
outlets, 104–105
Party Planner app, 102–103
Size inspector, 111–113

storyboards. See also iPhone storyboard
about, 11, 81–82, 90–93
adding fields to, 174–178
checking connections from, 166
defined, 3
editing, 330–334
preparing prototype cell in, 262–265
scenes in, 92–93
segues in, 93
storyboarding process, 82
templates and, 82, 88–93
using, 320–321

struts, 120–123
subclass, 18
submitting apps to App Store, 55–62
subroutine, 19
@synthesize compiler, 266

T
tab bar, 35–36
tab bar controllers, 90
Tabbed Application template, 67, 325–326
table cells

about, 245–246
configuring and returning single, 265–274
converting detail view to table view

on iPad, 257–262
for iPhone, 246–257

preparing prototype cell in storyboard,
262–265

table style, 74
table views

about, 88, 219–227, 275–276
adding

on iPad, 257–262
on iPhone, 252–257
new objects, 290–292

converting detail view to
on iPad, 257–262
for iPhone, 246–257

delegate protocol, implementing for detail
view controller, 272–274

delegates, 231–237
deleting existing objects, 292–293
enabling reordering features, 282–283
handling relationships with, 340–343
MasterViewController, 238–244
modifying data model to store row

sequence, 276–282
moving rows and saving new order,

283–289
protocols, 231–237
UITableView high-level architecture,

219–231
using for data display and

editing, 218–229
tableView:numberOfRowsInSection:

method, 272
tableView:cellForRowAtIndexPath:

method, 272
tableView:didSelectRowAtIndexPath:

method, 269
tableView:moveRowAtIndexPath:

toIndexPath: method, 283
tap, 103
templates. See also table views

choosing, 67
debugger from, 202–203
Empty Application, 68
Master-Detail Application, 10–14, 73
OpenGL Game, 68
Page-Based Application, 68
for Party Planner app, 67–72
storyboards and, 82, 88–93
Tabbed Application, 67, 325–326
Utility Application, 321–324

testing apps, 198–200. See also debugger
text fields

clearing out on iPhone, 248–252
converting

to dates, 338–339
dates to, 339

To-Many Relationship setting, 140

362 i O S 6 F O U N D A T I O N S

toolbar
about, 30–31
Activity Viewer, 32
building projects, 31
choosing schemes, 31–32
disabling breakpoints, 32
Editor buttons, 32–33
enabling breakpoints, 32
Organizer, 35
running projects, 31
selector bars, 35
View buttons, 33–34

tracking
data, 65–66
protocol in UITableView, 235–237

Treehouse, 4
triggers, 205

U
UIActionSheetDelegate protocol,

316–317
UIAlertView, 305–307
UIAlertViewDelegate protocol, 313–315
UIApplication property, 233
UIApplicationDelegate protocol,

233, 234
UIApplication.h file, 233
UIApplicationMain, 234
UILabel, 104
UINavigationController, 211–212
UIResponder, 233
UITableView, 67, 220, 221, 229–232,

235–237, 282–283
UITableViewCell, 265
UITableViewController, 220, 221, 231,

235–237, 245, 268, 344–347
UITableViewDataSource method, 235,

237, 238, 240–241, 245, 265, 272, 283
UITableViewDelegate method, 235, 237,

238, 241, 245
UITextBorderStyleNone, 189
UITextBorderStyleRoundedRect,

189, 191

UIViewController class, 18, 88,
211–212, 220

units of measurement, 112
universal apps

about, 11
handling, 186–188

updating code, 341–343
up-pointing arrow, 205
user input. See action sheets; alerts
user interaction, reviewing on iOS, 298–299
userInfo property, 301, 303–305
userInterfaceIdiom, 186
utilities

about, 49
File inspector, 49–50
inspectors, 50–51
libraries, 51
Quick Help, 50

Utility Application template, 67, 321–324

V
variables

backing, 104, 266–267
navigationController, 211–212
weakly-typed, 237

variables, inspecting, 208–211
verifying connections

existing, 164–166
from .h file, 164–165
from storyboards, 166

version
app requirements, 61
preparing, 55
for your apps, 64

view, 115–116
View buttons, 33–34
View Controller Catalog for iOS, 89
view controllers

creating, 94–98
guest, 346–347
hierarchy, 89–90
scenes, 88–90
three icons below in storyboard, 114–117

viewDidLoad, 188–189, 268

363I N D E X

views. See also Interface Builder
accessory, 346–347
detail

about, 11
converting to table view for iPhone,

246–257
converting to table view for iPad,

257–262
grouping, 340–343

detail data
about, 153–154
connecting interface elements to

properties, 164–170
creating iPad interface, 180–181
layout, 170–180
Party class, 154–164

detail view controller
building, 142–151
implementing data source protocol for,

271–272
implementing table view delegate

protocol for, 272–274
Guest view controller

connecting to accessory view, 346–347
implementing, 344–347

master, 11
master view controller

about, 238
.h file, 238
.m file, 238–240

modal, 311
root view controller, 93
split, 10–11
split view controller

about, 89
creating, 96

table
about, 88, 219–227, 275–276
adding new objects, 290–292
adding on iPad, 257–262
adding on iPhone, 252–257
converting detail view for iPhone,

246–257
converting detail view for iPad,

257–262

delegate protocol, implementing for
detail view controller, 272–274

delegates, 231–237
deleting existing objects, 292–293
enabling reordering features, 282–283
handling relationships with, 340–343
MasterViewController, 238–244
modifying data model to store row

sequence, 276–282
moving rows and saving new order,

283–289
protocols, 231–237
UITableView high-level architecture,

219–231
using for data display and editing,

218–229
using on iPad, 225–227
using on iPhones, 220–224

W
weakly-typed variable/property, 237
websites

Apple Developer, 7
DTS (Developer Technical Services), 15
example code, 3
icons, 60
iTunes Connect Developer Guide, 58
PlattInfo, 323
Treehouse, 4
Worldwide Developers Conference

(WWDC), 120
workspace window

about, 26–27
code completion, 39, 41–42
Editing preferences, 39
File inspector, 49–50
Fix-It feature, 40–41
handling indentation, 39–40
inspectors, 50–51
jump bar, 27–30
libraries, 51
project navigators, 42–47
Quick Help, 50
search navigator, 47–48

364 i O S 6 F O U N D A T I O N S

workspace window (continued)
tab bar, 27–38
toolbar, 30–35
utilities, 49

Worldwide Developers Conference (WWDC),
15–16, 120

writing console messages, 212–214
WWDC (Apple's Worldwide Developers

Conference), 15–16, 120

X
xcdatamodeld, 157
Xcode

Editor area, 37–42
installing, 21–23
Navigator area, 42–48
projects, 36–37
using, 21–23
utilities, 49–51
workspace window, 26–36

1
3
-5

2
1
7
5

£29.99 / $49.99
ISBN: 978-1-118-44995-0

Learn to build extraordinary apps
for iPhone, iPad, & iPod touch

on this popular platform

	iOS 6 Foundations
	About the Author
	Contents
	Introduction
	Who Should Read This Book?
	What You Will Learn
	How to Use This Book

	Part 1: Introducing iOS 6
	Chapter One: Getting Started with iOS 6
	Doing Your Homework
	Understanding the App World—Past, Present, and Future
	Looking at the Master-Detail Application Template
	Registering as a Developer
	Introducing Basic Programming Concepts
	Installing and Using Xcode
	Summary

	Chapter Two: Getting Up to Speed with Xcode
	Using the Workspace Window
	Using Projects
	Exploring the Editor Area
	Exploring the Navigators
	Exploring the Utilities
	Summary

	Chapter Three: Looking Ahead—Planning Your App
	Answering the Money Question
	Preparing Version 2
	Submitting the App to the App Store
	Celebrating Learning iOS with Your App!
	Summary

	Chapter Four: Designing the Party Planner App
	Planning the App: The Choices
	Designing the App: The Conversation
	Getting Started with the Template
	Getting Started with the Data
	Summary

	Part 2: Storyboards: The Building Blocks of iOS Apps
	Chapter Five: Walking Through the iPhone Storyboard
	Introducing Storyboards
	Introducing the iOS Simulator
	Walking Through the Template and the Storyboard
	Creating Your Own View Controllers
	Adding Objects from the Library
	Summary

	Chapter Six: Working with Storyboard Inspectors
	Looking at the Party Planner App
	Using Outlets and Actions
	Exploring the Storyboard Inspectors
	Summary

	Chapter Seven: Laying Out Your Scenes and Views
	Using Springs and Struts
	Using Auto Layout
	Summary

	Part 3: Building the Party Planner App
	Chapter Eight: Building on the Data Model
	Expanding the Data Model
	Building the Detail View Controller
	Summary

	Chapter Nine: Building the Detail Data View
	Using the Party Class
	Connecting Interface Elements to Properties
	Laying Out the Detail View
	Creating the iPad Interface
	Summary

	Chapter Ten: Saving and Restoring Data
	Understanding the Editing Interface
	Setting Up the Edit-Done Button
	Adjusting the Interface for Editing
	Saving the Data
	Retrieving Data
	Testing the App
	Summary

	Chapter Eleven: Testing the App with the Debugger
	Exploring the Debugger from a Basic Template
	Setting Up the Debugger
	Setting a Breakpoint
	Writing a Console Message
	Editing Breakpoints
	Summary

	Part 4: Using Table and Collection Views
	Chapter Twelve: Exploring the Table View in the Template
	Introducing Table Views, Protocols, and Delegates
	UITableView High-Level Architecture
	Introducing Protocols and Delegates
	Looking at the Master View Controller
	Summary

	Chapter Thirteen: Formatting Table Cells
	Converting the Detail View to a Table View for iPhone
	Converting the Detail View to a Table View on iPad
	Preparing the Prototype Cell in the Storyboard
	Configuring and Returning a Single Table Cell
	Summary

	Chapter Fourteen: Editing Table Views
	Modifying the Data Model to Store Row Sequence
	Enabling the Table View Reordering Features
	Moving the Rows and Saving the New Order
	Adding a New Object
	Deleting an Existing Object
	Summary

	Part 5: Interacting with Users
	Chapter Fifteen: Telling Users the News: Alerts and NSError
	Reviewing User Interaction on iOS
	Analyzing an Alert
	What You Must Do to Handle Errors
	Implementing a Data Store Error Alert
	Summary

	Chapter Sixteen: Getting Input from Users: Alerts and Action Sheets
	Using Alerts with Multiple Buttons
	Using Action Sheets
	Summary

	Chapter Seventeen: Back to the Storyboard: Enhancing the Interface
	Cleaning Up Some Loose Ends
	Using Storyboards Today
	Editing Basic Party Data
	Handling Relationships to Guests and Food
	Summary

	Index

