
Steve Martinelli,
Henry Nash & Brad Topol

Identity,
Authentication
& Access
Management
in OpenStack
IMPLEMENTING AND DEPLOYING KEYSTONE

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Steve Martinelli, Henry Nash, and Brad Topol

Boston

Identity, Authentication, and
Access Management in OpenStack

Implementing and Deploying Keystone,
OpenStack’s Identity Service

www.allitebooks.com

http://www.allitebooks.org

978-1-491-94120-1

[LSI]

Identity, Authentication, and Access Management in OpenStack
by Steve Martinelli, Henry Nash, and Brad Topol

Copyright © 2016 Steve Martinelli, Henry Nash, and Brad Topol. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Rachel Roumeliotis
Editor: Nan Barber
Production Editor: Dan Fauxsmith
Proofreader: Christina Edwards

Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
Illustrator: Rebecca Demarest

October 2015: First Edition

Revision History for the First Edition
2015-09-28: First Release
2015-12-07: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781449370787 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Identity, Authentication, and Access
Management in OpenStack, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781449370787
http://www.allitebooks.org

To Dini, for your never-ending support and love, and to my parents and grandfather for
their patience, selflessness and unwavering support.

—Steve Martinelli
To my wife Susan, for her incredible love and support (and for putting up with a steady

stream of my crazy ideas over the years), and to everyone who strives to disrupt the status
quo with new ways of thinking. Remember, if it was easy, someone else would have

already done it.
—Henry Nash

I dedicate this book to my wife Janet, my daughter Morgan, and my son Ryan. I could not
have done this without your love and support during this process.

—Brad Topol

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Preface. ix

Introduction. xv

1. Fundamental Keystone Topics. 1
1.1 Keystone Concepts 1

1.1.1 What’s a Project? 1
1.1.2 What’s a Domain? 2
1.1.3 Users and User Groups (Actors) 2
1.1.4 Roles 3
1.1.5 Assignment 3
1.1.6 Targets 3
1.1.7 What’s a Token? 4
1.1.8 What’s a Catalog? 5

1.2 Identity 5
1.2.1 SQL 6
1.2.2 LDAP 6
1.2.3 Multiple Backends 7
1.2.4 Identity Providers 8
1.2.5 Use Cases for Identity Backends 9

1.3 Authentication 9
1.3.1 Password 10
1.3.2 Token 11

1.4 Access Management and Authorization 12
1.5 Backends and Services 13
1.6 FAQs 14

v

www.allitebooks.com

http://www.allitebooks.org

2. Let’s Use Keystone!. 17
2.1 Getting DevStack 17
2.2 Basic Keystone Operations Using OpenStackClient 18

2.2.1 Getting a Token 19
2.2.2 Listing Users 21
2.2.3 Listing Projects 22
2.2.4 Listing Groups 24
2.2.5 Listing Roles 25
2.2.6 Listing Domains 26
2.2.7 Creating Another Domain 27
2.2.8 Create a Project within the Domain 27
2.2.9 Create a User within the Domain 28
2.2.10 Assigning a Role to a User for a Project 29
2.2.11 Authenticating as the New User 30

2.3 Basic Keystone Operations Using Horizon 31
2.3.1 What Keystone Operations Are Available through Horizon? 31
2.3.2 Accessing the Identity Operations 32
2.3.3 List, Set, Delete, Create, and View a Project 32
2.3.4 List, Set, Delete, Create, and View a User 32

2.4 Tips, Common Pitfalls, and Troubleshooting 33
Check Your Scope: A Common Authentication Problem 33
Check Your Policy and Role: A Common Authorization Problem 34
Getting Additional Information 34

3. Token Formats. 35
3.1 History of Keystone Token Formats 35
3.2 UUID Tokens 37
3.3 PKI Tokens 37
3.4 Fernet Tokens 40
3.5 Tips, Common Pitfalls, and Troubleshooting 42

3.5.1 UUID Token Performance Degradation for Authentication
Operations 42

3.5.2 Using PKI Token and Swift or Horizon Not Working? 42

4. LDAP. 45
4.1 Approach to LDAP Integration 45
4.2 Configuring Keystone to Integrate with LDAP 46

4.2.1 Other Keystone Configuration Options in Classic LDAP Support 50
4.3 Multiple Domains and LDAP 55

4.3.1 Requirements for Multi-Domain Corporate Directory Support 55
4.3.2 Setting Up Multi-Domain Using the Configuration File–Based

Approach 57

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

4.3.3 Setting Up Multi-Domain Using the Keystone API–Based Approach 58
4.3.4 Restrictions When Using Multi-Domain Identity 61
Use SQL for the Default Domain 62
Use LDAP for All Domains, Except an SQL Service Domain 63
Use LDAP for All Domains 64

4.4 A Practical Guide to Using Multi-Domains and Keystone 64
4.4.1 Setting Up LDAP 64
4.4.2 Running Admin Commands 67
4.4.3 Running LDAP User Commands 68
4.4.4 Authenticating with Horizon 70

4.5 Projects, Roles, and Assignments from LDAP (Just Say NO!) 72
4.6 Tips, Common Pitfalls, and Troubleshooting 73

4.6.1 General LDAP Issues 73
4.6.2 Tips for Using Multi-Domain LDAP 74

5. Federated Identity. 77
5.1 Approach to Federation 78

5.1.1 Leveraging Existing Technology 78
5.1.2 Keystone-Specific Federation Concepts 79

5.2 Translating User Attributes to Keystone Concepts 80
5.2.1 OpenID Connect Claims 80
5.2.2 SAML Assertions 81
5.2.3 The Mapping Engine 82
5.2.4 Mapping Rules 83

5.3 Authentication Flow: What’s It Look Like? 85
5.4 Single Sign-On 86

Single Sign-On Flow 86
5.5 A Practical Guide to Federating Identities for IBM WebSphere Liberty and

Bluepages 87
5.5.1 Download, Install, and Configure IBM WebSphere Liberty 87
5.5.2 Configuring Keystone to Use OpenID Connect 90
5.5.3 Testing It All Out 92

5.6 A Practical Guide to Setting Up SSO with Google 93
5.6.1 Configure Keystone to Use OpenID Connect 93
5.6.2 Configure Horizon for Single Sign-On 95
5.6.3 Let’s See It with Screenshots! 96

5.7 Tips, Common Pitfalls, and Troubleshooting 99
Ensure All Libraries Are Installed 99
Known Limitations of Social Media Logins 99
Using SAML from the Command Line 99

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

6. Future Work. 101
6.1 Multi-Factor Authentication 101
6.2 Integration with Horizon for Multi-Region Keystone to Keystone

Federation Support 102
6.3 Using LDAP as a Federated Identity Provider 102
6.4 Replacement of Service Users with X.509 Certificates and Barbican

Integration 102
6.5 Centralized Policy and Distribution 103
6.6 Integrating with Other Technologies 103

Index. 105

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Preface

Prologue
A key aspect to setting up a cloud, whether it be private, public, or dedicated, is
ensuring that access to cloud resources and security are in place. For OpenStack envi‐
ronments, the focal point for securing the cloud is Keystone, OpenStack’s Identity ser‐
vice. Keystone provides many key functions, such as authenticating users and
determining what resources users are authorized to access.

Keystone started from humble beginnings. In the early days, it provided basic user
management and constructs for organized access to resources. As enterprise custom‐
ers became more interested in OpenStack, it became readily apparent that Keystone
needed significant enhancements to meet the demanding needs of enterprise custom‐
ers before it would be adopted in the enterprise.

Early enterprise requirements were focused on improving Keystone’s Lightweight
Directory Access Protocol (LDAP) and Microsoft’s Active Directory support. Enter‐
prise customers want to reuse their existing identity-management tools and don’t
want a separate new identity tool to manage their OpenStack users. Support was
added to ensure Keystone could reuse existing LDAPs and Active Directories that
were read only and only contained user and group information. Next, secure connec‐
tions were added so Keystone could connect to LDAP and Active Directories over a
TLS connection.

This basic support for ease of integration with existing enterprise identity managers
helped OpenStack to distinguish itself from competing cloud infrastructures. It then
led to a second phase of advanced enterprise integration where customers demanded
support for integration with multiple LDAPs and Active Directories. This feature was
critical for large enterprises that, through means such as acquisitions, had multiple
identity servers they needed to support. Also as part of this phase, customers started
requesting true federated identity support whereby they expected Keystone to inte‐
grate with federated identity-management tools that supported well-known and stan‐

ix

dard identity protocols such as the Security Assertion Markup Language (SAML) and
OpenID Connect. Around this time Keystone started to add audit support to better
enable it to meet the compliance requirements of many enterprise customers.

With the foundations of federated support, Keystone has moved to its current phase,
focusing on federated support for hybrid clouds. With this federation support foun‐
dation in place, multiple Keystones can work together using standard federated pro‐
tocols to support interoperable hybrid clouds. In this book, we describe all of these
enhancements. We begin by providing an overview of how to perform basic Keystone
operations, and we provide concrete examples using the latest version (v3) of the
Keystone Identity API. We then cover Keystone’s support for multiple token formats
and describe how its preferred token formats have evolved over time. After we dis‐
cuss these fundamentals, we move on to advanced topics of LDAP integration and
federation. We conclude with a discussion on topics of future work for Keystone.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

x | Preface

This element indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, if example code is listed
in this book, you may use it in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the
code. For example, writing a program that uses several chunks of code from this book
does not require permission. Selling or distributing a CD-ROM of examples from
O’Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Identity, Authentication, and Access
Management in OpenStack by Steve Martinelli, Henry Nash, and Brad Topol
(O’Reilly). Copyright 2015 Steve Martinelli, Henry Nash, and Brad Topol,
978-1-491-94120-1.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐

Preface | xi

mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/

mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://www.oreilly.com/catalog/
0636920045960.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xii | Preface

https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
http://www.oreilly.com/catalog/0636920045960
http://www.oreilly.com/catalog/0636920045960
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments
We would like to thank the entire OpenStack Keystone community for their passion,
dedication, and tremendous commitment to the Keystone project. Without the code
developers, code reviewers, and operators contributing to the project over the years,
Keystone would not have the rich feature set and large adoption it has today.

We would also like to thank our OpenStack Keystone colleagues, Dolph Mathews,
Morgan Fainberg, Brant Knudson, Lance Bragstad, Jamie Lennox, David Stanek,
Adam Young, Joe Heck, Marek Denis, Nathan Kinder, and Lin Hua Cheng for the
wonderful collaboration over the years.

A very special thanks to Dr. Angel Luis Diaz, Todd Moore, and Vince Brunssen for all
of their support and encouragement during this endeavor.

—Steve, Henry, and Brad

Preface | xiii

Introduction

Identity, Authentication, and Access Management
Capabilities of Keystone
Cloud environments at the Infrastructure-as-a-Service layer (IaaS) provide users
access to key resources such as virtual machine instances, large amounts of block and
object storage, and network bandwidth. A critical feature of any cloud environment is
how it provides secure, controlled access to these valuable resources. In OpenStack
environments, the Keystone service is responsible for providing secure controlled
access to all of the cloud’s resources. Keystone has proven itself to be a vital compo‐
nent for a secure cloud. As shown in Figure P-1, 90% to 95% of OpenStack users
report that they utilize Keystone in their deployments.

xv

Figure P-1. Percentage of deployments using Keystone and other OpenStack services
(source)

In order to understand how Keystone provides secure and controlled access to Open‐
Stack Cloud resources we need to examine Keystone’s fundamental capabilities for
providing Identity, Authentication, and Access Management. The following sections
provide short overviews of these core Keystone capabilities.

Identity
Identity refers to the identification of who is trying to access cloud resources. In
OpenStack Keystone, identity is typically represented as a user. In simple deploy‐
ments, the identity of a user can be stored in Keystone’s own database. In production
or enterprise environments, an external Identity Provider is commonly used. An
example of this is IBM’s Tivoli Federated Identity Manager. Keystone should be able
to retrieve the user’s identity information from these external Identity Providers.

Authentication
Authentication is the process of validating a user’s identity. In many cases, authentica‐
tion is initially performed by a user performing a login with their user identity and a
password. In a very rudimentary OpenStack environment, Keystone is capable of per‐
forming all the authentication steps itself. This is not recommended for production
or enterprise environments. For real environments where passwords need to be prop‐

xvi | Introduction

http://superuser.openstack.org/articles/openstack-users-share-how-their-deployments-stack-up

erly protected and managed, Keystone is pluggable such that it easily integrates with
an existing hardened production authentication service, such as LDAP or Active
Directory.

While a user identity is typically initially authenticated with a password, it is very
common as part of this initial authentication to create a token for subsequent authen‐
tications. This reduces the amount of visibility and exposure of the password which
needs to be kept hidden and protected as much as possible. Tokens also have a limi‐
ted lifespan and expire so that their usefulness is limited if they are stolen. OpenStack
relies heavily on tokens for authentication and other purposes—and Keystone is the
one and only OpenStack service that can issue them. Currently, Keystone uses a form
of token called a bearer token. This means that whomever has obtained ownership of
the token, whether it be properly or improperly (i.e., stolen), is capable of using the
token to authenticate and access resources. As a result, when using Keystone it is very
important to protect tokens and their contents.

Access Management (Authorization)
Once a user identity has been authenticated and a token has been created and alloca‐
ted, things start to get interesting. This is because we now have enough foundation in
place to start performing Access Management. Access Management, also referred to as
Authorization, is the process of determining what resources a user is permitted to
access. Cloud environments such as OpenStack provide users with access to large
amounts of resources. For example, there needs to be a mechanism for determining
which users are allowed to create new instances of a particular virtual machine, which
users are allowed to attach or delete a volume of block storage, which users are
allowed to create virtual networks, etc. In OpenStack, Keystone maps Users to
Projects or Domains by associating a Role for the User for that Project or Domain.
Other OpenStack subprojects such as Nova, Cinder, and Neutron examine the User’s
Project and Role associations and evaluate this information using a policy engine.
The policy engine examines this information (particularly the Role value) and makes
a determination about what actions the user is allowed to perform.

Keystone’s Primary Benefits
While Keystone is mostly focused on providing Identity, Authentication, and Access
Management it does provide a large number of benefits for an OpenStack environ‐
ment. Key benefits include the following:

• Single Authentication and Access Management interface for other OpenStack
services. Keystone handles the complex tasks of integrating with external
Authentication systems and also provides uniform Access Management for all
the other OpenStack services, such as Nova, Glance, Cinder, Neutron, etc., and

Introduction | xvii

thus Keystone isolates all the other services from knowing how to talk to differ‐
ent identity and authorization providers.

• Keystone provides a registry of containers (“Projects”) that other OpenStack
services can use to segregate resources (e.g., servers, images, etc.).

• Keystone provides a registry of Domains that are used to define separate name‐
spaces for users, groups, and projects to allow segregation between customers.

• A registry of Roles that will be used for authorization between Keystone and the
policy files of each of the OpenStack services.

• An assignment store allowing users and groups to be assigned roles on projects
and domains.

• A catalog storing OpenStack services, endpoints, and regions, allowing clients to
discover the service or endpoint they need.

The rest of the book is organized as follows. In Chapter 1, we provide an overview of
Keystone’s fundamental constructs. Chapter 2 provides the reader with an instruc‐
tional tutorial for interacting with Keystone to invoke its core operational capabilities.
In Chapter 3 we provide extensive coverage of the variety of token formats supported
by Keystone and highlight the advantages and disadvantages of each format as well
describing how each can be configured and utilized. Chapter 4 provides in-depth
coverage of how to integrate Keystone with an LDAP Identity Provider. Chapter 5
describes Keystone’s approach to federation and illustrates how to integrate Keystone
with a federated identity provider. Finally, in Chapter 6 we conclude with a discussion
of areas for future improvement of Keystone.

xviii | Introduction

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1

Fundamental Keystone Topics

In this chapter we provide an introduction to the basic foundations of Keystone. We
start with an overview of Keystone Projects and Domains, which are abstractions
used to group and isolate resources. We then discuss how Keystone supports Users
and User Groups and how Roles can be assigned to Users and User Groups on both a
Project and Domain basis. We then introduce how Keystone utilizes Tokens and pro‐
vides Service Catalogs. Next, we describe Keystone’s Identity service and the types of
Identity backends that can be leveraged by Keystone. We then conclude this chapter
with in-depth descriptions of Keystone’s Authentication and Access Management
(Authorization) capabilities.

1.1 Keystone Concepts
Keystone itself has several concepts that are specific to its model and how it relates to
OpenStack as a whole. These are Identity and Authorization related concepts, but
their focus is on how Keystone implements Authorization, Access Management, and
Discovery.

1.1.1 What’s a Project?
In Keystone, a Project is an abstraction used by other OpenStack services to group
and isolate resources (e.g., servers, images, etc.). In the early days of OpenStack, Key‐
stone Projects were originally referred to as Tenants but this was changed to Projects,
a more intuitive name for this concept. It is probably fair to say that the most funda‐
mental purpose of Keystone is to be the registry of Projects and to be able to articu‐
late who should have access to those Projects. Projects themselves don’t own Users,
but Users or User Groups are given access to a Project using the concept of Role
Assignments. Having a Role assigned to a User or User Group on a Project denotes
that the User or User Group has some kind of access to resources in the Project, and

1

the specific Role selected determines the type of access and capabilities the User or
User Group is entitled to have. Assigning a Role to a User is sometimes referred to as
a “grant” in OpenStack documentation. Roles, Users, and User Groups are more thor‐
oughly described in later sections of this chapter.

1.1.2 What’s a Domain?
In the early days of OpenStack, there was no mechanism to limit the visibility of
Projects to different user organizations. This could result in unintentional collisions
on Project names by different organizations. User names also had global visibility and
could also result in undesired collisions on user names if two different organizations
both used the same user name. In order for OpenStack clouds to more cleanly sup‐
port multiple user organizations at the same time, Keystone added a new abstraction,
called a Domain, that could provide the ability to isolate the visibility of a set of
Projects and Users (and User Groups) to a specific organization. A Domain is for‐
mally defined as a collection of users, groups, and projects. Domains enable you to
divide the resources in your cloud into silos that are for use by specific organizations.
A domain can serve as a logical division between different portions of an enterprise,
or each domain can represent completely separate enterprises.

For example, a cloud could have two domains, IBM and Acme Inc. IBM has their
own collection of groups, users, and projects and so does Acme Inc.

1.1.3 Users and User Groups (Actors)
In the Keystone realm, Users and User Groups are the entities given access to resour‐
ces that are isolated in Domains and Projects. Groups are a collection of Users. Users
are individuals who will end up using your cloud. We refer to Users and Groups as
Actors since, when assigning a role, these are the entities to which the role is “assigned
to.”

1.1.3.1 Graphical representation
The relationship between domains, projects, users, and groups is shown below. Users,
groups, and projects will always be “domain scoped,” meaning that a name for a user,
group, and project may be common across domains. Think of this as having a user
“Jim” or group “administrators” at both IBM and Acme Inc. However, each entity is
guaranteed to have a universally unique identifier (UUID). This implies that trying to
find a resource with just the ID will work. However, since names are not guaranteed
to be unique, providing the domain is essential to find the resource. As of Liberty,
roles are not domain scoped, but this could change in the future.

2 | Chapter 1: Fundamental Keystone Topics

Figure 1-1. Domains are a collection of Users, Groups, and Projects. Roles are globally
unique. Users may have membership in many Groups.

1.1.4 Roles
Roles are used in Keystone to convey a sense of Authorization. An actor may have
numerous roles on a target. How the roles are used to determine authorization is cov‐
ered in “1.4 Access Management and Authorization” on page 12. For example, the
role of admin is “assigned to” the user “bob” and it is “assigned on” the project “devel‐
opment.”

1.1.5 Assignment
A role assignment is a ternary (or triple): the combination of an actor, a target, and a
role. Role assignments are granted and revoked, and may be inherited between
groups and users and domains and projects.

1.1.6 Targets
Projects and Domains are very similar in that both are entities where the role is
“assigned on.” In other words, a User or User Group is given access to either a Project
or Domain by assigning a particular Role value for that User or User Group for a spe‐
cific Project or Domain. Because Projects and Domains have such similar characteris‐
tics, when we need to refer to both entities collectively we refer to them as Targets.

1.1 Keystone Concepts | 3

1.1.7 What’s a Token?
In order for a user to call any OpenStack API they need to (a) prove who they are,
and (b) that they should be allowed to call the API in question. The way they achieve
that is by passing an OpenStack token into the API call—and Keystone is the Open‐
Stack service responsible for generating these tokens. A user receives this token upon
successful authentication against Keystone. The token also carries with it authoriza‐
tion. It contains the authorization a user has on the cloud. A token has both an ID
and a payload. The ID of a token is guaranteed to be unique per cloud, and the pay‐
load contains data about the user.

The payload can be seen below:

Example 1-1. An Identity V3 Scoped Token consists of many fields that indicate Identity
and Authorization attributes about the user on a project

{
 "token": {
 "issued_at": "201406-10T20:55:16.806027Z",
 "expires_at": "2014-06-10T2:55:16.806001Z",
 "roles": [{
 "id": "c703057be878458588961ce9a0ce686b",
 "name": "admin"}
],
 "project": {
 "domain": { "id": "default",
 "name": "Default" },
 "id": "8538a3f13f9541b28c2620eb19065e45",
 "name": "admin"
 },
 "user": {
 "domain": { "id": "default",
 "name": "Default" },
 "id": "3ec3164f750146be97f21559ee4d9c51",
 "name": "admin"
 },
 "catalog": [
 {
 "endpoints": [...],
 "type": "identity",
 "id": "bd73972c0e14fb69bae8ff76e112a90",
 "name": "keystone"
 }
]
 }
}

As you can tell, the token payload contains information about when it was created,
when it will expire, which user authenticated—and thus is allowed to use the token—

4 | Chapter 2: Fundamental Keystone Topics

which project the token is valid on, and finally, the catalog, which brings us to our
next point. Tokens will be discussed in detail in Chapter 3.

1.1.8 What’s a Catalog?
The service catalog is essential for an OpenStack cloud. It contains the URLs and end‐
points of the different Cloud services. Without the catalog, users and applications
would not know where to route requests to create VMs or store objects. The service
catalog is broken up into a list of endpoints, and each endpoint is broken down into
an admin URL, internal URL, and public URL, which may be the same.

Example 1-2. A simple Catalog of just two services, Identity and Object Storage.
Endpoints are essential to allow the user to discover where different services are hosted.

{
 "serviceCatalog": [
 {
 "endpoints": [
 {
 "adminURL": "http: //swift.admin-nets.local: 8080/",
 "region": "RegionOne",
 "internalURL": "http: //127.0.0.1: 8080/v1/AUTH_1",
 "publicURL": "http: //swift.publicinternets.com/v1/AUTH_1"
 }
],
 "type": "object-store",
 "name": "swift"
 },
 {
 "endpoints": [
 {
 "adminURL": "http: //cdn.admin-nets.local:35357/v2.0",
 "region": "RegionOne",
 "internalURL": " http: //cdn.admin-nets.local:5000/v2.0 ",
 "publicURL": " http: //cdn.admin-nets.local:5000/v2.0 "
 }
],
 "type": "identity",
 "name": "keystone"
 }
]
}

1.2 Identity
The Identity Service in Keystone provides the Actors. Identities in the Cloud may
come from various locations, including but not limited to SQL, LDAP, and Federated
Identity Providers.

1.2 Identity | 5

1.2.1 SQL
Keystone includes the option to store your actors (Users and Groups) in SQL; sup‐
ported databases include MySQL, PostgreSQL, and DB2. Keystone will store informa‐
tion such as name, password, and description. The settings for the database must be
specified in Keystone’s configuration file. Essentially, Keystone is acting as an Identity
Provider, which may not be the best case for everyone, and certainly not the best case
for enterprise customers. The following provides a brief summary of the advantages
and disadvantages of using the SQL Identity option.

Pros:

• Easy to set up
• Management of users and groups through OpenStack APIs

Cons:

• Keystone should not be an Identity Provider
• Weak password support

— No password rotation
— No password recovery

• Most enterprises have an LDAP server they want to use
• Identity silo: yet another username and password users must remember

1.2.2 LDAP
Keystone also has the option to retrieve and store your actors (Users and Groups) in
Lightweight Directory Access Protocol (LDAP). Keystone will access the LDAP just
like any other application that uses the LDAP (System Login, Email, Web Application,
etc.). The settings for connecting to the LDAP are specified in Keystone’s configura‐
tion file. These options also include whether Keystone is able write to LDAP or sim‐
ply read the LDAP data. Ideally, the LDAP should perform only read operations, such
as user and group lookup (via search) and authentication (via bind). If using LDAP as
a read-only Identity backend, Keystone should need a minimal amount of privilege to
use the LDAP. For instance, it needs read access to the user and group attributes
defined in keystone.conf, an unprivileged account (anonymous access is preferred),
and it does not require access to password hashes. The advantages and disadvantages
of the LDAP Identity option are shown below.

6 | Chapter 2: Fundamental Keystone Topics

Figure 1-2. Keystone should use an internal LDAP just like any other application

Pros:

• No longer need to maintain copies of user accounts.
• Keystone does not act as an Identity Provider.

Cons:

• Service accounts still need to be stored somewhere, and the LDAP admin may
not want these accounts in LDAP.

• Keystone is still “seeing” user passwords, since the passwords are in the authenti‐
cation request. Keystone simply forwards these requests, but ideally Keystone
does not want to see a user’s password, ever!

1.2.3 Multiple Backends
As of the Juno release, Keystone supports multiple Identity backends for the V3 Iden‐
tity API. The impact of this is that a deployment may have one identity source (back‐
end) per Keystone domain. The default domain is usually an SQL backend, as it is
used to host service accounts. Service accounts are the accounts that the different
OpenStack services use to interact with Keystone. Any additional LDAP backends
may be hosted in their own domain. The motivation for supporting multiple Identity
backends is that in an enterprise setting, LDAP administrators may not be the same
organization as the OpenStack deployment team, so creating service accounts in
LDAP is highly unlikely. LDAP is typically restricted to be used only for employee
information. Another benefit of a logical split between Identity backends and
domains is that now multiple LDAPs can be used. So, in the case of a company
merger or different departments having different LDAPs, the same enterprise can still
be represented. The advantages and disadvantages of multiple backends are as fol‐
lows.

1.2 Identity | 7

Figure 1-3. The Identity service may have multiple backends per domain. LDAPs for
both Domains A and B, and an SQL-based backend for the service accounts is usual.
The Assignment service is also shown to remind readers that the assignment, resource,
and identity service may all be backed by various stores.

Pros:

• Able to simultaneously support multiple LDAPs for various user accounts and
SQL backends for service accounts

• Leverage existing identity LDAP while not impacting it

Cons:

• Slightly more complex to set up
• Authentication for user accounts must be domain scoped

1.2.4 Identity Providers
As of the Icehouse release, Keystone is able to consume federated authentication via
Apache modules for multiple trusted Identity Providers. These users are not stored in
Keystone, and are treated as ephemeral. The federated users will have their attributes
mapped into group-based role assignments. From a Keystone perspective, an identity
provider is a source for identities; it may refer to software that is backed by various
backends (LDAP, AD, MongoDB) or Social Logins (Google, Facebook, Twitter).
Essentially, it is software (IBM’s Tivoli Federated Identity Manager, for instance) that
abstracts out the backend and translates user attributes to a standard federated iden‐
tity protocol format (SAML, OpenID Connect). This fits well in Keystone’s greater
plan to offload the authentication and identity related portions to a service that
already does this in an enterprise. The Identity Provider approach has lots of advan‐
tages and few disadvantages.

Pros:

8 | Chapter 2: Fundamental Keystone Topics

• Able to leverage existing infrastructure and software to authenticate users and
retrieve information about users

• Further separation between Keystone and handling identity information
• Opens the door for new possibilities in the federation realm, such as single sign-

on and hybrid cloud
• Keystone does not see any user passwords
• Identity provider handles authentication completely, so whether it is password,

certificate, or two-factor based is irrelevant to Keystone

Cons:

• Most complex set up of the identity sources

1.2.5 Use Cases for Identity Backends
The use cases for the different identity backends are organized in Table 1-1.

Table 1-1. List of identity sources and their most common use case

Identity Source Use Cases

SQL • Use this if you’re testing or developing with OpenStack
• Small set of users
• OpenStack-specific accounts (service users)

LDAP • Use this if it’s already in place in your business
• Use only LDAP if you are able to create the service accounts necessary in the LDAP

Multiple Backends • Preferred approach for most enterprises
• Use if service users are not allowed in LDAP

Identity Provider • You want to take advantage of the new Federated Identity mechanisms
• Use this if an identity provider already exists (for single sign-on)
• Keystone is unable to access LDAP
• Non-LDAP identity source
• Use if LDAP interaction is offloaded to underlying platform and Web server (SSSD)

1.3 Authentication
There are various ways to authenticate with the Keystone service—by far the two
most common are by supplying a password or by using a token. In this section we
will be highlighting those two methods of authentication by showing the data
required in a POST request to Keystone and their usual flow between the User, Key‐
stone, and other OpenStack services.

1.3 Authentication | 9

1.3.1 Password
The most common way for a user or service to authenticate is to supply a password.
The payload shown below is a sample POST request to Keystone. It is helpful to show
the entire payload so the reader recognizes the information that is necessary to
authenticate.

Example 1-3. An example of an authentication payload request that contains a scope.

{
 "auth": {
 "identity": {
 "methods": [
 "password"
],
 "password": {
 "user": {
 "domain": {
 "name": "example.com"
 },
 "name": "Joe",
 "password": "secretsecret"
 }
 }
 },
 "scope": {
 "project": {
 "domain": {
 "name": "example.com"
 },
 "name": "project-x"
 }
 }
 }
}

About the payload, and a note about domains
The payload of the request must contain enough information to find where the user
exists, authenticate the user, and optionally, retrieve a service catalog based on the
user’s permissions on a scope (project).

The user section that identifies the incoming user should have domain information
(either the domain name or ID), unless a user’s globally unique ID is used, in which
case that is sufficient to identify the user. This is because in a multi-domain deploy‐
ment, there may be multiple users with the same name, so proper scoping is neces‐
sary to determine which user is authenticating.

10 | Chapter 2: Fundamental Keystone Topics

www.allitebooks.com

http://www.allitebooks.org

The scope section is optional but is often used, since without a scope a user will not
be able to retrieve a service catalog. The scope is used to indicate which project the
user wishes to work against. If a user does not have a role on that project, then the
request will be rejected. Similar to the user section, the scope section must have
enough information about the project to find it, so the owning domain must be speci‐
fied. As in the case of users and groups, project names may also conflict across
domains. The project ID, however, is guaranteed to be unique and if specified, no
domain information is necessary.

Figure 1-4. A user requests a token by using their username, password, and project
scope. The resultant token may then be used at other OpenStack services (such as Com‐
pute or Object Storage).

1.3.2 Token
Similar to above, a user may also request a new token by providing a current token.
The payload of this POST request is significantly less code than its password counter‐
part. There are many reasons why a token will be used to retrieve another, such as
refreshing a token that will soon expire or to change an unscoped token to a scoped
token.

{
 "auth": {
 "identity": {
 "methods": [
 "token"
],
 "token": {
 "id": "e80b74"
 }
 }
 }
}

1.3 Authentication | 11

Figure 1-5. A user requests a token by using an existing token. The resultant token will
have the same scope and roles as the initial token.

1.4 Access Management and Authorization
Managing access and authorizing what APIs a user can use is one of the key reasons
Keystone is essential to OpenStack. Keystone’s approach to this problem is to create a
Role-Based Access Control (RBAC) policy that is enforced on each public API end‐
point. These policies are stored in a file on disk, commonly named policy.json. To bet‐
ter understand this concept, it’s best to jump right into an example.

The following is a brief example of Keystone’s policy.json file, which is comprised of
targets and rules.

Targets refer to the left-hand key, and rules refer to the right-hand value. At the top of
the file, targets are established that can be used for evaluation of other targets. It is
here that we define what it means to be an admin, an owner, or either.

Example 1-4. Snippet of Keystone’s policy.json file

{
 "admin_required": "role:admin or is_admin:1",
 "owner" : "user_id:%(user_id)s",
 "admin_or_owner": "rule:admin_required or rule:owner",

 "identity:list_projects": "rule:admin_required",
 "identity:create_project": "rule:admin_required",
 "identity:delete_project": "rule:admin_required",

 "identity:list_user_projects": "rule:admin_or_owner"
}

12 | Chapter 2: Fundamental Keystone Topics

Each rule that begins with identity: and specifies a protected controller that man‐
ages an API. We use the already established targets to protect these new targets. The
table below outlines which target protects which API. The full 1:1 mapping for this
information can be found in Keystone’s documentation.

Table 1-2. A brief mapping of policy targets and APIs

Policy Target API

identity:list_projects GET /v3/projects

identity:create_project POST /v3/projects

identity:delete_project DELETE /v3/projects/{project_id}

identity:list_user_projects GET /v3/users/{user_id}/projects

It’s important to note the subtle difference between listing all projects and listing a
user’s projects. Listing all projects should be an admin-only operation, and its policy
is written as such. Listing all projects a user has access to should not only be restricted
to admins, but also to the user that has a role on that project.

1.5 Backends and Services
It’s worth summarizing backends and services into a handy picture. The green por‐
tions indicate backends that are usually SQL, the pink portions indicate backends that
are usually LDAP or SQL, the blue indicates SQL or Memcache, and finally, policy is
serviced from a file. There are other Keystone services; however, these are by far the
most commonly used.

Figure 1-6. An overview of the different services and backends Keystone supports

1.5 Backends and Services | 13

1.6 FAQs
What’s the difference between a Domain and a Region?

These terms are often used interchangeably in the OpenStack world, but are very dif‐
ferent concepts. A region is intended to be a geographical representation: an enter‐
prise may have a US-West region and a US-East region. A domain is a logical split
between ownership of projects and identity sources.

Can users exist in multiple domains?

In short, no. Each user is owned by a domain. A major point of confusion is that user
names may be the same across domains. Meaning there can be a stevemar at the IBM
domain and a stevemar at the Acme Inc. domain. Each would have their own unique
ID because each stevemar is owned by a different domain, and is considered by Key‐
stone to be a different user.

Why does OpenStack documentation sometimes mention tenants and other times men‐
tion projects? Why mention both? Is there a difference?

In the early days of OpenStack, the term tenant was used by OpenStack services to be
the entity for grouping and isolating resources. Over time it was decided that project
was a more intuitive term for this. Unfortunately, not all of the projects have fully
migrated over from tenant to project. Therefore, in some OpenStack services and
documentation you may still run into the term tenant.

What is the difference between a scoped and unscoped token?

An unscoped token is one where the user is authenticated but not for a specific project
or domain. This type of token is useful for making queries such as determining what
projects a user has access to. A scoped token is created when the user is authenticated
for a specific project or domain. Scoped tokens have role information associated with
them and are the types of tokens used by the other OpenStack services to determine
what types of operations are permitted.

I just authenticated and received a token back but the token doesn’t have any roles in it.
Is this a bug? Why are there no roles in the token?

If this happens it is because a user has not submitted a scope in their authentication
request. As such, the user gets back an unscoped token, which will not contain any
roles, since it does not carry any authorization on a project. So until you authenticate
and specify a scope (project or domain) you will not see role information in the
token.

What about Active Directory support?

14 | Chapter 2: Fundamental Keystone Topics

It’s there! Keystone’s LDAP support extends to Active Directory. In its earlier releases,
there were bugs in the LDAP backend that were related to AD, but since then multi‐
ple enterprises have been able to configure Keystone to communicate with their AD.

What are the other authentication methods?

Keystone also provides support for authenticating through a certificate. The only cav‐
eat here is that the user name associated with the certificate must exist in an Identity
backend.

1.6 FAQs | 15

CHAPTER 2

Let’s Use Keystone!

In this chapter we will explain how to use Keystone in a development environment.
This involves a few steps. First, we deploy OpenStack with DevStack, then try basic
Keystone operations with OpenStackClient (a command line interface), then we per‐
form the same Keystone operations with Horizon (a Web interface). We will also be
providing cURL alternatives to the OpenStackClient commands to illustrate the fact
that the CLI is simply just a wrapper for a REST call.

2.1 Getting DevStack
The examples shown below were performed on a new Ubuntu 64-bit virtual machine
(VM). There are several options available for quickly getting an Ubuntu VM up and
running, such as VMWare Fusion or Oracle’s VirtualBox.

To begin, we need to install git and curl, then clone the DevStack repository. It is best
to perform these steps from your user’s home directory.

$ sudo apt-get install git curl
$ git clone https://github.com/openstack-dev/devstack/
$ cd devstack

Within the devstack folder, we create a file called local.conf. The settings in this file tell
DevStack which components of OpenStack to install and provide a few minor config‐
uration details. We’ll be installing Keystone, Nova, Glance, Cinder, and Horizon. We’ll
also be using the latest development branch of OpenStack.

Example 2-1. The local.conf file contents

[[local|localrc]]
RECLONE=yes

17

Credentials
DATABASE_PASSWORD=openstack
ADMIN_PASSWORD=openstack
SERVICE_PASSWORD=openstack
SERVICE_TOKEN=openstack
RABBIT_PASSWORD=openstack

Services
ENABLED_SERVICES=rabbit,mysql,key
ENABLED_SERVICES+=,horizon
ENABLED_SERVICES+=,n-api,n-crt,n-obj,n-cpu,n-cond,n-sch,n-novnc,n-cauth
ENABLED_SERVICES+=,n-net
ENABLED_SERVICES+=,g-api,g-reg
ENABLED_SERVICES+=,cinder,c-api,c-vol,c-sch,c-bak

Enable Logging
LOGFILE=/opt/stack/logs/stack.sh.log
VERBOSE=True
LOG_COLOR=True
SCREEN_LOGDIR=/opt/stack/logs

The last step in the process is to kick off the stack.sh script and grab a coffee—the
whole process will take around 25 minutes for the initial setup.

 $./stack.sh

Once completed, the output looks like:

This is your host IP address: 10.0.2.15
This is your host IPv6 address: ::1
Horizon is now available at http://10.0.2.15/
Keystone is serving at http://10.0.2.15:5000/
The default users are: admin and demo
The password: openstack

Congratulations, you’ve installed OpenStack!

2.2 Basic Keystone Operations Using OpenStackClient
In this section we will use OpenStackClient to perform basic Keystone operations
such as authenticating, listing, and creating users, projects, domains, groups, and
roles. For illustrative purposes we also include the cURL alternative to the specific
command to show the reader that OpenStackClient performs the equivalent REST
call.

Before we start executing commands, we should create a few environment variables
to make authenticating with our Keystone service easier. Note that most of these val‐
ues should be the same for your deployment, but the hostname or IP address of your
VM may be different.

18 | Chapter 2: Let’s Use Keystone!

$ export OS_IDENTITY_API_VERSION=3
$ export OS_AUTH_URL=http://10.0.2.15:5000/v3
$ export OS_USERNAME=admin
$ export OS_PROJECT_NAME=admin
$ export OS_USER_DOMAIN_NAME=Default
$ export OS_PASSWORD=openstack
$ export OS_PROJECT_DOMAIN_NAME=Default

To check that the environment variables are set, perform the following and analyze
the output:

$ env | grep OS
OS_IDENTITY_API_VERSION=3
OS_AUTH_URL=http://10.0.2.15:5000/v3
OS_USERNAME=admin
OS_PROJECT_NAME=admin
OS_USER_DOMAIN_NAME=Default
OS_PASSWORD=openstack
OS_PROJECT_DOMAIN_NAME=Default

2.2.1 Getting a Token

Using OpenStackClient
Since we already set authentication and authorization data as environment variables
we simply perform the following to issue a token:

$ openstack token issue
+------------+----------------------------------+
| Field | Value |
+------------+----------------------------------+
expires	2015-08-27T21:45:41.712853Z
id	d219ca63fd2548f685fea48623b22a10
project_id	92841d1c386643a08c697c833ed840af
user_id	82d7e61f128b4e398bb165f278f45569
+------------+----------------------------------+

Using cURL
When using cURL to obtain a token, the payload for the authentication request must
include information about the user and the project.

$ curl -i -H "Content-Type: application/json" -d '
{ "auth": {
 "identity": {
 "methods": ["password"],
 "password": {
 "user": {
 "name": "admin",
 "domain": { "name": "Default" },
 "password": "openstack"
 }

2.2 Basic Keystone Operations Using OpenStackClient | 19

 }
 },
 "scope": {
 "project": {
 "name": "admin",
 "domain": { "name": "Default" }
 }
 }
 }
}' http://localhost:5000/v3/auth/tokens

HTTP/1.1 201 Created
Date: Thu, 27 Aug 2015 21:57:56 GMT
Server: Apache/2.4.7 (Ubuntu)
X-Subject-Token: 2511aaa898ff42158addea8c90ba2622
Vary: X-Auth-Token
x-openstack-request-id: req-ab469b0e-6990-4cca-9b1a-98780ae4108a
Content-Length: 5276
Content-Type: application/json

{"token": {"methods": ["password"], "roles": [{"id": "2d357899bd5c430988772eb861f
b7a68", "name": "admin"}], "expires_at": "2015-08-27T22:57:58.249918Z",
"project": {"domain": {"id": "default", "name": "Default"}, "id": "ed50269971bc41
ef9f25ce2c7e9b9d11", "name": "admin"}, "catalog": [{"endpoints": [{"region_id":
"RegionOne", "url": "http://10.0.2.15:35357/v2.0", "region": "RegionOne",
"interface": "admin", "id": "19dfab5f51b24dbe8cfc0e7d5f4677a7"}, {"region_id":
"RegionOne", "url": "http://10.0.2.15:5000/v2.0", "region": "RegionOne",
"interface": "internal", "id": "763fef84e9bd43b58733813d5b1f29bb"}, {"region_id":
"RegionOne", "url": "http://10.0.2.15:5000/v2.0", "region": "RegionOne",
"interface": "public", "id": "d210b05177b24733b40146f7dcafdb90"}], "type":
"identity", "id": "8ae94fc3bb534ef2ae5bc16979e28eaf", "name": "keystone"}],
"extras": {}, "user": {"domain": {"id": "default", "name": "Default"}, "id":
"9644330bc62542c491179895c6a6d228", "name": "admin"}, "audit_ids": ["2h1Ass48TvKn
Oa4u3LR3HA"], "issued_at": "2015-08-27T21:57:58.249944Z"}}

The actual response was trimmed down, since it included the full
catalog with all endpoints. For readability, we opted to remove
most endpoints in the catalog.
The Token value is set in the X-Subject-Token response header. For
the next few examples we will show both CLI and cURL examples.
To make the cURL examples easier, set OS_TOKEN to the value seen
in X-Subject-Token.
$ OS_TOKEN=2511aaa898ff42158addea8c90ba2622

20 | Chapter 2: Let’s Use Keystone!

www.allitebooks.com

http://www.allitebooks.org

2.2.2 Listing Users

Using OpenStackClient
After running DevStack, several users will be created automatically. Generally, these
are service accounts for other OpenStack services (Cinder, Glance, and Nova), an
administrator account (admin), and a non-administrator account (demo).

$ openstack user list
+----------------------------------+--------+
| ID | Name |
+----------------------------------+--------+
05a77e13219949c59368b99047b6be4b	cinder
4da7bd7e25f34ea4aca792055f715fb8	admin
8e30d2d495eb467b8b673fbdfb8be6c7	glance
ae760d23927b467e910146e4e9f400c0	nova
f6ddb1f6568942cbb85fdbf441c45c05	demo
+----------------------------------+--------+

Using cURL
The alternative would be to use a token and reach the correct API.

$ curl -s -H "X-Auth-Token: $OS_TOKEN" \
 http://localhost:5000/v3/users | python -mjson.tool
{
 "links": {
 "next": null,
 "previous": null,
 "self": "http://localhost:5000/v3/users"
 },
 "users": [
 {
 "domain_id": "default",
 "enabled": true,
 "id": "0aa473010af04acb86018125ef71a65e",
 "links": {
 "self": "http://localhost:5000/v3/users/0aa473010a...125ef71a65e"
 },
 "name": "glance"
 },
 {
 "domain_id": "default",
 "enabled": true,
 "id": "9644330bc62542c491179895c6a6d228",
 "links": {
 "self": "http://localhost:5000/v3/users/96443...91179895c6a6d228"
 },
 "name": "admin"
 },
 {
 "domain_id": "default",

2.2 Basic Keystone Operations Using OpenStackClient | 21

 "enabled": true,
 "id": "ab7ab1f3fe2745fd91b3d62fd3b7309b",
 "links": {
 "self": "http://localhost:5000/v3/users/ab7a...d91b3d62fd3b7309b"
 },
 "name": "cinder"
 },
 {
 "domain_id": "default",
 "email": "demo@example.com",
 "enabled": true,
 "id": "c88b8fa1414e44be918e9e129f04147d",
 "links": {
 "self": "http://localhost:5000/v3/users/c88b8fa...8e9e129f04147d"
 },
 "name": "demo"
 },
 {
 "domain_id": "default",
 "enabled": true,
 "id": "cf15631f360c4db18fc95fe95da827f2",
 "links": {
 "self": "http://localhost:5000/v3/users/cf1563...fc95fe95da827f2"
 },
 "name": "nova"
 }
]
}

2.2.3 Listing Projects

Using OpenStackClient
Similar to users, DevStack also creates several projects by default. They can be seen by
issuing the following command:

$ openstack project list
+----------------------------------+--------------------+
| ID | Name |
+----------------------------------+--------------------+
10bc96bf62c14d44b02bb5ad8aef57d3	admin
241d8b116a164bcb9c63d75117ed3894	demo
81dc6de893924fbbbf16f272bdfba38d	invisible_to_admin
ebad3ef327c143bb8e79a52b9b0324e8	service
+----------------------------------+--------------------+

Using cURL
Again, similar to the users API, a token is required and we need to reach the proper
endpoint.

22 | Chapter 2: Let’s Use Keystone!

$ curl -s -H "X-Auth-Token: $OS_TOKEN" \
 http://localhost:5000/v3/projects | python -mjson.tool
{
 "links": {
 "next": null,
 "previous": null,
 "self": "http://localhost:5000/v3/projects"
 },
 "projects": [
 {
 "description": "",
 "domain_id": "default",
 "enabled": true,
 "id": "5f198c74b0984566b0a6da26440c5f85",
 "is_domain": false,
 "links": {
 "self": "http://localhost:5000/v3/projects/5f1...0a6da26440c5f85"
 },
 "name": "demo",
 "parent_id": null
 },
 {
 "description": "",
 "domain_id": "default",
 "enabled": true,
 "id": "9457bf6cb940453ab92a88219a40a3f7",
 "is_domain": false,
 "links": {
 "self": "http://localhost:5000/v3/projects/9457bf6cb9...9a40a3f7"
 },
 "name": "service",
 "parent_id": null
 },
 {
 "description": "",
 "domain_id": "default",
 "enabled": true,
 "id": "dcd882c878bd43188f9758831676559a",
 "is_domain": false,
 "links": {
 "self": "http://localhost:5000/v3/projects/dcd882c878...1676559a"
 },
 "name": "invisible_to_admin",
 "parent_id": null
 },
 {
 "description": "",
 "domain_id": "default",
 "enabled": true,
 "id": "ed50269971bc41ef9f25ce2c7e9b9d11",
 "is_domain": false,
 "links": {

2.2 Basic Keystone Operations Using OpenStackClient | 23

 "self": "http://localhost:5000/v3/projects/ed5026997...c7e9b9d11"
 },
 "name": "admin",
 "parent_id": null
 }
]
}

2.2.4 Listing Groups

Using OpenStackClient
Similar to users, DevStack also creates two groups by default. Note that the users are
not part of either group yet.

$ openstack group list
+----------------------------------+-----------+
| ID | Name |
+----------------------------------+-----------+
| a95873d6a7f54dae90e53de3044b0964 | nonadmins |
| e27d8f1c492441888ea4b0a7e836a835 | admins |
+----------------------------------+-----------+

Using cURL
As with the other commands, simply reuse the token and reach the proper endpoint.

$ curl -s -H "X-Auth-Token: $OS_TOKEN" \
 http://localhost:5000/v3/groups | python -mjson.tool
{
 "groups": [
 {
 "description": "openstack admin group",
 "domain_id": "default",
 "id": "5553cf58254746c8ba615b671dcdc5b2",
 "links": {
 "self": "http://localhost:5000/v3/groups/5553cf582...1dcdc5b2"
 },
 "name": "admins"
 },
 {
 "description": "non-admin group",
 "domain_id": "default",
 "id": "8a2e550b2edc4f76bae608e578becf5c",
 "links": {
 "self": "http://localhost:5000/v3/groups/8a2e550b2...8e578becf5c"
 },
 "name": "nonadmins"
 }
],
 "links": {
 "next": null,

24 | Chapter 2: Let’s Use Keystone!

 "previous": null,
 "self": "http://localhost:5000/v3/groups"
 }
}

2.2.5 Listing Roles

Using OpenStackClient
In a fashion similar to the previous commands, DevStack also creates a number of
roles by default and assigns these roles to various users across the projects.

$ openstack role list
+----------------------------------+---------------+
| ID | Name |
+----------------------------------+---------------+
03bdd6d46c2c4f99818bc855872a909e	service
4684cf02622f49dd82458852c62f4135	Member
8a5dbcef99274f688effa338db6bf928	anotherrole
a22b737940ed4e7588639f1bcb3e3afa	admin
b5e5224549574edf9ff2caebbda9431d	ResellerAdmin
+----------------------------------+---------------+

Using cURL
Again, use a token and hit the correct endpoint.

$ curl -s -H "X-Auth-Token: $OS_TOKEN" \
 http://localhost:5000/v3/roles | python -mjson.tool
{
 "links": {
 "next": null,
 "previous": null,
 "self": "http://localhost:5000/v3/roles"
 },
 "roles": [
 {
 "id": "20cd9e77e2d44d3490d8c044f508c8f3",
 "links": {
 "self": "http://localhost:5000/v3/roles/20cd9e77e...044f508c8f3"
 },
 "name": "service"
 },
 {
 "id": "2d357899bd5c430988772eb861fb7a68",
 "links": {
 "self": "http://localhost:5000/v3/roles/2d357899b...eb861fb7a68"
 },
 "name": "admin"
 },
 {
 "id": "40df936c87824fd98b7e39da44f2dbde",

2.2 Basic Keystone Operations Using OpenStackClient | 25

 "links": {
 "self": "http://localhost:5000/v3/roles/40df936c8...9da44f2dbde"
 },
 "name": "Member"
 },
 {
 "id": "d1e7fed5471941b9aeebf15a341edef9",
 "links": {
 "self": "http://localhost:5000/v3/roles/d1e7fed54...15a341edef9"
 },
 "name": "ResellerAdmin"
 },
 {
 "id": "face2e488b1c4562bc9f43f8a5e143db",
 "links": {
 "self": "http://localhost:5000/v3/roles/face2e488...3f8a5e143db"
 },
 "name": "anotherrole"
 }
]
}

2.2.6 Listing Domains

Using OpenStackClient
Keystone automatically has a single domain when it is brought up; this is to handle
backwards compatibility between Identity API versions.

$ openstack domain list
+---------+---------+---------+--+
| ID | Name | Enabled | Description |
+---------+---------+---------+--+
| default | Default | True | Owns users and projects for Identity API v2. |
+---------+---------+---------+--+

Using cURL
To list domains, use a valid token and hit the correct endpoint.

$ curl -s -H "X-Auth-Token: $OS_TOKEN" \
 http://localhost:5000/v3/domains | python -mjson.tool
{
 "domains": [
 {
 "description": "Owns users and projects for Identity API v2.",
 "enabled": true,
 "id": "default",
 "links": {
 "self": "http://localhost:5000/v3/domains/default"
 },
 "name": "Default"

26 | Chapter 2: Let’s Use Keystone!

 }
],
 "links": {
 "next": null,
 "previous": null,
 "self": "http://localhost:5000/v3/domains"
 }
}

2.2.7 Creating Another Domain

Using OpenStackClient
To get a better sense of v3 of the Identity API, let’s create a domain, and a project and
user to be owned by that domain.

$ openstack domain create acme
+---------+----------------------------------+
| Field | Value |
+---------+----------------------------------+
enabled	True
id	adf547d21ae148aa81c77b36b611d1c3
name	acme
+---------+----------------------------------+

Using cURL
Here, we use a POST request with the minimal amount of information in the payload,
just the domain name, and by default it’ll be enabled.

$ curl -s -H "X-Auth-Token: $OS_TOKEN" \
 -H "Content-Type: application/json" -d '{ "domain": { "name": "acme"}}'
 http://localhost:5000/v3/domains | python -mjson.tool
{
 "domain": {
 "enabled": true,
 "id": "05a0fcbf796142bfbeb30d0fd3dfa67a",
 "links": {
 "self": "http://localhost:5000/v3/domains/05a0fcbf796142b...d3dfa67a"
 },
 "name": "acme"
 }
}

2.2.8 Create a Project within the Domain

Using OpenStackClient
To create a project within the domain, we need to specify the domain we created in
the previous step, and preferably, give it a fun description.

2.2 Basic Keystone Operations Using OpenStackClient | 27

$ openstack project create tims_project \
 --domain acme \
 --description "tims dev project"
+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	tims dev project
domain_id	adf547d21ae148aa81c77b36b611d1c3
enabled	True
id	77941c6a73ed452eb65d36d7c962201c
is_domain	False
name	tims_project
parent_id	None
+-------------+----------------------------------+

Using cURL
Along with the name of the project, the payload of the POST request must also spec‐
ify the domain ID, which can be found in the previous step. The description of the
project is optional.

$ curl -s -H "X-Auth-Token: $OS_TOKEN" \
 -H "Content-Type: application/json" \
 -d '{ "project": { "name": "tims_project", \
 "domain_id": "05a0fcbf796142bfbeb30d0fd3dfa67a", \
 "description": "tims dev project"}}' \
 http://localhost:5000/v3/projects | python -mjson.tool
{
 "project": {
 "description": "tims dev project",
 "domain_id": "05a0fcbf796142bfbeb30d0fd3dfa67a",
 "enabled": true,
 "id": "26436cea94ac4a40b890f05434f15aa4",
 "is_domain": false,
 "links": {
 "self": "http://localhost:5000/v3/projects/26436cea94ac4...434f15aa4"
 },
 "name": "tims_project",
 "parent_id": null
 }
}

2.2.9 Create a User within the Domain

Using OpenStackClient
To create a user within the domain, we need to specify the domain we created in the
previous step. Setting a password and email for the user is optional, but encouraged.

$ openstack user create tim --email tim@tim.ca \
 --domain acme --description "tims openstack user account" \
 --password s3cr3t

28 | Chapter 2: Let’s Use Keystone!

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	tims openstack user account
domain_id	adf547d21ae148aa81c77b36b611d1c3
email	tim@tim.ca
enabled	True
id	a5db8e8e6a994e05afe94aa21c8c4ec8
name	tim
+-------------+----------------------------------+

Using cURL
Similar to the previous cURL commands, the payload has to be structured correctly.

$ curl -s -H "X-Auth-Token: $OS_TOKEN" \
 -H "Content-Type: application/json" \
 -d '{ "user": { "name": "tim", "password": "s3cr3t", \
 "email": "tim@tim.ca", "domain_id": \
 "05a0fcbf796142bfbeb30d0fd3dfa67a", "description": \
 "tims openstack user account"}}' http://localhost:5000/v3/users \
 | python -mjson.tool
{
 "user": {
 "description": "tims openstack user account",
 "domain_id": "05a0fcbf796142bfbeb30d0fd3dfa67a",
 "email": "tim@tim.ca",
 "enabled": true,
 "id": "6eced805da4649198dd1dd3bdddadd68",
 "links": {
 "self": "http://localhost:5000/v3/users/6eced805da4649198dd...dadd68"
 },
 "name": "tim"
 }
}

2.2.10 Assigning a Role to a User for a Project

Using OpenStackClient
To assign a role to the new user on the new project, we can use the CLI, but both the
user and the project must be qualified with the right domain, or OpenStackClient will
use the default domain.

$ openstack role add member --project tims_project --project-domain acme \
 --user tim --user-domain acme

Using cURL
The API for assigning a role is different than the previous commands; it uses PUT
instead of POST, and only accepts IDs for the user, project and role.

2.2 Basic Keystone Operations Using OpenStackClient | 29

$ curl -s -X PUT -H "X-Auth-Token: $OS_TOKEN" \
 http://localhost:5000/v3/projects/26436cea94ac4a40b890f05434f15aa4/users/6ece
d805da4649198dd1dd3bdddadd68/roles/40df936c87824fd98b7e39da44f2dbde

2.2.11 Authenticating as the New User

Using OpenStackClient
To authenticate as the new user, it’s best to start a new terminal session and create
new environment variables. In this case, the user name, password, project, and
domain information must all be set accordingly.

$ export OS_PASSWORD=s3cr3t
$ export OS_IDENTITY_API_VERSION=3
$ export OS_AUTH_URL=http://10.0.2.15:5000/v3
$ export OS_USERNAME=tim
$ export OS_PROJECT_NAME=tims_project
$ export OS_USER_DOMAIN_NAME=acme
$ export OS_PROJECT_DOMAIN_NAME=acme

Once that is set, we can try to retrieve a token to ensure our user is able to authenti‐
cate.

$ openstack token issue
+------------+----------------------------------+
| Field | Value |
+------------+----------------------------------+
expires	2015-08-22T05:26:02.385430Z
id	59c60758f9f947a58289900c1f87b700
project_id	77941c6a73ed452eb65d36d7c962201c
user_id	26898b5d27114f90a1f57c5333e3e9b4
+------------+----------------------------------+

Using cURL
Similar to the authentication request of “2.2.1 Getting a Token” on page 19, the struc‐
ture of the payload remains the same, but the values must be updated. Again, for
readability, we remove several of the endpoints from the service catalog.

$ curl -i -H "Content-Type: application/json" -d ' { "auth": {
 "identity": {
 "methods": ["password"],
 "password": {
 "user": {
 "name": "tim",
 "domain": { "name": "acme" },
 "password": "s3cr3t"
 }
 }
 },
 "scope": {
 "project": {

30 | Chapter 2: Let’s Use Keystone!

www.allitebooks.com

http://www.allitebooks.org

 "name": "tims_project",
 "domain": { "name": "acme" }
 }
 }
 }
}' http://localhost:5000/v3/auth/tokens
HTTP/1.1 201 Created
Date: Thu, 27 Aug 2015 22:47:01 GMT
Server: Apache/2.4.7 (Ubuntu)
X-Subject-Token: 1bce8850bc6c4b9e8e90b6822885d93c
Vary: X-Auth-Token
x-openstack-request-id: req-a71ec134-60d8-4f86-8546-00877a48151f
Content-Length: 5326
Content-Type: application/json

{"token": {"methods": ["password"], "roles": [{"id": "4
0df936c87824fd98b7e39da44f2dbde", "name": "Member"}], "expires_at": "2015-08-27T2
3:47:01.322257Z", "project": {"domain": {"id": "05a0fcbf796142bfbeb30d0fd3dfa67a"
, "name": "acme"}, "id": "26436cea94ac4a40b890f05434f15aa4", "name": "tims_projec
t"}, "catalog": [{"endpoints": [{"region_id": "RegionOne", "url": "http://10.0.2.
15:35357/v2.0", "region": "RegionOne", "interface": "admin", "id": "19dfab5f51b24
dbe8cfc0e7d5f4677a7"}, {"region_id": "RegionOne", "url": "http://10.0.2.15:5000/v
2.0", "region": "RegionOne", "interface": "internal", "id": "763fef84e9bd43b58733
813d5b1f29bb"}, {"region_id": "RegionOne", "url": "http://10.0.2.15:5000/v2.0", "
region": "RegionOne", "interface": "public", "id": "d210b05177b24733b40146f7dcafd
b90"}], "type": "identity", "id": "8ae94fc3bb534ef2ae5bc16979e28eaf", "name": "ke
ystone"}], "extras": {}, "user": {"domain": {"id": "05a0fcbf796142bfbeb30d0fd3dfa
67a", "name": "acme"}, "id": "6eced805da4649198dd1dd3bdddadd68", "name": "tim"},
"audit_ids": ["rWvgwqBWSjq3sZgGWFNmVg"], "issued_at": "2015-08-27T22:47:01.322285
Z"}}

There are many, many more commands a user or administrator can perform; we sug‐
gest using openstack --help to find additional commands, or looking at OpenStack‐
Client’s documentation.

2.3 Basic Keystone Operations Using Horizon
2.3.1 What Keystone Operations Are Available through Horizon?
There are various Keystone operations that are supported through Horizon, Open‐
Stack’s Dashboard. However, depending on the version enabled in Horizon’s configu‐
ration file, there will be some differences. If v2 of the Identity API is enabled, then
only User and Project CRUD support will be available, and users will only be able to
authenticate against a single domain. If v3 of the Identity API is enabled, then User,
Group, Project, Domain, and Role CRUD support will be made available, and users
will be able to authenticate against multiple domains.

2.3 Basic Keystone Operations Using Horizon | 31

2.3.2 Accessing the Identity Operations
The Identity operations will appear in their own menu on the left-hand accordion.

Figure 2-1. A screenshot of the Identity menu in Horizon, with v2 of the Identity API
enabled

2.3.3 List, Set, Delete, Create, and View a Project
From Horizon, a user will be able to perform the same project-based command line
operations.

Figure 2-2. A screenshot of the Project pane in Horizon

2.3.4 List, Set, Delete, Create, and View a User
From Horizon, a user will be able to perform the same user-based command line
operations.

32 | Chapter 2: Let’s Use Keystone!

Figure 2-3. A screenshot of the User pane in Horizon

2.4 Tips, Common Pitfalls, and Troubleshooting
Check Your Scope: A Common Authentication Problem
Continuing from our previous example, with the non-admin account, suppose we
incorrectly set the project’s domain. Let’s try to authenticate with that information
and see what happens:

$ export OS_PROJECT_DOMAIN_NAME=Default
$ openstack token issue
ERROR: openstack Could not find project: tims_project (Disable debug mode to supp
ress these details.) (HTTP 401) (Request-ID: req-3aa6c248-325f-4f10-bc27-b4d85a2c
338b)

This error indicates that Keystone could not find the project in the specified domain.
That’s because we created the project in the “acme” domain, and no project named
“acme” exists in the default domain, yet. Using our admin account, let’s create a
project with the same name in the default domain.

$ openstack project create tims_project
+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	
domain_id	default
enabled	True
id	07dd8005d0d94be7ac6cb1ccb181f436
is_domain	False
name	tims_project

2.4 Tips, Common Pitfalls, and Troubleshooting | 33

| parent_id | None |
+-------------+----------------------------------+

Now, going back to the non-admin account, let’s try to authenticate again.

$ openstack token issue
ERROR: openstack User 26898b5d27114f90a1f57c5333e3e9b4 has no access to project
07dd8005d0d94be7ac6cb1ccb181f436 (Disable debug mode to suppress these details.)
(HTTP 401) (Request-ID: req-b4b3048a-cf7a-453e-a5af-8ae8120e8fbf)

As you can see, the message is very different. The output indicates the project was
found, but the user does not have a role on the project. That’s because we never added
a role for the user on that project.

Check Your Policy and Role: A Common Authorization Problem
Let’s return to the non-admin account and set the project domain back to the correct
value and ensure we can still authenticate to get a token.

$ export OS_PROJECT_DOMAIN_NAME=acme
$ openstack token issue
+------------+----------------------------------+
| Field | Value |
+------------+----------------------------------+
expires	2015-08-22T06:16:14.191211Z
id	4be37a084ca145e187c22e58cd619a44
project_id	77941c6a73ed452eb65d36d7c962201c
user_id	26898b5d27114f90a1f57c5333e3e9b4
+------------+----------------------------------+

Let’s try to perform an action a non-admin user can’t perform, like listing all the users
in a deployment.

$ openstack user list
ERROR: openstack You are not authorized to perform the requested action: identity
:list_users (Disable debug mode to suppress these details.) (HTTP 403) (Request-I
D: req-48f059cb-58fb-44d5-b015-05223b2af50e)

As the error message suggests, this occurs because the policy for listing all users (by
default) is set to the following (you may find this in policy.json):

"identity:list_users": "rule:admin_required"

Getting Additional Information
The --debug option for OpenStackClient is very handy; it allows the user to see a lot
of information about the request and response. Simply add --debug to any Open‐
StackClient command to enable this option.

34 | Chapter 2: Let’s Use Keystone!

CHAPTER 3

Token Formats

3.1 History of Keystone Token Formats
Keystone offers several token formats, and users may wonder why there are so many.
To help with understanding why, we provide a brief history of how the Keystone
token formats have evolved. In the early days, Keystone supported a UUID token.
This token was a 32-character string bearer token used for authentication and author‐
ization. The advantage of this token format was that the token was small and very
easy to use, and it was simple enough to add to a cURL command. The disadvantage
of this token is it did not carry with it enough information to locally do authorization.
OpenStack services would always have to send this token back to the Keystone server
to determine if an operation was authorized. This resulted in Keystone being pinged
for any OpenStack action, and becoming a bottleneck for all of OpenStack.

In an attempt to address the issues encountered with UUID tokens, the Keystone
team created a new token format called the PKI token. This token contained enough
information to perform local authorization and also contained the service catalog in
the token as well. In addition, the token was signed and services could cache the
token and use it until it expired or was revoked. The PKI token resulted in less traffic
to the Keystone server, but the disadvantage of this token was that they were huge.
PKI tokens could easily be 8K in size, and this made them difficult to fit in HTTP
headers. Many web servers could not handle an 8K entry in an HTTP header without
reconfiguration. In addition, these tokens were more difficult to use in cURL com‐
mands and offered poor user experience. Each of these drawbacks could be mitigated,
but each took extra effort. The Keystone team tried a variant of this token that was
compressed. This token format was called PKIz. Unfortunately, the feedback from the
OpenStack community was that this token format was still too big.

35

The Keystone team went back to the drawing board and came up with a new token
format known as the Fernet token. The Fernet token was small (around 255 charac‐
ters) but contained enough information in it to be used for local authorization. The
token had another critical advantage. It contained enough information that Keystone
did not have to store token data in a token database. One of the most annoying
aspects of Keystone’s early token formats was that they needed to be persisted in a
database. The database would fill up and Keystone’s performance would suffer. Open‐
Stack operators were constantly having to flush the Keystone token database to keep
their OpenStack environments running. The Fernet token did have the drawback that
the symmetric keys used to sign the tokens needed to be distributed and rotated. The
OpenStack operators needed to come up with a way to handle these issues. Nonethe‐
less, the operators we have worked with have said that they’d much rather deal with
the key distribution associated Fernet tokens than have to use the other token formats
and be responsible for flushing the Keystone token database.

With so many token choices, you may be wondering which tokens are used by Open‐
Stack operators. Fortunately, the OpenStack community performs user surveys to
gain these types of insights. As shown in the chart below, the UUID token is currently
the most popular format. Please note, however, that this survey was performed in the
OpenStack Juno release time frame, and does not include Fernet tokens because they
were not added until the Kilo release.

Figure 3-1. A survey conducted by the OpenStack User committee indicates that UUID
tokens are still the preferred token format (as of Juno)

36 | Chapter 3: Token Formats

https://www.surveymonkey.com/results/SM-LX589JF8/

In this chapter, we describe Keystone’s UUID, PKI, and Fernet tokens in greater detail
to provide the reader with a much better understanding of the token formats that are
available to them in Keystone.

For all three token formats, it is important to note that all are bearer tokens. This
means all three tokens need to be protected from unnecessary disclosure to prevent
unauthorized access.

3.2 UUID Tokens
Keystone’s first token format was the UUID token format. The UUID token is simply
a randomly generated UUID 32-character string. These are issued and validated by
the identity service. A hexdigest() method is used, which ensures the tokens are
made up of solely hexadecimal digits. This makes the tokens URL friendly and safe
for transfer in any non-binary environment. A UUID token must be saved in a per‐
sistent backend (typically a database) in order to be available for subsequent valida‐
tion. A UUID token can be revoked by simply issuing a DELETE request with the
token ID. Note that the token is not actually removed from the backend, but rather
marked as revoked. Since the token is only 32 characters, its size in an HTTP header
is 32 bytes.

A typical UUID token would look like the following:
468da447bd1c4821bbc5def0498fd441.

The token is extremely small and easy to use when accessing Keystone through a
cURL command. As previously mentioned, the disadvantage with this token format
is that Keystone can become a bottleneck due to the tremendous amount of commu‐
nication that occurs when Keystone is needed to validate the token.

The method for returning a UUID token is relatively simple. It is shown below and
can be found on GitHub.

def _get_token_id(self, token_data):
 return uuid.uuid4().hex

3.3 PKI Tokens
Keystone’s second supported format is the PKI token format. In the PKI format, the
token contains the entire validation response that would be received from Keystone.
What this means is that the token has a large amount of information in it, such as:
when it was issued, when it expires, user identification, project, domain and role
information for this user, a service catalog, and other information as well. All of this
information is represented in a JSON document payload, and the payload is then
signed using cryptographic message syntax (CMS). With the PKIz format, the signed
payload is then compressed using zlib compression.

3.2 UUID Tokens | 37

https://github.com/openstack/keystone/blob/master/keystone/token/providers/uuid.py

An example of what the JSON token payload would look like can be found in Key‐
stone’s documentation and is repeated here:

{
 "token": {
 "domain": {
 "id": "default",
 "name": "Default"
 },
 "methods": [
 "password"
],
 "roles": [
 {
 "id": "c703057be878458588961ce9a0ce686b",
 "name": "admin"
 }
],
 "expires_at": "2014-06-10T21:52:58.852167Z",
 "catalog": [
 {
 "endpoints": [
 {
 "url": "http://localhost:35357/v2.0",
 "region": "RegionOne",
 "interface": "admin",
 "id": "29beb2f1567642eb810b042b6719ea88"
 },
 {
 "url": "http://localhost:5000/v2.0",
 "region": "RegionOne",
 "interface": "internal",
 "id": "87057e3735d4415c97ae231b4841eb1c"
 },
 {
 "url": "http://localhost:5000/v2.0",
 "region": "RegionOne",
 "interface": "public",
 "id": "ef303187fc8d41668f25199c298396a5"
 }
],
 "type": "identity",
 "id": "bd7397d2c0e14fb69bae8ff76e112a90",
 "name": "keystone"
 }
],
 "extras": {},
 "user": {
 "domain": {
 "id": "default",
 "name": "Default"
 },

38 | Chapter 3: Token Formats

1 https://github.com/openstack/keystone/blob/master/keystone/token/providers/pki.py

 "id": "3ec3164f750146be97f21559ee4d9c51",
 "name": "admin"
 },
 "audit_ids": [
 "Xpa6Uyn-T9S6mTREudUH3w"
],
 "issued_at": "2014-06-10T20:52:58.852194Z"
 }
}

As shown in the JSON above, the token has everything a service needs with respect to
user, domain, project, and role information to determine if the user is authorized for
a particular OpenStack service operation. The service is thus able to cache this token
and make authorization decisions locally without having to contact the Keystone
server on every authorization request. In order to transport the token via HTTP, the
signed JSON document is base64 encoded with some minor modifications. An exam‐
ple of what the token would look like in transport is shown here in an abbreviated
form:

MIIDsAYCCAokGCSqGSIb3DQEHAaCCAnoEggJ2ew0KICAgICJhY2QogICAgICAgI...EBMFwwVzELMAkGA
1UEBhMCVVMxDjAMBgNVBAgTBVVuc2V0MCoIIDoTCCA50CAQExCTAHBgUrDgMQ4wDAYDVQQHEwVVbnNldD
EOMAwGA1UEChM7r0iosFscpnfCuc8jGMobyfApz/dZqJnsk4lt1ahlNTpXQeVFxNK/ydKL+tzEjg

Note that even a basic token with a single endpoint in the catalog approaches a size of
approximately 1,700 bytes. With larger deployments with several endpoints and serv‐
ices, the size of a PKI token quickly exceeds that of a default HTTP header limit for
most web servers, which is 8KB. Even when compressed, the size of PKIz tokens does
not decrease enough to mitigate these problems. In practice, the resultant token is
approximately 10% smaller.

Although PKI and PKIz tokens can be cached, they have several disadvantages. It can
be difficult to configure Keystone to use this type of token, as they really should use
certificates issued by a trusted certificate authority. Moreover, they are extremely large
and their size may cause other OpenStack services to have issues. Their size can also
break web performance tools, and they are quite difficult to use in a cURL command.
In addition, in practice the Keystone service typically must persist these tokens in its
persistence backend for purposes such as creating revocation lists. As a result the user
must continue to worry about flushing the Keystone token database frequently or
performance will suffer.

Once the difficult part of having all the certificates created is complete, generating
PKI tokens is not that complex. As an illustration, the key aspects of the method for
returning a PKI token are shown below.1

3.3 PKI Tokens | 39

https://github.com/openstack/keystone/blob/master/keystone/token/providers/pki.py

1 http://dolphm.com/the-anatomy-of-openstack-keystone-token-formats/
2 See https://review.openstack.org/#/c/130050/33/specs/kilo/klwt.rst, http://dolphm.com/openstack-keystone-

fernet-tokens/, and http://dolphm.com/benchmarking-openstack-keystone-token-formats/.
3 See http://lbragstad.com/?p=133, http://www.mattfischer.com/blog/?p=648, and http://www.mattfischer.com/

blog/?p=665.

def _get_token_id(self, token_data):
 try:
 token_json = jsonutils.dumps(token_data, cls=utils.PKIEncoder)
 token_id = str(cms.cms_sign_token(token_json,
 CONF.signing.certfile,
 CONF.signing.keyfile))
 return token_id
 except environment.subprocess.CalledProcessError:
 LOG.exception(_LE('Unable to sign token'))
 raise exception.UnexpectedError(_('Unable to sign token.'))

3.4 Fernet Tokens
The newest Keystone token format is the Fernet token format. The Fernet token
attempts to improve on previous token formats in a variety of ways. First, it is quite
small—it typically comes in around 255 characters, and as such are larger than UUID
tokens, but significantly smaller than PKI.1 The token also contains just enough
information to enable the token to not have to be stored in a persistent Keystone
token database. Instead, the token has enough information that the rest of the needed
information such as the roles a user has on a project can be generated. In large-scale
OpenStack deployments, having to store massive amounts of token data has been
identified as a key contributor to performance degradation, not to mention the need
to constantly flush the persistent token database.2

Fernet tokens contain a small amount of information, such as a user identifier, a
project identifier, token expiration information, and other auditing information. Fer‐
net tokens are signed using a symmetric key to prevent tampering. The use of a Fer‐
net token follows the same workflow as a UUID token. Thus, in contrast to a PKI
token, they must be validated by Keystone similar to how this must be done with
UUID tokens.

One complicating factor is that Fernet tokens use symmetric keys to sign the token,
and these keys need to be distributed to the various OpenStack regions. Additionally,
these keys need to be rotated. Because Fernet tokens are being revised in the current
release, we are hesitant to provide a large amount of detail on these tokens at this
point in time. Instead, we refer the reader to some online sources we anticipate will
be updated based on real-world experience using Fernet tokens and symmetric key
rotation.3

40 | Chapter 3: Token Formats

www.allitebooks.com

http://dolphm.com/the-anatomy-of-openstack-keystone-token-formats/
https://review.openstack.org/#/c/130050/33/specs/kilo/klwt.rst
http://dolphm.com/openstack-keystone-fernet-tokens/
http://dolphm.com/openstack-keystone-fernet-tokens/
http://dolphm.com/benchmarking-openstack-keystone-token-formats/
http://lbragstad.com/?p=133
http://www.mattfischer.com/blog/?p=648
http://www.mattfischer.com/blog/?p=665
http://www.mattfischer.com/blog/?p=665
http://www.allitebooks.org

1 https://github.com/openstack/keystone/blob/master/keystone/token/providers/fernet/token_formatters.py

Keystone provides a configuration tool for setting up symmetric encryption keys.
This can be performed by invoking the following command:

$ keystone-manage fernet_setup

In addition, the keys should be periodically rotated using the following command:

$ keystone-manage fernet_rotate

As an illustration, the key aspects of creating a project-scoped Fernet token is shown
below. The example deviates from the source code to improve readability. The funda‐
mental step to creating a Fernet token is to safely convert any data to bytes, then Mes‐
sagePack the token contents, sign it, and make it URL safe.1

def create_token(self, user_id, expires_at, audit_ids, methods=None,
 domain_id=None, project_id=None, trust_id=None,
 federated_info=None):

 b_user_id = cls.attempt_convert_uuid_hex_to_bytes(user_id)
 methods = auth_plugins.convert_method_list_to_integer(methods)
 b_project_id = cls.attempt_convert_uuid_hex_to_bytes(project_id)
 expires_at_int = cls._convert_time_string_to_int(expires_at)
 b_audit_ids = list(map(provider.random_urlsafe_str_to_bytes, audit_ids))

 payload = (b_user_id, methods, b_project_id, expires_at_int, b_audit_ids)
 serialized_payload = msgpack.packb(payload)
 token = urllib.parse.quote(self.crypto.encrypt(serialized_payload))
 return token

A typical Fernet token looks like:

gAAAAABU7roWGiCuOvgFcckec-0ytpGnMZDBLG9hA7Hr9qfvdZDHjsak39YN98HXxoYLIqVm19Egku5YR
3wyI7heVrOmPNEtmr-fIM1rtahudEdEAPM4HCiMrBmiA1Lw6SU8jc2rPLC7FK7nBCia_BGhG17NVHuQu0
S7waA306jyKNhHwUnpsBQ%3D

Fernet tokens are validated by simply performing the same steps to create the token,
but in reverse. We begin by unquoting the URL-safe bits, decrypting the value, and
unpacking the payload. From there, it’s simply a matter of checking the different sec‐
tions of the payload, specifically the expires_at field.

def validate_token(self, token):

 token = urllib.parse.unquote(six.binary_type(token))
 serialized_payload = self.crypto.decrypt(token)
 payload = msgpack.unpackb(serialized_payload)

 user_id = cls.attempt_convert_uuid_bytes_to_hex(payload[0])
 methods = auth_plugins.convert_integer_to_method_list(payload[1])
 project_id = cls.attempt_convert_uuid_bytes_to_hex(payload[2])

3.4 Fernet Tokens | 41

https://github.com/openstack/keystone/blob/master/keystone/token/providers/fernet/token_formatters.py

 expires_at_str = cls._convert_int_to_time_string(payload[3])
 audit_ids = list(map(provider.base64_encode, payload[4]))

 return (user_id, methods, project_id, expires_at_str, audit_ids)

3.5 Tips, Common Pitfalls, and Troubleshooting
In this section, we describe a few commonly experienced pitfalls that occur when
using the different types of Keystone token formats and provide troubleshooting tips
to address these issues.

3.5.1 UUID Token Performance Degradation for Authentication
Operations
When using UUID tokens over long periods of time, the operator may begin to
notice that the performance of Keystone authentication begins to degrade severely.
CPU utilization will increase and response times will lag. This typically results from
Keystone’s persistent token backend, which has likely become extremely large due to
storing many tokens. As a result, authentication requests, which require looking up
the token ID in persistent storage, can take an extremely long time. If you experience
this behavior, try running Keystone’s utility for purging its database of old tokens:

$ keystone-manage token_flush

It is highly recommended that you run this command periodically. Best practices typ‐
ically involve running it as a cron job.

3.5.2 Using PKI Token and Swift or Horizon Not Working?
Since the entire catalog is included in a PKI token, a large-scale deployment with
many endpoints in its catalog could inflate the token size to a value greater than
HTTP request header limits. This can be quite problematic for some OpenStack
projects such as OpenStack Swift and Horizon. If this situation is encountered, there
are several possible options to mitigate this issue.

First, you can try switching from PKI to PKIz. The compression that results from
using PKIz may result in enough size reduction to get you back under the limit. This
is accomplished by changing from the PKI token provider to the PKIz token pro‐
vider. This configuration value can be found in the [token] section of the configura‐
tion file and can be set to PKIz by setting

[token]
provider = keystone.token.providers.pkiz.Provider

Another possible option is to increase the maximum header size of the web server, or
Eventlet, or both, depending on the project being impacted. It should be noted that

42 | Chapter 3: Token Formats

changing this value is simply masking the poor performance, and raising a threshold
is not a final solution.

Finally, Keystone has added an option that allows the catalog to not be included in the
PKI token and some of the OpenStack projects such as Swift have configuration
options that allow them to utilize this feature. Within the Swift configuration file in
the keystone_auth section, the include_service_catalog option can be set to
False. The Swift project is perfectly capable of running with Keystone without the
need of a service catalog. More information on configuring Swift to work with Key‐
stone in this fashion can be found here.

3.5 Tips, Common Pitfalls, and Troubleshooting | 43

https://github.com/openstack/swift/blob/5374ba3a80a5b895542196502eac4d9300ba53d2/doc/source/overview_auth.rst#configuring-swift-to-use-keystone

CHAPTER 4

LDAP

As OpenStack grew and started to gain attention from enterprises, one of the most
common initial requests around the Identity space was for LDAP support. This was
first introduced, in a basic form, in the Essex release. In this chapter, we will discuss
the approach to LDAP integration, the new, comprehensive, configuration options
for LDAP, using multiple domains for identity, and, finally, tips, common pitfalls, and
troubleshooting.

4.1 Approach to LDAP Integration
LDAP and Microsoft’s Active Directory (AD) are two of the most common existing
corporate directories in the enterprise and are used by countless corporations. Given
that enterprises already use these as their identity store, it is neither desirable nor
practical for this to be replicated in Keystone. Instead, we want Keystone’s Identity
APIs to be a front to these corporate enterprise directories, allowing the information
they hold to be accessed in-place. Keystone was designed to provide this kind of sup‐
port by the very nature of its architecture. In essence, it has drivers for different back‐
end technologies that can be loaded to allow components of Keystone to be backed by
external data stores (such as LDAP). As an aside, although we will talk predominantly
about LDAP in this chapter, since AD supports the LDAP protocol, everything here
applies equally to AD. Where there are differences, we will point them out.

As can be seen in “1.5 Backends and Services” on page 13, the Keystone architecture
is composed of a number of backends and services. Although conceptually they all
could have LDAP drivers, in reality only three have such support:

• Identity: Storing users and groups
• Resource: Storing domains and projects
• Assignment: Storing roles and their assignments

45

In the vast majority of installations, only Identity is mapped to LDAP and usually in
read-only mode, since most enterprises have separate, well-established management
systems for their corporate directory. The mapping of the Resource and Assignment
backends to LDAP is usually problematic; for example, there is no obvious LDAP
schema that matches that needed by Keystone, and this needs to be fully read-write
from a Keystone perspective. In fact, given these problems, and that so few compa‐
nies attempted to use these drivers, both the Resource and Assignment support for
LDAP is now deprecated in Keystone, and support is planned to be removed in the
Mitaka release of OpenStack. Given this, it is highly recommended that LDAP not be
used for these drivers and that enterprises only map the Keystone Identity backend to
LDAP.

4.2 Configuring Keystone to Integrate with LDAP
In its basic form, Keystone LDAP integration has been included in OpenStack since
the Essex release. By providing your specific LDAP options in the Keystone configu‐
ration file (keystone.conf), Keystone will translate any user and group API calls into
something your LDAP server will understand. There is one huge restriction in this
classic LDAP support: you can only have one domain in Keystone, which is the
default domain. We’ll discuss how we use multi-domains in the newer LDAP support
(introduced in Juno) later in this chapter, but it is still worthwhile to look through the
classic support, since this is the underpinning on which such follow-on enhance‐
ments are built. Further, there are some installations for which a single domain is suf‐
ficient.

In looking at the task of mapping Keystone users and groups to LDAP, let’s first
examine what Keystone (and the rest of OpenStack) needs. A user entity in Keystone
(that is returned by a GET /users call) looks like this:

{
 "domain_id": "default",
 "enabled": true,
 "id": "ef7ab1f3fe2745fd91b3d62fd3b7309b",
 "links": {
 "self": "http://localhost:5000/v3/users/ef7ab1f3fe2745fd91b3d62fd3b7309b"
 },
 "name": "GeorgeSmiley"
}

Now, the links attribute is actually filled in by Keystone as part of formatting the
entity, and, as described above, in classic LDAP we only support the default domain,
so that bit’s easy. However, the other attributes need to come from the identity store
(be it SQL, LDAP, or whatever)— and in fact, there is one more—password! For secu‐
rity reasons, this is not returned by the Keystone API—but it does need to be accessi‐
ble to Keystone so that it can check an authentication request. So that’s the job of our

46 | Chapter 4: LDAP

classic LDAP support to somehow map enabled, id, name, and password to some
attributes already stored in an existing LDAP database (but whose schema and exact
attribute naming will vary from customer to customer). Further, since customers will
already have processes for disabling a user in the corporate directory, how is it that
we can ensure such a user is disabled in Keystone? And, of course, there are a similar
set of attributes for the Keystone group entity as well, which also need to be mapped:

{
 "description": "A group of spies",
 "domain_id": "default",
 "id": " a2ffab1b3fe3745fdaab3d62fd3b75093",
 "links": {
 "self": "http://localhost:5000/v3/users/a2ffab1b3fe3745fd...d62fd3b75093"
 },
 "name": "Undercover"
}

To solve these issues, Keystone provides a set of configuration options where you
specify for each of the needed Keystone entity attributes where in the LDAP schema
you will find the equivalent. For example, for the user entity, the configuration file
might include the following:

user_id_attribute = mail
user_name_attribute = mail
user_enabled_attribute = enabled
user_pass_attribute = userPassword

The left-hand side specifies the Keystone entity attribute; the right-hand side the
name of the LDAP attribute to use. Similarly for groups:

group_id_attribute = cn
group_name_attribute = cn
group_desc_attribute = description

There are other things Keystone also needs to know, of course. For example, the URL
of the LDAP server, the location in the LDAP tree where the user and group objects
are stored, etc. So let’s look at a complete set of LDAP options in a typical configura‐
tion file:

[identity]
driver = ldap

[ldap]
url = ldap://myservice.acme.com
query_scope = sub

user_tree_dn = "ou=users,o=acme.com"
user_objectclass = person
user_id_attribute = mail
user_name_attribute = mail
user_mail_attribute = mail

4.2 Configuring Keystone to Integrate with LDAP | 47

user_pass_attribute = userPassword
user_enabled_attribute = enabled
group_tree_dn = "ou=memberlist,ou=groups,o=acme.com"
group_objectclass = groupOfUniqueNames
group_id_attribute = cn
group_name_attribute = cn
group_member_attribute = uniquemember
group_desc_attribute = description

user_allow_create = false
user_allow_update = false
user_allow_delete = false
group_allow_create = false
group_allow_update = false
group_allow_delete = false

Let’s look, one by one, at the key options in the above configuration settings to see
what’s being done here:

[identity]
driver = ldap

This tells Keystone to use the LDAP driver for the [identity] backend (the default is
SQL).

The next section, [ldap] , adds the specific LDAP settings:

url = ldap://myservice.acme.com

This tells Keystone the URL of your server.

query_scope = sub

This tells Keystone what type of depth of search it should do when looking for objects
in LDAP. The default is one meaning just search at the top level of the specified tree,
whereas sub means search for any objects within the sub-tree.

user_tree_dn = "ou=users,o=acme.com"

This specifies the root of the tree in the LDAP server in which Keystone will search
for users.

user_objectclass = person

This specifies the LDAP object class that Keystone will filter on within user_tree_dn
to find user objects. Any objects of other classes will be ignored.

user_id_attribute = mail
user_name_attribute = mail
user_pass_attribute = userPassword

This set of options define the mapping to LDAP attributes for the three key user
attributes supported by Keystone. The LDAP attribute chosen for user_id must be
something that is immutable for a user and no more than 64 characters in length.

48 | Chapter 4: LDAP

Although one might think that the Distinguished Name (DN) would be a good choice
here, there are problems with this (e.g., it can be longer than 64 characters). Often, an
LDAP schema will include a uid of some type, which is a good substitute, or alterna‐
tively mail is a popular choice. The user name must also be unique within the user
objects that will be accessed by Keystone.

user_mail_attribute = mail

Similar to the attributes above, this gives the mapping to the LDAP email attribute. In
fact, email is not a standard attribute supported by Keystone (i.e., you will not find it
defined in the OpenStack Identity API specification), since it can be considered Per‐
sonally Identifiable Information (PII). As such, Keystone does not automatically pro‐
vide this for storage in its default SQL database. However, if your LDAP already
provides this, then setting the mapping above will cause this to appear in the Key‐
stone user entity as the email attribute.

user_enabled_attribute = enabled

In Keystone, a user entity can be either enabled or disabled. Setting the above option
will give a mapping to an equivalent attribute in LDAP, allowing your LDAP manage‐
ment tools to disable a user and for that fact to be reflected in OpenStack (since a
disabled user is prevented from authenticating by Keystone).

group_tree_dn = "ou=memberlist,ou=groups,o=acme.com"

Similar to user_tree_dn, this specifies the root of the tree in LDAP in which to
search for group objects.

group_objectclass = groupOfUniqueNames

Similar to user_objectclass, this defines the LDAP object class of a group object.

group_member_attribute = uniquemember

The LDAP attribute within the group object that holds the users who are members.

group_id_attribute = cn
group_name_attribute = cn
group_desc_attribute = description

This set of options specify the LDAP attributes mapped to the Keystone group entity
attributes. Again, as in the case for users, the group id must be unique for the group
objects that will be accessed by Keystone, as must the group name.

user_allow_create = false
user_allow_update = false
user_allow_delete = false
group_allow_create = false
group_allow_update = false
group_allow_delete = false

4.2 Configuring Keystone to Integrate with LDAP | 49

The above set of options dictate whether any of the Keystone writeable operations
should be supported against LDAP (by default they are set to true).

With the above configuration (once you have restarted Keystone), you should be able
to use Keystone’s user and group APIs to read the information in your corporate
LDAP, for example:

$ openstack user show henryn@uk.acme.com --domain default
+-----------+--+
| Field | Value |
+-----------+--+
domain_id	default
email	henryn@uk.acme.com
id	henryn@uk.acme.com
name	henryn@uk.acme.com
+-----------+--+

Issuing the above command will cause Keystone to:

1. Search for the objects of class person within the tree rooted by
ou=users,o=acme.com that have the mail attribute equal to henryn@uk.acme.com
(since we defined mail as the user name)

2. Having found such an object, return a Keystone user entity with the attributes of
id, email, and name all set to the value of the mail attribute (since that is what we
specified in the configuration options)

Note that for the above to work, the user accessing Keystone needs to have anony‐
mous query rights to the dn_tree specified in the configuration options. If this is not
possible, then you can provide a special user and password account that will be used
for that purpose in the configuration file in the [ldap] section:

user = cn=Manager,ou=users,o=acme.com
password = ga9s86d3das98dd

The above account is the only user to bind and search for users/groups.

4.2.1 Other Keystone Configuration Options in Classic LDAP Support
The Keystone configuration supports a number of other additional options and
shortcuts that allow integration with other common LDAP schemas and configura‐
tions:

use_tls = True
tls_cacertfile = /etc/keystone/ssl/certs/cacert.pem
tls_cacertdir = /etc/keystone/ssl/certs/
tls_req_cert = demand

The above four options all relate to enabling Transport Layer Security (TLS) for pro‐
viding a secure connection from Keystone to LDAP—and we highly recommend this.
Setting use_tls to true will cause Keystone to upgrade the connection to SSL. Note

50 | Chapter 4: LDAP

www.allitebooks.com

http://www.allitebooks.org

that an alternative to specifying use_tls is to specify an alternate port in the URL by
using the form “ldaps://myserver.com:636”. Whichever method you choose (and you
should use one or the other, but not both), the subsequent SSL connection is gov‐
erned by the other three tls options. tls_cacertfile gives the name of the file on the
Keystone server where the certificate(s) is/are to be found—if you specify this option,
then all certificates must be placed inside this one PEM file. Alternatively, the certifi‐
cations can be stored as individual files in a directory specified in tls_cacertdir.
Finally, you can control how the certificates are checked for validity in the client (i.e.,
Keystone end) of the secure connection (this doesn’t affect what level of checking the
server is doing on the certificates it receives from Keystone). The client checking is
really designed to spot man-in-the-middle (MITM) attacks—and the options for
tls_req_cert (which corresponds to the standard TLS option TLS_REQCERT) are
demand, never, and allow. The default of demand means the client always checks the
certificate and will drop the connection if it is not provided or invalid. never is the
opposite—it never checks it, nor requires it to be provided. allow means that if it is
not provided then the connection is allowed to continue, but if it is provided it will be
checked—and if invalid, the connection will be dropped.

suffix = "o=acme.com"

By default, if you don’t specify user_tree_dn or group_tree_dn, Keystone will con‐
struct these by adding ou=Users and ou=UserGroups, respectively, on the front of the
suffix (e.g., ou=Users,o=acme.com).

use_dumb_member = false
dumb_member = "cn=dumb,dc=nonexistent"

dumb_member is only used when LDAP groups are writeable and the LDAP class
chosen requires the member attribute to be defined. If use_dumb_member is true, the
LDAP member attribute will be set to the value defined in dumb_member upon creation
of a group.

user_filter = "objectCategory=person"
group_filter = "objectCategory=group"

The two filter options allow additional filters (over and above user_objectclass and
group_objectclass) to be included (i.e., ANDed) into the search of user and group
objects, respectively. One common use of this is to provide more efficient searching
within AD installations, where the recommended search for user objects is (&(object
Category=person)(objectClass=user)). By specifying user_objectclass as user
and user_filter as objectCategory=person in the Keystone configuration file, this
can be achieved. Similarly, for group searching, the recommended search is (object
Category=group), which can be achieved by specifying group_objectclass as * and
group_filter as objectCategory=group.

user_enabled_mask = 2

4.2 Configuring Keystone to Integrate with LDAP | 51

Some LDAP schemas, rather than having a dedicated attribute for user enablement,
use a bit within a general control attribute (such as userAccountControl) to indicate
this. Setting user_enabled_mask will cause Keystone to look at only the status of this
bit in the attribute specified by user_enabled_attribute, with the bit set indicating
the user is enabled.

user_enabled_default = 512

Most LDAP servers use a boolean or bit in a control field to indicate enablement.
However, some schemas might use an integer value in an attribute. In this situation,
set user_enabled_default to the integer value that represents a user being enabled.

user_enabled_invert = true

Some LDAP schemas have an “account locked” attribute, which is the equivalent to
account being “disabled.” In order to map this to the Keystone enabled attribute, you
can utilize the user_enabled_invert setting in conjunction with
user_enabled_attribute to map the lock status to disabled in Keystone. Note that
this option cannot be used in conjunction with either user_enabled_emulation or
user_enabled_mask (see below):

user_enabled_emulation = true
user_enabled_emulation_dn = "ou=enabledusers,o=acme.com"

Finally, some LDAP schemas do not hold a suitable attribute that can be mapped
directly to the Keystone user-enabled attribute, but nonetheless want to allow their
LDAP management tools to cause Keystone users to be enabled/disabled. If
user_enabled_emulation is true then Keystone treats the DN specified by
user_enabled_emulation_dn as a group object containing the list of enabled users.
Adding/removing users to/from this group using your LDAP management tools will
cause those users to be enabled/disabled in OpenStack.

allow_subtree_delete = false

Some of the data Keystone stores in LDAP is in tree form, e.g., user and group roles
on projects in assignments (and is relevant to Identity if you are also using the LDAP
assignment driver). When it comes to deleting groups or projects, by default Key‐
stone will essentially walk the tree deleting the objects. Some LDAP servers support
the ability to delete a tree in a single command, and setting allow_subtree_delete to
true will cause Keystone to try and use this facility. If you set this to true and your
LDAP server does not support tree deletion, then it will respond with an error—in
which case Keystone will fall back to tree walking.

page_size = 0

By default, when searching data, Keystone will talk to the LDAP server in a synchro‐
nous fashion. Setting page_size to something other than zero will result in Keystone
asking the LDAP server to send results in chunks of page_size number of entries.

52 | Chapter 4: LDAP

For this to work, your LDAP server must support paging (or Keystone will log an
error). Note that although Keystone is now talking to the LDAP server in an asyn‐
chronous fashion, Keystone will only return from its API call once all the data has
been returned by the LDAP server. In other words, this level of paging does not
enable paging at the API level.

alias_dereferencing = default

Aliasing in an LDAP server is a way of linking objects (i.e., part of one object is an
alias to another object). When querying a server, an LDAP client can specify whether
these alias links are followed or “dereferenced,” so that the aliased object is returned
in the query. The default for Keystone is just to use the underlying configuration of
your LDAP client. However, that can be overridden by specifying any of the standard
options for LDAP alias dereferencing, which are:

• never (which means never dereference)
• always (which means always dereference)
• finding (which means dereference in finding the base object, but not when

returning objects from the subsequent search of subordinate objects)
• searching (which means dereference the objects returned from the search of

subordinate objects, but not in finding the initially specified base object)

debug_level = 0

A non-zero value of debug_level will enable debugging at the LDAP library level,
with the value being passed directly into the LDAP calls themselves. You will need to
consult your LDAP library and server documentation for the appropriate settings
depending on what level of debugging you want to set.

chase_referrals = true

Most LDAP and AD servers support the concept of referrals. This is where you ask
the LDAP server for the value of some object, and it replies “Well, I don’t have that,
but I think I know who does, try that server over there.” The LDAP client library can
automatically “chase the referral” for us—and your LDAP client library will most
likely be configured as to whether it should do that or not. Setting chase_referrals
in the Keystone configuration file will override the setting in your LDAP client. Note
that if referrals are not being chased, and Keystone receives a referral response when
querying your LDAP server, it will discard this response (and log a debug error mes‐
sage indicating that you should enable referral chasing). Also note that referral chas‐
ing is an LDAP client-side activity, as opposed to chaining, which is where the LDAP
server does this for you. If you are using chaining, you do not need to set
chase_referrals.

user_attribute_ignore = ["default_project_id"]

4.2 Configuring Keystone to Integrate with LDAP | 53

This specifies a list of Keystone user entity attributes that should not be mapped to
LDAP, and should be ignored for both read and write operations. The default list for
the user object contains default_project_id, since this rarely maps to the typical
LDAP schema. With this being ignored, in order to obtain a project-scoped token,
you must always explicitly provide the project_id or name when authenticating to
Keystone.

user_default_project_id_attribute = None

This defines the LDAP attribute that should be mapped to the default_project_id
attribute in the Keystone user entity. In reality, as described above, this is rarely used
since it does not match most LDAP schemas—and it is entirely optional for Keystone,
since with the v3 API it simply represents a shortcut from having to define a project
scope when authenticating.

user_additional_attribute_mapping = []

Keystone supports the dynamic adding of attributes to its entities, allowing cloud
deployers and developers to, for instance, extend the user object. When the backend
is SQL, these are stored in a hidden (at the API level) column called extra. For LDAP,
since an additional attribute needs to be mapped to the schema, you can set
user_additional_attribute_mapping to indicate the name of the Keystone attribute
and the LDAP attribute to which it is to be mapped. This option is a list of pairs of
mappings for the form "keystone_attrib":"LDAP attribute", for example:

user_additional_attribute_mapping = ["cell_number":"mobileTelephoneNumber"]

With the above specified in the configuration, the user entity returned by Keystone
from a GET /users API call would look like something like this:

{
 "cell_number": "925-482-7336",
 "domain_id": "default",
 "enabled": true,
 "id": "ef7ab1f3fe2745fd91b3d62fd3b7309b",
 "links": {
 "self": "http://localhost:5000/v3/users/ef7ab1f3fe2745fd91b3d62fd3b7309b"
 },
 "name": "GeorgeSmiley"
}

group_attribute_ignore = []

This specifies a list of Keystone group entity attributes that should not be mapped to
LDAP, and should be ignored for both read and write operations.

group_additional_attribute_mapping = []

Similar to user_additional_attribute_mapping, this allows you to define addi‐
tional attributes to be mapped from your LDAP group entity into the one Keystone
will return via its API.

54 | Chapter 4: LDAP

use_pool = false
pool_size = 10
pool_retry_max = 3
pool_retry_delay = 0.1
pool_connection_timeout = -1
pool_connection_lifetime = 600

This batch of options relates to performance optimizations by instructing Keystone to
maintain a pool of connections to the LDAP server, and hands these out to be used by
incoming request processing rather than having to build and tear down a connection
for each API request. The main pool is used for all requests except authentication
requests (see below). Use of the pool is disabled by default, and setting use_pool to
true will enable it. Set pool_size to the maximum likely number of concurrent
requests.

use_auth_pool = false
auth_pool_size = 100
auth_pool_connection_lifetime = 60

The above allows you to further refine performance by having a separate pool of con‐
nections for authentication requests, as opposed to those used for other API process‐
ing.

4.3 Multiple Domains and LDAP
4.3.1 Requirements for Multi-Domain Corporate Directory Support
There are two main use cases for multi-domain LDAP with Keystone:

• A cloud provider who wants to support multiple customers on their cloud, each
of which wants to integrate with their own corporate directory.

• An enterprise wants to model their internal company structure around domains
—for example, each division of the company might be a domain. Each of these
divisions might have their own LDAP server, or perhaps a separate tree of users
within a common company LDAP server.

In both cases, the first key issue for Keystone is how to hook different LDAP URLs
(and other configuration options) to different domains. The domain definitions are
stored in the Keystone Resource backend, but somehow the Identity backend needs
to know on a domain-by-domain basis to which LDAP server to send the request.
Easy, you might think: just have an index by domain, right? Unfortunately, most user
and group API calls do not include a domain identifier, so that’s not so easy after all.
One of Keystone’s functions for Identity is to be the source (for other OpenStack serv‐
ices) of a globally unique ID (for each user and group). Once a user is created, this
unique ID is used in most Keystone calls to identify the user or group in question; for

4.3 Multiple Domains and LDAP | 55

example, to get a user entity you would issue a Keystone API call specifying just the
user ID:

GET /v3/users/d19cac8f7ef3e6de36a47b85f306f137

How will Keystone know which domain/LDAP server to talk to in order to find this
user? For performance reasons, searching them all is not a viable option. This prob‐
lem was the main reason it took until Juno to support multi-domain LDAP. Further,
as we saw from the classic (mono-domain) LDAP support in the previous section, the
Keystone configuration file specifies the LDAP attribute to map to the user_id or
group_id. Given the (OpenStack) constraint that this ID must be globally unique
(i.e., across all the LDAPs being interfaced by one Keystone), a second issue is
whether we would trust any given LDAP to be providing such a globally unique
attribute. Imagine if we just let whatever ID the underlying LDAP administrator
chose for a user to become the ID that had to be unique across the LDAP directories
of all the other customers (who may even be their competitors) who were hosted on
the same cloud? Sounds like a recipe for disaster! The solution to both issues was to
get Keystone to provide an intermediate ID mapping, which creates a “public” unique
ID that is published to the rest of OpenStack, and builds a table that will map this
public ID back to its Domain, LDAP server, and local ID within that LDAP server.
This directory-mapping layer is essentially invisible to callers of the Keystone API,
and the mapping is built on the fly as Keystone encounters entities in its identity driv‐
ers. The only thing a caller would notice is that the IDs for users and groups have
gotten bigger. (With multi-domain enabled, they are, by default, 64-byte SHA256
hashes as opposed to the classic 32-byte UUIDs.) It should be noted that this direc‐
tory mapping is not related to the Keystone federation mapping used to handle the
mapping of identity provider assertion attributes into Keystone attributes.

So let’s take a look at an example of using domain-specific directories in practice. In a
service provider that offered cloud services to its customers, it would be common to
represent a customer as a domain in Keystone. This allows customers to have their
own users, groups, and projects. What the provider would like to do is to be able to
offer customers the ability to use their existing corporate directory for authentication
to their domain—enabling each customer domain to point to that customer’s own
LDAP/AD service. The first thing to do is to enable domain-specific configuration
support in Keystone (it is disabled by default) by setting the following option in the
main Keystone configuration file:

[identity]
domain_specific_drivers_enabled=true

The next step is to decide how you will provide the domain-specific LDAP configura‐
tion options (e.g., URL to the LDAP server). Keystone supports two methods for
doing this:

56 | Chapter 4: LDAP

• By providing a configuration override file for each domain (this method has been
supported since Juno).

• By using some new additions to the Keystone API to specify the LDAP overrides
for each domain. (This was introduced in Kilo, and is currently marked as exper‐
imental. Despite being marked as experimental, it is fully functional and is likely
to become the primary supported mechanism in the Mitaka release.)

Both methods achieve the same goal: telling Keystone how to handle LDAP for a
given domain. You can’t mix the two approaches—it’s either/or—so you need to
decide which one to use. The API approach has the benefit that you can onboard a
domain (including setting its LDAP parameters) purely via the Keystone API. The
configuration file approach, while being familiar to anyone setting up an OpenStack
service, means you must ensure the file is created on your Keystone server for each
LDAP-backed domain you set up.

4.3.2 Setting Up Multi-Domain Using the Configuration File–Based
Approach
To use this approach, you specify to Keystone a directory on the Keystone server in
which to locate the domain-specific configuration files (one per domain).

[identity]
domain_config_dir=/etc/keystone/domains

When domain-specific configuration files are enabled, each time Keystone is started
it will scan the contents of domain_config_dir for any domain-specific configuration
files. For each domain that requires its unique corporate directory, a domain-specific
configuration file is required that contains the specific details of the corporate direc‐
tory for that domain. For example, if the service provider creates a domain called
“customerA” to represent that customer, then they create a domain-specific configu‐
ration file called keystone.customerA.conf. (The name is important and is always of the
form: keystone.{domain-name}.conf—the domain name must match the name of the
domain created in Keystone.) The contents of this configuration file might look
something like this:

[ldap]
url = ldap://ldapservice.thecustomer.com
query_scope = sub

user_tree_dn = ou=Users,dc=openstack,dc=org
user_objectclass = MyOrgPerson
user_id_attribute = uid
user_name_attribute = mail
user_mail_attribute = mail
user_pass_attribute = userPassword
user_enabled_attribute = enabled
group_tree_dn = ou=UserGroups,dc=openstack,dc=org

4.3 Multiple Domains and LDAP | 57

group_objectclass = groupOfUniqueNames
group_id_attribute = cn
group_name_attribute = cn
group_member_attribute = uniquemember

As you can see, these are exactly the same types of configuration options that are nor‐
mally set in the main Keystone configuration file—except in this case they are speci‐
fied in the specific configuration file for this domain and act as overrides to any
options specified in the main Keystone configuration file. Note that only the options
that are specific to the domain need to be specified here; common options can stay in
the main Keystone configuration file.

Once a domain has its own configuration file, Keystone will build a mapping for the
user and group entities in that backend as it encounters them, and route any requests
issued for those entities to the appropriate corporate directory.

While it is primarily designed to support different corporate directories, you can also
specify a configuration file for a domain to use an SQL backend. This is particularly
useful if you want to have some local users (such as service users or local admin
users) that you don’t want to place in a corporate directory. This is done in exactly the
same way as in the LDAP/AD case: Create a domain-specific configuration file for a
domain using the same naming convention, but in this case it will probably just con‐
tain the name of the driver. For example, if you want domain CloudAdmin to be
backed by SQL while all your other domains perhaps use LDAP, then create a
domain-specific configuration file called keystone.CloudAdmin.conf that contains:

[identity]
driver = sql

The big restriction today, however, is that Keystone currently allows only one SQL
driver to be loaded at a time—so either this can be the catch-all driver (by specifying
the Identity driver as SQL in the main Keystone configuration file), or it can be
assigned to a specific domain (using a domain-specific configuration file). If you try
specifying more than one domain with its own SQL configuration, Keystone will raise
an exception when starting up. Future versions of Keystone may lift this limitation.

As was stated at the start of this subsection, the configuration files are only read when
starting Keystone—so every time you add or change any of the LDAP configuration
parameters, you need to restart Keystone. The alternative approach is to use an exten‐
sion that is part of the Keystone API, which modifies the operation of a running Key‐
stone—this is described in the next subsection.

4.3.3 Setting Up Multi-Domain Using the Keystone API–Based
Approach
The Keystone API approach is similar to the configuration file approach, except that
rather than specify the LDAP override options in a file, you can specify them by issu‐

58 | Chapter 4: LDAP

ing an API call against the domain in question. This support is (in Liberty) marked as
experimental, although it is fully functional, and is targeted to be a part of the core
API in the Mitaka release. It is enabled by the (rather poorly named) option in the
main Keystone configuration file:

[identity]
domain_configurations_from_database=true

Having enabled the capability, you can now use the domain configuration manage‐
ment part of the Identity API, e.g., to get or modify the overrides for a given domain:

[GET | PUT | PATCH | DELETE] /domains/{domain_id}/config

As of the Liberty release, these APIs are not yet supported from OpenStackClient (the
changes to add them are currently under review), so using a cURL request to create
the configuration overrides for a given domain might look like:

$ curl -s -X PUT -H "X-Auth-Token: $OS_TOKEN" \
 -H "Content-Type: application/json" - d '
{
 "config": {
 "identity": {
 "driver": "ldap"
 },
 "ldap": {
 "url" = "ldap://ldapservice.thecustomer.com"
 "query_scope" = "sub"
 "user_tree_dn" = "ou=Users,dc=openstack,dc=org"
 "user_objectclass" = "MyOrgPerson"
 "user_id_attribute" = "uid"
 "user_name_attribute" = "mail"
 "user_mail_attribute" = "mail"
 "user_pass_attribute" = "userPassword"
 "user_enabled_attribute" = "enabled"
 "group_tree_dn" = "ou=UserGroups,dc=openstack,dc=org"
 "group_objectclass" = "groupOfUniqueNames"
 "group_id_attribute" = "cn"
 "group_name_attribute" = "cn"
 "group_member_attribute" = "uniquemember"
 }
 }
}' http://localhost:5000/v3/domains/421370cd78234413bbeb5d7ce1c73077/config

The above is the equivalent to the configuration file described in “4.3.2 Setting Up
Multi-Domain Using the Configuration File–Based Approach” on page 57.

In fact, the domain configuration management API extensions are quite powerful,
and can be used to read and modify individual options, not just to bulk load/read the
entire block. For instance, let’s say that the LDAP server URL for the domain in the
above example was changed, you could update just that option using the following
API command (via cURL):

4.3 Multiple Domains and LDAP | 59

$ curl -s -X PATCH -H "X-Auth-Token: $OS_TOKEN" \
 -H "Content-Type: application/json" - d '
{
 "url" = "ldap://ldapservice2.thecustomer.com"
}' \
http://localhost:5000/v3/domains/421370cd78234413bbeb5d7ce1c73077/config/ldap/url

Similarly, you can just get the value of an individual option:

$ curl -s -H "X-Auth-Token: $OS_TOKEN" -H "Content-Type: application/json" \
 http://localhost:5000/v3/domains/421370cd78234413bbeb5d7ce1c73077/config/ldap/u
 rl | python -mjson.tool
{
 "url" = "ldap://ldapservice2.thecustomer.com"
}

It is likely that over time this API-based method of domain configuration manage‐
ment will become the primary method, and that the configuration file–based method
will be deprecated. However, as stated above, currently this API method is still
marked as experimental. This is mainly due to the fact that there are some corner
cases that are not yet well handled within its implementation—primarily to do with
what happens in a multiprocess installation of Keystone (i.e., one where multiple Key‐
stone processes are used to improve the response time and throughput). The chal‐
lenge for Keystone in this case is to ensure that all processes see the update (and any
cache copies are updated), and further that they see the update in an atomic fashion
(i.e., if you are updating multiple configuration options for a domain, that all pro‐
cesses see all the updates or none of the updates). The implementation for Liberty sol‐
ves the first of these challenges, but it is possible that if you try and access the LDAP
users or groups at the same time you are updating the domain configuration options
that for a short period that other process could see a partial update (until the caches
timeout). So if you choose to use this capability, then either ensure creating/updating
the LDAP options are done when the domain is not in use, or worst case, ensure that
you wait for at least a period of cache_time before using the domain (by default this
is 300 seconds, i.e., 5 minutes). The cache_time is itself configurable in the main Key‐
stone file using the option:

[domain_config]
cache_time=300

As stated, these restrictions are planned to be resolved in the Mitaka release, and the
API management method will be declared as stable.

In summary, the API method of setting up the domain LDAP configuration options
has several advantages over the file-based method:

• It is all done via the Keystone API, so there’s no need to separately distribute the
domain-specific configuration file. Given that the API can also be used in a fine-
grained fashion, this is also easier to integrate into your management systems.

60 | Chapter 4: LDAP

www.allitebooks.com

http://www.allitebooks.org

• Does not require a restart of the Keystone server, ensuring no interruption of ser‐
vice when onboarding a domain.

4.3.4 Restrictions When Using Multi-Domain Identity
The main restriction relates to one of the common queries people want to make when
first starting to test Identity, which is “list me all the users in the system,” using the
GET /users API call. Now, for small systems when all the users are in an SQL data‐
base, such a query doesn’t seem unreasonable. However, imagine a setup where there
are many tens (or even hundreds) of customers supported in a single cloud, each in
their own domain, each using their own corporate LDAP. In such situations, satisfy‐
ing “list me all the users in the system” would require a scan of all the separate corpo‐
rate LDAP servers and merging the results. But, more importantly, does asking such a
question really make any sense? The primary use of multi-domain is to enable each
customer to have their own LDAP support, so the use of such a “list everything” com‐
mand would have to be restricted to administrators of the cloud provider, who, in
reality, simply do not need to have a list of all the users of all their customers. As such,
if you enable multi-domain support, Keystone will require you to specify a domain as
part of a list all users request in one of two ways:

1. Add a domain filter to the request:
GET /users?domain_id=421370cd78234413bbeb5d7ce1c73077

2. Use a domain-scoped token when issuing the request, and the scope of the token
will be used as the domain to search

Hence, with multi-domain enabled, you can no longer ask to “list me all the users in
the system,” but you can ask to “list me all the users in this domain.”

A second restriction, which is probably already apparent, is that multi-domain is only
supported when using the Keystone v3 API. The v2 API does not support the concept
of domains, so there is no way to separate the different namespaces.

4.3.5 Choosing the Right Mix of SQL and LDAP Domains
As discussed already, the main use of multi-domain LDAP is to allow the users and
groups of newly created domains to be drawn from specific LDAP corporate directo‐
ries. In setting up multi-domain to achieve this, there are a couple of decisions you
need to make:

1. What backing store will be used for the default domain? Before trying to answer
this, a little background is needed. Originally, before Keystone v3, there were no
domains—users were “global” across a Keystone installation. With the introduc‐
tion of domains, users and groups are owned by a given domain; however, that
begged the question as to what happens to the users created before the v3 API

4.3 Multiple Domains and LDAP | 61

was introduced? Also, a modern Keystone supports both the v3 and v2 APIs (and
although v2 will be deprecated soon, you can still call it), so what happens to
users created via the v2 API today (since you can’t specify what domain they are
in)? To solve these issues, Keystone automatically creates a “default” domain
(which has an ID of default and a name of Default). Any users created using
the v2 API will be placed in this domain.

2. Where are the service users going to be created? Service users are the user
accounts that other services (e.g., Nova, Glance, etc.) utilize to make calls to Key‐
stone. Since these already existed pre-v3, these typically live in the default
domain, particularly since until recently some services still made v2 API calls to
Keystone (and a v2 API call is only allowed to see users in the default domain).
With the latest keystonemiddleware (the Keystone client code that is used by
services to call Keystone), services can now specify the domain ID for the service
user, enabling cloud providers to move their service users into a separate service
domain.

So given the above, you have three basic choices relating to the default domain, as
discussed in the following.

Use SQL for the Default Domain
The most obvious solution for new installations is that the default domain is backed
by a local Keystone SQL database, and all other domains use LDAP. One important
advantage to this approach is that service users can be created locally, without the
need for them to be added to a corporate directory.

In fact, there are two ways of configuring Keystone so that the default domain is SQL.
Depending on which you choose there will be implications for any other SQL
domains you want to support:

1. Set the Identity driver to sql in the main Keystone configuration file, and then
add domain-specific LDAP configurations (using the file- or API-based mecha‐
nisms) for those domains that have their own LDAP. What this configuration
allows is for the SQL driver to handle not just the default domain, but any other
domain that doesn’t have explicit LDAP configurations defined. This can be quite
a common multi-customer cloud scenario—some smaller customers just want
their users and groups managed by the cloud provider, some larger customers
want to link to their existing corporate directory. Using this SQL configuration,
this gives a cloud provider the option to choose to use SQL for a set of smaller
customer domains if that was more cost effective (these customers’ users and
groups are still in their own domains, so their namespaces are maintained). Of
course, there’s no reason the cloud provider could not also use an internal LDAP
server with different tree attach points for these smaller customers, if that suited
their requirements better.

62 | Chapter 4: LDAP

2. Create a specific domain configuration for the default domain and in it set the
Identity driver to sql. Using the API-based method you would issue the follow‐
ing call:

$ curl -s --request PUT -H "X-Auth-Token: $OS_TOKEN" \
 -H "Content-Type: application/json" - d '
{
 "config": {
 "identity": {
 "driver": "sql"
 },
 }
}' http://localhost:5000/v3/domains/default/config

Alternatively, if you are using the file-based configuration method you would
create a domain-specific configuration file of the name keystone.Default.conf
(note how the name of the default domain is used in the filename) that includes
just the [identity] section and set the driver to sql. Also set the identity driver
in the main Keystone configuration file to ldap (but don’t worry about any of the
other LDAP configuration options in the main configuration file). This will tell
Keystone that only the default domain is backed by SQL and all other domains
must be given their own LDAP configuration—and access to a domain won’t
work without creating a specific LDAP configuration for it.

This method is probably the simplest to set up. But one thing to keep in mind, how‐
ever, is that if you still need to support users accessing Keystone via the v2 API, then
they will access the default domain, which is SQL. There is no way of allowing v2 cli‐
ents to access any of the LDAP domains.

Use LDAP for All Domains, Except an SQL Service Domain
This is a new capability using keystonemiddleware plus enhancements to multi-
domain support that was added to Keystone in Liberty. To configure this you need to:

• Set the identity driver to ldap in the main Keystone configuration file.
• Create a domain in Keystone that will hold your service users, and create a

domain-specific configuration for this service domain, setting the identity driver
to sql.

• Create your service users in this new domain (which will be stored in the Key‐
stone SQL database).

• Modify the configuration file for each of your other services to specify the
domain_id for the service users, e.g., in nova.conf you would set the following:

[keystone_authtoken]
username = nova
user_domain_id = 7c0df68c6b734735a22b2365f241b9b8

4.3 Multiple Domains and LDAP | 63

For any additional domains, create LDAP domain-specific configurations for
each one, using either the file- or API-based mechanisms.

This SQL/LDAP mix requires that all services be configured to use the domain for
service users as described above. Provided you can do this, then you kind of get the
best of both worlds—LDAP for both the default and additional domains, with your
service users stored locally in a separate service domain. In addition, you preserve the
ability (if you need it) for any user access via the v2 API to successfully access the
LDAP-backed default domain.

Use LDAP for All Domains
The third approach is LDAP for all domains, including the default domain. This is
often used in installations where LDAP was already in place prior to multiple
domains being supported (with the Identity driver set to ldap in the main keystone
configuration file). In these scenarios, the service users will have already been created
in the LDAP directory that is backing the default domain. Under this circumstance,
multi-domain can be enabled and additional domains provided with their own con‐
figurations. Note that in this setup, all domains (except the default domain) will
require their LDAP configuration to be defined using either the file- or API-based
mechanisms.

Finally, as an aside, remember that in all of the above methods, we are talking about
whether to use SQL or LDAP for the store of Identities. Whichever mix of SQL and
LDAP you chose for your domains, you can always use SQL for the storage of resour‐
ces and assignments (and indeed this is recommended; we will discuss this more in
“4.5 Projects, Roles, and Assignments from LDAP (Just Say NO!)” on page 72).

4.4 A Practical Guide to Using Multi-Domains and
Keystone
In this section, we show how to use Keystone against IBM’s internal corporate direc‐
tory (“bluepages”), which is a standard LDAP server. Although the particular LDAP
attributes might be different in your setup, the principles will be the same.

4.4.1 Setting Up LDAP
Like the early examples from Chapter 2, we start from a fresh DevStack installation of
OpenStack, which will have set up the default domain as a service domain containing
the service accounts OpenStack needs. Hence, the first task is to add a new domain
that will subsequently be configured so its users and groups are mapped to the blue‐
pages directory, where the user accounts for all IBMers are stored.

64 | Chapter 4: LDAP

$ openstack domain create ibm
+---------+----------------------------------+
| Field | Value |
+---------+----------------------------------+
enabled	True
id	421370cd78234413bbeb5d7ce1c73077
name	ibm
+---------+----------------------------------+

Let’s also create a project within that domain (both the domain and project records
are actually being stored in SQL in Keystone since the Resource backend is backed by
SQL).

$ openstack project create ibmcloud --domain ibm
+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	
domain_id	421370cd78234413bbeb5d7ce1c73077
enabled	True
id	95ae2a9c259b4012b8b7e8ad7dc9a939
name	ibmcloud
parent_id	None
+-------------+----------------------------------+

Now we need to tell Keystone to use multi-domains and that for this specific IBM
domain, to go and talk to the IBM bluepages server. First, we update the main Key‐
stone configuration file (keystone.conf) to enable the domain-specific driver option:

[identity]
domain_specific_drivers_enabled = true

Then we need to set the LDAP options for the specific IBM domain. As described
earlier, there are two ways to do this: using the Keystone API or by creating a separate
configuration file for this domain. We’ll show both ways here.

To use the API method, we first need to enable this option (in addition to setting
domain_specific_drivers_enabled to true):

[identity]
domain_configurations_from_database=true

Then we simply call the domain configuration management PUT API to create the
options all in one go:

$ curl -s --request PUT -H "X-Auth-Token: $OS_TOKEN" \
 -H "Content-Type: application/json" - d '
{
 "config": {
 "identity": {
 "driver": "ldap"
 },
 "ldap": {

4.4 A Practical Guide to Using Multi-Domains and Keystone | 65

 "url" = "ldap://bluepages.ibm.com",
 "query_scope" = "sub",
 "user_tree_dn" = "ou=bluepages,o=ibm.com",
 "user_objectclass" = "ibmPerson",
 "user_id_attribute" = "uid",
 "user_name_attribute" = "mail",
 "user_mail_attribute" = "mail",
 "user_pass_attribute" = "userPassword",
 "user_enabled_attribute" = "enabled",
 "group_tree_dn" = "ou=memberlist,ou=ibmgroups,o=ibm.com",
 "group_objectclass" = "groupOfUniqueNames",
 "group_id_attribute" = "cn",
 "group_name_attribute" = "cn",
 "group_member_attribute" = "uniquemember",
 "group_desc_attribute" = "description",
 "user_allow_create" = false,
 "user_allow_update" = false,
 "user_allow_delete" = false,
 "group_allow_create" = false,
 "group_allow_update" = false,
 "group_allow_delete" = false
 }
 }
}' http://localhost:5000/v3/domains/421370cd78234413bbeb5d7ce1c73077/config

That’s it for the API method—we’re done. Skip to “4.4.2 Running Admin Commands”
on page 67 to try some commands to test our new setup.

The alternative to the above is to create a domain-specific configuration file. To
enable this, we need to tell Keystone where to find this file:

[identity]
domain_config_dir = /etc/keystone/domains

Now we create the IBM domain-specific configuration file (keystone.ibm.conf) in
the /etc/keystone/domains directory, and use it to specify the bluepages-specific set‐
tings:

[identity]
driver = ldap

[ldap]
url = ldap://bluepages.ibm.com
query_scope = sub

user_tree_dn = "ou=bluepages,o=ibm.com"
user_objectclass = ibmPerson
user_id_attribute = uid
user_name_attribute = mail
user_mail_attribute = mail
user_pass_attribute = userPassword
user_enabled_attribute = enabled
group_tree_dn = "ou=memberlist,ou=ibmgroups,o=ibm.com"

66 | Chapter 4: LDAP

group_objectclass = groupOfUniqueNames
group_id_attribute = cn
group_name_attribute = cn
group_member_attribute = uniquemember
group_desc_attribute = description

user_allow_create = false
user_allow_update = false
user_allow_delete = false
group_allow_create = false
group_allow_update = false
group_allow_delete = false

Before continuing, we need to restart Keystone for the changes to take effect:

$ sudo service apache2 restart

4.4.2 Running Admin Commands

Finding a user
In this example, we attempt to find an LDAP user within the domain that is backed
by LDAP.

$ openstack user show stevemar@ca.ibm.com --domain ibm
+-----------+--+
| Field | Value |
+-----------+--+
domain_id	c3c24e60d57e4461ad64b372c14128b7
email	stevemar@ca.ibm.com
id	c29cac8f7003e6de36a47b85f306f137bea8026e3d55c35aed27dfbf09c8fb28
name	stevemar@ca.ibm.com
+-----------+--+

Finding groups a user is a member of
In this example, we list all LDAP groups a user is a member of. Similar to the above
command, we need to specify the domain the user can be found in. Note that if a user
is not specified as a filter, then Keystone will attempt to list all LDAP users, an opera‐
tion that will likely result in a timeout.

$ openstack group list --user stevemar@ca.ibm.com --user-domain ibm
+--+--------------------+
| ID | Name |
+--+--------------------+
178e5df37393dd6695c4d93382...60b21b393373ff8360a191b74bb	SWG_Canada
5f620ab5abe2f0b14e3112357d...3ac637e7416b7d562152f73e938	Toronto_Lab_VPN
ed9f9cb5dbefd6a6e5808ca979...b5d160e0a7308c199680c595a96	HiPODS-OpenCloud
+--+--------------------+

4.4 A Practical Guide to Using Multi-Domains and Keystone | 67

List all members of a group
In this example, we attempt to list all users in a group. We can group by ID or by
using the group’s name and owning domain. Similar to the previous command, if a
group is not specified as a filter, then Keystone will attempt to list all LDAP groups,
an operation that will likely result in a timeout. Note that the ability to list users in a
group by group and domain name will be available in the Mikata release of Open‐
StackClient.

$ openstack user list \
 --group ed9f9cb5dbefd6a6e5808ca97921734da3b90b5d160e0a7308c199680c595a96
+---+---------------------+
| ID | Name |
+---+---------------------+
| c29cac8f7003e6de36a47b...a8026e3d55c35aed27dfbf09c8fb28 | stevemar@ca.ibm.com |
| f3ca1de06fbe100e71577a...d792686ae75812becfe43d5b4aa09c | topol@us.ibm.com |
+---+---------------------+

Assigning a group a role on a project
In this example, we want to provide authorization to all members of a group. All
users within the group will now have the role on the project specified.

$ openstack role add member --group "HiPODS-OpenCloud" --group-domain ibm \
 --project ibmcloud --project-domain ibm

4.4.3 Running LDAP User Commands

Setting up LDAP credentials
In this example, we attempt to authenticate as an LDAP user. To do this, we should
set our environment variables to our LDAP credentials, and update the project
domain and user domain values as necessary. The resultant settings should look like:

$ env | grep OS
OS_IDENTITY_API_VERSION=3
OS_PASSWORD=My5uper5ecretPa$$word
OS_AUTH_URL=http://172.16.240.134:5000/v3
OS_USERNAME=stevemar@ca.ibm.com
OS_USER_DOMAIN_NAME=ibm
OS_PROJECT_NAME=ibmcloud
OS_PROJECT_DOMAIN_NAME=ibm

Getting a token
In this example, we attempt to authenticate and retrieve a token using our newly set
credentials.

$ openstack token issue
+------------+--+
| Field | Value |

68 | Chapter 4: LDAP

+------------+--+
expires	2015-08-13T21:54:15.411376Z
id	7c0df68c6b734735a22b2365f241b9b8
project_id	e68bd223fb8045f6b7b2b7aa926433c8
user_id	c29cac8f7003e6de36a47b85f306f137bea8026e3d55c35aed27dfbf09c8fb28
+------------+--+

Listing images
In this example, we attempt to list all public images that are available to the user. This
highlights the fact that LDAP users are able to communicate with other OpenStack
services.

$ openstack image list
+--------------------------------------+---------------------------------+
| ID | Name |
+--------------------------------------+---------------------------------+
1f8a0809-5aa5-454a-916b-6077c00e20e1	cirros-0.3.4-x86_64-uec
1d181a59-7ab7-4b5c-a351-118383d0b58b	cirros-0.3.4-x86_64-uec-ramdisk
b8aa23ee-1791-4a0e-b42a-cac6f7607b21	cirros-0.3.4-x86_64-uec-kernel
+--------------------------------------+---------------------------------+

Creating a VM
In this example, we create a VM using the Nova service, once again illustrating that
we are able to use other OpenStack services.

$ openstack server create myVM --image cirros-0.3.4-x86_64-uec --flavor 1
+--------------------------------------+---------------------------------------+
| Field | Value |
+--------------------------------------+---------------------------------------+
OS-EXT-AZ:availability_zone	nova
OS-EXT-STS:task_state	scheduling
OS-EXT-STS:vm_state	building
adminPass	PQDNiboGaNQ2
created	2015-08-14T07:35:36Z
flavor	m1.tiny (1)
id	fe2b4ab0-80cf-48fe-ad5b-3e8b9624edd1
image	cirros-0.3.4-x86_64-uec (1f8a0809-...
name	myVM
project_id	e68bd223fb8045f6b7b2b7aa926433c8
security_groups	[{u'name': u'default'}]
status	BUILD
updated	2015-08-14T07:35:36Z
user_id	c29cac8f7003e6de36a47b85f306f137be...
+--------------------------------------+---------------------------------------+

4.4 A Practical Guide to Using Multi-Domains and Keystone | 69

4.4.4 Authenticating with Horizon

Updating the Horizon configuration file
In order for LDAP users to authenticate through Horizon, certain options need to be
enabled. In the horizon/openstack_dashboard/local/local_settings.py file, make the fol‐
lowing changes:

OPENSTACK_API_VERSIONS = {
 "data-processing": 1.1,
 "identity": 3,
 "volume": 2,
}
OPENSTACK_KEYSTONE_MULTIDOMAIN_SUPPORT = True
OPENSTACK_KEYSTONE_URL="http://172.16.240.134:5000/v3"

Log in with LDAP credentials and specify the domain name
In the screenshots below we can see the modified Horizon landing page, which now
expects a user to specify the domain they want to authenticate against.

70 | Chapter 4: LDAP

www.allitebooks.com

http://www.allitebooks.org

Figure 4-1. Horizon landing page with an additional text box for the domain name

Once logged in, a user is able to see their username and domain along the top of the
dashboard.

Figure 4-2. Once logged in, the user’s email address should be visible at the top right.

4.4 A Practical Guide to Using Multi-Domains and Keystone | 71

4.5 Projects, Roles, and Assignments from LDAP (Just Say
NO!)
Identities in LDAP work well. They are typically managed by an LDAP administrator,
using existing enterprise management tools (that most likely ensure an enterprise’s
other systems are also maintained; e.g., human resources, etc.). When employees are
hired or fired from the enterprise company, they are added and removed from LDAP
accordingly. Similarly, when users are added and removed from groups in the corpo‐
rate LDAP, Keystone’s view of the world is also updated (since, of course, Keystone is
just using the corporate LDAP as its Identity store). This is a great fit for Identity and
a common approach used by many applications.

Initially, when the LDAP driver was written in the Essex release, there was no separa‐
tion between the Project, Role, and User services—they were all lumped together in
the same backend together. This resulted in the first few iterations of LDAP support
in Keystone forcing administrators to keep this data in their LDAP, a very unpopular
restriction. Since then, the Keystone team has worked hard to separate the services
and allow each to use their own backends (as described earlier, called, Identity,
Assignment, and Resource). While Keystone still supports an LDAP driver for each
of these three backends, we overwhelming suggest that you not store Assignment and
Resource data in LDAP, but rather use a database such as SQL. The reasons for this
are as follows:

• While there is a pretty good schema match for Identity with LDAP, the same is
not true for Assignment and Resource. You will most likely have to modify your
schema significantly to support OpenStack data.

• In general, Keystone needs the backends for Assignment and Resource to be
read-write, something most corporate directory groups will feel uneasy about.

• Due to the lack of usage, the actual backend support for LDAP in Assignment
and Resource is not as up to date as SQL. In particular, you can only use the
default domain (the multi-domain support implemented in Identity is not pro‐
vided with Assignment and Resource). In addition, domain role assignments are
not supported on the default domain.

Given the above, as stated earlier, the LDAP backends for Assignment and Resource
are likely to marked as deprecated in Liberty, for removal in the Mitaka release. For
clarity, let us emphasize that this does not mean any reduction in support or commit‐
ment from Keystone to LDAP for Identity. This remains a fundamental part of Key‐
stone and represents the most common backend for Identity in use in larger
enterprise deployments.

72 | Chapter 4: LDAP

4.6 Tips, Common Pitfalls, and Troubleshooting
In this section, we describe some commonly experienced pitfalls that occur when
using LDAP and the multi-backend approach to identity in Keystone and provide
troubleshooting tips to address these issues.

4.6.1 General LDAP Issues

Missing Python LDAP libraries
If a user is seeing either of the following errors, then they may be missing LDAP
Python libraries (these libraries are not installed by default).

$ openstack user show stevemar@ca.ibm.com --domain ibm
ERROR: openstack An unexpected error prevented the server from fulfilling your
request: No module named ldap.filter (Disable debug mode to suppress these
details.) (HTTP 500) (Request-ID: req-74bb843e-cc52-482e-9a25-4366a276ba3d)

or

$ openstack user show stevemar@ca.ibm.com --domain ibm
ERROR: openstack An unexpected error prevented the server from fulfilling your
request: No module named ldappool (Disable debug mode to suppress these
details.) (HTTP 500) (Request-ID: req-74529f55-079b-4afd-b71d-6270fe4c1b2d)

To resolve either of these issues, install the required libraries:

$ sudo pip install python-ldap
$ sudo pip install ldappool

Or (as of the Liberty release of Keystone):

$ sudo pip install keystone[ldap]

Use tools to help you determine LDAP attributes
If you are unaware of the values for LDAP attributes that are necessary to configure
Keystone, we suggest downloading software to help you determine these values.
There are several free tools available, such as Xplorer, which have a graphical user
interface that are easy to use. Using a simple value like name or email to find a single
entry in LDAP is usually sufficient, since this will allow you to see all the fields avail‐
able to every user.

4.6 Tips, Common Pitfalls, and Troubleshooting | 73

4.6.2 Tips for Using Multi-Domain LDAP

When using the configuration file–based method, make sure you set up things in the right
order
If you are starting with the classic configuration and you only have the default
domain that points at a single LDAP/AD corporate directory, then the order of steps
should be:

1. Set domain_specific_drivers_enabled to “true” in the main Keystone configu‐
ration file and restart Keystone.

2. Create the domain for which you want to have specific configurations.
3. Create the domain-specific configuration files for each of these domains.
4. Restart Keystone again.

With LDAP as the default driver, if you don’t first set domain_specific_driv
ers_enabled to true, Keystone will prevent you from creating new domains (since it
knows the default LDAP driver can only handle the default domain).

If you have set up your domain and the configuration file but you still can’t access the
data in the corporate directory, then it might be worth checking the Keystone log file.
At startup, as Keystone is scanning the domain_config_dir, it will examine each file. If
it doesn’t match the form keystone.{domain-name}.conf, then it will be ignored. If
Keystone can’t find the domain of the name specified in the file name, then it will also
ignore it. In both situations, Keystone will log a warning with the name of the prob‐
lematic file. For example:

Invalid domain name (CustomerB) found in config file name

Remember, you can’t list all the users
As described earlier, with multi-domain, Keystone requires you to specify a domain
when listing “all users.” If you fail to do this (and are not using a domain-scoped
token, in which case this will imply the domain), then Keystone will return an error.
This error can sometimes be a bit confusing—“Request Unauthorized” (HTTP error
code 401), when one might expect it to return a “Bad Request” (HTTP error code
400).

You can’t move users between domains
As described earlier, with multi-domain LDAP, when Keystone encounters a user it
will assign it a unique external ID it will publish to the rest of OpenStack (and itself,
for assigning roles). This unique ID is effectively a hash of the domain and the local
ID within the respective LDAP server). Hence, if you change the local ID or “move”
that user to an LDAP server that is mapped to a different Keystone domain, as far as

74 | Chapter 4: LDAP

Keystone (and the rest of OpenStack) is concerned, this is a different user. None of
the old assignments or project relationships will be carried across.

Occasional maintenance of the directory-mapping table
As we mentioned earlier, with multi-domain LDAP, Keystone dynamically builds the
directory mapping of the external published user and group IDs to the underlying
local entities in the appropriate corporate directory service. Since these corporate
directories are usually read-only from a Keystone perspective, any user management
will happen out-of-band via the tooling used to maintain the corporate directory in
question. In practice, this means that over time as user and group entities are deleted
out of the corporate directory, old mapping entries will remain in Keystone’s
directory-mapping table. While this is benign, over time it could bloat the Keystone
table. To manage this, the keystone-manage tool has been enhanced to support sev‐
eral options for purging entries out of the Keystone directory-mapping table. The
most specific option is to purge the mapping for a given local identifier in a given
domain. For example:

$ keystone-manage mapping_purge --domain-name CustomerA --local-id abc@de.com

If this is a relatively frequent occurrence, then you might want to automate such indi‐
vidual purging.

An alternative, however, is to simply purge all the mappings periodically for a given
domain. A concern might be whether this will cause you to lose the externally pub‐
lished ID for local entities. In fact, that’s not an issue, since the algorithm for the map‐
ping is designed such that Keystone can regenerate the mapping and guarantee to re-
assign the same externally published user/group ID as before. Note that this assumes
a user has not moved between corporate directories; if they have, then they are con‐
sidered a different user. To purge all the mappings for a given domain:

$ keystone-manage mapping_purge --domain-name CustomerA

4.6 Tips, Common Pitfalls, and Troubleshooting | 75

CHAPTER 5

Federated Identity

As Keystone progressed with new features and functionality, one of the most sought-
after features was support for federated identity: giving administrators the ability to
leverage their existing federated identity solution, allowing users to use their own cre‐
dentials and to leverage existing single sign-on capabilities. One of the key benefits of
this approach is that users can exist in an identity store that is not owned or accessible
by Keystone, reducing the logic of maintaining user credentials, or supporting a sin‐
gle type of corporate backend (LDAP and not AD). It also allows Keystone to concen‐
trate on authorization and how to better serve OpenStack services.

A brief overview of the terminology used in this chapter:

Identity Provider (IdP)

A trusted provider of identity information. This may be backed by LDAP, SQL,
AD, or Mongo. The identity provider is able to construct user attributes into
Assertions or Claims.

Service Provider (SP)

A service that consumes identity information. In our case, Keystone will be the
service provider. Many web applications that utilize single sign-on are examples
of service providers.

SAML

An XML-based standard approach to federated identity. The resultant document
that contains user attributes is called an Assertion.

77

OpenID Connect

A newer standard approach to federated identity. Leverages OAuth 2.0, and
ditches XML in favor of JSON. The resultant information about the user is called
a Claim.

Assertions and Claims

A standard method of representing information and attributes about a user. An
identity provider may issue Assertions or Claims, based on the standard they use,
for service providers to consume.

5.1 Approach to Federation
In this section we discuss how existing technology can be leveraged and Keystone-
specific resources that need to be created.

5.1.1 Leveraging Existing Technology
Keystone’s approach to Federation was based on its decision to run Keystone under
the Apache HTTP Server (httpd). Since Apache (and other HTTP servers) is the rec‐
ommended way to run Keystone, it made sense to architect a solution that allowed
Keystone to leverage existing Apache plugins and modules that handle different fed‐
eration standards for it. For instance, if you intend to use a SAML identity provider,
then mod_shib or mod_auth_mellon are available plugins; if you intend to use an
OpenID Connect identity provider, then mod_auth_openidc is available. This
approach makes Keystone a service provider that is protocol agnostic, since the web
server plugins will handle the logic of interacting with the identity provider. The
result of a correct setup is that once a user successfully authenticates with their iden‐
tity provider, Keystone is able to see user attributes as HTTP request environment
variables.

One of the difficulties with this approach, and so many of the federated identity
standards, is that they are primarily designed to be used in an Internet browser. The
reason for this is that any form of authentication can be used, password, two-factor,
certificate, etc., so long as the browser can support it and handle the inherent redi‐
rects that come with browser-based authentication, then all is good. The issue with
using this approach for OpenStack is that so many users of OpenStack interact with
their cloud through a command line interface (CLI). Within the standards, there are
various levels of support for a non-browser-based flow, but these are often not as user
friendly, and may even be disabled or unsupported by the identity provider.

78 | Chapter 5: Federated Identity

5.1.2 Keystone-Specific Federation Concepts
In order to have a full federated identity solution, the Keystone team needed to create
a new set of APIs, and resources stored in their own backends. These APIs are
intended to allow cloud administrators to add trusted identity providers, specify
which protocols the identity providers will support, and create mappings to allow
translating user attributes to keystone concepts that model the external identity pro‐
viders and protocols they will be consuming.

Identity Provider
Keystone now has an Identity Provider resource, which is served through the follow‐
ing API: /OS-FEDERATION/identity_providers. This endpoint allows a cloud
administrator to create, delete, update, retrieve, and list identity providers. Each entry
is meant to map to an external identity provider that will be trusted to send assertions
or claims about an external user. Note that identity provider names are guaranteed to
be globally unique in an OpenStack deployment.

Protocol

Keystone now has a Protocol resource, which is served at the following API: /OS-
FEDERATION/identity_providers/{idp_id}/protocols. This endpoint allows a
cloud administrator to create, delete, update, retrieve, and list protocols per identity
provider. A protocol has only a name and reference to the mapping that will be used
(more on that later). The reasoning behind setting the protocol per identity provider
is that an external identity provider may support more than one type of federated
authentication, so we must allow an identity provider to have multiple protocols as
well. The protocols are meant to mirror the federated identity standard that is being
used. Common values for protocol names are saml2 (for SAML) and oidc (for
OpenID Connect).

Mapping
Mappings are the lynchpin to federated identity in Keystone. A mapping resource has
now been created and served at the following API: /OS-FEDERATION/mappings. This
endpoint allows a cloud administrator to create, delete, update, retrieve, and list map‐
pings. A mapping is specified when creating a protocol that an identity provider sup‐
ports. The actual contents of a mapping is a set of rules that will be evaluated when a
Claim or Assertion is seen by Keystone. These rules will vary greatly between deploy‐
ments, and depend on the attributes issued by the identity provider and how much
access the cloud administrator wants to give to federated users.

5.1 Approach to Federation | 79

5.2 Translating User Attributes to Keystone Concepts
Now that identity providers, protocols, and mappings have been briefly covered, in
this section we discuss what assertions about the incoming user look like, how the
mapping engine evaluates these assertions, and the rules used by the mapping engine.
Let’s start by showing an OpenID Connect Claim and a SAML assertion, and how
each will have its content transformed into HTTP headers by the web server plugins.

5.2.1 OpenID Connect Claims
An OpenID Connect claim represents information about a user in JSON. There are a
number of required fields and values, such as the issuer, the subject, when the claim
was issued, and when it will expire. The following is an example OpenID Connect
claim after a user has authenticated with an OpenID Connect Identity Provider.

{
 "nonce": "9c2b51b0ef3849828d6fedc8019eae2b",
 "sub": "stevemar@ca.ibm.com",
 "at_hash": "RC3QNVOT1h31ofNyFlQskQ",
 "iss": "https://localhost:8020/oidc/v10/providers/OP",
 "uniqueSecurityName": "emailaddress=stevemar@ca.ibm.com,c=ca...es,o=ibm.com",
 "realmName": "w3",
 "groupIds": [
 "cn=SWG_Canada,ou=memberlist,ou=ibmgroups,o=ibm.com",
 "cn=Toronto_Lab_VPN,ou=memberlist,ou=ibmgroups,o=ibm.com",
 "cn=IBM Regular Employees Canada,ou=memberlist,ou=ibmgroups,o=ibm.com"
],
 "exp": 1395358515,
 "iat": 1395354915,
 "aud": "rp"
}

Looking at the claim above, we can see various fields specific to the authenticated user
and the identity provider. The Issuer (iss) represents the Identity Provider that
issued the claim, the Subject (sub) represents the user that authenticated, and most
importantly we have the groupIds. Note that sub and iss (and nonce, exp, iat, and
aud) are required to exist, as per the OpenID Connect specification. The specification
also allows for identity providers to add extra fields; in this case, our Identity Provider
was backed by our internal bluepages LDAP, and added groupIds; this field repre‐
sents a list of group CNs the user is a member of. How does this look to Keystone?

HTTP_OIDC_ISS="https://localhost:8020/oidc/v10/providers/OP"
HTTP_OIDC_SUB=”stevemar@ca.ibm.com”
HTTP_GROUP_IDS="cn=SWG_Canada,ou=memberlist,ou=ibmgroups,o=ibm.com;
 cn=Toronto_Lab_VPN,ou=memberlist,ou=ibmgroups,o=ibm.com;
 cn=IBM Regular Employees Canada,ou=memberlist,ou=ibmgroups,
 o=ibm.com"

80 | Chapter 5: Federated Identity

The above is a representation of how the claims are seen by Keystone. Each claim will
be transformed into an HTTP header and placed in the request back to Keystone.
Most of these are straight translations, but in the case of a list of groups, it is common
to see either commas or semicolons used to separate the items in the list.

5.2.2 SAML Assertions
A SAML assertion is an XML representation of an authenticated user. Similar to
OpenID Connect, there are a number of required fields pertaining to the issuer, the
subject, their authorization on the identity provider, and when the assertion was
made. The following is a significantly simplified example SAML assertion that was
generated after a user has authenticated with an SAML Identity Provider.

<saml2:Assertion IssueInstant="2014-06-11T13:05:28.891Z">
 <saml2:Issuer>
 https://bluepages.ibm.com
 </saml2:Issuer>
 <saml:AttributeStatement>
 <saml2:Attribute Name="UserName">
 <saml2:AttributeValue>stevemar@ca.ibm.com</saml2:AttributeValue>
 </saml2:Attribute>
 <saml:Attribute Name="Role">
 <saml:AttributeValue>IBM Regular Employ...anada</saml:AttributeValue>
 </saml:Attribute>
 <saml:Attribute Name="Role">
 <saml:AttributeValue>SWG Canada</saml:AttributeValue>
 </saml:Attribute>
 <saml:Attribute Name="Role">
 <saml:AttributeValue>Toronto Lab VPN</saml:AttributeValue>
 </saml:Attribute>
 </saml:AttributeStatement>
</saml2:Assertion>

Looking at the assertion above, we can see various fields specific to the authenticated
user and identity provider. The main portion of the assertion we are interested in are
the Attributes in the AttributeStatement section. This indicates the level of
authorization the user has on that identity provider. These field values will be used to
construct an effective mapping. How does this look to Keystone?

HTTP_ISSUSER="https://bluepages.ibm.com"
HTTP_USERNAME=”stevemar@ca.ibm.com”
HTTP_ROLE="IBM Regular Employees Canada;SWG Canada;Toronto Lab VPN"

Similar to the example above, the information that is returned to Keystone should
have a very similar structure when SAML is used as opposed to OpenID Connect;
this demonstrates a Keystone protocol-agnostic approach to federating identities.

5.2 Translating User Attributes to Keystone Concepts | 81

5.2.3 The Mapping Engine
Another detail about Keystone’s approach to federation is that users coming from
identity providers are ephemeral, meaning they will not exist or be stored anywhere
on a Keystone database. This decision was made because, if users were to be added or
removed, then the databases would need to be updated accordingly, rendering our
goal (to eliminate user management in Keystone) moot. The impact of this decision is
that the individual ephemeral users will not have a sense of authorization on the
cloud, since we would not be able to assign the user a role or a project. To address this
issue, mappings were created to convey a sense of where these external entities belong
in a Keystone cloud.

The goal of a mapping is to give the ephemeral user just enough authorization in the
cloud to perform a task, and also to ensure we have enough data about the user to
populate token details, and create auditable information. To accomplish this task, the
Keystone team decided to leverage User Groups that are already present in the Iden‐
tity backend, since groups may have role assignments. Using the information in the
claim or assertion, a Keystone administrator should be able to create a mapping that
will give the ephemeral user access to a specific part of the cloud.

The overall concept of the input and output of the mapping rules can be seen below.

Figure 5-1. Assertions as HTTP headers are sent to the mapping engine with the map‐
ping rules for the identity provider and protocol, and the result is enough information to
include in a token.

On the left-hand side of the figure are the HTTP request environment variables, as
seen by Keystone; additional examples of these environment variables can be seen in
the previous section. Using the mapping rules associated with a specific identity pro‐
vider and protocol, we are able to determine suitable groups to give the user member‐
ship to, and also determine a suitable username and user ID to populate the resulting
token and any auditable events.

82 | Chapter 5: Federated Identity

5.2.4 Mapping Rules
In this section, we will discuss how the user attributes, represented as HTTP requests
headers, can be translated into Keystone concepts. To accomplish this, we select a
mapping that contains a set of rules that will be invoked when requests come from a
specific identity provider.

So let’s say we are an administrator at Acme Inc., and we want to use cloud resources
at IBM. When authenticated with our external identity provider, the following user
attributes are returned, represented by HTTP headers:

HTTP_ISSUSER="https://acmepages.acme.com"
HTTP_USERNAME=”topol”
HTTP_FULL_NAME=”Brad Topol”
HTTP_EMAIL=”brad@acme.com”
HTTP_ROLE="Acme IT Dept; IT Administrators; Regular Employees; Non-Contractors"

So, when the cloud administrator at IBM is creating a mapping, what should it look
like for users authenticating from Acme Inc.? The answer depends on just how much
access the cloud administrator wants to give! Mapping rules are made up of a local
and remote section; the local section represents the Keystone resource the users will
be mapped to, and the remote section represents the user attributes in the HTTP
header. Below is a sample mapping that can be used to federate user identities from
Acme to Keystone.

{
 "rules": [
 {
 "local": [
 "user": {
 "name": "{0}"
 }
],
 "remote": [
 {
 "type": "HTTP_USERNAME"
 }
]
 },
 {
 "local": [
 {
 "group": {
 "name": "acme_federated_users",
 "domain": {
 "name": "acme_private_cloud"
 }
 }
 }
],

5.2 Translating User Attributes to Keystone Concepts | 83

 "remote": [
 {
 "type": "HTTP_ROLE",
 "any_one_of": [
 "Acme IT Dept",
 "IT Administrators"
]
 }
]
 }
]
}

Different mapping rules can be used to accomplish the same goal. Below is another
example of how we can federate user identities from Acme to Keystone.

{
 "rules": [
 {
 "local": [
 {
 "user": {
 "name": "{0}"
 },
 "groups": {
 "name": "{1}",
 "domain": {
 "id": "0cd5e9"
 }
 }
 }
],
 "remote": [
 {
 "type": "HTTP_USERNAME"
 },
 {
 "type": "HTTP_ROLES",
 "blacklist": [
 "Regular Employees”,
 “Contractors"
]
 }
]
 }
]
}

Assuming Keystone receives the user attributes in HTTP headers (like the example
above), what would happen if the first mapping was used? In this case, a Keystone
token will be generated with Brad’s username (topol); if no ID is specified, then it’ll
use a URL-safe version of the username. Furthermore, the Keystone token will

84 | Chapter 5: Federated Identity

include a list of groups Brad is successfully matched with, which includes the group
ID for the Keystone group “acme_federated_users” in the domain “acme_pri
vate_cloud”. Brad matched the criteria for mapping into that group since he has any
of the roles: “Acme IT Dept” and “IT Administrator.” Note that the term any_one_of is
important here, since it means that as long as a single match occurs, the user has met
the criteria.

In the second example, we reuse the same rule for choosing the user’s name and ID.
The changes are in how the groups are processed. In this example, the local section
attempts to use a direct lookup (using the {0} value initiates a direct lookup) for all
incoming values in the HTTP_ROLES list. The only catch is that the group names
listed in the blacklist are not looked up.

5.3 Authentication Flow: What’s It Look Like?
Now that we’ve got all the background, what does the full authentication flow look
like? We will go through all the steps that are performed in a federated authentication
request in this section. Note that to initiate an authentication request, the Apache
module used must protect a specific path. We recommend the path be in the follow‐
ing style:

GET/POST /OS-FEDERATION/identity_providers/{identity_provider}
 /protocols/{protocol}/auth

This allows each identity provider to have a separate authentication flow per sup‐
ported protocol, and gives Keystone enough information to find a mapping to be
used for the combination.

Federated authentication flow:

1. A user accesses the protected URL above, which triggers the apache module
(mod_shib in this case) to redirect the user to authenticate with the external iden‐
tity provider (through a web page or otherwise).

2. Once the user has authenticated with their identity provider, the identity provider
returns user attributes (as a SAML assertion or OpenID Connect claim) to the
Apache plugin. The Apache module then transforms the user attributes into
HTTP request headers and passes them along to Keystone.

3. Keystone then determines which mapping to use, based on the identity provider
and protocol, invokes the mapping engine, and, if there is enough information to
construct a token (user information and group IDs), then an unscoped token is
issued!

4. (Not included in the diagram) The user can then use the unscoped token to look
up the projects they are allowed to access and request a scoped token for that
project, using their federated unscoped token.

5.3 Authentication Flow: What’s It Look Like? | 85

5.4 Single Sign-On
One of the most demanded features in OpenStack was to support single sign-on
access. Configuring Keystone for federating identities does not imply that Keystone
will have single sign-on support automatically. This is problematic because Horizon
maintains the “login” page for OpenStack and runs as a separate process. To solve this
issue, the Keystone and Horizon teams worked together to create a solution whereby
Keystone and Horizon are able to communicate and trust each other. The result is
that end users will see a familiar login page, which is important for branding. But
most importantly, Keystone does not see any sensitive user information (passwords),
as was the case in the SQL and LDAP-based backends.

To enable this option in Horizon, certain options need to be enabled in Horizon’s
configuration file. These options and more details about this work will be further
highlighted in “5.6 A Practical Guide to Setting Up SSO with Google” on page 93,
including screenshots. For this section, we will simply outline the steps pointing out
where the differences happen when compared to the previous flow.

Single Sign-On Flow
1. A user hits the Horizon landing page. Upon loading the page, the user is given a

list of methods to authenticate. This list will include a method to authenticate by
username and password for service accounts, but also includes methods for
authenticating by their protocol, or identity provider and protocol, depending on
how Horizon is set up.

2. Once the user has selected a federation flow, a redirect to the external identity
provider is made, and the user is redirected to their single sign-on page.

3. At this point, the steps remain the same. The user attributes are sent from the
identity provider to Keystone, and the mapping engine is invoked and returns a
token.

4. Where the process differs is what Keystone does with the token: it must post back
the token ID to Horizon. This is done using JavaScript.

86 | Chapter 5: Federated Identity

5. Once Horizon has the token, it creates an unscoped client session and the user is
logged in.

5.5 A Practical Guide to Federating Identities for IBM
WebSphere Liberty and Bluepages
In this guide, we will reuse the Bluepages LDAP server as our identity store. However,
we will also use WebSphere Liberty as our Identity provider, since it has capabilities to
act as an OpenID Connect provider.

5.5.1 Download, Install, and Configure IBM WebSphere Liberty
To proceed with this section, adding WebSphere Liberty to your environment is nec‐
essary. IBM’s WebSphere Liberty runtime and its extensions are available for free. To
download the runtime, navigate to https://developer.ibm.com/wasdev/downloads/
liberty-profile-using-non-eclipse-environments/.

Once the jar files have been installed, we need to use the built-in feature manager to
install the OpenID Connect Server feature.

$./wlp/bin/featureManager install openidConnectServer-1.0

Before we configure WebSphere Liberty to run as an OpenID Connect provider, we
need to create a server.

$./wlp/bin/server create oauthServer

We can now configure the server to point to the Bluepages LDAP backend. The fol‐
lowing is an example configuration in ./wlp/usr/servers/oauthServer/server.xml.

<server>
 <featureManager>
 <feature>openidConnectServer-1.0</feature>
 <feature>ssl-1.0</feature>

5.5 A Practical Guide to Federating Identities for IBM WebSphere Liberty and Bluepages | 87

https://developer.ibm.com/wasdev/downloads/liberty-profile-using-non-eclipse-environments/
https://developer.ibm.com/wasdev/downloads/liberty-profile-using-non-eclipse-environments/

 <feature>appSecurity-2.0</feature>
 <feature>servlet-3.0</feature>
 </featureManager>

 <ldapRegistry id="bluepages" realm="w3" host="bluepages.ibm.com" port="389"
 ignoreCase="true" baseDN="o=ibm.com"
 ldapType="IBM Tivoli Directory Server" >
 <idsFilters
 userFilter="(&(emailAddress=%v)(objectclass=person))"
 groupFilter="(&(cn=%v)(objectclass=groupOfUniqueNames))"
 userIdMap="*:emailAddress"
 groupIdMap="*:cn"
 groupMemberIdMap="groupOfUniqueNames:uniquemember" />
 </ldapRegistry>

 <keyStore id="defaultKeyStore" password="insecurePass"/>
 <httpEndpoint host="localhost" httpPort="9080" httpsPort="9443"
 id="defaultHttpEndpoint"/>

 <oauth-roles>
 <authenticated>
 <special-subject type="ALL_AUTHENTICATED_USERS" />
 </authenticated>
 </oauth-roles>

 <openidConnectProvider id="OP" oauthProviderRef="Oauth" />

 <oauthProvider id="Oauth" >
 <localStore>
 <client name="rp" secret="LDo8LTor"
 displayname="rp"
 introspectTokens="true"
 redirect="https://localhost:9443/oauthclient/redirect.jsp"
 scope="openid profile email phone address"
 preAuthorizedScope="openid profile"
 enabled="true"/>
 </localStore>
 </oauthProvider>
</server>

The configuration above does the following:

1. Using the ldapRegistry option, we point it to our Bluepages LDAP with a user
and group filter, not unlike the ones we would provide for Keystone.

2. The oauthProvider option specifies the OAuth client ID and client secret. These
are rp and LDo8LTor, respectively. It also specifies which port the process is run
on. In this case it’s 9443.

3. We’re disabling SSL for now in the keyStore option to make things easy to test.

Endpoints are specified in Liberty’s documentation, but we’ll outline them here
briefly:

88 | Chapter 5: Federated Identity

• The token endpoint is: /oidc/endpoint/OP/token
• The introspection endpoint is: /oidc/endpoint/OP/introspect

Now let’s start the server to test if the configuration is valid.

$./wlp/bin/server start oauthServer

We can quickly check to see if we can authenticate with the OpenID Connect Pro‐
vider by providing our own username and password and the client ID and secret. The
output should be an access token.

$ curl -k -H "Content-Type: application/x-www-form-urlencoded;charset=UTF-8" -d \
 "grant_type=password&client_id=rp&client_secret=LDo8LTor&username=stevemar%40ca
 .ibm.com&password=mySecretPassword&scope=profile" https://localhost:9443/oidc/
 endpoint/OP/token

{
 "access_token":"kjDVDz7vyUp4maswQbeoaHjN42WFXNSMdBkos1VJ",
 "token_type":"Bearer",
 "expires_in":7200,
 "scope":"profile",
 "refresh_token":"1tqvETSuEo9oiBBCbsabjfY0W1fyvbpH5rTTf3i6979BEsDOp4"
}

Optionally, we can immediately retrieve an OpenID Connect. We can exchange the
access token for an OpenID Connect claim, which contains information about the
authenticated user, via the introspection endpoint. To do this we supply the client ID
and secret and our newly acquired access token.

$ curl -k --user rp:LDo8LTor \
 https://localhost:9443/oidc/endpoint/OP/introspect?token=kjDVDz7vyUp4maswQbeoaH
 jN42WFXNSMdBkos1VJ

{
 "exp":"1433979091514600",
 "realmName":"w3",
 "sub":"stevemar@ca.ibm.com",
 "scope":"profile",
 "grant_type":"resource_owner"
 "uniqueSecurityName":"uid=123456789,c=ca,ou=bluepages,o=ibm.com"
 "active":"true",
 "client_id":"rp",
 "token_type":"Bearer"
 "iat":"1433979091511000"
 "groupIds":"[cn=IBM_Regular_Empl...Canada,ou=memberlist,ou=ibmgroups,o=ibm.com,
 cn=SWG_Canada,ou=memberlist,ou=ibmgroups,o=ibm.com,
 cn=Toronto_Lab_VPN,ou=memberlist,ou=ibmgroups,o=ibm.com]"
}

5.5 A Practical Guide to Federating Identities for IBM WebSphere Liberty and Bluepages | 89

5.5.2 Configuring Keystone to Use OpenID Connect
Now we must configure Keystone to be able to use the new OpenID Connect pro‐
vider we created. We have to modify Keystone’s configuration file to enable federated
authentication, create the identity provider, protocol, and mapping in Keystone, and
lastly we must protect a specific URL to trigger the authentication.

The first (and essential) step in configuring Keystone to use OpenID Connect is to
install the Apache Httpd plugin mod_auth_openidc. Several packages are available at
https://github.com/pingidentity/mod_auth_openidc/releases.

$ sudo apt-get install libjansson4 libhiredis0.10 libcurl3
$ sudo dpkg -i libapache2-mod-auth-openidc_1.8.3-1_amd64.deb

Next, we must update /etc/keystone/keystone.conf to support OpenID Connect as an
authentication mechanism. In the [auth] section set the following:

methods = external,password,token,oidc
oidc = keystone.auth.plugins.mapped.Mapped

In the [federation] section set the following:

remote_id_attribute = HTTP_OIDC_ISS

We also need to update Keystone’s virtual host file and add in new OpenID Connect
entries to /etc/apache2/sites-available/keystone.conf. The new settings are highlighted
below.

LoadModule auth_openidc_module /usr/lib/apache2/modules/mod_auth_openidc.so

<VirtualHost *:5000>
 ...
 SetEnv HTTP_OIDC_ISS bluepages
 OIDCOAuthIntrospectionEndpoint "https://localhost:9443/oidc/
 endpoint/OP/introspect"
 OIDCOAuthIntrospectionTokenParamName token
 OIDCOAuthRemoteUserClaim sub
 OIDCOAuthClientID rp
 OIDCOAuthClientSecret LDo8LTor
 OIDCOAuthSSLValidateServer Off
 OIDCClaimDelimiter ";"
 OIDCClaimPrefix "OIDC-"

 <LocationMatch "/v3/OS-FEDERATION/identity_providers/bluepages/
 protocols/oidc/.*?">
 Authtype oauth20
 Require valid-user
 LogLevel debug
 </LocationMatch>
</VirtualHost>

90 | Chapter 5: Federated Identity

https://github.com/pingidentity/mod_auth_openidc/releases

We are essentially setting the protected URL, in the LocationMatch header, and set‐
ting various OpenID Connect properties.

Now that we’ve updated Keystone’s configuration file and virtual host file, we need to
create a local Keystone group so that users authenticating via federation can be map‐
ped into that group. In this case, we create a group called federated_users with the
role of member on the project demo.

$ openstack group create federated_users
$ openstack role add member --group federated_users --project demo

Before we create the identity provider, protocol, and mapping entries in Keystone, we
can create a file that contains the mapping so as to make our CLI interactions easier.
Create the file mapping.json, and remember to update the contents of the local section
with the correct ID from the previous command.

 [
 {
 "local": [
 {
 "group": {
 "id": "26daaf649d6a46b998f631da79759230"
 }
 }
],
 "remote": [
 {
 "type": "HTTP_OIDC_GROUPIDS",
 "any_one_of": [
 "cn=SWG_Canada*"
],
 "regex": true
 }
]
 }
]

The result of this mapping will be that any user that is a member of the LDAP group
SWG_Canada will be placed into the Keystone group federated_users.

The last step is to tie all the pieces together and create the Keystone federation resour‐
ces; let’s create the identity provider, the mapping, and the protocol.

$ openstack identity provider create bluepages --remote-id bluepages
$ openstack mapping create ibm_mapping --rules mapping.json
$ openstack federation protocol create oidc --identity-provider bluepages \
 --mapping ibm_mapping

5.5 A Practical Guide to Federating Identities for IBM WebSphere Liberty and Bluepages | 91

5.5.3 Testing It All Out
Using the Python-keystoneclient library, we can create a session that uses the OpenID
Connect auth plugin. We will create a sample file that can be run to create an unsco‐
ped token. We’ll call the file test_oidc.py.

from keystoneclient.contrib.auth.v3 import oidc
from keystoneclient import session

AUTH_URL = 'http://localhost:5000/v3'
IDENTITY_PROVIDER = 'bluepages'
PROTOCOL = 'oidc'
USER_NAME = 'stevemar@ca.ibm.com'
PASSWORD = 'boogabooga'
CLIENT_ID = 'rp'
CLIENT_SECRET = 'LDo8LTor'
ACCESS_TOKEN_ENDPOINT = 'https://localhost:9443/oidc/endpoint/OP/token'

def main():
 oidc_plugin = oidc.OidcPassword(
 AUTH_URL,
 IDENTITY_PROVIDER,
 PROTOCOL,
 username=USER_NAME,
 password=PASSWORD,
 client_id=CLIENT_ID,
 client_secret=CLIENT_SECRET,
 access_token_endpoint=ACCESS_TOKEN_ENDPOINT)
 s = session.Session(verify=False)
 access_info = oidc_plugin.get_unscoped_auth_ref(s)
 print(access_info)

if __name__ == '__main__':
 main()

When ran, the output will be an unscoped Keystone token that contains information
about the federated user and the groups they have access to:

$ python test_oidc.py
{
 u'extras': {},
 u'methods': [u'oidc'],
 u'version': 'v3',
 u'audit_ids': [u'F4FbnLlaQ_SsU4xrD_jE7w'],
 u'issued_at': u'2015-06-11T07:36:00.337835Z',
 u'auth_token': '87c736b04338482a94cf951ee0798a76',
 u'expires_at': u'2015-06-11T08:36:00.337487Z',
 u'user': {
 u'OS-FEDERATION': {
 u'identity_provider': {u'id': u'bluepages'},
 u'protocol': {u'id': u'oidc'},
 u'groups': [{u'id': u'26daaf649d6a46b998f631da79759230'}]

92 | Chapter 5: Federated Identity

 },
 u'domain': {u'id': u'Federated', u'name': u'Federated'},
 u'id': u'stevemar%40ca.ibm.com',
 u'name': u'stevemar@ca.ibm.com'
 }
}

5.6 A Practical Guide to Setting Up SSO with Google
In this guide, we will discuss how to set up Keystone and Horizon to allow for single
sign-on. In this case, use Google as the Identity Provider and allow users with valid
Google accounts to federate into our Keystone deployment.

5.6.1 Configure Keystone to Use OpenID Connect
Similar to “5.5.2 Configuring Keystone to Use OpenID Connect” on page 90, we need
to configure Keystone to use an OpenID Connect provider. First, we install the
Apache Httpd plugin mod_auth_openidc. Several packages are available at https://
github.com/pingidentity/mod_auth_openidc/releases.

$ sudo apt-get install libjansson4 libhiredis0.10 libcurl3
$ sudo dpkg -i libapache2-mod-auth-openidc_1.8.3-1_amd64.deb

Next, we must update /etc/keystone/keystone.conf to support OpenID Connect as an
authentication mechanism. In the [auth] section set the following:

methods = external,password,token,oidc
oidc = keystone.auth.plugins.mapped.Mapped

In the [federation] section, we must set a list of trusted dashboards, which is the
fully qualified domain name of the host that is running Horizon.

remote_id_attribute = HTTP_OIDC_ISS
trusted_dashboard = http://sso-demo.test.ibmcloud.com/auth/websso/

We also need to update Keystone’s virtual host file and add in new OpenID Connect
entries to /etc/apache2/sites-available/keystone.conf. The new settings are highlighted
below.

LoadModule auth_openidc_module /usr/lib/apache2/modules/mod_auth_openidc.so

<VirtualHost *:5000>
 ...
 OIDCClaimPrefix "OIDC-"
 OIDCResponseType "id_token"
 OIDCScope "openid email profile"
 OIDCProviderMetadataURL "https://accounts.google.com/.well-known/
 openid-configuration"
 OIDCClientID "78026256901-9oice6ionj19voicnrii2lfl86a1i4rp.apps.
 googleusercontent.com"
 OIDCClientSecret d6TiBYA3qQUuzlR91Q-YzpJA

5.6 A Practical Guide to Setting Up SSO with Google | 93

https://github.com/pingidentity/mod_auth_openidc/releases
https://github.com/pingidentity/mod_auth_openidc/releases

 OIDCCryptoPassphrase openstack
 OIDCRedirectURI "http://sso-demo.test.ibmcloud.com:5000/v3/auth/
 OS-FEDERATION/websso/oidc/redirect"

 <Location ~ "/v3/auth/OS-FEDERATION/websso/oidc">
 AuthType openid-connect
 Require valid-user
 LogLevel debug
 </Location>
</VirtualHost>

We are essentially setting the protected redirect URL, in the LocationMatch header,
and setting various OpenID Connect properties. Note that the OIDCClientID and
OIDCClientSecret come from a Google developer project.

Now that we’ve updated Keystone’s configuration file and virtual host file, we need to
create a local Keystone group so users authenticating via federation can be mapped
into that group. In this case, we create a group called federated_users with the role
of member on the project demo.

$ openstack group create federated_users
$ openstack role add member --group federated_users --project demo

Before we create the identity provider, protocol, and mapping entries in Keystone, we
can create a file that contains the mapping so as to make our CLI interactions easier.
Create the file mapping.json, and remember to update the contents of the local section
with the correct ID from the previous command.

 [
 {
 "local": [
 {
 "group": {
 "id": "4e48b0c139c94cf088a665d919ee10f1"
 }
 }
],
 "remote": [
 {
 "type": "HTTP_OIDC_ISS",
 "any_one_of": [
 "https://accounts.google.com"
]
 }
]
 }
]

The result of this mapping will be that any user that comes from Google, essentially
having the issuer set to http://accounts.google.com, will be placed into the Key‐
stone group federated_users.

94 | Chapter 5: Federated Identity

The last step is to tie all the pieces together and create the Keystone federation resour‐
ces. Let’s create the identity provider, the mapping, and the protocol.

$ openstack identity provider create google \
 --remote-id https://accounts.google.com
$ openstack mapping create google_mapping --rules mapping.json
$ openstack federation protocol create oidc --identity-provider \
 google --mapping google_mapping

We must also copy the sso_callback_template.html file to /etc/keystone/. This is simply
a small script that posts an unscoped token back to Horizon. It is necessary since the
original location of Horizon is lost in all the redirects. The script itself may be over‐
ridden by the deployer. What is provided by Keystone is the minimum needed.

/$ cp /opt/stack/keystone/etc/sso_callback_template.html /etc/keystone

5.6.2 Configure Horizon for Single Sign-On
The last step is to set a few values in Horizon’s configuration file, located at horizon/
openstack_dashboard/local/local_settings.py.

OPENSTACK_KEYSTONE_URL = "http://sso-demo.test.ibmcloud.com:5000/v3”
OPENSTACK_API_VERSIONS = {
 "identity": 3
}
WEBSSO_ENABLED = True
WEBSSO_CHOICES = (
 ("credentials", _("Keystone Credentials")),
 ("oidc", _("OpenID Connect"))
)
WEBSSO_INITIAL_CHOICE = "credentials"

The OPENSTACK_KEYSTONE_URL and OPENSTACK_KEYSTONE_URL options are not specific
to implementing single sign-on, but are necessary to be changed to point to v3 of the
Identity API. These values indicate the authentication URL to use for Keystone and
which version to use.

The WebSSO options are fairly straightforward, with WEBSSO_ENABLED being the main
option to enable single sign-on, and WEBSSO_CHOICES being the contents of a drop-
down menu. The contents of WEBSSO_CHOICES are broken up into the federation pro‐
tocol name and the name the user will see on the Horizon landing page. The term
credentials is a reserved keyword and should be added to the list to allow service
and admin accounts stored in SQL to authenticate. Finally, the option WEBSSO_INI
TIAL_CHOICE sets the default value of the drop-down menu the user selects.

Once completed, restart Apache to update both Keystone and Horizon.

$ sudo service apache2 restart

5.6 A Practical Guide to Setting Up SSO with Google | 95

Congratulations! That is the complete guide to configuring both Keystone and Hori‐
zon to use single sign-on. In the next subsection, we will step through a visual guide
that shows the flow from a user’s perspective.

5.6.3 Let’s See It with Screenshots!
Step 1: We hit the Horizon landing page, with Keystone Credentials selected as the
default authentication method. We are still able to authenticate with a username and
password of a user in SQL or LDAP.

Step 2: We proceed by selecting the drop-down menu and choosing the OpenID
Connect option. This will cause the username and password fields to be removed.
Let’s go ahead and opt to Sign In.

96 | Chapter 5: Federated Identity

Step 3: Assuming Keystone and Horizon are properly configured, we should be redi‐
rected to a Google-branded sign in page. Simply authenticate with Google with your
usual username and password, even if multi-factor authentication is enabled—it
doesn’t matter, as long as you can authenticate. The Apache modules will be able to
read the incoming OpenID Connect claim and set user attributes as HTTP headers.

5.6 A Practical Guide to Setting Up SSO with Google | 97

Step 4: Once Keystone invokes the correct mapping engine and returns a token back
to Horizon, the user should be able to log in to view and perform tasks as normal.

98 | Chapter 5: Federated Identity

5.7 Tips, Common Pitfalls, and Troubleshooting
Ensure All Libraries Are Installed
Similar to LDAP, the federation capabilities of Keystone require extra dependencies
that are not installed by default. This includes the Python library pysaml2 and the
package xmlsec1. To install these on Ubuntu, use the following commands:

$ sudo pip install pysaml2
$ sudo apt-get install xmlsec1

Known Limitations of Social Media Logins
In our earlier example of authenticating via OpenID Connect and a command line,
we were leveraging the “Resource Owner Password Credential” flow of the OpenID
Connect specification. In our example of WebSphere Liberty acting as an Identity
Provider, that particular flow is enabled. Most social media logins will disable this
flow, since they do not want their users to enter passwords into a non-branded or
trusted medium.

Using SAML from the Command Line
Users are able to authenticate via SAML using the command line as well as a browser.
The Identity Provider must be configured to expose the Enhanced Client or Proxy
(ECP) flow of the SAML specification. Keystone has supported this mode of authenti‐
cation since the Icehouse release.

5.7 Tips, Common Pitfalls, and Troubleshooting | 99

CHAPTER 6

Future Work

Keystone has made substantial strides in capabilities over the past few years and has
matured significantly. Nonetheless, there are still several areas in which there are
opportunities for improvement. In this chapter, we describe several areas that we
anticipate will be the focus for future work on Keystone. These include multi-factor
authentication, improved Horizon integration for multi-region K2K Federation,
replacement of service accounts with X509 certificates, alternative LDAP support
models, centralized policies, and integration with other technologies. In essence, we
will be continuing on the path of Keystone becoming an interface layer to additional
established (and emerging) enterprise-focused identity and authentication capabili‐
ties.

6.1 Multi-Factor Authentication
Keystone currently only supports the use of a single authentication method. In cer‐
tain circumstances, it may be desirable to require multiple methods of authentication
to be utilized to ensure authentication requirements are satisfied. The use of multiple
authentication mechanisms is typically referred to as multi-factor authentication.
With multi-factor authentication, a user not only needs to provide a valid password
but also must perform some other form of authentication, such as entering a personal
identification number (PIN) that is sent by text message. As OpenStack and Keystone
adoption continues to grow, we anticipate that there will be usage environments in
which multi-factor authentication is desired.

101

6.2 Integration with Horizon for Multi-Region Keystone to
Keystone Federation Support
Keystone to Keystone (K2K) Federation is a relatively nascent enhancement, and its
ease of use increases when its capabilities are more tightly integrated into OpenStack’s
dashboard (Horizon). One such opportunity for increased consumability is the addi‐
tion of multi-region K2K support to Horizon. In this scenario, Horizon is enhanced
to support multiple federated OpenStack regions via a pull-down list. As such, the
user is provided with a relatively straightforward way of directing Horizon about
which region it should be displaying without having to expose to the user the com‐
plexity of the multiple Keystones that are working together to provide support for
federated regions.

6.3 Using LDAP as a Federated Identity Provider
The LDAP support described in this book uses Keystone’s driver architecture to make
the users and groups in the corporate directory accessible via the Keystone API. This
works well for environments where users need to be articulated through Keystone.
For companies that evolve to a federated model, there is an alternative to using LDAP
that might fit better in that environment—basically to use LDAP as a pseudo-IDP.
This would work by using something like the mod_lookup_identity Apache module
to look up the user in LDAP, and then pass that on to Keystone. In this model, none
of the LDAP users would appear in Keystone (just like in Federation), and Keystone’s
Identity store would just store Groups to which these LDAP users could be mapped
(using the Federation mapping capabilities described in Chapter 5).

6.4 Replacement of Service Users with X.509 Certificates
and Barbican Integration
Traditionally, Keystone required the other OpenStack projects to create service user
accounts as their means for interacting with and invoking operations on Keystone.
The use of service accounts can add complexity to managing an OpenStack environ‐
ment, as in some enterprises it can problematic to get these fictitious users added to
identity-management systems such as LDAP. Moreover, this approach requires a ser‐
vice user password in the Keystone configuration file and a token to be issued.

As an alternative to the service user account approach, it is possible to replace service
users with X.509 certificates. There are many advantages to this approach. First, it no
longer requires a password. Furthermore, the approach no longer requires a token to
be issued because an authorization credential can be directly created by examining
the identity data in the X.509 certificate. Finally, this approach increases security for

102 | Chapter 6: Future Work

the services, as the use of X.509 certificates provides the equivalent of a non-bearer
token, as the SSL client must possess the corresponding private key.

As Keystone evolves to embrace increased utilization of X.509 certificates, whether
they are used to replace service users or used for federation, it will need to worry
about the secure storage, provisioning, and management of the X.509 certificates.
Fortunately, the mission of the OpenStack Barbican project is to provide this exact set
of capabilities. Thus, in the future we anticipate greater integration between the Key‐
stone and Barbican projects.

6.5 Centralized Policy and Distribution
In OpenStack, a key feature of many of the OpenStack services is to use a policy
engine to determine access management (this is what the roles in a token are eventu‐
ally used for). The policy engines rely on policy files to specify the access manage‐
ment policy for the different types of users and the various operations. Currently, the
process of distributing these policy files throughout all the OpenStack services run‐
ning across the cloud is done by operators using an out-of-band mechanism, such as
a configuration-management system. Having to perform this activity with a separate
tool may be seen by some as unnecessary overhead. As an alternative, Keystone may
look into providing its own API for allowing services to obtain these policies directly
from Keystone (along with performing associated cache management on the poli‐
cies). Indeed, some basic APIs for this have been available in Keystone for a number
of releases, but are not yet used by any of the services. Having this foundation in place
would enable Keystone to start providing more robust policy support—for instance, a
common name space across policies for different services where they could share
rules. The discussions around this as to how far this support should be taken (and
how the services should utilize it) are probably some of the most controversial in
Keystone today—and we anticipate substantial future discussions on this topic and
would like to invite the audience reading this book to participate.

6.6 Integrating with Other Technologies
In many cloud environments, the OpenStack Infrastructure-as-a-Service is typically
combined with a Platform-as-a-Service environment such as IBM Bluemix, which is
Cloud Foundry based. In addition, many cloud environments provide some notion of
support for Container Technologies such as Docker.

In these types of environments, it is critical to keep the necessary user authentication
and authorization as streamlined as possible. For example, if an enterprise customer
has already performed the necessary federation to integrate Keystone with their fed‐
erated identity management system they may want to avoid having to repeat this inte‐
gration with Bluemix’s authentication system. Because both Bluemix and Keystone

6.5 Centralized Policy and Distribution | 103

support standard federated identity protocols such as OpenId Connect, it would be
fairly straightforward to ensure these to two technologies integrate together to pro‐
vide a more seamless authentication and authorization environment for customers.

In a similar fashion, it may be worthwhile to investigate how Keystone’s authentica‐
tion, authorization, and integration support for federated identity management sys‐
tems could be utilized by Container Technologies such as Docker.

104 | Chapter 6: Future Work

Index

A
access management (authorization), xvii, 12
account locked, 52
Active Directory (AD), ix

LDAP integration, 45
LDAP support, 14

actors, 2
(see also user groups)

aliasing, 53
API, for multi-domain LDAP setup, 58-60
assertions

and mappings, 79
defined, 78
SAML, 81

assignments
defined, 3
LDAP problems with, 46, 72

authentication, 9-11
and federated flow, 85
and tokens, 11
as new user, 30
defined, xvi
for multi-domain LDAP user, 68, 70-71
multi-factor, 101
through certificate, 15
troubleshooting, 33
with Horizon, 70-71
with password, 10

authorization, xvii, 12, 34
(see also access management)

B
backends, 7, 9, 13
Barbican, 103

Bluemix, 103
Bluepages LDAP server, 87

C
catalogs, 5
certificate, authentication through, 15
chaining, referral chasing vs., 53
claims

defined, 78
mappings and, 79

configuration files, multi-domain LDAP using,
57

cryptographic message syntax (CMS), 37
cURL

assigning role to user for project, 29
authenticating as new user for project, 30
creating domains, 27
creating project within domain, 28
creating user within domain, 29
listing domains, 26
listing groups, 24
listing projects, 22
listing roles, 25
listing users, 21
obtaining tokens, 19

D
debug option, 34
debugging, 53
dereferencing, 53
DevStack, 17

(see also OpenStackClient)
directory-mapping table, 75
domains

105

and authentication, 10, 33
creating, 27
creating project within, 27
creating user within, 28
defined, 2
listing, 26
multiple with LDAP (see multi-domain

LDAP)
region vs., 14
targets and, 3
users and, 14, 74

E
ephemeral users, 82

F
federated identity, ix, 77-99

and identity providers, 8
approach to federation, 78
authentication flow, 85
configuring Keystone to use OpenIDCon‐

nect, 90-91
integration with Horizon for multi-region

Keystone-to-Keystone federation sup‐
port, 102

Keystone-specific federation concepts, 79
leveraging existing technology for, 78
mapping engine, 82
mapping rules, 83-85
OpenIDConnect claims, 80
SAML assertions, 81
SSO flow, 86
SSO setup with Google, 93-98
tips, pitfalls, and troubleshooting, 99
translating user attributes to Keystone con‐

cepts, 80-85
using LDAP as provider, 102
with IBM WebSphere Liberty and Blue‐

pages, 87
Fernet tokens, 36, 40
future work, 101-104

Barbican integration, 102
centralized policy and distribution, 103
integration with Horizon for multi-region

Keystone-to-Keystone federation sup‐
port, 102

integration with other technologies, 103
multi-factor authentication, 101

replacement of service users with X.509 cer‐
tificates, 102

using LDAP as federated identity provider,
102

G
Google, SSO setup with, 93-98

and OpenIDConnect, 93-95
Horizon configuration, 95
login page screenshots, 96-98

groups (see user groups)

H
Horizon

and PKI token troubleshooting, 42
and projects, 32
and SSO, 86, 95
and users, 32
basic Keystone operations using, 31
for multi-domain LDAP user authentica‐

tion, 70-71
identity operations with, 32
integration for multi-region Keystone to

Keystone federation support, 102
hybrid cloud, federated identity support for, x

I
IBM Bluemix, 103
IBM WebSphere Liberty

configuring Keystone to use OpenIDCon‐
nect, 90-91

downloading, installing, and configuring,
87-89

federating identities for, 87
testing, 92

Identity Providers (IdPs), 8
as Keystone resource, 6, 79
defined, 77

identity providers (IdPs)
use cases for identity backend, 9

identity(-ies), 5-9
and identity providers, 8
and LDAP, 6, 64
defined, xvi
multiple backends for, 7
operations with Horizon, 32
restrictions when using multi-domain

LDAP, 61

106 | Index

SQL, 6
use cases for backends, 9

images, for multi-domain LDAP user, 69

K
Keystone

basic operations using Horizon, 31
basic operations using OpenStackClient,

18-31
concepts, 1-5
fundamental topics, 1-15
in development environment, 17-34
primary benefits of, xvii
tips, common pitfalls, and troubleshooting,

33
Keystone API, 58-60
Keystone to Keystone (K2K) federation, 102

L
LDAP (Lightweight Directory Access Protocol),

ix, 45-75
approach to integration with Keystone, 45
as federated identity provider, 102
choosing the right mix of SQL and LDAP

domains, 61
identities stored in, 6
Keystone configuration for integration with,

46-55
Keystone configuration options in classic

LDAP support, 50-55
missing LDAP python libraries, 73
projects, roles, and assignments from, 72
tips, pitfalls, and troubleshooting, 73-75
tools for determining attributes, 73
use cases for identity backend, 9
with multiple domains (see multi-domain

LDAP)
libraries, federation and, 99
Lightweight Directory Access Protocol (see

LDAP)
login page, federated identity and, 86

M
man-in-the-middle (MITM) attacks, 51
mapping engine, 82
mapping rules, 83-85
mappings, 79

Microsoft Active Directory (see Active Direc‐
tory (AD))

multi-domain LDAP
choosing the right mix of SQL and LDAP,

61
configuration file approach to setup, 57
corporate directory support requirements,

55-57
directory-mapping table with, 75
Keystone API-based approach, 58-60
LDAP for all domains, 64
LDAP for all domains except SQL service

domain, 63
LDAP setup for, 64-67
restrictions when using identity, 61
running admin commands, 67
running LDAP user commands, 68
tips for using, 74
user authentication with Horizon, 70-71
with Keystone, 64-71
with SQL as default domain, 62

multi-factor authentication, 101

O
OpenIDConnect

claims, 80
configuring Keystone to use, 90-91
defined, 78
for SSO setup with Google, 93-95

OpenStack Barbican project, 103
OpenStackClient

assigning role to user for project, 29
authenticating as new user for project, 30
basic Keystone operations using, 18-31
creating domain, 27
creating project within domain, 27
creating user within domain, 28
debug option, 34
issuing tokens, 19
listing domains, 26
listing groups, 24
listing projects, 22
listing roles, 25
listing users, 21

P
password, xvi, 10
payload, 4, 10
PKI tokens, 37-39

Index | 107

origins of, 35
Swift or Horizon not working with, 42

PKIz tokens, 37, 39, 42
policy

and authorization, 34
centralized, 103

policy engines, xvii, 103
policy files, 103
policy.json file, 12
project

assigning role to group, 68
assigning role to user, 29
creating within domain, 27
defined, 1
Horizon and, 32
listing, 22
targets and, 3
tenant vs., 14

Protocol (Keystone resource), 79
python libraries, LDAP, 73

R
referral chasing, 53
referrals, 53
region, domain vs., 14
Resource, LDAP problems with, 46, 72
Role-Based Access Control (RBAC), 12
roles

and authorization, 34
and tokens, 14
assigning to a group, 68
assigning to user, 29
defined, 3
listing, 25

rules, 12, 79

S
SAML

assertions, 81
authentication from command line, 99
defined, 77

scoped tokens, 14
service accounts, 7
service catalogs, 5

(see also catalogs)
Service Provider (SP), 77
service users, 102
services, summary of, 13
single sign-on (SSO)

and federated identity, 86
with Google as identity provider, 93-98

social media logins, federated identity and, 99
SQL

default domain for multi-domain LDAP, 7,
62

domain-specific configuration file for, 58
for service domain only, 63
identities stored in, 6
use cases for identity backend, 9

SSO (see single sign-on [SSO])
Swift, 42

T
targets, 3, 12
tenant, 1, 14

(see also project)
token formats, 35-43

Fernet, 40
history, 35-37
PKI, 37-39, 42
tips, pitfalls, and troubleshooting, 42
UUID, 35, 37, 42

tokens
and authentication, xvii, 11
defined, 4
for multi-domain LDAP, 68
formats (see token formats)
roles and, 14
scoped vs. unscoped, 14
with cURL, 19
with OpenStackClient, 19

Transport Layer Security (TLS), 50
trees, 52

U
Ubuntu virtual machine, 17
universally unique identifier (UUID), 2

(see also UUID tokens)
unscoped tokens, 14
user groups

assigning role to, 68
defined, 2
finding in multi-domain LDAP, 67
listing all members in multi-domain LDAP,

68
listing with cURL, 24
listing with OpenStackClient, 24
mapping engine and, 82

108 | Index

user(s)
and identity, xvi
assigning role to, 29
authenticating as new, 30
creating within domain, 28
defined, 2
domains and, 14, 74
federated identity and, 80-85
finding in multi-domain LDAP, 67
Horizon and, 32
listing with cURL, 21
listing with LDAP, 61, 74
listing with OpenStackClient, 21
mapping engine and, 82
translating attributes to Keystone concepts,

80-85

UUID tokens, 37
early usage of, 35
performance degradation for authentication

operations, 42

V
VM (virtual machine), 17, 69

W
WebSphere Liberty (see IBM WebSphere Lib‐

erty)

X
X.509 certificates, 102

Index | 109

About the Authors
Steve Martinelli is an OpenStack Active Technical Contributor and a Keystone Core
Contributor. He primarily focuses on enabling Keystone, which is OpenStack’s Iden‐
tity Manager, to better integrate into enterprise environments. Steve was responsible
for adding Federated Identity and OAuth support to Keystone and was one of the
leading contributors to Keystone to Keystone federation support for interoperable
hybrid cloud enablement. In his spare time he also contributes to OpenStackClient,
pyCADF, and oslo.policy and is a core contributor in each of these projects. Steve
received his B.ASc. in Computer Engineering from York University.

Henry Nash works in IBM’s Cloud division as an OpenStack Architect and a core
contributor to OpenStack Keystone, driving enterprise capabilities into OpenStack as
well as IBM’s products that use OpenStack. He has a long history of developing enter‐
prise software, graphics, and communication systems as well as nanotechnology, hav‐
ing founded numerous successful companies in Europe and the United States, finally
coming to IBM via acquisition in 2009. He holds a first class honors degree in Electri‐
cal Engineering from the University of Southampton, UK.

Dr. Brad Topol is an IBM Distinguished Engineer in the IBM Cloud Architecture
and Technology organization. In his current role, Brad leads a development team
focused on contributing to and improving OpenStack and he has cross-IBM respon‐
sibility for coordinating its contributions to OpenStack. Brad is an OpenStack core
contributor to Keystone-Specs, pyCADF, and Heat-Translator and has personally
contributed to multiple OpenStack projects including Keystone, Pycadf, Heat-
Translator, and DevStack. He received a Ph.D. in Computer Science from the Georgia
Institute of Technology in 1998.

	Cover
	Copyright
	Table of Contents
	Preface
	Prologue
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Introduction
	Identity, Authentication, and Access Management Capabilities of Keystone
	Identity
	Authentication
	Access Management (Authorization)
	Keystone’s Primary Benefits

	Chapter 1. Fundamental Keystone Topics
	1.1 Keystone Concepts
	1.1.1 What’s a Project?
	1.1.2 What’s a Domain?
	1.1.3 Users and User Groups (Actors)
	1.1.4 Roles
	1.1.5 Assignment
	1.1.6 Targets
	1.1.7 What’s a Token?
	1.1.8 What’s a Catalog?

	1.2 Identity
	1.2.1 SQL
	1.2.2 LDAP
	1.2.3 Multiple Backends
	1.2.4 Identity Providers
	1.2.5 Use Cases for Identity Backends

	1.3 Authentication
	1.3.1 Password
	1.3.2 Token

	1.4 Access Management and Authorization
	1.5 Backends and Services
	1.6 FAQs

	Chapter 2. Let’s Use Keystone!
	2.1 Getting DevStack
	2.2 Basic Keystone Operations Using OpenStackClient
	2.2.1 Getting a Token
	2.2.2 Listing Users
	2.2.3 Listing Projects
	2.2.4 Listing Groups
	2.2.5 Listing Roles
	2.2.6 Listing Domains
	2.2.7 Creating Another Domain
	2.2.8 Create a Project within the Domain
	2.2.9 Create a User within the Domain
	2.2.10 Assigning a Role to a User for a Project
	2.2.11 Authenticating as the New User

	2.3 Basic Keystone Operations Using Horizon
	2.3.1 What Keystone Operations Are Available through Horizon?
	2.3.2 Accessing the Identity Operations
	2.3.3 List, Set, Delete, Create, and View a Project
	2.3.4 List, Set, Delete, Create, and View a User

	2.4 Tips, Common Pitfalls, and Troubleshooting
	Check Your Scope: A Common Authentication Problem
	Check Your Policy and Role: A Common Authorization Problem
	Getting Additional Information

	Chapter 3. Token Formats
	3.1 History of Keystone Token Formats
	3.2 UUID Tokens
	3.3 PKI Tokens
	3.4 Fernet Tokens
	3.5 Tips, Common Pitfalls, and Troubleshooting
	3.5.1 UUID Token Performance Degradation for Authentication Operations
	3.5.2 Using PKI Token and Swift or Horizon Not Working?

	Chapter 4. LDAP
	4.1 Approach to LDAP Integration
	4.2 Configuring Keystone to Integrate with LDAP
	4.2.1 Other Keystone Configuration Options in Classic LDAP Support

	4.3 Multiple Domains and LDAP
	4.3.1 Requirements for Multi-Domain Corporate Directory Support
	4.3.2 Setting Up Multi-Domain Using the Configuration File–Based Approach
	4.3.3 Setting Up Multi-Domain Using the Keystone API–Based Approach
	4.3.4 Restrictions When Using Multi-Domain Identity
	Use SQL for the Default Domain
	Use LDAP for All Domains, Except an SQL Service Domain
	Use LDAP for All Domains

	4.4 A Practical Guide to Using Multi-Domains and Keystone
	4.4.1 Setting Up LDAP
	4.4.2 Running Admin Commands
	4.4.3 Running LDAP User Commands
	4.4.4 Authenticating with Horizon

	4.5 Projects, Roles, and Assignments from LDAP (Just Say NO!)
	4.6 Tips, Common Pitfalls, and Troubleshooting
	4.6.1 General LDAP Issues
	4.6.2 Tips for Using Multi-Domain LDAP

	Chapter 5. Federated Identity
	5.1 Approach to Federation
	5.1.1 Leveraging Existing Technology
	5.1.2 Keystone-Specific Federation Concepts

	5.2 Translating User Attributes to Keystone Concepts
	5.2.1 OpenID Connect Claims
	5.2.2 SAML Assertions
	5.2.3 The Mapping Engine
	5.2.4 Mapping Rules

	5.3 Authentication Flow: What’s It Look Like?
	5.4 Single Sign-On
	Single Sign-On Flow

	5.5 A Practical Guide to Federating Identities for IBM WebSphere Liberty and Bluepages
	5.5.1 Download, Install, and Configure IBM WebSphere Liberty
	5.5.2 Configuring Keystone to Use OpenID Connect
	5.5.3 Testing It All Out

	5.6 A Practical Guide to Setting Up SSO with Google
	5.6.1 Configure Keystone to Use OpenID Connect
	5.6.2 Configure Horizon for Single Sign-On
	5.6.3 Let’s See It with Screenshots!

	5.7 Tips, Common Pitfalls, and Troubleshooting
	Ensure All Libraries Are Installed
	Known Limitations of Social Media Logins
	Using SAML from the Command Line

	Chapter 6. Future Work
	6.1 Multi-Factor Authentication
	6.2 Integration with Horizon for Multi-Region Keystone to Keystone Federation Support
	6.3 Using LDAP as a Federated Identity Provider
	6.4 Replacement of Service Users with X.509 Certificates and Barbican Integration
	6.5 Centralized Policy and Distribution
	6.6 Integrating with Other Technologies

	Index
	About the Authors

