
Introducing
Delphi ORM

Object Relational Mapping Using
TMS Aurelius
—
John Kouraklis

www.allitebooks.com

http://www.allitebooks.org

Introducing Delphi
ORM

Object Relational Mapping
Using TMS Aurelius

John Kouraklis

www.allitebooks.com

http://www.allitebooks.org

Introducing Delphi ORM: Object Relational Mapping Using TMS Aurelius

ISBN-13 (pbk): 978-1-4842-5012-9		 ISBN-13 (electronic): 978-1-4842-5013-6
https://doi.org/10.1007/978-1-4842-5013-6

Copyright © 2019 by John Kouraklis

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or
audio rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484250129.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

John Kouraklis
London, UK

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-5013-6
http://www.allitebooks.org

To my dream Anna

www.allitebooks.com

http://www.allitebooks.org

v

Chapter 1: In the Land of ORM���1

Communication Between Incompatible Systems���2

ORM Frameworks��6

ORM Terminology���8

Entity��9

Properties���9

Associations���10

Criteria��10

Projections��11

Container��11

Putting It All Together���12

Workflows��14

Code-First Workflow���14

Model-First Workflow���15

Database-First Workflow��16

Choosing Workflows���16

Summary���17

References���17

Table of Contents
About the Author��xi

About the Technical Reviewers��xiii

Introduction���xv

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 2: TMS Aurelius��19

Installation���19

Trial Version��20

Licensed Version��23

Database Connectivity���30

IDBConnection��31

ORM Paradigm in Aurelius���42

Entity��42

Properties���44

Associations���49

Object Manager (Container)��57

Criteria��58

Projections��62

Automapping��67

Summary���68

References���68

Chapter 3: Call Center Application���69

The Application��69

Dashboard��71

Departments���72

Agents��73

The Interface��74

Entities���75

Database Connection���85

Table of ContentsTable of Contents

vii

IDatabaseSession���87

Summary���92

Reference���92

Chapter 4: Basic Operations��93

Adding Entities���93

Listing Entities���96

Editing (Updating) Entities��102

Managing Blobs���108

Deleting Entities���116

Importing Entities���118

Summary���123

Chapter 5: Querying the Database���125

Listings��125

Departments���125

Agents��130

Queries (Dashboard)��134

Average Satisfaction Score (%)��136

Weeks���137

Total Calls���142

Answer Speed��143

Abandon Rate���144

Calls/Minute���145

Calls Answered in Less Than 180 Seconds��146

Table of ContentsTable of Contents

viii

Calls with Satisfactory Score Less Than 3���147

Agent Statistics List��148

Views���150

Summary���165

Chapter 6: Enhancements��167

Inheritance���167

Events��177

OnInserting and OnUpdating Events���178

OnInserted and OnUpdated Events���186

TAureliusDataSet��189

Criteria-Based Data Set��191

View-Based Data Set��193

Summary���195

Chapter 7: Aurelius on the Move���197

Data Accessibility���197

Local Database��199

Remote Server–Based Database���201

Client Side��203

Server Side���214

XData���214

Summary���223

References���223

Table of ContentsTable of Contents

ix

Chapter 8: TMS Data Modeler��225

The Application��225

Model-First���227

Database-First���233

Export to Aurelius���236

Entities��237

Dictionary���241

Events���244

Summary���248

Index��249

Table of ContentsTable of Contents

xi

About the Author

John Kouraklis started exploring computers when he was 16 and since

then has followed all the way from Turbo Pascal to the latest Delphi

versions as a hobby initially and as a profession for most of his adult life.

He has developed a wide range of applications, from financial software

to reverse engineering tools, including an application for professional

gamblers. He is also the author of MVVM in Delphi (Apress, 2016).

xiii

About the Technical Reviewers

Wagner Landgraf holds a Bachelor of Science

in Electronic Engineering and a Master of

Science in Industrial Computing.

He has 24 years of experience with Delphi

development and is the Manager of TMS

Business product line at TMS Software, where

he serves as Architect and core developer

of products such as TMS Aurelius and TMS

XData.

Nick Hodges is a Software Development

Manager at Gateway Ticketing Systems, a firm

that provides ticketing and access control

systems to the largest amusement parks,

zoos, and museums around the world. Nick

is a software developer at heart. He’s been a

Pascal/Delphi developer for over 20 years and

still thinks that Delphi is the best development

tool out there. He loves to read programming books, attend conferences,

and watch cool videos about new programming techniques. He generally

tries to be an industry thought leader.

xv

Introduction

Modern software development techniques rely almost exclusively on object-

oriented programming (OOP). This approach promotes a specific paradigm

that sees fundamental design units (objects) as containers that encapsulate

both data and logic (code) and, in many instances, indicates how specific

data that stem from business logic should be mapped. This convoluted view

contradicts with the other important pillar of information age: the databases.

Storing data and managing databases take developers to a world

with different design principles and concepts. Table design, SQL query

optimization, and joined table operations are only a few notions that

indicate the existence and requirement of different skill sets. On top of this,

if one considers the abundance of database engines available in the market

and the technical specificity of each one of them, it is not hard to realize

the challenges software developers may face given the fact that modern

applications rely on the ability to store data in a persistent medium.

Object relational mapping (ORM) frameworks attempt to bring the

two worlds of OOP and databases together and provide a toolbox which

abstracts the specific requirements of each database. As a result, developers

are free to focus on ways to raise business value of their software solutions

rather than consuming resources in understanding how to make databases

work. ORM promotes reusable coding, automation and standardization of

data-related processes, separation of concerns as data access and layers are

isolated, and abstraction of database engines; this means that coders who

employ ORM libraries are free to switch between databases or even employ

different databases without changing a single line of code.

TMS Aurelius is an ORM library developed by TMS Software and

targets the Delphi development environment. It is a modern, robust, and

efficient approach to the use of databases in an OOP fashion.

xvi

This book is dedicated to Aurelius and the Delphi developers who want

to make the most out of the framework. It offers a guide in how to embed

Aurelius in Delphi projects and how to implement basic and advanced

queries, and it moves forward by showing how Aurelius can be used in mobile

platforms and in cooperation with third-party providers of JSON-based data.

�Who This Book Is For
This book is the perfect companion to both newcomers to Aurelius and

to more experienced developers with the framework. It assumes some

knowledge of Delphi as it requires familiarity with the IDE and the features

of the language. Nevertheless, Aurelius is also available for Lazarus

and, therefore, this book appeals to Pascal developers who favor that

environment as well.

After reading this book, you will be able to

•	 Appreciate the different workflows related to the use of

databases as seen from the coder’s side

•	 Assess the different uses and features of TMS Aurelius

•	 Design applications which use TMS Aurelius

�The Development Environment
The code presented in this book is developed using the following

environment:

•	 Embarcadero Delphi 10 Rio Professional

•	 Microsoft Windows 10 Professional

•	 FireMonkey framework

•	 TMS Aurelius 4.4

IntroductionIntroduction

xvii

•	 Android Nougat

•	 Steema TeeChart v2018 Standard Evaluation Version

I use the Professional version of Delphi, but I do not use any features

exclusive to this version. You can use whichever edition you have access

to. I also prefer to develop multi-device applications but this is not a

requirement; you can very easily use Aurelius in VCL applications as well.

The only exception to this is the projects that show how Aurelius can be

used in mobile platforms; these projects require FireMonkey.

Lastly, in Chapter 7, where Aurelius consumes data from remote

servers, I use TMS XData 4.5 Trial version and in Chapter 8 TMS Data

Modeler 3.3 is required.

�The Book’s Structure
This book has eight chapters. It starts with basic theoretical concepts, then

proceeds to the introduction of TMS Aurelius, and as chapters develop it

gradually explores different features of the framework.

�Chapter 1: In the Land of ORM
This chapter visits fundamental concepts of ORM frameworks and

explores different workflows related to them. It also provides a short

discussion of ORM terminology.

�Chapter 2: TMS Aurelius
This chapter introduces TMS Aurelius. It starts by discussing different

versions and installation options of the product and shows how

the fundamental ideas in ORM that are presented in Chapter 1 are

implemented by the framework. This is the first exposure of the reader to

code related to Aurelius.

IntroductionIntroduction

xviii

�Chapter 3: Call Center Application
This chapter introduces the CallCentre application. This is an application

that presents data from a call center and organizes it in different ways (by

department, by agent, etc.). The data set provides some great opportunities

to show how Aurelius features work.

�Chapter 4: Basic Operations
In this chapter, we start with basic operations such as how to add, update,

and remove entries from the database. We, also, deal with managing

nullable and blob fields, and we see how Aurelius can execute large

number of SQL statements.

�Chapter 5: Querying the Database
The topic of this chapter is how to build and expand on more sophisticated

queries that allow manipulation of data at database level. OOP would

indicate that calculations and grouping of data occur in code, whereas

database programming relies on the underlying database engine. In this

chapter, we see how Aurelius can bring the two together.

�Chapter 6: Enhancements
This chapter looks at more advanced concepts in Aurelius (events,

inheritance) and visits the TAureliusDataSet.

�Chapter 7: Aurelius on the Move
As mobile platforms and the Internet become essential part of application

development, this chapter takes the task to move Aurelius to mobile

platforms. The chapter shows what changes are required for this task and

explores different options in this direction.

IntroductionIntroduction

xix

�Chapter 8: TMS Data Modeler
TMS Data Modeler is a stand-alone application by TMS Software that

assists Aurelius users in many ways. This chapter explores the different

features of the application and shows how it can contribute to productivity

and efficiency.

�Code Files
This book comes with Delphi code files. You can access the code by

clicking the Download Source Code button located at www.apress.

com/9781484250129. Table 1 provides a summary of the project names

used in the book along with some notes.

Table 1.  Project Names Per Chapter

Chapter Folder\Project Name Notes

Misc This folder contains

miscellaneous files that are

used in different chapters

(image files, data sets, SQL

scripts, etc.)

2 Chapter 2\BasicFeatures Demonstrates very basic

features in a console application

3 Chapter 3\CallCentre

(Skeleton)

Provides a project that shows

the GUI of the example

application. All the subsequent

projects are based on this one

(continued)

IntroductionIntroduction

http://www.apress.com/9781484250129
http://www.apress.com/9781484250129

xx

Chapter Folder\Project Name Notes

Chapter 3\CallCentre (Without

Database Session)

Demonstrates the use of

entities, connections, and

database manager

Chapter 3\CallCentre (With

Database Session)

Replaces TDatabaseManager

with IDatabase Session

4 Chapter 4\CallCentre (Without

Utilities)

Adds the ability to provide basic

operations to entities

Chapter 4\CallCentre (With

Utilities)

Adds basic utilities to handle

blobs and exceptions

Chapter 4\CallCentre (Import) Demonstrates how to set the

object manager in transactional

state

5 Chapter 5\CallCentre (Listings) Shows the call lists for agents

and departments

Chapter 5\CallCentre (Queries) Adds key calculations based on

queries

Chapter 5\CallCentre (Views) Demonstrates the use of views

6 Chapter 6\CallCentre

(Inheritance)

Demonstrates different

inheritance strategies in

Aurelius

Chapter 6\CallCentre (Events) Demonstrates the use of events

Chapter 6\CallCentre

(TAureliusDataSet)

Demonstrates different ways to

populate TAureliusDataSet

Table 1.  (continued)

(continued)

IntroductionIntroduction

xxi

Chapter Folder\Project Name Notes

7 Chapter 7\CallCentre (Local) Adapted project to run on

Android

Chapter 7\User A simple project to fetch

JSON content from third-party

providers

Chapter 7\Client Shows how to use Aurelius to

consume data based on REST

API from third-parties

Chapter 7\XData Demonstrates the use of

Aurelius and XData server

8 Chapter 8\CallCentre.dgp Data Modeler project

Table 1.  (continued)

IntroductionIntroduction

1© John Kouraklis 2019
J. Kouraklis, Introducing Delphi ORM, https://doi.org/10.1007/978-1-4842-5013-6_1

CHAPTER 1

In the Land of ORM
Object relational mapping (ORM) represents a set of techniques in

computer programming, which attempt to make incompatible systems

cooperate, communicate, and exchange information. At the same time,

they attempt to make the life of developers easier.

The systems in discussion are database systems and systems that

evolve from the dominant paradigm of object-oriented programming

(OOP). Databases are designed to store and provide access to various

data types in a persistent way. Data is stored in databases and outlives the

execution of the applications that use it. On the other hand, developers

that follow OOP principles think in a very different way when it comes to

the representation of data in their applications.

The design of database systems has advanced considerably over the

decades, and today databases represent both reliable and stable systems

which are found in almost every type of applications. The widespread use

of Internet, the domination of social media, and the ability to generate high

volume of data in real time and in high velocity (big data) have led to a

wide range of database systems with various degrees of sophistication and

implementation complexity. As a result, database administrators enjoy

a wealth of options – databases that follow the traditional relationship-

based design (RDBMS/SQL) to systems without inherent structure like the

NoSQL database.

The design of relational database systems has served the information

world extremely well since their invention. Looking at the heart of

relational database management systems (RDBMS), one can observe

2

though that the fundamental elements have not changed drastically in

terms of the way data is stored and considered. One of the most persistent

designs of databases is the type of data those systems are capable of

storing. Put simply, the vast majority of databases can manage data of

simple types (scalar). Data types like integers, chars, strings, bytes, and

dates are in their natural environment with databases.

On the other hand, developers in OOP see the world with the eyes

of nonscalar concepts as they are represented by objects. Objects have

attributes and properties (object-based design) but also provide mechanisms

to manipulate the behavior of objects via the concepts of polymorphism and

inheritance (object-oriented design). Polymorphism allows developers to

change the behavior of an object or a function depending on the associated

elements, and inheritance creates a form of hierarchy between objects

allowing common attributes and behavior. Objects, although a common

feature in modern programming languages, are quite complex in terms of

implementation and are not compatible with the way databases manage

data. Additionally, more complex structures like lists, maps, and dictionaries

found in programming languages and used every day by developers cannot

be mapped easily to the storage mechanism of databases (Mueller, 2013).

�Communication Between Incompatible
Systems
Consider the example of a blog site. Users register and create posts. Posts

can have a number of tags or categories. From the database designer’s

point of view, users can be represented by the table Users, posts by the

table Posts, and tags and categories by the tables Tags and Categories,

respectively. Concepts like “a user owns several posts” and “posts have

many categories” are implemented by different types of relationships

(one-to-one, one-to-many, many-to-many). Figure 1-1 shows a simplified

database model for the blog site.

Chapter 1 In the Land of ORM

3

This representation is only a conceptual model. At database level,

database designers and administrators see the preceding model in terms

of records (rows in a table) and columns (fields of a table). A more accurate

representation would be Figure 1-2 where real content is being stored in

a database and presented in the form of records (rows). The relationships

that Figure 1-1 indicates are not visible at this level as they are forced by

the database engine. Moreover, one can observe the simple data types

the records hold. Although this is a simplified example, the values and,

therefore, their data types are representative of more complex situations.

Figure 1-1.  Simplified database model for a blog site

Chapter 1 In the Land of ORM

4

This situation looks very different for a code developer who follows

OOP principles. The problem of keeping track of the users and their posts

becomes a problem of defining objects and the tags and categories of

the posts becomes a problem of choosing the right data structure of the

programming language that can hold this information and link it back to

the posts. In Delphi, and in most of the developed languages, Users and

Posts would be pure objects (TUser and TPost, respectively), whereas

Tags and Categories can be a list of strings represented by properties in

the TPost object. The following code demonstrates this approach:

type

 TUser = class

 private

 fName: string;

 public

 property Name: string read fName write fName;

 end;

Figure 1-2.  Simplified database design and content for a blog site

Chapter 1 In the Land of ORM

5

 TPost = class

 private

 FCategories: TList<string>;

 FContent: string;

 FTags: TList<string>;

 FUser: TUser;

 public

 �property Categories: TList<string> read fCategories write

fCategories;

 property Content: string read fContent write fContent;

 property Tags: TList<string> read fTags write fTags;

 property User: TUser read fUser write fUser;

 end;

This snippet suggests that if a developer wants to store data in a

database and, consequently, retrieve it, they must figure out how a

TList<string> or a TUser data type in TPost translates efficiently and

reliably to database tables. Moreover, the situation can increase in

complexity if one considers that the tags and categories can be objects

themselves (TTag and TCategory), which makes the TList<string> a

TObjectList<TTag> and TObjectList<TCategory>, respectively.

The preceding challenge of making two incompatible systems to

seamlessly communicate is amplified when one realizes the wide range

of database solutions that exist in the market both in the proprietary and

open source domains. The vast majority of RDBMS databases today use

SQL as the standard language to manipulate data. A closer look indicates

that although SQL is a standardized language, different database vendors

introduce their own SQL variations, constraints, and extensions apart

from the basic set of commands. This, in turn, means that the developer

who wants to manage TPost(s) in a database needs to be aware of the

underlying database engine and perhaps make adjustments when the

database is replaced by a different one.

Chapter 1 In the Land of ORM

6

Manipulating objects at database level introduces two more problems

that need to be resolved if OOP and databases are expected to work

reliably and correctly. One of the fundamental features of databases is their

ability to facilitate the access of data by multiple users and at the same

time (concurrency). For the OOP developer, the access of data by multiple

users poses the need of synchronizing the changes being made at database

level with any instances of the objects at programming level and vice versa.

In the preceding example, an instance of TPost will have a set of tags in the

Tags property. If a user adds a new tag and assigns it to the specific TPost

instance, the communication between the OOP version of the model and

the database should update the instance of TPost and perhaps the Tags

property. Similarly, if the code that uses the TPost instance allows the

user to add a new tag and assign it to the property Tags of this particular

instance, the database tables should be updated accordingly.

Concurrency, on the other hand, opens the possibility of corrupted

or partially saved data to the database. What may happen, especially in

environments where multiple people access the same database assets at

the same time, is that the users may edit the same piece of information for

the same record at the same time. This situation, in conjunction with the

previous one, can lead to challenges for the OOP developer.

�ORM Frameworks
The previous discussion makes clear the fact that working out the

mentioned issues requires a substantial effort at the coding side. People very

often take the task of writing their own libraries to manage this situation

but soon realize that the task is not a trivial one as the details can be quite

complex and time-consuming. The solution to this problem is to use

dedicated libraries known as object relational mapping (ORM) frameworks.

ORM frameworks provide a middle layer between object-oriented code

and database operations (Hibernate, n.d.). They take the task of adapting

Chapter 1 In the Land of ORM

7

typical objects to forms that can be understood by database engines,

and they perform operations at both sides of the equation. These tools

create a set of virtual object database that map classic database structures,

can be understood by developers, and behave as expected in an OOP

environment. They also expose a form of API that allows typical operations

in a database to be performed at coding level and, in terms of database

connectivity, they do a great job to abstract the underlying database engine.

In a typical three-tier application where there is a separation between

the presentation, the business, and the data layers, ORM frameworks

lie inside the data layer (Figure 1-3) and, contrary to the common

presentation in books and articles, ORM frameworks can handle multiple

database sources.

Figure 1-3.  The role of ORM frameworks in three-tier applications

Chapter 1 In the Land of ORM

8

The obvious advantage of ORM frameworks is to make the life of the

developers easier as they now can focus on implementing the business

logic their applications dictate rather than spending time on the technical

side of the storage mechanism.

ORM approaches are not without criticism. Although they are valuable

solutions, they have attracted negative comments by developers on the

basis of the complexity ORM introduces in its own right and the fact that

once an ORM framework is used, the code is tightly coupled with it and

carries all the trade-offs a specific ORM solution brings. I encourage you

to do your own investigation as there are many good posts on the merits

and drawbacks of ORM (Atwood, 2006; Fowler, 2012). The more you know

about the tools you use, the better you position yourself to take advantage

of those tools; and this is a general advice that goes beyond the scope of

ORM libraries.

The reality of the matter is that if your focus as developer is to produce

applications that implement some form of business logic which provides

value to your business and customers, you do not want to waste time,

effort, and, from company’s perspective, human resources to develop your

own solution that deals with the technicalities of databases. On the other

hand, if you are an ORM framework developer, the perspective is totally

different. ORM provides solutions to nearly 80% of the tasks you need to

accomplish at database level. If the remaining 20% of the tasks make a

significant difference to your business, then most likely you are part of a

team that develops frameworks.

�ORM Terminology
In the field of ORM, there are a number of terms that we come across

repeatedly. Many terms originate from the ORM designers, and others are

borrowed from the world of databases. This section provides a summary of

the most commonly used terms in ORM solutions.

Chapter 1 In the Land of ORM

9

�Entity
An entity is the complete set of data held by an application object

as defined by the developer in order to serve the needs of a specific

application. This data set replicates the data found in the underlying

database. A customer, an employee, or the blog posts from the previous

example are typical representatives of an entity. In the code, the objects

may hold more data and exhibit additional functionality than what is

required at database level, but the idea is that when you look at an entity

in the code, you have at the very minimum access to all the data in the

database that this entity is associated to. For the database administrator,

entities usually match to tables in the database, and an instance of the

object (entity) in the code corresponds to a row (record) in that table.

Additionally, entities in code are used for other purposes than just

to simply represent records in a table in the database. In databases, very

often designers encapsulate a logical perspective of data that requires the

combination of data found within different tables using keys and other

database elements. Quite often, this logic also dictates the need for a range

of calculations. In databases, this representation is implemented by views,

and at code level entities are used for this purpose as well.

�Properties
Entity’s data is stored in properties in the same way that classic objects

use properties to hold data. As mentioned earlier, entities match database

tables and table records; therefore, those instances should be uniquely

identifiable by the ORM framework at the entity level. This is resolved by

assigning a property to act as unique identifier. This concept is basically

the same as the idea of primary keys in databases. One difference between

properties in entities and the underlying data in databases is that the first

ones can hold simple or complex data types.

Chapter 1 In the Land of ORM

10

�Associations
Entities, like tables in databases, are generated in order to support a

model that derives from a business problem. Entities make sense in a

model when they form relationships that represent logical and conceptual

notions. These relationships are called associations in ORM frameworks,

and they are formed between one or more properties.

These properties in the ORM space are known as association

endpoints, and depending on the data types they can define the different

types of associations (cardinality) as represented by the common one-to-

one, one-to-many, and many-to-many relationships. Although one-to-one

and many-to-many relationships can be described in theoretical terms

and implemented at database level, they hardly make business sense.

Therefore, in most of the entity frameworks, all associations represent

one-to-many (and vice versa) relationships, and if other relationship

cardinalities (one-to-one) are required, it is left to the developer to enforce

and filter them out.

Associations are always bidirectional so entities have full access to

each other. In many ways, at database level, endpoint properties work in

the same way as foreign keys do, and they behave in a way similar to joined

table operations.

�Criteria
When developers want to fetch data from databases, they create query

statements using the relevant (SQL) language. The statements may or may

not filter the results of the query. At ORM level, queries are built based

on conditions that are passed to the underlying database engine. These

conditions, which can be generic or specific, are formed by attaching

criteria together. Most ORM frameworks provide a fluent interface

(Ramsay, 2008) to manage criteria (meaning that the building of the

query statement appears as a natural language to the user), and you can

Chapter 1 In the Land of ORM

11

typically expect to have criteria for all the useful relational comparisons

(e.g., greater than, equal, logical and, logical or, etc.) and sorting functions

for properties.

�Projections
Although you can retrieve all the properties (columns) of a table data from

a database using ORM criteria, common programming practice indicates

that you should only fetch the properties that are required in each

situation. This type of queries is managed differently by ORM packages

than the typical criteria-based queries, and they are called projections.

Projections also allow programmers to drill down complicated data

structures and even perform some (basic) mathematical calculations (e.g.,

average, summation, etc.).

�Container
ORM frameworks create a buffer between the code and the database.

When the user passes an operation to the ORM, the framework needs to

have access to the status of all of the data in the database. The framework

loads the relevant data in the memory in the form of entities or other

relevant data structures, performs the instructed operations, and then,

many times, pushes back the changes to the database. This snapshot of the

data is managed by an entity container. Before the developer can interact

with an entity, ORM libraries load any required data into a container. The

containers are usually short-lived as their purpose is to serve a specific set

of operations and lightweight as they need to be created and destroyed

several times in the life of an application. In many aspects, a container is

somewhat analogous to a database transaction.

Chapter 1 In the Land of ORM

12

The typical course of action in an ORM is as follows:

•	 The developer creates an instance of the container.

The container is also known as entity manager, and

the instance of the manager is sometimes referred to

as the context.

•	 The developer uses the container to perform

operations to entities. The operations may require

interaction with the database as in the case of

updating an entity or may only retrieve results like in

the case of a query.

•	 Once the operations are completed, the entity

container (manager) is destroyed.

�Putting It All Together
Figure 1-4 shows the several elements discussed earlier and their

connection to the database structure based on the blog site example.

Chapter 1 In the Land of ORM

13

Figure 1-5 pictures the ideas of criteria, projection, and entity

container providing sample code.

Figure 1-4.  Various elements of ORM frameworks and their
relationship to database structure

Figure 1-5.  Sample code to demonstrate the concepts of criteria,
projection, and entity container in ORM frameworks

Chapter 1 In the Land of ORM

14

�Workflows
Depending on the available resources and information, several workflows

can be devised that lead to a specific goal. In the area of ORM frameworks,

there are three main workflow patterns1:

•	 Code-first

•	 Model-first

•	 Database-first

Each of the preceding workflows becomes productive under specific

conditions and meets specific needs. In general, these workflows attempt

to make the work of the developer more structured and allow them to

focus on how to build an application which adds business value rather

than lock the developer in deep technical mazes indirectly linked to the

goal of the application.

�Code-First Workflow
This approach is relevant when you have an existing application and

a point comes in the development life where persistence becomes a

requirement. You typically follow OOP approaches and your application

uses classes extensively. In the initial stages, the code does not consider

any ORM framework requirements, conventions, or techniques. The

database is created based on the class design, and the developer has full

control on the way the ORM will generate the database structure. It offers

flexibility but it requires more work to set the classes up correctly.

Code-first approach may be effective in small teams of developers or in

the case of a sole developer, but it does not work well with large developer

1�These workflows were introduced and promoted by Microsoft’s Entity Framework
at different stages and releases (Microsoft, 2016).

Chapter 1 In the Land of ORM

15

teams because it opens the possibilities for inconsistencies in class design.

For this reason, it requires central management of the fundamental

classes of the application. Additionally, code-first workflow can be used

in applications that have a database already, but an additional step is

required where the developer must reverse engineer the database and

produce the appropriate classes.

As an example, the code snippet in the blog case represents the

code-first approach. The developer defines the classes first and the ORM

generates the database.

In this book, we are going to start with the code-first approach because

it allows the exploration of different approaches and it encourages more

in-depth understanding of the framework.

�Model-First Workflow
The model-first approach assumes that the application requires a

persistent medium and database support from the outset. When

developers design the model first, they abstract the storage mechanism by

focusing on the design of the database. Typically, a graphical environment

is used as a tool to generate the underlying classes. Figure 1-1 represents

the model of the blog application.

This approach is useful when someone works in a new application or

in an application that does not have any databases yet. Additionally, the

use of graphical elements creates a prototype of the database, and this

proves to be a useful tool when it comes to sharing ideas and approaches

between members of teams or between development groups.

As mentioned, code-first is the approach we are going to focus on in

this book when we build our ORM entities. In Chapter 8 we are going to

explore a separate tool called Data Modeler, which allows us to follow the

model-first approach.

Chapter 1 In the Land of ORM

16

�Database-First Workflow
This approach is based on existing databases. The framework can generate

classes that match the database entities and relationships and, then,

developers interact with these classes. This is appropriate when a new

application needs to be developed based on existing data. This situation is

common in software development and leads to the model-first approach.

Database-first development does not put any constraints in terms

of the number of databases the framework uses. Although the workflow

comes with the assumption of one database in use, the approach can be

used with multiple databases. ORM frameworks are capable of managing

more than one databases.

The biggest advantage of this approach is the consistency in the

generation of the classes in the ORM framework (Smartbear, 2013). This

makes the approach suitable to large teams where different groups may

design and work in different parts of a database. This approach will

generate a very consistent class tree that can be shared among the team

members. On the other hand, it offers limited flexibility as the developers

do not have the opportunity to alter the class design because the next

update to the database and, consequently, to the classes will overwrite

any changes.

As with the case of the model-first design, we are going to look at this

approach with Data Modeler in Chapter 8.

�Choosing Workflows
The available workflows are useful in many different circumstances, but

they generally describe a dedicated approach to achieving a goal. This

means that, in theory, one would choose a workflow and stick with it.

However, real-life work environments are hardly pure (Microsoft, 2016),

and it is typical to mix and match workflows. For example, you may start

Chapter 1 In the Land of ORM

17

a new application with the code-first approach and as the complexity

increases you may find it more productive to move to a model-first

workflow.

�Summary
This chapter provides an introduction to object relational mapping

frameworks. A discussion of the fundamental ideas and concepts puts

light to the way these frameworks are designed, and different workflows

associated with ORM libraries are discussed. This chapter offers the basic

knowledge that allows us to, firstly, explore TMS Aurelius ORM in Delphi

and, secondly, to work in developing an example application.

�References
Atwood, J., 2006. Object-Relational Mapping is the Vietnam of Computer

Science. [Online] Available at: https://blog.codinghorror.com/object-

relational-mapping-is-the-vietnam-of-computer-science/ [Accessed

28 02 2019].

Fowler, M., 2012. Martin Fowler on ORM Hate. [Online] Available at:

https://dzone.com/articles/martin-fowler-orm-hate [Accessed

28 02 2019].

Hibernate, n.d.. What is Object/Relational Mapping. [Online] Available at:

http://hibernate.org/orm/what-is-an-orm/ [Accessed 28 02 2019].

Microsoft, 2016. Get started with Entity Framework 6. [Online] Available at:

https://docs.microsoft.com/en-us/ef/ef6/get-started [Accessed

28 02 2019].

Mueller, J. P., 2013. Microsoft ADO.NET Entity Framework. California:

O’Reilly Media, Inc..

Chapter 1 In the Land of ORM

https://blog.codinghorror.com/object-relational-mapping-is-the-vietnam-of-computer-science/
https://blog.codinghorror.com/object-relational-mapping-is-the-vietnam-of-computer-science/
https://dzone.com/articles/martin-fowler-orm-hate
http://hibernate.org/orm/what-is-an-orm/
https://docs.microsoft.com/en-us/ef/ef6/get-started

18

Ramsay, C., 2008. NHibernate: Optimising Queries with

Projections. [Online] Available at: http://colinramsay.co.uk/

nhibernate/2008/01/15/nhibernate-optimising-queries-with-

projections.html [Accessed 28 02 2019].

Smartbear, 2013. Choosing the Right Entity Framework Workflow. [Online]

Available at: https://smartbear.com/blog/develop/choosing-the-

right-entity-framework-workflow/ [Accessed 29 02 2019].

Chapter 1 In the Land of ORM

http://colinramsay.co.uk/nhibernate/2008/01/15/nhibernate-optimising-queries-with-projections.html
http://colinramsay.co.uk/nhibernate/2008/01/15/nhibernate-optimising-queries-with-projections.html
http://colinramsay.co.uk/nhibernate/2008/01/15/nhibernate-optimising-queries-with-projections.html
https://smartbear.com/blog/develop/choosing-the-right-entity-framework-workflow/
https://smartbear.com/blog/develop/choosing-the-right-entity-framework-workflow/

19© John Kouraklis 2019
J. Kouraklis, Introducing Delphi ORM, https://doi.org/10.1007/978-1-4842-5013-6_2

CHAPTER 2

TMS Aurelius
TMS Aurelius is an ORM framework for Delphi developers. The framework

is written in Delphi, and it is a proprietary product developed by TMS

Software. Aurelius has been available in the market for a number of years,

and it enjoys a good customer base. The framework plays its part in a wide

range of applications with different scope and different requirements.

Aurelius is not limited to Windows platforms, and it can work efficiently on

macOS, iOS, Android, and Linux, and it supports all Delphi versions from

XE2 to the latest.

In this chapter, we start clean and install Aurelius from scratch. Then,

the chapter explores some fundamental concepts (database connectivity,

SQL dialects, etc.) that allow us to use Aurelius, and we look at our first

code snippets that put Aurelius to work for us.

�Installation
Aurelius comes in two versions: a trial version and a licensed one.

The difference is that with the trial version you only get the DCU files;

it is intended for noncommercial use and it expires at some point.

There is a free version as well which does not expire and you can use it

for commercial applications, but there are some limitations. For more

information about the free version, contact TMS Software directly. The

next steps guide you how to install the trial and the licensed versions.

https://tmssoftware.com/site/aurelius.asp
https://tmssoftware.com/
https://tmssoftware.com/

20

�Trial Version
In you want to install the trial version, follow the next steps:

	 1.	 Go to the product’s web page on TMS Software

site at this address https://tmssoftware.com/

site/aurelius.asp or visit https://tmssoftware.

com and select “Business Tools” from the tiles with

their products. This will load a page with several

interesting pieces of information. At the bottom of

the page, you can find the link to access the Aurelius

web page.

	 2.	 In Aurelius page, scroll at the bottom of the page.

You will be able to see a grayed area with download

links for different Delphi versions (Figure 2-1).

Select the link for the Delphi version you use and

download the file in your computer.

Chapter 2 TMS Aurelius

https://tmssoftware.com/site/aurelius.asp
https://tmssoftware.com/site/aurelius.asp
https://tmssoftware.com
https://tmssoftware.com

21

Note I n the same page you can also find the technical manual, as
shown in Figure 2-1. This is also copied by the installer, but if you
wish to have the manual without installing the package, download it
from the link.

	 3.	 The downloaded file is a compressed zip file that

contains all the products in the TMS Business Tools

package. Extract the files and execute the installer.

	 4.	 Let the installer complete the installation of all

packages.

Figure 2-1.  TMS Aurelius trial download links

Chapter 2 TMS Aurelius

22

	 5.	 If you haven’t changed the default location, Aurelius

is now installed in Documents\tmssoftware\

businessrio\Aurelius.

Note: The businessrio part in the preceding path

indicates the Delphi version you install the package

for. In my case, I installed Aurelius for Delphi 10.3 Rio.

	 6.	 Now, you can launch Delphi and check that the

package has been installed correctly. In the splash

screen, you should be able to see the BIZ logo and a

reference to the package similar to Figure 2-2.

	 7.	 Additionally, if you look at the Options ➤ Library

paths for different platforms, you should be able to

see the paths to the compiled packages (Figure 2-3).

	 8.	 Now, you are ready to use Aurelius in your Delphi programs.

Figure 2-2.  Splash screen item for Aurelius trial version (Delphi 10.3 Rio)

Chapter 2 TMS Aurelius

23

Note T he trial version of the package installs compiled .dcu units for
all the available platforms and for the Release configuration. Source
files for several database drivers have also been installed. Additionally,
you can find Demos and Documentation in their respective folders.

�Licensed Version
If you are a registered user with TMS Software, you can log in to your

account in their web site. In your account, you are able to download all the

products you have purchased license for. Note that licensed installers build

packages for all the installed Delphi version in your system, eliminating

the need to run separate installation for each Delphi IDE.

Figure 2-3.  Library paths for Aurelius trial version (Win32)

Chapter 2 TMS Aurelius

24

�Prerequisite Packages

TMS Aurelius requires the TMS Business Core Library (BCL) to be installed

in the system. Download the compressed setup file from your account,

unzip it, and install the package.

�Installation

The following steps describe how you can install the registered version of

TMS Aurelius:

	 1.	 Make sure TMS Business Core Library (BCL) is

installed (see previous section).

	 2.	 Download the compressed setup file for Aurelius from

your account, unpack it, and run the installer (Figure 2-4).

Figure 2-4.  Registered installer of TMS Aurelius

Chapter 2 TMS Aurelius

25

	 3.	 The next page in the installer invites you to accept

the license, and then you have to enter your

registration email and code (supplied by TMS). This

step requires your system to be able to access the

Internet as the installer validates your license online.

	 4.	 Verify the settings that are presented in the following

pages of the installer and allow it to copy all the

necessary files to your system.

	 5.	 When all files are copied, the installer will launch

the Package Rebuild Tool to build the packages for

all the installed Delphi versions and all available

releases. For more details, see the next section.

Figure 2-5.  License page in TMS Aurelius installer

Chapter 2 TMS Aurelius

26

	 6.	 When the building of the package finishes, Aurelius

is installed and it is ready to use. You should be

able to see the TMS Business product line logo in

the Delphi splash screen as in Figure 2-2 and also

inspect the relevant library paths.

�Package Rebuild Tool

The Package Rebuild Tool is a stand-alone application that is installed

with TMS Aurelius. You can find it in the Start Menu group and launch

it independently. The installer, as mentioned earlier, uses this tool to

generate the binaries of the Aurelius packages, but you can use it every

time you want to recompile the packages for any reasons. Corrupted .dcu

files or updates to the IDE may lead to unusable binary packages. In such

cases and in the cases where you modify the source code directly or receive

patches sent by TMS Software, you can manually rebuild the packages.

When the tool is launched, it scans for the installed Delphi IDE

environments and presents them in the top half of the window of the

application (Figure 2-6). You can use the checkboxes to select or deselect

the IDEs according to your preference.

Chapter 2 TMS Aurelius

27

At the bottom half of the window, the available platforms are shown,

and you can select which ones you would like to install or rebuild the

packages for. This part of the user interface can be confusing as the design

indicates that the platform selection is independent to the Delphi version.

For example, if I want to build the packages for OSX32 for Delphi 10.2 but

not for Delphi 10.3, I need to rebuild the packages twice; one for 10.2 with

OSX32 selected and one for 10.3 with OSX32 deselected.

Figure 2-6.  The Package Rebuild Tool

Chapter 2 TMS Aurelius

28

Note  Figure 2-6 demonstrates a very common situation with the
available platform. Android and Linux are not enabled because the
tool identifies these platforms either as wrongly configured or not
available. In my system, Linux is not available as built platform and
Android is not properly configured. If you have the same situation,
check the SDK Manager in Delphi, correct any errors that appear, and
rerun the Package Rebuild Tool.

Click Install/Rebuild and allow the application to finish the building of

the packages (Figure 2-7). This step may take considerable amount of time

to complete.

Figure 2-7.  The Package Rebuild Tools compiling for several Delphi
versions and platforms

Chapter 2 TMS Aurelius

29

�TMS Subscription Manager

TMS Software offers a simpler and more automated way to manage any

packages you have purchased. As a registered user, you have access to

a tool called TMS Subscription Manager. This tool allows you to keep

track of the installed packages and see new versions, and it facilitates the

installation (and uninstallation) of the packages.

In the case of Aurelius and Business Core Library, the Subscription

Manager would look like in Figure 2-8. The Manager shows that there are

new versions available and they can be, automatically, downloaded and

installed.

Figure 2-8.  TMS Subscription Manager

Chapter 2 TMS Aurelius

30

�Database Connectivity
Aurelius can connect to a number of database engines. The framework

requires the following elements in order to manage an underlying database:

•	 A component that actually allows Aurelius to access the

database. There are two ways for this to be defined:

•	 Using an adapter (Adapter Mode): The adapter

works as a proxy between Aurelius and a database,

and it requires components by the providers

of the adapter to be installed and configured

properly. This option provides high flexibility and

great degree of customization of the connection.

FireDAC component belongs in this group.

•	 Using a native driver (Driver Mode): This mode

provides a convenient way to use a database in

Aurelius without the need to install or employ

any third-party software as in the adapter mode.

Although the flexibility in customization is not

as high as in adapter mode, this mode is a very

convenient and quick way to set up the database

connectivity of the framework. In the version of

Aurelius at the time of writing, this mode allows

native connectivity to SQLite databases and

databases hosted by Microsoft SQL Server.

•	 An SQL Dialect: When Aurelius gets the connection,

it needs to know which variation of the SQL language

should be used to communicate with the database.

This information is passed by supplying an SQL dialect

during the database connectivity setup stage. The

ability to define the dialect is exposed to the developers

Chapter 2 TMS Aurelius

31

only in the case of the adapter mode. In the native

driver mode, Aurelius can work out the required dialect

by looking at the selected native driver.

Table 2-1 shows which components can be used to connect to specific

databases. According to Aurelius manual, these are the combinations

that TMS has tested and officially supports. As the table indicates, there

are components that can be used to provide access to multiple databases.

This can be very beneficiary and convenient in cases where there is a

database change as a matter of infrastructure or your application requires

to connect to different databases. You can save writing lots of lines of

code and time if you know that a specific adapter works with different

databases. Aurelius technical manual provides a full list of the available

adapters, SQL dialects, native drivers, and which component and

database versions are supported.

�IDBConnection
In terms of coding, a connection to a database in Aurelius is represented

by the IDBConnection interface. This interface is perhaps one of the

most fundamental data structures in Aurelius as it makes the database

operations happen. The adapters or the drivers discussed in the previous

section are used to create a valid IDBConnection interface. In turn, this

means that an IDBConnection is tied to an adapter or a driver and not to a

database engine (although when you use an adapter that can access only

one database, then the IDBConnection is ultimately tied to one database as

well), and this is

Chapter 2 TMS Aurelius

32

Ta
bl

e
2-

1.
 D

at
ab

as
es

 a
n

d
C

on
n

ec
ti

on
 A

da
pt

er
 C

om
pa

ti
bi

li
ty

 (
H

om
ol

og
at

io
n

)
in

 T
M

S
A

u
re

li
u

s

Ad
ap

te
r

Da
ta

ba
se

Native

Absolute

AnyDAC

dbExpres

dbGo

DOA

ElevateDB

FireDAC

FIBPlus

IBO

IBX

NativeDB

NexusDB

SQLDirect

UniDAC

UIB

ZeosDB

Ab
so

lu
te

DB
•

IB
M

 D
B2

•
•

•
•

•

El
ev

at
eD

B
•

Fi
re

Bi
rd

 (i
nc

lu
di

ng

Fi
re

Bi
rd

 3
)

•
•

•
•

•
•

•
•

In
te

rb
as

e
•

•
•

•
•

•
•

•

M
S

SQ
L

Se
rv

er
•

•
•

•
•

•
•

•

M
yS

QL
•

•
•

•
•

•

Ne
xu

sD
B

•
•

Or
ac

le
•

•
•

•
•

•
•

Po
st

gr
eS

QL
•

•
•

SQ
LA

ny
w

he
re

•
•

SQ
Li

te
•

•
•

•

Chapter 2 TMS Aurelius

33

where the value of having adapter that are able to access multiple

databases appears. There are three ways to instantiate an IDBConnection

interface:

	 1.	 Using pure code

	 2.	 Using the TAureliusConnection component

	 3.	 Using the TMS Aurelius DBConnection wizard in

RAD IDE

�Using Code

To demonstrate how we can get an IDBConnection programmatically, we’ll

create a connection to an SQLite database. Table 2-1 indicates that this can

be achieved in Aurelius by either using a database adapter or natively. For

this example, we are going to create an in-memory SQLite database.

Using an Adapter

Let’s start with an adapter:

	 1.	 Create a new project in Delphi. It can be a VCL,

FMX, or console application, but it is much easier if

you choose a VCL or FMX project.

	 2.	 Drop a FireDAC connection (TFDConnection) in the

form (FDConnection1).

	 3.	 Select the connection component, right-click, and

launch the connection editor (Figure 2-9). Select

SQLite in Driver ID field and enter “:memory:” in the

Database field as in the figure and choose OK.

Chapter 2 TMS Aurelius

34

Figure 2-9.  FireDAC Connection Editor for in-memory SQLite
database

Chapter 2 TMS Aurelius

35

	 4.	 Click the OnCreate event of the form and write the

following code:

uses
...,
Aurelius.Drivers.Interfaces;

type
TForm1 = class(TForm)
FDConnection1: TFDConnection;
procedure FormCreate(Sender: TObject);

private
fConnection: IDBConnection;

public
{ Public declarations }

end;

var
Form1: TForm1;

implementation

uses
Aurelius.Drivers.FireDac;

{$R *.fmx}

procedure TForm1.FormCreate(Sender: TObject);
begin

fConnection:=TFireDacConnectionAdapter.Create(FDConnection1,
 false);

After the call to the TFireDacConnectionAdapter constructor, the

fConnection property holds a reference to the database and can be used to

perform operations.

Chapter 2 TMS Aurelius

36

Using Native Drivers

As mentioned earlier, Aurelius can provide native support to SQLite

databases. This means that there is no need to create a FireDAC

connection. Aurelius can access directly the SQLite database as shown in

the code that follows:

...

implementation

uses

 Aurelius.Drivers.SQLite;

...

procedure TForm1.FormCreate(Sender: TObject);

begin

 �fConnection:=TSQLiteNativeConnectionAdapter.Create(':memory:');

end;

Note T he native component is very useful as it requires the minimal
possible code to generate a database connection and does not
require any third-party components. However, it does not provide a
way to access encrypted SQLite databases. If you want to achieve
this, you need to use a FireDAC component.

�Using the TAureliusConnection Component

Aurelius provides a design-time component that can be used with a

FireDAC connection.

	 1.	 Create a new project in Delphi.

Chapter 2 TMS Aurelius

37

	 2.	 Drop a FireDAC connection (TFDConnection) in the

form (FDConnection1) as before.

	 3.	 Drop a TAureliusConnection component in the

form (AureliusConnection1). You should be able to

see two components as in Figure 2-10.

Figure 2-10.  FireDAC and Aurelius connections in a form

	 4.	 Select the Aurelius connection component, right-

click, and select “Connection Settings…”. In the

editor make the necessary options to connect to

the FireDAC component (Figure 2-11) and select

OK. You can also test the connection using the

button at the bottom of the form.

Chapter 2 TMS Aurelius

38

	 5.	 Retrieve the IDBConnection using the following code:

procedure TForm1.FormCreate(Sender: TObject);

begin

 fConnection:=AureliusConnection1.CreateConnection;

end;

�Using the TMS Aurelius DBConnection Wizard

TMS provides an even easier way to generate a database

connection. Aurelius installer adds a DBConnection wizard in the

File➤New➤Other➤TMS Business menu in the RAD Studio.

Figure 2-11.  TAureliusConnection Connection Editor

Chapter 2 TMS Aurelius

39

	 1.	 Go to File ➤ New ➤ Other ➤ TMS Business in Delphi

and select the TMS Aurelius DBConnection wizard

as in Figure 2-12.

	 2.	 In the next step (Figure 2-13), choose whether you

want to connect to the database using an adapter

or a native driver. For this example, I opted for the

native driver to generate an SQLite database.

Figure 2-12.  TMS Aurelius DBConnection option in Delphi

Chapter 2 TMS Aurelius

40

Figure 2-13.  The options in DBConnection wizard for the adapter
and the driver modes

Chapter 2 TMS Aurelius

41

	 3.	 The wizard creates a unit (ConnectionModule.pas) with

a data module and a TAureliusConnection attached to

it. The name of the module is after the connection. In

my case, it is called TSQLiteSQLiteConnection and the

associated variable is SQLiteSQLiteConnection. This

naming convention may appear confusing to the Delphi

developer as the name implies that the underlying object

is a connection when it is, actually, a data module. This

may not be a big problem because the only real need for

this module is to generate an IDBConnection instance

once. In a typical application, this will most likely be done

at the beginning of the application, and the interface will

be injected as needed.

	 4.	 Once the data module is created and the Aurelius

connection has been configured, the connection interface

can be retrieved as in the following code. Note that the

wizard assigns a variable to the data module, but it is not

instantiated. This needs to be done manually.

Chapter 2 TMS Aurelius

42

�ORM Paradigm in Aurelius
In the previous chapter, the ORM building elements were discussed

(entity, properties, associations, criteria, projections, container). In

order for Aurelius to implement these elements, the framework defines a

number of attributes that can be used.

The attributes determine how the virtual object database in Aurelius

is defined and managed and how the operations at the database level

are performed. They also work as indicators in the code. If you browse

through the code, you can understand the ORM structure by observing

the attributes. To demonstrate the use of attributes in Aurelius, we will

continue with the blog example from the first chapter.

Note I f you are not familiar with attributes in Delphi or you would
like a refresher, visit the official Delphi documentation (Embarcadero,
n.d.). For a more detailed treatment of attributes, you may find useful
to check Nick Hodges’ book (Hodges, 2014).

�Entity
Entities in ORM frameworks are represented by classes and their instances.

In Aurelius, you declare a class to be an entity for the framework and,

therefore, persistent in the database, by using the attribute [Entity]. In

this case, the TPost class is declared to be an entity by, simply, writing the

following code:

[Entity]

TPost = class

private

 FCategories: TList<string>;

 FContent: string;

Chapter 2 TMS Aurelius

43

 FTags: TList<string>;

 FUser: TUser;

public

 �property Categories: TList<string> read FCategories write

FCategories;

 property Content: string read FContent write FContent;

 property Tags: TList<string> read FTags write FTags;

 property User: TUser read FUser write FUser;

end;

This attribute tells Aurelius that TPost class exists in the underlying

database. The next step is to decorate the class with the [Table] attribute

and the desired name of the table.

[Entity]

[Table('Posts')]

TPost = class

 ...

end;

Aurelius knows that it has to include in the virtual object database any

class with the [Entity] attribute. However, at the initial stages of your code

and if you follow the model-first or code-first workflow, you may declare

classes that are not used anywhere in the code yet. This results in the

classes being removed during the compilation and linking phase in Delphi.

As a result, those classes will not appear as tables in the underlying

databases as Aurelius will not know that those classes exist. Initially, this

may not pose a real concern because the next time you use the class,

the linker will include it to the executable and Aurelius will update the

database schema accordingly. Problems may arise when associations exist

between classes that represent association endpoints where one endpoint

is used in the application and another one is not yet. This will make the

final executable to link only the classes from the endpoints that are used,

leaving the associations at Aurelius level in nonfunctional state.

Chapter 2 TMS Aurelius

44

In order to avoid this situation, which, admittedly, may be a headache

to debug, best practice indicates that you register the classes right at

the beginning of the application. This is typically done by using the

RegisterEntity procedure in the initialization section of a unit or as

the very first line an application executes. For the TPost entity, this would

look like the following code:

uses

 ...,

 Aurelius.Mapping.Attributes;

type

 [Entity]

 [Table('Posts')]

 TPost = class

 ...

 end;

...

initialization

...

 RegisterEntity(TPost) ;

...

end.

�Properties
Properties in ORM represent columns in database tables and are mapped

in typical class properties in Delphi implemented by either a (usually

private) field or a field and a getter and setter method. From Aurelius’ point

of view, properties (with the exception of associations) can be of four types:

	 1.	 Identifier

	 2.	 Column

Chapter 2 TMS Aurelius

45

	 3.	 Column (NULL)

	 4.	 Blob

�Identifier

Each entity in Aurelius should be, uniquely, identified in the framework

as a record is, uniquely, identified in a table by a primary key. This is done

by declaring a property of the class to use the [Id] attribute. The most

common approach here is to allow the database to manage the generation

of the identifier value as in the case of a primary key. This is not restrictive

as you can take control of the values of the identifier and manage it in

your code. Typical values include sequential numbers, but for our TPost I

will use a GUID as identifier as this approach is gradually becoming more

common among database engineers.

The code defines a new property ID of TGUID type and the

corresponding private variable (fID). The [Id] attribute is used to declare

to Aurelius that fID is the variable to be used as the identifier of the class

and that Aurelius will need to generate GUID identifiers. There are more

identifier engines available, and they are discussed in the manual.

Chapter 2 TMS Aurelius

46

If you need to declare composite identifiers in your database, just add

as many [Id] properties as required. In that case, Aurelius will completely

manage the generation of the identifier so the engine in the attribute

should be TIdGenerator.None. However, broadly speaking, the official

manual suggests that composite identifiers should be avoided.

�Column

Each property in a class that needs to be persistent in the database

corresponds to a column in the equivalent table. In Aurelius, the [Column]

attribute is used to declare a column. When an identifier is declared,

the column in the table should never be empty (null). This is passed to

Aurelius by using the TColumnProp.Required in the declaration of the

[Column] property and can be seen in the preceding code snippet. As an

example, we are going to add a property DateTime in TPost of TDateTime.

[Entity]

[Table('Post')]

[Id('FID', TIdGenerator.SmartGuid)]

TPost = class

private

 ...

 [Column('DateTime', [TColumnProp.Required])]

 fDateTime: TDateTime;

 ...

public

 ...

 property DateTime: TDateTime read FDateTime write FDateTime;

 ...

end;

Note that the DateTime field has been declared as NOT NULL

(required) in the database. If you want to declare the length of a field or

Chapter 2 TMS Aurelius

47

its precision for numeric fields (columns), the [Column] attribute receives

parameters that can accommodate these requirements. The manual

provides more details on this.

�Column (NULL)

In databases, columns can be empty (NULL), a concept that is different

from empty fields in classes. For example, in TPost, the Content field is a

string. An empty string field in the class yields length of 0; however, a null

column in the database table does not as it does not have any content.

This situation is managed by Aurelius with the introduction of the generic

record Nullable<T> and it is used as in the following code. Note that I

have declared the length of the column to 65535 which is the maximum

value for VarChar in SQLite, but this seems a poor choice for full-scale

production database.

uses
...,
Aurelius.Types.Nullable;

...

[Entity]
[Table('Post')]
[Id('FID', TIdGenerator.SmartGuid)]
TPost = class
private
...
[Column('Content', [], 65535)]
FContent: Nullable<string>;
...

public
...

property Content: Nullable<string> read FContent write
FContent;
...

end;

Content

Nullable<string>

Chapter 2 TMS Aurelius

48

�Blob

Databases are capable of storing binary large objects (blobs) , and Aurelius

naturally provides support to such data types by introducing the TBlob

record. This is pretty straightforward to use in an entity. As an example, we

introduce an Image property in TPost to hold a picture related to the post.

uses

 ...,

 Aurelius.Types.Blob;

...

[Entity]

[Table('Post')]

[Id('FID', TIdGenerator.SmartGuid)]

TPost = class

private

 ...

 [Column('Image', [TColumnProp.Lazy])]

 FImage: TBlob;

public

 ...

 property Image: TBlob read FImage write FImage;

end;

The [Column] attribute provides a way to affect the behavior of TBlob.

In the example code, the FImage field will not be loaded immediately when

a Post instance (record) is retrieved in the code (lazy loading); instead the

content will become available the very first moment the Image property

is accessed. This is common behavior with blobs. We will also see this

behavior again when we deal with associations.

Chapter 2 TMS Aurelius

49

�Associations
As discussed in the previous chapter, associations are formed between

endpoints (properties in entities). Aurelius implements two types of

associations: one-to-many and many-to-one. If you need to implement

one-to-one associations, you need to handle this by code.

According to our design, a user in our blog case owns several posts.

From the user’s point of view, this is a one-to-many association. On the

other hand, looking at the situation from a post and considering the

previous association, the relationship between a post and a user is

many-to-one (Figure 2-14).

Figure 2-14.  Users and posts associations

Chapter 2 TMS Aurelius

50

�Many-to-One Association

A TUser is the owner of a specific post; therefore, this entity deserves

a property in TPost. Typically, in an OOP fashion, we would call this

property User. Then, we need to tell Aurelius that this property relates to

the entity TUser. We accomplish this by decorating the corresponding field

of User property with the [Association] attribute.

[Entity]

[Table('Post')]

[Id('FID', TIdGenerator.SmartGuid)]

TPost = class

private

 ...

 [Association([], CascadeTypeAll - [TCascadeType.Remove])]

 [JoinColumn('User', [], 'ID')]

 FUser: TUser;

public

 ...

 property User: TUser read FUser write FUser;

end;

The Association attribute tells Aurelius that there is a relationship

between the two entities. In database theory, this refers to the concept

of foreign keys. In the preceding code, I also define the behavior of the

association by indicating that all changes except Remove will be cascaded

by using the constant CascadeTypeAll - [TCascadeType.Remove].

Instead of this expression, I could also use the CascadeTypeAllButRemove

identifier. Only with the Association attribute, Aurelius is not in the

position to know which column (field) in the User table serves as the

foreign key. We provide this information by using the [JoinColumn]

attribute. In the preceding code, the foreign key links to the ID (primary key)

Chapter 2 TMS Aurelius

51

column in the User table. Up to this point, we have not defined it so we add

a property in TUser.

[Entity]

[Table('User')]

[Id('FID', TIdGenerator.SmartGuid)]

TUser = class

private

 [Column('ID', [TColumnProp.Required])]

 FID: TGuid;

 ...

public

 property ID: TGuid read FID write FID;

 ...

end;

It is imperative to use both these attributes together; otherwise, you

will get an error. As you can see in the code, both attributes provide a

way to tailor the behavior of the foreign key relationship by supplying

additional parameters. The manual includes very detailed information for

both attributes.

�One-to-Many Association

As code-first developers, the premise that “a user owns several posts” is

basically implemented by the use of a TList as in the following code.

A new read-only property (Posts) is created to hold this list.

[Entity]

[Table('User')]

[Id('FID', TIdGenerator.SmartGuid)]

TUser = class

private

Chapter 2 TMS Aurelius

52

 ...

 FPosts: TList<TPost>;

public

 property Posts: TList<TPost> read FPosts;

end;

In order to create this type of association in Aurelius, we have to use

the [ManyValuedAssociation] attribute. This attribute is used in two ways.

If there is already an association with the other endpoint (bidirectional),

you can pass the field or the property directly to the attribute as

demonstrated in the following code:

[Entity]

[Table('User')]

[Id('FID', TIdGenerator.Guid)]

TUser = class

private

 ...

 [ManyValuedAssociation([], CascadeTypeAll], 'FUser')]

 FPosts: TList<TPost>;

public

 ...

end;

This tells Aurelius that the corresponding field in TPost is FUser. In

other words, when Aurelius loads FPosts, it populates the list with those

TPost objects that have their fUser attribute the same as the identifier FID

of the current instance of TUser.

In the case where a class does not have a defined association, the same

result can be achieved by supplying the [ForeignJoinColumn] attribute

immediately after [ManyValuedAssociation]. More information and

examples appear in the manual, but it seems that this attribute exists to

cover some corner-case situations.

Chapter 2 TMS Aurelius

53

�One-to-One Association

Aurelius does not provide a special attribute to manage one-to-one

associations. This can be resolved if you see one-to-one association as

one-to-many and filter the retrieval of the data to provide one and only

result. To demonstrate this, let us assume that the user in our blog site can

create one and only one post. The next snippet shows how we would create

a one-to-one relationship:

[Entity]

[Table('User')]

[Id('FID', TIdGenerator.Guid)]

TUser = class

private

 ...

 [ManyValuedAssociation([], CascadeTypeAll], 'FUser')]

 fPosts: TList<TPost>;

 function getPost: TPost;

 procedure setPost (const aPost: TPost);

public

 ...

 property Post: TPost read getPost write setPost;

end;

...

function TUser.getPost: TPost;

begin

 if FPosts.Value.Count > 0 then

 result := FPosts.Value[0]

 else

 result := nil;

end;

Chapter 2 TMS Aurelius

54

procedure TUser.setPost (const aPost: TPost);

begin

 if FPosts.Value.Count = 0 then

 FPosts.Add(Value)

 else

 FPosts[0] := Value;

end;

�Lazy Loading

All the previous examples are designed in such a way that when a Post is

retrieved by Aurelius, the User property will get the object with the user

at the same time. Similarly, when a User is loaded, the Posts property

(TList) will be created and loaded with content. This is the default (eager)

loading.

Although in our examples the footprint of such approach is subtle, in

full-scale applications with complex databases, it will load unnecessary

content stretching the available resources. The behavior of the properties

can be altered to allow loading of valid content only when they are

accessed (lazy loading).

Lazy loading requires a virtual proxy, a mechanism that shows the

same properties as the underlying entity but controls when the loading of

the actual content is done. Aurelius provides a generic record Proxy<T> for

lazy loading.

Let’s make the User property in TPost a lazy loading property. We need

to use the Proxy<TUser> record. Now, we are not able to access the TUser

directly, but we need to use Proxy’s properties (Value). As a last step, we

need to inform the [Association] property that the relationship behaves

in a lazy manner. The following code shows the changes in bold:

Chapter 2 TMS Aurelius

55

uses
...,
Aurelius.Types.Proxy;

...

[Entity]
[Table('Post')]
[Id('FID', TIdGenerator.Guid)]
TPost = class
private
...
[Association([TAssociationProp.Lazy],
CascadeTypeAll - [TCascadeType.Remove])]
[JoinColumn('User', [], 'ID')]
FUser: Proxy<TUser>;
function getUser: TUser;
procedure setUser(const Value: TUser);
public
...
property User: TUser read getUser write setUser;

end;

...

function TPost.getUser: TUser;
begin
result := FUser.Value;
end;

procedure TPost.setUser(const Value: TUser);
begin
FUser.Value := Value;
end;

...

Next, we would like to change the loading behavior of Posts in TUser

entity. This time, the property is of TList type. Proxy<T> record can be

used in this case as well with a small caveat; in addition to the TPost

Chapter 2 TMS Aurelius

56

objects, we need to manually instantiate and destroy the corresponding

TList; otherwise an access violation will be raised the moment we try to

retrieve the content of Posts. Aurelius provides some methods for this

purpose as shown in the following code:

[Entity]
[Table('User')]
[Id('FID', TIdGenerator.Guid)]
TUser = class
private
...
[ManyValuedAssociation([TAssociationProp.Lazy],
[TCascadeType.SaveUpdate, TCascadeType.Merge], 'FUser')]
FPosts: Proxy<TList<TPost>>;
function getPosts: TList<TPost>;

public
constructor Create;
destructor Destroy; override;
...
property Posts: TList<TPost> read getPosts;

end;

...

constructor TUser.Create;
begin
inherited;
FPosts.SetInitialValue(TList<TPost>.Create);

end;

destructor TUser.Destroy;
begin
FPosts.DestroyValue;
inherited;

end;

function TUser.getPosts: TList<TPost>;
begin
result := FPosts.Value;

end;

...

Chapter 2 TMS Aurelius

57

�Object Manager (Container)
Aurelius implements the concept of the entity container by providing an

Object Manager (TObjectManager). The object manager comes with all the

required functionality to manipulate the underlying database. It operates

on entities (objects) loaded from the database and allows the developer

to save, update, and load them and perform queries in order to retrieve

results. When the state of an entity changes, the object manager makes

sure that the database is updated accordingly. Because the object manager

holds a state of entities in memory, it is capable of managing the lifetime

of the entity objects. Entities are instantiated and destroyed by the object

manager automatically.

The object manager is designed to provide a lightweight buffer between

developer and the database in use. It is meant to be a short-lived object.

Very often, this point confuses newcomers to Aurelius. You instantiate

an object manager every time you want to do a specific database-related

operation like finding records or retrieving records under specific criteria.

Once this operation is completed, the object manager should be destroyed.

This means that keeping an object manager alive for the lifetime of an

application is not a good use of the manager architecture and capabilities.

Typically, object manager objects are treated in try-except or try-

finally blocks because the manager hits the database, and this may result

to errors due to corrupted files, unavailable database servers, or other

unpredictable factors.

Chapter 2 TMS Aurelius

58

uses
...,
Aurelius.Engine.ObjectManager;

...

var
...
objManager: TObjectManager;

begin

objManager:=TObjectManager.Create(fConnection);
try

... // Entity-related operations
finally

objManager.Free;
end;
...

end;

IDBConnection

This code snippet demonstrates the typical use of object managers.

As you can see, we have to free the object explicitly. It is obvious that the

object manager could be implemented as an interface to save the manual

lifetime management, but instead it is provided as a typical class. This can

be inconvenient as it generates lots of boilerplate code. In the following

chapter, when we start writing code for our example application, we will

see how we can do this automatically.

�Criteria
The object manager provides a way to execute queries in order to retrieve

results from the database. The queries are constructed by putting criteria

together that represent the query you want to execute.

Chapter 2 TMS Aurelius

59

The simplest way to use the criteria is to take advantage of the Find<T>

method in object managers. Find uses generics to determine the entity the

query will return. For example, if you want to retrieve the list of posts, you

can use the following code:

A call to Find<TPost>.List always creates a new TObjectList even if

the query itself returns nothing. You can be confident that you always have

a valid instance of postsList after such call. Consequently, you need to

free the instance manually; otherwise it will lead to memory leaks.

Another point to note is the type of list the object manager returns. In

the preceding example, I used a TObjectList, but you can equally use a

TList. There is no real difference.

The query in the code fetches all the posts from the database. This

is a very basic operation, but you usually want to retrieve entities that

meet some criteria. In order to achieve this, you can use Aurelius’ fluent

interface and provide the constraints you need. As an example, let’s

assume we need to retrieve all the posts that were created today. There is

Chapter 2 TMS Aurelius

60

a number of ways to do this in Aurelius, but I find the use of Linq language

extremely simple. In the following example, I use the Add method but you

can also use the Where statement. They are equivalent.

uses

 ...,

 System.SysUtils,

 Aurelius.Criteria.Linq;

...

begin

 ...

 try

 ...

 postsList:=objManager.Find<TPost>

 .Add(Linq['DateTime'] = Now)

 .List;

 ...

 postsList.Free;

 finally

 ...

 end;

 ...

end;

As you can observe in the code, Aurelius allows the use of relational

operators as part of the criteria statements. It supports a range of

operations including string manipulation and the ability to directly use

SQL statements. The official technical manual provides more details on

this topic.

Chapter 2 TMS Aurelius

61

One very interesting consequence of the fluent interface is the ability

to drill deep into properties of entities that represent associations. TPost

holds a reference to the owner (TUser). This represents an association

in ORM terms. If we want to expand the preceding query and extract the

posts for which the user’s name is John, we have to add the following lines:

...

postsList:=objManager.Find<TPost>

 .Add(Linq['DateTime'] = Now)

 .CreateAlias('User','u')

 .Add(Linq['u.Name'] = 'John')

 .List;

...

What we did is to create an alias to the property of the entity class that

represents the association. We assigned the letter u to the property User,

but this is an arbitrary choice; I can use any string for alias including the

string user. The important point here is that we need to create an alias

to get access to the properties of the associated entity. From this point

onward, we can create any criteria we need and refer back to the properties

of the association by using the u. connotation. For completion, creating

aliases is not the only way to access associations; SubCriteria can also

be used but I find aliases much more efficient purely because it generates

clear statements in the code, and I can follow the logic of the criteria very

easily. But if you prefer SubCriteria, there is no real reason not to use it.

Note  Whenever you want to access an association in an entity
object, you should always create an alias or subcriteria. Otherwise,
Aurelius will throw an error as it will try to locate a field by that name.
In the following code, Aurelius will attempt to locate the User.Name
field, which will lead to an error:

Chapter 2 TMS Aurelius

62

...
postsList:=objManager.Find<TPost>
 .Add(Linq['DateTime'] = Now)
 .Add(Linq['User.Name'] = 'John')
 .List;
...

�Projections
Projections are also provided by the object manager as they are basically

extensions to the criteria. Generally speaking, we refer to projections when

we want to retrieve specific values either directly from a list of entities or as

a result of calculations and grouping. For all other cases, we refer to criteria.

We use Select to create a projection. Select can manage a list of

projections via TProjections.ProjectionList, and there are a number of

functions that can be used with it. Please refer to the official manual for the

most up-to-date list of the functions.

Because projections are designed to retrieve values, it follows that they

do not return lists of entities but rather lists of values. In Aurelius, each

projection result is held in a TCriteriaResult object.

Building on our example, let’s find out how many posts exist in the

database.

uses

 ...,

 Aurelius.Criteria.Base,

 Aurelius.Criteria.Projections;

...

Chapter 2 TMS Aurelius

63

var

 ...

 projResults: TObjectList<TCriteriaResult>;

 projRes: TCriteriaResult;

begin

 projResults:=objManager.Find<TPost>

 .Select(TProjections.ProjectionList

 .Add(TProjections.Count('ID'))

)

 .ListValues;

 for projRes in projResults do

 Writeln(projRes.Values[0]);

 projResults.Free;

end;

In the code, I created a projection list. Because I have only one

projection, this is not strictly necessary. I could have just written it in one

line as follows using UniqueValue because I know that I expect only one

value from the projection:

...

 .Select(TProjections.Count('ID')))

 .UniqueValue;

...

I personally prefer to create lists even when I have only one projection

because it gives me a standardized way of building projections and also

allows me to add another condition to the list very easily. In terms of

accessing the projection results, you need to iterate through the list of

TCriteriaResult in order to retrieve the desired value. Additionally, we

need to manually free the instance of the result list.

Chapter 2 TMS Aurelius

64

A call to ListValues always creates an instance of

TObjectList<TCriteriaResult> even if the content is empty. This means

that we need to check what the list holds every time we access the content.

The following code adds the check for this situation:

...

for projRes in projResults do

 if projRes.Values[0] <> Null then

 Writeln(projRes.Values[0]);

...

In the case of UniqueValue, the call can return nil if there is no relevant

content. In this case, we need to do a separate check using Assigned.

So far, we have the total number of posts. Now, we would like to know

the number of posts per month. In order to get this, we can group the

counts of posts based on the month of the field DateTime. This is easy in

Aurelius as the code that follows shows:

begin

 projResults:=objManager.Find<TPost>

 .Select(TProjections.ProjectionList

 .Add(TProjections.Count('ID').As_('Num'))

 �.Add(TProjections.Month('DateTime').As_('Month'))

 .Add(TProjections.Group(

 TProjections.Month('DateTime')

))

)

 .ListValues;

 ...

end;

Chapter 2 TMS Aurelius

65

There are two steps here. First, I add a projection to retrieve the month

of the posts using the Month projection method. Then, I group the results

based on the month component of the DateTime field of TPost.

This code will populate projResults with TCriteriaResult objects.

Each TCriteriaResult will provide values for the two projections (count of

posts and month of posts) we defined. I can get the values using a simple

for loop.

...

 for projRes in projResults do

 begin

 �if (projRes.Values[0] <> Null) and (projRes.Values[1] <>

Null) then

 Writeln('Num: '+VarToStr(projRes.Values[0]) +

 ' | Month: '+VarToStr(projRes.Values[1]));

 end;

...

The indices correspond to the order I added the projections when I

built the statement. Note that in this case, I had to use VarToStr to build

the string in the Writeln statement. Many times, keeping track of the order

of the projection values is not convenient especially if you need to add

and remove projections during testing phases. A better and more efficient

way to manage the values in TCriteriaResult is to name the values you

retrieve. This can easily be done using the .As_ method as demonstrated

in the preceding code. Once you assign the names, you can access them in

a more readable way.

...

 for projRes in projResults do

 begin

 if (projRes.Values['Num'] <> Null) and

 (projRes.Values['Month'] <> Null) then

Chapter 2 TMS Aurelius

66

 Writeln('Num: '+VarToStr(projRes.Values['Num']) +

 ' | Month: '+VarToStr(projRes.Values['Month']));

 end;

...

One last point about the projection code: you may notice that in

order to group the result by the month of the DateTime field, I call again

TProjections.Month method even after I assign the name Month to the

same projection in the preceding two lines. Thus, it looks natural to write

...

 .Add(TProjections.Group('Month'))

...

Unfortunately, this approach does not work and for good reason.

The value Month is known to Aurelius only after the list of projections

has been executed. Therefore, Aurelius cannot resolve it as part of the

projection itself.

On a more general note, Aurelius provides an implementation of the

Linq language. This simplifies the code in a way as it offers code that is

more compact. For example, instead of writing

...

 .Add(TProjections.Count('ID').As_('Num'))

 .Add(TProjections.Month('DateTime').As_('Month'))

...

I could use the following statements:

...

 .Add(Linq['Id'].As_('Num'))

 .Add(Linq['DateTime'].Month.As_('Month'))

...

Chapter 2 TMS Aurelius

67

�Automapping
The attributes to map a class to an entity provide great degree of flexibility

to the developer when it comes to defining how Aurelius should treat

the underlying tables, columns, and associations in the database. One

drawback to this is that it may turn to a time-consuming process especially

when the workflow of work puts the database first. For such cases, but,

also, to provide simplicity of use, Aurelius introduces the [Automapping]

attribute. Decorating a class with the [Entity] and [Automapping]

attributes removes the need to visit every property and association in the

class and provide explicit instructions about how Aurelius should treat

each field and property. The automapping procedure follows a number of

rules and conventions that can be found in the official documentation.

There is a small catch with automapping. When Aurelius identifies

fields to map, it checks the name and if it starts with capital F (a commonly

followed convention), it extracts the letter and names the table column

after the remainder string. For example, if we have a field named FSurname,

Aurelius will map it to the Surname column in the database table. In all

other cases, Aurelius will add the F_ prefix. Thus, a field named fSurname

will become F_fSurname.

If you still find the procedure of adding the [Automapping] attribute

to each entity overwhelming or time-consuming in a large database

schema, you can change Aurelius global behavior by changing the global

configuration AutoMappingMode property to Full from the default ByClass

value. Full automapping mode will automatically map any entity that is

registered to Aurelius.

uses

 ...,

 Aurelius.Global.Config;

var

 ...,

 config: TGlobalConfigs;

Chapter 2 TMS Aurelius

68

begin

 ...

 config:=TGlobalConfigs.GetInstance;

 config.AutoMappingMode:=TAutomappingMode.Full;

 ...

end

If you want to achieve the opposite result (exclude properties and fields

from automapping), you can decorate them with the [Transient] attribute.

�Summary
This chapter presents TMS Aurelius. Step by step, we start by looking at

the different installation options and then move to explore how ORM

features as provided by the framework. This introduction sets the scene

to show how Aurelius can be used in a real-life application. The next

chapter presents the example application that we are going to use to put

Aurelius at work.

�References
Embarcadero, n.d. Attributes (RTTI). [Online] Available at:

http://docwiki.embarcadero.com/RADStudio/Rio/en/Attributes_(RTTI)

[Accessed 04 03 2019].

Hodges, N., 2014. Coding in Delphi. s.l.:Nepeta Enterprises.

Chapter 2 TMS Aurelius

http://docwiki.embarcadero.com/RADStudio/Rio/en/Attributes_

69© John Kouraklis 2019
J. Kouraklis, Introducing Delphi ORM, https://doi.org/10.1007/978-1-4842-5013-6_3

CHAPTER 3

Call Center
Application
We are now ready to make our work more practical. We have seen different

approaches in using ORM frameworks, and we have a good understanding

of the fundamentals of Aurelius. In this chapter, we work on setting up the

building blocks that will allow us to see Aurelius in practice.

�The Application
For the purpose of this book, we are going to develop the back end and the

code of the database layer of an application that manages data from a call

center. The data set and the dashboard come from Trump Excel (Bansal,

2019). Sumit Bansal has created a great site on Excel and offers data from

a call center free to use. I have modified the original data file slightly by

adding some columns that are more suitable for our examples.

The call center provides support to customers of a business that has

five departments (air conditioner, fridge, television, toaster, washing

machine), and the center employs eight agents who handle the calls

(Becky, Dan, Diane, Greg, Jim, Joe, Martha, Stewart).

70

The dataset covers the operations of the center for the duration of a

month (January 2016). The workflow in the center is as follows:

	 1.	 A customer calls the center. The IT system assigns a

Call ID to the call and records the date (Date) and the

time the call reaches the center (Queue Enter Time).

	 2.	 The call stays in a waiting queue until an agent is

available. When an agent is released, the call is

transferred to the Agent and the system records the

time (Queue Exit Time) of transfer. At the same

time, the call is flagged as Answered.

	 3.	 The agent deals with the call for as long as it

is necessary (Call Duration) and records the

Department that the call is relevant to.

	 4.	 At this stage, the call can be either Resolved or not.

	 5.	 In the end, the caller rates the agent in a satisfaction

scale from 1 to 5 (Satisfaction Rating).

	 6.	 Sometimes, a call may be transferred to an agent,

but for some reasons (technical or others) the call

drops. In this case, the call is logged as both not

Answered and not Resolved.

You can find the data in the CallCentreData.csv comma-separated

values (CSV) file in the Misc folder. It comes with the code of this book.

Figure 3-1 shows what the file looks like, and the first row shows the

headers as indicated in the preceding bullet points.

Figure 3-1.  Excerpt from the log file with the call center data set

Chapter 3 Call Center Application

71

The application has three panels: the first one holds the Dashboard,

the second one the Department management, and the last one the Agent

management.

�Dashboard
The Dashboard page can be seen in Figure 3-2. It has a sidebar where the

user can filter the results by weeks in the month, and it includes a number

of panels.

•	 A panel with the overall satisfaction score, the total

calls for the period of one month, the average answer

speed (sec), the abandon rate (%), and the calls per

minute

•	 A list with the statistics about the agents: total calls,

answered calls, average speed of answer(sec), call

resolution (%), and call resolution trend

•	 A chart with the call abandon rate by department

•	 A chart with the satisfaction score per agent

•	 A panel with the service-level agreement limits

regarding the number of calls answered in less than 180

seconds and the number of calls with satisfaction score

of less than 3

Chapter 3 Call Center Application

72

�Departments
Figure 3-3 shows the tab with the departments. It consists of a grid at the top

with the stored departments in the database. In the grid you can, also, see the

ID (primary key) for demonstration purposes. At the bottom of this grid, there

are three buttons that allow the user to add, edit, and delete departments.

Figure 3-2.  The Dashboard tab

Figure 3-3.  The Departments tab

Chapter 3 Call Center Application

73

Each one of these actions shows a window like the one in Figure 3-4.

The labels and the buttons are self-explanatory.

There is another grid that fills in the rest of the form. When a

department is selected in the top grid, the user can see the calls filtered by

the selected department.

�Agents
The management of the agents follows the same logic as the department

management (Figure 3-5). In terms of design and functionality, they

remain the same.

Figure 3-4.  The form allows the addition and editing of the
departments

Chapter 3 Call Center Application

74

�The Interface
It’s time we build our application. We start with the user interface by

creating the forms we need, as in the preceding figures. The forms include

a series of grids, layouts, tabs, and buttons. I am not going to go through

the details of how to build the GUI because it will take unnecessary space

and will distract us from the main purpose of this book. You can find a

skeleton project that we will use in this and the next chapters in the code

that accompanies this book. The project is named CallCentreSkeleton.

In order to make it easier to follow the code in the rest of the

book, there are a number of points to raise regarding the design of

CallCentreSkeleton:

•	 The dashboard has a sidebar that filters the data per

week. We will update the data in updateDashboard,

which is called in the OnChange event of the

TabControl.

•	 We will add update methods for the agents and the

departments in later chapters.

Figure 3-5.  The Agents tab

Chapter 3 Call Center Application

75

•	 There is a setupGUI method that initializes the GUI the

first time the application runs.

The skeleton project is runnable. Open the project and just run

it. In the main form (TFormMain in MainForm.pas), you can click the

buttons in the sidebar, change the tabs, and click the “Add Agent” or “Add

Department” buttons in the corresponding tabs. You should be able to see

a separate form (TFormEntity in EntityForm.pas) in the project. We will

start adding up new code shortly to the project, so you may wish to save it

under a new name if you would like to keep the skeleton project intact.

Note I n our code, we will not adhere to any specific design pattern
such as MVP/MVC/MVVM or any other similar approaches. Our
priority is to write code that demonstrates Aurelius features rather
than respect the principles of any design styles.

�Entities
The model behind the call center suggests three classes: one for the

departments (TDepartment), one for the agents (TAgent), and one for

the calls (TCall). For simplicity, both TDepartment and TAgent have two

simple fields:

•	 ID: A property that holds a GUID as primary key

•	 Description: A property that holds the name of the

agent or the name of the department

Let’s go ahead and create the entities. You can find the complete

project in the folder CallCentre – Without Database Session in the code

of the book.

Chapter 3 Call Center Application

76

	 1.	 Open the CallCentreSkeleton project or create

a copy.

	 2.	 Add a new unit and save it under the name

Entities.pas. This unit will hold all the attribute

mapping of our classes.

	 3.	 In Entities.pas, add the following two classes:

uses

 SysUtils,

 Aurelius.Mapping.Attributes,

 Aurelius.Types.Nullable,

 Aurelius.Types.Proxy;

type

 [Entity]

 [Table('Agent')]

 [Id('FID', TIdGenerator.Guid)]

 TAgent = class

 private

 [Column('ID', [TColumnProp.Required])]

 FID: TGuid;

 [Column('Description', [TColumnProp.Required], 255)]

 FDescription: string;

 [Column('Photo', [TColumnProp.Lazy])]

 FPhoto: TBlob;

 public

 property ID: TGuid read FID write FID;

 �property Description: string read FDescription write

FDescription;

 property Photo: TBlob read FPhoto write FPhoto;

 end;

Chapter 3 Call Center Application

77

 [Entity]

 [Table('Department')]

 [Id('FID', TIdGenerator.Guid)]

 TDepartment = class

 private

 [Column('ID', [TColumnProp.Required])]

 FID: TGuid;

 [Column('Description', [TColumnProp.Required], 255)]

 FDescription: string;

 public

 property ID: TGuid read FID write FID;

 �property Description: string read FDescription write

FDescription;

 end;

I decorated the two classes with the very basic

attributes to let Aurelius know that I treat

TDepartment and TAgent as entities. I have also

indicated that FID private field works as the primary

key at the database level, uses Smart GUID engine,

and is linked to column ID. Similarly, I have

introduced the Description property to be of string

type. Then, I linked it back to the relevant field,

which I made compulsory at database level using

the TColumnProp.Required parameter and set the

length to an arbitrary value. The mapping of these

two classes is straightforward and in line with what

we discussed in Chapter 2.

Chapter 3 Call Center Application

78

	 4.	 The TCall class is more complicated as it holds

more fields both compulsory and nullable; however,

the principles to provide information to Aurelius are

as before. In the same unit, add the following class:

...

type

 ...

 [Entity]

 [Table('Call')]

 [Id('FID', TIdGenerator.SmartGuid)]

 TCall = class

 private

 [Column('ID', [TColumnProp.Required])]

 FID: TGuid;

 [Column('Date', [TColumnProp.Required])]

 FDate: TDateTime;

 [Column('QueueEntryTime', [TColumnProp.Required])]

 FQueueEntryTime: TDateTime;

 [Column('QueueExitTime', [])]

 FQueueExitTime: Nullable<TDateTime>;

 [Column('ServiceStartTime', [])]

 FServiceStartTime: Nullable<TDateTime>;

 [Column('ServiceEndTime', [])]

 FServiceEndTime: Nullable<TDateTime>;

 [Column('Answered', [TColumnProp.Required])]

 FAnswered: Integer;

 [Column('Resolved', [TColumnProp.Required])]

 FResolved: Integer;

Chapter 3 Call Center Application

79

 [Column('SatisfactionRate', [])]

 FSatisfactionRate: Nullable<Integer>;

 [Column('CallID', [TColumnProp.Required], 50)]

 FCallID: string;

 public

 property ID: TGuid read FID write FID;

 property Date: TDateTime read FDate write FDate;

 �property QueueEntryTime: TDateTime read FQueueEntryTime

write FQueueEntryTime;

 �property QueueExitTime: Nullable<TDateTime> read

FQueueExitTime write FQueueExitTime;

 �property ServiceStartTime: Nullable<TDateTime> read

FServiceStartTime write FServiceStartTime;

 �property ServiceEndTime: Nullable<TDateTime> read

FServiceEndTime write FServiceEndTime;

 property Answered: Integer read FAnswered write FAnswered;

 property Resolved: Integer read FResolved write FResolved;

 �property SatisfactionRate: Nullable<Integer> read

FSatisfactionRate write FSatisfactionRate;

 property CallID: string read FCallID write FCallID;

 end;

The initial design of our application requires the

ability to indicate that a specific call is assigned to a

particular agent and refers to a specific department.

At class level, these two requirements are resolved

by introducing two properties in TCall holding a

TAgent and TDepartment classes, respectively.

Chapter 3 Call Center Application

80

type

 ...

 TCall = class

 private

 ...

 �[Association([TAssociationProp.Lazy], CascadeTypeAll -

[TCascadeType.Remove])]

 [JoinColumn('AgentID', [], 'ID')]

 FAgentID: Proxy<TAgent>;

 �[Association([TAssociationProp.Lazy], CascadeTypeAll -

[TCascadeType.Remove])]

 [JoinColumn('DepartmentID', [], 'ID')]

 FDepartmentID: Proxy<TDepartment>;

 function GetAgentID: TAgent;

 procedure SetAgentID(const Value: TAgent);

 function GetDepartmentID: TDepartment;

 procedure SetDepartmentID(const Value: TDepartment);

 public

 ...

 property AgentID: TAgent read GetAgentID write SetAgentID;

 �property DepartmentID: TDepartment read GetDepartmentID

write SetDepartmentID;

 end;

...

function TCall.GetAgentID: TAgent;

begin

 result := FAgentID.Value;

end;

Chapter 3 Call Center Application

81

procedure TCall.SetAgentID(const Value: TAgent);

begin

 FAgentID.Value := Value;

end;

function TCall.GetDepartmentID: TDepartment;

begin

 result := FDepartmentID.Value;

end;

procedure TCall.SetDepartmentID(const Value: TDepartment);

begin

 FDepartmentID.Value := Value;

end;

The corresponding private fields are where we define

how Aurelius should manage them at database level.

The two properties AgentID and DepartmentID are

lazy loaded as the TAssociationProp.Lazy parameter

is used.

The code, also, dictates what happens to the

associated agent or department when a call

is updated or deleted. The CascadeTypeAll -

[TCascadeType.Remove] (or the equivalent

CascadeTypeAllButRemove) parameter tells Aurelius

that, in any other actions than removal (deletion) of a

call, the department or the agent is updated. In other

words, if the user deletes a call from the database, the

linked agent and department records will be intact.

Lastly, the getter and setter methods for AgentID and

DepartmentID are straightforward. As discussed in

the previous chapter, we have to use this approach,

as the corresponding fields are declared as proxies.

Chapter 3 Call Center Application

82

The preceding modifications allow us to link

calls to agents and departments. It would be very

convenient if we achieve the opposite as well. Given

an agent (or a department), we would like to be able

to drill down to all the calls they are associated with.

Since Aurelius is aware of all the entities we need, we

can reverse the associations by mapping properties

using the ManyValuedAssociation attribute:

uses

 ...,

 Generics.Collections;

...

type

 ...

 TAgent = class

 private

 ...

 �[ManyValuedAssociation([TAssociationProp.Lazy],

CascadeTypeAll, 'FAgentID')]

 FCallList: Proxy<TList<TCall>>;

 function GetCallList: TList<TCall>;

 public

 ...

 constructor Create;

 destructor Destroy; override;

 property CallList: TList<TCall> read GetCallList;

 end;

 TDepartment = class

 private

 ...

Chapter 3 Call Center Application

83

 �[ManyValuedAssociation([TAssociationProp.Lazy],

CascadeTypeAll, 'FDepartmentID')]

 FCallList: Proxy<TList<TCall>>;

 function GetCallList: TList<TCall>;

 public

 ...

 constructor Create;

 destructor Destroy; override;

 property CallList: TList<TCall> read GetCallList;

 end;

...

constructor TAgent.Create;

begin

 inherited;

 FCallList.SetInitialValue(TList<TCall>.Create);

end;

destructor TAgent.Destroy;

begin

 FCallList.DestroyValue;

 inherited;

end;

function TAgent.GetCallList: TList<TCall>;

begin

 result := FCallList.Value;

end;

constructor TDepartment.Create;

begin

 inherited;

 FCallList.SetInitialValue(TList<TCall>.Create);

end;

Chapter 3 Call Center Application

84

destructor TDepartment.Destroy;

begin

 FCallList.DestroyValue;

 inherited;

end;

function TDepartment.GetCallList: TList<TCall>;

begin

 result := FCallList.Value;

end;

We define CallList as a typical TList<T>

property, and we pass it to Aurelius using the

ManyValuedAssociation attribute. The field defines

a lazy-loaded association which updates and merges

any changes with the associated object. Lastly, the

fields are nongeneric (TList) and proxified (Proxy);

we need to use SetInitialValue and DestroyValue

methods from Aurelius to manage their lifetime.

We need to make sure that the compiler includes all

the classes in the final binary file. This is easily done

by adding the following code in the initialization

section of Entities.pas:

unit Entities;

interface

...

implementation

...

initialization

 RegisterEntity(TAgent);

Chapter 3 Call Center Application

85

 RegisterEntity(TDepartment);

 RegisterEntity(TCall) ;

end.

�Database Connection
The next step is to configure Aurelius to connect to an actual database.

Based on what we discussed in Chapter 2, there are a number of ways

this can be done. We will create a typical SQLite database and, since

Aurelius provides a native driver to this database, we use the available

connection wizard:

	 1.	 Run the wizard in File ➤ Other… ➤ TMS Business ➤

TMS Aurelius DB Connection.

	 2.	 In the wizard, select Native direct connection (Driver

Mode) and SQLite in the Driver pop-up menu.

	 3.	 Click Finish and allow Aurelius to add a new

Data Module in the project under the name

ConnectionModule.pas.

	 4.	 Open the module in the design editor, right-

click AureliusConnection1 component and, in

Connection Settings, add the database.db as the

name of the database file. Then, close the form with

the settings.

	 5.	 The ConnectionModule unit exposes a global

variable named SQLiteConnection which provides

reference to Aurelius connection. Although having

a global variable is not considered the best way to

write code, in our case it is sufficient.

Chapter 3 Call Center Application

86

	 6.	 In MainForm.pas, add the following code:

We first create an instance of the connection module. This provides

access to the IDBConnection interface which is required every time we

want to do operations on the database. Then, we define a local variable of

TDatabaseManager which is used to update the database. You can notice

that in order to create the database manager, I had to pass an instance

of IDBConnection. This is supplied by the ConnectionModule as it is

demonstrated in the preceding code.

In the code, I call dbManager.UpdateDatabase as the first thing that

the application should do. UpdateDatabase retrieves the schema from

the database and compares it with the current entity structure (virtual

database objects) as defined by the mapping attributes. Then, it executes

SQL statements to synchronize the database structure with the virtual

database objects.

Chapter 3 Call Center Application

87

An alternative way to update the database schema is to combine

the preceding code to a direct call to TDatabaseManager.Update class

procedure as follows:

...

 SQLiteConnection:=TSQLiteConnection.Create(self);

 TDatabaseManager.Update(SQLiteConnection.CreateConnection);

...

Note  UpdateDatabase is not destructive. This means that if you
delete some properties from an entity, Aurelius will not delete the
corresponding columns in the database. This is something you need
to do manually via SQL scripts.

The official manual indicates that the database manager provides

another procedure that allows the creation and update of the database:

BuildDatabase. This method is considered deprecated but still can be

in use in code. The end result is the same as it updates the database

schema as well; however, there is a slight difference. BuildDatabase

does not perform reverse engineering of the database schema and any

comparisons with the virtual database object; it, rather, starts executing

the SQL statements based on the current state of code in the entities. If

your database is really huge with hundreds of tables and columns, this

approach may save you a few second which, in reality, may not even be

noticeable. In any case, the recommended and modern way to update the

database is to use UpdateDatabase.

�IDatabaseSession
The database manager and, similarly, the object manager are declared

as typical objects in Aurelius. This means that every time we use them,

we naturally instantiate the objects and, eventually, we need to free

Chapter 3 Call Center Application

88

them manually. This may become a source of boilerplate code especially

if one considers the frequent usage of the object manager. In order to

simplify this process, we will hide all those objects inside an interface

(IDatabaseSession), and then we will use it as an adapter to pass the

lifetime management of both objects to the interface. The code can be

seen in the CallCentre – With Database Session folder.

	 1.	 Add a new unit in the project and save it under the

name Database.Session.Types.pas.

	 2.	 Then, add the following code:

unit Database.Session.Types;

interface

uses

 Aurelius.Engine.DatabaseManager,

 Aurelius.Engine.ObjectManager;

type

 IDatabaseSession = interface

 ['{7CA1B4A1-F339-47EE-AE17-9436853A618E}']

 function databaseManager: TDatabaseManager;

 function objectManager: TObjectManager;

 end;

implementation

end.

	 3.	 Add a new unit in the project as Database.

Session.pas.

Chapter 3 Call Center Application

89

	 4.	 Add the next code snippet:

unit Database.Session;

interface

uses

 Database.Session.Types,

 Aurelius.Engine.DatabaseManager,

 Aurelius.Drivers.Interfaces,

 Aurelius.Engine.ObjectManager;

type

 TDatabaseSession = class (TInterfacedObject, IDatabaseSession)

 private

 fConnection: IDBConnection;

 fDatabaseManager: TDatabaseManager;

 fObjectManager: TObjectManager;

 public

 constructor Create(const aConnection: IDBConnection);

 destructor Destroy; override;

{$REGION 'Interface'}

 function databaseManager: TDatabaseManager;

 function objectManager: TObjectManager;

{$ENDREGION}

 end;

implementation

constructor TDatabaseSession.Create(const aConnection:

IDBConnection);

begin

 Assert(aConnection <> nil);

Chapter 3 Call Center Application

90

 inherited Create;

 fConnection:=aConnection;

end;

function TDatabaseSession.databaseManager: TDatabaseManager;

begin

 if not Assigned(fDatabaseManager) then

 fDatabaseManager:=TDatabaseManager.Create(fConnection);

 Result:=fDatabaseManager;

end;

destructor TDatabaseSession.Destroy;

begin

 fDatabaseManager.Free;

 fObjectManager.Free;

 inherited;

end;

function TDatabaseSession.objectManager: TObjectManager;

begin

 if not Assigned(fObjectManager) then

 fObjectManager:=TObjectManager.Create(fConnection);

 Result:=fObjectManager;

end;

end.

There are a number of things happening in this unit.

First, in Create, we check if the passed IDBConnection

is valid. This is not relevant to Aurelius, but it is good

practice to always check the injected parameters. Then,

we store the connection for future use. The functions

that return both the database manager and the object

manager check if there is already a valid instance of the

Chapter 3 Call Center Application

91

relative manager stored in the object. If this is the case,

then they return the instance; otherwise, they create a

new one.

	 5.	 In MainForm.pas, under the FormCreate event, we

can now use the IDatabaseSession interface:

uses

 ...,

 Database.Session.Types,

 Database.Session;

...

procedure TFormMain.FormCreate(Sender: TObject);

var

 dbSession: IDatabaseSession;

begin

 SQLiteConnection:=TSQLiteConnection.Create(self);

 �dbSession:=TDatabaseSession.Create(SQLiteConnection.

CreateConnection);

 dbSession.databaseManager.UpdateDatabase;

 setupGUI;

end;

This looks simpler and more efficient. We still need to pass the

IDBConnection to the constructor, and then we get access to the database

manager and the object manager via the functions as exposed by the

interface. In this instance, we do not need to free the objects.

If you are looking for more complete code, a try-except branch

should wrap the call to UpdateDatabase, but I do not include it in this code

and in the following examples purely for simplicity.

Chapter 3 Call Center Application

92

�Summary
In this chapter, we set up the background to explore Aurelius further. The

example application is introduced (CallCentre), and we defined the

entities and the database connection as per our design and requirements.

Furthermore, the IDatabaseSession interface is developed. In the next

chapter, we will start using this interface by executing simple tasks.

�Reference
Bansal, S., 2019. Trump Excel. [Online] Available at: https://trumpexcel.

com/call-center-performance-dashboard-excel/ [Accessed 01 04 2019].

Chapter 3 Call Center Application

https://trumpexcel.com/call-center-performance-dashboard-excel/
https://trumpexcel.com/call-center-performance-dashboard-excel/

93© John Kouraklis 2019
J. Kouraklis, Introducing Delphi ORM, https://doi.org/10.1007/978-1-4842-5013-6_4

CHAPTER 4

Basic Operations
The CallCentre application is in a state where it provides the necessary

GUI interaction to allow us to explore Aurelius’ features. In this chapter,

we investigate how we can manage basic database operations and, near

the end, we deal with managing a big number of transactions. The initial

project to start with is in the CallCentre – Without Utilities folder.

�Adding Entities
We have two entities to manage in our application: agents and

departments. Adding them is pretty straightforward.

	 1.	 Go to MainForm.pas, in the OnClick event of

btAddDepartment button.

	 2.	 Add the following code:

uses

 ...,

 Database.Session.Types,

 Database.Session,

 Entities;

...

94

procedure TFormMain.btAddDepartmentClick

(Sender: TObject);

var

 ...

 session: IDatabaseSession;

 department: TDepartment;

begin

 ...

 if form.ShowModal = mrOk then

 begin

 �session:=TDatabaseSession.Create(SQLiteConnection.

CreateConnection);

 department:=TDepartment.Create;

 department.Description:=Trim(form.edEntity.Text);

 try

 session.objectManager.Save(department);

 except

 �if not session.objectManager.IsAttached

(department) then

 department.Free;

 end;

 �// Here we need to update the list of departments

in the form

 end;

 ...

end;

	 3.	 Then, switch to the OnClick event of btAddAgent

button and add similar code to manage TAgent.

Chapter 4 Basic Operations

95

procedure TFormMain.btAddAgentClick(Sender: TObject);

var

 ...

 session: IDatabaseSession;

 agent: TAgent;

begin

 ...

 if form.ShowModal = mrOk then

 begin

 �session:=TDatabaseSession.Create(SQLiteConnection.

CreateConnection);

 agent:=TAgent.Create;

 agent.Description:=Trim(form.edEntity.Text);

 try

 session.objectManager.Save(agent);

 except

 �if not session.objectManager.IsAttached(agent)

then

 agent.Free;

 end;

 �// Here we need to update the list of agents in the

form

 end;

 ...

end;

We declare two variables: one for the database session (IDatabaseSession)

and one for the relevant entity (TDepartment/TAgent). Remember, we use

the IDatabaseSession interface to get access to the object manager. We

pass an IDBConnection to the database session constructor as retrieved by

the connection module, and we normally create an instance of the entity.

Chapter 4 Basic Operations

96

Then, we call Save, a method provided by the object manager to

convert our object to a persistent one in the database. Initially, when we

create a new instance of an entity, the ID field that represents the primary

key in the database has the default value (0 if it is an integer or an empty

GUID in our case).

Once the object is saved, this field is populated with the actual primary

key. Additionally, the object manager is now aware of the existence of this

entity in both the physical and virtual databases, and it is able to manage

the lifetime of the object by making sure that the instance is eventually

freed. Now, it works as the owner of the object.

However, in the case where something unpredictable happens while

the object manager is attempting to save the entity (e.g., bad I/O operation,

damaged network, or physical medium), an exception is generated. At this

stage, the object manager might not have the chance to get ownership of

the object depending on when the exception occurs. Consequently, the

object may not be freed by the object manager. We need to do this in code.

The code in the except part of the try-except structure demonstrates

exactly this step; using IsAttached, we check if the object manager owns

the object. If not, we free it manually.

�Listing Entities
Before we continue adding more entity operations in our code, it is better if

you are able to see the stored entries. We are going to add code to retrieve

the stored entries from our database.

	 1.	 In MainForm.pas, add two new procedures

in the private section of TFormMain named

updateDepartments and updateAgents.

Chapter 4 Basic Operations

97

	 2.	 Add the following code in the method:

type

 ...

 TFormMain = class(TForm)

 ...

 private

 ...

 procedure updateDepartments;

 procedure updateAgents;

 public

 ...

 end;

...

procedure TFormMain.updateDepartments;

var

 session: IDatabaseSession;

 departmentList: TList<TDepartment>;

 department: TDepartment;

begin

 sgDepartments.RowCount:=0;

 sgDepartmentDetails.RowCount:=0;

 �session:=TDatabaseSession.Create(SQLiteConnection.

CreateConnection);

 �departmentList:=session.ObjectManager.Find<TDepartment>

 .OrderBy('Description')

 .List;

 // A safer approach is to enclose the following lines in

 // BeginUpdate/EndUpdate and try/finally blocks

 // But we will keep things simple here

Chapter 4 Basic Operations

98

 for department in departmentList do

 begin

 sgDepartments.RowCount := sgDepartments.RowCount + 1;

 �sgDepartments.Cells[0, sgDepartments.RowCount - 1]:=

sgDepartments.RowCount.ToString;

 �sgDepartments.Cells[1, sgDepartments.RowCount - 1]:=

department.Description;

 �sgDepartments.Cells[2, sgDepartments.RowCount - 1]:=

GUIDToString(department.ID);

 end;

 departmentList.Free;

 btEditDepartment.Enabled:= sgDepartments.Selected>-1;

 btDeleteDepartment.Enabled:= sgDepartments.Selected>-1;

 �lbDepartmentDetailsNoEntries.Visible:=sgDepartment

Details.RowCount = 0;

end;

...

procedure TFormMain.updateAgents;

var

 session: IDatabaseSession;

 agentList: TList<TAgent>;

 agent: TAgent;

begin

 sgAgents.RowCount:=0;

 sgAgentDetails.RowCount:=0;

Chapter 4 Basic Operations

99

 �session:=TDatabaseSession.Create(SQLiteConnection.

CreateConnection);

 agentList:=session.ObjectManager.Find<TAgent>

 .OrderBy('Description')

 .List;

 for agent in agentList do

 begin

 sgAgents.RowCount := sgAgents.RowCount + 1;

 �sgAgents.Cells[0, sgAgents.RowCount - 1]:=

sgAgents.RowCount.ToString;

 �sgAgents.Cells[1, sgAgents.RowCount - 1]:= agent.

Description;

 �sgAgents.Cells[2, sgAgents.RowCount - 1]:=

GUIDToString

(agent.ID);

 end;

 agentList.Free;

 btEditAgent.Enabled:= sgAgents.Selected>-1;

 btDeleteAgent.Enabled:= sgAgents.Selected>-1;

 �lbAgentDetailsNoEntries.Visible:=sgAgentDetails.

RowCount = 0;

end;

In the code, we retrieve the list of entities without

any filtering. For this, we need again an instance

of the object manager, which we create as we have

done before. We then use the Find<T> method

to retrieve the entities and we order them by

Description. As you can see in the code snippet,

Aurelius’ fluent interface allows us to concatenate

Chapter 4 Basic Operations

100

methods (actions) in a way that generates a very

readable line of code. Eventually, the object

manager returns a list object of the entities.

It is worth mentioning that the object manager is

able to manage the lifetime of the entities in the list.

The list itself (departmentList/agentList) needs to

be freed explicitly. We are able to access the entities

in the list by simply iterating through the list the

usual way (for loop), and we access the properties

of the entities directly as we declared them non-

null in the class. As we will see later on, nullable

properties are treated slightly differently.

The approach we used is very typical. We created

the list, iterated through the items, and destroyed it.

Aurelius offers an alternative and more convenient

way to achieve the same result by implementing

database cursors. Cursors are interfaced objects;

therefore, the need to manually free is not present.

Moreover, we do not need to declare the agentList

at all.

...

for agent in .Find<TAgent>

 .OrderBy('Description')

 .Open do

begin

 // Populate the grid

end;

...

Chapter 4 Basic Operations

101

	 3.	 We now need to use the preceding methods in

the appropriate places (when the user adds a new

department or agents and when the user changes

the tab to the departments and agents).

...

procedure TFormMain.btAddDepartmentClick

(Sender: TObject);

...

begin

 ...

 if form.ShowModal = mrOk then

 begin

 ...

 try

 ...

 except

 ...

 end;

 updateDepartments;

 end;

 ...

end;

procedure TFormMain.btAddAgentClick(Sender: TObject);

...

begin

 ...

 if form.ShowModal = mrOk then

 begin

 ...

Chapter 4 Basic Operations

102

 try

 ...

 except

 ...

 end;

 updateAgents;

 end;

 ...

end;

procedure TFormMain.TabControl1Change(Sender: TObject);

begin

 ...

 if TabControl1.ActiveTab = tiAgents then

 updateAgents;

 if TabControl1.ActiveTab = tiDepartments then

 updateDepartments;

end;

�Editing (Updating) Entities
The editing of an entity requires three steps:

•	 To retrieve the entity in the object manager

•	 To make changes to the properties of the entity

•	 To update the entity in the database

Go to the OnClick events of btEditDepartment and btEditAgent

buttons and add the following code:

Chapter 4 Basic Operations

103

Chapter 4 Basic Operations

104

We use the object manager’s Find to retrieve the entity from the

database in the same way we used it when we retrieved the full list. The

difference now is that we need only one specific entity. Thus, we supply the

ID (primary key) with the call to the Find method. Naturally, the query will

now return a single entity which is managed by the object manager. Thus,

there is no need to free it explicitly.

In the case where the object manager cannot find the specific entity, the

object will be nil. This should not happen if you have one user accessing

the database, but in multi-user environments, other users may delete

entries from the database while our code is trying to acquire them. Thus, it

is good idea to check against this using the Assign method as in the code.

Finally, we instruct Aurelius to push the changes back to the database

by calling Flush. Note that we pass the object to Flush as we know exactly

which entity instance has been modified.

Chapter 4 Basic Operations

105

Looking back at the code we have written so far, one can observe that

there is a lot of repetition. When we add and edit departments and agents,

we essentially write the same code by calling Save or Flush.

We can consolidate much of it by using SaveOrUpdate method and the

very useful generics. SaveOrUpdate checks if the entity’s ID property has

a value other than the default. If so, the object manager saves the entity;

otherwise it updates it. We are going to create a helper class that uses this

method:

	 1.	 Add a new unit in the project and save it as

Database.Utilities.pas.

	 2.	 Add the following code in this unit:

unit Database.Utilities;

interface

uses

 Aurelius.Engine.ObjectManager;

type

 TDatabaseUtilities<T: class> = class

 �class procedure edit(const aObjManager:

TObjectManager; const aEntity: T);

 end;

implementation

uses

 Aurelius.Mapping.Attributes;

{ TDatabaseUtilities<T> }

class procedure TDatabaseUtilities<T>.edit(const

aObjManager: TObjectManager; const aEntity: T);

Chapter 4 Basic Operations

106

begin

 Assert(aObjManager <> nil);

 Assert(aEntity <> nil);

 try

 aObjManager.SaveOrUpdate(aEntity);

 aObjManager.Flush(aEntity);

 except

 if not aObjManager.IsAttached(aEntity) then

 aEntity.Free;

 end;

end;

end.

	 3.	 In MainForm.pas and in the following procedures,

replace the whole try-except part with a call to

TDatabaseUtilities.edit as in the following code:

procedure TFormMain.btAddDepartmentClick

(Sender: TObject);

...

begin

 ...

 if form.ShowModal = mrOk then

 begin

 �session:=TDatabaseSession.Create(SQLiteConnection.

CreateConnection);

 department:=TDepartment.Create;

 department.Description:=Trim(form.edEntity.Text);

 �TDatabaseUtilities<TDepartment>.edit(session.

objectManager, department);

 updateDepartments;

Chapter 4 Basic Operations

107

 end;

 ...

end;

procedure TFormMain.btAddAgentClick(Sender: TObject);

...

begin

 ...

 if form.ShowModal = mrOk then

 begin

 �session:=TDatabaseSession.Create(SQLiteConnection.

CreateConnection);

 agent:=TAgent.Create;

 agent.Description:=Trim(form.edEntity.Text);

 �TDatabaseUtilities<TAgent>.edit(session.

objectManager, agent);

 updateAgents;

 end;

 ...

end;

procedure TFormMain.btEditDepartmentClick

(Sender: TObject);

...

begin

 ...

 if form.ShowModal = mrOk then

 begin

 department.Description:=Trim(form.edEntity.Text);

 �TDatabaseUtilities<TDepartment>.edit(session.

objectManager, department);

Chapter 4 Basic Operations

108

 updateDepartments;

 end;

end;

procedure TFormMain.btEditAgentClick(Sender: TObject);

...

begin

 ...

 if form.ShowModal = mrOk then

 begin

 agent.Description:=Trim(form.edEntity.Text);

 �TDatabaseUtilities<TAgent>.edit(session.object

Manager, agent);

 updateAgents;

 end;

end;

�Managing Blobs
TAgent includes a Photo property that holds an image of the agents. In the

Agents tab in the main form, at the right-hand side, there is space to show

this image. At the entity level, Photo property is defined as a TBlob field. In

this part, we will look at how we can manage different aspects of a blob in

Aurelius.

	 1.	 When the list of the agents is updated, there is no

selected row. Therefore, the image component

should be empty and the add and delete photo

buttons should be disabled. Go to MainForm.pas

and add the following lines in updateAgents:

Chapter 4 Basic Operations

109

procedure TFormMain.updateAgents;

...

begin

 ...

 imPhoto.Bitmap:=nil;

 btAddPhoto.Enabled:= sgAgents.Selected>-1;

 btDeletePhoto.Enabled:= sgAgents.Selected>-1;

end;

	 2.	 Blobs are, basically, streams of bytes. This,

consequently, means that our photos (bitmaps) will

be stored as bytes and, when retrieved, the bytes

should be converted back to bitmaps. In order to

achieve this, we add the next two procedures in

TDatabaseUtilities in Database.Utilities.pas.

uses

 ...,

 FMX.Graphics,

 Aurelius.Types.Blob;

interface

type

 TDatabaseUtilities<T: class> = class

 ...

 �class procedure bitmapToBlob (const aBmp: TBitmap;

const aType: string;

 var aBlob: TBlob);

 �class procedure blobToBitmap (const aBlob: TBlob;

var aBmp: TBitmap);

 end;

Chapter 4 Basic Operations

110

implementation

uses

 ...,

 FMX.Surfaces,

 System.Classes,

 System.SysUtils;

class procedure TDatabaseUtilities<T>.

bitmapToBlob(const aBmp: TBitmap;

 const aType: string; var aBlob: TBlob);

var

 bmp: TBitmapSurface;

 bs: TBytesStream;

begin

 bmp := TBitmapSurface.create;

 try

 bmp.assign(aBmp);

 bs := TBytesStream.create;

 try

 TBitmapCodecManager.SaveToStream(bs, bmp, aType);

 aBlob.AsBytes := bs.Bytes;

 finally

 bs.free;

 end;

 finally

 bmp.free;

 end;

end;

Chapter 4 Basic Operations

111

class procedure TDatabaseUtilities<T>.

blobToBitmap(const aBlob: TBlob;

 var aBmp: TBitmap);

var

 ms: TMemoryStream;

begin

 Assert(aBmp <> nil);

 ms := TMemoryStream.create;

 try

 aBlob.SaveToStream(ms);

 MS.Position := 0;

 aBmp.LoadFromStream(ms);

 finally

 ms.free;

 end;

end;

	 3.	 Back in TFormMain, in MainForm.pas, we introduce

a private variable named photo. We are going to

use this to update the TImage component in the

Agents tab. We also need to add some code in the

OnDestroy event of the form in order to make sure

we destroy any instances of photo.

type

 TFormMain = class(TForm)

 ...

 procedure FormDestroy(Sender: TObject);

 private

 photo: TBitmap;

 ...

 end;

...

Chapter 4 Basic Operations

112

procedure TFormMain.FormDestroy(Sender: TObject);

begin

 FreeAndNil(photo);

end;

	 4.	 When the user selects a row in the agent list, the

agent image is shown in the TImage component.

We manage this in the new private procedure

loadPhoto, which gets the GUID value of the

selected agent entity as a parameter. loadPhoto is

called in the OnCellClick event of the agents list.

type

 TFormMain = class(TForm)

 ...

 private

 ...

 procedure loadPhoto (const aGUID: string);

 end;

...

procedure TFormMain.loadPhoto(const aGUID: string);

var

 session: IDatabaseSession;

 agent: TAgent;

begin

 Assert(Trim(aGUID) <> '');

 FreeAndNil(photo);

 �session:=TDatabaseSession.Create(SQLiteConnection.

CreateConnection);

 �agent:=session.objectManager.Find<TAgent>(Trim(aGUID));

Chapter 4 Basic Operations

113

 if Assigned(agent) and (not agent.Photo.IsNull) then

 begin

 photo:=TBitmap.Create;

 �TDatabaseUtilities<TAgent>.blobToBitmap(agent.

Photo, photo);

 end;

 imPhoto.Bitmap:=photo;

 btAddPhoto.Enabled:= not Assigned(photo);

 �btDeletePhoto.Enabled:= Assigned(photo);

end;

...

procedure TFormMain.sgAgentsCellClick(const Column:

TColumn; const Row:

 Integer);

begin

 ...

 loadPhoto(sgAgents.Cells[2, sgAgents.Selected]);

end;

The procedure retrieves the agent from the database

and checks if the Photo property has any content

by using Aurelius’ IsNull function. If content is

detected, blobToBitmap is used to load the blob

content to photo. Lastly, the GUI is being taken care

of by enabling the appropriate buttons.

Chapter 4 Basic Operations

114

	 5.	 Add a TOpenDialog component in the form and

modify the OnClick event of btAddPhoto button.

uses

 ...,

 Aurelius.Types.Blob;

...

procedure TFormMain.btAddPhotoClick(Sender: TObject);

var

 session: IDatabaseSession;

 agent: TAgent;

 blob: TBlob;

begin

 OpenDialog1.Filter:='PNG image files|∗.png';
 if OpenDialog1.Execute then

 begin

 �session:=TDatabaseSession.Create(SQLiteConnection.

CreateConnection);

 �agent:=session.objectManager.Find<TAgent>(StringTo

GUID(sgAgents.Cells[2,sgAgents.Selected]));

 if Assigned(agent) then

 begin

 imPhoto.Bitmap.LoadFromFile(OpenDialog1.FileName);

 �TDatabaseUtilities<TAgent>.bitmapToBlob

(imPhoto.Bitmap, 'png', blob);

 agent.Photo:=blob;

 �TDatabaseUtilities<TAgent>.edit(session.object

Manager, agent);

 end;

 end;

end;

Chapter 4 Basic Operations

115

When the user selects a PNG file, the code loads

the selected agent as before. Then, the image file is

passed to the TImage component, and bitmapToBlob

is called to convert the bitmap to blob. Then, the

entity instance is updated and, eventually, saved in

the database. In the files that come with the book,

you can find avatars to try it yourself in the Misc

folder.

You may wonder why we do not pass directly the

agent.Photo to bitmapToBlob. We need to use a

local variable because the compiler recognizes

agent.Photo as a constant and, therefore, it cannot

be passed to an argument which is treated as a

variable.

	 6.	 We have one last thing to do that involves blob – the

ability to delete the photo. Click the btDeletePhoto

album and just set the IsNull property of the TBlob

to nil as follows:

procedure TFormMain.btDeletePhotoClick(Sender: TObject);

var

 session: IDatabaseSession;

 agent: TAgent;

 blob: TBlob;

begin

 �session:=TDatabaseSession.Create(SQLiteConnection.

CreateConnection);

 �agent:=session.objectManager.Find<TAgent>(String

ToGUID(sgAgents.Cells[2, sgAgents.Selected]));

Chapter 4 Basic Operations

116

 if Assigned(agent) then

 begin

 imPhoto.Bitmap:=nil;

 agent.Photo.IsNull:=True;

 �TDatabaseUtilities<TAgent>.edit(session.

objectManager, agent);

 end;

end;

�Deleting Entities
Deleting entities in Aurelius is straightforward once you get an instance

of the object manager. As you can see in the following code, this task is a

simple call to Remove:

procedure TFormMain.btDeleteDepartmentClick(Sender: TObject);

var

 session: IDatabaseSession;

 department: TDepartment;

begin

 ...

 case AResult of

 mrYes: begin

 session:=TDatabaseSession.Create(

 SQLiteConnection.CreateConnection);

 department:=session.objectManager.Find<TDepartment>(

 �StringToGUID(sgDepartments.Cells[2, sgDepartments.

Selected]));

 if Assigned(department) then

 begin

Chapter 4 Basic Operations

117

 session.objectManager.Remove(department);

 updateDepartments;

 end;

 end;

 end;

 end);

end;

procedure TFormMain.btDeleteAgentClick(Sender: TObject);

var

 session: IDatabaseSession;

 agent: TAgent;

begin

 ...

 case AResult of

 mrYes: begin

 session:=TDatabaseSession.Create(

 SQLiteConnection.CreateConnection);

 agent:=session.objectManager.Find<TAgent>(

 �StringToGUID(sgAgents.Cells[2, sgDepartments.

Selected]));

 if Assigned(agent) then

 begin

 session.objectManager.Remove(agent);

 updateAgentss;

 end;

 end;

 end;

 end);

end;

Chapter 4 Basic Operations

118

�Importing Entities
All the code we developed earlier provides us with all the functionality

we need to manage agents and departments. However, we miss the most

important data in a call center: the calls. We could create buttons to

manage calls in a similar way as we do with the agents and departments,

but we will follow a different approach at this stage. We will import data

from a csv file; this will demonstrate some additional features in Aurelius.

We need some additional elements in the forms. In the code files,

open the project in CallCentre – Import folder to see the changes. I have

added a separate tab to facilitate the import of the data. The tab item hosts

a frame (TFrameImport) with a progress bar, a label, and a button. All

this decoration is unnecessary for the essence of this book, but I wanted

to create a decent user interface. The actual importing is done in the

Database.Import.pas unit. The code includes manipulation of the GUI as

well but, for simplicity, I will not reproduce it here. You can either check

the file yourself or, if you write the code in a separate unit, you can safely

focus on the parts presented here. The code should work in full.

Database.Import unit provides access to the importData procedure.

This is where we work out the whole task. The signature of the procedure

is as follows; it receives the filename of the data file, a reference to the well

known by now IDBConnection, and a reference to the import frame.

procedure importData (const aFilename: string; const

aConnection: IDBConnection; const aImportFrame: TFrameImport);

In MainForm.pas, create an event for OnClick for the btImport, provide

the option to the user to choose the file by using the TOpenDialog we

added earlier, and simply call importData.

procedure TFormMain.FrameImportbtImportClick(Sender: TObject);

begin

 OpenDialog1.Filter:='CSV Files (∗.csv)|∗.csv';

Chapter 4 Basic Operations

119

 if OpenDialog1.Execute then

 �importData(OpenDialog1.FileName, SQLiteConnection.

CreateConnection, FrameImport);

end;

The procedure takes a series of steps. In the beginning, we want to

make sure that the database is clean, but this is not necessary, strictly

speaking. We achieve this by dumping and rebuilding the whole

database scheme using the database manager (DestroyDatabase and

BuildDatabase).

unit Database.Import;

interface

uses

 Aurelius.Drivers.Interfaces,

 ImportFrame;

procedure importData (const aFilename: string; const

aConnection: IDBConnection; const aImportFrame: TFrameImport);

implementation

uses

...

procedure importData (const aFilename: string; const aConnection:

IDBConnection; const aImportFrame: TFrameImport);

var

 session: IDatabaseSession;

 dbManager: TDatabaseManager;

 objManager: TObjectManager;

 ...

begin

 ...

Chapter 4 Basic Operations

120

 session:=TDatabaseSession.Create(aConnection);

 dbManager:=session.databaseManager;

 objManager:=session.objectManager;

 ...

 dbManager.DestroyDatabase;

 dbManager.BuildDatabase;

 ...

end;

end.

Then, we add the agents and the departments in the database. The

steps are exactly the same as those we followed earlier with the assistance

of TDatabaseUtilities.

Then, the code loads the calls from the csv file and generates the TCall

instances. There is some manipulation of the loaded data, but we will skip

them as they are not the point of the discussion here. You can, of course,

see the full code in the code files.

After we prepare the TCall object, we save it in the database with a

simple call to objManager.Save. There is nothing new here; we’d been

doing this already. What is different with the design of our code this time

is that we need to import a good number of calls (c.1,770); it’s not that

big if you consider professional settings, but it is big enough to consume

unnecessary resources even in a small-scale application.

The solution to this is to approach the case in a SQL-transactional way;

we enter in a state where any changes to the database are done in isolation,

with the assurance that the changes are successful and the database

state is preserved in case of exceptions or errors. If an error occurs, the

database is able to roll back to the latest stable state. In Aurelius, we can

achieve this by using the IDBTransaction interface. The following code

shows how the BeginTransaction, Commit, and Rollback procedures from

Chapter 4 Basic Operations

121

IDBTransaction can be used. Please note that the following code is not as

the one you will find in the code file as it hides the parts that handle the

user interface:

procedure importData (const aFilename: string; const aConnection:

IDBConnection; const aImportFrame: TFrameImport);

var

 ...,

 transaction: IDBTransaction;

begin

 ...

 transaction:=objManager.Connection.BeginTransaction

 try

 ...

 for item in list do

 begin

 ...

 call:=TCall.Create;

 ...

 objManager.Save(call);

 end;

 transaction.Commit;

 except

 transaction.Rollback;

 end;

 ...

end;

We set the object manager in a transactional state by calling

BeginTransaction. The for-loop iterates through the lines from the data

set. Each item has all the necessary information about a recorded call.

We use this to generate a new TCall object and Save it in the cache of the

object manager.

Chapter 4 Basic Operations

122

•	 Following the preceding point, Flush appears

suitable for a relatively small number of transactions.

If you want to handle a good number of them, you

may wish to get more control over the whole process

as resources can be stretched and, additionally, you

may need finer management of the situations where

something goes wrong while Aurelius attempts to

pass the changes to the database. Rollback, as it is

demonstrated in the preceding code, is called in this

case and reverts any changes delivered up to the

point the error occurred. If you want to intervene

at this step, the only way to do it is to set the object

manager in a transactional state rather than simply

call Flush.

Eventually, and outside the for-loop, a call to Commit makes the

changes persistent. You may wonder why we really need a Commit

action when we have the Flush action which is also provided by the

object manager. I can see two aspects in this argument which are

linked:

•	 A call to Flush is, in fact, a managed call to Commit.

Flush wraps the whole try-except code we wrote in

our example.

...
transaction:=objManager.Connection.BeginTransaction
try

...
objManager.Save(...);

transaction.Commit;
except

transaction.Rollback;
end;
...

Chapter 4 Basic Operations

123

�Summary
As a matter of summarizing the chapter, please go ahead, run the code and

import the data set from the csv file. You will then have populated tables

in the database for the agents and the departments. Additionally, the

database will have the calls imported and ready for use. We achieved all

this by visiting the way that object manager manipulates entities and the

associated operations. With all the data in place, we are ready to move to

the next stage, to explore how Aurelius implements queries.

Chapter 4 Basic Operations

125© John Kouraklis 2019
J. Kouraklis, Introducing Delphi ORM, https://doi.org/10.1007/978-1-4842-5013-6_5

CHAPTER 5

Querying
the Database
Our application is now capable of providing the basic management of the

database entities. We can add, edit, and delete agents and departments,

and our database is populated with a list of calls. Let us move on further

and allow Aurelius to provide us with some useful information from the

database.

�Listings
In both Departments and Agents tabs, there is a grid at the bottom of the

forms with information about the calls. You can find the code we use in

this chapter in the Call Centre – Listings folder.

�Departments
The grid shows data filtered by the Department or the Agent. In order to do

this, you need to select a line in the Department or Agent grids. We begin

with the Department grid. This grid has the following columns:

•	 Nr: Row number

•	 CallID: The ID of the call

•	 Date: The date of the call

126

•	 Entry Time: The time the call entered the queue

•	 Waiting Time: The time the call stays in the queue

•	 Duration: The duration of the call when an agent

picks it up

•	 Resolved: Indicated whether the issue in the call is

resolved

•	 Satisfaction Rate: The satisfaction rate the customer

gave to the agent

Some of the fields (CallID, Date, Entry Time, Resolved, Satisfaction

Rate) are directly stored in our database so we can populate them very

easily by just retrieving the data.

	 1.	 Add a new private procedure in the form

(updateDepartmentList) where

interface

...

type

 TFormMain = class(TForm)

 ...

 private

 ...

 procedure updateDepartmentList;

 ...

 end;

...

implementation

...

Chapter 5 Querying the Database

127

	 2.	 Add the following lines in updateDepartmentList:

procedure TFormMain.updateDepartmentList;

var

 session: IDatabaseSession;

 callList: TObjectList<TCall>;

 call: TCall;

begin

 ...

 �session:=TDatabaseSession.Create(SQLiteConnection.

CreateConnection);

 callList:=session.objectManager.Find<TCall>

 �.CreateAlias('DepartmentID',

'department')

 .Where(Linq['department.ID'] =

 �sgDepartments.Cells[2,

sgDepartments.Selected])

 .List;

 ...

 for call in callList do

 begin

 �sgDepartmentDetails.RowCount := sgDepartmentDetails.

RowCount + 1;

 �sgDepartmentDetails.Cells[0, sgDepartmentDetails.

RowCount - 1]:= sgDepartmentDetails.RowCount.ToString;

 �sgDepartmentDetails.Cells[1, sgDepartmentDetails.

RowCount - 1]:= call.CallID;

 �sgDepartmentDetails.Cells[2, sgDepartmentDetails.

RowCount - 1]:= FormatDateTime('dd/mm/yyyy', call.Date);

Chapter 5 Querying the Database

128

 �sgDepartmentDetails.Cells[3, sgDepartmentDetails.

RowCount - 1]:= FormatDateTime('hh:mm:ss', call.

QueueEntryTime);

 if call.Resolved = 0 then

 �sgDepartmentDetails.Cells[6, sgDepartmentDetails.

RowCount - 1]:= 'N'

 else

 �sgDepartmentDetails.Cells[6, sgDepartmentDetails.

RowCount - 1]:= 'Y';

 if call.SatisfactionScore.HasValue then

 �sgDepartmentDetails.Cells[7, sgDepartmentDetails.

RowCount - 1]:= call.SatisfactionScore.Value.ToString;

 end;

 ...

 callList.Free;

 ...

end;

Nothing new here in terms of Aurelius’ functionality.

We retrieve the list of the calls based on the

Department.ID from the first grid. Note that

SatisfactionScore is a nullable field and, therefore,

we check if there is a value in the field. If so, we use the

Value property to TNullable<TCall> to extract the field.

The other columns of the grid require some

calculations but this is straightforward. We check if

nullable fields have values and we proceed with some

calculations.

Chapter 5 Querying the Database

129

procedure TFormMain.updateDepartmentList;

var

 session: IDatabaseSession;

 callList: TObjectList<TCall>;

 call: TCall;

begin

 ...

 for call in callList do

 begin

 if call.QueueExitTime.HasValue then

 �sgDepartmentDetails.Cells[4, sgDepartmentDetails.

RowCount - 1]:=

 �FormatDateTime('hh:mm:ss', call.

QueueExitTime.Value - call.

QueueEntryTime);

 �if call.ServiceStartTime.HasValue and call.ServiceEndTime.

HasValue then

 �sgDepartmentDetails.Cells[5, sgDepartmentDetails.

RowCount - 1]:=

 �FormatDateTime('hh:mm:ss', call.

ServiceEndTime.Value - call.

ServiceStartTime.Value);

 end;

 ...

end;

	 3.	 Call updateDepartmentList in the OnSelectCell

event of the grid with the departments:

procedure TFormMain.sgDepartmentsSelectCell(Sender: TObject;

const ACol, ARow:

 Integer; var CanSelect: Boolean);

Chapter 5 Querying the Database

130

begin

 ...

 updateDepartmentList;

end;

�Agents
The grid with the details of the agents can be filled in in a similar way, but

we will follow a different approach this time. When we discussed the ORM

fundamentals, we saw that when entities are associated the endpoints are

reciprocal. This means that you can start from one entity and reach the

other directly via the association. In our case, a call is linked to an agent

and, by association, if we start from the TAgent entity we should be able

to get the linked TCalls which, by definition, generates a one-to-many

association.

	 1.	 In Entities.pas, we have already added a TList

property (CallList) in TAgent class (see Chapter 3).

	 2.	 In MainForm.pas, add a new private procedure

updateAgentList to update the grid with the calls

per agent:

interface

...

type

 TFormMain = class(TForm)

 ...

 private

 ...

 procedure updateAgentList;

 ...

 end;

Chapter 5 Querying the Database

131

...

implementation

...

	 3.	 Add the following lines in updateAgentList:

procedure TFormMain.updateAgentList;

var

 session: IDatabaseSession;

 agent: TAgent;

 call: TCall;

begin

 ...

 session:=TDatabaseSession.Create(SQLiteConnection.

CreateConnection);

 try

 agent:=session.objectManager.Find<TAgent>(

 �StringToGUID(sgAgents.Cells[2,

sgAgents.Selected]));

 if Assigned(agent) then

 begin

 ...

 for call in agent.CallList do

 begin

 sgAgentDetails.RowCount := sgAgentDetails.RowCount + 1;

 �sgAgentDetails.Cells[0, sgAgentDetails.RowCount - 1]:=

sgAgentDetails.RowCount.ToString;

 �sgAgentDetails.Cells[1, sgAgentDetails.RowCount - 1]:=

call.CallID;

 sgAgentDetails.Cells[2, sgAgentDetails.RowCount - 1]:=

Chapter 5 Querying the Database

132

 �FormatDateTime

('dd/mm/yyyy',

call.Date);

 sgAgentDetails.Cells[3, sgAgentDetails.RowCount - 1]:=

 �FormatDateTime

('hh:mm:ss', call.

QueueEntryTime);

 if call.QueueExitTime.HasValue then

 sgAgentDetails.Cells[4, sgAgentDetails.RowCount - 1]:=

 �FormatDateTime('hh:mm:ss', call.

QueueExitTime.Value - call.

QueueEntryTime);

 �if call.ServiceStartTime.HasValue and call.

ServiceEndTime.HasValue then

 sgAgentDetails.Cells[5, sgAgentDetails.RowCount - 1]:=

 �FormatDateTime('hh:mm:ss', call.

ServiceEndTime.Value - call.

ServiceStartTime.Value);

 if call.Resolved = 0 then

 �sgAgentDetails.Cells[6, sgAgentDetails.

RowCount - 1]:= 'N'

 else

 �sgAgentDetails.Cells[6, sgAgentDetails.

RowCount - 1]:= 'Y';

 if call.SatisfactionScore.HasValue then

 �sgAgentDetails.Cells[7, sgAgentDetails.RowCount - 1]:=

 �call.SatisfactionScore.

Value.ToString;

 end;

 end;

Chapter 5 Querying the Database

133

 finally

 sgAgentDetails.EndUpdate;

 ...

 end;

 ...

end;

	 4.	 Call updateAgentList in the OnSelectCell event of

the agents’ grid:

procedure TFormMain.sgAgentsSelectCell(Sender: TObject; const

ACol, ARow:

 Integer; var CanSelect: Boolean);

begin

 ...

 updateAgentList;

end;

In this approach, we first load the agent based on the GUID that is

selected when the user clicks the agent grid, and then we iterate through

agent.CallList to get the calls associated to the particular agent. The rest

of the code that populates the details of the calls in the grid is exactly the

same as before.

In our application, the two approaches we used bring the same result.

The code that uses the CallList is much simpler. The downside of this

approach is that we cannot filter the results using Aurelius features as in

the first approach. Instead, we need to run through the items of the TList

and cut out whatever is not desirable. This may not pose a significant

matter in CallCentre application but, in general, it is much preferable

to do heavy tasks at the server side. Client-side processing may consume

resources that can be valuable especially in mobile platforms.

Chapter 5 Querying the Database

134

�Queries (Dashboard)
The dashboard holds lot of information of different nature and in different

places. If you look at the data in the dashboard, you will notice that the

entire data set consists of either aggregated (e.g., total calls) or calculated

(e.g., calls/minute) values. In Chapter 2, we discussed that Aurelius is able

to extract such values with the use of projections. The code files are located

in the Call Centre – Queries folder.

Before we start filling the dashboard in, we need to consider the

filtering we have introduced. The left sidebar allows the user to select the

weeks, and it filters the data presented in the dashboard. We are going to

use this filter in every calculation we make.

For this part, we need to calculate the following metrics:

•	 Average Satisfaction Score (%)

•	 Total Calls

•	 Answer Speed (min:sec)

•	 Abandon Rate (%)

•	 Calls/Minute

•	 Calls answered in less than 180 seconds

•	 Calls with satisfactory rate less than 3

In addition to the preceding metrics, there is a list which presents

data per agent (total calls, calls answered, average speed, call resolution

percentage, and the call resolution trend; that is whether the agent’s ability

to resolve calls is improving or not or remains the same). The dashboard

also holds two graphs, but we are going to deal with them in the next

chapter.

Go to MainForm.pas and add a new private procedure called

calculateStatistics. We need to know the week the user selected in the

sidebar, so we pass this information as a parameter to the procedure:

Chapter 5 Querying the Database

135

interface

...

type

 ...

 TFormMain = class(TForm)

 ...

 private

 ...

 procedure calculateStatistics(const aWeek: TWeeks);

 public

 ...

 end;

...

implementation

...

procedure TFormMain.calculateStatistics(const aWeek: TWeeks);

var

 session: IDatabaseSession;

begin

 �session:=TDatabaseSession.Create(SQLiteConnection.

CreateConnection);

end;

For now, the only thing we do is to create a new database session,

as we have done many times already. To complete the setup of this

procedure, add a call in the updateDashboard procedure. This will make

sure the dashboard is updated every time the user selects the tab.

Chapter 5 Querying the Database

136

procedure TFormMain.updateDashboard(const aWeek: TWeeks);

begin

 ...

 calculateStatistics (aWeek);

end;

Next, we calculate the indicators separately to demonstrate the use

of different functions Aurelius offers. Many instances of the following

code can be combined in one call to Aurelius as they are under the same

conditions.

�Average Satisfaction Score (%)
This is the average satisfaction score of the calls. If you look at the initial

csv file or the database, there are calls without satisfaction score; the field

is null. We should not include them in the calculation of the average score.

procedure TFormMain.calculateStatistics(const aWeek: TWeeks);

var

 ...

 projRes: TCriteriaResult;

begin

 ...

 projRes:=session.objectManager.Find<TCall>

 �.Select(TProjections.

ProjectionList

 �.Add(TProjections.

Avg('SatisfactionScore')

 .As_('SatisfactionScore'))

)

 �.Where(not

Linq['SatisfactionScore'].IsNull)

 .UniqueValue;

Chapter 5 Querying the Database

137

 if projRes.Values['SatisfactionScore'] <> Null then

 lbSatisfactionValue.Text:=

 �format('%2.2f', [Double(projRes.Values

['SatisfactionScore'])]);

 else

 lbSatisfactionValue.Text:='0.00';

 projRes.Free;

end;

Because we are retrieving one and only one result from the

projection (SatisfactionScore), we get a TCriteriaResult instead of a

TObjectList<TCriteriaResult>, as shown in Chapter 2. We do this by

using UniqueValue. In this case, we also use the Avg function from Aurelius

toolbox, and we pass a boolean expression in the Where clause to run the

calculation only on valid records.

�Weeks
The preceding code snippet calculates the average satisfaction score for all

the calls in the database. We need to make use of the aWeek parameter in

calculateStatistics. We have already inserted in the database the week

of each call when we imported the data from the csv file. The value is held

in the Week property of the TCall entity.

We can add a simple Linq expression to accommodate the user’s

choice.

 ...

 projRes:=session.objectManager.Find<TCall>

 �.Select(TProjections.

ProjectionList

 �.Add(TProjections.

Avg('SatisfactionScore')

Chapter 5 Querying the Database

138

 .As_('SatisfactionScore'))

)

 .Add(Linq['Week'] = integer(aWeek)+1)

 �.Where(not

Linq['SatisfactionScore'].IsNull)

 .UniqueValue;

 ...

You can click the buttons in the sidebar, and the satisfaction score is

calculated for each week. However, if you look at the data in the database,

you will notice that there are entries with week number 5. We calculated

the week for each call using the WeekOfTheMonth function. Our data refers

to January 2016, a month for which the first and last days fall in the middle

of weeks. Therefore, the function, correctly, returns the calendar week

number.

As a result, the code we added earlier misses some calls. It uses the

TWeeks identifier to select the calls, but TWeeks has only four elements. This

means that the calls that appear in week 5 do not make it in the result. We

will add them in week 4’s calls, but we cannot do this inside the projection

as we need to write some programming logic. Instead, we will create a

separate function called filter and we will break the projection down.

Projections in Aurelius are built using the TCriteria class as shown in the

following code:

interface

...

type

 ...

 TFormMain = class(TForm)

 ...

 private

Chapter 5 Querying the Database

139

 ...

 �function filter(const aWeek: TWeeks; const aCriteria:

TCriteria): TCriteria;

 public

 ...

 end;

...

implementation

...

function TFormMain.filter(const aWeek: TWeeks; const aCriteria:

TCriteria):

 TCriteria;

begin

 if aWeek = wWeek4 then

 result:= aCriteria.Add(Linq['Week'] >= 4)

 else

 result:= aCriteria.Add(Linq['Week'] = integer(aWeek)+1);

end;

procedure TFormMain.calculateStatistics(const aWeek: TWeeks);

var

 ...

 criteria: TCriteria;

begin

 �session:=TDatabaseSession.Create(SQLiteConnection.

CreateConnection);

 criteria:=session.objectManager.Find<TCall>

 �.Select(TProjections.

ProjectionList

Chapter 5 Querying the Database

140

 �.Add(TProjections.

Avg('SatisfactionScore')

 � .As_('SatisfactionScore'))

)

 .Where(

 �not

Linq['SatisfactionScore'].

IsNull);

 criteria:=filter(aWeek, criteria);

 projRes:=criteria.UniqueValue;

 ...

 �lbSatisfactionValue.Text:=format('%2.2f', [Double(projRes.

Values['SatisfactionScore'])]);

 ...

 projRes.Free;

end;

We define a TCriteria variable and we build the projection without

passing it to the object manager because we need to populate it with

the right filter. filter function accomplishes this, and then we call

UniqueValue to retrieve the required information. For simplicity, the

preceding code does not include the check for null content.

In this approach, we chose to make filter return TCriteria to

modify the query. Another approach would be to make filter return

TLinqExpression. This would allow us to use filter, directly, in the fluent

interface as we build our query. You can see this in the following code and,

as you can notice, there is no need to declare criteria at all:

...

 function filter(const aWeek: TWeeks): TLinqExpression;

begin

Chapter 5 Querying the Database

141

 if aWeek = wWeek4 then

 result:= Linq['Week'] >= 4

 else

 result:= Linq['Week'] = integer(aWeek)+1;

end;

...

procedure TFormMain.calculateStatistics(const aWeek: TWeeks);

...

begin

 ...

 projRes:=session.objectManager.Find<TCall>

 �.Select(TProjections.

ProjectionList

 �.Add(TProjections.

Avg('SatisfactionScore')

 .As_('SatisfactionScore'))

)

 .Where(

 �not

Linq['SatisfactionScore'].

IsNull)

 .Add(filter(aWeek))

 .UniqueValue;

 ...

end;

We could obviously add the lines from filter function directly in

the code, but we are going to need it in more than one place in our code;

therefore, a function looks for better solution. As a last note, we have to

free the TCriteriaResult (projRes) but not the TCriteria (criteria).

criteria is automatically destroyed when UniqueValue, List, or

ListValues are called.

Chapter 5 Querying the Database

142

�Total Calls
This is the number of calls the center receives. There are a couple of

approaches here to get this number, but I think the simplest one is the

following as we saw in a previous chapter:

procedure TFormMain.calculateStatistics(const aWeek: TWeeks);

var

 ...

 totalCalls: integer;

begin

 ...

 criteria:=session.objectManager.Find<TCall>

 �.Select(TProjections.

ProjectionList

 �.Add(TProjections.Count('ID').

As_('TotalCalls'))

);

 criteria:=filter(aWeek, criteria);

 projRes:=criteria.UniqueValue;

 ...

 totalCalls:= projRes.Values['TotalCalls'];

 lbTotalCallsValue.Text:= totalCalls.ToString;

 ...

 projRes.Free;

end;

This time I introduce the variable totalCalls to get the result from the

projection. The only reason I do this is because we will need this value for

subsequent calculations.

Chapter 5 Querying the Database

143

�Answer Speed
This is the average time in minutes and seconds a call stays in the queue

before being assigned to an agent or dropped for any reasons.

procedure TFormMain.calculateStatistics(const aWeek: TWeeks);

var

 ...

begin

 ...

 criteria:=session.objectManager.Find<TCall>

 �.Select(TProjections.

ProjectionList

 .Add(TProjections.Avg(

 �Linq['QueueExitTime'] - Linq['QueueEntryTime']).

As_('AnswerSpeed'))

)

 �.Where(not

Linq['QueueExitTime'].IsNull);

 criteria:=filter(aWeek, criteria);

 projRes:=criteria.UniqueValue;

 ... �lbAnswerSpeedValue.Text:=FormatDateTime('n:ss',projres.

Values['AnswerSpeed']);

 ...

 projRes.Free;

end;

We have seen this pattern before; we use the Avg function of Aurelius

and the IsNull condition to filter the entities. This time we pass a

calculation (the subtraction) directly in a function and, finally, present the

result in the right format. This snippet also shows that Aurelius is capable

of managing different data types in a simple way.

Chapter 5 Querying the Database

144

�Abandon Rate
This rate shows the percentage of the calls that reach the center but are

not completed for any reason. For such calls, the system records an entry

time, but the exit time from the queue is null. Therefore, we need to get the

number of calls for which the QueueExitTime is null and divide it by the total

calls the center received. We have stored this value in totalCalls. Thus, we

would like Aurelius to calculate in a projection the following division:

TProjections.Count('ID') / totalCalls

and place it in an Add call:

.Add(TProjections.Count('ID') / totalCalls)

If you try this, the compiler will throw an error complaining that

totalCalls is not of TSimpleProjection type as expected but an integer

(constant). This is correct as Aurelius, internally, manages operations in

projections that derive from TSimpleProjection. Literal<T> function

comes to rescue as it can convert a constant to the correct type and can

be used safely as part of the projections list. In our case, we convert

totalCalls to a compatible form using the following code:

TProjections.Literal<integer>(totalCalls)

The final code to calculate and display the abandon rate takes the

following form:

procedure TFormMain.calculateStatistics(const aWeek: TWeeks);

var

 ...

begin

 ...

 criteria:=session.objectManager.Find<TCall>

 �.Select(TProjections.

ProjectionList

Chapter 5 Querying the Database

145

 .Add(TProjections.Divide(

 �TProjections.Count('ID') , TProjections.Literal<Integer>

(totalCalls))

 .As_('AbandonRate'))

)

 �.Where(Linq['QueueExitTime'].

IsNull);

 criteria:=filter(aWeek, criteria);

 projRes:=criteria.UniqueValue;

... �lbAbandonRateValue.Text:=format('%3.2f',[Double(projres.

Values['AbandonRate']) * 100]);

 ...

 projRes.Free;

end;

�Calls/Minute
This is the number of calls the center receives divided by the total

operation time of the center. Data reveals that the center is open between

09:00 and 18:00 (9 hours). Therefore, the calculation of this metrics is

simple.

procedure TFormMain.calculateStatistics(const aWeek: TWeeks);

var

 ...

begin

 ...

 lbCallsMinuteValue.Text:=format('%3.2f',[totalCalls / 9 / 60]);

end;

Chapter 5 Querying the Database

146

�Calls Answered in Less Than 180 Seconds
This indicator shows the calls that stayed in the queue for less than 3

minutes. In terms of calculations, we need to work out the difference

between the times the calls entered and exited the queue and, then, pick

those where the difference is less than 180 seconds. By now, we have all the

building blocks to write this Aurelius projection.

procedure TFormMain.calculateStatistics(const aWeek: TWeeks);

var

 ...

begin

 ...

 criteria:=session.objectManager.Find<TCall>

 �.Select(TProjections.

ProjectionList

 �.Add(TProjections.Count('ID').

As_('CallsLess180'))

)

 .Where(

 �(Linq['QueueExitTime'] - Linq['QueueEntryTime']) <

 �EncodeTime(0, 3, 0, 0))

 �.Where(not Linq

['QueueExitTime'].IsNull);

 criteria:=filter(aWeek, criteria);

 projRes:=criteria.UniqueValue;

 ...

 lbAnsweredLess180.Text:=projres.Values['CallsLess180'];

 ...

 projRes.Free;

end;

Chapter 5 Querying the Database

147

The only, perhaps, new element we have is that we can use

computational conditions in a Where statement as the code shows.

I encoded the 180 seconds limit as a time object.

�Calls with Satisfactory Score Less Than 3
This time we are looking at the calls with satisfactory score less than 3. We

need the absolute number and the fraction of these calls that correspond

to the total calls. We are able to extract both pieces of data, directly, from

the database using familiar methods. In this case, though, note how we can

add more than one projection function in the same query. This is because

we constantly use TProjections.ProjectionList to create the queries.

procedure TFormMain.calculateStatistics(const aWeek: TWeeks);

var

 ...

begin

 ...

 criteria:=session.objectManager.Find<TCall>

 �.Select(TProjections.

ProjectionList

 �.Add(TProjections.Count('ID').

As_('CallsLess3'))

 .Add(TProjections.Divide(

 TProjections.Count('ID'),

 �TProjections.

Literal<Integer>(totalCalls)

 .As_('CallsLess3Perc'))

)

Chapter 5 Querying the Database

148

 .Where(not Linq['QueueExitTime'].IsNull)

 .Where(Linq['SatisfactionScore'] < 3);

 criteria:=filter(aWeek, criteria);

 projRes:=criteria.UniqueValue;

 ...

 lbSatisfactionScoreLess3.Text:= format('%d (%3.2f%%)',

 [integer(projres.Values['CallsLess3']),

 �double(projres.Values['CallsLess3Perc']) * 100]);

 ...

 projRes.Free;

end;

�Agent Statistics List
The list with the statistics per agent can be completed by making similar

calls to Aurelius. The requirement this time is that we need aggregated

results per individual agent, or, in other words, we need to group the

results per agent. This can be achieved by adding a call to Group function

inside the projection.

procedure TFormMain.calculateStatistics(const aWeek: TWeeks);

var

 ...

begin

 ...

 criteria:=session.objectManager.Find<TCall>

 �.CreateAlias('AgentID',

'agent')

 �.Select(TProjections.

ProjectionList

Chapter 5 Querying the Database

149

 �.Add(TProjections.

Prop('agent.Description').

As_('Name'))

 �.Add(TProjections.

Count('ID').As_

('TotalCalls'))

 �.Add(TProjections.

Group('agent.ID'))

)

 �.OrderBy('agent.Description');

 criteria:=filter(aWeek, criteria);

 agentList:=criteria.ListValues;

end;

The code groups the calls to Count by the ID of the agents. Note the way

we access the ID property; the AgentID property in TCall is an entity itself,

and therefore if we want to drill down to its properties, we need to create

an alias pointing to TAgent. Then, we can use this alias inside projection

calls in the same way we used it when we were dealing with criteria. We,

also, want to show the name of the agent as appears in the Description

field. As this is a simple use of a field from the main table, it can be easily

access using the Prop function.

This snippet calculates the total calls for each agent. The other

indicators in the agent list are determined in a similar manner. I do not

show the code here, as it would be a repetition of what we have already

seen. If you wish to see the full implementation, please refer to the code

files that accompany this book.

Chapter 5 Querying the Database

150

�Views
We implemented the dashboard screen by running several database

queries in order to extract all the necessary data. In some instances,

we had to do calculations in code before being able to present the right

data. This is a very common approach but, in some instances, may not

be ideal. For example, if the data set is huge or the resources are limited

as it happens in mobile platforms, or if there are security concerns and,

perhaps, legacy database schema, it is, strongly, preferable to allow the

database engine to handle the queries.

In Aurelius, we can use Views very easily. In fact, Aurelius manages

views in the same way as entities. This is very advantageous; we already

know how to manage entities. The only difference at this stage is that views

are read-only as the whole definition of views suggests. For the CallCentre

project, we are going to define the TOverallStatistics entity to represent

the OverallStatistics view. The code of this section is under Call

Centre – Views folder.

	 1.	 Open Entities.pas unit and add the following class:

...

interface

...

type

 ...

 [Entity]

 [Table('OverallStatistics')]

 [Id('FWeek', TIdGenerator.None)]

 TOverallStatistics = class

 private

 [Column('Week', [TColumnProp.Required])]

 FWeek: Integer;

Chapter 5 Querying the Database

151

 [Column('SatisfactionScore', [TColumnProp.Required])]

 FSatisfactionScore: Double;

 [Column('TotalCalls', [TColumnProp.Required])]

 FTotalCalls: Integer;

 [Column('AnswerSpeed', [TColumnProp.Required])]

 FAnswerSpeed: Double;

 [Column('AbandonRate', [TColumnProp.Required])]

 FAbandonRate: Double;

 [Column('CallsMinute', [TColumnProp.Required])]

 FCallsMinute: Double;

 [Column('CallsLess180', [TColumnProp.Required])]

 FCallsLess180: Integer;

 [Column('CallsLess3', [TColumnProp.Required])]

 FCallsLess3: Integer;

 [Column('CallsLess3Perc', [TColumnProp.Required])]

 FCallsLess3Perc: Double;

 public

 property Week: Integer read FWeek write FWeek;

 �property SatisfactionScore: Double read FSatisfactionScore

write FSatisfactionScore;

 �property TotalCalls: Integer read FTotalCalls write

FTotalCalls;

 �property AnswerSpeed: Double read FAnswerSpeed write

FAnswerSpeed;

 �property AbandonRate: Double read FAbandonRate write

FAbandonRate;

 �property CallsMinute: Double read FCallsMinute write

FCallsMinute;

Chapter 5 Querying the Database

152

 �property CallsLess180: Integer read FCallsLess180 write

FCallsLess180;

 �property CallsLess3: Integer read FCallsLess3 write

FCallsLess3;

 �property CallsLess3Perc: Double read FCallsLess3Perc write

FCallsLess3Perc;

 end;

...

There are a few points to mention about this entity

that represents a view. First, the primary key (Week)

is linked to one of the columns of the view. This is

only to provide a unique identifier to the entity to

keep Aurelius happy. The second point follows the

first one. All the properties in this entity are flagged

as required but again this is not important. I chose

to do this because I do not want to check whether

a property has content as we do when we deal with

nullable fields. Unless the view is empty, I can,

simply, use the property values. The last point to

mention has to do with the naming and data type

of the properties. This entity represents a view in

the database and, therefore, the properties and the

data types must be the same (or compatible) to the

columns in the actual view.

	 2.	 Run the CallCentre application. Aurelius will go

on and create a table named OverallStatistics

when updateDatabase is called. But this is not

what we want to achieve. Aurelius may treat

OverallStatistics as an entity (table) but, at

database level, it is a view. This homogenous

Chapter 5 Querying the Database

153

approach, also, leaves us unable to rely to Aurelius

schema management to create or update a view. We

rather need to do this manually.

	 3.	 Delete the table, drop the database, or delete the

database file. Let’s start clean.

	 4.	 In order to prevent Aurelius checking for

OverallStatistics table and from creating it, we

need the help of models. The idea of models in

Aurelius allows developers to create conceptual

group entities (tables) to serve different tasks. A very

common use of models is to separate the tables that

hold security, licensing, or user management data

from the main (default) group of tables. Models

can go beyond conceptual level and be associated

to different databases. Therefore, for instance, you

can have two databases: one for the licensing and

another for the application-specific data.

In our application, we are going to introduce the

Database model to organize those entities that

reflect views. Go back to TOverallStatistics class

and decorate it with the attribute Model.

type

 ...

 [Entity]

 [Table('OverallStatistics')]

 [Model('Database')]

 [Id('FWeek', TIdGenerator.None)]

 TOverallStatistics = class

 ...

 end;

Chapter 5 Querying the Database

154

	 5.	 Run the application again. If you look at the

database, you will see that Aurelius did not create

the TOverallStatistics table because, the way we

have set things up, the main (default) model is used.

If you do not provide the Model attribute to an entity,

it is considered part of the Default model.

	 6.	 We now need to create the view in the database.

If you have the option and access, you can run the

following SQL script manually to do this. The script

can be found in the Misc folder in the code files under

the name OverallStatisticsViewScript.sql.

CREATE VIEW IF NOT EXISTS OverallStatistics AS select

 Week,

 Avg(SatisfactionScore) as SatisfactionScore,

 Count(*) as TotalCalls,

 (Avg(case

 �when QueueExitTime is not null then

QueueExitTime - QueueEntryTime

 end)) as AnswerSpeed,

 (Count(case

 when QueueExitTime is null then 1

 end) * 100.0) / count(*) as AbandonRate,

 (Count(*) / 9.00 / 60.00) as CallsMinute,

 (Count (case

 �when (QueueExitTime is not null) and

((QueueExitTime - QueueEntryTime) <

0.00208333333333333) then 1

 end)) as CallsLess180,

 (Count(case

 when SatisfactionScore < 3 then 1

 end)) as CallsLess3,

Chapter 5 Querying the Database

155

 (Count(case

 when SatisfactionScore < 3 then 1

 end) * 100.0 / count(*)) as CallsLess3Perc

from

 Call

GROUP BY

 Week;

	 7.	 In the case you cannot manage the database directly

or in situations where you want your applications to

update the database, you need to execute the script

using Aurelius features.

	 8.	 Aurelius defines the IDBStatement interface,

which allows us to pass plain SQL statements

and execute them directly. This takes place at the

TObjectManager level. Add the next private method

in TFormMain in MainForm.pas. Note that you need

to add Database.Session.Types in the interface

section now.

uses

 ...,

 Database.Session.Types;

type

 TFormMain = class(TForm)

 ...

 private

 ...

 procedure createViews(const dbSession: IDatabaseSession);

 end;

Chapter 5 Querying the Database

156

...

implementation

...

procedure TFormMain.createViews(const dbSession:

IDatabaseSession);

var

 statement: IDBStatement;

 sqlScript: string;

begin

 sqlScript:=

 'CREATE VIEW IF NOT EXISTS OverallStatistics AS select' +

 ' Week,' +

 ' avg(SatisfactionScore) as SatisfactionScore,' +

 ' Count(*) as TotalCalls,' +

 ' (Avg(case' +

 ' �when QueueExitTime is not null then

QueueExitTime - QueueEntryTime' +

 ' end)) as AnswerSpeed,' +

 ' (Count(case' +

 ' when QueueExitTime is null then 1' +

 ' end) * 100.0) / count(*) as AbandonRate,' +

 ' (Count(*) / 9.00 / 60.00) as CallsMinute,' +

 ' (Count (case' +

 ' �when (QueueExitTime is not null) and

((QueueExitTime - QueueEntryTime) <

0.00208333333333333) then 1' +

 ' end)) as CallsLess180,' +

 ' (Count(case' +

 ' when SatisfactionScore < 3 then 1' +

 ' end)) as CallsLess3,' +

Chapter 5 Querying the Database

157

 ' (Count(case' +

 ' when SatisfactionScore < 3 then 1' +

 ' end) * 100.0 / count(*)) as CallsLess3Perc ' +

 'FROM' +

 ' Call ' +

 'GROUP BY' +

 ' Week;';

 statement:=dbSession.objectManager.Connection.CreateStatement;

 statement.SetSQLCommand(sqlScript);

 statement.Execute;

end;

We declare an IDBStatement variable, and we use the

CreateStatement function to instantiate it. Then, we

load the script to the interface using SetSQLCommand

and finally execute it. In a full-scale application, most

likely you want to wrap statement.Execute in a

try-except branch.

In the preceding snippet, I have added some spaces

to make the SQL script readable. Obviously, this is not

necessary, as it is just a script. What matters, though,

is the space at the beginning (or the end) of each line

if you choose to create this concatenated string as

I have done. Otherwise, you will end up with a script

with adjacent words without any spaces.

	 9.	 Go to FormCreate event in MainForm.pas and call

createViews:

Chapter 5 Querying the Database

158

uses

 ...

 Aurelius.Drivers.Interfaces;

...

procedure TFormMain.FormCreate(Sender: TObject);

...

begin

 ...

 dbSession.databaseManager.UpdateDatabase;

 createViews(dbSession);

 setupGUI;

end;

	 10.	 If you check the code in the supplied files, I have

added the same code in the procedure that executes

the importing of the data. I will not mention it here

as it is the same as the preceding snippet.

	 11.	 Time to get our data from the view and show it in

the dashboard. Go to calculateStatistics in

TFormMain and retrieve the list of entities:

procedure TFormMain.calculateStatistics(const aWeek: TWeeks);

var

 session: IDatabaseSession;

 overallStatsList: TList<TOverallStatistics>;

begin

 �session:=TDatabaseSession.Create(SQLiteConnection.CreateConnection);

 �overallStatsList:=session.objectManager.

Find<TOverallStatistics>.List;

 overallStatsList.Free;

end;

Chapter 5 Querying the Database

159

	 12.	 As you can see, accessing a view in Aurelius is done

in the same way as accessing every other entity.

However, the preceding code breaks. Try to execute

it and you will see that Aurelius complains with the

message of “Class TOverallStatistics is not a valid

Entity. [Entity] attribute missing.” although we have

used Entity attribute in the class.

	 13.	 The reason for this error message is that we have

made TOverallStatistics part of Database model.

The call to Find in the preceding code accesses

the Default model. We need to instruct the object

manager to look at the Database model.

	 14.	 Open Database.Session.Types.pas and

add the following overloading function to

IDatabaseSession:

type

 IDatabaseSession = interface

 ...

 function objectManager: TObjectManager; overload;

 �function objectManager (const aModel: string):

TObjectManager; overload;

 end;

	 15.	 In Database.Session.pas, add the implementation

of the function. In this example, I have introduced

a dictionary to hold the different object managers

based on the model they serve. This can be handy

when multiple models are present. The following

code shows the full unit and highlights the

differences from before:

Chapter 5 Querying the Database

160

unit Database.Session;

interface

uses

 Database.Session.Types,

 Aurelius.Engine.DatabaseManager,

 Aurelius.Drivers.Interfaces,

 Aurelius.Engine.ObjectManager, System.Generics.Collections;

type

 �TDatabaseSession = class (TInterfacedObject,

IDatabaseSession)

 private

 fConnection: IDBConnection;

 fDatabaseManager: TDatabaseManager;

 �fObjectManagerDictionary: TObjectDictionary<string,

TObjectManager>;

 public

 constructor Create(const aConnection: IDBConnection);

 destructor Destroy; override;

{$REGION 'Interface'}

 function databaseManager: TDatabaseManager;

 function objectManager: TObjectManager; overload;

 �function objectManager (const aModel: string): TObjectManager;

overload;

{$ENDREGION}

 end;

implementation

uses

 System.SysUtils, Aurelius.Mapping.Explorer;

Chapter 5 Querying the Database

161

constructor TDatabaseSession.Create(const aConnection:

IDBConnection);

begin

 Assert(aConnection <> nil);

 inherited Create;

 fConnection:=aConnection;

 �fObjectManagerDictionary:=TObjectDictionary<string,

TObjectManager>.Create([doOwnsValues]);

end;

function TDatabaseSession.databaseManager: TDatabaseManager;

begin

 if not Assigned(fDatabaseManager) then

 fDatabaseManager:=TDatabaseManager.Create(fConnection);

 Result:=fDatabaseManager;

end;

destructor TDatabaseSession.Destroy;

begin

 fDatabaseManager.Free;

 fObjectManagerDictionary.Free;

 inherited;

end;

function TDatabaseSession.objectManager(const aModel: string):

TObjectManager;

var

 cModel: string;

begin

 cModel:=Trim(UpperCase(aModel));

 if cModel=" then

 Result:=objectManager

Chapter 5 Querying the Database

162

 else

 begin

 if not fObjectManagerDictionary.ContainsKey(cModel) then

 if cModel = 'DEFAULT' then

 �fObjectManagerDictionary.Add('DEFAULT', TObjectManager.

Create(fConnection))

 else

 fObjectManagerDictionary.Add(cModel,

 �TObjectManager.Create(fConnection,

TMappingExplorer.Get(cModel)));

 Result:=fObjectManagerDictionary.Items[cModel];

 end;

end;

function TDatabaseSession.objectManager: TObjectManager;

begin

 result:=objectManager('default');

end;

end.

We create a new instance of object manager for

each model. A simple call to the constructor of

TObjectManager passes the Default model. When

we need an object manager for specific model

other than the default, we use TMappingExplorer

to provide the internal structure of the

database representation we are interested in.

TMappingExplorer is responsible for scanning

through entities attached to a database model.

	 16.	 Now we are ready to access the content of the view.

We also factor in the filtering according to the week.

Chapter 5 Querying the Database

163

procedure TFormMain.calculateStatistics(const aWeek: TWeeks);

var

 ...,

 criteria: TCriteria;

 overallStatsList: TList<TOverallStatistics>;

begin

 �session:=TDatabaseSession.Create(SQLiteConnection.

CreateConnection);

 �criteria:=session.objectManager('Database').

Find<TOverallStatistics>;

 criteria:=filter(aWeek, criteria);

 overallStatsList:=criteria.List<TOverallStatistics>;

 overallStatsList.Free;

end;

We pass the name of the model (Database) to the

object manager, and we use filter to generate the

correct call according to the chosen week. Then,

we retrieve the content of the view and assign it to

overallStatsList. Note that we need to provide the

exact data type to List<> because we, now, do not

retrieve a list of criteria results, as we did previously.

	 17.	 From this point onward, we can easily access the

results and update the dashboard.

procedure TFormMain.calculateStatistics(const aWeek: TWeeks);

var

 ...,

 overallStats: TOverallStatistics;

begin

Chapter 5 Querying the Database

164

 �session:=TDatabaseSession.Create(SQLiteConnection.

CreateConnection);

 �criteria:=session.objectManager('Database').

Find<TOverallStatistics>;

 criteria:=filter(aWeek, criteria);

 overallStatsList:=criteria.List<TOverallStatistics>;

 ...

 for overallStats in overallStatsList do

 begin

 �lbSatisfactionValue.Text:=format('%2.2f', [overallStats.

SatisfactionScore]);

 lbTotalCallsValue.Text:= overallStats.TotalCalls.ToString;

 �lbAnswerSpeedValue.Text:=FormatDateTime('n:ss',

overallStats.AnswerSpeed);

 �lbAbandonRateValue.Text:=format('%3.2f%%', [overallStats.

AbandonRate]);

 �lbCallsMinuteValue.Text:=format('%3.2f', [overallStats.

CallsMinute]);

 �lbAnsweredLess180Value.Text:= overallStats.CallsLess180.

ToString;

 �lbSatisfactionScoreLess3Value.Text:= format('%d (%3.2f%%)',

 [overallStats.CallsLess3,

 overallStats.CallsLess3Perc * 100]);

 end;

 ...

 overallStatsList.Free;

end;

Chapter 5 Querying the Database

165

Note T he preceding code is different from the one you can find in
the code files. In the actual code, we need to manage the fact that we
present the results of week 4 and week 5 consolidated.

�Summary
In this chapter, we covered lot of ground. We started with simple queries

to get lists of agents and departments, and we moved on to explore

how we can build complex requests and take advantage of Aurelius’

fluent interface. We also saw how the framework provides options for

calculations and grouping. The last topic we discussed was database

views – a way to move heavy calculations totally to the server side and,

consequently, take advantage of the database engine.

Chapter 5 Querying the Database

167© John Kouraklis 2019
J. Kouraklis, Introducing Delphi ORM, https://doi.org/10.1007/978-1-4842-5013-6_6

CHAPTER 6

Enhancements
Our application has now most of its core functionality. It manages agents

and departments and shows the majority of the key performance indicators

and statistics. There are a few more bits to complete. In this chapter, we will

finish them and demonstrate some additional features of Aurelius.

�Inheritance
Inheritance is one of the most widely used features of OOP. It is useful

in numerous cases; it saves time and effort and, above all, leads to well-

designed object systems that support complicated concepts. Inheritance,

at the same time, poses a problem for database administrators. The way

inherited objects can be stored and retrieved in a database is the topic

of an almost ongoing debate. This case is an example where the way

developers think does not, easily, map to database structure.

Aurelius allows developers to design their classes in any way they

need and prefer, and then the framework takes responsibility and, with

minimum modifications, entities can be easily managed. In order to

understand how this works, we will add to our database information

about who (user) and when (date/timestamp) an entry was created and

modified. This is a common set of fields that can (or should) be present in

all the tables, but to keep things simple and clean we will implement it for

the TAgent table only. You may have already noticed that, in the MainForm,

we have already added the fields to display this information. As before,

please check the Call Centre – Inheritance for the code.

168

Consistent to OOP design, we would create a TBase class with the

following blueprint:

type

 TBase = class

 private

 FCreateUser: string;

 FCreateTS: TDateTime;

 FModifyUser: string;

 FModifyTS: TDateTime;

 public

 property CreateUser: string read FCreateUser write FCreateUser;

 property CreateTS: TDateTime read FCreateTS write FCreateTS;

 property ModifyUser: string read FModifyUser write FModifyUser;

 property ModifyTS: TDateTime read FModifyTS write FModifyTS;

 end;

Then, we would inherit TAgent from TBase to make the preceding

properties available to TAgent.

TAgent = class (TBase)

...

end;

The next step is to inform Aurelius there is an entity that inherits

properties from another one. This is, naturally, done with the use of

appropriate attributes that decorate the classes. There are two options

when it comes to inheritance in Aurelius: to represent it as a single table

in the database or to normalize the database and create linked tables.

There are both pros and cons for these two approaches; please refer to the

manual for details.

Single table (SingleTable) inheritance means that Aurelius picks all

the inherited entities which have the same ancestor class and stores all

the values from all the classes (both the ancestor and the inherited) in one

Chapter 6 Enhancements

169

single table in the database. You manage the entities in your code as you

normally do. You cannot see any difference. It is, only, when they inspect

the database itself that you observe the structure (Figure 6-1).

In the figure, the TAgent and TDepartment entities inherit from TBase

class. Aurelius puts all the fields in one table and adds a discriminatory

column, which allows it to retrieve the correct values. Note that since all

the fields are consolidated in one table, you cannot have fields with the

same name (compare AgentDescription and DepartmentDescription to

Description fields in the original classes). Additionally, the primary

fields (ID) are removed from the successors, and it is only required in the

TBase class.

Figure 6-1.  Single table inheritance database model

Chapter 6 Enhancements

170

For CallCentre application, we are going to implement the second

method that uses linked or joint tables (JoinedTables). We start from the

inherited entity and the base class, and Aurelius creates an equivalent

table structure in the database (Figure 6-2).

	 1.	 In Entities.pas, go to TBase class and decorate it

with the Inheritance attribute to indicate that we

want the JointTable strategy to be implemented. In

the following code snippet, I have also added all the

attributes to configure the entity for use by Aurelius:

...

type

 [Entity]

 [Table('Base')]

 [Id('FID', TIdGenerator.Guid)]

 [Inheritance(TInheritanceStrategy.JoinedTables)]

 TBase = class

 private

 [Column('ID', [TColumnProp.Required])]

 FID: TGuid;

Figure 6-2.  Joint table inheritance database model

Chapter 6 Enhancements

171

 [Column('CreateUser', [], 50)]

 FCreateUser: Nullable<string>;

 [Column('CreateTS', [])]

 FCreateTS: Nullable<TDateTime>;

 [Column('ModifyUser', [], 50)]

 FModifyUser: Nullable<string>;

 [Column('ModifyTS', [])]

 FModifyTS: Nullable<TDateTime>;

 public

 property ID: TGuid read FID write FID;

 �property CreateUser: Nullable<string> read FCreateUser

write FCreateUser;

 �property CreateTS: Nullable<TDateTime> read FCreateTS write

FCreateTS;

 �property ModifyUser: Nullable<string> read FModifyUser

write FModifyUser;

 �property ModifyTS: Nullable<TDateTime> read FModifyTS write

FModifyTS;

 end;

...

initialization

 ...

 RegisterEntity(TBase);

...

end.

Chapter 6 Enhancements

172

	 2.	 TBase is the ancestor class; now, we need to

move to the inherited class (TAgent) and add the

PrimaryJoinColumn attribute.

...
type

...
[Entity]
[Table('Agent')]
[PrimaryJoinColumn('BaseID')]

// [Id('FID', TIdGenerator.Guid)]
TAgent = class (TBase)
private

// [Column('ID', [TColumnProp.Required])]
// FID: TGuid;

...
public

...
// property ID: TGuid read FID write FID;

...

end;

We, also, need to delete the primary key property

(lines in comment tags) because TAgent inherits

the ID property from TBase class; Aurelius uses

the primary key of the ancestor as the primary key

of the successor. The two entities are now linked

in the code level, but they are separate tables at

database level. The question arises about how

Aurelius is able to link the two. The answer is

provided by the PrimaryJoinColumn attribute; in

the example, we pass BaseID and we, effectively,

indicate to the framework that a new field named

BaseID will be the foreign key for the Base table. If

PrimaryJoinColumn is omitted, Aurelius assumes

the name of the identifier field.

Chapter 6 Enhancements

173

	 3.	 Removing the primary key from TAgent has the

knock-off effect of destroying any associations

in which TAgent is involved unless we omit

PrimaryJoinColumn. We need to update them and

use BaseID instead.

	 4.	 In MainForm.pas, populate the CreateUser and

ModifyUser to reflect the name of the user and

the actions. As a simple approach, we use the user

"user" when the user adds or modifies an agent and

the user "system" when we import entities from

external sources.

procedure TFormMain.btAddAgentClick(Sender: TObject);

...

begin

 ...

 if form.ShowModal = mrOk then

 begin

�session:=TDatabaseSession.Create(SQLiteConnection.

CreateConnection);

 agent:=TAgent.Create;

 agent.Description:=Trim(form.edEntity.Text);

 agent.CreateUser:='user';

 TDatabaseUtilities<TAgent>.edit(session.objectManager, agent);

 updateAgents;

 end;

 ...

end;

...

Chapter 6 Enhancements

174

procedure TFormMain.btEditAgentClick(Sender: TObject);

...

begin

 ...

 if Assigned(agent) then

 begin

 ...

 if form.ShowModal = mrOk then

 begin

 agent.Description:=Trim(form.edEntity.Text);

 agent.ModifyUser:='user';

 TDatabaseUtilities<TAgent>.edit(session.objectManager, agent);

 updateAgents;

 end;

 ...

 end;

end;

	 5.	 In Database.Import.pas, update CreateUser field

to system.

procedure importData (const aFilename: string; const

aConnection: IDBConnection; const aImportFrame: TFrameImport);

...

begin

 ...

 for agentName in agentsDictionary.Keys do

 begin

 agent:=TAgent.Create;

 agent.Description:=agentName;

 ...

Chapter 6 Enhancements

175

 �TDatabaseUtilities<TAgent>.bitmapToBlob(agentPhoto, 'png',

agentBlob);

 agent.Photo:=agentBlob;

 agent.CreateUser:='system';

 ...

 end;

 ...

end;

	 6.	 Back in MainForm.pas, create a new procedure to

show these fields to the form.

interface

...

type

 TFormMain = class(TForm)

 ...

 private

 ...

 procedure loadAgentMetadata (const aGUID: string);

 public

 ...

 end;

...

implementation

...

procedure TFormMain.loadAgentMetadata(const aGUID: string);

var

 session: IDatabaseSession;

 agent: TAgent;

begin

 Assert(Trim(aGUID) <> ");

Chapter 6 Enhancements

176

 �session:=TDatabaseSession.Create(SQLiteConnection.

CreateConnection);

 agent:=session.objectManager.Find<TAgent>(Trim(aGUID));

 if Assigned(agent) then

 begin

 if agent.CreateUser.HasValue then

 lbCreateUser.Text:=agent.CreateUser.Value

 else

 lbCreateUser.Text:='Not Assigned';

 if agent.ModifyUser.HasValue then

 lbModifyUser.Text:=agent.ModifyUser.Value

 else

 lbModifyUser.Text:='Not Assigned';

 if agent.CreateTS.HasValue then

 �lbCreateTS.Text:=FormatDateTime('DD/MM/YYYY, HH:MM',

agent.CreateTS.Value)

 else

 lbCreateTS.Text:='Not Assigned';

 if agent.ModifyTS.HasValue then

 �lbModifyTS.Text:=FormatDateTime('DD/MM/YYYY, HH:MM ',

agent.ModifyTS.Value)

 else

 lbModifyTS.Text:='Not Assigned';

 end;

end;

Chapter 6 Enhancements

177

	 7.	 In OnSelectCell event of the agent’s grid, call

loadAgentMetadata to update the form.

procedure TFormMain.sgAgentsSelectCell (Sender: TObject; const

ACol, ARow:

 Integer; var CanSelect: Boolean);

begin

 ...

 loadAgentMetadata(sgAgents.Cells[2, ARow]);

 updateAgentList;

end;

�Events
When we used inheritance to keep track of the user who creates and

updates an agent, we did not touch the timestamps of those actions.

Obviously, it is very simple to add two or three lines to populate the create

and modify timestamp fields. In this case, however, we are going to turn

our attention to Aurelius events. Events is a general term used in software

engineering that indicates a mechanism where several entities exchange

messages.

Aurelius comes with such a system. The framework posts events as a

result of basic actions (insert, update, delete) that take place in a database. For

an up-to-date list of the available events, please refer to the technical manual.

The general course of actions in relation to the events follows these steps:

	 1.	 The application that uses Aurelius provides a

callback procedure and attaches (subscribes) it to

the events manager.

	 2.	 Every time the application performs a transaction in

the database, Aurelius event manager posts a message

to the subscribers by triggering the callback procedure.

Chapter 6 Enhancements

178

	 3.	 The callback procedure gives to the application

access to the entities and other details related to the

transaction.

	 4.	 When it is suitable (e.g., when the application exits),

the application should unsubscribe from Aurelius

events mechanism.

�OnInserting and OnUpdating Events
As you may have guessed, we are going to use events to update the

timestamps in our database and, in particular, the OnInserting and

OnUpdating, which occur right before an entity is saved or updated. “Right

before” in this instance means that Aurelius has completed any processing

of the entity and it is ready to hit the database. The code of this part is

available in the Call Centre – Events folder.

	 1.	 Add a new unit to the project and save it as

Database.Events.Types.pas and declare the

IDatabaseEvents interface.

unit Database.Events.Types;

interface

type

 IDatabaseEvents = interface

 ['{369927E5-976A-4263-9E66-31355C3E7C2C}']

 procedure subscribeEvents;

 procedure unsubscribeEvents;

 end;

implementation

end.

Chapter 6 Enhancements

179

	 2.	 Add another unit under the name Database.

Events.pas and add the following code:

unit Database.Events;

interface

uses

 Database.Events.Types,

 Aurelius.Events.Manager;

type

 TDatabaseEvents = class (TInterfacedObject, IDatabaseEvents)

 private

 fInsertingProc: TInsertingProc;

 fUpdatingProc: TUpdatingProc;

 public

 procedure subscribeEvents;

 procedure unsubscribeEvents;

 end;

implementation

end.

In the implementation of IDatabaseEvents

interface, we declare the two procedures that allow

us to subscribe and unsubscribe to Aurelius’ event

manager. We also declare two private variables

(fInsertingProc and fUpdatingProc) that

represent the callback procedure; that is, when

an entity is about to be inserted or updated in the

database, Aurelius will trigger these two procedures.

Chapter 6 Enhancements

180

	 3.	 Registering (and unregistering) them is done in the

following code:

unit Database.Events;

interface

...

implementation

uses

 Aurelius.Mapping.Explorer;

procedure TDatabaseEvents.subscribeEvents;

begin

 �TMappingExplorer.Default.Events.OnInserting.Subscribe

(fInsertingProc);

 �TMappingExplorer.Default.Events.OnUpdating.Subscribe

(fUpdatingProc);

end;

procedure TDatabaseEvents.unsubscribeEvents;

begin

 �TMappingExplorer.Default.Events.OnInserting.Unsubscribe

(fInsertingProc);

 �TMappingExplorer.Default.Events.OnUpdating.Unsubscribe

(fUpdatingProc);

end;

end.

We have come across the mapping explorer before

when we dealt with the views and different database

scheme models. We use the OnInserting and

OnUpdating gateways from the Events property of the

Chapter 6 Enhancements

181

TMappingExplorer to subscribe (and unsubscribe)

our custom callback procedures to Aurelius.

If you check the technical manual, you may notice that

you can pass an anonymous method directly to the

Subscribe and Unsubscribe methods of the mapping

explorer, which eliminates the need for separate

variables. The reason I chose to introduce the variables

is that I want to be able to clean up the procedures

manually rather than rely to the framework to nil-ify

them. This is more of a personal choice that I feel leads

to good coding practice but, admittedly, without any

strong advantages to support this argument.

One last note worth mentioning: as you can see in

the code, we attached the callback procedures to the

Default model of the database. This means that our

procedures will be triggered only when an entity in

our default model is involved in a transaction. In our

case, thankfully, we only have the view definition

outside the default model, so we are safe.

You may, however, have a different situation in a

full-scale application. It was mentioned before that

models can be useful to organize database scheme,

and a common use is to group together entities

related to security and authorization. Attaching the

events to the default model will isolate any triggering

from the Security model entities, as an example. If

you want to subscribe and unsubscribe events in a

different model, you can do it as in the following code:

TMappingExplorer.Get('Security').Events.OnInserting.

Subscribe(fInsertingProc);

Chapter 6 Enhancements

182

	 4.	 It is time now to define our event procedures.

Add a typical constructor and destructor to the

TDatabaseEvent class and define fInsertingProc.

unit Database.Events;

interface

...

type

 TDatabaseEvents = class (TInterfacedObject, IDatabaseEvents)

 private

 ...

 public

 constructor Create;

 ...

 end;

implementation

uses

 ...,

 Entities,

 System.SysUtils,

 Aurelius.Mapping.Explorer;

constructor TDatabaseEvents.Create;

begin

 inherited;

 fInsertingProc:= procedure (Args: TInsertingArgs)

 begin

 if Args.Entity is TAgent then

 begin

 (Args.Entity as TAgent).CreateTS:=Now;

 end;

 end;

end;

Chapter 6 Enhancements

183

We use the TInsertingArgs in the declaration of our

procedure. TInsertingArgs provides details about

the entity and the object manager that are involved

in the database transaction that triggers this event.

As we are interested in updating the agents’ data, we

filter the calls by checking that the TInsertingArgs.

Entity property is of TAgent. When the correct

entity is identified, we update the CreateTS field.

	 5.	 In a similar way, we define the fUpdatingProc and

populate the ModifyTS field.

unit Database.Events;

interface

...

implementation

...

constructor TDatabaseEvents.Create;

...

begin

 ...

 fUpdatingProc:= procedure (Args: TUpdatingArgs)

 begin

 if Args.Entity is TAgent then

 begin

 (Args.Entity as TAgent).ModifyTS:=Now;

 Args.RecalculateState:=True;

 end;

 end;

end;

Chapter 6 Enhancements

184

	 6.	 This procedure is the same as before with only one

subtle but important difference. When Aurelius

triggers an OnUpdating event, it has completed

the mapping of the entity and the parsing of any

changes, and it is ready to push the modifications to

the database. If you inspect Args.OldColumnValues

and Args.NewColumnValues properties, you can

identify the changes in the entity. However, this

opens up a gap; if any changes of entity’s properties

take place in the event itself, as we do in the

preceding code, Aurelius misses the opportunity to

consume the modifications, and consequently these

changes will not be saved in the database. The way

to resolve this is to set Args.RecalculateState to

true as this property will force Aurelius to reparse

the entity.

	 7.	 In the destructor, we clean things up by

unsubscribing the procedures from the events

manager and setting them to nil.

...

type

 TDatabaseEvents = class (TInterfacedObject, IDatabaseEvents)

 private

 ...

 public

 destructor Destroy; override;

 ...

 end;

implementation

...

Chapter 6 Enhancements

185

destructor TDatabaseEvents.Destroy;

begin

 unsubscribeEvents;

 fInsertingProc:=nil;

 fUpdatingProc:=nil;

 inherited;

end;

	 8.	 The last thing left to do is to manage the events in

the main form. Open MainForm.pas and update the

OnCreate event. Similarly, amend the code in the

OnDestroy event of the form as follows:

unit MainForm;

interface

uses

 ...,

 Database.Events.Types;

type

 ...

 TFormMain = class(TForm)

 ...

 private

 dbEvents: IDatabaseEvents;

 ...

 end;

...

implementation

uses

 ...,

 Database.Events;

Chapter 6 Enhancements

186

procedure TFormMain.FormCreate(Sender: TObject);

...

begin

 ...

 dbEvents:=TDatabaseEvents.Create;

 dbEvents.subscribeEvents;

 setupGUI;

end;

procedure TFormMain.FormDestroy(Sender: TObject);

begin

 ...

 dbEvents.unsubscribeEvents;

end;

�OnInserted and OnUpdated Events
Aurelius triggers OnInserted and OnUpdated events after the operations

in the underlying database have been completed, offering a window to

postprocess the entities. In this small section, we will see how we can

update CreateTS and ModifyTS using these events. The code is more

convoluted compared to the simple approach in the previous section.

Nevertheless, this part shows how you can use these events to modify

entities that have just been stored in the database. You can find this code in

Database.Events.Alternative.pas file in the code.

	 1.	 We first declare two variables to hold the event

procedures.

unit Database.Events.Alternative;

interface

...

Chapter 6 Enhancements

187

type

 TDatabaseEvents = class (TInterfacedObject, IDatabaseEvents)

 private

 fInsertedProc: TInsertedProc;

 fUpdatedProc: TUpdatedProc;

 public

 ...

 end;

	 2.	 The implementation of the procedures is as follows:

constructor TDatabaseEvents.Create;

var

 statement: IDBStatement;

 objManager: TObjectManager;

 sqlScript: string;

begin

 inherited;

 fInsertedProc:= procedure (Args: TInsertedArgs)

 begin

 if Args.Entity is TAgent then

 begin

 �statement:=(Args.Manager as

TObjectManager).Connection.

CreateStatement;

 sqlScript:='update Base set CreateTS = '+

 Double(Now).ToString+' where ID = '+

 �QuotedStr(TAgent(Args.Entity).

ID.ToString);

 statement.SetSQLCommand(sqlScript);

 statement.Execute;

 end;

 end;

Chapter 6 Enhancements

188

 fUpdatedProc:= procedure (Args: TUpdatedArgs)

 begin

 if Args.Entity is TAgent then

 begin

 �statement:=(Args.Manager as

TObjectManager).Connection.CreateStatement;

 sqlScript:='update Base set ModifyTS = '+

 Double(Now).ToString+' where ID = '+

 �QuotedStr(TAgent(Args.Entity).

ID.ToString);

 statement.SetSQLCommand(sqlScript);

 statement.Execute;

 end;

 end;

end;

	 3.	 In this approach, we use direct SQL calls to modify

the properties. We build an update SQL query and

execute it in the same way we did when we managed

the definition of the view we used in the previous

chapter.

In order to execute the SQL query, we need access

to the associated object manager. TInsertedArgs.

Manager provides the right instance of it (note the

need to cast this property to get access to the object

manager).

You may wonder why we did not use the usual

approach of instantiating an IDatabaseSession

and use a typical TObjectManager.Save to update

the entity. What stops us from this is the fact

that the OnInserted event is triggered before the

Chapter 6 Enhancements

189

insert transaction is fully completed and released.

This means that the database is locked to the

specific entity we are trying to modify in the event.

Therefore, this approach is unusable.

Additionally, even if we were able to bypass the

database locking, a call to Save from within the

event would generate subsequent calls to the

same event leading to a repetitive loop of Save and

OnInserted calls.

�TAureliusDataSet

Note T he code in this section requires the TeeChart TDBChart,
which is not part of the standard TeeChart package that comes with
Delphi. You need to visit TeeChart’s web site, download and install the
trial version (FMX component) if you want to run the code files.

Aurelius provides a dataset descendant (TAureliusDataSet) to facilitate

data binding with visual controls (data-aware). It is cross-platform and,

because it is based on Delphi’s own TDataSet component, it can be used

to link to any controls that employ TDataSet’s functionality. If you need

to look at the details, please visit the technical manual. You will be able to

find up-to-date information.

The dashboard tab in CallCentre includes two graphs we need to

populate. These graphs are based on TeeChart library which introduces

the TChart and TDBChart components. In this section, we are going to use

TAureliusDataSet to retrieve data in two different ways: one via the use

of criteria-based query and one via the implementation of a view. You can

find the full project in the Call Centre – TAureliusDataSet folder in the code

Chapter 6 Enhancements

190

file. Please, also, note that in this project I have replaced the TChart with a

TDBChart to take advantage of the data set functionality.

	 1.	 Open the CallCentre project, drop two

TAureliusDataSet components from the tool

palette, and name them as adsAbandonRate and

adsSatisfaction (Figure 6-3).

Figure 6-3.  The TAureliusDataSet components in the main form

	 2.	 Add a new private method updateCharts in the

MainForm. We will use this method to generate

the data for the charts. For now, it is empty; we

will populate it in the next steps. Add a call to the

method in updateDashboard.

Chapter 6 Enhancements

191

...

interface

type

 TFormMain = class(TForm)

 ...

 private

 ...

 procedure updateCharts (const aWeek: TWeeks);

 public

 ...

 end;

...

implementation

...

procedure TFormMain.updateCharts(const aWeek: TWeeks);

begin

 // We are going to fill this in in the next parts

end;

procedure TFormMain.updateDashboard(const aWeek: TWeeks);

begin

 ...

 updateCharts(aWeek);

end;

�Criteria-Based Data Set
The adsSatisfaction data set retrieves data from the database about

the satisfaction score of each agent. Locate updateCharts and add the

following code:

Chapter 6 Enhancements

192

procedure TFormMain.updateCharts(const aWeek: TWeeks);

var

 session: IDatabaseSession;

 criteriaAgents: TCriteria;

begin

 adsSatisfaction.Close;

 session:=TDatabaseSession.Create(SQLiteConnection.

CreateConnection);

 criteriaAgents:=session.objectManager.Find<TCall>

 .CreateAlias('AgentID', 'agent')

 �.Select(TProjections.

ProjectionList

 �.Add(TProjections.Avg(Linq

['SatisfactionScore']).

As_('SatisfactionScore'))

 �.Add(TProjections.

Prop('agent.Description').

As_('Agent'))

 �.Add(TProjections.Group

('agent.Description'))

)

 .OrderBy('agent.Description');

 criteriaAgents:=filter(aWeek, criteriaAgents);

 adsSatisfaction.SetSourceCriteria(criteriaAgents);

 adsSatisfaction.Open;

 BarSeries1.DataSource:=adsSatisfaction;

 BarSeries1.YValues.ValueSource:='SatisfactionScore';

 BarSeries1.XLabelsSource:='Agent';

end;

Chapter 6 Enhancements

193

As you can observe, we are not doing anything sophisticated. We

create a new instance of the IDatabaseSession and initialize it as we

have done many times already. Then, we construct the query based on

TCriteria. We have done this as well before. The only new twist here is

that we pass the criteria directly to TAureliusDataSet by, simply, calling

SetSourceCriteria.

�View-Based Data Set
For the second chart, we are going to use a view to demonstrate the

flexibility of TAureliusDataSet. First, let’s create the view; we need

the abandon rate grouped by department. Because of the way we have

designed CallCentre project, we, also, need it grouped by week.

We already know how to create a View; go to createViews procedure in

MainForm.pas and add the following lines. You can find the SQL script in

the code files in the Misc folder (AbandonRatePerDepartment.sql).

procedure TFormMain.createViews(const dbSession:

IDatabaseSession);

...

begin

 ...

 sqlScript:=

 �'CREATE VIEW IF NOT EXISTS AbandonRatePerDepartment AS

Select'+

 ' Call.ID,'+

 ' Week,'+

 ' Department.Description,'+

 ' (Count(case'+

 ' when QueueExitTime is null then 1'+

 ' end) ∗ 100.0) / count(∗) as AbandonRate '+
 'FROM'+

Chapter 6 Enhancements

194

 ' Call '+

 'INNER JOIN'+

 ' Department '+

 'ON Call.DepartmentID = Department.ID '+

 'GROUP BY'+

 ' Week,'+

 ' Department.ID '+

 'ORDER BY'+

 ' Week,'+

 ' Department.Description;';

 statement.SetSQLCommand(sqlScript);

 statement.Execute;

end;

In order to demonstrate different ways to link to TAureliusDataSet,

we are going to create a TList to hold the results of the preceding view.

Back in updateCharts, add the following code:

procedure TFormMain.updateCharts(const aWeek: TWeeks);

var

 ...,

 rateList: TList<TAbandonRatePerDepartment>;

begin

 ...

 adsAbandonRate.Close;

 �criteriaDepartments:=session.objectManager('Database').Find<T

AbandonRatePerDepartment>;

 criteriaDepartments:=filter(aWeek, criteriaDepartments);

 rateList:=criteriaDepartments.List<TAbandonRatePerDepartment>;

Chapter 6 Enhancements

195

 adsAbandonRate.SetSourceList(rateList);

 adsAbandonRate.Open;

 HorizBarSeries1.DataSource:=adsAbandonRate;

 HorizBarSeries1.YValues.ValueSource:='AbandonRate';

 HorizBarSeries1.XLabelsSource:='Description';

 rateList.Free;

end;

In this case, we use SetSourceList to pass data to TAureliusDataSet.

The way we build rateList is familiar and consistent with what we have

done up to this point. Note that in this case we need to explicitly free

rateList; otherwise we will induce memory leaks. However, we do not

have to do the same with TCriteria as it is intrinsically managed by the

data set.

�Summary
In this chapter, we looked at how object-oriented methodologies

blend with the functionality of Aurelius as an ORM framework. The

inheritance property of objects and the events provide opportunities

to automate processes and expand functionality. In addition, this

chapter demonstrated how we can use a graphical component

(TAureliusDataSet) to pass information to third-party data-aware

components.

Chapter 6 Enhancements

197© John Kouraklis 2019
J. Kouraklis, Introducing Delphi ORM, https://doi.org/10.1007/978-1-4842-5013-6_7

CHAPTER 7

Aurelius on the Move
It is common to use an ORM system to support desktop applications or

the back end of servers. This is exactly what we have done so far. We have

developed a FireMonkey desktop application and used Aurelius to access a

local database storage.

In this chapter, we take the task of moving Aurelius to mobile

platforms. You can use any kind of such platforms, be it mobile phones or

tablets. In the projects we work on in this part of the book, I use an Android

tablet running Android 7.0 Nougat.

�Data Accessibility
In the first chapter, we discussed how ORM frameworks fit in three-tier

applications (Figure 7-1). The CallCentre application we have been

working on all this time does not explicitly treat those layers separately

as we wanted to focus on Aurelius’ features. When you move to mobile

applications (not web applications that can be accessed via browsers), the

need to separate the concerns becomes more prominent as availability of

resources such as storage and computational power may be in inadequacy.

Broadly speaking, when it comes to utilizing a database, there are two

approaches you can take:

•	 Use a local database: This can be a database file as

the one we use in our application or a database server

running on the mobile (e.g., Berkeley DB, Couchbase

Lite, SQLite Server).

198

•	 Use a remote server–based database: In this

approach, the database is stored in a server in a remote

location, and the mobile application sends queries to

the server. This is usually implemented as REST client-

server architecture, and the exchange of data conforms

to predefined protocols (JSON, XML).

Aurelius can fit in all the preceding scenarios. In fact, once you use

the framework, it is not difficult to switch between different designs or,

even better, to use a combination of them; for example, you can use a local

database to store some user-specific data and connect to a server for the

main data sets.

Figure 7-1.  The role of ORM frameworks in three-tier applications
(reproduced from Chapter 1)

Chapter 7 Aurelius on the Move

199

�Local Database
Moving CallCentre to an Android installation with a local database is

not very hard to do. Our mobile solution implements the arrangement in

Figure 7-1 as an application that incorporates all the layers and uses a local

SQLite database. The full Delphi project can be found in the Call Centre –

Local folder in the code of this chapter, and you can find a project to start

working on your own in the Call Centre folder.

Our project is a FireMonkey application and, therefore, you should

be able to build it for Android and execute it. From the perspective of

Aurelius, we need to make a small adjustment. When we configured the

TAureliusConnection in ConnectionModule.pas, we hardcoded the

location and the name of the database file by adding the value of

“.\database.db” in the Database field in the wizard of the connection.

On Windows, this means that the database file is created in the same

directory as the executable (binary) file. On Android, there is a different

policy in place and applications can write files only in very special

locations managed by the operating system. In practice, this means that

the path we have will not work, and in fact if you run the project you will

see that it crashes when launched.

In order to fix this issue, we are going to ask the operating system to

provide the appropriate location. Delphi provides many ways to do this;

the simplest is to use the GetDocumentsPath function. The modification is

as follows in TSQLiteConnection.CreateConnection function. As you can

observe, I use the ANDROID conditional compiler directive to isolate the code.

unit ConnectionModule;

interface

...

implementation

...

uses

Chapter 7 Aurelius on the Move

200

 ...,

 System.IOUtils;

class function TSQLiteConnection.CreateConnection:

IDBConnection;

begin

{$IFDEF ANDROID}

 �SQLiteConnection.AureliusConnection1.Params.

Values['Database']:=

 TPath.Combine(TPath.GetDocumentsPath, 'database.db');

{$ENDIF}

 �Result := SQLiteConnection.AureliusConnection1.

CreateConnection;

end;

Figure 7-2 shows a screenshot of the CallCentre application on

Android.

Figure 7-2.  The CallCentre application on Android tablet

Chapter 7 Aurelius on the Move

201

Note T here are a few more changes that had to be done to make
CallCentre run on Android, but I skip them, as they are not Aurelius
related. To provide a guidance if you want to explore the code more,
look at the changes in FrameImportbtImportClick event in
MainForm.pas, the FileSelectForm.pas (which provides a
simple replacement of TOpenDialog for Android), the importData
method in Database.Import.pas, and the deployment of assets
(Deployment Manager).

�Remote Server–Based Database
A database can be hosted in a remote location accessible via HTTP

protocols. In such cases, a remote server feeds data to the client

applications using well-defined exchange rules and formats (distributed

applications). Moreover, the server, most of the times, incorporates a large

amount (if not all) of the business logic to lighten the work that needs to be

done in the client application (Figure 7-3).

Chapter 7 Aurelius on the Move

202

Aurelius, as an ORM framework, facilitates the access to the underlying

databases. In a server-client design, there are more than one ways to utilize

its capabilities. In Figure 7-4 you can see that the framework can fit in

either the client or the server side.

Figure 7-3.  Separation of the data and business layers in a client-
server arrangement

Chapter 7 Aurelius on the Move

203

�Client Side
When we look at a client application, which fetches data from a database,

we are essentially dealing with exchange of data in a way that the client

understands. Servers use JSON as the preferred (but not as the only)

format to send data over the Internet, and our ORM framework needs to be

able to decipher a JSON file and produce the required entities.

In order to demonstrate how Aurelius framework can assist in this

direction, we are going to use a sample data set from JSONPlaceholder

(2019) web site. JSONPlaceholder provides fake data sets accessible via

a RESTful API. At the time of writing, the data sets include data for posts,

Figure 7-4.  Aurelius can fit in both client and server sides of
distributed applications

Chapter 7 Aurelius on the Move

204

comments, and users. There are, also, data sets for albums and to-do lists

but we will not use them.

	 1.	 We are going to start by accessing the user with the

ID 1. Open a browser and add the following line in

the web address bar:

https://jsonplaceholder.typicode.com/users/1

JSONPlaceholder will respond with a JSON file like

the one in Figure 7-5.

Figure 7-5.  JSON response for a user from JSONPlaceholder web site

Chapter 7 Aurelius on the Move

https://jsonplaceholder.typicode.com/users/1

205

	 2.	 The response reveals three JSON objects: the user

itself, the address, and the company. Moreover,

address object has a geo object with geographical

coordinates.

	 3.	 Create a new console project and add a new unit

under the name Entities.pas. If you wish to see

the full project, check the User folder in the code

files of this chapter.

	 4.	 In Entities.pas, add the following code:

interface

uses

 SysUtils,

 Generics.Collections,

 Aurelius.Mapping.Attributes,

 Aurelius.Types.DynamicProperties;

type

 TAddress = class;

 TCompany = class;

 TGeolocation = class;

 TUsers = class;

 [Entity]

 [Table('Address')]

 [Id('Fid', TIdGenerator.None)]

 TAddress = class

 private

 [Column('id', [TColumnProp.Required])]

 Fid: Integer;

 [Column('street', [], 255)]

 Fstreet: string;

Chapter 7 Aurelius on the Move

206

 [Column('suite', [], 255)]

 Fsuite: string;

 [Column('city', [], 255)]

 Fcity: string;

 [Column('zipcode', [], 255)]

 Fzipcode: string;

 [Association([], CascadeTypeAll - [TCascadeType.Remove])]

 [JoinColumn('geo', [], 'id')]

 Fgeo: TGeolocation;

 public

 property id: Integer read Fid write Fid;

 property street: string read Fstreet write Fstreet;

 property suite: string read Fsuite write Fsuite;

 property city: string read Fcity write Fcity;

 property zipcode: string read Fzipcode write Fzipcode;

 property geo: TGeolocation read Fgeo write Fgeo;

 end;

 [Entity]

 [Table('Company')]

 [Id('Fid', TIdGenerator.None)]

 TCompany = class

 private

 [Column('id', [TColumnProp.Required])]

 Fid: Integer;

 [Column('name', [], 255)]

 Fname: string;

 [Column('catchPhrase', [], 255)]

 F???catchPhrase: string;

Chapter 7 Aurelius on the Move

207

 [Column('bs', [], 255)]

 Fbs: string;

 public

 property id: Integer read Fid write Fid;

 property name: string read Fname write Fname;

 �property catchPhrase: string read FcatchPhrase write

FcatchPhrase;

 property bs: string read Fbs write Fbs;

 end;

 [Entity]

 [Table('Geolocation')]

 [Id('Fid', TIdGenerator.None)]

 TGeolocation = class

 private

 [Column('id', [TColumnProp.Required])]

 Fid: Integer;

 [Column('lat', [], 255)]

 Flat: string;

 [Column('lng', [], 255]

 Flng: string;

 public

 property id: Integer read Fid write Fid;

 property lat: string read Flat write Flat;

 property lng: string read Flng write Flng;

 end;

 [Entity]

 [Table('Users')]

 [Id('Fid', TIdGenerator.None)]

 TUsers = class

Chapter 7 Aurelius on the Move

208

 private

 [Column('id', [TColumnProp.Required])]

 Fid: Integer;

 [Column('name', [], 255)]

 Fname: string;

 [Column('username', [], 255)]

 Fusername: string;

 [Column('email', [], 255)]

 Femail: string;

 [Column('phone', [], 255)]

 Fphone: string;

 [Column('website', [], 255)]

 Fwebsite: string;

 [Association([], CascadeTypeAll - [TCascadeType.Remove])]

 [JoinColumn('company', [], 'id')]

 Fcompany: TCompany;

 [Association([], CascadeTypeAll - [TCascadeType.Remove])]

 [JoinColumn('address', [], 'id')]

 Faddress: TAddress;

 public

 property id: Integer read Fid write Fid;

 property name: string read Fname write Fname;

 property username: string read Fusername write Fusername;

 property email: string read Femail write Femail;

 property phone: string read Fphone write Fphone;

 property website: string read Fwebsite write Fwebsite;

 property company: TCompany read Fcompany write Fcompany;

 property address: TAddress read Faddress write Faddress;

 end;

Chapter 7 Aurelius on the Move

209

implementation

initialization

 RegisterEntity(TGeolocation);

 RegisterEntity(TAddress);

 RegisterEntity(TUsers);

 RegisterEntity(TCompany);

finalization

end.

In the preceding code, you can see familiar elements

and there is nothing new, actually. The reason I

include the full unit is to emphasize a few points in

relation to the original JSON file the Placeholder site

generated.

	 a.	 The mapped members must have the exact case as they

appear in the JSON file. The corresponding properties,

though, can have a different case.

	 b.	 The linked (associated) entities should not be declared as

Lazy. The information in the JSON file as supplied by the web

site is not enough for Aurelius to manage lazy loading.

	 c.	 Nullable<T> data types should not be declared. This means

all properties should be mandatory at database level.

	 5.	 Add the following code to retrieve the JSON file from

the web site:

...

uses

 System.SysUtils,

 IdHTTP;

Chapter 7 Aurelius on the Move

210

var

 idHTTP: TIdHTTP;

 response: string;

begin

 try

 idHTTP:=TIdHTTP.Create(nil);

 �response:=idHTTP.Get('http://jsonplaceholder.typicode.com/

users/1');

 idHTTP.Free;

 except

 ...

 end;

end.

If you debug the code, you will see that response

gets the full JSON file. Additionally, as a quick note,

I use the http protocol rather than the https to

simplify the use of TIdHTTP component.

	 6.	 Now, let us reconstruct the user entity. In order to

do this, we need help from Aurelius. The framework

provides a helper class in BCL.JSON unit, which is

capable of serializing and deserializing objects in

JSON format. The helper function uses generics to

infer the properties of an object and then produces

a string with the JSON representation. The usage is

straightforward.

Chapter 7 Aurelius on the Move

211

...

uses

 System.SysUtils,

 IdHTTP,

 Entities in 'Entities.pas',

 Bcl.Json;

var

 ...,

 newUser: TUsers;

begin

 try

 ...

 newUser:=TJSON.Deserialize<TUsers>(response);

 newUser.Free;

 idHTTP.Free;

 except

 ...

 end;

end.

newUser holds now all the values from the JSON

response. Aurelius created a new instance of TUsers

as you can observe if you set a breakpoint and see

the object in the debugger (Figure 7-6). At this stage,

we’ve got an entity that can be managed in isolation

or in a fresh Aurelius database virtual system.

Chapter 7 Aurelius on the Move

212

Figure 7-6.  A new instance of JSON-created TUser object

Chapter 7 Aurelius on the Move

213

	 7.	 The last thing we do is to free the newUser instance.

However, if you run the code and check for memory

leaks, you will see there are some bytes we have

not cleaned up. The reason is that TUser links to

two other objects (TAddress and TCompany) and

TAddress to another one (TGeolocation). We have

to explicitly free them too.

begin

 try

 ...

 newUser:=TJSON.Deserialize<TUsers>(response);

 newUser.address.geo.Free;

 newUser.address.Free;

 newUser.company.Free;

 newUser.Free;

 idHTTP.Free;

 except

 ...

 end;

end.

This demonstrates how easy it is to manipulate JSON files from

external and third-party APIs. If you want to see how you can retrieve

lists of objects from JSONPlaceholder, have a look at the Client folder in

the code files of this chapter (AureliusClient project), which can run on

multiple platforms (Figure 7-7).

Chapter 7 Aurelius on the Move

214

�Server Side
Serving a REST server that uses Aurelius is similar to what we did in the

previous section but in the opposite fashion. Instead of deserializing an

object, we just serialize it to a JSON string.

...

 serialisedUser:=TJSON.SerializeAs<TUsers>(newUser);

...

�XData
The previous examples demonstrate how to manage rather arbitrary JSON

data structures, meaning that the structure of the generated JSON file does

not adhere to any rules and it is really a matter of decisions made by the

developers of JSONPlaceholder.

Figure 7-7.  Aurelius deserialization of JSON files using
JSONPlaceholder’s API

Chapter 7 Aurelius on the Move

215

This may not pose a problem if the scale of the projects you are

involved in is not big, but in general it is safer to use more standardized

approaches. Open Data Protocol (OData, 2019) is a set of rules to build

RESTful APIs, and a big part of it involves the definition of appropriate

JSON file structure. TMS provides TMS XDATA, a product inspired by

OData and smoothly integrated with Aurelius.

Aurelius is, deeply, intertwined with XData; and, this gives the

advantage of generating, very quickly and efficiently, a server-client

solution backed by a database. As a case, we are going to create a server

that exposes the database and the entities from our CallCentre project

and a client that retrieves the agents’ data. You can find the projects of this

part in the XData folder in the code files.

Note T he projects in this section require TMS XData. This is a
separate product sold by TMS. You can download a trial version from
the TMS product page.

The server is able to access the database entities via a typical Aurelius

connection as we have configured and used in the previous chapters.

	 1.	 After you have XData installed in your Delphi

environment, go to File ➤ New ➤ Other… ➤ TMS

XData and select TMS XData VCL Server (Figure 7-8).

Chapter 7 Aurelius on the Move

https://tmssoftware.com/site/xdata.asp

216

That is pretty much what you have to do to create

the server.

	 2.	 Go to Unit1.pas (or to Container.pas of the Server

project in the XData folder) in the design mode and

select the XDataServer component. In the object

inspector, enter http://+:2001/callcenter in

the BaseUrl field (Figure 7-9). This is the address

we will use to access the database entities. In

order for this to work correctly on Windows, the

address needs to be registered with the operating

system. If you want to see how to do this, please

refer to the XData manual. Additionally, make

sure you check the List and Get options in the

DefaultEntitySetPermissions.

Figure 7-8.  Selecting XData wizard from the File ➤ New menu in
Delphi

Chapter 7 Aurelius on the Move

217

	 3.	 Configure AureliusConnection to use a local

SQLite database.

	 4.	 Add the Entities.pas file from our main

CallCentre project.

	 5.	 Run the project and make sure the server is running.

	 6.	 Open a web browser.

	 7.	 Enter http://localhost:2001/callcentre in the

address bar and hit Enter. You will be able to see

the available endpoints the server has generated

(Figure 7-10). As you can observe, they represent the

entity names of our database design. Aurelius has

supplied them to XData server.

Figure 7-9.  The edited XDataServer properties

Chapter 7 Aurelius on the Move

218

	 8.	 Enter http://localhost:2001/callcentre/Agent

in the address bar and hit Enter. Now we get a list of

the agents (Figure 7-11). Aurelius has, successfully,

fetched the data from the database and XData has

exposed them in a JSON format.

Figure 7-10.  XData retrieves the entity structure from Aurelius and
makes it accessible via an API

Chapter 7 Aurelius on the Move

219

The involvement of Aurelius finishes at this stage. XData provides

the TXDataClient component that can be used in a client application

and makes the manipulation of JSON data as easy as when you deal with

Aurelius directly. In fact, it exposes a fluent interface that assimilates the

Aurelius methods.

Let us create a simple project to consume the data XData sends. You

can find the complete project under the name Client in the XData folder.

	 1.	 We need a form to show the data we receive like in the

Figure 7-12. There is no reason to go through the details

here. You can find the form if you like in the code files.

Figure 7-11.  List of agents as generated by XData

Chapter 7 Aurelius on the Move

220

	 2.	 In the OnCreate and OnDestroy events of the button

at the top of the form, add the following code to

instantiate TXDataClient:

...

interface

type

 TForm1 = class(TForm)

 ...

 procedure FormDestroy(Sender: TObject);

 procedure FormCreate(Sender: TObject);

 private

 fClient: TXDataClient;

 public

Figure 7-12.  Final form showing data retrieved via XDataClient

Chapter 7 Aurelius on the Move

221

 { Public declarations }

 end;

...

implementation

procedure TForm1.FormCreate(Sender: TObject);

begin

 fClient:=TXDataClient.Create;

end;

procedure TForm1.FormDestroy(Sender: TObject);

begin

 fClient.Free;

end;

	 3.	 In the OnClick event of the button at the top of the

form, we pass the server address to the XDataClient

and call loadAgents and, consequently, loadData.

We also need to use the Database.Utilities unit.

type

 TForm1 = class(TForm)

 ...

 procedure btFetchClick(Sender: TObject);

 private

 ...

 procedure loadAgents;

 procedure loadData(const aGUID: string);

 public

 ...

 end;

...

implementation

Chapter 7 Aurelius on the Move

222

uses

 ...,

 Database.Utilities;

procedure TFormMain.btFetchClick(Sender: TObject);

begin

 fClient.Uri:=edURL.Text;

 loadAgents;

end;

procedure TFormMain.loadAgents;

var

 list: TList<TAgent>;

 agent: TAgent;

begin

 ...

 list:=fClient.List<TAgent>;

 for agent in list do

 begin

 ...

 end;

 list.Free;

end;

procedure TFormMain.loadData(const aGUID: string);

var

 ...,

 agent: TAgent;

begin

 agent:=fClient.Get<TAgent, TGUID>(StringToGUID(aGUID));

 if Assigned(agent) then

Chapter 7 Aurelius on the Move

223

 begin

 ...

 end;

end;

I have omitted the code that updates the user interface for simplicity.

The points to be noted refer to the highlighted parts in the preceding code.

The code lines show how we can use XDataClient. A closer observation

reveals that the format of the calls to generate the database entities from

the JSON file is, exactly, the same as in Aurelius.

�Summary
In this chapter, we considered how to move Aurelius to mobile platforms.

There are some implications, and at the same time new opportunities

arise. We moved the application we developed in the previous chapters to

mobile platforms, and we explored how Aurelius can sit in either the client

or the server side to serve different needs.

�References
OData, 2019. Open Data Protocol. [Online] Available at: www.odata.org/

[Accessed 06 05 2019].

Placeholder, J., 2019. JSONPlaceholder. [Online] Available at: https://

jsonplaceholder.typicode.com/ [Accessed 05 05 2019].

Chapter 7 Aurelius on the Move

http://www.odata.org/
https://jsonplaceholder.typicode.com/
https://jsonplaceholder.typicode.com/

225© John Kouraklis 2019
J. Kouraklis, Introducing Delphi ORM, https://doi.org/10.1007/978-1-4842-5013-6_8

CHAPTER 8

TMS Data Modeler
All the code we have developed up to this point centers on the code-first

approach. This means that our database design is based on the needs we

identify when we get our hands in the application design. As developers,

we first consider the business side of an application and then we resolve to

object-oriented patterns in order to build a software solution.

As discussed in Chapter 1, code-first approach is not the only available

path developers can take. They can equally start from modeling the back

end of the software solution they are designing (model-first) or, in the very

real and common cases where software needs to be developed on existing

databases, they look at the database first and construct the application to

fit in the database (database-first pattern).

�The Application
Aurelius, as we have seen, makes code-first design a breeze. For the other

approaches, we turn our focus to TMS Data Modeler. Data Modeler is

a proprietary application developed and maintained by TMS Software

and comes as a separate product. It provides a flexible and easy way to

manage both model-first and database-first designs. In the next sections,

we explore the two approaches using the CallCentre project. There is a

wealth of features in the application, and you can find more details in the

technical manual that accompanies the product.

https://tmssoftware.com/site/tmsdm.asp

226

For our examples, there are three points to look at:

•	 Diagram (Model) Editor: This is accessible from the

left-side panel and provides a graphical representation

of the entities and the tables in a database (Figure 8-1).

Data Modeler organizes graphs of entities into diagrams.

•	 Importing of existing databases: In the cases where an

existing database is being inherited to the project, you

can import the database schema and allow Data Modeler

generate the tables and the entities automatically.

•	 Export to Aurelius entities: This is perhaps the most

valuable feature of Data Modeler. Once the entities have

been defined, Data Modeler can generate a Delphi unit

with the declarations of the classes you need for Aurelius.

Note  The examples in this chapter require the Data Modeler
application which is a separate product sold by TMS Software. Please
check the product page in the company’s web site.

Figure 8-1.  The Data Modeler application (diagrams)

Chapter 8 TMS Data Modeler

227

�Model-First
In this approach, developers work at a conceptual level. They are not

concerned with the database specificities and focus on implementing

entity designs to support the business value and challenges of the

applications they are developing. Let’s move on and create a model for our

CallCentre project. You can find the full Data Modeler project in the files

that come with this book (CallCentre.dgp).

	 1.	 Create a new project in Data Modeler by selecting

the File ➤ New ➤ New Project menu.

	 2.	 In the next dialog box, select SQLite as the database

of our preference (Figure 8-2). This is the database

engine we use in our examples, but in case you want

to change to something else Data Modeler allows you

to migrate a project from one database to another.

	 3.	 Select Diagrams from the left-sidebar and you will

see a diagram already created (Main Diagram).

Select the Design tab in the Ribbon and click Table

item (Figure 8-3). After you select the button in the

Ribbon, you need to click the white space in the

Main Diagram tab to see the details of the table.

Figure 8-2.  Target database dialog when a new project is generated

Chapter 8 TMS Data Modeler

228

	 4.	 Add the details of the Department entity as seen in

Figure 8-4. Two fields worth mentioning in this form

are the Logic Type and the Physical Type fields. You

can only change the logic type of a field in an entity.

This is where you declare what kind of data you are

expecting the field to hold. Then, Data Modeler works

out the actual field type in the database. It is able to do

this because when we created the project we declared

SQLite as the underlying database engine.

Figure 8-3.  Inserting a new table in the project

Chapter 8 TMS Data Modeler

229

	 5.	 Create the entities for Agent and Call as in

Figures 8-5 and 8-6.

Figure 8-4.  The details of Department entity

Chapter 8 TMS Data Modeler

230

Figure 8-5.  The details of Agent entity

Chapter 8 TMS Data Modeler

231

	 6.	 At this stage, we have the entities in our model.

The next step is to create the associations between

them. In Call entity, there is the DepartmentID

field that represents the foreign key to the ID field

in Department entity. Go back to the Main Diagram

and select the Non-ID Relationship from the Ribbon

(Design tab) as in Figure 8-7. Non-ID relationship in

Aurelius is an association between two entities where

the foreign key is not part of the primary key; for

example, if we had a compound primary key in Call

comprising the department (e.g., 1-Air Condition),

then we would have to link Department and Call via

a normal relationship and not a non-ID relationship.

The latter type is the most commonly used.

Figure 8-6.  The details of Call entity

Chapter 8 TMS Data Modeler

232

Using the mouse, drag a line from Department to Call.

This will open the Relationship Editor (Figure 8-8).

Click the Child Table ID field and you will be able to

select a different value. This is not very obvious in the

user interface; you may need to double-click the ID

field. Select DepartmentID as the foreign key in Call.

In the same form, you can adjust how you want the

relationship to behave in the case of a deletion or

update of a Department. Then click OK.

Figure 8-7.  Inserting a non-ID relationship

Chapter 8 TMS Data Modeler

233

	 7.	 In a similar way, add a relationship between Agent

and Call.

At this stage, you should have all the entities defined and the

relationship declared. The main diagram should look like the one in

Figure 8-1.

�Database-First
The other approach to work with databases and ORM frameworks is to

start from a database. This means that you or someone else has already

created the tables, the field, and all the associations the database (and

Figure 8-8.  The Relationship Editor

Chapter 8 TMS Data Modeler

234

the applications that use it) needs. It is very handy to be able to inspect

the database and, somehow, regenerate the model of the database and,

consequently, the entities in our ORM. We can achieve this in Data

Modeler via the reverse engineering feature.

For completeness, it should be noted that TAureliusConnection

allows the generation of entity classes by scanning the attached database

directly from the IDE. This is a shortcut to the database-first approach.

Although this functionality is very handy, it does not allow any level of

customization. On the other hand, Data Modeler offers a wealth of options.

In order to demonstrate how it works, we are going to use a database

from the previous chapters. You can generate the database running one of

the projects we developed in Chapter 7.

	 1.	 Create a new project in Data Modeler by selecting

the File ➤ New ➤ Import from Database menu.

	 2.	 In the wizard, create a new SQLite connection

(Figure 8-9) and then locate the database file

(Figure 8-10).

Chapter 8 TMS Data Modeler

235

Figure 8-9.  The reverse engineering wizard (new connection)

Chapter 8 TMS Data Modeler

236

	 3.	 Select Import and complete the wizard. Now, you

have the model based on the database file and you

are able to do any amendments you wish.

�Export to Aurelius
In the previous sections, we created a model from scratch without getting

into any details from any database, and we imported the scheme from a

database and generated the corresponding model. The next step is to link

back to the ORM framework.

Figure 8-10.  The reverse engineering wizard (database file)

Chapter 8 TMS Data Modeler

237

Data Modeler provides the ability to export the model to Aurelius. It

is one of the most valuable features in my view as it removes the need to

write code manually. You can create one or more units with entities, fields,

properties, and associations very easily which increases productivity a lot.

You may wish to do some adjustments, but it can save you a lot of time and

effort, especially if you are dealing with massive databases.

�Entities
It is very easy to create a unit with all the entities in your database. Here we

are going to create the basic entities we used in the CallCentre project.

	 1.	 Go to Tools tab in the Ribbon and select TMS

Aurelius (Figure 8-11).

	 2.	 The following form is revealed (Figure 8-12).

Figure 8-11.  The TMS Aurelius export option in Data Modeler

Chapter 8 TMS Data Modeler

238

	 3.	 Click the Mappings tab and keep the Agent, Call,

and Department entities checked. This tells the

wizard to generate Aurelius code for these entities

only (Figure 8-13).

Figure 8-12.  TMS Aurelius Export form (General Settings)

Chapter 8 TMS Data Modeler

239

The options in the form are self-explanatory. You

have the ability to affect the generated code by

modifying the name of the properties or the data

type itself and preview the associations by switching

to the Associations tab.

	 4.	 Switch to the Many-Valued Associations tab

(Figure 8-14). If you have the Agent entity selected,

you will see that the wizard can generate a list which

links back to the associated endpoint (Call). This

is something we added manually when we were

exploring the many-valued associations, and the

Figure 8-13.  TMS Aurelius Export form (Mappings)

Chapter 8 TMS Data Modeler

240

lists are not compulsory for the ORM framework to

work. Nevertheless, it is very helpful as it allows the

drilling down of data.

	 5.	 Before the wizard exports the Aurelius entities, you

can see the generated code if you go to the Preview

tab (Figure 8-15). You are not able to modify the

code here but only to observe what the wizard will

generate. If you wish to add or remove entities, go

back to the Mappings tab, make your changes and

the code will be updated.

Figure 8-14.  TMS Aurelius Export form (Preview)

Chapter 8 TMS Data Modeler

241

�Dictionary
In General Settings tab in the Export wizard, there is a set of options that

determine the creation of a property dictionary (Figure 8-16). These

options can be confusing as most of the Delphi developers are familiar

with the TDictionary class and they expect to see something that uses it.

Figure 8-15.  TMS Aurelius Export form (Mappings/Many-Valued
Associations)

Chapter 8 TMS Data Modeler

242

What this dictionary is in the context of the Data Modeler and Aurelius

is a convenient mapping of the properties in the entities to equivalent

fields in classes. In this way, instead of referring to the properties in

queries and projections by entering hardcoded strings, you can use class

properties.

For example, in CallCentre project, we have the function filter,

which adds a filter to queries.

...

function TFormMain.filter(const aWeek: TWeeks; const aCriteria:

TCriteria):

 TCriteria;

begin

Figure 8-16.  Dictionary options in TMS Aurelius Export form

Chapter 8 TMS Data Modeler

243

 if aWeek = wWeek4 then

 result:= aCriteria.Add(Linq['Week'] >= 4)

 else

 result:= aCriteria.Add(Linq['Week'] = integer(aWeek)+1);

end;

Using the dictionary, we can make the following adjustment to the

function:

...

uses

 ...,

 Entities.Dictionary;

...

function TFormMain.filter(const aWeek: TWeeks; const aCriteria:

TCriteria):

 TCriteria;

begin

 if aWeek = wWeek4 then

 �result:=aCriteria.Add(Linq[entitiesDic.Call.Week.PropName]

> = 4)

 else

 �result:= aCriteria.Add(Linq[entitiesDic.Call.Week.PropName]

= integer(aWeek)+1);

end;

The benefit we get from this approach is that we no longer worry about

making any mistakes when we enter entity properties. Instead, we rely to

the entitiesDic to provide the right property name. The downside is that

the code may be seen as more convoluted as there are multiple references

to a chain of properties. It is, really, on you to see whether and how this can

fit in your coding style.

Chapter 8 TMS Data Modeler

244

�Events
The Aurelius unit the Data Modeler creates can be, directly, used to your

applications. There are, however, occasions where some fine-tuning of the

code is required. One such occasion is the inheritance strategy we followed

when we wanted to introduce the create and modify details in the agent

entries. This modification cannot be achieved using the export wizard.

Instead, we need to use another mechanism that is provided by Data

Modeler. The application introduces a number of events triggered during

the generation of the Aurelius source code. More specifically, at the time of

writing, the following events are generated:

•	 When a unit is fully created (OnUnitGenerated)

•	 When a class (entity) is completely created

(OnClassGenerated)

•	 When a property and the corresponding field are

created in a class (OnColumnGenerated)

•	 When an association is created

(OnAssociationGenerated)

•	 When a many-valued association is created

(OnManyValuedAssociationGenerated)

You can find the full details for the events in the manual of Data

Modeler. For our inheritance case, we will focus on the OnClassGenerated

event. If we refer back to the modifications we did in our code to introduce

and configure inheritance, we see that we added and removed some code

from the TBase and TAgent classes.

Chapter 8 TMS Data Modeler

245

In TBase class, we, only, added the inheritance attribute. Let us do

this in Data Modeler.

	 1.	 Launch the Aurelius Export wizard and make sure

that the Base entity is selected in the Mappings tab

(Figure 8-15). You can click the Preview tab and

make sure code for TBase appears.

	 2.	 Switch to the Script tab and click Declare Events

button. You should be able to see all the events the

wizard supports. We need the OnClassGenerated, so

you can delete the rest to keep the script simple.

	 3.	 Add the following code:

procedure OnClassGenerated(Args: TClassGeneratedArgs);

begin

 if Args.CodeType.Name = 'TBase' then

 begin

 Args.CodeType.AddAttribute('Inheritance').

 �AddRawArgument('TInheritance

Strategy.JoinedTables');

 end;

end;

	 4.	 You can check that the attribute has been added in

TBase entity if you go to the Preview tab.

Tip  If you want to check the properties and methods
TClassGeneratedArgs (and, for this purpose, other data types in
the script), you can use the embedded debugger. In the Script tab,
click Debug and, in the debugger, select the View ➤ Library menu. You
will be able to explore the whole class tree the scripting engine uses.

Chapter 8 TMS Data Modeler

246

For TAgent, we need to declare that the class inherits from TBase and

then remove the ID (primary key) field, property, and attribute.

	 1.	 In the same procedure in the script, add the following

code. This will make TAgent an ancestor of TBase.

procedure OnClassGenerated(Args: TClassGeneratedArgs);

begin

 if Args.CodeType.Name = 'TAgent' then

 begin

 // Add the Base class

 �Args.CodeType.BaseType:=TCodeTypeReference.Create

('TBase');

 end;

 ...

end;

Next, we remove the FID field, the ID property, and

the Id attribute from the class. The process is the

same for all three things and, therefore, I will just

show the code.

procedure OnClassGenerated(Args: TClassGeneratedArgs);

var

 field: TCodeTypeMember;

 attr: TCodeAttributeDeclaration;

 i: integer;

begin

 if Args.CodeType.Name = 'TAgent' then

 begin

 ...

 // Remove the ID Field

 for i:=Args.CodeType.Members.Count - 1 downto 0 do

 begin

Chapter 8 TMS Data Modeler

247

 field:=Args.CodeType.Members.Items[i];

 if field.Name='FID' then

 begin

 Args.CodeType.Members.Delete(i);

 break;

 end;

 end;

 // Remove the ID property

 for i:=Args.CodeType.Members.Count - 1 downto 0 do

 begin

 field:=Args.CodeType.Members.Items[i];

 if field.Name='ID' then

 begin

 Args.CodeType.Members.Delete(i);

 break;

 end;

 end;

 // Remove the ID Attribute

 �for i:=Args.CodeType.CustomAttributes.Count – 1

downto 0 do

 begin

 attr:=Args.CodeType.CustomAttributes.Items[i];

 if attr.Name='Id' then

 begin

 Args.CodeType.CustomAttributes.Delete(i);

 break;

 end;

 end;

 end;

 ...

end;

Chapter 8 TMS Data Modeler

248

Note that I iterate through the Members object list

twice because removing an item affects the list

itself, and I am not sure how sophisticated the script

interpreter is. Additionally, the interpreter does not

understand the for..in loop notation. You can find

the script in the code files (DataModelerScript.pas).

�Summary
In this chapter, we look at another tool that accompanies Aurelius and can

assist developers. TMS Data Modeler provides a way to implement model-

and database-first approaches, and it adds value by automating the entity

units Aurelius consumes. At the same time, the tool offers a flexible way to

customize the final units.

Chapter 8 TMS Data Modeler

249© John Kouraklis 2019
J. Kouraklis, Introducing Delphi ORM, https://doi.org/10.1007/978-1-4842-5013-6

Index

A
Aurelius

database connectivity, 30, 31
IDBConnection interface, 31, 33

adapter mode, 33–35
DBConnection wizard, 38,

39, 41
driver mode, 36
TAureliusConnection

component, 36–38
licensed version, 23

installation, 24–26
package rebuild tool, 26–28
subscription manager, 29

ORM paradigm (see ORM
paradigm, Aurelius)

trial version, 20, 22, 23
Automapping attribute, 67
AutoMappingMode property, 67

B
Blobs

bitmapToBlob, 115
btDeletePhoto album, 115, 116
bytes, 109
IsNull function, 113

loadPhoto, 112, 113
TAgent, 108
TDatabaseUtilities, 109–111
TFormMain, 111
TImage component, 112
TOpenDialog component, 114

BuildDatabase, 87
Business core library (BCL), 24

C
Call center application, 93

agents, 73
dashboard, 71, 72
database connection, 85–87
departments, 72, 73
IDatabaseSession, 87–91
log file, 70
workflow, 70

Client server database
Entities.pas, 205–209
JSON Placeholder, 203

API, 214
JSON response, 204
site generated, 209, 210
TIdHTTP component,

210, 211
TUsers, 211–213

https://doi.org/10.1007/978-1-4842-5013-6

250

D
Data accessibility, 197

local database, 197, 199
CallCentre application, 200
GetDocumentsPath

function, 199
TSQLiteConnection.

CreateConnection
function, 199, 200

ORM, 198
remote server-based

database, 198
client side (see Client server

database)
server side, 203, 214

DateTime field, 64, 66

E
Entities

adding, 93–96
CallCentre, 75–77
deleting, 116, 117
Entities.pas, 84, 85
editing (updating), 102, 104–108
importing, 118–122
listing, 96–102
ManyValuedAssociation

attribute, 83, 84
TCall class, 78, 79

Events, 177
OnInserting and OnUpdating,

186–189
Args.OldColumnValues, 184

destructor, 184, 185
fInsertingProc and

fUpdatingProc, 179, 180
IDatabaseEvents interface,

178, 179
ModifyTS field, 183
OnCreate event, 185
OnDestroy event, 185
Subscribe and Unsubscribe

methods, 181
TInsertingArgs, 183
TDatabaseEvent class, 182

steps, 177

F, G, H
fConnection property, 35
FireMonkey desktop, 197

I, J, K
Image property, 48
Inheritance, 167

attributes, 170, 171
CreateUser field, 174, 175
joint table (JoinedTable), 170
loadAgentMetadata, 177
PrimaryJoinColumn

attribute, 172, 173
single table (SingleTable),

168, 169
TBase class, 168
user, 173, 174

Initialization section, 44
Interface, 74, 75

INDEX

251

L
Linq language, 66
Listings

agents
CallList, 133
TCalls, 130
updateAgentList, 131–133

Department
columns, 125, 126
retrieving data, 126–128
SatisfactionScore, 128
TFormMain.

updateDepartmentList,
129, 130

M, N
Month projection method, 65

O
Object relational mapping (ORM)

associations, 10
blog site

database model, 2, 3
design/content, 4
TPost object, 4–6

container, 11, 12
criteria, 10
database structure, 12, 13
database systems, 1
entity, 9
frameworks, 6

advantages, 8
three tier applications, 7

projections, 11
properties, 9
RDBMS, 1
workflow (see Workflow, ORM)

ORM paradigm, Aurelius
associations, 49

many-to-one, 50, 51
one-to-many, 51, 52
one-to-one, 53

automapping, 67, 68
criteria, 58–61
default (eager) loading, 54–56
entities, 42–44
object manager, 57, 58
projections, 62–66
properties, 44

blobs, 48
column, 46, 47
identifier, 45, 46

P
Proxy<TUser> record, 54

Q
Queries (dashboard)

abandon rate, 144, 145
agent statistics list, 148

AgentID property, 149
Group function, 148

answer speed, 143

Index

252

average satisfaction score,
136, 137

calculateStatistics, 135
calls answered, 146
calls/minute, 145
calls with satisfactory score,

147, 148
metrics, 134
total calls, 142
updateDashboard procedure,

135, 136
weeks, 137

Linq expression, 137
TCriteria class, 138–140
TLinqExpression, 140, 141
UniqueValue, 140
WeekOfTheMonth

function, 138

R, S
Relational database management

systems (RDBMS), 1

T
[Table] attribute, 43
TAgent, 108
TAureliusDataSet

criteria-based data set, 191–193
TChart and TDBChart

components, 189, 190
TDataSet’s functionality, 189
updateCharts, 190, 191
view-based data set, 193–195

TClassGeneratedArgs, 245
TCriteriaResult objects, 63, 65
TDatabaseManager.Update

class, 87
TFireDacConnectionAdapter

constructor, 35
TMS Data Modeler

application, 225, 226
create project

call entity, 231
department entity, 229
inserting new table, 228
inserting non-ID, 232
relationship editor, 233
reverse engineering, 234, 236
target database dialog, 227

export to Aurelius
dictionary, 241–243
entities, 237
events, 244–248
mappings, 239, 241
preview, 240
settings, 238

TPost entity, 44

Queries (dashboard) (cont.)

INDEX

253

U
UniqueValue, 63

V
Views

calculateStatistics, 158
createViews, 157, 158
Database model, 153
homogenous approach, 152
IDBStatement interface,

155–157
implementation, 159–162
overallStatsList, 163, 164
overloading function, 159
SetSQLCommand, 157
SQL script, 154
TMappingExplorer, 162
TOverallStatistics entity, 150–152

W
Workflow, ORM

code-first, 14, 15
database-first, 16
model-first, 15

Writeln statement, 65

X, Y, Z
XData, 214

agents, 219
code files, 215, 216
Database.Utilities unit, 221, 222
retrieves entity, 218
selecting wizard, 216
TXDataClient component,

219–221
XDataServer component,

216, 217

Index

	Table of Contents
	About the Author
	About the Technical Reviewers
	Introduction
	Chapter 1: In the Land of ORM
	Communication Between Incompatible Systems
	ORM Frameworks
	ORM Terminology
	Entity
	Properties
	Associations
	Criteria
	Projections
	Container
	Putting It All Together

	Workflows
	Code-First Workflow
	Model-First Workflow
	Database-First Workflow

	Choosing Workflows
	Summary
	References

	Chapter 2: TMS Aurelius
	Installation
	Trial Version
	Licensed Version
	Prerequisite Packages
	Installation
	Package Rebuild Tool
	TMS Subscription Manager

	Database Connectivity
	IDBConnection
	Using Code
	Using an Adapter
	Using Native Drivers

	Using the TAureliusConnection Component
	Using the TMS Aurelius DBConnection Wizard

	ORM Paradigm in Aurelius
	Entity
	Properties
	Identifier
	Column
	Column (NULL)
	Blob

	Associations
	Many-to-One Association
	One-to-Many Association
	One-to-One Association
	Lazy Loading

	Object Manager (Container)
	Criteria
	Projections
	Automapping

	Summary
	References

	Chapter 3: Call Center Application
	The Application
	Dashboard
	Departments
	Agents

	The Interface
	Entities
	Database Connection
	IDatabaseSession
	Summary
	Reference

	Chapter 4: Basic Operations
	Adding Entities
	Listing Entities
	Editing (Updating) Entities
	Managing Blobs
	Deleting Entities
	Importing Entities
	Summary

	Chapter 5: Querying the Database
	Listings
	Departments
	Agents

	Queries (Dashboard)
	Average Satisfaction Score (%)
	Weeks
	Total Calls
	Answer Speed
	Abandon Rate
	Calls/Minute
	Calls Answered in Less Than 180 Seconds
	Calls with Satisfactory Score Less Than 3
	Agent Statistics List

	Views
	Summary

	Chapter 6: Enhancements
	Inheritance
	Events
	OnInserting and OnUpdating Events
	OnInserted and OnUpdated Events

	TAureliusDataSet
	Criteria-Based Data Set
	View-Based Data Set

	Summary

	Chapter 7: Aurelius on the Move
	Data Accessibility
	Local Database
	Remote Server–Based Database
	Client Side
	Server Side

	XData
	Summary
	References

	Chapter 8: TMS Data Modeler
	The Application
	Model-First
	Database-First
	Export to Aurelius
	Entities
	Dictionary
	Events

	Summary

	Index

