
www.apress.com

Robinson · Gray · Titarenco
Introducing M

eteor Introducing
Meteor

B O O K S F O R P R O F E S S I O N A L S B Y P R O F E S S I O N A L S® THE E XPER T ’S VOICE® IN W E B D E V E L O P M E N T

Introducing Meteor

Meteor is a full stack application platform that makes it easy to build powerful, real
time Web apps quickly. Introducing Meteor is a short book guiding you through
building top-quality Web apps in a fraction of the time using an application
platform built for the modern web. This brief book takes you from installing
the development environment all the way through deploying a live app, and
everything in between. Introducing Meteor covers how to build a prototype app
in days instead of weeks; how to take advantage of reactive templates; leverage
the hundreds of Smart Packages available; and employ best practices and avoid
common errors made by beginners. Meteor gives you the tools you need to build
better apps faster.

Web apps have come a long way since the 1990s, but they still require a lot of time,
specialized knowledge and complex setups. Introducing Meteor shows you a better
way. You’ll learn how to:

• Create top-quality, real time, Web apps in a fraction of the time
• Use MongoDB to store your app’s data
• Avoid common beginner errors and code using best practices
• Use Atmosphere to locate smart packages created by the community

and use them in your own site
• Learn to deploy your app and share it with the world

Build better apps faster with Meteor
—
Josh Robinson
Aaron Gray
David Titarenco

SOURCE CODE ONLINE

Shelve in:
Web Development/JavaScript

User level:
Beginning–Intermediate

9 781430 268369

ISBN 978-1-4302-6836-9ISBN 978-1-4302-6836-9

www.allitebooks.com

http://www.allitebooks.org

Introducing Meteor

Josh Robinson

Aaron Gray

David Titarenco

www.allitebooks.com

http://www.allitebooks.org

Introducing Meteor

Copyright © 2015 by Josh Robinson, Aaron Gray, and David Titarenco

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6836-9

ISBN-13 (electronic): 978-1-4302-6835-2

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Ben Renow-Clarke
Technical Reviewer: Adam Gamble
Editorial Board: Steve Anglin, Pramila Balen, Louise Corrigan, Jim DeWolf, Jonathan Gennick,

Robert Hutchinson, Celestin Suresh John, Michelle Lowman, James Markham,
Susan McDermott, Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke,
Gwenan Spearing

Coordinating Editor: Melissa Maldonado
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springer.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com. For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/.

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org

iii

Contents at a Glance

About the Authors�� xi

About the Technical Reviewer��� xiii

Introduction�� xv

■■Chapter 1: Web Development Crash Course������������������������������������ 1

■■Chapter 2: Getting Started with Meteor��� 27

■■Chapter 3: Using Spacebars Templates��� 43

■■Chapter 4: Reactive Programming and Routes����������������������������� 61

■■Chapter 5: Dealing with Data��� 71

■■Chapter 6: Authentication and Deployment����������������������������������� 83

Index��� 95

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Authors�� xi

About the Technical Reviewer��� xiii

Introduction�� xv

■■Chapter 1: Web Development Crash Course������������������������������������ 1

HTML – The Structure�� 1

Tags and Attributes�� 1

Document Basics��� 3

Common Tags�� 4

Linking to Other Resources��� 9

CSS – The Style�� 11

Getting It into Your Document�� 11

Selectors�� 12

Staying Semantic�� 15

CSS Frameworks��� 16

JavaScript – The Behavior�� 16

Where to Put Your Code��� 16

Dealing with Data�� 17

Math and Operators��� 20

Conditions�� 21

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vi

Loops��� 23

Functions��� 24

CoffeeScript��� 25

Summary�� 25

■■Chapter 2: Getting Started with Meteor��� 27

The Seven Principles of Meteor��� 27

Data on the Wire�� 27

One Language�� 28

Database Everywhere�� 28

Latency Compensation�� 28

Full Stack Reactivity�� 28

Embrace the Ecosystem�� 29

Simplicity Equals Productivity��� 29

Installing on Mac and Linux��� 29

Meteor��� 30

Atmosphere and Meteorite�� 30

Developing in a Browser with Nitrous.io�� 30

Create a Nitrous.io Account��� 31

Setup a New Box��� 32

The Nitrous.io IDE�� 33

Installing Meteor�� 37

Installing Meteorite�� 37

Creating your First Meteor App�� 38

Running your Meteor App��� 38

Example Apps��� 39

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vii

Getting to know the App Structure��� 40

The Public and Private Subdirectories��� 40

The Client, Server, and Test Subdirectories��� 40

Compatibility Subdirectory�� 40

Everything Else�� 40

Load Order��� 41

Summary�� 41

■■Chapter 3: Using Spacebars Templates��� 43

Creating the clans.io app��� 43

Spacebars�� 44

Tags��� 44

Identifiers�� 45

Helper Arguments�� 46

Inclusion and Block Arguments��� 47

Limitations��� 47

Double-braced Tags��� 47

Triple-braced Tags��� 48

Inclusion Tags�� 49

Block Tags��� 49

Comment Tags��� 51

Component Object�� 52

Events�� 52

Helpers�� 56

onRendered��� 56

onCreated�� 57

onDestroyed�� 57

Bootstrap Package��� 57

Summary�� 59

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

■■Chapter 4: Reactive Programming and Routes����������������������������� 61

Reactive Programming Explained�� 61

The Session Variable�� 62

Custom Reactivity�� 63

House Cleaning�� 63

Quick Intro to Packages��� 64

Install Packages�� 65

Routes�� 67

Reactive Routes and Iron Router�� 67

Router Defaults�� 67

First Route��� 69

Summary�� 70

■■Chapter 5: Dealing with Data��� 71

Collections�� 71

Database Reactivity�� 72

MongoDB and NoSQL��� 73

Create�� 73

Read�� 74

Update��� 74

Destroy�� 74

How Meteor Handles Data�� 74

aldeed:autoform�� 74

Latency Compensation�� 76

Publish and Subscribe��� 76

Edit Clans��� 78

Summary�� 81

www.allitebooks.com

http://www.allitebooks.org

■ Contents

ix

■■Chapter 6: Authentication and Deployment����������������������������������� 83

Prerequisite Packages�� 83

useraccounts:bootstrap��� 83

accounts-password��� 84

useraccounts:iron-routing��� 84

Re-structuring the Application��� 85

Joining a Clan�� 85

Getting a List of Clan Members��� 86

Creating and Listing Clans��� 87

Updated Templates�� 88

Configurations��� 90

Deploying Your App��� 92

Deploying on Meteor.com�� 92

Deploying on Modulus.io��� 92

Summary�� 93

Index��� 95

www.allitebooks.com

http://www.allitebooks.org

xi

About the Authors

Josh Robinson is a code craftsman and freelance
developer who thrives on cutting edge technology. His
love for coding began with the blue glow of a second
hand Commodore 64 and has continued into his career
developing for the modern web. He can be stalked at
JoshRobinson.com or on Twitter @JoshRobinson.

Aaron Gray is a software engineer who has run a
freelance consultancy, built an acquired startup,
and as the lead instructor, transitioned a 6 month
programming bootcamp curriculum from Ruby to
JavaScript. He contributes to OSS – namely Susy and
other side projects – organizes several meetups, and
speaks where they’ll let him. In his spare time, Aaron
can likely be found reading science fiction, quoting Jos
Whedon, or taking a nap. You can reach him on Twitter
at @aaronagray.

www.allitebooks.com

http://JoshRobinson.com
mailto:@JoshRobinson
mailto:@aaronagray
http://www.allitebooks.org

■ About the Authors

xii

David Titarenco is a software engineer from sunny
Los Angeles. He is a proponent of open source and has
contributed to a number of high-profile projects like
Google Go and the Java Kilim microthreading library.
A self-proclaimed startup addict, he’s founded several
ventures in the past decade and you can keep up with
him at http://dvt.name or on Twitter: @davvv.

He graduated with a magna cum laude Bachelor of
Arts from UCLA, where he studied Philosophy and
Mathematical Logic. Go Bruins!

http://dvt.name
mailto:@davvv

xiii

About the Technical
Reviewer

Adam Gamble is a professional web developer
currently working for Isotope 11 in Birmingham, AL. He
has over 10 years’ experience building web applications
for everything from startups to multiple Fortune 500
companies. His passion for technology has enabled
him to turn a hobby into a career that he loves.

xv

Introduction

Introducing Meteor walks you through building top-quality web apps in a fraction
of the time using an application platform built for the modern web. Meteor is a web
development platform that aims at giving developers the tools they need to build better
apps faster.

One of my favorite things about Meteor is how easy it is for someone who is
completely new to web development to get started making amazing, and impressive,
web apps. That is why this book starts with a crash course in web development. The first
chapter covers all the basic elements of a web app and gives you a foundation for getting
started with Meteor or any other web development framework. If you are already familiar
with web development you can easily jump right into Meteor and skip the crash course.

After the basics are covered it is time to get a development environment all setup.
Not only will this let you follow along with the examples in the book, but you will be able
to play with the code as well. The best way to learn is to try things out and see what works
and what doesn’t.

Building an app really comes down to modeling data, building interfaces to display
and interact with the data, and connecting the two together. The next three chapters
cover how to build interfaces using spacebar templates, making your interface react to
and change data, and dealing with the data in a backend database. All things Meteor
makes very easy.

An app is no good if you can’t show it off so we wrap things up by helping you
secure your app and release it on the world. Meteor is a full stack application platform
that makes it easy to build powerful, realtime web apps quickly. Web apps have come a
long way since the 1990’s, but they still require a lot of time, specialized knowledge and
complex setups. Meteor changes that.

1

Chapter 1

Web Development Crash
Course

Meteor is a platform for web development; as such it relies on the standard building
blocks of the web. Before jumping into building an app with Meteor, it is important to
cover what technologies we will be using. Readers familiar with web development may
be able to skip this chapter, but for someone just getting started this chapter will lay the
needed groundwork

HTML – The Structure
HTML (HyperText Markup Language) is at the center of web development and is the
starting point of every web page. HTML was created in the early ‘90s as a way to describe
and share interlinking documents across the Internet. Although web technology and how
we use it has evolved over the years HTML remains a cornerstone.

When we visit a page on the Internet our browser is sending a request to the server
for an HTML document. These documents are simple text files and can be edited with
any plain text editor. But they contain instructions that describe the structure of the
content to a browser. This lets a browser display the content in a nice format and load any
additional resources, such as images, that it may need.

Tags and Attributes
Elements are the basic unit in HTML and they are described using tags. An HTML
element is a block of content that is wrapped with an opening tag and a matching closing
tag that give meaning to the content. An example is the h1 tag that tells the browser that
the content inside is a top-level header.

<h1>Hello World</h1>

Chapter 1 ■ Web Development Crash Course

2

You can recognize tags by the angle brackets <> that surround the tag name. Most
tags have an opening and a closing tag. You can tell a tag is a closing tab because it will
include a slash (/) inside of the angle brackets <> before the tag name. Here are a couple
examples of opening tags and their closing tags:

<h1></h1>
<h2></h2>
<p></p>
<div></div>

One of the things that make HTML extremely flexible is the ability to nest elements.
This means that each element can contain other elements in a tree-like structure. For
example an ordered list can contain many items inside it.

Item 1
Item 2

By parsing this markup the browser can understand the content. The markup
describes a list with two items in it, so the browser by default will show “Item 1” and
“Item 2” on two lines with the number 1 next to the first item and the number 2 next to
the second item. Later, we will learn how to change the default styles with CSS. Just using
HTML, however, your browser can present the content in a meaningful way.

Tags give the browser a basic idea of what the content is, but you usually want to
give it a little more information. This is done using attributes. Attributes are added to the
opening tag and each tag can contain multiple attributes. Some tags even require specific
attributes to work. A couple attributes can be used on any tag though. The most common
are id and class. Let’s take a look at an example.

<ul id="messages" class="activity">
 <li class="message">Hello
 <li class="message">World

As you can see in the example, attributes come after the tag name and are in the
format name="value". Multiple attributes are separated by a space.

The id attribute is used to give a name to a specific element. This means that in our
example above, the list is named “messages”. Because an id identifies a specific element it
should be unique and only used once in a document. Modern browsers do a really good
job of dealing with invalid HTML, however, and the page will still load if you use an id in
multiple places.

Chapter 1 ■ Web Development Crash Course

3

Classes are different from ids in that they can be used on multiple elements. In
addition an element can also have multiple classes. Ids and elements have a one-to-one
relationship while classes and elements have a many-to-many relationship. In order to
add multiple classes to an element you pass a space-separated list as the value of the
class attribute.

<ul id="messages" class="activity">
 <li class="message">Hello
 <li class="messages active">World

Now that we know the basic building blocks of an HTML document it is time to see
how they are structured.

Document Basics
Every HTML document starts out with the same basic structure. Here is an example of the
classic hello world example in HTML:

<!DOCTYPE HTML>
<html>
 <head>
 <title>Hello World</title>
 </head>
 <body>

<p>Hello World</p>
 </body>
</html>

Every HTML document starts with a DOCTYPE tag.

<!DOCTYPE HTML>

The doctype tells your browser what version of HTML it should expect. Over the
years this has varied but with HTML5, the latest HTML standard, the doctype is
simply HTML.

After the doctype, the entire document is wrapped in an html tag.

<!DOCTYPE HTML>
<html>
 ...
</html>

This gives your browser a root to start building its tree of elements from.

Chapter 1 ■ Web Development Crash Course

4

Inside the html tag you have two sections, head and body.

<!DOCTYPE HTML>
<html>
 <head>
 ...
 </head>
 <body>
 ...
 </body>
</html>

The head tag contains any information about the document that your browser needs
to know but isn’t part of the page’s content. This usually includes meta tags used for SEO
(Search Engine Optimization), link tags used to tell your browser where to find external
style sheets, and script tags to either load an external JavaScript file or include some
inline JavaScript. In our example we are only using the title tag, which is used to set the
title on your browser’s window or tab.

<head>
 <title>Hello World</title>
</head>

Below the head section we have the body. This is where we put the content for our
page. In our simple example this only contains a single p (paragraph) tag wrapping the
text “Hello World”.

<body>
<p>Hello World</p>

</body>

Web frameworks such as Meteor always produce this same structure but usually
simplify the process so you don’t have to create each page manually.

Common Tags
The browser has a set of standard tags that it understands. Here is a list of some of the
most common HTML5 tags and when they should be used.

Link Tag (link)
Link tags tell the browser about an external resource, most commonly a stylesheet.

<link href="//netdna.bootstrapcdn.com/bootstrap/3.1.0/css/bootstrap.min.css"
rel="stylesheet">

Chapter 1 ■ Web Development Crash Course

5

Style Tag (style)
The style tag is used to include inline CSS. In most cases you will put your styles in a
separate file and include them in your HTML document using the link tag, but you will
often see a style tag in examples and very simple documents.

<style type="text/css">
 body {
 background-color: lemonchiffon;
 }
</style>

Script Tag (script)
The script tag can be used to either include a JavaScript file from an external source or
write inline JavaScript.

<script src="//netdna.bootstrapcdn.com/bootstrap/3.1.0/js/bootstrap.min.js">
</script>

Or

<script>
 alert("Hello World");
</script>

Heading Tags (h1, h2, h3, h4, h5, h6)
Heading tags are used to show up to six levels of document headings. The most important
is h1 and the least is h6. Default browser styles will show the content of each heading in
different sizes with h1 being the largest and h6 the smallest. It is important to note that the
heading tags and their levels play a role in SEO.

<h1>Most important</h1>
<h3>Less important</h3>
<h6>Least important</h6>

Paragraph Tag (p)
This tag wraps a paragraph of text as its name suggests.

<p>
 �Donec a massa a quam pellentesque sollicitudin. Donec condimentum egestas
nisl ac imperdiet.

</p>
<p>
 Lorem ipsum dolor sit amet, consectetur adipiscing elit.
</p>

Chapter 1 ■ Web Development Crash Course

6

Anchor Tag (a)
An anchor tag defines a hyperlink to another resource. This tag is what makes the
Internet. In order to point the link at another document you have to set the href
(HyperText Reference) attribute.

Meteor

Generic Tags (div, span)
These tags are what you use when you don’t have a better option, which means they are
used a lot. div is a general container and span is for general text. They are very similar but
act differently, as we will see in the section on the box model.

<div>
 Hello World
</div>

Image Tag (img)
The Internet would be pretty boring without the img tag. This is the tag that tells the
browser where images should be inserted into the document and where they can be
found. For the img tag to work it needs to have the src (source) attribute set to the
location of the image.

The image tag does not surround other content so it does not have a closing tag.
Instead it has the slash at the end of the opening tag. Tags like the img tag are called
self-closing tags.

Section Tags (section, nav, article, aside, header, footer,
address, main)
With HTML5, several section tags were added so developers wouldn’t have to use the div
tag for everything. All the section tags act the same as the div tag but give the markup
more meaning.

<body>
 <header>

 <nav>
 Home
 About Us
 </nav>
 </header>

http://www.meteor.com/

Chapter 1 ■ Web Development Crash Course

7

 <main>
 <section id="articles">
 <article>

<p>Lorem ipsum dolor sit amet, consectetur adipiscing elit.</p>
<aside>
<p>Related content</p>

</aside>
 </article>
 </section>
 </main>
 <footer>

<p>Some Links</p>
<address>

 123 Main St.
 Somewhere, Good
 </address>
 </footer>
</body>

List Tags (ol, ul, li)
Lists are incredibly common. We make lists of everything. For example this is a list of
common HTML tags. The ol (ordered list) and ul (unordered list) tags let us tell the
browser what type of list we are trying to make. Inside of each list tag we wrap each item
in a li (list item) tag. The ol tag will put each list item on its own line with a number to
the left starting at 1. The ul tag will also list each item on its own line but instead of a
number, it will put a bullet next to the items. Because these default styles do not fit in with
most of the uses of the list tags they are usually changed using CSS.

<ol id="leaderboard">
First Place
Second Place
Third Place

<ul id="fruits">
Oranges
Apples

Table Tags (table, thead, tbody, tfoot, tr, td, th)
The table tags are used to display tabular data. Before the creation of CSS tables were
used for layout. Do not do that. Now that we have CSS, the table tags should only be used
for tables of data. The entire table is enclosed in a table tag with thead, tbody, and tfoot

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Web Development Crash Course

8

defining the different sections of the table. Inside any section you will have a tr (table row)
tag containing a number of either th (table header cell) tags or td (table data cell) tags.

<table id="children">
 <thead>
 <tr>
 <th>First Name</th>
 <th>Last Name</th>
 <th>Age</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Andraya</td>
 <td>Robinson</td>
 <td>5 years</td>
 </tr>
 <tr>
 <td>Leana</td>
 <td>Robinson</td>
 <td>2 Months</td>
 </tr>
 </tbody>
</table>

Form Tags (form, fieldset, legend, label, input, button, select,
option, textarea)
Any time we want to get information from a user we will need to use a form. Forms are
wrapped in a form tag and contain labels, inputs, buttons, select boxes, and textareas.

<form action="/new/session" method="post">
 <fieldset>
 <legend>Login</legend>

 <label for="login-email">Email Address</label>
 <input id="login-email" type="email" name="email" />

 <label for="login-user-name">User Name</label>
 <input id="login-user-name" type="text" name="user-name" />

 <label for="login-password">Password</label>
 <input id="login-password" type="password" name="password" />
 </fieldset>

 <input type="submit" value="Login"/>
</form>

Chapter 1 ■ Web Development Crash Course

9

Linking to Other Resources
A web page is built around an HTML document but would be boring if it didn’t include
other resources and link to other documents. It is the combination of HTML documents,
stylesheets, JavaScript files, images, and links to other pages that make the web such a
dynamic, interesting, and powerful technology.

The URL
Different resources are loaded into a page using different HTML tags but they all point
to resources using a URL (Uniform Resource Locator). A URL is made up of several parts
that describe where a resource can be found.

The parts of a URL are the scheme, host, port, path, query_string and fragment.
They are combined into a single string using the following format:

scheme://host:port/path?query_string#fragment

Scheme (http, https)

The scheme tells the browser what protocol to use. For web pages this is usually either
http (HyperText Transfer Protocol) or https (HyperText Transfer Protocol Secure). When
you see a lock in your browser this is because the protocol is https, and the connection to
the server is encrypted. Browsers will default to http for the protocol and only use https
when told to do so since not all sites support https.

Host (www.example.com)

The host is usually a domain name, which is a human friendly way to refer to a specific
server or set of servers on the Internet. When you type www.google.com in your browser
it is telling it to retrieve an HTML document from Google’s servers. If you know the IP
address of a server you can use that as the host instead of a domain name. A useful trick
when developing is to use localhost as the host, which will tell your browser to look for
the resources on the computer it is running on.

Port (80, 443, 3000)

Each server can serve documents from different port numbers. The port is usually
determined by the protocol used, with http using port 80 and https using port 443.
Because of this people normally do not specify port numbers in URLs. The most common
case for using alternate ports is when developing a website. For example when you start
a Meteor server it does not listen on port 80 by default, instead it listens on port 3000.
So to view a Meteor app at port 3000 on your local computer you would use the URL
http://localhost:3000.

http://www.example.com/
http://www.google.com/

Chapter 1 ■ Web Development Crash Course

10

Path (/users)

The path tells the browser what file to request from the host. The format is very similar
to the filesystem on your local computer. If the path is left out of the URL or it ends in
a forward slash (/) the server will normally look for an index.html file to respond with.
Many web servers are case sensitive and will require the path to match the capitalization
of the file you are referencing. When the server responding to the request is a web
framework, most HTML documents are dynamically generated. This allows the server to
look at the path and build the HTML document on demand. We will see how powerful
this can be when we take a look at routing in Meteor.

Query String (?term=Meteor&page=1)

The query string is a way of giving the server extra information that it can use to
generate the HTML document. For example we may be requesting a search page so our
path is /search. But we want to search for a specific term so we pass a query string of
?term=Meteor. When we want to go to the second page of results we can tell the server by
using a query string of ?term=Meteor&page=2. How the query string is used is up to the
server and most of the time you can add unused items to the query string and they will
be ignored.

Fragment (#id)

Fragments are not sent to the server and were originally used to jump to an HTML
element with a specific id. As web apps began to do more on the client side, the fragment
has been used to pass information to the browser without sending additional requests to
the server.

Relative URLs
What do you do if you don’t know the entire URL? For example what if you are building
an app on your local computer and using localhost but when it goes live you are going
to host it on a server in the cloud somewhere? To handle cases like this HTML lets you
use relative URLs that use the current document as a base for where to find the resource.
When creating a web app you almost always want to use relative URLs.

Current Host

If you want the URL to refer to the server your current HTML document was served from
you can simply leave off the scheme, host, and protocol. For example if I want to link to
the about page from the home page I can use:

About Us

Chapter 1 ■ Web Development Crash Course

11

Using the forward slash tells the browser to request the document from the same
host as the current document but ignore the path of the current document. Leaving off
the forward slash will base the request off the current host and path. For example if I am
on the /company page I use the following to refer to the /company/about page:

About Us

Current Page

Sometimes you want a link to point to a different part of the same page. This is what the
fragment is used for. Creating a link to a fragment only is unique because it does not
reload the page. Instead it changes the address bar and jumps to the element with an id
matching the fragment. With HTML5 you can achieve something similar with the History
API. Before HTML5 web apps used the fragment routing (also called hash routing) to
change the content without refreshing the page. A link to an about section on the current
page would look like this:

About Us

CSS – The Style
Structuring your content is cool and all but without CSS (Cascading Style Sheets) it will
be ugly, very ugly. CSS provides a way to cleanly separate the look and formatting of a site
from its structure. Changing a stylesheet for a web page can completely change its look
and feel. To get an idea of how completely, take a look at http://www.csszengarden.com.
The CSS Zen Garden lets you view the same markup with different CSS applied.

Getting It into Your Document
CSS can be kept in a separate file and loaded into your document using the link tag or can
be included inline using the style tag. For most sites it makes sense to keep the stylesheets
separate so they can be included on multiple pages on your site. Let’s take a look at how
you can include a separate stylesheet on the same host as your HTML document.

<html>
 <head>
 <link href="/styles.css" rel="stylesheet">
 </head>
 <body>
 ...
 </body>
</html>

http://www.csszengarden.com/

Chapter 1 ■ Web Development Crash Course

12

If you do need to include some page-specific styles you can add them directly to the
head section of your HTML document.

<html>
 <head>
 <style type="text/css">
 body {

background-color: lemonchiffon;
 }
 </style>
 </head>
 <body>
 ...
 </body>
</html>

Selectors
CSS styles a web page by applying properties to HTML elements that match a selector.

selector {
 property: value;
}

The selector is a combination of tag names, ids, and classes that can be used to target
specific elements on a page.

Tags
A tag selector simply uses the tag name without any additional markup to select any
element on the page of that type. For example this is the CSS to make every h1 tag on the
page red:

<html>
 <head>
 <style type="text/css">
 h1 {

color: red;
 }
 </style>
 <head>
 <body>
 <h1>This is red</h1>
 <h2>This is not red</h2>
 <h1>This is red</h1>
 <body>
</html>

Chapter 1 ■ Web Development Crash Course

13

Ids
You can target an element with a specific id by using the hash symbol followed by the
id. This follows the same convention as URL fragments. When using an id on its own to
target it will only match one element since an id can only belong to a single element. Here
is how you would set the background color of a nav tag with an id of menu to black and its
text to white:

<html>
 <head>
 <style type="text/css">
 #menu {

background-color: black;
color: white;

 }
 </style>
 <head>
 <body>
 <nav id="menu">
 Home
 </nav>
 <body>
</html>

Classes
A class is denoted by a period preceding the class name. Since a class can be applied to
many elements, every element with a matching class will have the properties applied
to it. This is how you would set the background color to yellow for every item with the
highlight class:

<html>
 <head>
 <style type="text/css">
 .highlight {

background-color: yellow;
 }
 </style>
 <head>
 <body>
 <h1 class="highlight header">This is highlighted</h1>
 <h1 class="header">This is not highlighted</h1>
 <h1 class="highlight">This is highlighted</h1>
 <body>
</html>

Chapter 1 ■ Web Development Crash Course

14

Pseudo Classes
Pseudo classes are different than other types of selectors because they are dependent
on the state of an element. A good example of this is the :hover pseudo class. It is
applied any time the mouse hovers over the element. Pseudo classes are usually used
in combination with other selectors. We will see how to combine selectors in the next
section. For now, let’s take a look at how we would set the background to red on any list
item that has the mouse over it.

<html>
 <head>
 <style type="text/css">
 li:hover {

background-color: red;
 }
 </style>
 <head>
 <body>

Item 1
Item 2
Item 3

 <body>
</html>

Compound Selectors
To add some precision to our selectors we can combine them. In order to target an
element that is both an h1 and has a highlight class we put the tag selector and class
selector together as one selector with no space.

h1.highlight {}

We can target a multiple selectors by using a comma-separated list.

h1, h2, h3 {}

This also works when combining selectors.

h1.highlight,
a.highlight {}

We can even target elements based on what elements they are nested in. This example
will select any a tags with an active class that are nested anywhere under the #menu element:

#menu a.active {}

Chapter 1 ■ Web Development Crash Course

15

If we want to restrict the selection to a direct child of an element we can use >,
which will limit the scope.

#menu > a

Order Matters
By now you may be wondering what happens when multiple selectors with conflicting
properties target the same element. This is where the cascading part of CSS comes in. The
style rules are applied in the order they appear in the style sheet. As new styles are applied
they will overwrite previous styles. This lets us put generic rules early on and overwrite
them with more specific rules later. Here, we are setting all h1 elements to be red and then
setting any h1 elements with an active class to be green.

<html>
 <head>
 <style type="text/css">
 h1 {

color: red;
 }
 h1.active {

color: green;
 }
 </style>
 <head>
 <body>
 <h1>This is red</h1>
 <h1 class="active">This is green</h1>
 <h1>This is red</h1>
 <body>
</html>

The only exception you need to watch out for is !important. This keyword can be
added to an attribute causing it to be applied even if another style attempts to overwrite
it later. In order for another style to over write one with !important set it must also set
!important. Since !important causes attributes to be applied in an unexpected order it
should be used sparingly.

Staying Semantic
When styling your web pages, you will often need to add additional ids and classes to your
HTML markup. It is important to remember that those ids and classes should describe
what the content is and not how it should look. Style requirements can change but what
an element is should stay consistent. If we were to add a .blue class to an element and

Chapter 1 ■ Web Development Crash Course

16

then style it blue with CSS it would work. But if we decide that element should be red and
we change it in the CSS it won’t match up with the name of the class. However if we name
the element what it is and target that with CSS, the color can change all the time and
everything will still match up.

CSS Frameworks
When working with CSS you will find yourself doing the same things over and over.
CSS Frameworks help by providing a bunch of pre-written styles that we can apply to
our HTML document by following the naming conventions they use. Bootstrap
(http://getbootstrap.com) is the most common but several others are gaining in
popularity including Semantic (http://semantic-ui.com), Foundation
(http://foundation.zurb.com), and Pure (http://purecss.io). In addition to making
your CSS easier to manage they can also make your app look decent without much
additional design work.

JavaScript – The Behavior
JavaScript is what brings our web apps to life. It can tie into and manipulate both the site’s
structure and its style. It lets us listen for user actions and make our app respond to them.
JavaScript takes a web page and turns it into an app. Modern browsers have a built-in
logging function that we will be using to print to the browser’s console. The console
is a magical place where you can enter JavaScript code and the browser will execute it
against the current page immediately. In most browsers you can access the console by
right-clicking on a page and selecting “Inspect Element” to open the developer tools, and
clicking on the console tab.

Where to Put Your Code
The script tag can be used to load external JavaScript files or write inline JavaScript. The
script tags can go inside the head element or the body element. Many people like to keep
their scripts in the head of a document so they can keep all external stylesheets and JavaScript
files together. However, the best place to put your script tags is at the bottom of your HTML
document, right before the closing body tag. This lets your browser load the bulk of the HTML
document before processing the scripts. The performance gain is small, but if you have a lot of
JavaScript to load and are on a slow connection it can make a difference.

<html>
 <head>
 <title>Hello World</title>
 </head>
 <body>
 <h1>Hello World</h1>
 <script src="/app.js"></script>
 </body>
</html>

http://getbootstrap.com/
http://semantic-ui.com/
http://foundation.zurb.com/
http://purecss.io/

Chapter 1 ■ Web Development Crash Course

17

Inline JavaScript is written between the open script tag and the closing script tag.
This is often used to initialize external libraries that have already been loaded.

<html>
 <head>
 <title>Hello World</title>
 </head>
 <body>
 <h1>Hello World</h1>
 <script>
 alert("hello world");
 </script>
 </body>
</html>

Dealing with Data
Moving data around is what programming is all about. In order to help the computer
understand what kind of data we are working with, we use several basic datatypes. These
basic building blocks can be combined to create more complex data structures.

Primitive Types
These are simple base types that are common in most programming languages. They are
used to describe the most basic units of logic: text, numbers, and truth.

String

A string is a collection of letters and is denoted by single or double quotes.

<script>
 console.log("This is a string");
</script>

Numeric

A numeric type can be an Integer such as 1 or a Double like 1.1, but they both act the same.

<script>
 console.log(42);
</script>

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Web Development Crash Course

18

Boolean

Boolean values are ones that only have two possible values, true or false, and are denoted
with those key words.

<script>
 console.log(true);
 console.log(false);
</script>

Complex Types
Complex types can contain other primitive and complex types. They are the glue used to
combine data into useful structures. By using complex types to combine primitive types
we can create advanced data structures to handle any case.

Arrays

An array is simply a list of other pieces of data. Arrays are enclosed in square brackets []
and contain a comma-separated list of other datatypes. The datatypes in the array can be
any valid type and can be mixed and matched.

<script>
 console.log([1,2, 'a', 'b', true]);
</script>

Since they can include any valid datatype they can also include other arrays.

<script>
 console.log([[1,2,3],['a','b','c'], true]);
</script>

Objects

Objects in JavaScript are simple key–value structures built using curly braces.

<script>
 console.log({
 "a": 1,
 "b": 2
 });
</script>

Chapter 1 ■ Web Development Crash Course

19

You can then get the data back out using dot notation or passing the key to the object
in square brackets.

<script>
 var alphabet = {
 "a": 1,
 "b": 2,
 "c": 3,
 "d": 4
 };
 console.log(alphabet.a); // this will output 1
 console.log(alphabet["b"]); // this will output 2
</script>

Variables
Variables store data and give it a name that can be used later. You can think of it as a
bunch of boxes with labels on them storing you data. Variables are usually defined with
the var keyword to keep them confined to the section of code where they are defined.
Setting a variable without the var keyword puts it in the global namespace, which can
cause conflicts if you are not careful. The value of a variable is set using a single equal sign
with the value on the right.

<script>
 var x = 3;
 var y = 4;
 console.log(x); // this will output 3
 console.log(y); // this will output 4
</script>

JSON
JavaScript Object Notation or JSON is an open standard for exchanging data as human
readable text. It provides a simple way to store and transmit data in a format that both
computers and humans can understand. To do this, our JavaScript data is converted into
a string that conforms to a strict version of the data notation we used earlier.

Modern browsers provide a way to easily convert JSON to JavaScript data and back
again using the JSON global object. Let’s look at a few examples.

<script>
 var userData = {
 "firstName": "Josh",
 "lastName": “Robinson",
 "active": true
 };

Chapter 1 ■ Web Development Crash Course

20

 var json = JSON.stringify(userData);
 console.log(json); // This will output the JSON string

 var data = JSON.parse(json);
 console.log(data); // This will output the original userData object
</script>

Math and Operators
Like most programming languages JavaScript is really good at math. It can do the usual
addition, subtraction, multiplication, and division along with equality tests.

Math Operators
Addition and subtraction use the expected plus and minus signs while multiplication and
division use the asterisk (*) and forward slash (/). As is most math notation parentheses
can be used to control the order of operation.

<script>
 var apples = 42;
 var oranges = 7;

 // addition
 console.log(apples + oranges); // This will output 49

 // subtraction
 console.log(apples - oranges); // This will output 35

 // multiplication
 console.log(apples * oranges); // This will output 294

 // division
 console.log(apples / oranges); // This will output 6
</script>

Comparison Operators
A comparison operator will compare two values and return a Boolean (true/false)
value. Comparison is not limited to Numeric datatypes; in fact, most datatypes can be
compared. Let’s look at some examples.

<script>
 // equal (==)
 console.log(1 == 2); // This will output false
 console.log(1 == "1"); // This will output true
 console.log((4 - 3) == 1); // This will output true

Chapter 1 ■ Web Development Crash Course

21

 // strict equal (===)
 console.log(1 === 2); // This will output false
 console.log(1 === "1"); // This will output false
 console.log((4 - 3) === 1); // This will output true

 // not equal (!=)
 console.log(1 != 2); // This will output true
 console.log(1 != 1); // This will output false
 console.log((4 - 3) != 1); // This will output false

 // strict not equal (!==)
 console.log(1 !== 2); // This will output true
 console.log(1 !== "1"); // This will output true
 console.log((4 - 3) !== 1); // This will output false

 // greater than (>)
 console.log(1 > 2); // This will output false
 console.log(1 > 1); // This will output false
 console.log((4 - 2) > 1); // This will output true

 // greater than or equal (>=)
 console.log(1 >= 2); // This will output false
 console.log(1 >= 1); // This will output true
 console.log((4 - 2) >= 1); // This will output true

 // less than (<)
 console.log(1 < 2); // This will output true
 console.log(1 < 1); // This will output false
 console.log((4 - 2) < 1); // This will output false

 // less than or equal (<=)
 console.log(1 <= 2); // This will output true
 console.log(1 <= 1); // This will output true
 console.log((4 - 2) <= 1); // This will output false
</script>

Conditions
To control the flow of our program we need to have a way to execute code conditionally.
The most common way to do this in JavaScript is with the if and if-else statements.
The if statement starts with the if keyword and is followed by a condition in
parentheses. If the condition evaluates to true then the code following the condition and
enclosed in curly braces will be executed.

Chapter 1 ■ Web Development Crash Course

22

<script>
 var favoriteFood = "pizza";
 var age = 5;

 if (age < 12) {
 favoriteFood = "icecream";
 }

 �console.log("you are eating: ", favoriteFood); // This will output
"you are eating: icecream"

</script>

Setting the favoriteFood variable at the beginning of the script and then changing
it based on the condition is a bit cumbersome. What we really want to do is keep the
decision logic in a single place. For this we can use if-else.

<script>
 var favoriteFood;
 var age = 5;

 if (age < 12) {
 favoriteFood = "icecream";
 } else {
 favoriteFood = "pizza";
 }

 �console.log("you are eating: ", favoriteFood); // This will output
"you are eating: icecream"

</script>

If we need to add in more conditions we can do so using else-if statements.

<script>
 var favoriteFood;
 var age = 5;

 if (age <= 5) {
 favoriteFood = "chocolate";
 } else if (age < 12) {
 favoriteFood = "icecream";
 } else {
 favoriteFood = "pizza";
 }

 �console.log("you are eating: ", favoriteFood); // This will output
"you are eating: chocolate"

</script>

Chapter 1 ■ Web Development Crash Course

23

As you can see, only the first matching condition is run when using else-if.
Although you can add as many else-if statements into the condition the first statement
must be an if by itself. The else acts as a catchall and is run if no other conditions match.
It is optional but must come last if it is included.

Loops
In an app, there are many times when a loop can come in handy. For example if we
needed to print the numbers 1 to 100 out to the console, then we could do it by hand and
write 100 lines of code. Not only would this be a pain, it would also be hard to change. If
the requirement changes to print 1 to 200 then we would have to write another 100 lines
of code.

If we want to output the contents of an array to the page we will need a way to loop
through the array and run some code on each value. In JavaScript we have two main types
of loops, while loops and for loops.

While Loops
A while loop combines a conditional with a block of code, and will continually run the
code as long as the condition is true.

<script>
 var i = 1;

 while (i <= 42) {
 console.log(i);
 i = i + 1;
 }
</script>

For Loops
A for loop acts as a counter and is passed a starting value, condition, and incrementer
function.

<script>
 for (var i = 1; i <= 42; i++) {
 console.log(i);
 }
</script>

Chapter 1 ■ Web Development Crash Course

24

Using the length property of an array as the condition makes a for loop a great way
to iterate over an array.

<script>
 var fruits = ["apples", "oranges", "bananas"];

 �// We start i at 0 because arrays are 0 indexed, meaning the first item is
in position 0

 for (var i = 0; i < fruits.length; i++) {
 console.log(fruits[i]);
 }
</script>

Functions
Functions are reusable blocks of code. In JavaScript, functions act the same as other
pieces of data and can be stored in variables and passed as arguments to other functions.
Functions can be defined with a name or as an anonymous function. Although there
is some debate on which style is best, I prefer declaring functions anonymously and
assigning them to variables. This lets me easily treat a function the same as any piece of
data. Let’s take a look at both ways of declaring a function.

<script>
 function square(x) {
 return x * x;
 }

 console.log(square(10)); // This will output 100

 var sqr = function (x) {
 return x * x;
 }

 console.log(sqr(30)); // This will output 900
</script>

There are two things we are doing in the previous example that we haven’t covered
yet. First of all we are invoking the function using parentheses and passing in arguments.
Secondly we are telling the function to return a result. These two things combined let us
deal with either the function itself or the result of the function.

<script>
 var sqr = function (x) {
 return x * x;
 }

Chapter 1 ■ Web Development Crash Course

25

 console.log(sqr); // This will output the function sqr
 �console.log(sqr(30); // This will output the results of running the code
with a value of 30 for x

</script>

CoffeeScript
You may have noticed that the syntax for JavaScript has a lot of curly braces and semi-colons.
Although JavaScript is the only language most browsers understand natively, we still have
some options for a cleaner language. CoffeeScript (http://coffeescript.org) was designed
to take the best parts of JavaScript, Ruby, Python, and functional programing languages
and combine them into one nice clean language. In order to be compatible with
browsers, CoffeeScript compiles into standard JavaScript. This means that after compiling
CoffeeScript you can run it anywhere that you can run JavaScript and use any existing
JavaScript libraries.

So why aren’t we using CoffeeScript in this book? Although I love CoffeeScript,
some people prefer to use plain JavaScript and I didn’t want learning CoffeeScript to be a
barrier to entry. Meteor does have great CoffeeScript support, though, and we will show
how to get up and running with CoffeeScript on Meteor in our install section.

Summary
In this chapter we got a brief overview of the three main technologies that make the
web possible. We learned how to structure our content with HTML, Style it with CSS,
and make it come alive with JavaScript. Although we didn’t dive deep into any one area,
after reading this section you should have the groundwork in place to get started making
amazing real-time apps with Meteor.

http://coffeescript.org/

27

Chapter 2

Getting Started with Meteor

One of the strengths of Meteor is how quickly you can get started. With a little guidance, a
beginner can have a Meteor development environment setup and their first app created
in a matter of minutes. This chapter provides that guidance. It also covers some of the
guiding principles of Meteor and what makes it different from other options.

The Seven Principles of Meteor
The Internet has made major advancements over the last couple decades. Yet most sites
are built using aging techniques. Meteor focuses on creating modern apps for today not
20 years ago. To make sure its focus holds true, Meteor has developed seven guiding
principles. These principles are really a definition of what a modern web framework
should look like.

Data on the Wire

Don’t send HTML over the network. Send data and let the client decide
how to render it.

—docs.meteor.com

Early on, browsers could only render HTML. Initially, the HTML for a page was
generated all at once, fully formed, on the server. As browsers advanced, they gained the
ability to send requests back to the server and update small portions of the page without
the server returning the full page again. Now, we have the ability to send data as JSON
and combine that with HTML templates on the client side. This improves user experience
by making the site react faster and reducing requests to the server.

Chapter 2 ■ Getting Started with Meteor

28

One Language

Write both the client and the server parts of your interface in JavaScript.

—docs.meteor.com

JavaScript is the de facto language of the Internet. Web servers and server side
frameworks are written in many different languages but client side programs are (almost)
exclusively JavaScript. This means if you develop an app using a framework written in a
language other than JavaScript, you have to learn that language and JavaScript. Switching
languages adds an additional cognitive load that is difficult to manage for both beginners
and seasoned developers. The solution is simple, use JavaScript for both the client and
server.

Database Everywhere

Use the same transparent API to access your database from the client or
the server.

—docs.meteor.com

Language switching isn’t the only type of context switching that can slow
development. Making database access the same in all parts of your app can both simplify
your app and speed up development.

Latency Compensation

On the client, use prefetching and model simulation to make it look like
you have a zero-latency connection to the database.

—docs.meteor.com

The web has grown from serving simple documents to being a platform capable of
creating full applications. People expect applications to respond quickly, though. When
dealing with any kind of remote connection there will be some latency. Luckily, Meteor
keeps things as similar as possible on the client and server. So with latency compensation
we can pretend like things happen instantly and correct as needed. Think of it like “trust,
but verify”.

Full Stack Reactivity

Make realtime the default. All layers, from database to template, should
make an event-driven interface available.

—docs.meteor.com

Chapter 2 ■ Getting Started with Meteor

29

In most frameworks a lot of time is spent making sure your data gets to the right spot.
If something changes in the database then go to the view for that data and update it there,
too. This is a lot to keep track of. Reactivity makes things simple. If you have a username,
for example, and it changes in the database, it changes everywhere, in realtime. As soon
as the username is changed, any browser viewing that username will be updated with the
new value.

Embrace the Ecosystem

Meteor is open source and integrates, rather than replaces, existing open
source tools and frameworks.

—docs.meteor.com

Instead of reinventing the wheel, Meteor brings together other open source projects
and adds some shine. Why build your own Node.js when you could just use Node.js. Not
only does this save on development, it also helps developers become instantly familiar
with Meteor.

Simplicity Equals Productivity

The best way to make something seem simple is to have it actually be
simple. Accomplish this through clean, classically beautiful APIs.

—docs.meteor.com

Meteor is a powerful web framework. But power and features alone won’t make it
useful. To truly be useful it must also be simple to use. Keeping Meteor simple means you
can get more done faster, with less stress. Simplicity makes programmers happy.

Installing on Mac and Linux
Currently Meteor is only officially supported on Mac and Linux. Workarounds do exist for
Windows and official Windows support is on the roadmap.

Just like most things with Meteor, the install is very simple. On all supported
platforms the install is a single line. Through the rest of the book we will use Nitrous.io as
our development environment since it is available on all platforms. Nitrous.io does not
require Meteor to be installed on your local machine.

Chapter 2 ■ Getting Started with Meteor

30

Meteor
Both Mac and Linux provide a terminal app that you can use to run commands for your
system. To install Meteor locally, you simply run the following command (everything after
the prompt ‘>’) in your terminal.

> curl https://install.meteor.com | /bin/sh

That single line will setup everything you need to get started.

Atmosphere and Meteorite
Meteor comes with a group of official core packages that cover things that the
majority of apps will need, like authentication. In addition to the core packages, the
Meteor community has put together a repository of community-built packages called
Atmosphere and can be found at http://atmospherejs.com. To install and manage
packages from Atmosphere you use a tool called meteorite. Meteorite wraps the normal
meteor command and adds the ability to install Atmosphere packages.

Meteorite is a node package so you can install it with a single command as well.

> npm install –g meteorite

Even though Meteor makes it really simple to develop on your local machine nothing
is as simple as having a clean fresh environment all ready to go. That is what you get with
Nitrous.io.

Developing in a Browser with Nitrous.io
What if you use an unsupported platform like a Chromebook or Windows computer?
Well, don’t fret! Nitrous.io comes to the rescue by providing a full Linux-based
development environment in the cloud and accessible from your browser (Figure 2-1).
In this chapter we will cover how you can use Nitrous.io to develop Meteor apps from any
device that has a modern web browser.

https://install.meteor.com/
http://atmospherejs.com/

Chapter 2 ■ Getting Started with Meteor

31

Create a Nitrous.io Account
To get started using Nitrous.io we need to sign up for an account. This can be done for
free on http://nitrous.io with either the normal email and password sign up, or using
an account from another service such as GitHub, Google, or LinkedIn (Figure 2-2).

Figure 2-1.  The Nitrous.io web inter

http://nitrous.io/

Chapter 2 ■ Getting Started with Meteor

32

Once your account is successfully created, go to the dashboard to see a list of Boxes
on your account.

Setup a New Box
Nitrous.io works by setting up a preconfigured virtual Linux-based development
environment that runs in the cloud. Each box is a self-contained Linux computer
accessible through a web interface. To create a box, you click “New Box” form the “Boxes”
section of the Nitrous.io Dashboard, as shown in Figure 2-3.

Figure 2-3.  Creating a new box

Figure 2-2.  Signing up for Nitrous.io

Chapter 2 ■ Getting Started with Meteor

33

This will open a simple box-creation page where you can select a template for
the type of development you plan on doing, name your box, and assign the amount
of resources available (Figure 2-4). Since Meteor.js is based on Node.js we will use the
Node.js template. N2O is the Nitrous.io currency for giving your box different amounts
of memory and storage. The free accounts include enough N2O to build a small, but
adequate development box. Make sure you use your N2O to increase the amount of
storage. You can add more N2O to your free account by doing things like inviting friends,
or you can upgrade to a paid plan.

Figure 2-4.  Configuring your new box

Once your box is provisioned, you will be automatically taken to the Integrated
Development Environment (IDE) for that Box. Since each box is self-contained, you
can have multiple boxes setup for different purposes, each with their own IDE and
environment.

The Nitrous.io IDE
The main advantage of Nitrous.io is that you can access its full IDE through any modern
browser. The Nitrous.io IDE lets you view and edit files, run commands on the command
line, install additional packages, and collaborate with others (Figure 2-5).

Chapter 2 ■ Getting Started with Meteor

34

File Management
The left side of the IDE is used for file management (Figure 2-6). Nitrous.io starts out
with a workspace directory and README.md file. The workspace directory is where
you will keep all of your projects. Here we are showing the workspace with the example
leaderboard app that you will create later. The README.md contains a good introduction
to working with Nitrous.io.

Figure 2-5.  The Nitrous.io web based Integrated Development Invironment (IDE)

Figure 2-6.  File Management area of Nitrous.io with example leaderboard app

Chapter 2 ■ Getting Started with Meteor

35

The Editor
Developers can be passionate about the editor they use. While the Nitrous.io editor may
not be as advanced as Vim, Emacs, Sublime Text, or others, it is very capable and has
some handy features. When you first go to the Nitrous.io IDE, the editor is center stage
filling the majority of the screen. It has syntax highlighting, file type detection, and a
handy collab mode. Using the tabs across the top you can even edit multiple files at once
(Figure 2-7).

Figure 2-7.  Nitrous.io web based code editor

The Console
Stretching across the bottom of the Nitrous.io IDE is the console (Figure 2-8). Since a
Nitrous.io box is a full Linux virtual box running in the cloud, the IDE includes a real
Linux console that we can use to install Meteor packages, start the server, or run any other
Linux type commands. At this time, Nitrous.io doesn’t allow root access but has a package
manager, called Autoparts, which allows you to install packages that may normally need
root access. Just like the editor, you can use the tabs across the top to run multiple console
commands at once.

Chapter 2 ■ Getting Started with Meteor

36

Collab Mode and Chat
One especially useful feature of the Nitrous.io IDE that isn’t present in most other IDEs is
collab mode. This feature is available on the right side of the IDE and allows you to invite
other Nitrous.io users to work with you on a project. The chat section includes a log of
what collaborators are doing, and lets you send messages to the group (Figure 2-9). When
multiple people are editing the same file, and collab mode is enabled for that file, they
will be able to see each other’s cursor and changes in real-time.

Figure 2-8.  Nitrous.io web based console connected to the remote virtual machine

Figure 2-9.  Nitrous.io chat window used to collaborate with others on development

Chapter 2 ■ Getting Started with Meteor

37

Installing Meteor
Nitrous.io has a built-in package manager that makes installing Meteor a breeze. From
the top of the IDE, just select Autoparts ➤ Manage Packages, as shown in Figure 2-10.

When the package manager opens, search for the most recent Meteor package and
click install, as shown in Figure 2-11.

Figure 2-10.  Nitrous.io package manager named Autoparts

Figure 2-11.  Searching for a package in the Nitrous.io package manager

Installing Meteorite
If you want to use packages from Atmosphere with Meteor you will need to install
Meteorite as well. The Meteorite install works the same as on other platforms, and is
installed using the Nitrous.io Console (Figure 2-12).

Chapter 2 ■ Getting Started with Meteor

38

Creating your First Meteor App
Now that you have your development environment all ready to go, it is time to create your
first Meteor app. To start out, you will want make sure you have a folder where you can
store all of your awesome new Meteor apps. If you are using Nitrous.io then a workspace
folder will already be setup for you. Just make sure you are in the right directory by using
the cd command in your console to change into your workspace.

$ cd ~/workspace

Once in your workspace you can use meteor create to create a new project.

$ cd ~/workspace
$ meteor create my-app

This will create a new folder called “my-app” that contains a bare bones Meteor app
with just three files.

$ cd ~/workspace/my-app
$ ls
my-app.css my-app.html my-app.js

Running your Meteor App
Your new app may be bare bones, but it is enough to run. The Meteor server is run in the
console from your projects directory.

$ cd ~/workspace/my-app
$ meteor

This will start a server running on port 3000 and viewable at http://localhost:3000.
To use a port other than 3000 you can use the -p option when running the Meteor server.

$ meteor –p 4000

Figure 2-12.  Using the Nitrous.io console to install Meteorite

www.allitebooks.com

http://www.allitebooks.org

Chapter 2 ■ Getting Started with Meteor

39

If you are using Nitrous.io then you won’t be able to view your new app at
http://localhost:3000, even though the console tells you otherwise. The reason is that
localhost refers to your local computer but Nitrous.io is running Meteor in the cloud,
and not on your local computer. Instead of going to http://localhost:3000 you need
to use Preview ➤ Port 3000 from the Nitrous.io IDE (Figure 2-13), which will open a new
browser tab where you can view your Meteor app.

Figure 2-13.  Selecting the port to preview your app using Nitrous.io

Example Apps
To get you started, Meteor comes with some example apps that can be generated with the
meteor create command. Using the --example option followed by the example name
will create a new project with the example code all loaded and ready to be explored.

$ cd ~/workspace
$ meteor create --example leaderboard

At the time of writing, the following examples are available:

• leaderboard

• parties

• todos

• wordplay

More information on the examples can be found at https://www.meteor.com/examples.

https://www.meteor.com/examples

Chapter 2 ■ Getting Started with Meteor

40

Getting to know the App Structure
Meteor is very flexible in how you structure your app. In general, you can organize it
however you want, with the exception of a few special folders, and Meteor will figure it
out. When you first create an app it will only consist of three files, one file each for HTML,
CSS, and JavaScript.

The Public and Private Subdirectories
Just like most web frameworks and servers, the public folder is special in Meteor. It is
where you store all your static client assets. Meteor doesn’t do anything magical with the
content of this subdirectory; all files are simply served at the root. This is where you will
put things like images to make them available to your app.

The private subdirectory is the server equivalent of the public directory and is for
static server assets. Meteor doesn’t serve the content of this folder and makes it available
to the server via the Assets API. This is the place to put data files you want to be only
accessible to the server.

The Client, Server, and Test Subdirectories
HTML and CSS are only used on the client. Since JavaScript is used on both the client and
server, though, we need a way to tell Meteor which files should be loaded on the client,
and which should be loaded on the server. As expected, files put in the client subdirectory
are only loaded on the client, and files put in the server subdirectory are only loaded on
the server. So what about the test subdirectory? It isn’t loaded anywhere since your test
should be run outside of your app.

Compatibility Subdirectory
Meteor normally wraps each JavaScript file in a separate variable scope to keep them
from polluting the global scope. This is normally what you want, but if a library breaks
because it needs or expects to modify the global scope, then you can put it in client/
compatibility. When files in this directory define a top-level variable, it will be in the
global scope. Files in client/compatibility will also be run before other client-side
JavaScript files.

Everything Else
Outside those magic directories, JavaScript files will be run on both the client and the
server. Sometimes you may want some code to be available to both client and server, but
only run on one or the other. To make this easy, Meteor provides a Meteor.isClient and
a Meteor.isServer method, which returns a Boolean depending on where it is run.

Chapter 2 ■ Getting Started with Meteor

41

Load Order
In most cases, the order files are loaded in shouldn’t matter. However, when debugging
odd issues knowing the order Meteor loads files can be helpful. Here are the basic rules
Meteor uses when loading files:

1.	 Subdirectories are loaded first.

2.	 In each directory, files are loaded in alphabetical order.

3.	 Files in lib directories are loaded ahead of others.

4.	 Files matching main.* are loaded last.

Summary
In this chapter, we learned about the guiding principles of Meteor and what makes
it different from other frameworks. We setup our development environments using
officially supported platforms, and went over how to use Nitrous.io to develop Meteor
apps anywhere we have access to a modern browser. Most importantly we created and
ran our first Meteor app.

43

Chapter 3

Using Spacebars Templates

Now that we have Meteor and our development environment all setup, it is time to introduce
Clans.io, the app we will be building together through the rest of this book. Clans.io is a
micro social network for creating online communities. To do so, we’ll need to learn about
Spacebars, Meteor’s template language, which will be used to create dynamic templates.
We will then look at handling events and adding helpers to the template component object.
Finally we’ll use the Twitter Bootstrap package to add a simple nav bar to our app.

Creating the clans.io app
To get going, we will need a new app where we can play with templates. In this section,
we are going to create a new app and take a look at the default template that Meteor
gives you. From there, we will take a look at what the template is doing and what the
components of a template are.

Let’s start by changing into our workspace directory and creating the clans.io app.

$ cd ~/workspace
$ meteor create clans.io

Now, let’s cd into our new apps folder.

$ cd clans.io

Our freshly minted Meteor app contains the standard three files. Let’s start out by
looking at clans.io.html.

<head>
 <title>clans.io</title>
</head>

<body>
 <h1>Welcome to Meteor!</h1>

 {{> hello}}
</body>

Chapter 3 ■ Using Spacebars Templates

44

<template name="hello">
 <button>Click Me</button>
<p>You've pressed the button {{counter}} times.</p>

</template>

This looks almost like normal HTML except that it has double curly braces, {{ and }},
all over the place. Those double curly braces are where the magic happens and are part of
the Spacebars templating language that is part of Meteor.

Spacebars
Spacebars is inspired by Handlebars (http://handlebarsjs.com). Spacebars syntax
is very similar to Handlebars, however it has been designed to support reactivity.
Reactivity is the ability for the template to automatically detect, and reflect, changes in the
underlying data.

Tags
The double curly braces delineate Spacebars tags. These tags turn your normal static
HTML into powerful, dynamic, reactive, HTML templates.

In clans.io.html we see two of the major types of tags.

<body>
 <h1>Welcome to Meteor!</h1>

 {{> hello}}
</body>

<template name="hello">
 <button>Click Me</button>
<p>You've pressed the button {{counter}} times.</p>

</template>

When you want to insert a string of text or a number you use double curly braces
around the variable name that contains the string you want to insert. In our clans.io.html
file we can see it used with “counter”.

<template name="hello">
 <button>Click Me</button>
<p>You've pressed the button {{counter}} times.</p>

</template>

A nice feature of the double curly braces is that it sanitizes your string and makes
sure it doesn’t add any unwanted HTML tags. This way, you can display user-supplied
content without worrying about malicious tags being added to your page.

http://handlebarsjs.com/

Chapter 3 ■ Using Spacebars Templates

45

If you need to display the non-sanitized, and unsafe, contents of a variable, you can
replace the double curly braces with triple curly braces.

<template name="hello">
 <button>Click Me</button>
<p>You've pressed the button {{{counter}}} times.</p>

</template>

You may have noticed that wrapped around our counter is a template tag. This is an
HTML5 tag that Meteor uses to define reusable pieces of HTML. The template tag’s name
attribute is used to give you a way to refer to your template.

Templates on their own are not displayed. To make your template visible, it must be
include somewhere. That is done with the inclusion tag denoted by your usual double
curly braces with the addition of a “>” followed by the template name. An example is in
the body tag of your clans.io.html file.

<body>
 {{> hello}}
</body>

If the button is clicked 5 times, then clans.io.html would render to the following HTML:

<body>
 <h1>Hello World!</h1>
 <button>Click Me</button>
<p>You've pressed the button 5 times.</p>

</body>

Using block tags like #each we can even iterate over a list of items and render a block
of HTML for each item.

Here is what that would look like:

 {{#each users}}
 {{name}}</i>
 {{/each}}

Now that we have an idea of what the boilerplate HTML file includes, let’s dive into
some of the details of Spacebars covered in the Spacebars package readme.

Identifiers
The variable inside a curly braced tag is actually a little more than a simple variable. It is
called an identifier, and can be a value or a function. Spacebars looks for the identifier
in the template helpers first, and if it can’t find it there then it looks for a property on the
current data context. Block tags usually set the data context.

Chapter 3 ■ Using Spacebars Templates

46

 {{#each users}}
 {{name}}</i>
 {{/each}}

Here, the #each block tag is setting the context to each user in turn before running
the code inside the block. If we have an array of user objects like this:

[
 {
 name: "Andraya Ivy Robinson"
 },
 {
 name: "Leana Phi-Rose Robinson"
 }
]

Our block tag would give us:

Andraya Ivy Robinson
Leana Phi-Rose Robinson

Unlike the data context, which changes in block tags, the template helpers are
defined per template. This is usually done in a corresponding JavaScript file.

<template name="hello">
 <h1>Hello World!</h1>
 <button>Click Me</button>
<p>You've pressed the button {{counter}} times.</p>

</template>

In clans.io.html “counter” is the identifier and refers to a template helper function
that we will take a look at later.

Helper Arguments
Since helpers are functions, you will probably want to send them some arguments from
time to time. The arguments can be an identifier, a string, Boolean, number literal, or
null. They are passed to the function inside the curly braces as a space-separated list.

{{ greeting "world" }}

Chapter 3 ■ Using Spacebars Templates

47

This will call the greeting template helper with “world” as its first argument.
Although Spacebars is executing your helper function here, it is important to remember
that it does not execute arbitrary JavaScript.

Inclusion and Block Arguments
Inclusion tags and block tags can take at most one argument. You can pass in keyword
arguments that will be turned into a data object.

Keyword arguments are passed inside of the curly braces as a space-separated list of
key=value pairs:

{{#with x=1 y=2}}
 Value is {{x}}
{{/with}}

This will output:

Value is 1

Limitations
Spacebars is HTML-aware and works with the DOM. This means you can’t put Spacebars
tags anywhere you want, like you would with a string based templating system. Here are
the main locations that they are allowed:

• At element level (i.e. anywhere an HTML tag could go)

• In an attribute value

• In a start tag in place of an attribute name/value pair

Double-braced Tags
The double-braced tag will evaluate to a string unless the identifier returns null,
undefined, or false, in which case it will render nothing.

Since the double-braced tag escapes the value, you are not able to render HTML tags
with it, unless you use SafeString.

SafeString
If you need to render HTML in a double-braced tag, you can override the default
sanitization by returning a SafeString object instead of a string.

Spacebars.SafeString("Some HTML")

In this case the code calling SafeString is saying that it is ok to skip the normal
sanitization and escaping processes.

Chapter 3 ■ Using Spacebars Templates

48

In Attribute Values
Double-braced tags can be used in HTML attributes, which is very useful for setting classes.

<input type="checkbox" class="checky {{moreClasses}}" checked={{isChecked}}>

It is also smart enough to leave off an attribute if the indicator returns null,
undefined, or false. This works well for checking a checkbox or marking a select option as
selected. Keep in mind, though, that it will consider it present if anything else is returned,
even an empty string.

Dynamic Attributes
If you aren’t able to set the attributes how you want using attribute values, you can use a
double-braced tag in an opening HTML tag to specify a whole set of attributes.

<div {{attrs}}>...</div>

Or

<input type=checkbox {{isChecked}}>

The identifier must evaluate to a string or an object with attribute names and the
values as strings. A non-empty string should be an attribute name, and will be evaluated
as an object with the string as its key and an empty string for the value. For example:

"checked"

Is the same as:

{"checked": ""}

If an empty string or null is returned, it is treated the same as an empty object.

Triple-braced Tags
Triple-braced tags are used for inserting raw HTML.

<template name="hello">
 {{{greeting}}}
 <button>Click Me</button>
<p>You've pressed the button {{counter}} times.</p>

</template>

Since it is raw HTML, you cannot use the triple-braced tags for attributes. The HTML
also needs to be fully formed and balanced. That means you can’t use "</div><div>" to
close an existing tag and open a new one.

Chapter 3 ■ Using Spacebars Templates

49

Inclusion Tags
The purpose of an inclusion tag is to insert the given template at the current location.
Any argument given becomes the data context.

We can see an inclusion tag in our boilerplate clans.io.html file.

<body>
 {{> hello}}
</body>

Inclusion tags also let you set the data context for the template.

<body>
 {{> hello dataObject}}
</body>

So far we have only used the inclusion tags with a template name. However, you can
use any identifier that evaluates to a template object, even a function.

Block Tags
It is best practice in any web framework to keep logic separate from the view. Spacebars
helps with this by limiting what logic can be included in a template. Instead of allowing
arbitrary JavaScript, we are limited to block tags.

{{#block}}
<p>Hello</p>

{{/block}}

A block tag will invoke a built-in directive or custom block helper and pass it the
block of template content that the block tag wraps.

To accommodate common control flow, block tags also allow for an else block.

{{#block}}
<p>Hello</p>

{{else}}
<p>Goodbye</p>

{{/block}}

As is the norm for Spacebars, the HTML passed in the block must be fully formed
and balanced.

Block tags are also allowed in attribute values.

<div class="{{#if done}}done{{else}}notdone{{/if}}">
<p>Hello World!</p>

</div>

Chapter 3 ■ Using Spacebars Templates

50

If/Unless
The #if block tag is the same as most if statements. If the argument is true then it will
render the block. When an else block is included it will be rendered when the #if block
is false.

{{#if something}}
<p>It's true</p>

{{else}}
<p>It's false</p>

{{/if}}

Spacebars also includes an #unless block tag, which is the inverse of #if.

With
The #with block tag lets you set the data context of the enclosed block.

{{#with employee}}
<div>Name: {{name}}</div>
<div>Age: {{age}}</div>

{{/with}}

As we saw before, you can also use the object-specification format to set the exact
values of the data context.

{{#with x=1 y=2}}
 This is {{x}}!
{{/with}}

You can also use #with as a form of #if tag, since it will not render the block if the
argument is a falsy value. It even takes an optional else block.

Each
The #each block tag is extremely useful. It lets you iterate over a sequence that is passed
in as an argument. It then renders the contents of the block using each value in the
sequence as the context.

 {{#each people}}
 {{name}}
 {{/each}}

Chapter 3 ■ Using Spacebars Templates

51

Custom Block Helpers
To create a custom block helper you can call a template with a block tag instead of an
inclusion tag. This will give you access to the blocks in your template through:

{{> UI.contentBlock}}

And

{{> UI.elseBlock}}

For example, here is a helper used to wrap a block in a div.

<template name="note">
 <div class="note">
 {{> UI.contentBlock}}
 </div>
</template>

And it could be invoked with:

{{#note}}
 Any content here
{{/note}}

Comment Tags
Comment tags are good for leaving notes or seeing how something works with a bit of
code disabled. A line comment is the usual double-brace but with an exclamation mark
before your comment.

{{! Start of a section}}
<div class="section">
 <h1>Hello World!</h1>
</div>

If you want to block out a bigger chunk, you can use a “block comment”.

{{!-- This is a block comment.
We can write {{foo}} and it doesn't matter. {{#with x}}
This code is commented out.{{/with}} --}}

The syntax is similar to a line comment except that it adds “--”.

Chapter 3 ■ Using Spacebars Templates

52

Component Object
So far we have defined our templates in HTML using Spacebars.

<template name="hello">
 <button>Click Me</button>
<p>You've pressed the button {{counter}} times.</p>

</template>

What we haven’t looked at is the component object that Meteor automatically
creates for us. We can see an example of the component object in the clans.io.js file that
Meteor generated.

if (Meteor.isClient) {
 // counter starts at 0
 Session.setDefault('counter', 0);

 Template.hello.helpers({
 counter: function () {
 return Session.get('counter');
 }
 });

 Template.hello.events({
 'click button': function () {
 // increment the counter when button is clicked
 Session.set('counter', Session.get('counter') + 1);
 }
 });
}

if (Meteor.isServer) {
 Meteor.startup(function () {
 // code to run on server at startup
 });
}

The component object is accessible through the “Template” object, in the case of our
“hello” template the component object is accessed through "Template.hello".

Events
To handle events on our template, we define an event map using the events method on
the template’s component object. This sounds more complex than it is. In clans.io.js we
see a simple example of adding a “click” event handler to our “hello” template.

Chapter 3 ■ Using Spacebars Templates

53

Template.hello.events({
 'click button': function () {
 // increment the counter when button is clicked
 Session.set('counter', Session.get('counter') + 1); }
});

This event map adds an event handler to our “hello” template and watches for click
events on button elements. Let’s explore event maps in more detail and learn how to
create our own.

Event Map
An event map is an object where the properties describe what events to watch for and the
values provide a function to handle the events. In our clans.io.js file, the property was an
event “click” followed by the element to watch, “input”. The property can take one of a
couple other formats.

// Event Only
"click": function(event, template) {
 if (typeof console !== 'undefined')
 console.log("You clicked");
}

If the property is set to just an event, the handler will be called any time that event is
fired for the template. In our case, any time you click anywhere on the template you will
get a console message.

// Event with selector
"click .clickable": function(event, template) {
 if (typeof console !== 'undefined')
 console.log("You clicked");
}

The selector follows the event after a space and can be any valid CSS selector. In the
previous example, our handler will only fire when an element with the “clickable” class is
clicked.

// Multiple Events
"click .clickable, click p": function(event, template) {
 if (typeof console !== 'undefined')
 console.log("You clicked");
}

You can add multiple events by separating them with a comma.

Chapter 3 ■ Using Spacebars Templates

54

The handlers are passed two arguments to use when handling the event. The first
is the event object, which gives you access to information about the event such as what
element was clicked. This can be helpful since events bubble, and even though you are
watching for a click on a <p> tag, it can be triggered by a click on any other tag inside
the <p> tag.

// Event Object
"click": function(event, template) {
 if (typeof console !== 'undefined')
 console.log(event);
}

The second argument is a template instance, which gives you access to the template
that the event was triggered in.

// Template Instance
"click": function(event, template) {
 if (typeof console !== 'undefined')
 console.log(template);
}

Inside the handler you also have access to the template’s data context through "this".

// Template Data Context
"click": function(event, template) {
 if (typeof console !== 'undefined')
 console.log(this);
}

Returning false from a handler will both stop the event from bubbling, and prevent
the default behavior.

Event Object

The function you set to handle an event will be passed an event object that gives you
information about the event. It also provides several functions that can be used to control
the event’s propagation.

• type – String. What the type of the event is, such as “click” or
“change”.

• target – DOM Element. This returns the DOM element that the
event was triggered on.

• currentTarget – DOM Element. This returns the DOM element
that caught the event, and can be the same as the target. In
the case of an event bubbling up, this will be the element that
matched the selector.

Chapter 3 ■ Using Spacebars Templates

55

• which – Number. Which tells you which mouse button was used to
trigger a mouse event (1=left, 2=middle, 3=right) or which key was
pressed for a key event.

• stopPropagation() – function. This will prevent the event from
bubbling, or propagating, up to other elements. It will not prevent
other events in this, or other, event maps from firing.

• stopImmediatePropagation() – function. This is prevents events
from bubbling the same as stopPropagation(), but it also
prevents events in this or other event maps from firing.

• preventDefault() – function. Prevents the action the browser
would normally take in response to this event, such as following
a link or submitting a form. Further handlers are still called, but
cannot reverse the effect.

• isPropagationStopped() – function. Returns whether
stopPropagation() has been called for this event.

• isImmediatePropagationStopped() – function. Returns whether
stopImmediatePropagation() has been called for this event.

• isDefaultPrevented() – function. Returns whether
preventDefault() has been called for this event.

Event Types

Event handlers and the event object all include an event type that describes the event.
Some are obvious, like click or change, but some are a little less clear, like focus and blur.

• click – Mouse click on any element.

• dblclick – Double-click.

• focus, blur (doesn’t bubble) – A text input field or other form
control gains or loses focus.

• change – A checkbox or radio button changes state.

• mouseenter, mouseleave (doesn’t bubble) – The pointer enters
or leaves the bounds of an element.

• mousedown, mouseup – The mouse button is newly down or up.

• keydown, keypress, keyup – The user presses a keyboard key.
keypress is most useful for catching typing in text fields, while
keydown and keyup can be used for arrow keys or modifier keys.

Chapter 3 ■ Using Spacebars Templates

56

Helpers
Each template component object contains helper functions that are accessible to the
template. They are defined in two ways. We saw the first way in the generated clans.io.js:

Template.hello.helpers({
 counter: function () {
 return Session.get('counter');
 }
});

This passes an object to the “helpers” method. The second way simply defines the
helper directly on the template’s component object.

Template.hello.counter = function() {
 return Session.get('counter');
};

Using the “helpers” method is useful when adding a group of helpers at once.
To define a helper that can be accessed by every template, use UI.registerHelper.

UI.registerHelper("greeting", function () {
 return "Welcome to clans.io.";
});

onRendered
The onRendered method on the template component object lets you set a callback. The
rendered callback is triggered when the template is initially rendered and inserted into
the DOM for the first time.

Template.hello.onRendered(function() {
 if (typeof console !== 'undefined')
 console.log("Template rendered", this);
});

The template object is unique to this occurrence of the template, and will persist
across re-renderings. It can be accessed inside of the callback using “this”. Since the
template has been rendered, you can use the template object to run any setup that
requires the template to exist in the DOM.

Template.hello.OnRendered(function() {
 $(this.find('h1')).hide();
});

Chapter 3 ■ Using Spacebars Templates

57

onCreated
Using the onCreated method on a templates component object adds a callback that is
called before any template logic is evaluated.

Template.hello.onCreated(function() {
 if (typeof console !== 'undefined')
 console.log("Template created", this);
});

Inside the callback, this is the new template instance object. Properties you set on
this object will be visible from the rendered and destroyed callbacks and from event
handlers.

onDestroyed
The onDestroyed callback is called at the end of a template instance life cycle. It is called
when a template instance is taken off the page for any reason and not re-rendered.

Template.hello.onDestroyed(function() {
 if (typeof console !== 'undefined')
 console.log("Template destroyed", this);
});

Inside the callback, this is the template instance object being destroyed. It fires once
and is the last callback to fire.

Bootstrap Package
Twitter’s Bootstrap package is a front-end toolkit for faster, more beautiful
web development. Bootstrap provides simple and flexible HTML, CSS,
and JavaScript for popular user interface components and interactions
including typography, forms, buttons, tables, grids, and navigation.

—docs.meteor.com/#bootstrap

Now that we know how templates work, we are going to want to make them look
good. Atmosphere provides a Twitter Bootstrap package that is automatically updated as
newer Bootstrap versions are released.

> meteor add twbs:bootstrap

http://docs.meteor.com/#template_inst
http://docs.meteor.com/#template_inst
http://twitter.github.com/bootstrap/#_blank

Chapter 3 ■ Using Spacebars Templates

58

With this one line, we now have access to Twitter Bootstrap in our app. Let’s try it out
by making some changes to clans.io.html. Currently it looks like this:

<head>
 <title>clans.io</title>
</head>

<body>
 <h1>Welcome to Meteor!</h1>

 {{> hello}}
</body>

<template name="hello">
 <button>Click Me</button>
<p>You've pressed the button {{counter}} times.</p>

</template>

Let’s start by changing the “hello” template to “layout” and remove the default contents.

<body>
 {{> layout}}
</body>

<template name="layout">
</template>

Since we removed our “hello” template and replaced it with “layout” we are going to
have to clean up our clans.io.js file as well.

if (Meteor.isClient) {
 Template.layout.events({
 });
}

if (Meteor.isServer) {
 Meteor.startup(function () {
 // code to run on server at startup
 });
}

Now let’s add a nice responsive nav bar to our new layout template in clans.io.html.

<template name="layout">
 <div class="navbar navbar-inverse navbar-fixed-top" role="navigation">
 <div class="container-fluid">
 <div class="navbar-header">

Chapter 3 ■ Using Spacebars Templates

59

�<button type="button" class="navbar-toggle" data-toggle="collapse"
data-target=".navbar-collapse">
Toggle navigation

</button>
Clans.io

 </div>
 <div class="navbar-collapse collapse">

<ul class="nav navbar-nav navbar-right">
Help

 </div>
 </div>
 </div>
</template>

It may not be much yet but we are starting to get something that resembles an actual
app (Figure 3-1)!

Summary
In this chapter we got started on our app by using Meteor’s template language, Spacebars,
to create dynamic templates. We added a simple nav bar using the Twitter Bootstrap
package, and now we can take our knowledge of event handling and helpers to build out
the rest of our app.

Figure 3-1.  Simple app with a navbar

61

Chapter 4

Reactive Programming
and Routes

Now that you are able to handle basic interactions, let’s cover a core concept of Meteor:
reactive programming. This technique lets you write your code in a simple declarative
style that enables your application to react to changes in the data. In its simplest form,
this means you can tell your template to display something, such as a user’s name, and
when the data backing the name changes, the template automatically updates. Since
this is such an important concept, this chapter will walk you through how to use reactive
programming in your application.

Reactive Programming Explained
Reactivity is a programming concept that lets us monitor and respond to how data
changes over time. It is an important aspect of – and largely what defines – realtime web
applications.

A simple and elegant example of reactivity is the standard spreadsheet. When you
tell cell C that it should equal the sum of cell A and cell B, then cell C will change anytime
the values of cell A or cell B change. To make this happen, one simply declares that
C = A + B and this simple computation for cell C reruns anytime its dependencies, A or B,
change.

In a web application, this technique can be used to set the context of a current chat
session with a specific user, display the current value of a single Bitcoin, or notify users of
other users’ online status.

Historically, such features required lots of custom AJAX (Asynchronous JavaScript
and XML) and state logic to work well, which typically resulted in lots of unmaintainable
code and underperforming applications. With the rise of the realtime web, lead largely
by social media sites that include realtime notifications and web based tools that
require realtime collaboration, users are starting to expect this functionality for a certain
classification of apps. Meteor provides it right out of the box. In this chapter, we’ll explore
how Meteor makes the realtime web a default design pattern.

Chapter 4 ■ Reactive Programming and Routes

62

The Session Variable
The Session is a global object where you may store key-value pairs as a reactive data
source. A reactive data-source can be described as a storage unit that a computation in
your application depends on. If a computation uses a reactive data source, then it will
recompute every time something of interest in the reactive data-store changes.

You can set the value of any arbitrary key

Session.set('currentClan', 'Denver Code Club');

You can retrieve the value of that key

Session.get('currentClan');
// => Denver Code Club

A key may be set to any JSON-able object, including strings, JSON, a Date, etc.

Session.set('currentClan', {title: 'Denver Code Club', city: 'Denver'});
var clanTitle = Session.get('currentClan').title;
console.log(clanTitle);
=> 'Denver Code Club'

Session is more powerful than a variable, and important in Meteor because it’s able
to report changes to computations concerned with such events. When a computation
depends on the value of a reactive data source, like the Session, it will rerun the
computation as soon as the data in its Session dependency changes. For a computation to
depend on a Session, it just needs to be used anywhere within said computation.

To create a computation, we can use Meteor’s built in Tracker.autorun(), which takes
a callback function as the only argument. If a reactive data-source like a Session is used
anywhere in the argument, then it is noted as a dependency and watched for changes.

Define a computation that uses a Session variable:

Tracker.autorun(function() {
 console.log('The current clan is ' + Session.get('currentClan') + '!');
});

Set the Session variable by passing the key as the first argument and a string as the
second argument.

Session.set('currentClan', 'Sass Hack'});
=> 'The current clan is Sass Hack!'
Session.set('currentClan', 'Sass Hack Denver');
=> 'The current clan is Sass Hack Denver!'

Because the autorun function depends on the Session variable, currentClan, it will
automatically run every time the value of currentClan changes.

Chapter 4 ■ Reactive Programming and Routes

63

Custom Reactivity
A computation will not rerun when a normal variable changes. When you need to
respond to changes from something other than a Session variable, you can define your
own custom, reactive data source with the Tracker object.

Under the hood, the Session actually uses Tracker to monitor and recompute
computations as needed. Here’s how we might use Tracker to define our own reactivity.

Create the variable of interest and create a new Tracker.Dependency

var currentClan = {title: 'Refresh Denver', city: 'Denver'};
var clanDependency = new Tracker.Dependency;

Notify our Tracker object that this function has dependencies.

var getClan = function () {
 clanDependency.depend();
 return currentClan;
}

Notify our Tracker object that its dependency has changed.

var setClan = function (clanObj) {
 currentClan = clanObj;
 clanDependency.changed();
}

Tell Tracker to autorun anytime the value of clan, a reactive data-source, changes.

Tracker.autorun(function() {
 var clan = getClan();
 console.log('Clan changed to ' + clan.title + '!');
});

Change the clan value using the setClan function.

setClan({title: 'Denver Gofers'});
=> 'Clan changed to Denver Gofers!'

Between the convenient Session variable and the flexible Tracker object, Meteor
provides reactivity with relatively little effort and very little code.

House Cleaning
It’s great that Meteor provides some default templates to get up and running, but in order
to really start building out an application, you’ll need to remove the default files and start
building your own.

Chapter 4 ■ Reactive Programming and Routes

64

At the command line in the root of your project, delete all of the default templates
made by meteor create.

$ rm clans.io.html clans.io.css clans.io.js

Create a new template in clans.io/client/views/clans/clans.html.

$ mkdir client/views
$ touch client/views/home/home.html
$ touch client/views/clans/clans.html
$ touch client/views/clans/clans.js
$ touch client/app.html

Open the new home.html file and define a template.

<template name="home">
<h1>Clans.io</h1>

</template>

Create the clans template in client/views/clans/clans.html.

<template name="clans">
 This is where we will list all Clans.
</template>

Add standard HTML wrapper in client/app.html.

<head>
 <title>My App</title>
</head>
<body>
</body>

These templates provide the foundation for our application, but require major
surgery to be of any use. Fortunately, the code required to proceed has been made
available through a handful of community built Smart Packages.

Quick Intro to Packages
Packages are useful, built-in and third-party libraries of code designed specifically
to enhance Meteor applications. There are currently 2,592 packages available on
Atmosphere (atmospherejs.com), Meteor’s official package catalog.

http://atmospherejs.com/

Chapter 4 ■ Reactive Programming and Routes

65

Install Packages
Meteor provides a few of useful commands to manage packages.

• meteor add 272103_1_En:<package> – This command checks
Atmosphere for the specified package and installs it in your
application. You tell it what package to get by giving it the author’s
name and package title separated by a colon.

• meteor remove 272103_1_En:<package> – This command checks
for the specified package within your application and removes it
entirely. The author and package title are also used as arguments
to specify which package to remove.

Navigate to the root of your application (Figure 4-1) and install the Iron Router
package.

In the background, Meteor finds the author ‘iron’ on Atmosphere, locates that
author’s package ‘router’, downloads it, installs it in your app, and adds it to your package
manifest file in ~/workspace/clans.io/.meteor/packages, as seen in Figure 4-2. Then
select “Show Hidden.”

Figure 4-1.  Adding a Meteor package

Chapter 4 ■ Reactive Programming and Routes

66

Now open up .meteor and view the packages file as shown in Figure 4-3. This is how
Meteor keeps track of what packages are installed in your application.

In addition to the Iron Router package, a few of the Meteor core packages are
included by default.

Add the Twitter Bootstrap package
Before we proceed to use Iron Router, let’s install a package that will help make our

application more presentable.

Figure 4-2.  Show Hidden option in the Nitrous.io filelist

Figure 4-3.  Packages list inside the hidden .meteor folder

Chapter 4 ■ Reactive Programming and Routes

67

Add Bootstrap to your application

meteor add twbs:bootstrap

With that in place, you may start adding Bootstrap classes to your application. We’ll
make the most of Bootstrap shortly, but you will immediately notice that your site fonts
and colors now have a prettier default.

Routes
The concept of routes refers to available URLs within your application. A router lets
you define the context of your application based on a specific URL; it lets you define
the available templates and available data depending on where your user is in your
application. For instance, the homepage route, localhost:3000/, will use a specific
homepage template; however, localhost:3000/clans will use a different template that
displays all of the clans in your application.

Reactive Routes and Iron Router
Reactivity becomes immediately useful when we want to display different information for
the different states of our application, based on where the user has navigated to. Consider
that we will have a list of Clans and the user selects a single Clan to visit. Once the user
selects a Clan, you may want to change the page title to that of the current clan without
reloading the page or changing much of the HTML. If our Session variable is set when
the user selects a specific clan, then you may use that Session data in your templates to
dynamically display new data.

Meteor wants the server and the client to know about the routes you define in your
application, so you write routing code in /both/router/routes.js, as any code placed in
the ‘both’ folder will be run on the client and the server.

Router Defaults
Iron Router provides a convenient way for you to configure settings that apply to the
entire application, such as what template to display while the app is in a loading state, or
what template to show if the user types in a URL that doesn’t exist.

Setup defaults for your entire application in /both/router/routes.js.

Router.configure({
 layoutTemplate: 'MasterLayout',
 loadingTemplate: 'Loading',
 notFoundTemplate: 'NotFound',
 templateNameConverter: 'upperCamelCase',
 routeControllerNameConverter: 'upperCamelCase'
});

Chapter 4 ■ Reactive Programming and Routes

68

Each option above has default settings and can be extended however you’d like.

layoutTemplate

This tells Iron Router what template you want to wrap all other templates inside of.
Clans.io will use this for the persistent navigation, footer, and sidebar.

Create a new template in client/views/layout/lmaster_layout.html.

<template name="MasterLayout">
 <section class="container">
 {{> yield}}
 </section>
</template>

The yield helper comes with Iron Router and tells your application that, at any given
route, there exists a template that should be inserted into that location.

loadingTemplate

This tells Iron Router what template you want to use when your application is in
a loading state. This will become useful for the initial page load and any time your app
makes a large request to the server.

Create a new template in client/views/shared/loading.html.

<template name="loading">
<h1>Loading...</h1>

</template>

notFoundTemplate

This tells Iron Router what template to use when the user navigates to a URL that is
not defined and thus does not exist.

Create a new template in client/views/shared/not_found.html.

<template name="not_found">
<h1>Oops! This page doesn't exist</h1>

</template>

templateNameConverter

This tells Iron Router that you will use a specific syntax – different than what you
write to declare routes – when you name your templates.

routeControllerNameConverter

This tells Iron Router that you will use a specific syntax to name your application
controllers.

Chapter 4 ■ Reactive Programming and Routes

69

First Route
To define a route, you need to provide it as an argument to Iron Router’s map function.

First custom route for the homepage.

Router.map(function () {
 this.route('home', {path: '/'});
});

This tells Iron Router that it should provide the home template when the user
navigates to the ‘/’, or root, URL, which in our case, is localhost:3000. To add more routes,
you simply declare them within this map.

First custom route.

Router.map(function () {
 this.route('home', {path: '/'});
 this.route('clans', {path: '/clans'});
});

Create a new template in client/views/clans/clan.html.

<template name="clans">
 <h1>Clans</h1>
</template>

With this template and the clans route defined, you may now navigate to the new
template by visiting localhost:3000/clans. However, you can’t expect users to navigate this
way, so now is a great time to include a navigation in the master layout.

Create a new template in client/views/layout/lmaster_layout.html.

<template name="MasterLayout">
 <section class="container">
 <ul class="nav nav-pills">
 Home
 Clans

 {{> yield}}
 </section>
</template>

The pathFor helper comes with Iron Router and only needs the name of the routes
defined in the router. Users may now navigate back and forth between the new templates
in clans.io.

To show a list of clans in the clans template, we need to define a clans helper that
returns an array of clans. This is fairly basic code that we’ll improve upon using MongoDB
in the next chapter.

Chapter 4 ■ Reactive Programming and Routes

70

Create clans helper for clans template.

Template.clans.helpers({
 clans: function () {
 return [
 {title: 'Sass Hack Denver'},
 {title: 'Denver Gophers'},
 {title: 'Boulder.rb'}
]
 }
});

Add Spacebars in clans template to iterate on data

<template name="clans">
 <h1>Clans</h1>
 {{#each clans}}
 <h2>{{title}}</h2>
 {{/each}}
</template>

Figure 4-4 shows the result from the clans template and helper data.

Summary
In this chapter, we explored the depths of Meteor’s reactive nature, learned how to use
packages to aid development, defined custom routes for clans.io, created a few new
templates, and made everything look pretty.

Figure 4-4.  Result from the clans template and helper data

71

Chapter 5

Dealing with Data

Meteor does a wonderful job of making the syncing of client-side data, something
traditionally difficult, very easy. It does this by providing a client-side implementation
of MongoDB, called MiniMongo, which syncs with the backend database and pushes
to other clients in realtime. This amazing feature is both simple to use and extremely
powerful. This chapter will describe setting up Meteor collections and using them to pass
data around an app.

Collections
In previous chapters, clans were included as an array of objects in memory to illustrate
how basic reactivity works. This worked well for prototyping the clans view, but it’s not a
solution if we want our data to be stored and manipulated by users over time. Now you
will define your first collection using MongoDB and MiniMongo (Listing 5-1).

Listing 5-1.  Create first collection in both/collections/clan.js

Clan = new Mongo.Collection('clan');

Because this is added in the both folder, Meteor will make the database available
to the client and the server, MiniMongo and MongoDB respectively. This one statement
tells Meteor that your whole application will make use of a collection called Clan. You can
now use query methods on this collection in other parts of the application. Now that this
collection is defined, go to the clans view and replace the static array with a call to this
collection.

Template.clans.helpers({
 clans: function () {
 return Clan.find();
 }
});

Chapter 5 ■ Dealing with Data

72

The return statement now makes a call to Mongo to grab every clan stored in the
application. There aren’t any clans now, so our clans view is empty. Let’s fix that. Navigate
to http://localhost:3000 in the browser and open up your browser’s developer tools.
In Chrome you can access the console with Command + Shift + J and in Firefox it’s
Command + Alt + K.

Inside the browser’s console, insert the first clan as illustrated in Figure 5-1.

With just that statement, you should now see the first Clan reappear in the clans
view. Notice how the new record was inserted into the page without refreshing the
browser. Meteor managed to update the database and the view all at once.

When you call insert on a Meteor collection, you only need to pass an object that
represents the document you want to store in Mongo. It then saves the document and
returns the unique ID associated with it.

■ Note about Meteor security  You’re able to insert new documents from the browser
console because this application currently has the default, “insecure” package included.
This is really useful for prototyping and we will leave it in for now, but plan to remove this
package before going live.

Database Reactivity
To demonstrate how Meteor pushes new documents to the browser from anywhere, open
up a new terminal window to play with Mongo from the server.

meteor mongo
db.clan.insert({'title': 'Clan from the server'})

Even though the browser never sees this actual database insert, it still updates the
browser without ever refreshing the page. This is accomplished by pairing Meteor’s
reactivity with a technology called web sockets. Meteor is able to create a realtime
connection with MongoDB, which broadcasts the new data to Meteor’s reactive templates.

Figure 5-1.  Inserting a record with MiniMongo

Chapter 5 ■ Dealing with Data

73

MongoDB and NoSQL
MongoDB is the default database used within Meteor applications. Like Meteor, MongoDB
is an open source technology that has raised capital to ensure its continued development.

Sometimes, MongoDB is described as a NoSQL database. To understand what that
means, it helps to consider what an SQL-based database is. SQL-based databases, like
PostgreSQL or MySQL, use a table structure which often facilitates relational data. These
relational databases can be thought of much like a spreadsheet with multiple tabs, in
that each type of data is stored with columns and rows. NoSQL, on the other hand, is
non-relational database. A non-relational database uses a nested document structure to
facilitate relationships.

Where in SQL we create two separate tables for Clans and Posts, in MongoDB we can
nest Posts within a Clan, which implicitly defines them as belonging together.

Listing 5-2.  Example MongoDB Document for a single Clan

{
 title: 'Sass Hack Denver',
 posts: {
 {
 title: 'Event Announcement',
 user: 'NaviRosland'
 },
 {
 title: 'SassConf! Who is going?',
 user: 'Adrian'
 }
 }
}

You may recognize this syntax as looking like JSON (JavaScript Object Notation). This
is effectively how your data is stored, but unlike JSON, MongoDB provides unique query
operations, or ways to access data, that plain JavaScript does not.

Mongo provides a handful of query methods that let developers easily manage data.
The most common operations are often summarized with the CRUD acronym. It stands
for Create, Read, Update, and Destroy.

Create
Using MiniMongo to create a new document in MongoDB you use the insert method.
This is the same method we used to generate new documents from the terminal and
console before.

Clan.insert({'title': 'New Clan Title!'})

This creates a new document in the Clan collection and returns a unique ID for that
document.

Chapter 5 ■ Dealing with Data

74

Read
You can ask for all documents with the find method.

Clan.find()

This returns a cursor that represents all documents in the Clan collection.
To find only one document, the find method accepts an object with attributes that

you want to match. For instance, to find a single document with the ID of ‘1234’, you can
do the following.

Clan.find({'id': '1234'})

Update
To update a document, you need to tell Mongo what document you want to update and
specify a new document or the fields that need to be changed.

Clan.update({_id: "1234"}, {title: "Updated Title Value"});

Destroy
You can destroy a document with the destroy method. It requires an ID of the document
you want to remove.

Clans.remove('1234')

How Meteor Handles Data
You can’t expect users to create new data from the console and terminal, so now is a
good time to introduce forms into the application. The vast majority of websites and web
applications exist to gather and organize user input and largely do so through forms.
A form is used anytime a visitor registers as a new user, posts a comment, or uploads
an image.

aldeed:autoform
The Meteor community recognized the importance of forms, and through a Smart
Package they have made it simple to capture user input and send data to Mongo on
the server.

meteor add aldeed:autoform

Chapter 5 ■ Dealing with Data

75

This package makes it super easy to include forms that relate to any Meteor
collection. Once it is installed, you need to tell it about the form fields you want it to
help with. Next, we’re going to install collection2, a package that allows you to attach a
schema to a Mongo collection and automatically validate input against that schema when
inserting and updating from client or server code.

meteor add aldeed:collection2

Now that collection2 is installed, reopen clan.js to define a schema.

Clan = new Mongo.Collection('clan');

Clan.attachSchema(
 new SimpleSchema({
 title: {
 type: String,
 label: "Title"
 }
}));

The collection2 package added an attachSchema method to all MongoDB
collections. This allows you to define what fields you want associated with each
document in the collection. To keep things simple, the above code defines only a title
field. The type attribute tells Collection2 that this field will only accept strings and the
label attribute tells Autoform what label to give the form field.

With that in place, you can easily generate new forms for this collection throughout
the application using Autoform helpers.

Listing 5-3.  In client/views/clans.html

{{> quickForm collection="Clan" id="clanBookForm" type="insert"}}

The quick form helper uses three attributes:

1.	 The collection attribute tells the helper what Mongo
collection it should know about.

2.	 The id attribute is used internally in Autoform and must be
unique across the entire application

3.	 The type attribute lets Autoform know if it should insert,
remove, or update a given record.

This one line generates a form that inserts new clans at the clans route.

Chapter 5 ■ Dealing with Data

76

Latency Compensation
When a user submits a form, deletes an item, or changes the title of a document, the new
data must be validated on the server. In traditional web applications, the new data is sent
to the server, validated there, and the appropriate response is sent back to the client.
While this validation process happens, the user is left waiting.

Instead, Meteor assumes the new data is valid long enough to post it to MiniMongo
in the client and render the updated view. Meanwhile, Meteor delegates validation
to another process on the server and only returns an error – which we can handle
appropriately – if something goes wrong. For this reason, latency compensation can be
thought of as an optimistic way to build user interfaces. Unless the user provides invalid
data, then the application feels abnormally fast.

Publish and Subscribe
By default, Meteor applications expose all of the data in MongoDB to all users at every
route in your application. This is great for prototyping, but as your application goes to
production and grows in size, it will become a performance and security concern, so it’s a
good idea to remove this functionality sooner rather than later.

meteor remove autopublish

After removing this package, you will notice that none of the Clans show up at
the clans route. This is because autopublish implicitly sent clan data to that route and
implicitly subscribed to said data. With autopublish removed, we need to explicitly set
this up.

Figure 5-3.  Adding the clan view template

Chapter 5 ■ Dealing with Data

77

Listing 5-4.  Create a publish function in clans.io/server/publish/clans.js

Meteor.publish('clans', function () {
 return Clan.find();
});

This publication is done from the server where we can access MongoDB directly and
it simply checks the database for all clans with the find method. This publish function
is defined once and can be called with a subscribe function from anywhere in the
application.

Listing 5-5.  Create a route controller for clans in clans.io/client/controllers/clans.js

ClansController = RouteController.extend({
 waitOn: function () {
 return Meteor.subscribe('clans');
 },

 data: function () {
 return Clan.find().fetch();
 }
});

This route controller above tells Iron Router that the clans route should wait for the
subscribe method to complete before it returns the clans data to the clans route. Let’s
review this line by line.

ClansController = RouteController.extend

The ClansController is named such intentionally. This tells Iron Router that it
belongs specifically to the clans route that is defined in the router. The RouteController
object was previously using defaults that depend on the autopublish package to work.
Since we removed the autopublish package, we need to use the extend method to reopen
and redefine some of its default properties.

waitOn: function () {
 Meteor.subscribe('clans');
},

The waitOn method tells the application to prevent template rendering until the
subscription has been satisfied. The subscribe method asks the server for publications
named ‘clans’, waits for the clans publication to return data, and then moves onto the
data method.

data: function () {
 return Clan.find().fetch();
}

Chapter 5 ■ Dealing with Data

78

The data method can now assume that any subscriptions have been satisfied, so the
client officially has all of the clan data it needs. To make it available to the clans route, you
just return data from the find method like we were previously doing before autopublish
was removed.

Edit Clans
Users will need to edit the data for each clan they set up, so let’s set that up now. The first
step is to create a route for a single clan’s show page.

Create a Route:

Listing 5-6.  Add a route to both/router/router.js

this.route('clan', {path: '/clan/:id'});

Unlike other routes, this route includes the :id parameter. This is a variable value
that tells Iron Router we expect the URL to include a unique value at that location in
the URL.

There are a handful of ways to point the browser to the correct URL for a given clan.
For now, you can hard code an anchor link around the title of each clan in the clans
template.

Listing 5-7.  Updated clans template in client/views/clans/clans.htmt

<template name="clans">
 {{> quickForm collection="Clan" id="clanBookForm" type="insert"}}
 {{#each clans}}
 <h2>
 {{title}}
 </h2>
 {{/each}}
</template>

The {{_id}} property will evaluate to the document id for each clan in the clans
data, just like the title property evaluates to each clan’s title.

Given the route definition added to the router above, recall that Iron Router assumes
there is a new template based on the route’s name. To provide that template, add the
following to the application.

Listing 5-8.  Add new template to client/views/clan/clan.html

<template name="Clan">
 <h1>{{title}}</h1>
</template>

Chapter 5 ■ Dealing with Data

79

The new route, links, and template get us close, but if you follow the links you may
notice there is no data at the new route. Just like the clans route, the application needs to
explicitly publish and subscribe data for the clan route.

Listing 5-9.  Add a new publish method in server/publish/clans.js

Meteor.publish('clan', function (id) {
 return Clan.find(id);
});

Notice that this publish method takes an argument called id. The id’s value will
get passed into this function when we set up the subscribe method in a new route
controller below.

Listing 5-10.  Add new route controller in client/controllers/clan.js

ClanController = RouteController.extend({
 waitOn: function () {
 var id = this.params.id;
 return Meteor.subscribe('clan', id);
 },

 data: function () {
 var id = this.params.id;
 return Clan.findOne(id);
 }
});

Now that the publish and subscribe methods return data to the new clan route, the
title will display at a given clan route as expected. Let’s edit the clan template to include a
form that lets users edit the title.

Figure 5-2.  Form to insert new record

Chapter 5 ■ Dealing with Data

80

Listing 5-11.  Add reactive variables and a quickform to client/views/clan/clan.html

<template name="Clan">
 {{#if isEditing}}
 <h1>Edit {{title}}</h1>
 �{{> quickForm collection="Clan" doc=this id="updateClansForm"

type="update"}}
 {{else}}
 <h1>{{title}}</h1>
 <button class="btn edit">Edit</button>
 {{/if}}
</template>

There are two parts to the clan template now. The isEditing boolean will be a
reactive variable that toggles from false to true based on user interaction. When the
variable is set to true, the quickform will display, otherwise everything inside of the else
block will display instead.

Let’s create some template helpers to enable users to toggle between the two states.

Listing 5-12.  Add template helpers in client/views/clan/clan.js

Template.Clan.helpers({
 isEditing: function() {
 return Session.get('isEditing');
 }
});

The isEditing property returns the value of the reactive Session variable
'isEditing'. When the template first loads, this variable will be undefined, which is a
falsy value for the HTMLBars template, so the template will default to showing everything
defined in the 'else' block.

Below the template helpers in the same file, include template event handlers to
capture when users click the edit button.

Listing 5-13.  Template events in client/views/clan/clan.js

Template.Clan.events({
 'click .edit': function() {
 Session.set('isEditing', true);
 }
});

When the users click the edit button, the reactive variable is set to true and the clan
template renders the edit form.

www.allitebooks.com

http://www.allitebooks.org

Chapter 5 ■ Dealing with Data

81

Autoform provides a handful of events for you to hook into. For now, we want to
toggle the isEditing variable to false after a user saves changes to a given Clan.

AutoForm.addHooks('updateClansForm', {
 onSuccess: function () {
 Session.set('isEditing', false);
 }
});

The 'updateClansForm' should match the ID of the update form defined in the
corresponding template. This lets us hook into the onSuccess event for that specific form.

Because Session creates global variables, it’s a good idea to set it back to the default
when the user leaves the clan route. Otherwise, the isEditing Session variable could
remain ‘true’, which would render the edit form by default at other clan routes. To do that,
you can respond to the destroyed hook on the clan template.

Listing 5-14.  Add destroyed hook in client/views/clan/clan.js

Template.Clan.destroyed = function () {
 Session.set('isEditing', false);
};

Summary
In this chapter, we’ve explored how to create routes with variable parameters, publish and
subscribe to data at specific routes, and build reactivity into application templates. Users
should now be able to create, read and update the title of ever clan. Because the ability to
delete data is a bit more involved, it is intentionally left out of this quick introduction to
Meteor. In the next chapter, we’ll wrap up our basic app and show you how to deploy it.

83

Chapter 6

Authentication and
Deployment

Now that you understand how to create and edit Meteor templates, how to handle routing
via Iron Router, and how to create, delete, and update a data model working on top of the
default Meteor MongoDB backend, it’s time to tie everything together and wrap up our
Clans.io application.

In this final chapter, we will look at how to restructure our Meteor app so that it
supports simple user authentication. For example, we will only allow logged-in users to
create and join clans.

Prerequisite Packages
We will continue to leverage the Meteor ecosystem by installing a few packages that allow
us to support user authentication essentially out-of-the box. As you saw in Chapter 4, it’s
easy to add packages in Meteor using the meteor add command. At your console, type
these three commands inside your project directory:

meteor add useraccounts:bootstrap
meteor add accounts-password
meteor add useraccounts:iron-routing

Let’s now take a quick look over what those three packages will add to the application.

useraccounts:bootstrap
The first package, useraccounts:bootstrap, will enable your app to use pre-built
Bootstrap-styled templates for sign-in pages, sign-up pages, password recovery pages,
and several others. Keep in mind that even though these templates are very bare-bones,
they can be fully customized and will work seamlessly with Meteor’s useraccounts:core.

Keep in mind that useraccounts:bootstrap does not add any other packages
providing Bootstrap. This is to let you choose the import and styling method that you
prefer, so you can choose: compiled, LESS, SASS, or from a content delivery server.

http://dx.doi.org/10.1007/978-1-4302-6835-2_4

Chapter 6 ■ Authentication and Deployment

84

accounts-password
The second packages, accounts-password is what Meteor calls an account service.
Account services bridge the gap between the Meteor User object and some sort of
external input that authenticates the user. In our case, the input will be an email and
password, but we could potentially use a GitHub account service, a Facebook account
service, an OAuth account service, and so on. Essentially, Meteor does its best to make it
as easy as possible to support logging into your website or app with any external service
as well as the “vanilla” accounts-password solution, which we will be using.

Note that user authentication, password strength requirements, and validation are
all handled out-of-the-box, so we don’t need to worry about any of those implementation
details. Thanks, Meteor!

useraccounts:iron-routing
Finally, useraccounts:iron-routing is a package that will make sure that the templates
provided by useraccounts:bootstrap will be reachable via an Iron Router route.

Before you can configure routes for User Accounts with Iron Router, you will need to
make sure you have set a few configuration items. Assuming that you have a main layout
that looks like Listing 6-1:

Listing 6-1.  The main layout template

<template name="myLayout">
 {{> yield region='nav'}}

 <div id="content">
 {{> yield}}
 </div>

 {{> yield region='footer'}}
</template>

You will need to configure the Iron Router as shown in Listing 6-2:

Listing 6-2.  The Iron Router configuration for the main layout template

Router.configure({
 layoutTemplate: 'masterLayout',
 yieldTemplates: {

myNav: {to: 'nav'},
myFooter: {to: 'footer'},

 }
});

AccountsTemplates.configure({
 defaultLayout: 'myLayout',
});

Chapter 6 ■ Authentication and Deployment

85

This will ensure that AccountTemplates will load the appropriate Bootstrap layouts
in the right layout container. Keep in mind that you need to configure the Router before
you define the routes.

Re-structuring the Application
Next, we need to slightly restructure the overall architecture of the app so that it will
support user action based on the authentication status of a user; either logged in or not
logged in. For example, if a user is logged in, she can join a clan or create a new clan.
If a user is not logged in, he can make a new Clans.io account. First, we modify the
/client/views/clan.html template, as shown in Listing 6-3:

Listing 6-3.  The revised /client/views/clan.html template

<template name="clan">
 <div class="well">
 <h2>
 {{ name }}
 {{#if currentUser}}
 Join
 {{/if}}
 </h2>
 {{#unless currentUser}}

<p>Login to Join this Clan.</p>
 {{/unless}}
 <h3>Members</h3>
 <div class="list-group">
 {{#each members}}

{{ _id }}
 {{/each}}
 </div>
 </div>
</template>

Joining a Clan
The first change here is that we no longer support editing a clan; instead, we output a list
of the IDs of the members that are part of the clan. We also provide a “Join” button for
logged-in users only. This is done within the {{#if currentUser}} block.

Here, currentUser is a template helper that simply returns Meteor.user() – that is,
the currently logged in user, if any. If the user is not logged in, Meteor.user()
(and therefore currentUser) will always return null. Make sure to always do a null check
when using this object. If the user is not logged in, the template above simply prints

Chapter 6 ■ Authentication and Deployment

86

“Login to Join this Clan.” The event attached to this button is in /client/views/clan.js,
which should look like Listing 6-4:

Listing 6-4.  The button event in the /client/views/clan.js file

Template.clan.events({
 "click .join": function (event) {
 event.preventDefault();

 Clans.update(this._id, {
 $push: { member_ids: Meteor.user()._id }
 });
 }
})

This snippet of code pushes the current user ID into the member_ids array of the Clan
Mongo object, essentially making this user part of the respective clan. This is all that we
need to do to make sure that when a logged-in user presses “Join”, she joins the clan!

Getting a List of Clan Members
In our clan template, we iterate over what appears to be a members array. However, as
we’ll see, we never actually define this array in the model itself. Rather, we use a Meteor
feature called a transform. The transform function, when in a collection object, will
ensure that Mongo documents will be passed through this function before being returned
from fetch or findOne, and before being passed to callbacks of observe, allow, and deny.
To see the transform function in action, we can look at /lib/collections/clans.js,
shown in Listing 6-5:

Listing 6-5.  The transform function in /lib/collections/clans.js

Clans = new Mongo.Collection("clans", {
 transform: function(doc) {
 doc.members = Meteor.users.find(

{_id: {$in: doc.member_ids || []}}
);

 return doc;
 }
});

The above transform function ensures that the returned Mongo document will
have a members property, which will either be an array of member_ids of members in the
respective clan or, if no such members exist, an empty array. We need the optional empty
array here so that we avoid doing null checks when trying to access the members array
directly (for example, in the {{#each members}} block).

Chapter 6 ■ Authentication and Deployment

87

Creating and Listing Clans
To see how we create clans, we first need to take a look at /client/views/clans.html, as
shown in Listing 6-6:

Listing 6-6.  The clan generation code from /client/views/clans.html

<template name="clans">
 <div class="list-group">
 <header class="list-group-item">
 <form class="new-clan">

�<input class="form-control" type="text" name="text"
placeholder="Type to add new clan" />

 </form>
 </header>
 {{#each clans}}
 �

{{ name }}
 {{/each}}
 </div>
</template>

It’s noteworthy to understand that the app allows clans to be created by anyone, even
non-authenticated users. This is in contrast with the previous section, where to join a clan
we needed to be authenticated. This is a purposeful omission. An app in the real world
will need to have a feature set that might be available only to privileged users whereas
some other feature may be available to all users. Similarly, Clans.io provides examples for
both. This lack of authentication when creating new clans is perhaps more obvious when
looking at /client/views/clans.js, as shown in Listing 6-7:

Listing 6-7.  Our clans helper illustrating the lack of authentication required for this feature

Template.clans.helpers({
 clans: function () {
 return Clans.find({});
 }
})

Template.clans.events({
 "submit .new-clan": function (event) {
 event.preventDefault();

 var name = event.target.text.value;

 Clans.insert({
 name: name,
 member_ids: [],
 createdAt: new Date() // current time
 });

Chapter 6 ■ Authentication and Deployment

88

 event.target.text.value = "";
 }
})

Here, we have a clans helper that returns a list of all clans in the Mongo database; the
clans helper is used in the template to iterate over all clans by calling {{#each clans}}.
We also have a submit event that is handled by inserting a new clan in the database.
Again, note how there is no authentication here. This functionality is available to all users
– authenticated or otherwise.

The name of the clan, indicated by the name field, is assigned to the value of the
textbox after the Return/Enter key is pressed and it is submitted. After the clan is created,
the value of the textbox is reset, allowing the end-user to insert another clan.

Updated Templates
Okay, now that we’ve updated the code for creating, joining, and listing clans, let’s turn
our attention to our view templates. First, we define a new template that will serve as
the “splash page” when a user first comes across our app. We create a new file as
/client/views/home.html, shown in Listing 6-8:

Listing 6-8.  The code for our new splash page

<template name="home">
 <div class="text-center well">
 <h3>Welcome to Clans</h3>

<p>Pick a clan to join from the menu on the left or create your own.</p>
 </div>
</template>

This is a simple template consisting of only HTML. We’ll call it home. Next, we’ll
slightly modify our master layout that we first created in Chapter 4 by adding navigation
and content regions, as shown in Listing 6-9:

Listing 6-9.  The revised master layout template in /views/layout/master_layout.html

<template name="masterLayout">
 {{> yield region='nav'}}
 <div id="content" class="master-layout">
 {{> yield}}
 </div>
</template>

http://dx.doi.org/10.1007/978-1-4302-6835-2_4

Chapter 6 ■ Authentication and Deployment

89

It is also prudent to add a /client/main.html file, which will serve as the simple
“blueprint” for all of our compiled templates. See Listing 6-10:

Listing 6-10.  Our new blueprint template

<head>
 <meta charset="utf-8">
 <title>Clans</title>
</head>

<body>
</body>

Having a main.html file makes sure that HTML metadata (like title or character set
information) is consistent side-wide. This file is optional. Next, we’ll need to define a
navigation bar in /client/nav.html, shown in Listing 6-11:

Listing 6-11.  The new navigation bar code

<template name="nav">
 <nav class="navbar navbar-inverse navbar-static-top" role="navigation">
 <div class=container>
 <div class="container-fluid">

<div class="navbar-header">
�<button type="button" class="navbar-toggle" data-toggle="collapse"
data-target="#bs-example-navbar-collapse-8">
Toggle navigation

</button>

Clans

</div>

�<div class="collapse navbar-collapse" id="bs-example-navbar-
collapse-8">
<ul class="nav navbar-nav navbar-right">
{{> atNavButton}}

</div>

 </div>
 </div>
 </nav>
</template>

Chapter 6 ■ Authentication and Deployment

90

This template uses some boilerplate Bootstrap navigation bar code, as well as the
atNavButton helper, which is part of the meteor-useraccounts package. This helper
displays a “Sign In” button when the user is not logged in and it displays a “Sign Out”
button when the user is logged in.

Finally, we need a layout for the list of clans. We’ll see how this template is used in
the next section, but for now, we’ll make sure that /client/clans_layout.html contains
the template shown in Listing 6-12:

Listing 6-12.  Our template code for the clans layout

<template name="clansLayout">
 {{> yield region='nav'}}
 <div id="content">
 <div class="container">
 <div class="row">

<div class="col-md-3">
{{> yield region='clans'}}

</div>
<div class="col-md-9">
{{> yield}}

</div>
 </div>
 </div>
 </div>
</template>

Configurations
With the templates done, it’s time to look at all of the configurations. First, we need to
configure Account Templates by creating a new file: /lib/config/at_config.js, with the
code shown in Listing 6-13:

Listing 6-13.  The Account Templates configuration

AccountsTemplates.configure({
 showForgotPasswordLink: true,
 overrideLoginErrors: true,
 enablePasswordChange: true,
 negativeValidation: true,
 positiveValidation: true,
 negativeFeedback: false,
 positiveFeedback: true
})

Most of these settings are self-explanatory, but Account Templates has dozens upon
dozens of configuration options: sendVerificationEmail, enforceEmailVerification,
forbidClientAccountCreation, just to name a few. To familiarize yourself with the

Chapter 6 ■ Authentication and Deployment

91

broad range of settings available, feel free to navigate to https://github.com/meteor-
useraccounts/core/blob/master/Guide.md#configuration-api.

Secondly, we need to configure the routing and make sure that the wiring of the
templates makes sense. We do this by modifying /lib/router/routes.js to contain the
code shown in Listing 6-14:

Listing 6-14.  The revised /lib/router/routes.js file

Router.configure({
 layoutTemplate: 'masterLayout',
 loadingTemplate: 'loading',
 notFoundTemplate: 'pageNotFound',
 yieldTemplates: {
 nav: {to: 'nav'},
 clans: {to: 'clans'}
 }
});

Router.map(function() {
 this.route('home', {
 path: '/',
 layoutTemplate: 'clansLayout'
 });

 this.route('/clans/:_id', {
 template: 'clan',
 layoutTemplate: 'clansLayout',
 name: 'clan.show',
 data: function () {
 return Clans.findOne({_id: this.params._id});
 }
 });
});

AccountsTemplates.configureRoute('changePwd');
AccountsTemplates.configureRoute('enrollAccount');
AccountsTemplates.configureRoute('forgotPwd');
AccountsTemplates.configureRoute('resetPwd');
AccountsTemplates.configureRoute('signIn');
AccountsTemplates.configureRoute('signUp');
AccountsTemplates.configureRoute('verifyEmail');

This configuration file has three main parts: the Iron Router default configuration,
the Iron Router route mapping, and the Account Templates route mapping. We went over
routing in Chapter 4, so the only alien part of this configuration file should be the list of
AccountTemplates.configureRoute(...) calls. These calls are necessary if we want to
use predefined AccountTemplate layouts for specific tasks.

https://github.com/meteor-useraccounts/core/blob/master/Guide.md#configuration-api
https://github.com/meteor-useraccounts/core/blob/master/Guide.md#configuration-api
http://dx.doi.org/10.1007/978-1-4302-6835-2_4

Chapter 6 ■ Authentication and Deployment

92

For example, if we want to use the predefined “Sign Up” HTML template, we need to
configure the “signUp” route, as we do above. There are a number of potential routes that
can be configured. A list of them can be also found at the https://github.com/meteor-
useraccounts/core/blob/master/Guide.md#configuration-apiGithub repository that I
previously mentioned.

That’s now all of the updates covered that we need to make to our clans.io project.
The app should now be ready to run!

Deploying Your App
Now that we have a working app, it would be nice to deploy it somewhere in the cloud
so we can share it with friends, family, or potential clients. We will go over two ways of
deploying your Meteor app. As of this writing, both are free.

Deploying on Meteor.com
Deploying your app on meteor.com is incredibly easy. First, navigate to the root directory
of your project, and then simply run the command:

meteor deploy your_app_name.meteor.com

Keep in mind that your app name needs to be unique. Once you finish the process,
you can simply navigate to http://your_app_name.meteor.com and your app should be
up and running in the cloud!

Deploying on Modulus.io
Modulus.io is a freemium service that offers Meteor hosting for free for up to a month.
The deployment process is almost as easy as deploying on meteor.com and Modulus.io
provides several tutorials on how to get started. After creating a Meteor app container on
the Modulus.io dashboard and installing the Modulus.io command line interface utility,
simply navigate to your project directory and run the command:

modulus deploy

After the upload process completes, your app URL will resemble http://your_app-
12345.onmodulus.net. You can now share your project with the world!

https://github.com/meteor-useraccounts/core/blob/master/Guide.md#configuration-api
https://github.com/meteor-useraccounts/core/blob/master/Guide.md#configuration-api
http://your_app_name.meteor.com/
http://your_app-12345.onmodulus.net/
http://your_app-12345.onmodulus.net/

Chapter 6 ■ Authentication and Deployment

93

Summary
Congratulations on completing and deploying your first Meteor app project. In this
chapter, we’ve covered adding authentication to the clans.io app so that you can offer
different services to users that are logged in and those that aren’t. We also looked at ways
to deploy your finished app to cloud.

I hope you’ve seen from this brief introductory guide just how easy Meteor makes the
app-creation process, but also how powerful Meteor can be. The Meteor team has great
plans for Meteor, and it’s only going to become faster, more widely supported, and more
feature-rich in future. I wish you the best of luck with creating your own Meteor projects.

95

�       � A, B
Bootstrap package, 57

�       � C
Cascading Style Sheets (CSS)

document, 11
frameworks, 16
ids and classes, 15
selectors

class, 13
compound selectors, 14
Ids, 13
order, 15
pseudo classes, 14
tag selector, 12

Clans.io app
component object (see Component

object)
creation, 43
spacebars (see Spacebars)

Collections
MiniMongo, 72
MongoDB, 71

Component object
event handler

clans.io.js, 52–53
event map, 53–54
functions and objects, 54–55
types, 55

helpers method, 56
Meteor, 52
onCreated method, 57
onDestroyed callback, 57
onRendered method, 56

�       � D, E, F, G
Database reactivity, 72

�       � H
Helpers method, 56
HyperText Markup

Language (HTML)
anchor tag, 6
attributes, 2–3
definition, 1
document, 3
form tags, 8
generic tags, 6
heading tags, 5
image tag, 6
link tag, 4
list tags, 7
paragraph tag, 5
script tag, 5
section tags, 6
style tag, 5
table tags, 7
tags, 1–3
URL (see Uniform Resource

Locator (URL))

�       � I
Integrated Development

Environment (IDE)
chat window, 36
console, 36
editor, 35
file management, 34

Index

■ index

96

�       � J, K, L
JavaScript

CoffeeScript, 25
comparison operator, 20
complex types

array, 18
objects, 18

conditions, 21
for loop, 23
functions, 24
JSON, 19
math operators, 20
primitive data types

boolean values, 18
numeric, 17
string, 17

script tag, 16
variables, 19
while loop, 23

�       � M, N
Meteor

atmosphere, 30
clan

button event, 86
/client/views/clans.html, 87
configuration, 90
helpers, 87
revised /client/views/clan.html

template, 85
transform function, 86
updated templates, 88

creation, 38
data handling

aldeed\autoform, 74
edit clans, 78
latency compensation, 76
publish function, 77
subscribe function, 77

deployment
meteor.com, 92
Modulus.io, 92

leaderboard, 39
meteorite, 30
meteorite installation, 38
Nitrous.io

box creation, 32
configuration, 33

creation, 31
IDE (see Integrated Development

Invironment (IDE))
packages

accounts-password, 84
manager, 37
useraccounts, bootstrap, 83
useraccounts, iron-routing, 84

parties, 39
principles

database everywhere, 28
data on the wire, 27
embrace the ecosystem, 29
full stack reactivity, 28
latency compensation, 28
one language, 28
simplicity equals productivity, 29

server running, 38
structure

client, server and test
subdirectories, 40

compatibility subdirectory, 40
Meteor.isClient method, 40
Meteor.isServer method, 40
order files, 41
public and private

subdirectories, 40
todos, 39
wordplay, 39

Meteor.isClient method, 40
Meteor.isServer method, 40
MongoDB

Clan, 73
Clan.find, 74
Clans.remove, 74
Clan.update, 74
creation, 73

�       � O, P, Q
onCreated method, 57
onDestroyed callback, 57
onRendered method, 56

�       � R
Reactive programming

custom reactivity, 63
definition, 61
Router’s map function, 69

■ Index

97

packages, 64
router defaults

layoutTemplate, 68
loadingTemplate, 68
notFoundTemplate, 68
routeControllerName

Converter, 68
templateNameConverter, 68

routes, 67
Session variable, 62

�       � S, T
Spacebars

block tag, 49
custom block helper, 51
#each, 50
#if, 50
#unless, 50
#with, 50

block tags, 47
comment tags, 51
double-braced tag

dynamic attributes, 48

HTML attributes, 48
SafeString, 47

helpers, 46
identifiers, 45
inclusion tags, 47, 49
limitations, 47
tags, 44
triple-braced tags, 48

�       � U, V
Uniform Resource Locator(URL)

current host, 10
current page, 11
fragments, 10
host, 9
path, 10
port, 9
query string, 10
relative URLs, 10
scheme, 9

�       � W, X, Y, Z
waitOn method, 77

www.allitebooks.com

http://www.allitebooks.org

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Introduction
	Chapter 1: Web Development Crash Course
	 HTML – The Structure
	 Tags and Attributes
	 Document Basics
	 Common Tags
	Link Tag (link)
	Style Tag (style)
	 Script Tag (script)
	Heading Tags (h1, h2, h3, h4, h5, h6)
	Paragraph Tag (p)
	Anchor Tag (a)
	Generic Tags (div, span)
	Image Tag (img)
	Section Tags (section, nav, article, aside, header, footer, address, main)
	List Tags (ol, ul, li)
	Table Tags (table, thead, tbody, tfoot, tr, td, th)
	Form Tags (form, fieldset, legend, label, input, button, select, option, textarea)

	 Linking to Other Resources
	The URL
	Scheme (http, https)
	Host (www.example.com)
	Port (80, 443, 3000)
	Path (/users)
	Query String (?term=Meteor&page=1)
	Fragment (#id)

	Relative URLs
	Current Host
	 Current Page

	 CSS – The Style
	 Getting It into Your Document
	 Selectors
	Tags
	 Ids
	Classes
	Pseudo Classes
	Compound Selectors
	Order Matters

	 Staying Semantic
	 CSS Frameworks

	 JavaScript – The Behavior
	 Where to Put Your Code
	 Dealing with Data
	Primitive Types
	String
	Numeric
	Boolean

	Complex Types
	Arrays
	Objects

	Variables
	 JSON

	 Math and Operators
	Math Operators
	 Comparison Operators

	 Conditions
	 Loops
	While Loops
	For Loops

	 Functions
	 CoffeeScript

	 Summary

	Chapter 2: Getting Started with Meteor
	 The Seven Principles of Meteor
	 Data on the Wire
	 One Language
	 Database Everywhere
	 Latency Compensation
	 Full Stack Reactivity
	 Embrace the Ecosystem
	 Simplicity Equals Productivity

	 Installing on Mac and Linux
	 Meteor
	 Atmosphere and Meteorite

	 Developing in a Browser with Nitrous.io
	 Create a Nitrous.io Account
	 Setup a New Box
	 The Nitrous.io IDE
	File Management
	The Editor
	The Console
	Collab Mode and Chat

	 Installing Meteor
	 Installing Meteorite

	 Creating your First Meteor App
	 Running your Meteor App
	 Example Apps
	 Getting to know the App Structure
	 The Public and Private Subdirectories
	 The Client, Server, and Test Subdirectories
	 Compatibility Subdirectory
	 Everything Else
	 Load Order

	 Summary

	Chapter 3: Using Spacebars Templates
	 Creating the clans.io app
	 Spacebars
	 Tags
	 Identifiers
	 Helper Arguments
	 Inclusion and Block Arguments
	 Limitations
	 Double-braced Tags
	SafeString
	In Attribute Values
	 Dynamic Attributes

	 Triple-braced Tags
	 Inclusion Tags
	 Block Tags
	If/Unless
	 With
	Each
	Custom Block Helpers

	 Comment Tags

	 Component Object
	 Events
	Event Map
	Event Object
	 Event Types

	 Helpers
	 onRendered
	 onCreated
	 onDestroyed

	 Bootstrap Package
	 Summary

	Chapter 4: Reactive Programming and Routes
	 Reactive Programming Explained
	 The Session Variable
	 Custom Reactivity
	 House Cleaning

	 Quick Intro to Packages
	 Install Packages

	 Routes
	 Reactive Routes and Iron Router
	 Router Defaults
	 First Route

	 Summary

	Chapter 5: Dealing with Data
	 Collections
	 Database Reactivity
	 MongoDB and NoSQL
	 Create
	 Read
	 Update
	 Destroy

	 How Meteor Handles Data
	 aldeed:autoform
	 Latency Compensation
	 Publish and Subscribe
	 Edit Clans

	 Summary

	Chapter 6: Authentication and Deployment
	 Prerequisite Packages
	 useraccounts: bootstrap
	 accounts-password
	 useraccounts:iron- routing

	 Re-structuring the Application
	 Joining a Clan
	 Getting a List of Clan Members
	 Creating and Listing Clans
	 Updated Templates
	 Configurations

	 Deploying Your App
	 Deploying on Meteor.com
	 Deploying on Modulus.io

	 Summary

	Index

