
US $24.99

Shelve in:
Databases/SQL

User level:
Beginning–Intermediate9 781484 217658

52499
ISBN 978-1-4842-1765-8

www.apress.com

Feiler
Introducing

SQLite
for M

obile Developers

Introducing
SQLite for
Mobile Developers

B O O K S F O R P R O F E S S I O N A L S B Y P R O F E S S I O N A L S® THE E XPER T ’S VOICE® IN M O B I L E P R O G R A M M I N G

Introducing SQLite for Mobile Developers

Introducing SQLite for Mobile Developers is a basic introduction to SQLite for
iOS and Android developers. The book includes a simple introduction to SQL, a
discussion of when to use SQLite, and chapters devoted to using SQLite with the
most likely programming languages: Java, PHP, Swi� and Objective-C. It then goes
through adding simple database functionality to an Android or iOS app and � nally
a chapter on managing the app’s life cycle.

What You Will Learn:

• The basics of SQLite

• The SQL you need to use SQLite eff ectively

• How to integrate database functionality into your mobile app

• How to maintain the app

Enabling Database Functionality
for Android and iPhone
—
Jesse Feiler

www.allitebooks.com

http://www.allitebooks.org

Introducing
SQLite for Mobile

Developers

Jesse Feiler

www.allitebooks.com

http://www.allitebooks.org

Introducing SQLite for Mobile Developers

Copyright © 2015 by Jesse Feiler

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1765-8

ISBN-13 (electronic): 978-1-4842-1766-5

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Jeffrey Pepper
Technical Reviewers: Aaron Crabtree and Cliff Wootton
Edit�orial Board: Steve Anglin, Pramila Balan, Louise Corrigan, Jonathan Gennick,

Robert Hutchinson, Celestin Suresh John, Michelle Lowman, James Markham,
Susan McDermott, Matthew Moodie, Jeffrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Lori Jacobs
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springer.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc. is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available
to readers at www.apress.com/9781484217658. For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/. Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781484217658
www.apress.com/source-code/
http://www.allitebooks.org

iii

Contents at a Glance

About the Author��� xi

About the Technical Reviewers��� xiii

Acknowledgments�� xv

Introduction�� xvii

■■Chapter 1: Getting Up to Speed with Databases and SQLite������������ 1

■■Chapter 2: Understanding What SQLite Is�� 9

■■Chapter 3: Using SQLite Basics: Storing and Retrieving Data������� 15

■■Chapter 4: Working with the Relational Model and SQLite������������ 29

■■�Chapter 5: Using SQLite Features—What You Can Do
with SELECT Statements�� 39

■■Chapter 6: Using SQLite with PHP��� 45

■■Chapter 7: Using SQLite with Android/Java����������������������������������� 55

■■Chapter 8: Using SQLite with Core Data (iOS and OS X)���������������� 61

■■Chapter 9: Using SQLite/Core Data with Swift (iOS and OS X)������� 75

■■�Chapter 10: Using SQLite/Core Data with Objective-C
(iOS and Mac)�� 97

■■Chapter 11: Using the Simple Database with a PHP Web Site����� 121

■■�Chapter 12: Using the Simple Database with a
Core Data/iOS App��� 135

Index��� 145

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Author��� xi

About the Technical Reviewers��� xiii

Acknowledgments�� xv

Introduction�� xvii

■■Chapter 1: Getting Up to Speed with Databases and SQLite������������ 1

Moving Beyond Big��� 1

Databases Are Structured and Organized�� 2

Databases Are Smart��� 2

Relational Databases and SQL to the Rescue�� 4

Looking Inside a Relational Table and Query�� 5

Basic Query Structure�� 6

Looking at Other Query Choices�� 7

■■Chapter 2: Understanding What SQLite Is�� 9

Putting a Database in Perspective��� 9

Defining SQLite��� 10

SQLite Is Designed for a Single User��� 11

SQLite Is Self-Contained�� 12

SQLite Supports Transactions and Is ACID-Compliant��� 13

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vi

■■Chapter 3: Using SQLite Basics: Storing and Retrieving Data������� 15

Using sqlite3��� 16

Run sqlite3 and Let It Create a New Database�� 16

Create and Name a New sqlite3 Database�� 17

Delete the Database�� 17

Run sqlite3 and Open an Existing Database�� 17

Experimenting with SQLite Syntax��� 18

Exploring Your sqlite3 Database with a Graphical SQLite Editor�������� 19

Creating a Table�� 21

Using a Graphical SQLite Editor��� 21

Creating Table Columns��� 22

Using SQLite3�� 24

Inserting Data into a Table�� 24

Using a Graphical User Interface��� 24

Using SQLite3�� 26

Retrieving Data��� 26

Using a Graphical User Interface��� 26

Using sqlite3�� 27

Deleting Data�� 27

Summary�� 27

■■Chapter 4: Working with the Relational Model and SQLite������������ 29

Building the Users Table��� 30

Building the Scores Table��� 31

Relating the Tables��� 32

Using Aliases to Identify Multiple Tables in a SELECT Statement���������������������������� 32

Using the rowid Primary Key�� 33

Changing a Name in One Table�� 34

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vii

Using a Foreign Key��� 34

Joining the Tables�� 37

Summary�� 38

■■�Chapter 5: Using SQLite Features—What You Can Do with
SELECT Statements�� 39

Looking at the Test Data��� 40

Ordering Data Makes It Easier to Use�� 40

Grouping Data Can Consolidate It�� 41

Using Variables in Queries�� 42

Summary�� 43

■■Chapter 6: Using SQLite with PHP��� 45

Putting PHP and SQLite Together: The Basics�� 46

Verifying PHP in Your Environment�� 46

Preparing the SQLite Database�� 47

Connecting to Your SQLite Database�� 50

1. Create a New PDO Object�� 51

2. Create and Prepare the Query��� 52

3. Execute the Query��� 52

4. Fetch the Results��� 52

5. Use the Results�� 52

Summary�� 54

■■Chapter 7: Using SQLite with Android/Java����������������������������������� 55

Integrating SQLite with Any Operating System, Framework,
or Language��� 55

Using Android and SQLite��� 57

Using the Static Values�� 57

Extend SQliteOpenHelper��� 58

Summary�� 60

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

■■Chapter 8: Using SQLite with Core Data (iOS and OS X)���������������� 61

Introducing the Core Data Framework��� 62

Using the Core Data Model Editor�� 63

Using Entities��� 66

Working with Attributes��� 68

Managing Relationships�� 69

Summary�� 73

■■Chapter 9: Using SQLite/Core Data with Swift (iOS and OS X)������� 75

Looking at the Core Data Stack�� 75

Fetching Data to the Core Data Stack�� 76

Structuring a Core Data App��� 76

Passing a Managed Object Context to a View Controller in iOS������������������������������ 77

Setting Up the Core Data Stack in AppDelegate for iOS�� 78

Setting Up the Core Data Stack in AppDelegate for OS X�� 81

Creating a Fetch Request in iOS��� 84

Saving the Managed Object Context�� 85

Saving in iOS��� 85

Saving in OS X��� 86

Working with NSManagedObject�� 87

Creating a New NSManagedObject Instance��� 88

Working with a Subclass of NSManagedObject����������������������������������� 90

Summary�� 95

■■�Chapter 10: Using SQLite/Core Data with Objective-C
(iOS and Mac)�� 97

Looking at the Core Data Stack�� 98

Fetching Data to the Core Data Stack�� 99

Objective-C Highlights�� 99

www.allitebooks.com

http://www.allitebooks.org

■ Contents

ix

Using Quoted Strings��� 99

Objective-C Is a Messaging Language�� 99

Using Brackets in Objective-C��� 99

Chaining Messages��� 100

Ending Statements with a Semicolon�� 100

Separating Headers and Bodies in Objective-C��� 100

Looking at Method Declarations�� 101

Handling nil in Objective-C�� 101

Structuring a Core Data App with Objective-C������������������������������������� 102

Passing a Managed Object Context to a View Controller in iOS���������������������������� 102

Setting up the Core Data Stack in AppDelegate for iOS��� 103

Setting Up the Core Data Stack in AppDelegate for OS X�������������������������������������� 107

Creating a Fetch Request in iOS��� 110

Saving the Managed Object Context�� 111

Saving in iOS��� 111

Saving in OS X��� 112

Summary�� 120

■■Chapter 11: Using the Simple Database with a PHP Web Site����� 121

Reviewing the Database��� 121

Previewing the Web Site�� 124

Implementing the PHP Web Site��� 127

Looking at the Basic PHP/SQLite Structure��� 128

Building the Drop-Down Selection List (phpsql1.php)�� 130

Showing the Selected Data (phpsql2.php)��� 131

Adding New Data (phpsql3.php)��� 133

Using Try/Catch Blocks with PHP and PDO��� 134

Summary�� 134

www.allitebooks.com

http://www.allitebooks.org

■ Contents

x

■■�Chapter 12: Using the Simple Database with a Core
Data/iOS App��� 135

The Story Continues…��� 135

Adjusting the Data Model and Template for Core Data������������������������� 136

Getting Rid of Keys and Revising the Data Model��� 137

Changing timeStamp to name�� 137

Create a New Database on Your Device or Simulator�� 138

Add the Score Table and Interface to the App�������������������������������������� 138

Making Sure You Can Add New Users with + in the Master View Controller��������� 138

Working with the Detail View��� 139

Working with the Detail View for Score�� 139

Use NSManagedObject Subclasses��� 141

Use a Table View Controller for DetailViewController����������������������������������� 141

Modify DetailViewController Code for DetailViewController������������������������� 142

Modify MasterViewController to Pass the User to DetailViewController������� 143

Summary�� 144

Index��� 145

www.allitebooks.com

http://www.allitebooks.org

xi

About the Author

Jesse Feiler is a developer, consultant, and author
specializing in database technologies and location-
based apps. He has worked with databases and data
management on computers from mainframes to iPhone,
iPad, and Apple TV using data management tools
from DB2 (IBM) and DMSII (Burroughs) to Enterprise
Objects Framework and Core Data, MySQL, Oracle, and,
of course, SQLite.

In the early days of the web, he built the page
caching mechanism for the Prodigy web browser for
Mac using a relational database library similar in some
ways to SQLite.

He is the creator of Minutes Machine the meeting management app, as well as
Saranac River Trail app a guide to the Trail that includes location-based updates as
well as social media tools. His apps are available in the App Store and are published by
Champlain Arts Corp (champlainarts.com). As a consultant, he has worked with small
businesses and nonprofits on projects such as production control, publishing, marketing
and project management usually involving FileMaker and other databases.

His books include:

iOS Programming with Swift for Dummies (Wiley, 2015)

Swift for Dummies (Wiley, 2015)

iOS App Development for Dummies (Wiley, 2014)

iWork for Dummies (Wiley, 2012)

Videos include:

Mixed Language App Development with Objective-C and Swift
(O’Reilly, 2015)

iOS Developer’s Guide to Views and View Controller (O’Reilly, 2015)

Learning Objective-C Programing (O’Reilly, 2015)

He is heard regularly on WAMC Public Radio for the Northeast’s The Roundtable,
and is the founder of Friends of Saranac River Trail. A native of Washington DC, he has
lived in New York City and currently lives in Plattsburgh NY.

He can be reached at northcountryconsulting.com (consulting) and
champlainarts.com (app development).

http://northcountryconsulting.com
http://champlainarts.com

xiii

About the Technical
Reviewers

Trained in computer engineering, multimedia, and
graphic design, Aaron Crabtree has spent the last
15 years working in the industry. Experience has taught
Aaron that, in most cases, programmatically creating
each piece of an application is necessary for greater
flexibility and control. Drop him a line on Twitter:
@aaron_crabtree

Cliff Wootton is a former Interactive TV systems
architect at BBC News. The “News Loops” service
developed there was nominated for a BAFTA and
won a Royal Television Society Award for Technical
Innovation. An invited speaker on pre-processing for
video compression at the Apple WWDC conference.
Taught post graduate MA students about real-world
computing, multimedia, video compression, metadata
and researching the deployment of next generation
interactive TV systems based on open standards.

Currently working on R&D projects investigating
new Interactive TV technologies, involved with MPEG

standards working groups, writing more books on the topic and speaking at conferences
when not lecturing on Multimedia at the University of the Arts in London.

xv

Acknowledgments

What I love most about working with databases is putting the pieces of the puzzle
together – what a friend of mine used to call “making order out of chaos.” When it comes
to thinking about SQLite, there are many pieces to put together – everything from the first
work on relational databases back in the 1960s to the idea of lightweight code libraries
that can fit appropriately onto heavy-duty computers, as well as small battery-powered
mobile phones and autonomous satellites designed to explore other worlds far from the
relative safety of their home planet.

This book has been made possible, first and foremost, by D. Richard Hipp who began
(and continues) the SQLite project starting in 2000. The many people who have added
and tested code are too many to thank, but you know who you are.

Closer to home, Jeff Pepper at Apress has been great to work with (again), as has
Mark Powers. Together with Carole Jelen at Waterside Productions, they have all made it
possible to provide this basic introduction to SQLite.

xvii

Introduction

I have worked with databases of many types on many platforms. Despite the fact that
almost all of them have been based on the relational model. I’ve had some excursions
into ancient database structures such as IMS (a hierarchical database) and, more recently
into unstructured data, but in every case it has been a matter of a basic principle: finding
the simplest way to organize data so that it makes sense. (As I often say to clients, “The
data doesn’t lie.” When you lay data out this way, that way, and every which way, I’ve
found that gradually its inherent structure becomes clear – if there is one. If there isn’t an
inherent structure, what may become clear is some structure no one has ever thought of
for the data. And sometimes, the data stubbornly refuses to reveal a structure that we can
understand.

This may sound very highfalutin and esoteric, but I do think that our job as database
designers ultimately becomes a job of finding patterns. If we cannot find a logically
inherent and inevitable pattern, the best choice is to find the best pattern that is usable
for the task at hand.

We can’t produce these data models without knowing something (a lot, in fact)
about the ways to organize data, and, today that comes down to the relational model
and the tools of SQL. This process is iterative (woe betide the design team that adopts a
partial database model too early), and it relies on flexible tools as well as imagination and
constant questioning of everyone working on a project.

SQLite has become a critical component of many data modeling projects because it
is so lightweight and flexible. You can put up a SQLite database with basic functionality
very quickly. That’s where this book comes in. If you have the data and the mission to
come up with something that uses the data – website, mobile app, or standalone software
product – SQLite can be just what you want.

SQLite runs on many operating systems. With SQLite, you’re working with a
database that you can move around from one platform to another and one development
environment to another. Your prototyping, experimentation, and development can
proceed without committing yourself to anything besides the relational model and
SQLite. You may move on to other relational tools, and your little SQLite app may turn
into a production app for a multitude of devices or for a single many-multi-threaded
corporate data center.

This flexibility and very low barrier to entry are two of the features that many people
including me find attractive in SQLite.

I hope that you’ll find this book useful. There’s more information on SQLite at
sqlite.org, and there’s more information (and downloadable examples from the book)
on my website at northcountryconsulting.com.

—Jesse Feiler

1

Chapter 1

Getting Up to Speed with
Databases and SQLite

Ask people to tell you words they associate with database and you’ll probably get big
among the responses. Databases handle large amounts of data, and everyone knows that.
How big? It depends whether you count the number of items in a database or the size of
the items. The Library of Congress has 160 million items on 858 miles of shelving as of
this writing. The catalog, which is based on a database, is available online at www.loc.gov/
about/fascinating-facts/. There’s no question among people who are interested in
databases that the Library of Congress catalog is far from the largest database in the
world. (In all likelihood, the largest databases are not visible to the public because they
contain classified corporate and governmental information.)

This chapter provides an introduction or reminder about databases today and how
they are used. If you’ve used databases in the past, much has changed, and if you haven’t
used them much in the past, this chapter will give you a quick overview.

Moving Beyond Big
Beyond big, you should start thinking about databases as being structured and organized.
In fact, as a mobile developer, the structured and organized aspects of databases are
much more important than their size. From the earliest days of the Web in the early
1990s, web browsers have used databases to store and organize their data. What data, you
may wonder? How do you think your browser is able to store your passwords for the web
sites you visit? How do you think browsers store web pages in a cache so that they can be
retrieved without a new network access when possible? And what about your preferences
for default font sizes? Or the download folder for files you can change when you feel like
it, and even, on many browsers, restrictions on certain users or types of users? These
are just simple examples, but the principles apply even to the largest (and smallest)
databases today.

http://www.loc.gov/about/fascinating-facts/
http://www.loc.gov/about/fascinating-facts/

Chapter 1 ■ Getting Up to Speed with Databases and SQLite

2

Databases Are Structured and Organized
All those examples can be implemented with a database because all those items need
to be structured and organized. Some of the items can turn into large amounts of
data (particularly a browser history if you don’t choose an option to clear out the old
information occasionally—another option that can be stored in a preference database),
but some of the preferences listed are very small amounts of data: even with a fully
modified file name for your download folder, 128 characters is enough to store that data
element. Furthermore, most browsers store the name of your preferred download folder,
but they don’t store the history of download folders (last week’s preferred download
folder, the folder you used last month, etc.).

In thinking about databases, “big” is often relevant, but very frequently it’s
misleading. It is structure and organization that matter most.

And they matter a great deal to a mobile developer.
Precisely because mobile devices need to function in a world of constrained

resources (e.g., limited storage space and battery power), structuring and organizing
the data that is stored is particularly important. Built into a data management system
are various optimizations that matter to databases large and small. For example, many
databases can store character or string data. Such data is typically quite variable. Even if
a database designer specifies that a text field can contain 50, 500, or 50,000 characters,
behind the scenes trailing blanks are often discarded. The user (and even the developer)
may never know this, but it makes the entire database function more efficiently. (Features
like this function behind the scenes and they can be accessed and turned on or off by the
database designer in many cases.)

Databases Are Smart
Being able to optimize storage to work with the presence or absence of characters in a
text field is a powerful behind-the-scenes tool, but databases have intelligence built
into them.

In most database engines today, the designer can specify many attributes of a field
such as the following:

• Name. A name that is used internally is often quite different from
the name that appears in the user interface.

• Type. You can specify that a certain database field must be an
integer or a string or any other type that the database supports.

• Optionality. Some fields are optional, and you can specify that
when you set up a database. (Many people have a car with a
license number; many other people do not own cars.)

• Default values. A database can be set to provide a default
value—either a simple value or a calculated value based on other
data in the database.

Chapter 1 ■ Getting Up to Speed with Databases and SQLite

3

• Cardinality. Sometimes, there are multiple values for part of the
database. (To continue the example, some people have no car,
other people own a car, and others own several cars. Furthermore,
some people own a car and a bike . . . you get the idea.)

• Value ranges. When the database designer specifies the database
structure, a range of values for each field can be set. A driver’s
license identifier that consists of characters other than letters and
numbers (depending on the locality) may not be allowed.

• Value relationships. You can move beyond value ranges in
designing a database. You can create combinations of attributes
and values so that, for example, a database can enforce a rule that
an employee may be married (to one person or no one), but if the
employee is married, the spouse’s employer cannot be the same
as the employee’s employee. These restrictions in the database
reflect policies, but there well may be exceptions (a supervisor’s
approval), and the database can be designed to support a case
like that.

These are just a few of the ways in which a database can be set up to enforce
logical rules.

Perhaps at this point you’re tempted to say, “But I can do each of those things
with a line or two of code.” That’s absolutely true. But there are a couple of points to bear
in mind.

Writing Code Is Just the Beginning
You can write the code to implement any of those conditions, but that’s just the start.
Over time, conditions change, users have suggestions, and the Power That Be (whoever
that (or “they”) may be in your life) decides to change the rules for employment, cars,
the conditions that apply to license plate numbers, or any other things that strike his or
her fancy.

The code that took only a few lines of code and a couple of minutes to write needs to
be rewritten. And, although there is no clear research on the matter, it seems that these
changes take place at the last minute before a product (or version) launch and they must
be done immediately.

Parlez-vous Python? Sprechen Sie Scala?
The line or two that implement the rules for one of the data conditions may have been
written by someone who’s no longer around. Even if you wrote them, time may have passed
and you may not remember exactly what you were trying to implement (yes, commenting
your code is a desirable feature, but life happens . . .)

Those few lines of code may have been modeled on some code from a friend that
does exactly (or almost) what you want. Maintaining even the best-written code is a
challenge for everyone involved from the first author to the updater to the manager
and—eventually the user or manager who asks for “just a little tweak.”

Chapter 1 ■ Getting Up to Speed with Databases and SQLite

4

Relational Databases and SQL to the Rescue
Today, databases are remarkably standardized in their structure—perhaps more so
than almost any other concept in the world of information technology. The idea of
a relational database was first proposed in 1970 by Edgar Codd, of IBM’s San Jose
Research Laboratory, and his proposal has become the basis for modern database
implementations (see article titled “A Relational Model of Data for Large Shared Data
Banks,” Communications of the ACM, 13(6), 377–387 (June 1970)).

In 1974, Donald D. Chamberlin and Raymond F. Boyce (also from IBM) wrote a paper
titled “SEQUEL: A Structured English Query Language” for the ACM (Association for
Computing Machinery) SIGFIDET Workshop on Data Description, Access and Control.

The relational model (proposed by Codd), together with SQL, has become the
basis for modern database implementations. Books by C. J. Date and others together
with Codd’s original work on the relational model remain the cornerstones of relational
database theory today.

■ Note  The name SQL is derived from SEQUEL which turned out to be a trademark
of the Hawker Siddeley aircraft company. Today, many people suggest that SQL is not
an abbreviation or acronym but is a name in and of itself. Others suggest that SQL is an
acronym for structured query language.

The basic concepts of SQL are few. You can visualize them by thinking of a
spreadsheet with its rows and columns. (You can also conceptualize them using
mathematical set theory and other concepts, but spreadsheets are easier for many people
to think about today.)

Following are the basic SQL concepts:

• Table. A table is much like a simple spreadsheet with rows and
columns. (It’s not like a complex spreadsheet that may include
several tables. For this discussion, think simple—just rows and
columns in a single table.) A table is sometimes referred to as a
relation, but more often table is used.

• Column. A column represents a single data element such as
“address” or “name.” In the database world, a column may be
called a field. In the world of programming, a column may be
called an attribute or property.

• Row. A row represents single observations or set of values with
one for each column. Thus, a row in this imaginary simple
spreadsheet might represent a person’s data. In the database
world, a row may be called a record or tuple.

Chapter 1 ■ Getting Up to Speed with Databases and SQLite

5

To retrieve data from a relational database table, you run a query. A query is a set
of logical instructions that manipulate a given table in such a way as to retrieve the data
that you want. The result of a query is another table. The resulting table may be empty
(if no data satisfies the query), it may be some or all of the data in the table, and, in
some complex queries, it may be larger than the basic table. The results of a query are
sometimes called a view or a result set.

These concepts and terms apply to most databases today regardless of the language
in which they are implemented and, perhaps more important, regardless of the database
engine or database management system (DBMS) in which they are implemented.
Furthermore, databases are sometimes implemented as part of frameworks and
languages. Thus, in PHP, you can use PDO (PHP Data Objects) starting with PHP 5.1 to
access SQLite. For iOS, you can use the Core Data framework to work with SQLite and
other data managers. In these cases as well as others, the idea has been to abstract as
much as possible into a framework or other wrapper so that switching databases does not
require massive rewrites of code.

SQLite implements most of the SQL standard. The exceptions are listed here
https://sqlite.org/omitted.html.

Looking Inside a Relational Table and Query
For the remainder of this chapter and several that follow, we are going to use a simple
example to learn how to create SQLtables and queries. Table 1-1 shows a simple table that
can be used to demonstrate the basic concepts of SQL, queries, and relational tables. It
shows some data for a few people and their country of origin. The names of the columns
(fields) are PK, Name, and Origin. The values of Name are Cecelia, Leif, and Charlotte; the
values for Origin are Australia, Iceland, and United States.

Table 1-1.  SimpleTable

PK Name Origin

1 Cecelia Australia

2 Leif Iceland

3 Charlotte United States

■ Note I n a relational database, the columns have names, but rows are not named. In the
simple table shown in Table 1-1, the first column (named PK) has three values: 1, 2, and 3.
These values happen to correspond to the row numbers, but the sample would work just as
well if they were named Chair, Tree, and 15.

https://sqlite.org/omitted.html

Chapter 1 ■ Getting Up to Speed with Databases and SQLite

6

You can retrieve data from a table by using a query. As noted previously, the result of
a query is a table—perhaps an empty one, perhaps some of the data of the original table,
and, in some cases, more data than in the original table. This section shows some typical
basic queries. In later chapters, you’ll see more about queries as well as details about how
to structure them. For now, this is just a taste of what queries can be and do.

Basic Query Structure
In their simplest form, queries consist of three sections.

■ Note T he code shown in this section is SQL code. By convention, reserved words
in SQL are shown in CAPITAL LETTERS although in most implementations, SQL is
case-insensitive.

SQL Action: SELECT
There are a number of verbs in SQL, but SELECT is used to select data from a table.
Commands start with that word.

SQL Data to Select: List of Column Names
You can start to form a SELECT statement by listing the names of the columns you want
to select. Thus, to retrieve data from the Name column, you would start the SELECT
statement with

SELECT Name

To select data from several columns, you can specify a comma-delimited list as in the
following case:

SELECT Name, Origin

You can select all columns with an asterisk as in

SELECT *

SQL Data Source: Table Name
You can specify the data source using a clause beginning with FROM. Following is an
example:

SELECT Name FROM SimpleTable

www.allitebooks.com

http://www.allitebooks.org

Chapter 1 ■ Getting Up to Speed with Databases and SQLite

7

SQL Condition: WHERE
You can specify the condition you want to use for selecting data with a clause that begins
with WHERE. For example, you could use that first column (PK) to select a single row.

SELECT Name FROM SimpleTable WHERE PK = 2

You can also form a condition that is more complex:

SELECT Name FROM SimpletTable WHERE PK < 3

Looking at Other Query Choices
These are the simplest possible examples: more complex ones will be shown throughout
the book, but the basic pattern will remain as follows:

SELECT this FROM table WHERE condition

You can use several tables as your data source. Thus, if you have names and origins
as shown in Table 1-1 in a single table, you could have another table with each person’s
birthday. You could create a single SELECT statement to retrieve both the name and
birthday for anyone; to do so you would have to use two tables. (Don’t worry, this is an
example you’ll see in Chapter 4.)

As noted previously, the result of a SELECT query is itself a table. Thus, you can write
a SELECT query that executes a SELECT statement to create a table and then selects data
from that resulting table.

With this brief overview of relational databases and SQL, it’s time to move on to
SQLite itself.

http://dx.doi.org/10.1007/978-1-4842-1766-5_4

9

Chapter 2

Understanding What
SQLite Is

Chapter 1 provided an overview of relational databases and SQL that applies to most
modern databases regardless of the environment in which you find them (Oracle, MySQL,
Microsoft SQL Server, or others). That generality is important because SQLite is part of
that picture. In this chapter, however, the focus is just on SQLite and the features of SQLite
that you may or may not find in other database environments. Whereas a lot of Chapter 1
may be familiar to long-time database users, much of this chapter may not be because
even if it is not SQLite-only, many of the features described in this chapter are not present
in other database environments. (To be quite fair, many features of other database
environments are not found in SQLite.)

Putting a Database in Perspective
A relational database typically lives inside some kind of containing object. Often, the
container is a database management system (DBMS). (You may sometimes see references
to a relational database management system (RDBMS). For most purposes in today’s
world, most DBMSs are RDBMSs.)

A database management system such as Oracle provides functionality that goes
beyond the database itself, such as user interfaces or developer interfaces; diagnostic,
debugging, and maintenance tools; and even sophisticated data display functionality.

In some cases, a database is part of a language, object-oriented class, or framework
that, itself, may or may not be a DBMS. For example, PHP has a database class just as
does the Android SDK (Yes, one is a language and one is an operating system, but each
can provide an object-oriented database class.) You’ll find more about these classes in
Chapters 6 and 7.

On the other hand, Cocoa and Cocoa Touch provide a Core Data framework for both
iOS and Mac. I describe Core Data later in Chapters 8 and 9.

For most of this book, the focus is on SQLite itself, but beginning with Chapter 6,
you’ll see how to access it when it is inside a DBMS, class, or framework.

http://dx.doi.org/10.1007/978-1-4842-1766-5_1
http://dx.doi.org/10.1007/978-1-4842-1766-5_1
http://dx.doi.org/10.1007/978-1-4842-1766-5_6
http://dx.doi.org/10.1007/978-1-4842-1766-5_7
http://dx.doi.org/10.1007/978-1-4842-1766-5_8
http://dx.doi.org/10.1007/978-1-4842-1766-5_9
http://dx.doi.org/10.1007/978-1-4842-1766-5_6

Chapter 2 ■ Understanding What SQLite Is

10

Defining SQLite
SQLite is a software library written in C. It was developed by D. Richard Hipp in 2000
originally as part of a contract with the U.S. Navy that was implemented by General
Dynamics. Today, it consists of some 184,000 lines of code.

SQLite is in the public domain, so it can be used by anyone. Further details and links
to download the source code are available at sqlite.org.

You can compile the source code into a library that, in turn, you can use in an
application program. Although you may find references to SQLite as a DBMS, it is, strictly
speaking, just this library. The container in which that library is compiled (a class, a
framework, or a full-fledged DBMS) provides the larger DBMS functionalities.

IS SQLITE A DBMS?

In some ways, this only matters if that question can be answered in a way that
influences the way you design or implement your SQLite-based project. However,
if you track down references to SQLite, you’ll see that it is usually referred to
(correctly) as a library or as a database engine.

The code has been designed from the beginning to be compact and reusable
(that reference to its origin with the U.S. Navy is relevant here—when you’re on a ship
at sea, every resource is limited, including power, space, and weight. Furthermore, in
modern ships, technological components must function together even if their origins are
with multiple vendors. That’s the SQLite environment.

Whether you are worried about the limited resources on a ship, on a mobile device
running an operating system such as Android or iOS, or on a small mobile device such
as a programmable beacon . . . or even the limited resources on a supercomputer
(“limited” is always relative), SQLite is a good choice in many cases.

The following sections highlight some of the major features of SQLite that implement
this mandate and that are important to you as you use it in whatever container you
choose (DBMS, class, framework, or basic library). These features are important to you as
you undertake a SQLite-based project for a mobile device.

The features discussed in this section actually all revolve around the fact that SQLite
is a library that is designed to be used by a single user to handle database functionality.
(Before you throw up your hands, read on to see how SQLite can function very well in a
multiuser and multiprocess environment.) The following are the features to consider:

• SQLite is designed for a single user

• SQLite is self-contained

• SQLite supports transactions and is ACID-compliant

■ Note  You can find more details on these topics at sqlite.org.

Chapter 2 ■ Understanding What SQLite Is

11

SQLite Is Designed for a Single User
One of the biggest differences between SQLite and most DBMSs is that SQLite is designed
for a single user. Most DBMSs manage multiple users including various security features
that allow or block access to specific SQL commands and features. Even more important
to many people, a DBMS manages contention for resources so that several users can
apparently use the same data concurrently.

Apparently is the key word here because although each user typically thinks that he
or she has unique access to the database, in fact, behind the scenes the DBMS manages
concurrency so that in some cases, it has locked a record to prevent access to it by a
second user while another user is updating it.

Single User Doesn’t Mean Single-Thread
SQLite manages concurrency within its own environment. This means that it may have
multiple threads running at the same time to perform its own tasks, but those threads are
managed within the SQLite environment itself. They do not represent separate users.

Using SQLite with Multiple Users
How can you have multiple users when SQLite is designed for a single user? The answer
is simple: you manage multiple users yourself. There are a number of ways of doing this,
but in general, what you do is to push the multiuser management onto the app, class, or
language into which SQLite is embedded. Apps typically have the ability to communicate
with one another (subject to security and platform constraints). Thus, although SQLite is
not going to manage the case of User A and User B attempting to modify the same data at
the same time, your app can do so.

Typical concurrency strategies involve either having a master process that manages
the concurrency or having a mechanism whereby multiple independent processes
communicate without a master process. You find many examples of multiple independent
processes in apps such as Dropbox and in many cloud-based apps. (In the case of Dropbox
and cloud-based apps, there may be a process continually running somewhere in the cloud
and, perhaps separate processes running on active clients. Whether or not control resides
in a central process or is distributed among the clients (and master) varies depending on
the specific implementation.)

Thus, SQLite is perfectly capable of functioning in a multiuser world; it just needs
to be running inside apps or other processes that themselves implement the multiuser
features.

Chapter 2 ■ Understanding What SQLite Is

12

SQLite Is Self-Contained
SQLite is self-contained in two ways.

• The code itself is self-contained ANSI-C code. It makes minimal
use of C libraries. In fact, the only ones it uses are

• memset()

• memcpy()

• memcmp()

• strcmp()

• malloc()

• free()

• realloc()

• The data store itself is self-contained, portable, and
platform-agnostic.

Self-Contained Code
Self-contained code means that when you include the SQLite library in your project
(either directly or through a language, class, or framework), you have everything you
need. You don’t need to include additional libraries.

You don’t have to worry about versions, and, once you have a compiled SQLite
library, you can generally reuse it without being dependent on changes in components.
(Remember, though, that in most cases SQLite is embedded in a language, class,
framework, or DBMS so the container is what you will need to update from time to time.)

Because SQLite is in the public domain, you don’t have to worry about licenses or
license fees. (You can, however, obtain a license as described on sqlite.org. That option
is provided for some users who need to demonstrate to their management that they
actually have the right to use SQLite.)

Remember that SQLite is often contained within a class, framework, or language that
you are using so this feature (which to a large extent makes such containability possible)
may not be visible to you.

■ Note I f you go to sqlite.org, you’ll find the various download options for the SQLite
source code. There are options to download it in sections that are combined (amalgamated)
in the final build. This is done primarily to accommodate development environments that
have trouble handling the full build at one time.

Chapter 2 ■ Understanding What SQLite Is

13

Self-Contained Data
The data store that SQLite uses for a database is designed to be self-contained and cross-
platform. This means that you can transfer a SQLite file from one environment to another
without problems in most cases. (That caveat is necessary because you may encounter
issues in specific configurations, but for many if not most SQLite users, the first step in
verifying that a database can be moved is to actually move it—this usually works.)

In its most basic (and original) form, each SQLite database is stored in a single file.
The file is readable and writable on any platform (subject to environmental constraints
on the file). For example, if you place the file on a read-only disk, you can’t write to it with
SQLite. (This may sound far-fetched, but such things do happen.)

With the database in a single file, users can see it and move it around if they want.
(If they do so, the app that you are building must be able to find the file—perhaps with
the user’s help.) Users can also delete the database file. Because it is self-contained, that’s
very simple, and it doesn’t corrupt other SQLite databases. Of course, the fact that a user
may be able to delete the database means that in your implementation, you may want to
hide it or place it in protected places. If you do that, you often take advantage of platform-
specific features such as hidden folders, but the SQLite file itself remains an ordinary file
that can be moved around and copied to other devices.

Because the database file is self-contained, it contains both the database data and its
schema (structure if you’re not from the database world). In part because each database
is self-contained, SQLite is referred to as serverless (there is no separate server process).

The fact that a SQLite database can be stored in a single file leads to a common use
of SQLite to implement structure and database functionality inside what appears to the
user to be a simple file.

■ Note A lthough SQLite began with the one-database/one-file structure, it now supports
write-ahead logging (WAL) as an option. WAL is a technique that optimizes database
performance using multiple files. There is more on WAL in Chapter 4.

SQLite Supports Transactions and Is ACID-Compliant
Transaction in the world of databases has a very specific meaning over and above its
regular meaning in English. It refers to a set of steps that are done together (usually in
sequence, but not necessarily so). Together, these steps are a transaction, and what’s
important is that the transaction as a whole either succeeds or fails. If any of the steps
fails, the entire transaction fails. As a result of transaction failure, the database is said to
be rolled back to its condition before the transaction began.

When a database supports transactions, the failure of any part of a transaction
means the entire transaction fails and the database is set to whatever it was before the
transaction started. All of this happens in an ACID-compliant database such as SQLite.
As you saw in Chapter 1, there’s a lot of code you don’t have to write when you’re using a
database.

http://dx.doi.org/10.1007/978-1-4842-1766-5_4
http://dx.doi.org/10.1007/978-1-4842-1766-5_1

Chapter 2 ■ Understanding What SQLite Is

14

ACID is the standard by which most databases are judged today to determine if they
support transactions. ACID is an acronym.

• Atomicity. This is the all-or-nothing aspect of a transaction. It
succeeds or fails as a whole and can never be partially successful.

• Consistency. In processing a transaction, the database will start
from a valid state and end in a valid state. In other words, a
transaction will not violate database rules such as the optionality
of attributes as a result of a transaction, but those rules may be
violated during the course of the transaction.

• Isolation. This means that transactions can be run sequentially or
concurrently. They will not interfere with one another. (Isolation
requires that a database implement a method for managing
concurrency so the operations can be either sequential or
concurrent.)

• Durability. This means that, on completion, the transaction
persists. In practical terms, this generally means that it is
committed to disk.

In SQLite (as in many other implementations of SQL), a transaction consists of a
number of SQL statements bracketed by

BEGIN TRANSACTION

and

END TRANSACTION

There is more on transactions in Chapter 4. You’ll see how to define them and how
to specify the point to which a failed transaction is rolled back. In that chapter, you’ll also
see a larger description of how WAL implements atomicity and durability.

CONCURRENCY AND ACID TRANSACTIONS ON
MOBILE DEVICES

You may think that when you’re writing for a mobile device such as a phone, there’s
only a single user and this discussion of transactions and ACID compliance doesn’t
apply. However, the issues of concurrency apply perhaps even more on mobile
devices than in other cases.

The reason why you have to think about transactions and their failures on mobile
devices is that many of the most frequent tasks you perform on mobile devices
involve network access. As anyone who has tried to carry on a phone conversation
in a train that suddenly speeds through a tunnel knows, network availability can
suddenly disappear on a mobile device.

http://dx.doi.org/10.1007/978-1-4842-1766-5_4

15

Chapter 3

Using SQLite Basics:
Storing and Retrieving Data

SQLite is a lightweight library containing a database engine that lets you use a very large
subset of SQL to store and retrieve data. As a user, you are most likely to be familiar with
an application interface or the interface of a database management system (DBMS) that
provides an interface to the database itself. Behind the scenes, your commands (whether
text or graphical) are translated into SQLite syntax.

This chapter shows you the basics of creating a table, adding data to it, and retrieving
that data. It’s a high-level overview to give you a taste of SQLite. The next chapter will drill
down into some options and variations you can use. In this chapter, you’ll see both a graphical
user interface (GUI) and the sqlite3 command-line interface that are part of SQLite. In
subsequent chapters, you’ll usually see only the SQLite interface because it includes the
SQLite commands. In most graphical editors for SQLite, you have an option to type in the
SQLite code directly, so those commands should work for you in either environment.

TERMINOLOGY AND DEFINITIONS

“SQLite” is used in various ways in this book as it is used in other documentation
and discussions. Following is a guide to what’s what in the world of SQLite:

• SQLite. As used in this book, SQLite refers to any version of SQLite.
You can find source code and precompiled binaries at sqlite.org.
When used alone, it refers to the SQLite project and any of its versions.

• SQLite 3 is the current version of SQLite as of this writing. Thus,
SQLite 3 is the third major release of SQLite. In this book, SQLite 3
refers to that version as opposed to other versions (e.g., SQLite 2).

• SQLite 3.9.2 is the current release version of SQLite. As with any
maintained software products, it is being revised as needed, so the
numbering convention of major-minor-build is used. In this book,
the specific release (3.9.2) is not referred to because it is subject
to change.

Chapter 3 ■ Using SQLite Basics: Storing and Retrieving Data

16

• sqlite3 (no spaces and all lower-case) is a command-line utility to
help you build and debug SQLite databases and syntax. You can
download it from sqlite.php, but if you have SQLite installed
in your operating system (OS) or other environment, sqlite3 is
probably there.

As you read various materials about databases and relational databases, you
may encounter database management systems (DBMSs) and relational database
management systems (RDBMSs). Most databases today are relational databases,
and almost all of them are based on SQL. There are other types of databases, but
they’re not widely used at the moment. A particularly interesting approach to data
management today is unstructured data, but that is outside the scope of this book.

Using sqlite3
sqlite3 is a command-line utility that is part of SQLite 3 (the sqlite2 version is no longer
applicable). It runs on OS X (using Terminal) or as sqlite3.exe, which runs on Windows.
It allows you to experiment with SQLite code directly, and it is used in this book as a
touchstone for SQLite syntax. (When you use a third-party tool such as a graphical editor,
you may encounter slight variations in the syntax such as whether or not a semicolon is
required at the end of a statement—it is in SQLite.) You end your sqlite3 session with
a .quit or .exit. Note the initial period because both are sqlite3 commands, but no
semicolon at the end because they are not SQLite syntax (requiring a semicolon).

Most of the sqlite3 code in this book is shown with the prompt at the beginning of
each line so that you can see which commands are multiline commands. Remember that
you always need a semicolon at the end of a command—you can place it alone on the last
line if you’ve forgotten to enter it before.

sqlite3 works with a temporary database that it creates for you, or alternatively,
you can manage your own databases. These commands are shown here because they are
sqlite3 commands and not SQLite syntax.

In the following subsections, we will review the basic sqlite3 commands that you
need to use the most. You can find more information about the sqlite3 commands at
www.sqlite.org/cli.html.

■ Note  Commands inside sqlite3 start with a period.

Run sqlite3 and Let It Create a New Database
Just type

sqlite3

http://www.sqlite.org/cli.html

Chapter 3 ■ Using SQLite Basics: Storing and Retrieving Data

17

When you are finished, type .exit or .quit. Here is a simple sample session.

Jesses-Mac-Pro:~ jessefeiler$ sqlite3
SQLite version 3.8.10.2 2015-05-20 18:17:19
Enter ".help" for usage hints.
Connected to a transient in-memory database.
Use ".open FILENAME" to reopen on a persistent database.
sqlite> .exit

Create and Name a New sqlite3 Database
The command sqlite3 mydatabase will create a new database called mydatabase.

Jesses-Mac-Pro:~ jessefeiler$ sqlite3 mydatabase
SQLite version 3.8.10.2 2015-05-20 18:17:19
Enter ".help" for usage hints.
sqlite> .quit

Delete the Database
By default, the database is created at the root level of the user (as long as that’s the
directory set in your command-line editor). Therefore, you can delete it from the Finder if
you’re on OS X. Just go to your root level (i.e., next to folders such as Desktop, Documents,
Downloads, Library, Movies, Music, Pictures, Public, and Sites) and delete the
database you have just created.

Run sqlite3 and Open an Existing Database
To open an existing database use the .open command. If you want to change your directory
in Terminal (or whatever your command-line editor is, use your standard command
(it often is cd). In Terminal on OS X, after you type cd, just drag the folder into which you
want to place your files into Terminal: it will pick up the path and insert it into your code.

Jesses-Mac-Pro:~ jessefeiler$ sqlite3
SQLite version 3.8.10.2 2015-05-20 18:17:19
Enter ".help" for usage hints.
Connected to a transient in-memory database.
Use ".open FILENAME" to reopen on a persistent database.
sqlite> .open testdb
sqlite> .quit

www.allitebooks.com

http://www.allitebooks.org

Chapter 3 ■ Using SQLite Basics: Storing and Retrieving Data

18

Experimenting with SQLite Syntax
The SQLPro for SQLite editor is useful to demonstrate SQLite syntax because, like a
number of other SQLite editors, you can use a higher-level interface such as a graphical
user interface (GUI) to manipulate your database, but you can also see the underlying
SQLite code that is generated. It is that SQLite code with which you’ll be working in the
rest of this book.

This section lets you explore SQLite syntax, but remember that most of the SQLite
code you’ll be creating is going to be embedded in an app that you write (or within a
framework, DBMS, or library that is included in your app).

There are a number of lightweight SQL editors available on Web (just search for
“SQLite editor”). Because sqlite files are cross-platform, you can use these editors
to work with any sqlite file that you have (subject, of course, to security constraints
implemented by the operating system). In this chapter, SQLPro for SQLite is used as an
example of a simple GUI placed on top of SQLite. It is available at www.sqlitepro.com.
This will show you how Table 3-1 (shown previously in Chapter 1 and repeated here) is
created from a user’s point of view.

Because a graphical editor provides you with a view of what you’re doing to your
database, it may be easier to use than a command-line interface where there is no
guidance beyond the command-line prompt. If you prefer to start out with the command
line, rest assured that in this chapter you’ll see the graphical representation of the table as
you create it, but you’ll also see the SQLite syntax that is generated at each step.

■ Note D BBrowser is another editing tool for SQLite. It is available for Windows, Mac OS
X, and Linux at http://sqlitebrowser.org.

SQLite uses a subset of SQL (a very large subset at that). In addition, there are some
minor modifications to standard SQL syntax (and, to be quite blunt, just about every
DBMS makes some minor modifications of one kind or another). Rest assured, the SQL
shown in this chapter applies in almost every environment. If you download a SQL editor
from the Web (i.e., a standard SQL editor and not a SQLite editor), you may actually be
using syntax that differs very slightly from SQLite.

In particular, the very common MySQL DBMS has several popular editors—many
of them free—but you might find a few minor differences. Most people (including me)

Table 3-1.  SimpleTable

PK Name Origin

1 Cecelia Australia

2 Leif Iceland

3 Charlotte United States

http://www.sqlitepro.com/
http://dx.doi.org/10.1007/978-1-4842-1766-5_1
http://sqlitebrowser.org/

Chapter 3 ■ Using SQLite Basics: Storing and Retrieving Data

19

function quite well without worrying about these distinctions: if they do crop up they’re
simple to solve. What may be the most important point to remember is that SQLite syntax
as it is implemented in SQLite is available at sqlite.org. SQL itself is not a standard in
the way the HTML is, and that’s why you may encounter these variations.

ABOUT PRIMARY KEYS

Each row in a SQLite table has a rowid—a unique identifier that lets you access
that specific row. Often, a unique rowidis created automatically for a table. It
may not even be visible to users. Ideally, a primary key is not only unique but also
meaningless.

In fact, a meaningless primary key is generally more useful than one with meaning.
If the primary key is a person’s name, birthday, or address, it can change. Only a
totally meaningless value that has no dependency on anything else can successfully
serve as a primary key.

That is one of the reasons that database developers often hide their primary keys—or,
in the case of SQLite, they let the database take care of it behind the scenes. If you
do not want SQLite to do this for you, the check box in SQLPro for SQLite lets you
use the behind-the-scenes mechanism. It is exposed in this example in order to use
it in demonstrating relationships in Chapter 4.

Exploring Your sqlite3 Database with a
Graphical SQLite Editor
When you first open your graphical SQLite editor, you’ll probably see an empty database
(or even no database at all). As is the case with any modern app, you may be given the
opportunity to reopen the last opened database or to navigate to an existing database.

■ Tip R emember than a SQLite database is in its own file usually with a sqlite extension.
If you have more than one SQLite database, you have more than one file. (There may be
some related files—see “Write-Ahead Logging” in Chapter 4.)

In your database window, you’ll usually see a list of the items in your database
(if any exist). The main items that you usually care about are

• Tables that contain data. You can retrieve the data using a query.
Queries return tables—they may have no rows or columns and
therefore be empty, but they are tables nonetheless.

http://dx.doi.org/10.1007/978-1-4842-1766-5_4
http://dx.doi.org/10.1007/978-1-4842-1766-5_4

Chapter 3 ■ Using SQLite Basics: Storing and Retrieving Data

20

• Views are saved queries that, like all queries, produce a table as
their result. Thus, a view is not just a saved query: it also can be
used much like a table (the result of the query).

• System tables are SQLite tables that are created automatically
for you within each database. You may think you’re creating a
new table, and you are, but, in addition, you are updating the
sqlite_master, which keeps track of each table in the database.

If there are no tables yet—that is the case if you have just created a new database—you’ll
typically see a list such as the one at the left of Figure 3-1. There are headers for tables and
views (none are present as this is a new database). Under the System Tables header, you
can see the single sqlite_master table, which is present in each SQLite database.

■ Note  Capitalization doesn’t matter in SQLite, but the conventions of using capital
letters for SQL syntax and capital names for the names of tables and views is used in this
book’s text. These are only conventions. Code examples use both upper and lower case.
Remember that these are options and conventions, so use what you prefer. If you are
working on several projects, you may encounter a variety of styles and conventions. Some
people (including me) are in the habit of posting a large sheet of paper on the wall with the
conventions for current projects.

Figure 3-1.  Exploring sqlite_master

Chapter 3 ■ Using SQLite Basics: Storing and Retrieving Data

21

If you open sqlite_master, you can see the columns in that table as shown at the left
of Figure 3-1. Here they are.

• type is TABLE in the case of tables. (Other values will be discussed
as they are encountered.)

• name is the table name.

• tbl_name is a short table name but may be the same as name.

• rootpage is used to identify the location in the database where the
table is found. You don’t often need to refer to this.

•	 sql is the sql code that is used to create the item. It will be updated
with modifications so that it is the code to be used to create the item
as it is currently configured (not as it was originally configured).

Creating a Table
Here are ways to create a table with a graphical SQLite editor or with the command-line
and sqlite3.

Using a Graphical SQLite Editor
At the bottom of the list of tables shown in Figure 3-1 (and near to it in other editors), you’ll
find a + that lets you add another table to the list. Figure 3-2 shows the result of clicking +.

Figure 3-2.  Starting to create a new table

Chapter 3 ■ Using SQLite Basics: Storing and Retrieving Data

22

The details of the data type and size attributes should not be too difficult to set
because you have pop-up menus to use. The possible values for Data Type in SQLite Pro
for SQLite are

• blob

• char

• double

• float

• integer

• varchar, nvarchar

• text

You see a form into which you can type your table name. A single column is placed in
the window. The first thing you usually do is rename both the table and the first column.

Creating Table Columns
You can use + to create additional columns. In this case, you know what the table should
look like (you’ve seen it in Table 3-1), so it’s not difficult to set up the columns in Figure 3-3.

Figure 3-3.  Adding columns to the table

Chapter 3 ■ Using SQLite Basics: Storing and Retrieving Data

23

These have the same meanings they have in most languages, but in SQLite, the types
are relatively unimportant because SQLite is not strongly typed. It actually uses five basic
storage classes.

• NULL

• INTEGER

• REAL

• TEXT

• BLOB

These storage classes are useful in the implementation of SQLite. As noted in the
documentation at http://sqlite.org/datatype3.html

Any column in a SQLite version 3 database, except an INTEGER
PRIMARY KEY column, may be used to store a value of any storage class.

This doesn’t mean that you should ignore typing. In fact, when SQLite is embedded
in a framework, DBMS, or language, stricter typing may well be enforced. However, it is
the framework, DBMS, or language that enforces that typing.

NULL values are represented by a special code internally that represents
nonexistent—NULL. This is far preferable to using an actual value (typically 0 or -1) to
represent missing data. As soon as you provide any value for missing data, you run the
risk of accidentally using that missing-data value as a real data value. (Ask anyone who
worked on the Year 2000 problem what the consequences of this are.) When NULL is not
an acceptable value, this means that the relevant column must have some value or other.
It can’t be totally empty.

In the table as shown in Figure 3-3, PK and Name cannot be NULL, but Origin can
be blank.

■ Note  A non-null text field must have a value, but it is perfectly acceptable to give it a
value of an empty string—that is, a string of zero characters surrounded by quotation marks
as in “”.

When you have finished specifying your table name and its columns, you click
Accept (or whatever your editor calls its button), and the table is created. Remember
that inside sqlite_master you have a field called sql for each table. The field contains the
code that generates the table (not its data). You can see that code in SQLPro for SQLite by
clicking the Structure button at the top of Figure 3-4.

http://sqlite.org/datatype3.html
http://sqlite.org/lang_createtable.html#rowid
http://sqlite.org/lang_createtable.html#rowid

Chapter 3 ■ Using SQLite Basics: Storing and Retrieving Data

24

Figure 3-4.  Looking at the SQL code to generate the table

Using SQLite3
Here’s the syntax for sqlite3. Note that this syntax creates both the table and its columns.
The ALTER TABLE command lets you come back later to modify the table’s columns.

sqlite> CREATE TABLE "SimpleTable" (
 ...> PK integer PRIMARY KEY NOT NULL,
 ...> Name char(128) NOT NULL,
 ...> Origin char(128)
 ...>)WITHOUT ROWID;

Inserting Data into a Table
As in the previous section, you’ll see how to do this with a GUI as well as with the
command line.

Using a Graphical User Interface
In SQLPro for SQLite, the Data button at the top of the window shown in Figure 3-5 lets
you add more rows to the column. You can type in the data that you want. Figure 3-5
shows three new rows created, but the only data typed in is located in the first row. You’ll
notice that the PK primary key is automatically filled in, even in the third row: SQLite has
taken care of this because it is the primary key.

Chapter 3 ■ Using SQLite Basics: Storing and Retrieving Data

25

If you want to enter data with a query (here is how you would do it from a command-
line interface), you can enter it using the Query button as shown in Figure 3-6.

Figure 3-5.  Entering data graphically

Figure 3-6.  Entering data with a query

Chapter 3 ■ Using SQLite Basics: Storing and Retrieving Data

26

■ Note  When a table name includes a blank, you need to place it in quotes. Note that in
this example, the original SimpleTable has been renamed Simple Table so it needs to be
quoted in the query. In SQLPro for SQLite, the gear wheel below the table list has a Rename
command you can use to create or avoid this situation.

Using SQLite3
Following is the sqlite3code to enter all three records:

INSERT INTO SimpleTable (PK, Name, Origin) VALUES (1, "Cecelia", "Australia");
INSERT INTO SimpleTable (PK, Name, Origin) VALUES (2, "Leif", "Iceland");
sqlite> INSERT INTO SimpleTable (PK, Name, Origin) VALUES (5, "Charlotte",
"United States");

Retrieving Data
If you want to retrieve data from the table, you use a SELECT query. Here is an example:

SELECT * FROM SimpleTable WHERE Name = "Leif"

Using a Graphical User Interface
You can type it into the Query pane as shown in Figure 3-7.

Chapter 3 ■ Using SQLite Basics: Storing and Retrieving Data

27

Using sqlite3
Here’s the code in sqlite3. Note how the data is formatted on return with vertical lines
between the columns.

sqlite> SELECT * FROM SimpleTable WHERE Name = "Leif";
2|Leif|Iceland
sqlite>

Deleting Data
If you are playing around with data, you may wind up with data you don’t want. In
particular, you may be encountering errors because the PK field must be unique so you
can’t re-enter data you’ve already entered.

Here’s how to delete a row with PK value 1.

DELETE FROM SimpleTable WHERE PK = 1;

Summary
This chapter has shown you the basics of creating a table, inserting data into it, and then
retrieving it. Remember that these are only the basics: in later chapters, you’ll see more
features of SQLite, but, throughout, the same basic SQLite commands you’ve seen in
this chapter will recur with variations and options. (As a reminder, those commands are
CREATE, INSERT, and SELECT.)

Figure 3-7.  Selecting data with a query

29

Chapter 4

Working with the Relational
Model and SQLite

You’ve seen how to create a table, add rows to it, insert data into it, and then retrieve
the data. Granted, there’s not much data involved so far, but these are the basics of
database management. Along the way you’ve seen that SQLite (like many other libraries
and data managers) is typically embedded in a framework, language, class, or database
management system (DBMS). As noted, today, most DBMSs are relational database
management systems (RDBMSs). They are based on the relational model first proposed
in 1970 by E. F. Codd, and they typically use SQL or a derivative (like SQLite!) to create,
manage, and query the relational database.

You’ve seen how to use one of the many graphical editors for SQLite (you can find
them on the Web searching for “SQLite editor” and perhaps including your operating
system in the search). You’ve also seen how to use basic SQLite syntax directly to create
tables and work with their data. This chapter adds another tool to the mix: sqlite3 which
is a command-line tool distributed as part of SQLite.

■ Note  Most databases today use the relational model, so DBMS and RDBMS are more or
less interchangeable terms. This chapter lets you see what is not interchangeable: it is only
about relational databases (like SQLite). A relational database is a database in which two tables
can be related to one another. It is the tables that are related, and the relationship is created
based on data in each of the related tables. Thus, although in most of this book DBMS is used,
in this chapter, because the topic is relational data, we use the term RDBMS. Relationships
connect two tables, so in order to talk about relationships we need to start with two tables.

Relationships can become very complex (and very powerful) as they are built. For
that reason, some people shy away from them, but there is no reason to be concerned.
This chapter provides an overview of how relationships work, why you should use them,
and how easy it is to create them. Relationships usually involve two or more tables, so
this chapter begins by showing you how to create two tables that are logically related.
Then you’ll see how to use SQLite to actually relate them. (A relationship can actually be
created from a single table back to itself. That is called a self-join.)

Chapter 4 ■ Working with the Relational Model and SQLite

30

Building the Users Table
Consider the case of keeping score in a multiuser game. You can build on the basics from
Chapter 3 to create a table like SimpleTable. In this case, the table is for users. From a
data management point of view, there’s little difference between a table with names and
birthplaces and a table with names and e-mail addresses. (The main difference is that
the second table will be more useful in tracking game scores, which is what this example
is all about.)

There’s another difference that you’ll see when you look at the table as shown in
Table 4-1 and compare it to SimpleTable (Table 3-1 in Chapter 3). The explicit primary
key (column PK) is missing. This table uses the SQLite built-in mechanism for creating a
primary key with a unique value for each row. Keep that thought in mind, because we’ll
return to it shortly.

Table 4-1.  Users Table

Name E-mail

Rex rex@champlainarts.com

Anni anni@champlainarts.com

Toby toby@champlainarts.com

■ Note  As noted previously, capitalization doesn’t matter in SQLite except within
parentheses. By convention, SQL keywords are capitalized. In this book, names of tables and
columns are typically capitalized in the text; in the sample code they may or may not be to
reinforce the fact that it doesn’t matter to SQLite. In practice, it’s a very good idea to settle
on a convention to use. That’s because many languages today do recognize the difference
between upper- and lowercase letters. Thus, when you switch between writing SQLite code
where UseR and user and USER are the same to Swift, Objective-C, Python, C, and others
where case matters, you may inadvertently introduce errors for yourself or others by not
adhering to a standard. (In addition, standard rules for naming and capitalization make your
code easier to read and maintain in the future.)

This is a good start, and you have already seen the code to create such a table in
Chapter 3. With the revised column names and data, here’s how you can create and
populate the table.

sqlite> create table users (
 ...> Name char (128) not null,
 ...> email char (128)
 ...>);

http://dx.doi.org/10.1007/978-1-4842-1766-5_3
http://dx.doi.org/10.1007/978-1-4842-1766-5_3#Tab1
http://dx.doi.org/10.1007/978-1-4842-1766-5_3

Chapter 4 ■ Working with the Relational Model and SQLite

31

sqlite> insert into users (Name, email) VALUES ("Rex", "rex@champlainarts.com");
sqlite> insert into users (Name, email) VALUES ("Anni", "anni@champlainarts.com");
sqlite> insert into users (Name, email) VALUES ("Toby", "toby@champlainarts.com");

sqlite> select * from users;
Rex|rex@champlainarts.com
Anni|anni@champlainarts.com
Toby|toby@champlainarts.com

sqlite>

Now you need the related table which will keep track of scores.

Building the Scores Table
Building the Scores table is basically the same code. For the sake of simplicity, you can let
each user start with a score of zero. With that assumption, here is the code.

sqlite> create table scores (
 ...> Name char(128),
 ...> score integer
 ...>);

sqlite> insert into scores (name, score) VALUES ("Rex", 0);
sqlite> insert into scores (name, score) VALUES ("Anni", 0);
sqlite> insert into scores (name, score) VALUES ("Toby", 0);

sqlite> select * from scores;
Rex|0
Anni|0
Toby|0

sqlite>

Table 4-2 shows the data in Scores at this point.
You can retrieve the data with syntax you’ve used previously. To get a name and

e-mail address from Users, use the following code:

Table 4-2.  Scores Table

Name Score

Rex 0

Anni 0

Toby 0

Chapter 4 ■ Working with the Relational Model and SQLite

32

sqlite> select name, email from users where name = "Anni";
Anni|anni@champlainarts.com

sqlite>

You get the score from Scores in a similar way;

sqlite> select name, score from scores where name = "Anni";
Anni|0

sqlite>

Relating the Tables
You need to have a way to refer to two tables in a single SELECT statement (that’s where
aliases come into play). You also need to actually implement the relationship, and that’s
where primary keys come into play again. This section covers both topics.

Using Aliases to Identify Multiple Tables in a SELECT
Statement
The challenge is to tables and aliases together. You need to select the data for Anni, but
there’s a problem here: Both Scores and Users have columns called Name. If you use a
condition such as where name = "Anni", SQLite won’t know which Name column you
mean. You can distinguish between those two columns by identifying them in your
SELECT statement. It doesn’t matter how you identify them, so you could write the
following:

select a.name, email, score from users a, scores b
 where a.name = "Anni" and b.name = "Anni";

You qualify each table with an alias. In the FROM clause, the alias follows the table
name, and in the SELECT and WHERE clauses, the alias precedes the table name and is
separated from it by a period. Thus in the SELECT command and WHERE clause, you get

select a.name
where a.name = "Anni"

and in the FROM clause you get

FROM users a

Although you can use anything, you want as the alias; it can make your code easier to
read if you use the actual name or an abbreviation for it as in the following:

Chapter 4 ■ Working with the Relational Model and SQLite

33

select users.name, email, score from users, scores where users.name =
"Anni" and scores.name = "Anni";

Names that are unambiguous (they only occur in one table) don’t need aliases.
This structure is very fragile as you will recognize if you’ve done much work with data

and databases. Everything relies on the names being the same in both tables. If there’s a
misspelling anywhere the data won’t match. And even without typos, what happens if a
name changes (this happens for a variety of real-world reasons). You could wind up with
a handful of Scores records that use the earlier name and another group of records that
use the later name.

Before moving on to explore this issue, it’s worthwhile to take a look at what’s already
been done by SQLite behind the scenes: it will help you solve the problems that are
unfolding as names change.

Using the rowid Primary Key
In Chapter 3, primary keys that uniquely identify each row in a table were discussed.
They’re very useful in retrieving data, particularly in cases where the data itself may
be incorrect or may have changed from what you think it is, due to revisions or other
circumstances. If you don’t specify a primary key, SQLite has gone ahead and created a
unique key for each row in each table. It’s called rowid, and you can see it in any table for
which you have not provided a primary key. With the Users table shown in this section,
you can access the primary keys with the following code:

sqlite> select name, rowid from users;
Rex|1
Anni|2
Toby|3

sqlite>

This code for Scores shows its primary keys.

sqlite> select name, rowid from scores;
Rex|1
Anni|2
Toby|3

sqlite>

http://dx.doi.org/10.1007/978-1-4842-1766-5_3

Chapter 4 ■ Working with the Relational Model and SQLite

34

Changing a Name in One Table
In order to change data that’s been stored in a row of a table, you use the UPDATE
command. Thus, if you want to change Toby to George in the database, you would use
syntax like the following:

sqlite> UPDATE scores
 ...> SET name = "George"
 ...> WHERE name = 'Toby';

You’re starting to see how SQL works. The basic clauses such as WHERE and FROM are
used over and over again with the same syntax. The only thing that’s new in this syntax
is the UPDATE command which takes a single table name. Everything else here you have
already seen.

If you try to rerun the queries from the previous section, you’ll see the data from
Users and Scores.

sqlite> select * from users;
Rex|rex@champlainarts.com
Anni|anni@champlainarts.com
Toby|toby@champlainarts.com

sqlite> select * from scores;
Rex|0
Anni|0
George|0

sqlite>

If, in fact, George and Toby are two different people, it’s correct that things don’t
work properly. But if it’s the case that Toby has decided to go by his middle name of
George now, George and Toby are actually the same person. How do you move all of
Toby’s data to George?

Retyping or using UPDATE is one way to handle this, but the better way is to use the
built-in SQLite primary key as a foreign key.

Using a Foreign Key
If you have followed along, you’ll be able to see the rowid and name values in both tables
using the following syntax. For Users, here is the syntax. Table 4-3 shows the data.

sqlite> select rowid, name from users;
1|Rex
2|Anni
3|Toby

Chapter 4 ■ Working with the Relational Model and SQLite

35

For Scores, this is the syntax:

sqlite> select rowid, name from scores;
1|Rex
2|Anni
3|George

sqlite>

Table 4-4 shows the scores.

The solution is to use a foreign key. A foreign key is a value in one table that identifies
a row in another table. In this case, you want rowid 3 in Users (Toby) to be used to match
rowid 3 in Scores (George). The names are different (George and Toby), but you want that
relationship to work to reflect the fact that they are two different values for the same person.

■ Note  The fact that rowid 3 is the value you want to relate from one file to another is
happenstance based on the sequence in which these files have been constructed. Later in
this chapter, you’ll see how those numbers can have different values, but for now, you will
probably see the same values shown here.

The solution is to create a new column—it’s usually called FK or Foreign Key in the
database world. Sometimes database designers give it a name that identifies its source
such as scorekey or scoreid and userkey or userid. Thus, if you’re looking at the Scores
table, you could see the primary key or rowid alongside a separate userkey. If you take
the values of rowid in Users to be the starting point (since that’s probably the first table to
be created), you then want to have a matching value for userid in Scores.

Table 4-3.  Users Table

rowid Name E-mail

1 Rex rex@champlainarts.com

2 Anni anni@champlainarts.com

3 Toby toby@champlainarts.com

Table 4-4.  Scores Table

rowid Name Score

1 Rex 0

2 Anni 0

3 George 0

Chapter 4 ■ Working with the Relational Model and SQLite

36

To add a column to an existing table, you use the ALTER TABLE command. You
specify the name of the table to alter, the name of the column to add, and the type of that
column. Here’s the syntax to use to create a new column called userid.

ALTER TABLE Scores ADD COLUMN userid integer;

To see the result of this command, use the .schema command in sqlite3. (Because
it’s a sqlite3 command, it starts with a period and doesn’t require a semicolon at the
end. The command takes one parameter which is the name of the table you want to
examine. Here’s the result if you run it now. You’ll see that userid has been added.

sqlite> .schema scores
CREATE TABLE scores (Name char(128),
 score integer
 , userid integer);

sqlite>

Now you need to enter data for the userid column that you just added to Scores.
The userid values in Scores should be the value of the corresponding record in Users.
At the moment they’re the same, but you’ll soon change them.

Here is the syntax to enter data for rowid in Scores. Basically, this is the same way in
which you changed the name from Toby to George.

sqlite> update scores set userid = 1 where name = 'Rex';
sqlite> update scores set userid = 2 where name = 'Anni';
sqlite> update scores set userid = 3 where name = 'George';

For now, just verify that the data in Scores is as shown here (both in SQLite and in
Table 4-5).

sqlite> select rowid, userid, name, score from Scores;
1|1|Rex|0
2|2|Anni|0
3|3|George|0
sqlite>

Table 4-5.  Scores Table with userid Added

Rowid userid Name Score

1 1 Rex 0

2 2 Anni 0

3 3 George 0

Chapter 4 ■ Working with the Relational Model and SQLite

37

The names in this table are no longer relevant because the relationship between
Scores and Users is based on rowid in Users matching userid in Scores. In SQLite, the
ALTER TABLE command does not let you drop a column: The recommended workaround
is to drop the table and create a new one (more appropriately in many cases, export the
data, import it to a new table, and then drop the old table). So, for now you can just ignore
the Name column in Scores. From your perspective, Scores can look like Table 4-6
(even though there’s a no-longer-needed column in the actual table).

Joining the Tables
The simplest way to get the data you want is to use a WHERE clause to specify that
you want data where users.rowid matches scores.userid. (Remember that SQLite
automatically creates users.rowid when you don’t provide a primary key, but you must
enter the appropriate values of users.rowid into the scores.userid column to make the
relationship work.

If you have done that (and if you’ve followed the steps in this chapter you have done so),
the following code will give you what you want:

sqlite> select users.name, scores.score from users, scores where users.rowid
= scores.userid;
Rex|0
Anni|0
Toby|0

sqlite>

There are several important points to notice here:

• The names come from Users; the Name field in Scores is no
longer used. For that reason, even though you still may have
George as a name in Scores, userid 3, which started out as Toby,
is shown as George (assuming it’s the same person with just a
name change that is correct).

• Only the matching records are shown. Add some new records to
Users or Scores: they won’t show up unless the rowid in Users
matches the userid in Scores.

• If a record in Scores has no userid, it won’t show up.

Table 4-6.  Scores Table with userid Added and Name Ignored

rowid userid Score

1 1 0

2 2 0

3 3 0

Chapter 4 ■ Working with the Relational Model and SQLite

38

Summary
You can build on this general structure, just as is, by adding more data. Experiment with
combinations of new records, and matching and nonmatching ids for users and scores.
Add a Scores record for an existing user so that a person has two records but with the
correct names from Names.

In Chapter 5 you’ll explore more ways to enhance SELECT statements.

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-1766-5_5
http://www.allitebooks.org

39

Chapter 5

Using SQLite Features—
What You Can Do with
SELECT Statements

There’s more to SELECT statements than just getting data. In addition to join clauses
(discussed briefly in Chapter 4), you can order and group data as well as provide
intermediate tables for doing what, in effect, are subselect operations. If you are used to
procedural programming where you describe each step of a process (do this . . . do that, .
. . if this is true do the other thing or else do that thing . . .), you may notice that SQL and
relational databases encourage you to think in declarative programming ways (get me
everything that is X, do something to all the Xs . . .).

When you are working in the world of declarative programming, the more you can
put into the declarations the better off you’ll be. Translated into English, this means all of
the following:

• Instead of writing code to test for valid data, attempt to enforce
the validation rules in the database or framework. (The Xcode
Core Data model editor takes this to a graphical limit.)

• Rather than looping through each item in a set of data and testing
a value to determine which procedural branch to take, get all the
Xs and do something to each of them. (In effect, you move the if
statement into the SELECT statement.)

This chapter examines a number of SQL clauses that can improve your code. Bear in
mind that in effect you are writing some functional code, but in a declarative way, so that
you can get to the declarative goal of doing the same thing to every item in a group (or in
a SELECT result).

You’ll also see how to use variables in SQLite statements. This can dramatically
improve your SQLite performance. The concept is implemented in PHP, Android, and
Core Data not to mention in many common databases.

http://dx.doi.org/10.1007/978-1-4842-1766-5_4

Chapter 5 ■ Using SQLite Features—What You Can Do with SELECT Statements

40

Looking at the Test Data
In this chapter, we use some test data in the examples. It’s actually some data generated
in testing the Score app in Chapter 12. The table that is used is Score, and the values that
are used here are rowid (a primary key), userid (a user number and foreign key), and
score (a specific score). A given user can have multiple scores, but each user and rowid
is unique.

Following is the basic data used:

sqlite> select rowid, userid, score from Score;
1|1|10
2|2|20
3|3|30
4|1|99
5|1|99
6|1|9
7|1|99
8|1|99
9|1|17
10|1|31
11|1|23
12|1|50
24|2|16
25|3|8
26|2|99
27|1|3
sqlite>

Ordering Data Makes It Easier to Use
The row numbers are in order, but to look at the data in a meaningful way, it makes sense
to order it as in the following:

sqlite> select rowid, userid, score from Score order by userid;
1|1|10
4|1|99
5|1|99
6|1|9
7|1|99
8|1|99
9|1|17
10|1|31
11|1|23
12|1|50
27|1|3

http://dx.doi.org/10.1007/978-1-4842-1766-5_12

Chapter 5 ■ Using SQLite Features—What You Can Do with SELECT Statements

41

2|2|20
24|2|16
26|2|99
3|3|30
25|3|8
sqlite>

Grouping Data Can Consolidate It
When you group data, you consolidate it into a single item for each value of the group.
If you want to find the maximum value of score, you can use the following code:

sqlite> select max (score) from Score;
99
sqlite>

■ Note I n this and the other examples, feel free to refer back to the basic list of data to
understand the results.

If you group the data, you can get the maximum value for each userid as in the
following:

sqlite> select userid, max(score) from Score group by userid;
1|99
2|99
3|30
sqlite>

Life isn’t just about the biggest and smallest: SQLite helps you find the middle of
road (the average). If these scores represent teams rather than users, the winning team
based on average scores would be Team 1:

sqlite> select userid, avg (score) from Score group by userid;
1|49.0
2|45.0
3|19.0
sqlite>

Remember group by the next time you’re tempted to write a loop to calculate an
average or find the maximum or minimum value. In fact, it you’re using a relational
database such as SQLite, which supports SQL (even one more basic and less powerful
than SQLite), try to catch yourself the next time you start to write a loop to process the
results of a query, and ask yourself: “Can I do this inside the query itself?”

Chapter 5 ■ Using SQLite Features—What You Can Do with SELECT Statements

42

Using Variables in Queries
In Chapter 6, you’ll see how to use SQLite with the PHP data object (PDO). It’s a singleton
object in your PHP code, but it is definitely an object with its own methods. As you’ll see
in the next chapter, the process of querying the database consists of using four methods.

• new PDO creates the PDO and connects it to your SQLite database.

• prepare takes as its parameter your SQLite query

• execute performs the query

• $query->fetchAll retrieves the data from the query

There is also a simple query () call that creates and performs the query all at once.
Many databases support this type of process—creating a query that can be used and
reused as well as creating a query to run once. The reason for exposing the step-by-step
query create, prepare, and execute process becomes clear when you realize that you can
create variables inside the query.

Thus, the basic query that can be used to get all the names from a user table can be

$query = $sqlite->prepare ("select * from users;");

The name to retrieve the record for a record with a specific value for name could be

$query = $sqlite->prepare ("select * from users where Name = "Rex";");

At this point it may seem that it would be easier to use the one-step call which does
the “prepare” and “execute” together.

$query = sqlite->query ("select * from users where Name = "Rex");

However, the power and efficiency of the separate statements become clear if you
use a variable. Here’s an example. Begin with new PDO and prepare but, inside your
query, use a variable such as :name.

$sqlite = new PDO('sqlite:sqlitephp.sqlite');
$query = $sqlite->prepare ("select * from users where name = :name;") ;

You don’t have to use $query right away, but whenever you do decide to use it, fill in
the value for :id with code such as the following:

$query->bindValue (':name', "Rex");

or, if you want to use a variable,

$theName = "Rex";
$query->bindValue(':name', $theName);

http://dx.doi.org/10.1007/978-1-4842-1766-5_6

Chapter 5 ■ Using SQLite Features—What You Can Do with SELECT Statements

43

Then execute the query:

$query>execute()

You can come back later and change the bound value and re-execute the query:

$query->bindValue (':name', "Anni");
$query>execute()

This process saves some memory and is much more efficient. The query can be
prepared with the missing data not yet present so that when you come back to execute it,
there’s much less work to do.

Summary
In this chapter you’ve seen some of the extra tweaks you can use with SELECT statements
in SQLite. Everything that you can move into the query means a little less code for you to
write and debug.

With this background, it’s time to move into using SQLite with PHP, Android, and
OpenDoc. Each of them does the same thing, but their approaches are a little different.
What remains the same is SQLite.

45

Chapter 6

Using SQLite with PHP

The basics of SQLite and, indeed, of SQL itself, are simple. It’s a repetitive routine of
creating tables with a column for each data element in the table. You then add rows to
each table with a value for each column. You can retrieve data from a single table with
a basic SELECT statement. Join two tables by using a WHERE clause to match a value in
one table with a corresponding value in another table (or in the same table in the case of
a self-join).

The complexity of SQL and all of its implementations including SQLite comes
from combinations of these basic building blocks. In addition, the fact that we are often
dealing with very large tables (millions and even billions of rows) are factors that can add
complexity to the mix, but the basics are simple.

■ Note  There is a SQLite limit of 140 terabytes per database, and that limit would tend to
be reached before the number of rows becomes an issue. sqlite.org has a page on limits
at www.sqlite.org/limits.html. It notes that these limits are for the most part untested
in part due to SQLite developers not having access to hardware capable of managing
those amounts of data. If you really are contemplating managing that amount of data, you
may want to do a serious analysis of hardware and software solutions, but remember that
whatever solution you end up with, SQLite can make a perfect prototyping tool.

SQLite itself is very lightweight: it imposes a minimal burden on users and their
devices in many cases. That combination of a simple structure and a lightweight
implementation makes SQLite a popular tool for use in web sites. Because it is a single-
user implementation, it is often used for a single user’s data, but, as noted previously, it
also can be used to prototype an implementation of a much larger system using a more
powerful SQL implementation of any sort.

Whether you are working with a single-user project or a prototype for something
larger, SQLite is a good choice, and it fits nicely with PHP. This chapter provides a brief
overview (or refresher) of PHP; it then moves on to show you how the basic tables shown
in Chapters 3 and 4 can be implemented on web pages with PHP.

http://www.sqlite.org/limits.html
http://dx.doi.org/10.1007/978-1-4842-1766-5_3
http://dx.doi.org/10.1007/978-1-4842-1766-5_4

Chapter 6 ■ Using SQLite with PHP

46

■ Note  This chapter focuses on the basics of PHP/SQLite integration. For an example of
how they can be used on a series of web pages, see Chapter 11. In order to test the code
in this chapter, you will need a basic text editor—preferably one such as BBEdit, which
highlights syntax for you so you can spot minor typos easily. You also need a server to which
you can upload your PHP files as well as a SQLite database. If you are maintaining a web
site, you have access to such a server in order to post your HTML pages. It may or may not
have PHP installed. Most servers do, but for security reasons some limit access. If you have
any difficulties, check with your server administrator.

DEFINING “SINGLE USER” FOR PHP

SQLite is designed for a single user. It is often used together with PHP to implement
a website. Does that mean that your PHP/SQLite web site is designed for a
single user?

The answer is “yes,” but the details may surprise you. When you use PHP in a web
page, there is a single user—it is the web server. Depending on your app, SQLite
may or may not be a good choice (it almost always is a good choice for prototyping
and testing). Static databases work well most of the time if they are not enormous.
Apps that need to update a database can quickly run into trouble if you use SQLite
and there are more than a handful of users (it also depends on how frequently your
users are updating the data).

Putting PHP and SQLite Together: The Basics
PHP is perhaps the most widely used server-side programming language. Strictly speaking,
it is a scripting language which means that it is interpreted at runtime (in practical terms,
that usually means web page load time). The output from the PHP script is typically a
web page in this scenario. As the PHP script is running, it can do a wide variety of things
including communicating with other processes and devices, and in the SQLite context, it
can communicate with a SQLite database that resides on the web server.

Verifying PHP in Your Environment
Start by verifying that you have PHP installed on your server and that you can access it.
(If you already are using PHP for web sites or other files, you can skip this step.)

http://dx.doi.org/10.1007/978-1-4842-1766-5_11

Chapter 6 ■ Using SQLite with PHP

47

Here is the code for a simple PHP-based web page. It simply requests a display of
the current PHP status information on the server. If it doesn’t work, check with your
administrator because you won’t be able to experiment with SQLite and PHP if the PHP
piece is missing. In addition to PHP, you may also have to verify that SQLite is available on
the server, but in many (probably most) cases it is.

■ Caution  Unlike SQLite, PHP is case-sensitive, so be careful with your capitalization.
This is a good reason for standardizing on case-sensitive names for column names in your
SQLite code even though it doesn’t matter to SQLite. When you start manipulating the data
with PHP, it will matter.

This is the sample code to use to test PHP. The code in boldface is the PHP code
inside the HTML code—it is delimited by <?PHP and ?>. It simply calls the phpinfo()
function. Place this code in a file on your server. This file should have the php extension
(it is usually lower-case, but on many servers the case won’t matter). If you name this
test.php and upload it to the root of your web site (next to index.html or index.php in
most cases) you can access it—including running the embedded PHP code—by going to
http://mywebsite/test.php.

<!DOCTYPE html>
<html>
<head>

<title>Chapter6</title>
<meta name="generator" content="BBEdit 11.1" />

</head>
<body>
<?PHP
 phpinfo();
?>
</body>
</html>

Preparing the SQLite Database
You can use almost any of the SQLite commands with PHP, but, in practice, the most
common commands you use are those that manage data in a table that already exists. In
some environments, it may be an empty table that is populated by your web site as it is
visited by users.

http://mywebsite/test.php

Chapter 6 ■ Using SQLite with PHP

48

Here is the code to prepare the pair of databases used in Chapter 4. They will be used
again in this chapter. Several sections are worth paying particular attention to. They are
shown in bold.

• In this example, sqlite3 is launched using a database called
sqlitephp.sqlite. If it doesn’t exist, sqlite3 creates it. Normally,
sqlite or db is used as the extension. (If you use your own
extension, you may have issues in uploading it to your web site.)

• The Users table is created. Note that the Name column cannot be
null—you must have a name. Data already used in Chapter 4 is
filled in. (It is shown here as Table 6-1.)

• After creating the table and inserting the data, the data is shown
with a SELECT statement. Note that the rowid is specifically
requested: The typical SELECT * shows all columns except a
hidden column such as rowid.

• You need to see the rowid values in order to insert them into
Scores. The insert statement inserts the rowid values into Scores so
that the relationship can be used. Table 6-2 shows the Scores table.

• Finally, a SELECT statement shows the name and score using data
from both Users and Scores that is related using rowid (users) to
userid (scores). Table 6-3 shows the data.

Table 6-1.  Users Table

rowid Name E-mail

1 Rex rex@champlainarts.com

2 Anni anni@champlainarts.com

3 Toby toby@champlainarts.com

Table 6-2.  Scores Table

userid Score

1 10

2 20

3 30

http://dx.doi.org/10.1007/978-1-4842-1766-5_4
http://dx.doi.org/10.1007/978-1-4842-1766-5_4

Chapter 6 ■ Using SQLite with PHP

49

The entire sqlite3 code is shown here.

Jesses-Mac-Pro:~ jessefeiler$ sqlite3 sqlitephp.sqlite
SQLite version 3.8.10.2 2015-05-20 18:17:19
Enter ".help" for usage hints.

sqlite> create table users (Name char (128) not null, email char (128));

sqlite> insert into users (Name, email) VALUES ("Rex",
"rex@champlainarts.com");
sqlite> insert into users (Name, email) VALUES ("Anni",
"anni@champlainarts.com");
sqlite> insert into users (Name, email) VALUES ("Toby",
"toby@champlainarts.com");

sqlite> select rowid, name from users;
1|Rex
2|Anni
3|Toby

sqlite> create table scores (userid integer, score integer);

sqlite> insert into scores (userid, score) VALUES (1, 10);
sqlite> insert into scores (userid, score) VALUES (2, 20);
sqlite> insert into scores (userid, score) VALUES (3, 30);

Table 6-3.  Related Users and Scores Tables

Name Score

Rex 10

Anni 20

Toby 30

sqlite> select name, score from users, scores where userid = users.rowid;
Rex|10
Anni|20
Toby|30

sqlite>

Upload your database to your web server. It should be visible on your desktop in
the Finder (OS X) or Start (Windows). In this example, it is uploaded to the root of your
web site.

Chapter 6 ■ Using SQLite with PHP

50

PDO VS. OLDER PHP/SQLITE DATABASE CONNECTIONS

There have been two main ways of connecting SQLite to your database. The older
one is a procedural style, and the newer one (since that long-ago year of 2005) is
object-based. The PDO extension (PHP Data Object) is more robust and a better
choice in every case except when you are tasked with modifying old PHP code that
accesses SQLite databases in the older style.

If you are leary of using object-oriented programming, rest assured that PDO is
indeed object-oriented, but it works very well with standard PHP code. You don’t
have to convert all of your code to objects and classes: you can use PDO for your
SQLite database and, unless you really know what you’re looking for, you may not
even realize that you’re using an object.

PDO is an extension to SQLite, but the extension is built into the current versions;
in fact, you need to make an effort to not have it available. It is described in this
section. Although you may find sample code in various places on the Web, remember
that PDO is now over ten years old, and it’s the current version. You may have
difficulties opening older SQLite databases with the older style of code. (If you find
sqlite_open in code you’re looking at, that’s the older—non-PDO—style.)

Connecting to Your SQLite Database
There are five steps involved and we will discuss them in detail shortly.

1.	 Create a new PDO instance. It contains the name of the database
to which you want to connect.

2.	 Create a query. It typically is placed in a variable called $query,
but you can use any name you want. The query is created by
calling the prepare method on your PDO instance. If it succeeds,
it returns a PDOStatement object.

3.	 Execute the query. You do this by calling the execute method
on the query (PDOStatement) that you have just created as in
$query->execute(); It returns TRUE or FALSE but it does not
return any values to you (yet).

4.	 Fetch the results from the executed query. (Now you have
the data.) The data is typically stored in an array variable called
$results. You can use $query->fetch(); to fetch the next row
of results. You can use $query->fetchAll(); to get an array of all
results. Which method you choose is up to you and depends on
your specific needs (and how much data you expect to retrieve).
By default, the fetched results are in an associative array with
elements identified by SQL column names.

5.	 Use the results of the query that you prepared, executed, and
then fetched.

Chapter 6 ■ Using SQLite with PHP

51

Here are the details of each step.
You start with a PHP file that you want to use to access your SQLite with the five

steps shown here. If you name this file phpsql.php and upload it to your web site, you can
access it with http://mywebsite/phpsql.php. The full file is shown later in this chapter.
Here are the relevant components in detail.

1. Create a New PDO Object
Create a new PDO object and place it in a local variable. Often, that variable is named
$sqlite, but you can use any name you want. When you create the new PDO object,
you must pass in the name of the SQLite file, including any paths relative to the location
on the server where your PHP file is. The quoted name starts with the data source name
(DSN) sqlite:. This is part of the quoted string that includes the file’s location.

Following is an example:

$sqlite = new PDO('sqlite:sqlitephp.sqlite');

There is another style you can use. It may or may not be clearer for you (and the
people who will revise your code in the future). These are interchangeable.

$db = 'sqlite:sqlitephp.sqlphpproject';
$sqlite = new PDO($db);

■ Note  There are other DSN strings including mysql, pgsql (Postgres), msql, sybase, or
dblib (SQLServer or Sybase), odbc, ibm (IBM DB2), informix, firebird (Firebird or Interbase).

HANDLE ERRORS PROPERLY

It’s a good practice for your users (and for yourself when debugging) to handle errors
neatly. The “or die” clause does that in a very basic level. You provide a string that
is displayed. In the case of PHP code generating a web page, the quoted string can
include HTML formatting as in this example:

$sqlite = new PDO('sqlite:sqlitephp.sqlite')
 or die ("<h1>Can't open database</h1>");

For debugging purposes you may want to provide a diagnostic message when or die
doesn’t fail. You can always take these messages out before moving to production but
they’ll help you follow along with each step to see whether or not it succeeds.

echo "<p>Success on PDO</p>";

It’s better ultimately to use a try/catch block, but or die is more concise and is
used to simplify the code in this book.

http://mywebsite/phpsql.php

Chapter 6 ■ Using SQLite with PHP

52

2. Create and Prepare the Query
You use the same queries that you use directly in an interactive editor like sqlite3 in any
other environment. The only difference with PDO is that you create the query in a single
step before you use it.

Here is an example of creating a query, storing it in a variable, and catching failures
as well as logging successes (the latter only for debugging). Note that you have to use the
prepare method on the instance of PDO that you have created — in this case it’s $sqlite.

$query = $sqlite->prepare ("select Name from users;")
 or die ("<h1>Can't prepare</h1>");
echo "<p>Success on prepare</p>";

3. Execute the Query
Now that you have created a query, with the prepare method of your PDO instance,
call the execute method on that query to actually run it. As usual, catch errors and, for
debugging, print out successes as well. Here is the code. Note in this example that the or
die clause doesn’t use any specific HTML formatting. That is only to show you that it can
be done either way.

$query->execute() or die ("Can't execute");
echo "<p>Success on execute</p>";

4. Fetch the Results
The execute method returns TRUE or FALSE, but the data isn’t available until you fetch it.
(If you’ve used other databases before, you’ll recognize this pattern.) You can get all of the
rows at once with fetchAll, or you can get each one separately with fetch.

The fetch version gets one row at a time. By default, it returns the next row of the
results set as an array indexed by column name as well as by a zero-relative column
number reflecting the items in your SQLite SELECT statement. There is also an optional
$cursor_offset parameter which lets you jump around in the results set.

The fetchAll version gets all of the data at once as an array. You’ll see both fetchAll
and fetch in the following step.

5. Use the Results
You loop through the returned array elements in your code. In either case, you echo the
result value(s) in your PHP code, combining the returned value with any HTML you
want to use. For example, in the fetchAll scenario, you loop through each returned row,
placing each row into a local variable (typically called $row, but you can use any name
you want).

Chapter 6 ■ Using SQLite with PHP

53

Here is the relevant fetching and looping code. (It refers to the Users table shown
previously in Table 6-1.)

$result = $query->fetchAll() or die ("Can't fetchAll");
echo "Success on fetchAll "; // for debugging
foreach ($result as $row) {
 echo "<p>Name: {$row['Name']}</p>";
}

Putting together all of the steps in this chapter you can get a PHP file such as the
following. Remember to customize it for your database name and the column name(s)
you want to display. The code to customize is shown in bold.

■ Note  Customize the HTML for the page you want to create, but also see Chapter 11,
which adds more typically used HTML code that works well with SQLite.

<html>
 <head>
 </head>
 <body>
<?php

 $sqlite = new PDO('sqlite:sqlitephp.sqlite')
or die ("<h1>Can't open database</h1>");

 echo "<p>Success on PDO</p>";

 $query = $sqlite->prepare ("select Name from users;")
or die ("<h1>Can't prepare</h1>");

 echo "<p>Success on prepare</p>";

 $query->execute() or die ("Can't execute");
 echo "<p>Success on execute</p>";

 $result = $query->fetchAll() or die ("Can't fetchAll");
 echo "Success on fetchAll ";

 foreach ($result as $row) {
echo "<p>".$row['Name']."</p>";

 }
?>
 </body>
</html>

http://dx.doi.org/10.1007/978-1-4842-1766-5_11

Chapter 6 ■ Using SQLite with PHP

54

Summary
This chapter shows the basic steps involved in connecting to a SQLite database.

1.	 Specify the database to use.

2.	 Create a query to use in retrieving data.

3.	 Run the query.

4.	 Fetch data from the query results.

5.	 Use the results in your code.

These steps apply to SQLite, but they also apply (sometimes with slightly different
terminology and definitely different syntax) to the other languages and frameworks you
use to retrieve SQLite data. Furthermore, these same basic steps apply to other databases
than SQLite. This is the basic paradigm for retrieving data from a database.

The following chapters show you how to use other languages than PHP to make your
SQLite database connections.

55

Chapter 7

Using SQLite with
Android/Java

In part because it’s lightweight and in the public domain, SQLite is an obvious choice for
many projects where there are constraints on space, power, and cost. For those and other
reasons, it’s built into a variety of operating systems and is used on many devices.

This chapter shows you some of the key elements of using SQLite with Android.
It’s built into android.database.sqlite, so it’s there for you to use. The basics of using
SQLite are the same whether you’re using PHP to build a web site (see Chapters 6 and 10)
or you’re using Core Data on iOS or OS X (see Chapters 8 and 12).

Integrating SQLite with Any Operating System,
Framework, or Language
No matter what development platform you’re using, integrating SQLite in your app is
always the same (and, indeed, this applies to any database).

1.	 Design your database. This is not a SQLite issue. See the
sidebar, “The Critical Database Design Step.”

2.	 Connect your app to the database at runtime.

3.	 Use the connection to add, delete, insert, or update data.

4.	 Use the results of the operation in your app. This may consist
of refreshing the interface by adding or removing items, or it
may consist of working with the data in a new item or anything
else you and your users require. This is not a SQLite issue.

http://dx.doi.org/10.1007/978-1-4842-1766-5_6
http://dx.doi.org/10.1007/978-1-4842-1766-5_10
http://dx.doi.org/10.1007/978-1-4842-1766-5_8
http://dx.doi.org/10.1007/978-1-4842-1766-5_12

Chapter 7 ■ Using SQLite with Android/Java

56

THE CRITICAL DATABASE DESIGN STEP

The first step has almost nothing to do with your development environment.
Identifying your data, figuring out the relationships and defining validation rules
don’t require anything more than thinking, discussion, and some sketching of the
database. A key part of this step is naming the components (is it “Client” or “User”
or “Customer”) in such a way that end users and people who develop and maintain
the code will understand what’s going on.

This is a critical and much-overlooked aspect of the development of any app that
relies on data (whether it’s a relational database, a key-value store, or a flat file).
This book focuses on SQLite, but if you’re not familiar with the concepts of data
management and the design tools that are available, make certain that you get up to
speed at least to a basic level quickly.

There is a sort of progression in the integration of SQLite with PHP, Android/Java,
and Core Data for iOS and OS X. With PHP, you are typically working with very visible
SQLite code, and, as you will see, it is frequently procedural code for the most part. When
you get to Core Data, you’ll be working with object-oriented code where the framework
and its classes use SQLite code behind the scenes: you will rarely write SQLite code
directly, but you’re using it all the time. Android and Java strike a middle ground so that
the SQLite code is more visible than it is in Core Data, but it’s not as visible as it is when
you’re using PHP.

Although there are object-oriented ways of writing PHP code, by and large you are
working in a procedural environment. However, in today’s world, the recommended
best practice for integrating PHP with a database is to use the PHP data object (PDO)
extension. That is an object-oriented class which encapsulates the code that you need to
work with for a database. There are versions for SQLite and other major databases so your
PDO code is relatively easy to port.

Chapter 6 showed you the coding basics of using SQLite with PHP. Here is the
summary of the steps. This is only a summary. In practice, you’ll flesh out the foreach
loop and you’ll probably replace or die with a try/catch block.

$sqlite = new PDO('sqlite:sqlitephp.sqlite');

$query = $sqlite->prepare (...SQLite query...);

$query->execute() or die ("Can't execute");

$result = $query->fetchAll() or die ("Can't fetchAll");

foreach ($result as $row) {
 ...work with each result row
}

http://dx.doi.org/10.1007/978-1-4842-1766-5_6

Chapter 7 ■ Using SQLite with Android/Java

57

Using Android and SQLite
The Android NotePad example is an excellent example of the integration of SQLite with
Android. You can download it from https://android.googlesource.com/platform/
development/+/05523fb0b48280a5364908b00768ec71edb847a2/samples/NotePad/src/
com/example/android/notepad/NotePadProvider.java.

The NotePadProvider code in that example extends ContentProvider which
encapsulates the basic SQLite functionality that you need. This is the sort of code that
you’ll need in your own app. You can read the code, but here are some key points to look
for. You’ll need to implement them in your own app with your own values and strings
(like the names of your columns, table, and database).

Using the Static Values
If you’re new this environment, you may have to do a bit of searching to find the many
static variables that are used. Here’s a quick guide to where they may be.

Static Values May Be in the APIs
The android.provider.BaseColumns API is used by Android content providers
throughout the system. Structured data is used throughout Android and many other
operating systems (the Cocoa and Cocoa Touch table classes provide somewhat similar
functionality). In the example code, two static values from BaseColumns are used
frequently. Both are strings. _COUNT is the number of rows in a directory, and _ID is a
unique id for a row.

Static Values May Be in Imported Files.
NotePad.java contains the NotePad class. That class itself contains the NoteColumns class.
It contains these static values (among others):

public static final String TITLE = "title";
public static final String NOTE = "note";
public static final String CREATED_DATE = "created";
public static final String MODIFIED_DATE = "modified";

Static Values May Be in the Main File
Here are some static values from the NoteBookProvider class in NoteBookProvider.java.

private static final String TAG = "NotePadProvider";
private static final String DATABASE_NAME = "notepad.db";
private static final int DATABASE_VERSION = 2;
private static final String NOTES_TABLE_NAME = "notes";
private static HashMap<String, String> sNotesProjectionMap;

https://android.googlesource.com/platform/development/+/05523fb0b48280a5364908b00768ec71edb847a2/samples/NotePad/src/com/example/android/notepad/NotePadProvider.java
https://android.googlesource.com/platform/development/+/05523fb0b48280a5364908b00768ec71edb847a2/samples/NotePad/src/com/example/android/notepad/NotePadProvider.java
https://android.googlesource.com/platform/development/+/05523fb0b48280a5364908b00768ec71edb847a2/samples/NotePad/src/com/example/android/notepad/NotePadProvider.java

Chapter 7 ■ Using SQLite with Android/Java

58

private static HashMap<String, String> sLiveFolderProjectionMap;
private static final int NOTES = 1;
private static final int NOTE_ID = 2;
private static final int LIVE_FOLDER_NOTES = 3;
private static final UriMatcher sUriMatcher;

Extend SQliteOpenHelper
You’ll need to declare a class that extends SQLiteOpenHelper and implement your own
onCreate function. Following is the code you need to work with in the example:

private static class DatabaseHelper extends SQLiteOpenHelper {
 DatabaseHelper(Context context) {
 super(context, DATABASE_NAME, null, DATABASE_VERSION);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 db.execSQL("CREATE TABLE " + NOTES_TABLE_NAME + " ("

+ NoteColumns._ID + " INTEGER PRIMARY KEY,"
+ NoteColumns.TITLE + " TEXT,"
+ NoteColumns.NOTE + " TEXT,"
+ NoteColumns.CREATED_DATE + " INTEGER,"
+ NoteColumns.MODIFIED_DATE + " INTEGER"
+ ");");

 }
 // The code above will create this where COLid is the value of
 // NoteColumns._ID at runtime
 // CREATE TABLE notes (COLid INTEGERPRIMARYKEY, title TEXT,
 // note TEXT, created INTEGER, modified INTEGER);

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
 Log.w(TAG, "Upgrading database from version " + oldVersion + " to "

+ newVersion + ", which will destroy all old data");
 db.execSQL("DROP TABLE IF EXISTS notes");
 onCreate(db);
 }
}
private DatabaseHelper mOpenHelper;

The line shown in bold is easily missed. It’s used throughout the example code in this
file: It’s the local version of SQLiteOpenHelper. With this structure, if you reuse this code,
you can make changes within DatabaseHelper (e.g., your own string names) while doing
very little to the rest of the code.

Next is code from the example that uses the boilerplate code you’ll reuse. Note
the use of mOpenHelper which is DatabaseHelper. As you can see, it builds on what has

Chapter 7 ■ Using SQLite with Android/Java

59

already been constructed. If you examine the full code in the example, you’ll see that
most of the code deals with the data to be stored rather than the SQLite interface.

The code in bold is the code that actually updates the database. The db.insert
method constructs the necessary SQLite syntax using the static values described
previously in this chapter. The code directly below the bold code takes the return value
from db.insert and puts it into a local variable called rowId. That’s exactly what it is—the
unique id of the new row. If the process fails, -1 is returned.

@Override
public Uri insert(Uri uri, ContentValues initialValues) {
 // Validate the requested uri
 if (sUriMatcher.match(uri) != NOTES) {
 throw new IllegalArgumentException("Unknown URI " + uri);
 }
 ContentValues values;
 if (initialValues != null) {
 values = new ContentValues(initialValues);
 } else {
 values = new ContentValues();
 }

 Long now = Long.valueOf(System.currentTimeMillis());
 // Make sure that the fields are all set
 if (values.containsKey(NoteColumns.CREATED_DATE) == false) {
 values.put(NoteColumns.CREATED_DATE, now);
 }
 if (values.containsKey(NoteColumns.MODIFIED_DATE) == false) {
 values.put(NoteColumns.MODIFIED_DATE, now);
 }
 if (values.containsKey(NoteColumns.TITLE) == false) {
 Resources r = Resources.getSystem();
 values.put(NoteColumns.TITLE, r.getString(android.R.string.untitled));
 }
 if (values.containsKey(NoteColumns.NOTE) == false) {
 values.put(NoteColumns.NOTE, "");
 }

 SQLiteDatabase db = mOpenHelper.getWritableDatabase();
 long rowId = db.insert(NOTES_TABLE_NAME, NoteColumns.NOTE, values);
 if (rowId > 0) {
 Uri noteUri = ContentUris.withAppendedId(NoteColumns.CONTENT_URI, rowId);
 getContext().getContentResolver().notifyChange(noteUri, null);
 return noteUri;
 }
 throw new SQLException("Failed to insert row into " + uri);
}

Chapter 7 ■ Using SQLite with Android/Java

60

Summary
This chapter shows you the basics of working with the SQLite built-in database in
Android. Although there’s a lot of code in the example shown here, only a few lines of
code are actually what you need to write for the SQLite interface. When you reuse the
code for your own purposes, most of the code you write will be related to your own app
and its data rather than to the database.

61

Chapter 8

Using SQLite with Core
Data (iOS and OS X)

Although SQLite is integrated tightly with PHP, Android, and iOS/OS X, the integration
strategies differ somewhat. In a way, they form a logical progression. PHP supports SQLite
as an extension to the language (no longer optional as of this writing). When you write
your PHP code for SQLite, today’s best practice is to use the PHP data object (PDO) class.
However, the rest of your code may very well be traditional procedural code: there is no
assumption that you will be writing object-oriented code throughout.

Android represents a slightly different approach to the idea of creating a general-
purpose class (android.database). In the case of Android, a specific subclass database
provides SQLite support (android.database.sqlite) along with the generalized data
management support in android.database.

It’s reasonable to think of SQLite in Android as a more object-oriented
implementation than that of PHP. (This is a generalization and is not meant to ignore—or
fan—arguments.) Despite these differences in approach, the SQLite code that you’ve
seen in this book and other places is visible both in PHP and in Android in many cases.
You’ll find familiar SQLite commands in the source code for PHP and Android apps—
commands such as SELECT, DELETE, INSERT INTO, DELETE FROM, and so forth.

Over in the world of iOS and OS X, the object-oriented approach goes deeper. Under
normal circumstances, you as a developer don’t even see SQLite code. As is the case with
PDO and android.database, there are common classes that are customized for various
databases, but the SQLite code is placed inside these common classes and is rarely visible
to you. This means that you’re not writing statements or commands such as SELECT,
DELETE, and so forth. Instead, you’re writing code that interacts with the common classes
and their subclasses for your app.

Furthermore, there is one really critical distinction between the implementation in
PDO and android.database when compared to iOS and OS X. That difference has to do
with relationships which are conceptually exactly the same as they are in any other SQL
environment, but they are implemented in a very different way which you’ll see in this
chapter.

Finally, there’s a key point that is critical to Core Data but doesn’t apply in the same
way to the other environments. PDO and android.database wrap specific databases and
provide access to them. Core Data works with a variety of databases, but its database

Chapter 8 ■ Using SQLite with Core Data (iOS and OS X)

62

accesses go through Core Data itself: the underlying database is not exposed. Some
people think of Core Data itself as a database, but it is not. Technically, it is an object
graph and persistence framework. It uses a database (or, in the case of SQLite, a database
library), but it is not a database itself. Its job is to hide the database so you can work with
the objects that Core Data manages based on data in the database it uses.

■ Note  Core Data can work with a variety of databases including SQLite, but in wrapping
those databases in its own framework classes, it provides some consistency across different
database types. Thus, although in the most common uses of Core Data on iOS and OS X it
is SQLite that is the underlying database, you can’t simply slide an existing SQLite database
into Core Data. If you have an existing database (SQLite or any other) and want to move it
to Core Data, the simplest way is to unload it and reload it into the Core Data model that
you create. You can do this using utilities for the unload in many cases; the reloading may
require a brief section of code to interact with Core Data. Having the facilities to unload and
reload databases of any type is a best practice in all cases. It can come in handy not only
for moving from one database manager to another but also for debugging, auditing, and
other needs.

This chapter focuses on the common framework that uses SQLite for OS X and iOS
and shows you how to work with it.

Introducing the Core Data Framework
The common code that is (very) roughly analogous to PDO and android.database is the
Core Data framework. It consists of a number of classes—this chapter describes the key
classes along with the graphical editor for a data model.

WHERE CORE DATA CAME FROM

Core data is a framework—a collection of classes that work together and can
be installed together in your app. It is used with Cocoa (the user interface (UI)
framework for OS X) and Cocoa Touch (the UI framework for iPad, iPod touch, and
iPhone). It’s also used with tvOS and watchOS. It provides a fully object-oriented
interface to standard databases. It was originally written at NeXT in 1994 as
Enterprise Objects Framework (EOF), and it supported Oracle, Sybase, Informix, and
ODBC-compliant servers along with OpenBase Lite. Today, it supports the built-in
SQLite library on all the platforms as well as XML on Mac.

Chapter 8 ■ Using SQLite with Core Data (iOS and OS X)

63

Core Data descends from EOF, but it is very different in many ways. Among the major
similarities that remain are the graphical user interface for describing relational data.
Today, it is part of Xcode as Data Model Inspector and Xcode Core Data model editor.

• Both are totally object-oriented with the stored objects and their
properties being represented graphically in the Xcode Core Data
model editor although you can write code to manage them if you
want. If you do write code, it is standard Objective-C or Swift code
rather than SQL or SQLite.

• In addition to the stored objects and properties themselves, the
graphical user interface used to design the data, its objects, and
their relationships descends directly from EOF tools. You can write
code to manage the data and its objects, but that code is Swift or
Objective-C and not SQL or SQLite.

Perhaps the most important aspects of both EOF and Core Data are very much
related.

There are three aspects of Core Data that matter to you as a developer.

• The graphical user interface for building and maintaining a data
model including relationships. This is the Xcode Core Data model
editor. It runs inside Xcode.

• The runtime objects that make Core Data work for you. They are
collectively referred to as the Core Data stack.

• Other objects that you frequently use with Core Data.

This chapter addresses the first one. Chapter 9 discusses the second and third.

Using the Core Data Model Editor
Start with an Xcode project either from a built-in Xcode template or from your own
project. Many of the built-in templates have an option to use Core Data when you set up
the project. If you have chosen this option, you have a data model already in your project.
Otherwise, you need to add a data model to your project. Use File->New->File to open
the sheet shown in Figure 8-1 and select Data Model from the Core Data section for iOS,
watchOS, tvOS, or OS X as appropriate.

http://dx.doi.org/10.1007/978-1-4842-1766-5_9

Chapter 8 ■ Using SQLite with Core Data (iOS and OS X)

64

■ Note  Data Model editor is built into Xcode, the integrated development environment
for Apple projects. This chapter assumes you know the basics of Xcode. If you don’t, visit
developer.apple.com to find the documentation and download Xcode. It’s also available for
free in the Mac App Store.

You start from an empty data model as shown in Figure 8-2.

Figure 8-1.  Add a new data model to your project

Chapter 8 ■ Using SQLite with Core Data (iOS and OS X)

65

The center of the Core Data model editor lets you create your data model. There are
two styles you can use for the editor: a table style and a graph style (you’ll see both later
in this section). When you are working on a data model, there’s a Data Model inspector
available at the right of the editing window. It will contain relevant data for anything that
you have selected in the Core Data model editor. (In the case of Figure 8-2, nothing is
selected that has additional information.)

At the left of the Data Model editor, you have three sets of objects you can manage.

• Entities are SQLite tables behind the scenes.

• Fetch requests are prepared queries similar to those you can
create in SQLite. They can contain variables that are substituted
at query time.

• Configurations are used internally. For basic development,
you don’t need to do anything because the default configuration
will work.

To add a new object to the Core Data model editor, you can use the + button at the
lower left of the window. The small down-pointing triangle next to the + lets you choose
to add an entity, fetch request, or configuration. Your choice is sticky—this means that
after you’ve chosen to add a fetch request, the + will add other fetch requests until you
change the default.

Figure 8-2.  Start from a new data model

Chapter 8 ■ Using SQLite with Core Data (iOS and OS X)

66

Using Entities
After you add a new entity, it will appear in the center of the editing window with its three
sections (see Figure 8-3):

• Attributes are SQLite columns behind the scenes.

• Relationships are the logical relationships you’re used to in
SQL. In Core Data, they have a fundamental difference which is
explained in “Managing Relationships” later in this chapter.

• Fetched properties allow you to fetch properties from a different
persistent store. They are for advanced users and aren’t covered
in this introduction to Core Data.

Perhaps the most important aspect of an entity is that, when you fetch it at runtime,
it is fetched as an instance of NSManagedObject (or a subclass thereof). As a result of that
fetch, the entity becomes a class instance, and its attributes become properties of the
instance. You’ll see how to create subclasses in Chapter 9.

Figure 8-3.  Add a new entity

http://dx.doi.org/10.1007/978-1-4842-1766-5_9

Chapter 8 ■ Using SQLite with Core Data (iOS and OS X)

67

■ Note A ctually, when you fetch an object with Core Data, it is initially fetched as a fault.
That’s not an error. It represents the absolutely bare minimum of information that Core Data
needs to proceed. Basically, it is an instance of NSManagedObject or a subclass thereof but
without the persistent properties filled in. This means that you can use it in some ways, but
when you actually need the data, the fault is said to fire, and the data is filled in. When the
fault has fired and the data has been filled in, the fault is said to be realized. This happens
behind the scenes, so you don’t need to be aware of it except that in looking at debugging
statements, get used to recognizing that in the context of Core Data, “fault” doesn’t mean an
error. Faulting is one of the ways in which Core Data optimizes performance.

When you select an entity in the sidebar, you see its details in the center of the editing
window. You can add new attributes using the + below the attributes table. Initially, each
attribute will have a placeholder name such as attribute or attribute1. To add details
to your entity (or to any other object selected in the Core Data model editor), select it and
open the Data Model inspector at the right of the window as shown in Figure 8-4.

You can rename the entity. You can also provide additional details that are useful in
using it with your code. There are more details on this topic in Chapters 9 and 10.

Figure 8-4.  Use the Data Model inspector

http://dx.doi.org/10.1007/978-1-4842-1766-5_9
http://dx.doi.org/10.1007/978-1-4842-1766-5_10

Chapter 8 ■ Using SQLite with Core Data (iOS and OS X)

68

Working with Attributes
You can (and should) rename your attributes using meaningful names. (See sidebar
“Naming Core Data Model Objects.”)

NAMING CORE DATA MODEL OBJECTS

By convention, Core Data entity names begin with a capital letter. Furthermore, they
are typically singular. Thus, an entity that keeps track of users would typically be
called User and an entity that keeps track of scores for users would typically be
called Score.

If you have a to-many relationship from User to Score so that one user can have
many scores, the relationship is named scores (plural).

These have been conventions for some time in Core Data (and they’re not unlike
conventions and best practices in other environments. With Xcode Core Data, this
convention has become a requirement: you can’t name an entity user (lowercase),
and you can’t name an attribute in that entity to Name (uppercase).

Note that although the Core Data conventions are similar to conventions in other
environments, that similarity extends to the existence of standards for capitalization,
number (plural/singular), and so forth. The details such as whether or not to
capitalize do vary.

Each attribute must have a type. The types that are available in Core Data are as
follows:

• Integer16, Integer32, and Integer64

• Decimal

• Double

• Float

• String

• Boolean

• Binary Data

• Transformable

There is an initial Undefined value, but when you try to save the data model, you’ll be
required to change it to an appropriate value.

Chapter 8 ■ Using SQLite with Core Data (iOS and OS X)

69

■ Tip T hese types apply to Core Data no matter what data management tool you use to
manage its persistent stores. If you compare this list to the list of types in SQLite, you can
see that because these types don’t provide a one-to-one match to SQLite types, Core Data
itself must provide the mapping. In practice, this means that type checking is done in Core
Data, and it is stricter than SQLite libraries alone where one of the guiding principles is that
“any column can still store any type of data” (www.sqlite.org/datatype3).

The Transformable data type is just what its name implies: you can transform one
type to another. It’s typically used to store data types such as images and other resources
that can be stored as a generic data type and then used by the app directly as the resource
type with Core Data providing the transformation in both directions behind the scenes.

Figure 8-5 shows attributes and their types for an entity. Note that when first created,
it is called Entity. You can rename it by double-clicking it in the sidebar.

Managing Relationships
When you design a relational database, you set up relationships among your data objects.
There are many ways of drawing these relationships on paper, on white boards, or in
various graphical relational data editors. These relationships are implemented in queries
when you write a clause such as

WHERE department.employee_name = corporate.manager_name

Figure 8-5.  Name and set the type for each attribute

http://www.sqlite.org/datatype3

Chapter 8 ■ Using SQLite with Core Data (iOS and OS X)

70

In Core Data, relationships are part of the data model. Core Data manages them
(it generates the WHERE clauses as needed). This means you don’t have to write the
WHERE clauses yourself (in part because you don’t write SQLite syntax yourself so there’s
no place to write them). Once you have two entities created in your data model, you can
build a relationship between them using the Xcode Core Data model editor. (Yes, you can
create self-joins within a single table, but that’s a more advanced topic.)

The easiest way to create a relationship is to switch to the graph style (using the
Editor Style controls at the lower right of the editing area). You may have to rearrange the
entities so that it’s easy to see the two you care about at the same time. Then, control-drag
from one entity to the other as shown in Figure 8-6.

New relationships are given default names: double-click to change the name. You
need to specify details of the relationship, so open the Data Model inspector at the right of
the window as shown in Figure 8-7. This is another place to change a relationship name
rather than double-clicking it in the table or graph editor.

Figure 8-6.  Create a relationship

Chapter 8 ■ Using SQLite with Core Data (iOS and OS X)

71

Relationships are bidirectional, but you configure each side of the relationship in the
graph view and then modify it in the Data Model inspector. Figure 8-7 shows the scores
relationship highlighted. The most important item in the Data Model inspect is the name.
You can change it here or by double-clicking it in the graph view.

You frequently want to change the Type setting, switching between To One and To Many.
As you do, you’ll see the arrows at the end of the relationship change from single to
double arrows (this is standard relational diagram notation).Type is sometimes referred
to as cardinality.

Figure 8-8 shows a new relationship from User to Score that is a to-many relationship
(note the double arrows); the inverse is a to-one relationship (note the single arrow on
the User side).

Figure 8-7.  Refine your relationships

Figure 8-8.  Specify the cardinality of relationships

Chapter 8 ■ Using SQLite with Core Data (iOS and OS X)

72

In configuring relationships, people often switch back and forth between the graph
view and the table view using the control at the bottom right of the window. Figure 8-9
shows the table view.

Delete rules let you specify what happens when you try to delete one end of the
relationship. In brief, you can specify that deleting the source of a relationship can have
any of these outcomes:

• Cascade. Deleting one end of the relationship deletes all
related objects.

• Nullify. Deleting one end of the relationship, causes references
to it in the remaining object(s) to be set to null.

• Deny. You can’t delete one end of the relationship. You have to
work your way up to it by deleting the child objects so that there
are no related objects left, but you must write your own code to
implement that.

• No Action. You can delete one end of the relationship even if it
creates dangling pointers.

Figure 8-9.  Use the table view for relationships

Chapter 8 ■ Using SQLite with Core Data (iOS and OS X)

73

Summary
This chapter provides an introduction to Core Data, the framework that implements
access to SQLite for OS X, iOS, watchOS, and tvOS. You’ve seen how to build your
data model using Xcode Data Model editor, and how to build relationships that are
implemented for you when Core Data creates the appropriate WHERE clauses in the
SELECT statements it produces and runs.

Compared to PHP and Android, this aspect of SQLite data modeling is much more
graphical than text oriented. However, if you like writing traditional code, have no fear.
Chapters 9 and 10 show the Objective-C and Swift code to implement your SQLite
data model.

http://dx.doi.org/10.1007/978-1-4842-1766-5_9
http://dx.doi.org/10.1007/978-1-4842-1766-5_10

75

Chapter 9

Using SQLite/Core Data with
Swift (iOS and OS X)

After looking at the Xcode Core Data model editor which lets you build your Core Data
environment graphically, it’s time to move to the code that implements it. Core Data
wraps the persistent store, which in many cases is the built-in SQLite library for OS X, iOS,
watchOS, and tvOS.

This chapter looks at the Core Data stack—the objects that do the work in all cases.
It also looks at the specific objects that you may use in implementing your own app.

The SQLite syntax that is exposed in other environments is still working here, and, as
you saw in Chapter 8, in the discussion of data types, SQLite is doing the work.

Looking at the Core Data Stack
The Core Data stack is a set of three objects that work together to provide functionality.
They are as follows:

• Managed Object Model. This is what you saw built graphically
in Chapter 8. It’s very similar to what is often referred to as a
database schema. (A schema is described in a formal language
rather than graphically.) Remember that relationships are
explicitly defined in a Core Data data model whereas in SQLite
(and in SQL in general) the relationships are implemented in the
WHERE clauses that you write.

• Persistent Store Coordinator. Each SQLite table is usually
represented as a persistent store in Core Data. This one-to-one
correspondence of persistent store and database table is sufficient
in most cases. However, you can have multiple persistent stores
to improve performance or provide other optimizations. As far as
the Core Data stack is concerned, one of the three key elements
is a persistent store coordinator which coordinates all of the
persistent stores for a given Core Data app.

http://dx.doi.org/10.1007/978-1-4842-1766-5_8
http://dx.doi.org/10.1007/978-1-4842-1766-5_8

Chapter 9 ■ Using SQLite/Core Data with Swift (iOS and OS X)

76

In most cases, the persistent store coordinator handles a single
persistent store. However, the full name (persistent store
coordinator) is still used because in more complex solutions
the persistent store coordinator does actually manage several
persistent stores. It is the persistent store coordinator and
its persistent stores that do the transformation from the flat
SQLite database file to the objects that you work with in your
Core Data app. Accordingly, there are options you use when
you create a persistent store that specify what the underlying
data is (XML on OS X, SQLite on any of the platforms, in-
memory stores, and others that may be created in the future).

The defined store types are

• NSSQLLiteStoreType

• NSXMLStoreType (OS X)

• NSBinaryStoreType (OS X)

• NSInMemoryStoreType (OS X)

• Managed Object Context. A managed object context is like
a scratch pad: it contains data that has been retrieved from a
persistent store and that has (perhaps) been modified by your
app. When you are finished with modifications, you save the
managed object context. If you want to cancel the operation, you
simply destroy the managed object context.

The Core Data stack consists of these three objects, and they relate to one another to
create a single entity.

Fetching Data to the Core Data Stack
Fetch requests can be created in Xcode Core Data model editor or in your code.
They retrieve data from a persistent store (through a persistent store coordinator) and
place it in a managed object context. Fetch requests are not part of the Core Data stack,
and that fact is reflected in the standard architecture for Core Data (described in the
following section).

Structuring a Core Data App
The basic Core Data stack (persistent store coordinator, data model, and managed object
context) typically is placed in a location that is available throughout the app. The most
common case (used in Master-Detail Application and Single View Application templates
built into Xcode) places the Core Data stack in AppDelegate. AppDelegate typically
creates views and other objects within the app. If they will need parts of the Core Data
stack, AppDelegate passes them down to the views either when they are created or when
AppDelegate is managing them after they have been created by others.

Chapter 9 ■ Using SQLite/Core Data with Swift (iOS and OS X)

77

Passing a Managed Object Context to a View
Controller in iOS
Here is how the Master-Detail Application template for iOS passes the managed object
context to the view. (As is the case with Apple’s code samples and much new code that’s
written today, this is Swift code.)

func application(application: UIApplication,
 didFinishLaunchingWithOptions
 launchOptions: [NSObject: AnyObject]?) -> Bool {

 // Override point for customization after application launch.
 let splitViewController = self.window!.rootViewController
 as! UISplitViewController
 let navigationController =
 �splitViewController.viewControllers[splitViewController.

viewControllers.count-1]
 as! UINavigationController
 navigationController.topViewController!.navigationItem.leftBarButtonItem =
 splitViewController.displayModeButtonItem()
 splitViewController.delegate = self

 let masterNavigationController = splitViewController.viewControllers[0]
 as! UINavigationController
 let controller = masterNavigationController.topViewController
 as! MasterViewController
 controller.managedObjectContext = self.managedObjectContext
 return true
 }

The views are created from a storyboard, and this code starts from the basic
window and steps down until it finds the navigation controller at the left of the split view
controller. From there, it steps down to the MasterViewController inside the navigation
controller. Having gotten that controller, it then sets the managedObjectContext property
of MasterViewController to the managedObjectContext created in the Core Data stack in
AppDelegate (that is the line of code shown in bold). This is the standard way of doing this.

You can also get to the Core Data stack by finding the app delegate and then
accessing one of the stack objects from inside the AppDelegate. This breaks the idea of
encapsulation because you’re looking inside the app delegate. However, you’ll find some
sample code that does this in various places, and a (weak) argument can be made for
doing it this way if you only rarely—like once—need to access the stack. Here’s the code
for this other way of getting to the stack.

let appDelegate = UIApplication.sharedApplication().delegate as! AppDelegate
// use appDelegate.managedObjectContext or some other stack property

Chapter 9 ■ Using SQLite/Core Data with Swift (iOS and OS X)

78

Setting Up the Core Data Stack in AppDelegate for iOS
This code is from the Single View Application template that’s built into Xcode. It consists
of lazy var declarations for the following:

• applicationDocumentsDirectory. This is the directory in which
your data model will be placed inside your app. It’s just a utility
function.

• managedObjectModel

• persistentStoreCoordinator

• managedObjectContext

• By using lazy vars, the initialization code only runs when you
actually need it. Thus, this code in the template would never run
unless you use Core Data. The comments from the template code
are included here.

Creating applicationDocumentsDirectory in iOS
This code uses the default file manager to find the document directory for your app.
If you want to change the location of your data model’s directory, change it here in the
code shown in bold. Either use a different directory or create one of your own (and be
careful when you’re not using the default directory).

lazy var applicationDocumentsDirectory: NSURL = {
 // The directory the application uses to store the Core Data store file.
 // �This code uses a directory named "com.champlainarts.

SingleViewCoreDataSwift"
 // in the application's documents Application Support directory.

 let urls = NSFileManager.defaultManager().
 URLsForDirectory(.DocumentDirectory, inDomains: .UserDomainMask)

 return urls[urls.count-1]
}()

Creating managedObjectModel in iOS
Here the managedObjectModel code is created as needed. The line shown in bold is
created when you use the template. If you change your project’s name, change this line
of code. Also note that, by default, the Core Data model is stored in the app bundle. The
xcdatamodeld file that you build with Xcode Core Data model editor is compiled into a
momd file during the build process.

Chapter 9 ■ Using SQLite/Core Data with Swift (iOS and OS X)

79

lazy var managedObjectModel: NSManagedObjectModel = {
 // �The managed object model for the application. This property is not

optional.
 // It is a fatal error for the application not to be able to find
 // and load its model.

 let modelURL = NSBundle.mainBundle().URLForResource
 ("SingleViewCoreDataSwift", withExtension: "momd")!
 return NSManagedObjectModel(contentsOfURL: modelURL)!
}()

Creating persistentStoreCoordinator in iOS
This code creates a persistent store coordinator based on your managed object model.
The second line shown in bold is created based on your project name, and it contains the
location of the SQLite database file. You normally don’t move this file, but this is another
place where you might have to change the file name if you have changed the project name.

Note that in using the data model, if self.managedObjectModel does not exist yet, it
will be created after the reference here.

It’s also worth pointing out the line where the SQLiteStoreStype is chosen for the
new persistent store. It’s shown in the third bold line.

lazy var persistentStoreCoordinator: NSPersistentStoreCoordinator = {
 // �The persistent store coordinator for the application. This

implementation
 // creates and returns a coordinator, having added the store for the
 // application to it. This property is optional since there are
 // legitimate error conditions that could cause the creation of the
 // store to fail.

 // Create the coordinator and store

 let coordinator = NSPersistentStoreCoordinator
 (managedObjectModel: self.managedObjectModel)

 let url = self.applicationDocumentsDirectory.
 URLByAppendingPathComponent("SingleViewCoreData.sqlite")

 var failureReason = "There was an error creating or loading the
 application's saved data."

 do {
 try coordinator.addPersistentStoreWithType
 (NSSQLiteStoreType, configuration: nil, URL: url, options: nil)
 } catch {

Chapter 9 ■ Using SQLite/Core Data with Swift (iOS and OS X)

80

 // Report any error we got.

 var dict = [String: AnyObject]()

 dict[NSLocalizedDescriptionKey] =
 "Failed to initialize the application's saved data"
 dict[NSLocalizedFailureReasonErrorKey] = failureReason
 dict[NSUnderlyingErrorKey] = error as NSError

 let wrappedError = NSError(domain: "YOUR_ERROR_DOMAIN",
code: 9999,

userInfo: dict)

 // Replace this with code to handle the error appropriately.
 // abort() causes the application to generate a crash log
 // and terminate. You should not use this function in a
 // shipping application, although it may be useful during development.

 NSLog("Unresolved error \(wrappedError),
 \(wrappedError.userInfo)")

 abort()
 }

 return coordinator
}()

If you are not familiar with Swift 2, you may not have seen the do/try/catch block.
That is used increasingly in modern Swift code, so this code can serve as a template
for other do/try/catch code you may write. The heart of it is in the catch section. The
important part of that code is the following:

1.	 Catch the error.

2.	 Create an empty dictionary (var dict in this case).

3.	 Populate the dictionary. This code will be customized for your
purposes.

4.	 Create a new NSError instance with the domain, code, and
dictionary that you created in items 2 and 3.

5.	 Report the error and dictionary using NSLog.

Creating managedObjectContext in iOS
Finally, the managed object context is created. (Note that because of lazy initialization,
“finally” may not be accurate because the sequence of creating the Core Data stack
components varies depending on which one is the first one accessed.)

www.allitebooks.com

http://www.allitebooks.org

Chapter 9 ■ Using SQLite/Core Data with Swift (iOS and OS X)

81

lazy var managedObjectContext: NSManagedObjectContext = {
 // Returns the managed object context for the application
 // (which is already bound to the persistent store coordinator
 // for the application.) This property is optional since there
 // are legitimate error conditions that could cause the creation
 // of the context to fail.

 let coordinator = self.persistentStoreCoordinator
 var managedObjectContext = NSManagedObjectContext
 (concurrencyType: .MainQueueConcurrencyType)
 managedObjectContext.persistentStoreCoordinator =
 coordinator
 return managedObjectContext
}()

Setting Up the Core Data Stack in AppDelegate for OS X
This code is from the Cocoa Application for OS X template that’s built into Xcode. It
consists of lazy var declarations for the following:

• applicationDocumentsDirectory. This is the directory in which
your data model will be placed inside your app.

• managedObjectModel

• persistentStoreCoordinator

• managedObjectContext

By using lazy vars, the initialization code only runs when you actually need it. Thus,
this code in the template would never run unless you use Core Data. The comments from
the template code are included here.

Creating applicationDocumentsDirectory in OS X
This code differs from iOS to reflect the fact that the file structures differ. Its purpose is the
same. The code shown in bold is created from your settings when you set up the project.
If you change your developer ID or project name, you may have to change this.

lazy var applicationDocumentsDirectory: NSURL = {
 // The directory the application uses to store the Core Data
 // store file. This code uses a directory named
 // �"com.champlainarts.OSXProjectSwift" in the user's Application Support

directory.

 let urls = NSFileManager.defaultManager().
 URLsForDirectory(.ApplicationSupportDirectory, inDomains: .UserDomainMask)

Chapter 9 ■ Using SQLite/Core Data with Swift (iOS and OS X)

82

 let appSupportURL = urls[urls.count - 1]

 return appSupportURL.URLByAppendingPathComponent
 ("com.champlainarts.OSXProjectSwift")
}()

Creating managedObjectModel in OS X
The code is the same as it is for iOS except for the name of the project. The code that
is shown in bold for iOS would change for OS X to this (assuming your project name is
appropriate).

let modelURL = NSBundle.mainBundle().URLForResource
 ("OSXProjectSwift", withExtension: "momd")!

Creating persistentStoreCoordinator in OS X

lazy var persistentStoreCoordinator: NSPersistentStoreCoordinator = {
 // The persistent store coordinator for the application. This
 // implementation creates and returns a coordinator, having added the
 // store for the application to it. (The directory for the store
 // is created, if necessary.) This property is optional since
 // there are legitimate error conditions that could cause the
 // creation of the store to fail.

 let fileManager = NSFileManager.defaultManager()
 var failError: NSError? = nil
 var shouldFail = false
 var failureReason = "There was an error creating or loading
 the application's saved data."

 // Make sure the application files directory is there
 do {
 let properties = try
 �self.applicationDocumentsDirectory.resourceValuesForKeys

([NSURLIsDirectoryKey])
 if !properties[NSURLIsDirectoryKey]!.boolValue {

failureReason = "Expected a folder to store application data,
found a file \(self.applicationDocumentsDirectory.path)."

 shouldFail = true
 }
 } catch {
 let nserror = error as NSError

Chapter 9 ■ Using SQLite/Core Data with Swift (iOS and OS X)

83

 if nserror.code == NSFileReadNoSuchFileError {
 do {

�try fileManager.createDirectoryAtPath(self.
applicationDocumentsDirectory.path!,
withIntermediateDirectories: true, attributes: nil)

} catch {
failError = nserror

}
} else {

failError = nserror
}

 }

 // Create the coordinator and store
 var coordinator: NSPersistentStoreCoordinator? = nil
 if failError == nil {

�coordinator = NSPersistentStoreCoordinator(managedObjectModel:
self.managedObjectModel)
�let url = self.applicationDocumentsDirectory.URLByAppending
PathComponent("CocoaAppCD.storedata")
do {

�try coordinator!.addPersistentStoreWithType(NSXMLStoreType,
configuration: nil, URL: url, options: nil)

} catch {
failError = error as NSError

}
 }

 if shouldFail || (failError != nil) {
// Report any error we got.
var dict = [String: AnyObject]()
�dict[NSLocalizedDescriptionKey] = "Failed to initialize the
application's saved data"
dict[NSLocalizedFailureReasonErrorKey] = failureReason
if failError != nil {

dict[NSUnderlyingErrorKey] = failError
}
�let error = NSError(domain: "YOUR_ERROR_DOMAIN", code: 9999,
userInfo: dict)
NSApplication.sharedApplication().presentError(error)
abort()

 } else {
return coordinator!

 }
 }()

Chapter 9 ■ Using SQLite/Core Data with Swift (iOS and OS X)

84

Creating managedObjectContext in OS X
This code is the same as in iOS.

Creating a Fetch Request in iOS
In iOS, the standard practice is to create the Core Data stack in the app delegate as shown
previously in this chapter in “Structuring a Core Data App.: In addition to the Core Data
stack, you typically use fetch requests to fetch data from the persistent store into the
managed object context. (On OS X, you use binding instead of view controllers and fetch
requests.)

This code is fairly common. Here, it is used to fetch all entities with a given name
(Event). The entity description is retrieved from the managed object context (the line
is shown in bold) and the fetched results controller is created with a reference to that
managed object context. A backing variable for the fetchedResultsController is created
with the name _fetchedResultsController. This design pattern is frequently use: if the
backing variable (starting with the underscore) exists, it is returned on request. If it does
not exist, the fetched results controller is created and the underscore backing variable is
set to it for the next time it’s needed.

var fetchedResultsController: NSFetchedResultsController {
 if _fetchedResultsController != nil {
 return _fetchedResultsController!
 }

 let fetchRequest = NSFetchRequest()
 // Edit the entity name as appropriate.
 let entity = NSEntityDescription.entityForName("Event",
 inManagedObjectContext: self.managedObjectContext!)
 fetchRequest.entity = entity

 // Set the batch size to a suitable number.
 fetchRequest.fetchBatchSize = 20

 // Edit the sort key as appropriate.
 let sortDescriptor = NSSortDescriptor(key: "timeStamp", ascending: false)

 fetchRequest.sortDescriptors = [sortDescriptor]

 // Edit the section name key path and cache name if appropriate.
 // nil for section name key path means "no sections".

 let aFetchedResultsController = NSFetchedResultsController(
fetchRequest: fetchRequest,

 managedObjectContext: self.managedObjectContext!,
 sectionNameKeyPath: nil,

cacheName: "Master")

Chapter 9 ■ Using SQLite/Core Data with Swift (iOS and OS X)

85

 aFetchedResultsController.delegate = self
 _fetchedResultsController = aFetchedResultsController

 do {
 try _fetchedResultsController!.performFetch()
 } catch {
 // Replace this implementation with code to handle the
 // error appropriately.
 // abort() causes the application to generate a crash log
 // and terminate. You should not use this function in a
 // shipping application, although it may be useful during development.

 print("Unresolved error \(error), \(error.userInfo)")
 abort()
 }

 return _fetchedResultsController!
}

var _fetchedResultsController: NSFetchedResultsController? = nil

If you have created a fetch request in your data model as described in Chapter 8, you
can use it to create a fetchedResultsController.

Saving the Managed Object Context
Although this is basically the same in iOS and OS X, there are some minor differences.

Saving in iOS
The last part of Core Data in the app delegate is the utility code to save the context and its
changes. If you don’t save the managed object context, the changes are gone.

func saveContext () {
 if managedObjectContext.hasChanges {

 do {
 try managedObjectContext.save()
 } catch {

 // �Replace this implementation with code to handle the error
appropriately.

 // �abort() causes the application to generate a crash log and
terminate. You

 // should not use this function in a shipping application, although it
 // may be useful during development.

http://dx.doi.org/10.1007/978-1-4842-1766-5_8

Chapter 9 ■ Using SQLite/Core Data with Swift (iOS and OS X)

86

 let nserror = error as NSError
 NSLog("Unresolved error \(nserror), \(nserror.userInfo)")
 abort()
 }
}

This is one of the main reasons for passing the managed object context to views that are
created or managed by the app delegate (see the section “Passing a Managed Object Context
to a View Controller in iOS”). If the view has the managed object context, as it is processing
changes to the view, it can save those changes with managedObjectContext.save.

Here is the standard code from a view controller that can save data.

do {
 try context.save()
 } catch {
 // Replace this implementation with code to handle the error
 // appropriately.
 // abort() causes the application to generate a crash log
 // and terminate. You should not use this function in a
 // shipping application, although it may be useful during development.

 print("Unresolved error \(error), \(error.userInfo)")
 abort()
 }
}

Saving in OS X
With the menu bar and its commands in OS X, you often are using a Save action to save
data. Here is a typical saveAction function from OS X.

@IBAction func saveAction(sender: AnyObject!) {
 // �Performs the save action for the application, which is to send the

save: message
 // �to the application's managed object context. Any encountered errors are

presented
 // to the user.

 if !managedObjectContext.commitEditing() {
 NSLog("\(NSStringFromClass(self.dynamicType))
 unable to commit editing before saving")
 }

Chapter 9 ■ Using SQLite/Core Data with Swift (iOS and OS X)

87

 if managedObjectContext.hasChanges {
 do {

try managedObjectContext.save()
 } catch {

let nserror = error as NSError
NSApplication.sharedApplication().presentError(nserror)

 }
 }
 }

Working with NSManagedObject
In any app that uses Core Data, you’ll need a Core Data stack, and you create it pretty
much the same way each time except that you do customize the name of your project.
(If you’re building your app from one of the built-in Xcode templates, there may be a Core
Data check box you can use to automatically insert the Core Data stack code as well as
your project name.)

But what about your data? That’s going to be managed by your Core Data stack,
but surely it requires special coding. The fact is that, as is often the case with Core Data,
the SQLite syntax is handled for you behind the scenes. You already have a data model
(either from the template as-is or with your modifications) and if you don’t, you need to
create a data model using File ➤ New ➤ File.

■ Note  In OS X, view controllers are not generally used; instead, bindings are used.
That topic is covered in developer.apple.com.

Each entity in your data model will be transformed into an instance of a class at
runtime. Each of those instances is an instance of NSManagedObject or a descendant
thereof. This section shows you the basics.

The examples in this section use the same two entities that have been used
previously in this book: User and Score. Figure 9-1 shows them in the Xcode Core Data
model editor graph view.

Chapter 9 ■ Using SQLite/Core Data with Swift (iOS and OS X)

88

Creating a New NSManagedObject Instance
There are several ways to create new Core Data instances. One of the most common is
found in the Master-Detail Application template for iOS. Here’s the code that is used
there. It is connected to a + in the MasterViewController view. Users can tap + to create
a new object.

func insertNewObject(sender: AnyObject) {
 let context = self.fetchedResultsController.managedObjectContext
 let entity = self.fetchedResultsController.fetchRequest.entity!

 let newManagedObject =
 NSEntityDescription.insertNewObjectForEntityForName(entity.name!,
 inManagedObjectContext: context)

 do {
 try context.save()
 } catch {
 abort()
 }
}

You use this code (or code very much like it) whenever you create a new
NSManagedObject. The beginning of this code just locates the managed object
context. It might be a property in the class you’re working with such as a
fetchedResultsController. If it isn’t you may need to add a local property which is

Figure 9-1.  User and Score entities in a data model

Chapter 9 ■ Using SQLite/Core Data with Swift (iOS and OS X)

89

created (or passed through) when your class is instantiated or when the instance is
loaded from a storyboard.

Next, you create an entity description, a subclass of NSEntityDescription. This
encapsulates the entity information that you manage in your data model. In the code
shown here, the entity description (called entity) is retrieved from a fetched results
controller.

The third line of the code actually creates a new instance called newManagedObject.
That line of code is worth examining in detail. It’s really quite simple, but it’s the heart of
Core Data.

let newManagedObject =
 NSEntityDescription.insertNewObjectForEntityForName(entity.name!,
 inManagedObjectContext: context)

You use a class method of NSEntityDescription to create the new object—insert
NewObjectForEntityForName. You need the name of the new object to be created and you
need the managed object context into which to put it.

If you know the name of the object you want to create, you can omit the line creating
entity (the second line of this code) and change this line of code to refer to it by name as
in the following snippet.

let newManagedObject =
 NSEntityDescription.insertNewObjectForEntityForName("User",
 inManagedObjectContext: context)

Obviously, this code is less reusable, but it works.
After you have created that new managed object you save the managed object

context into which you inserted it.

do {
 try context.save()
 } catch {
 abort()
 }
}

As noted in comments through the template code as well as elsewhere in this book,
don’t use abort() in a shipping app. Instead, catch the error and log it, let the user know
that there’s a problem (if the user can do something about it), or just fix the problem in
your code.

That’s all it takes to create a new managed object.
If you want to set a value for an attribute defined for the entity in your data model,

you can use key-value coding to do so with a line of code such as the following:

newManagedObject.setValue("New User", forKey: "name")

Chapter 9 ■ Using SQLite/Core Data with Swift (iOS and OS X)

90

If the value to which you set the property is invalid, the save of the managed object
context will fail. This will happen particularly if you’ve declared validation rules in the
Xcode Data Model editor. Until you shake down the validation rules, you may have to deal
with errors appropriately. (And, of course, if you are allowing user input, a whole host of
user-generated errors may occur.)

■ Tip I f you really want to gain an appreciation of Core Data, work through the SQLite
syntax that must be generated behind the scenes to implement the code shown here. It
definitely is being executed, but you don't have to type it in.

Working with a Subclass of NSManagedObject
You can create a subclass of NSManagedObject instead of using an instance of
NSManagedObject itself. If you create a subclass (the process is described next),
the chief benefit is that instead of using key-value coding, you can set a value for
newManagedObject using code such as the following:

newManagedObject.name = "New User"

Creating a new subclass of NSManagedObject is easy with Xcode Core Data model
editor. Here are the steps involved. Begin with your data model open as shown in
Figure 9-1. (It doesn’t matter if you’re looking at the graph or table view.) Choose Editor
➤ Create NSManagedObject Subclass to open the window shown in Figure 9-2. Select the
data model you want to use as shown in Figure 9-2. (Typically there’s only one. There may
be several if you have been modifying your data model.)

Chapter 9 ■ Using SQLite/Core Data with Swift (iOS and OS X)

91

After you click Next, choose the entity or entities you want to subclass (see Figure 9-3).
By default, the entity or entities that you have selected in the graph or table view
(as shown in Figure 9-1) are selected here. You don’t have to subclass everything.
Sometimes, you choose to subclass the more complex entities and leave the others as
NSManagedObject instances.

Figure 9-2.  Select your data model

Chapter 9 ■ Using SQLite/Core Data with Swift (iOS and OS X)

92

Click Next and choose where to save your new files as shown in Figure 9-4. Also
choose the language you want for the subclass files. (You can mix and match Swift and
Objective-C.)

Figure 9-3.  Choose the entities to subclass

Chapter 9 ■ Using SQLite/Core Data with Swift (iOS and OS X)

93

You should double-check the group (for the Navigator) and the target, but usually
they’re correct. The option for scalar properties requires a little explanation. By default,
your entity attributes are converted into Swift or Objective-C properties using the native
Cocoa or Cocoa Touch types. Thus, a Double is converted to NSNumber. NSNumber is a
much more powerful construct than Double (for one thing, it’s a class). If you’re working
a lot with such a property, sometimes the power of NSNumber gets in the way. Choosing
to use scalar types will use the basic platform (non-object) types (such as Double) which
may make your code simpler.

If your project is basically written in Swift and you choose to create your subclass in
Objective-C, you may be asked if you want to create a bridging header between the two
languages as shown in Figure 9-5. Yes, you do want to do this.

Figure 9-4.  Choose where to save the subclass files and what language you want to use

Chapter 9 ■ Using SQLite/Core Data with Swift (iOS and OS X)

94

In a mixed-language project, don’t worry if you’re not asked about a bridging header.
It only need to be created once, so after the first time, you won’t be asked again.

The bridging header is created for you in the Build Settings of your project as shown
in Figure 9-6. You don’t need to do anything further.

Figure 9-5.  You can choose to create a bridging header

Figure 9-6.  Building settings with a bridging header

If you’re creating a Swift subclass, Xcode will create two files for each entity you
have selected. The first is the basic file for the class (User in this case): it’s empty, and
looks as follows:

import Foundation
import CoreData

class User: NSManagedObject {

// Insert code here to add functionality to your managed object subclass

}

Chapter 9 ■ Using SQLite/Core Data with Swift (iOS and OS X)

95

It will be named User.swift. As the comment in the code indicates, you can add
any code that you want to this new class that you’ve created.

The companion file that Xcode creates for you is a class extension. (A Swift class
extension is like an Objective-C category but without a name.) Its name will be in the
following form:

User+CoreDataProperties.swift

The contents of the file will be as follows:

import Foundation
import CoreData

extension User {

 @NSManaged var name: String?
 @NSManaged var email: String?
 @NSManaged var scores: NSManagedObject?
}

At runtime, the extension is merged with the basic class, so you’re able to access the
name property for an instance of User by writing

myName.name = "test"

That’s all it takes to create an NSManagedObject subclass.

■ Note  To see how to use your subclasses, see Chapter 12.

Summary
This chapter shows you how to work with SQLite/Core Data on OS X and iOS using
Swift—the more modern of languages for Cocoa and Cocoa Touch. There is still plenty of
Objective-C code around, and Chapter 10 shows that code.

http://dx.doi.org/10.1007/978-1-4842-1766-5_12
http://dx.doi.org/10.1007/978-1-4842-1766-5_10

97

Chapter 10

Using SQLite/Core Data with
Objective-C (iOS and Mac)

The Core Data stack described in detail in Chapter 9 is front and center in this chapter
but in the context of Objective-C. Yes, using Swift and Objective-C with SQLite are very
similar processes, but the details of the implementation are just different enough that
they’re treated in separate chapters so that you can find what you’re looking for without
flipping back and forth. If you’ve already read Chapter 9 (or, conversely, if you’ve read
Chapter 10 before you get to Chapter 9), feel free to skip anything that’s redundant as you
become bilingual in SQLite and both Apple languages.

Objective-C is the original language for what has become Cocoa and Cocoa Touch.
It was designed for NeXTSTEP in the early 1980s. This was the time when object-oriented
programming was becoming the primary way of developing software. A variety of
languages were designed to implement this new paradigm. Some were built from the
ground up, and others were built on top of then-existing languages such as C. (There even
is an Object COBOL language.)

Objective-C was the only language for development on NeXTSTEP and later Cocoa
and Cocoa Touch. In 2014, Swift was added to the mix. Like Objective-C before it, it is
based on the programming styles and languages of the time, but in the case of Swift,
those languages are “Objective-C, Rust, Haskell, Ruby, Python, C#, CLU, and far too many
others to list,” according to Chris Lattner as quoted in Wikipedia. (Lattner was the original
developer of Swift.)

There are important differences in the languages’ implementations of the Core Data
stack, but the architecture is the same for both.

http://dx.doi.org/10.1007/978-1-4842-1766-5_9
http://dx.doi.org/10.1007/978-1-4842-1766-5_9
http://dx.doi.org/10.1007/978-1-4842-1766-5_10
http://dx.doi.org/10.1007/978-1-4842-1766-5_9

Chapter 10 ■ Using SQLite/Core Data with Objective-C (iOS and Mac)

98

Looking at the Core Data Stack
The Core Data stack is a set of three objects that provide functionality. They are as follows:

• Managed Object Model. This is what you saw built graphically
in Chapter 8. It’s very similar to what is often referred to as a
database schema. (A schema is described in a formal language
rather than graphically.) Remember that relationships are
explicitly defined in a Core Data model whereas in SQLite (and in
SQL in general) the relationships are implemented in the WHERE
clauses that you write.

• Persistent Store Coordinator. Each SQLite table is usually
represented as a persistent store in Core Data. This one-to-one
correspondence of persistent store and database table is sufficient
in most cases. However, you can have multiple persistent stores
to improve performance or provide other optimizations. As far as
the Core Data stack is concerned, one of the three key elements
is a persistent store coordinator which coordinates all of the
persistent stores for a given Core Data app.

In most cases, the persistent store coordinator handles a single
persistent store. However, the full name (persistent store
coordinator) is still used because in more complex solutions
the persistent store coordinator does actually manage several
persistent stores. It is the persistent store coordinator and
its persistent stores that do the transformation from the flat
SQLite database file to the objects that you work with in your
Core Data app. Accordingly, there are options you use when
you create a persistent store that specify what the underlying
data is (XML on OS X, SQLite on any of the platforms, in-
memory stores, and others that may be created in the future).

The defined store types are

• NSSQLLiteStoreType

• NSXMLStoreType (OS X)

• NSBinaryStoreType (OS X)

• NSInMemoryStoreType (OS X)

• Managed Object Context. A managed object context is like
scratch pad: it contains data that has been retrieved from a
persistent store and that has (perhaps) been modified by your
app. When you are finished with modifications, you save the
managed object context. If you want to cancel the operation, you
simply destroy the managed object context.

The Core Data stack consists of these three objects, and they relate to one another to
create a single entity.

http://dx.doi.org/10.1007/978-1-4842-1766-5_8

Chapter 10 ■ Using SQLite/Core Data with Objective-C (iOS and Mac)

99

Fetching Data to the Core Data Stack
Fetch requests can be created in Xcode Core Data model editor or in your code. They
retrieve data from a persistent store (through a persistent store coordinator) and place it in
a managed object context. Fetch requests are not part of the Core Data stack, and that fact
is reflected in the standard architecture for Core Data (described in the following section).

Objective-C Highlights
Swift looks in many ways like other programming languages you are probably familiar
with, but there are some differences. Objective-C looks particularly different to many
people. Here are some of the major differences. There is more information on
developer.apple.com about Objective-C. Also, the code snippets in this chapter will
give you some key examples, but the focus here is on SQLite and its syntax as well as on
Core Data.

Using Quoted Strings
In Objective-C, a quoted string is introduced with @ as in @"myString".

Objective-C Is a Messaging Language
The most important difference is that Objective-C is a message-based language, and it is
dynamic. In many object-oriented programming languages today, you call methods or
functions of a class with syntax such as

myObject.myFunction ();

Instead of calling a function or method (the terms are used interchangeably here
although there are some very subtle differences), with Objective-C, you send a message
to an object. The message might actually have a name that makes you think it’s a function
call, but deep down it isn’t. In Objective-C, the previous line of code would be written as

[myObject myFunction];

The myFunction message is sent to myObject.

Using Brackets in Objective-C
As you can see in the previous section, Objective-C looks different. Message are enclosed
in brackets. The recipient is the first item within the brackets, and the message selector
is the second. (A message selector identifies the message to be sent. It often looks like
the name of a function or method but it is not a quoted string.) Either the recipient or the
message selector can be an expression which is evaluated at runtime—hence it is dynamic.

Chapter 10 ■ Using SQLite/Core Data with Objective-C (iOS and Mac)

100

Brackets have long been an issue for some people when they look at Objective-C. For
that reason, there have been a couple of variants. After Apple purchased NeXT, modern
syntax was introduced alongside the classical Objective-C brackets. That particular
variant is no longer supported, but Objective-C 2.0 (2006) introduced dot syntax in which
the brackets are replaced by a more accessible syntax. Both of these variants can function
alongside classical Objective-C notation because they do not change what happens
inside the compiler. The code in the section “Passing a Managed Object Context to a View
Controller in iOS” uses dot syntax for Objective-C.

Chaining Messages
As is the case in Swift and other languages, you can chain statements together if they
produce a result. Thus, you can write this code (assuming that myFunction returns an
object that can respond to myFunction2).

((myObject.myFunction ()).myFunction2 ()

That is the same as writing

x = myObject.myFunction ();
y = x.myFunction2 ();

And, in Objective-C you can write

[[myObject myFunction] myFunction2]

This is the same as writing

x = [myObject myFunction];
y = [x myFunction2];

Ending Statements with a Semicolon
Objective-C statements end with a semicolon. (You can end a Swift statement with a
semicolon, but it’s optional. It is required if you have two Swift statements on one line: the
first statement is separated from the second with a semicolon.)

Separating Headers and Bodies in Objective-C
In Swift and many other modern languages, there is a single file for each class. In
Objective-C there are two files—a header file with a .h extension and a body file with a
.m extension.

Chapter 10 ■ Using SQLite/Core Data with Objective-C (iOS and Mac)

101

Looking at Method Declarations
The syntax for method declarations is different from Swift. The quickest way to see the
difference is to look at the examples in the section “Setting Up the Core Data Stack in
AppDelegate for iOS.”

Handling nil in Objective-C
In object-oriented languages, there are often references to instances of objects which,
in most cases, are stored on the heap (i.e., in an area of memory that can be used as
needed by the app). It is different from the stack which is a last in-first out (LIFO) abstract
memory structure. (“Abstract” in the sense that it behaves as if it was a single structure
but it need not be in some implementations.) Stack data typically belongs to a specific
function so that when the function completes, the stack can be cut back with its variables
removed from memory.

Instances of objects are allocated in the heap and are not automatically cut back.
They need to be removed by one means or another. In Objective-C, several strategies to
clean up unused memory have been implemented over time. The current version relies
on reference counting: when an instance is allocated, its reference count is set to 1. Every
time that instance is used, the using code typically increases the reference count. When
each code use of the instance completes, the reference count is reduced by 1. When the
reference count reaches 0, the operating system can reuse the memory.

This memory management strategy relies on software engineers to manage the
reference counts. Over time, automated and semi-automated tools have been provided.
However, you can still find code with the primary memory management tools: retain
and release which increase and decrease the reference count by 1.

With automatic reference counting (ARC), a great deal of this is automated.
In Objective-C, instances of objects are accessed with pointers. The traditional

C language pointer syntax (an asterisk—*) is used. Thus, you will see declarations in
Objective-C such as

NSView *myView;

or

NSView* myView;

The location of the asterisk doesn’t matter. This declares a pointer variable called
myView which points to an instance of NSView.

Probably.
Rather than pointing to an instance of NSView, myView could be nil. You’ll find plenty

of code in Objective-C to test if a pointer is nil before using it. That’s a good practice.
In the lifetime of an Objective-C object, it can pass through several states. First, it is

declared as in

NSView *myView;

Chapter 10 ■ Using SQLite/Core Data with Objective-C (iOS and Mac)

102

Then it is initialized to something. This can happen in a separate statement or in a
combined statement.

NSView *myView;
myView = nil;

or

NSView *myView = nil;

If there is a period of time between the declaration and its being set to something
valid (such as nil or an actual instance), the pointer is undefined. If you use it, your
app’s behavior could be anything, but “crash” is likely to be part of the description. The
problem of dangling pointers in Objective-C has existed for many years, and there have
been many ways to address it. Today, with Objective-C, ARC is the primary way in which
the problem is addressed. With Swift, this is one of the primary reasons for implementing
optionals—so that it’s impossible to have these dangling pointers.

If you’re coming from another language, the square brackets and the use of nil (and
the necessity of initializing pointers properly) may be the two biggest changes you have to
get used to when referring to Core Data objects which may or may not exist (the nature of
databases, like that of networks, means that you can’t rely on things being in existence).

Structuring a Core Data App with Objective-C
The basic Core Data stack (persistent store coordinator, data model, and managed object
context) typically is placed in a location that is available throughout the app. The most
common case (used in Master-Detail Application and Single View Application templates
built into Xcode) places the Core Data stack in AppDelegate. AppDelegate typically
creates views and other objects within the app. If they will need parts of the Core Data
stack, AppDelegate passes them down to the view controllers and views either when they
are created or when AppDelegate is managing them after they have been created by others.

Passing a Managed Object Context to a View
Controller in iOS
Here is how the Master-Detail Application template for iOS passes the managed object
context to the view controller. (This code uses Objective-C dot syntax.)

(BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions {

 // Override point for customization after application launch.
 UISplitViewController *splitViewController =
 (UISplitViewController *)self.window.rootViewController;
 UINavigationController *navigationController =
 [splitViewController.viewControllers lastObject];

Chapter 10 ■ Using SQLite/Core Data with Objective-C (iOS and Mac)

103

 navigationController.topViewController.navigationItem.leftBarButtonItem =
 splitViewController.displayModeButtonItem;
 splitViewController.delegate = self;

 UINavigationController *masterNavigationController =
 splitViewController.viewControllers[0];
 MasterViewController *controller = (MasterViewController *)
 masterNavigationController.topViewController;
 controller.managedObjectContext = self.managedObjectContext;
 return YES;
}

The views are created from a storyboard, and this code starts from the basic
window and steps down until it finds the navigation controller at the left of the split view
controller. From there, it steps down to the MasterViewController inside the navigation
controller. Having gotten that controller, it then sets the managedObjectContext property
of the masterViewController to the managedObjectContext created in the Core Data
stack in AppDelegate. This is the standard way of doing this.

You can also get to the Core Data stack by finding the app delegate and then
accessing one of the stack objects. This breaks idea of encapsulation because you’re
looking inside the app delegate. However, you’ll find some sample code that does this
in various places, and a (weak) argument can be made for doing it this way if you only
rarely—like once—need to access the stack. Here’s the code for this other way of getting
to the stack.

AppDelegate *appDelegate = (AppDelegate *)
 [[UIApplication sharedApplication] delegate];

// use appDelegate.managedObjectContext or some other stack property

Setting up the Core Data Stack in AppDelegate for iOS
This code is from the Single View Application template that’s built into Xcode. It consists
of lazy var declarations for:

• applicationDocumentsDirectory. This is the directory in which
your data model will be placed inside your app.

• managedObjectModel

• persistentStoreCoordinator

• managedObjectContext

By using lazy vars, the initialization code only runs when you actually need it.
Thus, this code in the template would never run unless you use Core Data.

The comments from the template code are included here.

Chapter 10 ■ Using SQLite/Core Data with Objective-C (iOS and Mac)

104

Creating the App Delegate Header
This is the code to create AppDelegate in Objective-C. Notice that the import statement is
different from Swift. Also, the compiler directives such as @property,
@interface, and @end are not in Swift. The method declarations (saveContext and
applicationDocumentsDirectory) are good examples of declarations in Objective-C.

#import <UIKit/UIKit.h>
#import <CoreData/CoreData.h>

@interface AppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

@property (readonly, strong, nonatomic) NSManagedObjectContext
*managedObjectContext;
@property (readonly, strong, nonatomic) NSManagedObjectModel
*managedObjectModel;
@property (readonly, strong, nonatomic) NSPersistentStoreCoordinator
*persistentStoreCoordinator;

- (void)saveContext;
- (NSURL *)applicationDocumentsDirectory;

@end

Synthesizing Properties in AppDelegate.m
Properties are declared in header files, but they must be synthesized in the body files. The
@synthesize compiler directive typically involves creating a backing variable with the
name of the property and accessing it directly when you’re in the body. Properties that are
exposed in the header file are accessed as properties using dot notation, and behind-the-
scenes property accessors work with the backing variables (the underscored variables).
Except for special cases such as Core Data, a lot of this is done for you automatically if you
want the default backing variable names.

@synthesize managedObjectContext = _managedObjectContext;
@synthesize managedObjectModel = _managedObjectModel;
@synthesize persistentStoreCoordinator = _persistentStoreCoordinator;

Creating applicationDocumentsDirectory in iOS
This code uses the default file manager to find the document directory for your app. If
you want to change the location of your data model’s directory, change it here in the code
shown in bold. Either use a different directory or create one of your own (and be careful
when you’re not using the default directory).

Chapter 10 ■ Using SQLite/Core Data with Objective-C (iOS and Mac)

105

- (NSURL *)applicationDocumentsDirectory {
// The directory the application uses to store the Core Data store file.
// This code uses a directory named "com.champlainarts.SingleViewAppOC" in the
// application's documents directory.

return [[[NSFileManager defaultManager] URLsForDirectory:NSDocumentDirectory
 inDomains:NSUserDomainMask] lastObject];
}

Creating managedObjectModel in iOS and OS X
Here the managedObjectModel code is created as needed. The line shown in bold is
created when you use the template. If you change your project’s name, change this line
of code. Also note that, by default, the core data model is stored in the app bundle. The
xcdatamodeld file that you build with Xcode Core Data model editor is compiled into a
momd file during the build process.

- (NSManagedObjectModel *)managedObjectModel {
// The managed object model for the application. It is a fatal error for the
// application not to be able to find and load its model.

 if (_managedObjectModel != nil) {
 return _managedObjectModel;
 }

 NSURL *modelURL = [[NSBundle mainBundle] URLForResource:@"SingleViewAppOC"
 withExtension:@"momd"];
 �_managedObjectModel = [[NSManagedObjectModel alloc] initWithContentsOfURL
:modelURL];

 return _managedObjectModel;
}

Creating persistentStoreCoordinator in iOS
This code creates a persistent store coordinator based on your managed object model. The
first line shown in bold is created based on your project name, and it contains the location
of the SQLite database file. You normally don’t move this file, but this is another place
where you might have to change the file name if you have changed the project name.

Note that in using the data model, if self.managedObjectModel does not exist yet, it will
be created after the reference here. Notice that this is done differently than it is in Swift.

It’s also worth pointing out the line where the SQLiteStoreType is chosen for the
new persistent store. It’s shown in the second bold line.

Chapter 10 ■ Using SQLite/Core Data with Objective-C (iOS and Mac)

106

- (NSPersistentStoreCoordinator *)persistentStoreCoordinator {
�// The persistent store coordinator for the application. This
implementation creates
// and returns a coordinator, having added the store for the application to it.

 if (_persistentStoreCoordinator != nil) {
 return _persistentStoreCoordinator;
 }

 // Create the coordinator and store

 _persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc]
 initWithManagedObjectModel:[self managedObjectModel]];
 NSURL *storeURL = [[self applicationDocumentsDirectory]
 URLByAppendingPathComponent:@"SingleViewAppOC.sqlite"];
 NSError *error = nil;
 NSString *failureReason = @"There was an error creating or
 loading the application's saved data.";
 if (![_persistentStoreCoordinator addPersistentStoreWithType:NSSQLiteStoreType
 configuration:nil URL:storeURL options:nil error:&error]) {
 // Report any error we got.
 NSMutableDictionary *dict = [NSMutableDictionary dictionary];
 dict[NSLocalizedDescriptionKey] = @"Failed to initialize the
 application's saved data";
 dict[NSLocalizedFailureReasonErrorKey] = failureReason;
 dict[NSUnderlyingErrorKey] = error;
 �error = [NSError errorWithDomain:@"YOUR_ERROR_DOMAIN" code:9999

userInfo:dict];

 // Replace this with code to handle the error appropriately.
 // abort() causes the application to generate a crash log and terminate. You
 // should not use this function in a shipping application, although it may be
 // useful during development.

 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 abort();
 }

 return _persistentStoreCoordinator;
}

Creating managedObjectContext in iOS
Finally, the managed object context is created. It incorporates the persistent store
coordinator which, in turn, has a reference to the managed object model. Thus, you have
the entire Core Data stack.

Chapter 10 ■ Using SQLite/Core Data with Objective-C (iOS and Mac)

107

- (NSManagedObjectContext *)managedObjectContext {
// Returns the managed object context for the application (which is already
// bound to the persistent store coordinator for the application.)

 if (_managedObjectContext != nil) {
 return _managedObjectContext;
 }

 NSPersistentStoreCoordinator *coordinator = [self persistentStoreCoordinator];
 if (!coordinator) {
 return nil;
 }

 _managedObjectContext = [[NSManagedObjectContext alloc]
 initWithConcurrencyType:NSMainQueueConcurrencyType];
 [_managedObjectContext setPersistentStoreCoordinator:coordinator];

 return _managedObjectContext;
}

Setting Up the Core Data Stack in AppDelegate for OS X
This code is from the Cocoa Application for OS X template that’s built into Xcode. It
consists of declarations that provide similar functionality to lazy var declarations in
Swift. The declarations are for the following:

• applicationDocumentsDirectory. This is the directory in which
your data model will be placed inside your app.

• managedObjectModel

• persistentStoreCoordinator

• managedObjectContext

Creating applicationDocumentsDirectory in OS X
This code differs from iOS to reflect the fact that the file structures differ. Its purpose is the
same. The code shown in bold is created from your settings when you set up the project.
If you change your developer ID or project name, you may have to change this.

- (NSURL *)applicationDocumentsDirectory {
// The directory the application uses to store the Core Data store file.
// This code uses a directory named "com.champlainarts.OSXProjectOC" in
// the user's Application Support directory.

Chapter 10 ■ Using SQLite/Core Data with Objective-C (iOS and Mac)

108

 NSURL *appSupportURL = [[[NSFileManager defaultManager]
 URLsForDirectory:NSApplicationSupportDirectory inDomains:NSUserDomainMask]
 lastObject];

 return [appSupportURL
 URLByAppendingPathComponent:@"com.champlainarts.OSXProjectOC"];
}

Creating managedObjectModel in OS X
The code is the same as it is for iOS except for the name of the project. The code that
is shown in bold for iOS would change for OS X to this (assuming your project name is
appropriate).

NSURL *modelURL = [[NSBundle mainBundle] URLForResource:@"SingleViewAppOC"
 withExtension:@"momd"];

Creating persistentStoreCoordinator in OS X
Xcode creates this for you (or you can create it yourself if you’re building your own Core
Data stack). Note the line in bold: it’s taken from your project setup, and you need to
change it for your own project.

- (NSPersistentStoreCoordinator *)persistentStoreCoordinator {
// The persistent store coordinator for the application. This implementation
// creates and returns a coordinator, having added the store for the application
// to it. (The directory for the store is created, if necessary.)

 if (_persistentStoreCoordinator) {
 return _persistentStoreCoordinator;
 }

 NSFileManager *fileManager = [NSFileManager defaultManager];
 NSURL *applicationDocumentsDirectory = [self applicationDocumentsDirectory];
 BOOL shouldFail = NO;
 NSError *error = nil;
 NSString *failureReason = @"There was an error creating or loading
 the application's saved data.";

 // Make sure the application files directory is there
 NSDictionary *properties = [applicationDocumentsDirectory
 resourceValuesForKeys:@[NSURLIsDirectoryKey] error:&error];
 if (properties) {

Chapter 10 ■ Using SQLite/Core Data with Objective-C (iOS and Mac)

109

 if (![properties[NSURLIsDirectoryKey] boolValue]) {
 failureReason = [NSString stringWithFormat:
 @"Expected a folder to store application data, found a file (%@).",
 [applicationDocumentsDirectory path]];
 shouldFail = YES;
 }
 } else if ([error code] == NSFileReadNoSuchFileError) {
 error = nil;
 [fileManager createDirectoryAtPath:[applicationDocumentsDirectory path]
 withIntermediateDirectories:YES attributes:nil error:&error];
 }

 if (!shouldFail && !error) {
 NSPersistentStoreCoordinator *coordinator = [[NSPersistentStoreCoordinator alloc]

 initWithManagedObjectModel:[self managedObjectModel]];
 NSURL *url = [applicationDocumentsDirectory
 URLByAppendingPathComponent:@"OSXCoreDataObjC.storedata"];
 if (![coordinator addPersistentStoreWithType:NSXMLStoreType configuration:nil
 URL:url options:nil error:&error]) {
 coordinator = nil;
 }
 _persistentStoreCoordinator = coordinator;
 }

 if (shouldFail || error) {
 // Report any error we got.
 NSMutableDictionary *dict = [NSMutableDictionary dictionary];

 dict[NSLocalizedDescriptionKey] = @"Failed to initialize the application's
 saved data";
 dict[NSLocalizedFailureReasonErrorKey] = failureReason;
 if (error) {
 dict[NSUnderlyingErrorKey] = error;
 }

 error = [NSError errorWithDomain:@"YOUR_ERROR_DOMAIN" code:9999 userInfo:dict];
 [[NSApplication sharedApplication] presentError:error];
 }

 return _persistentStoreCoordinator;
}

Creating managedObjectContext in OS X
This code is the same as in iOS.

Chapter 10 ■ Using SQLite/Core Data with Objective-C (iOS and Mac)

110

Creating a Fetch Request in iOS
In iOS, the standard practice is to create the Core Data stack in the app delegate as shown
previously in this chapter in “ Setting up the Core Data Stack in AppDelegate for iOS” and
“Setting Up the Core Data Stack in AppDelegate for OS X.” In addition to the Core Data
stack, you typically use fetch requests to fetch data from the persistent store into the
managed object context. (On OS X, you use binding instead of view controllers and fetch
requests.)

This code is fairly common. Here, it is used to fetch all entities with a given name
(Event). The entity description is retrieved from the managed object context (the line
is shown in bold) and the fetched results controller is created with a reference to that
managed object context. A backing variable for the fetchedResultsController is created
with the name _fetchedResultsController. This design pattern is frequently use: if the
backing variable (starting with the underscore) exists, it is returned on request. If it does
not exist, the fetched results controller is created and the underscore backing variable is
set to it for the next time it’s needed.

- (NSFetchedResultsController *)fetchedResultsController
{
 if (_fetchedResultsController != nil) {
 return _fetchedResultsController;
 }

 NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init];
 // Edit the entity name as appropriate.
 NSEntityDescription *entity = [NSEntityDescription entityForName:@"Event"
 inManagedObjectContext:self.managedObjectContext];
 [fetchRequest setEntity:entity];

 // Set the batch size to a suitable number.
 [fetchRequest setFetchBatchSize:20];

 // Edit the sort key as appropriate.
 NSSortDescriptor *sortDescriptor = [[NSSortDescriptor alloc]
 initWithKey:@"timeStamp" ascending:NO];

 [fetchRequest setSortDescriptors:@[sortDescriptor]];

 // Edit the section name key path and cache name if appropriate.
 // nil for section name key path means "no sections".
 NSFetchedResultsController *aFetchedResultsController =
 [[NSFetchedResultsController alloc]
 initWithFetchRequest:fetchRequest
 managedObjectContext:self.managedObjectContext

Chapter 10 ■ Using SQLite/Core Data with Objective-C (iOS and Mac)

111

 sectionNameKeyPath:nil cacheName:@"Master"];
 aFetchedResultsController.delegate = self;
 self.fetchedResultsController = aFetchedResultsController;
 NSError *error = nil;
 if (![self.fetchedResultsController performFetch:&error]) {

 // Replace this implementation with code to handle the error appropriately.
 // abort() causes the application to generate a crash log and terminate. You

 // should not use this function in a shipping application, although it may be
 // useful during development.
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 abort();
 }

 return _fetchedResultsController;
}

If you have created a fetch request in your data model as described in Chapter 8, you
can use it to create a fetchedResultsController.

Saving the Managed Object Context
Although this is basically the same in iOS and OS X, there are some minor differences.

Saving in iOS

- (void)saveContext {
NSManagedObjectContext *managedObjectContext = self.managedObjectContext;
if (managedObjectContext != nil) {

 NSError *error = nil;
 �if ([managedObjectContext hasChanges] && ![managedObjectContext

save:&error]) {
 // Replace this implementation with code to handle the error appropriately.
 �// abort() causes the application to generate a crash log and

terminate. You
 // should not use this function in a shipping application, although it may be

 // useful during development.
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 abort();
 }
 }
}

http://dx.doi.org/10.1007/978-1-4842-1766-5_8

Chapter 10 ■ Using SQLite/Core Data with Objective-C (iOS and Mac)

112

Saving in OS X
With the menu bar and its commands in OS X, you often are using a Save action to save
data. Here is a typical saveAction function from OS X.

- (IBAction)saveAction:(id)sender {
�// Performs the save action for the application, which is to send the
save: message
// to the application's managed object context. Any encountered errors are presented
// to the user.

 if (![[self managedObjectContext] commitEditing]) {
 NSLog(@"%@:%@ unable to commit editing before saving", [self class],
 NSStringFromSelector(_cmd));
 }

 NSError *error = nil;
 if ([[self managedObjectContext] hasChanges] && ![[self managedObjectContext]
 save:&error]) {
 [[NSApplication sharedApplication] presentError:error];
 }
}

Working with NSManagedObject
In any app that uses Core Data, you’ll need a Core Data stack, and you create it pretty
much the same way each time except that you do customize the name of your project. (If
you’re building your app from one of the built-in Xcode templates, there may be a Core
Data check box you can use to automatically insert the Core Data stack code as well as
your project name.)

But what about your data? That’s going to be managed by your Core Data stack, but
surely it requires special coding. The fact is that, as is often the case with Core Data, the
SQLite syntax is handled for you behind the scenes. You already have a data model (either
from the template as-is or with your modifications) and if you don’t you need to create
one using File ➤ New ➤ File.

■ Note  In OS X, view controllers are not generally used; instead, bindings are used. That
topic is covered in developer.apple.com.

Chapter 10 ■ Using SQLite/Core Data with Objective-C (iOS and Mac)

113

Each entity in your data model will be transformed into an instance of a class at
runtime. Each of those instances is an instance of NSManagedObject or a descendant
thereof. This section shows you the basics.

The examples in this section use the same two entities that have been used
previously in this book: User and Score. Figure 10-1 shows them in the Xcode Core Data
model editor graph view

Figure 10-1.  User and Score entities in a data model

Creating a New NSManagedObject Instance
There are several ways to create new Core Data instances. One of the most common is
found in the Master-Detail Application template for Objective-C. Here’s the code that
is used there. It is connected to a + in the MasterViewController view, but any object
in your interface can be connected to an action such as the following. (This happens in
MasterViewController.ViewDidLoad).

- (void)insertNewObject:(id)sender {
NSManagedObjectContext *context = [self.fetchedResultsController

 managedObjectContext];
 �NSEntityDescription *entity = [[self.fetchedResultsController
fetchRequest] entity];

Chapter 10 ■ Using SQLite/Core Data with Objective-C (iOS and Mac)

114

 NSManagedObject *newManagedObject = [NSEntityDescription
 insertNewObjectForEntityForName:[entity name] inManagedObjectContext:context];

 NSError *error = nil;
 if (![context save:&error]) {
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 abort();
 }
}

You use this code (or code very much like it) whenever you create a new
NSManagedObject. The beginning of this code just locates the managed object context. It
might be a property in the class you’re working with. If it isn’t you may need to add a local
property which is created (or passed through) when your class is instantiated or when the
instance is loaded from a storyboard.

Next, you create an entity description, a subclass of NSEntityDescription. This
encapsulates the entity information that you manage in your data model. In the code
shown here, the entity description (called entity) is retrieved from a fetched results
controller.

The fourth line of the code actually created a new instance called newManagedObject.
That line of code is worth examining in detail. It’s really quite simple, but it’s the heart
of Core Data.

NSManagedObject *newManagedObject = [NSEntityDescriprtion
 insertNewObjectForEntityForName:[entity name] inManagedObjectContext:context];

You use a class method of NSEntityDescription to create the new object—insertN
ewObjectForEntityForName. You need the name of the new object to be created and you
need the managed object context into which to put it.

If you know the name of the object you want to create, you can omit the line creating
entity (the second line of this code) and change this line of code to refer to it by name.

NSManagedObject *newManagedObject = [NSEntityDescription
 insertNewObjectForEntityForName: "User" inManagedObjectContext:context];

Obviously, this code is less reusable, but it works.
After you have created that new managed object you save the managed object

context into which you inserted it:

NSError *error = nil;
 if (![context save:&error]) {
 NSLog(@"Unresolved error %@, %@", error, [error userInfo]);
 abort();
 }

Chapter 10 ■ Using SQLite/Core Data with Objective-C (iOS and Mac)

115

As noted in comments through the template code as well as elsewhere in this book,
don’t use abort() in a shipping app. Instead, catch the error and log it, let the user know
that there’s a problem (if the user can do something about it), or just fix the problem in
your code.

That’s all it takes to create a new managed object.
If you want to set a value for an attribute defined for the entity in your data model,

you can use key-value coding to do so with a line of code such as the following:

 [newManagedObject setValue:["New User" forKey:@"name"];

If the value to which you set the property is invalid, the save of the managed object
context will fail. This will happen particularly if you’ve declared validation rules in the
Xcode Data Model editor. Until you shake down the validation rules, you may have to deal
with errors appropriately. (And, of course, if you are allowing user input, a whole host of
user-generated errors may occur.)

■ Tip  If you really want to gain an appreciation of Core Data, work through the SQLite
syntax that must be generated behind the scenes to implement the code shown here. It
definitely is being executed, but you don't have to type it in.

Working with a Subclass of NSManagedObject
You can create a subclass of NSManagedObject instead of using an instance of
NSManagedObject itself. If you create a subclass (the process is described next), the chief
benefit is that instead of using key-value coding with setValue:forKey: as shown in
the previous section, you can set a value for newManagedObject using code such as the
following:

newManagedObject.name = "New User"

Creating a new subclass of NSManagedObject is easy with Xcode Core Data model
editor. Here are the steps involved. Begin with your data model open as shown in
Figure 10-1. (It doesn’t matter if you’re looking at the graph or table view.) Choose
Editor ➤ Create NSManagedObject Subclass to open the window shown in Figure 10-2.
Select the data model you want to use as shown in Figure 10-2. (Typically there’s only one.
There may be several if you have been modifying your data model.)

Chapter 10 ■ Using SQLite/Core Data with Objective-C (iOS and Mac)

116

After you click Next, choose the entity or entities you want to subclass as shown in
Figure 10-3. By default, the entity or entities that you have selected in the graph or table
view (as shown in Figure 10-1) are selected here. You don’t have to subclass everything.
Sometimes, you choose to subclass the more complex entities and leave the others as
NSManagedObject instances.

Figure 10-2.  Select your data model

Chapter 10 ■ Using SQLite/Core Data with Objective-C (iOS and Mac)

117

Figure 10-3.  Choose the entities to subclass

Figure 10-4.  Choose where to save the subclass files and what language you want to use

Click Next and choose where to save your new files as shown in Figure 10-4. Also
choose the language you want for the subclass files. (You can mix and match Swift and
Objective-C.)

Chapter 10 ■ Using SQLite/Core Data with Objective-C (iOS and Mac)

118

You should double-check the group (for the Navigator) and the target, but usually
they’re correct. The option for scalar properties requires a little explanation. By default,
your entity attributes are converted into Swift or Objective-C properties using the native
Cocoa or Cocoa Touch types. Thus, a Double is converted to NSNumber. NSNumber is a
much more powerful construct than Double (for one thing, it’s a class). If you’re working
a lot with such a property, sometimes the power of NSNumber gets in the way. Choosing to
use scalar types will use the basic platform (non-object) types which may make your code
simpler.

If your project is basically written in Swift and you choose to create your subclass in
Objective-C, you may be asked if you want to create a bridging header between the two
languages as shown in Figure 10-5. Yes, you do want to do so.

Figure 10-5.  You can choose to create a bridging header

In a mixed-language project, don’t worry if you’re not asked about a bridging header.
It only need to be created once, so after the first time, you won’t be asked.

The bridging header is created for you in the Build Settings of your project as shown
in Figure 10-6. You don’t need to do anything further.

Chapter 10 ■ Using SQLite/Core Data with Objective-C (iOS and Mac)

119

Figure 10-6.  Building settings with a bridging header

If you’re creating an Objective-C subclass, Xcode will create two files for each entity
you have selected. As opposed to Swift, these will be the header (.h) and body (.m) files.

The first is the interface file, and it looks as follows:

#import "User.h"

NS_ASSUME_NONNULL_BEGIN

@interface User (CoreDataProperties)

@property (nullable, nonatomic, retain) NSString *email;
@property (nullable, nonatomic, retain) NSString *name;
@property (nullable, nonatomic, retain) NSSet<NSManagedObject *> *scores;

@end

@interface User (CoreDataGeneratedAccessors)

- (void)addScoresObject:(NSManagedObject *)value;
- (void)removeScoresObject:(NSManagedObject *)value;
- (void)addScores:(NSSet<NSManagedObject *> *)values;
- (void)removeScores:(NSSet<NSManagedObject *> *)values;

@end

NS_ASSUME_NONNULL_END
}

Chapter 10 ■ Using SQLite/Core Data with Objective-C (iOS and Mac)

120

This is different from the extension file in Swift. First of all it is bracketed in
NS_ASSUME_NONNULL_BEGIN and NS_ASSUME_NONNULL_END. These implement a feature in
Objective-C that comes back from Swift. Inside a section with these brackets, all pointers
are assumed to be non-null so it’s safe to rely on that in your code. (When used from
Swift, these properties will be converted as forced-unwrapped properties with !.)

Inside the .h file you’ll see the property declaration of the category
(CoreDataProperties) which declares the two attributes of the User entity (email and
name). The relationship (scores) comes across as an NSSet. Note that because this section
is bracketed as nonnull, the properties need to explicitly be marked as being nullable.
This may seem as self-defeating, but as your code grows, you’ll see that making nullability
an exception rather than a default makes your code cleaner and more robust.

The companion .m file looks as follows:

#import "User+CoreDataProperties.h"

@implementation User (CoreDataProperties)

@dynamic email;
@dynamic name;
@dynamic scores;

@end

@dynamic represents a promise that the property will be filled in at runtime (when it
is retrieved from the persistent store).

That’s all it takes to create an NSManagedObject subclass in Objective-C.

■ Note T o see how to use your subclasses, see Chapter 12.

Summary
This chapter shows you how to work with SQLite/Core Data on OS X and iOS using
Objective-C—the original of language for Cocoa and Cocoa Touch.

http://dx.doi.org/10.1007/978-1-4842-1766-5_12

121

Chapter 11

Using the Simple Database
with a PHP Web Site

This book is an introduction to SQLite, but, even though it’s just an introduction, the
basics of SQLite (and SQL itself which is a key component) aren’t particularly complex.
True, as you start to build more and more complex apps with more and more features
(and more and more robust error checking), your code will get lengthier and more
complex. What’s attractive to many people about the world of relational databases is that
the basic elements are just that—basic. You use and reuse them in various combinations
to build more and more powerful apps.

These last two chapters of the Introducing SQLite provide you with two apps that are
built on SQLite. In this chapter, you’ll see how you can build a PHP-based app on SQLite,
and in Chapter 12 you’ll see how to build a roughly comparable app for iOS.

The app in this chapter has been selected because it demonstrates a number of the
features that people want to use as they integrate PHP and SQLite. In particular, you’ll see
how to retrieve and enter data through the PHP code and SQLite, and you’ll see how to
handle the integration of SQLite database data with PHP such as in building a drop-down
menu (the HTML SELECT element) based on data retrieved from the database.

Reviewing the Database
The data in this chapter is the same relational data that’s been used previously in this
book, but there are a few tweaks you should be aware of. They are described in this section.

The database consists of three tables that can be used to track values for people. The
naming here suggests that they may be used to track scores for users, but that’s only one
possibility. If you reuse these tables, feel free to rename the properties as you wish. Also,
note that by and large attribute, property, column, and field are used interchangeably to
refer to the data stored in a database. Attribute is often used in databases, and property is
used to refer to objects in object-oriented programming. Column is used in the context of
relational tables, and the use of field dates back to paper forms.

http://dx.doi.org/10.1007/978-1-4842-1766-5_12

Chapter 11 ■ Using the Simple Database with a PHP Web Site

122

■ Note  The biggest change in this chapter from previous versions is standardization on
capitalization: table names are capitalized, and the names of properties and attributes as
well as relationships are not. Where a table contains multiple entries (such as users in the
User table), the table name is capitalized and singular. These are styles that are enforced in
Apple’s Core Data framework, and they are consistent with best practices that many people
use. "Many" does not mean all: particularly with regard to whether a table of users is called
User or Users, there are two logical approaches to take, and there are many people who
argue vehemently for one or the other. Adopting one approach or the other isn’t really a
solution for many people because we don’t work on isolated projects. When client A insists
on singular names and client B insists on plural names you often take the most practical
approach (use the style that each client wants)

The first table, User, tracks information for people. As set up in this demo, it consists
of names and e-mail addresses. It uses a unique rowid for each row. rowid is generated by
SQLite. It is shown in Table 11-1.

Table 11-1.  User Table

rowid Name E-mail

1 Rex rex@champlainarts.com

2 Anni anni@champlainarts.com

3 Toby toby@champlainarts.com

Table 11-2.  Score Table

userid score

1 10

2 20

3 30

The Score table keeps track of values for a user. It references the user in question
with the userid attribute. This matches the rowid attribute of the relevant record in User.
In that way, you can join the Score and User tables to get both the score and name for an
individual (see Table 11-2).

Chapter 11 ■ Using the Simple Database with a PHP Web Site

123

When the Score and User tables are related based on the userid/rowid relationship,
a table like the one shown in Table 11-3 can be created. Note that this is created using
WHERE clauses in a SELECT statement: the table only exists at runtime.

Table 11-3.  Related Users and Scores Tables

Name Score

Rex 10

Anni 20

Toby 30

Figure 11-1.  Score table and its rows

If you want to build your table with a tool such as SQLPro for SQLite, the database
will look like Figure 11-1 when the Score table is highlighted so you can see its rows
(userid and score). rowid (the SQLite-generated primary key) is not shown by default in
this display. Also, note that the tables are presented in alphabetical order.

Chapter 11 ■ Using the Simple Database with a PHP Web Site

124

In Figure 11-2, you see the User table and its rows.

Figure 11-2.  The User table and its rows

Previewing the Web Site
This chapter shows how you can build a PHP web site to query and update the database.
It’s a simple process, but it covers many of the most commonly used aspects of integrating
PHP and SQLite. First, you can see a simple page (with diagnostics which will be
explained in this chapter). The heart of it is the drop-down list, which lets you select a
user. This is implemented with an HTML SELECT element, and the values for the drop-
down list come from the database.

Figure 11-3 shows what the app will look like. It contains diagnostic messages.
(You’ll see the code later in this chapter and you can download it as described in the
Introduction.)

Chapter 11 ■ Using the Simple Database with a PHP Web Site

125

In Figure 11-4, you see the data in the table at this point. (Those values of 99 are used
for debugging. You’ll provide your own data.)

Figure 11-3.  Creating a drop-down list from the database

Chapter 11 ■ Using the Simple Database with a PHP Web Site

126

In Figure 11-4 you can see a button to let you add more data. Figure 11-5 shows the
result. (Don’t worry, the code is shown later in this chapter: there’s a lot going on behind
the scenes to support that confirmation of adding data.)

Figure 11-4.  Displaying the data

Chapter 11 ■ Using the Simple Database with a PHP Web Site

127

Implementing the PHP Web Site
Because the web is designed as a state-less structure, each web page is self-contained.
Today, there are many strategies for building continuity into web sites, not the least of
which are PHP sessions, cookies, or passing data from one PHP page to another (often
with a POST request), but basically each page is still a state-less entity. That means that
when you go to a page (i.e., when you run the PHP code that generates the page), the
page is generated from data that’s in the PHP file and, possibly, retrieved from a database.
In the typical pattern, the user clicks a button or uses another interface element to load a
new page from PHP code. In order to do this, key data is passed from the first page to the
second, or, as noted, relevant data may be cached in cookies or passed in parameters.

■ Note T he example used here is called phpsql. The various files are numbered 1, 2,
and 3. If you are reading on a mobile device, depending on the font you are using, it may
not be clear that the file names are a combination of phpsql followed by a number. In some
fonts, it may look like phpsq followed by a two-digit number (the letter L sometimes looks
like number 1).

Figure 11-5.  You can add new data

Chapter 11 ■ Using the Simple Database with a PHP Web Site

128

Thus, there are three PHP files used in this example.

• phpsql1.php builds the page shown in Figure 11-3. It uses a
SQLite database call to retrieve the values for the drop-down
menu. When you click Submit, key values (in this case, the
selected user) are passed on to the next page.

• phpsql2.php builds the page shown in Figure 11-4. It receives
the selected user and then queries the database to get the value
for the user. As you’ll see, this query joins Table 11-1 (User) and
Table 11-2 (Score). The name comes from User and the score
comes from Score. This join is handled by matching rowid in User
to userid in Score (you’ll see this later in this chapter). If you click
the Add a score button, control passes to the next page.

• phpsql3.php adds data for the user selected in Figure 11-3.
In order for this to happen, phpql2.php passes the selected
userid/rowid to phpsql3.php. Because User and Score have been
joined on rowid in User and userid in Score, they have the same
value so it doesn’t matter which one is passed to phpsql3.php.
Each of the files is described in the following sections. You’ll find
the full code first and then a discussion of the key components.

Looking at the Basic PHP/SQLite Structure
You’ll use the same basic structure for all of your PHP/SQLite files. Depending on your
preferences, you may use different PHP syntax particularly when it comes to entering
HTML that will be passed through (the choice is staying in the world of PHP and using
echo or leaving PHP for a section and just using HTML until you need to come back to
PHP). Many people use both styles.

Here’s the basic structure. (Obviously you’ll typically add your own code for the HEAD
element and other such parts of the file.) Diagnostics are left in this file. It’s easiest to leave
them in until you’re certain you’ve got the control flow correct. (Also, remember that the
or die syntax is a placeholder for robust error catching with a good user interface.)

<html>
 <head>
 </head>

 <body>
 <?php

 $db = 'sqlite:sqlitephp.sqlite';

Chapter 11 ■ Using the Simple Database with a PHP Web Site

129

This should be customized to the name of your database. sqlite: is part of the PHP
data object (PDO) syntax. It must precede the file name.

$sqlite = new PDO($db) or die ("<h1>Can't open database</h1>");
echo "<p>Success on PDO</p>";

$query = $sqlite->prepare // insert your query here

This should be customized with the query you want to run. At the end of this chapter,
you’ll see another pattern you can use. Instead of prepare and execute, you can simply
execute a single query with the PDO query statement.

echo "<p>Success on prepare</p>";
$query->execute() or die ("Can't execute");
echo "<p>Success on execute</p>";

$result = $query->fetchAll() or die ("Can't fetchAll");
echo "Success on fetchAll
"; // for debugging

Remember that fetchAll fetches all the data for the query—not all the data from
the table.

// Do something with the results. The foreach is just an example.
foreach ($result as $row) {
 echo $row['rowid'], " , ", $row['name'];
}

This section definitely needs to be customized for each use. Here you see a
diagnostic that just repeats the data that’s been retrieved. It’s often useful to use code like
this at this point.

?>

<h1>Select the user</h1>

<form method="post" action="phpsql2.php">

Customize this with the name of the next PHP file in the chain (the next page for
the user).

<?php
 // Here is where you integrate PHP and SQLite – customize as you wish.

 echo '<input type="submit" value="Submit">';
 echo '</form>';

Chapter 11 ■ Using the Simple Database with a PHP Web Site

130

If you are using a form, make certain you terminate it and add the Submit button.
Note that you can start the form in HTML and finish it in PHP as shown here.

 ?>

 </body>
 </html>

Building the Drop-Down Selection List (phpsql1.php)
Here is the full listing of phpsqlite.php. Comments and description are interspersed, but
remember to refer to the previous section “Looking at the Basics PHP/SQLite Structure”
for general details. This code builds the page shown in Figure 11-3.

<html>
 <head>
 </head>
 <body>
 <?php

 $db = 'sqlite:sqlitephp.sqlite';
 $sqlite = new PDO($db) or die ("<h1>Can't open database</h1>");
 echo "<p>Success on PDO</p>";

 $query = $sqlite->prepare ("select name, rowid from User;")
 or die ("<h1>Can't prepare</h1>");

The query will be:

SELECT name, rowid FROM User;

 echo "<p>Success on prepare</p>";

 $query->execute() or die ("Can't execute");
 echo "<p>Success on execute</p>";

 $result = $query->fetchAll() or die ("Can't fetchAll");
 echo "Success on fetchAll
";

?>

<h1>Select the user</h1>

<form method="post" action="phpsql2.php">

Chapter 11 ■ Using the Simple Database with a PHP Web Site

131

<?php
 echo "<select name='userid'>";
 foreach ($result as $row) {
 echo "<option value = ".$row['rowid'].">".$row['name']."</option>";
 }

 echo '<input type = "hidden" name = "name" value = '.$row["name"].'>';

The hidden field is very important: it’s the link to the next PHP file (phpsql2.php).
The value of name will be retrieved from the POST variables at the beginning of that file.
userid is passed in from the SELECT element under the name of userid, and username
(used in a title on the next page) is passed in here. The SELECT is visible to the user, but
this hidden field is not.

echo '</select>
';
echo '<input type="submit" value="Submit">';
echo '</form>';

The name of the SELECT element is userid. When the next file unwraps the POST
values, it will be the key for the item chosen in the drop-down menu. You may want to
customize the Submit button.

?>

</body>
</html>

Showing the Selected Data (phpsql2.php)
This is the code to build the page shown in Figure 11-4.

<html>

<head>
</head>

<body>

<?php

 print "POST values
";
 foreach ($_POST as $key => $value) {
 echo "$key $value
";
 }
 print "--end POST values
";

 $name = $_POST['name'];
 print "name = $name
";

Chapter 11 ■ Using the Simple Database with a PHP Web Site

132

This code is useful for debugging: it prints out all of the POST keys and values.
Remove it when you’re happy with the code. Setting the local variable $name is not for
debugging. The print statement that follows is, but you need to pick up the username
from the hidden field on the previous page to show it in a title on this page. You could
pick it out of the POST variables when you need it, but many people prefer to unload the
POST variables at the beginning of a file.

$db = 'sqlite:sqlitephp.sqlite';
$sqlite = new PDO($db) or die ("<h1>Can't open database</h1>");
echo "<p>Success on PDO</p>";

echo "userid ".$_POST["userid"];
$useridToFind = $_POST['userid'];
echo "useridToFind = $useridToFind";

�$query = $sqlite->prepare ("select name, score from Score s, User u where
s.userid =
u.rowid and $useridToFind = s.userid ORDER BY Score;") or die
("<h1>Can't prepare</h1>");

echo "<p>Success on prepare</p>";

$query->execute() or die ("Can't execute");
echo "<p>Success on execute</p>";

$result = $query->fetchAll() or die ("Can't fetchAll");
echo "Success on fetchAll
"; // for debugging

foreach ($result as $row) {
 echo "<h1>Scores for ".$row['name']." </h1>";
 $userName = $row['name'];
 echo $row['name'], " - ", $row['score'];
}

echo '<form method="post" action="phpsql3.php">';
echo "<input type='hidden' name='userid' value=$useridToFind>";

This is another hidden field — this time passing userid forward to the next PHP file.

 echo '<input type="submit" value="Add a score">';
 echo '</form>';

?>
</body>
</html>

Chapter 11 ■ Using the Simple Database with a PHP Web Site

133

Adding New Data (phpsql3.php)
Now it’s time to add new data to the file. It’s a matter of combining basic SQLite syntax
for INSERT with the same type of code you’ve used in previous PHP pages. You should be
getting used to this: using PHP and SQLite is the same pattern over and over again.

Following is the code for phpsql3;php:

<html>
 <head>
 </head>
 <body>

<?php

print "POST values
";
 foreach ($_POST as $key => $value) {

echo "$key $value
";
 }
 print "--end POST values
";
 $userid = $_POST["userid"];
 print $userid;

This is the same code that provides diagnostics showing all of the POST variables with
their keys. Also, note that $userid is set here to be used later in this file. It’s the hidden
field passed from the previous file copied to a local variable.

$db = 'sqlite:sqlitephp.sqlite';
$sqlite = new PDO($db) or die ("<h1>Can't open database</h1>");
echo "<p>Success on PDO</p>";

$query = $sqlite->prepare ("INSERT INTO Score ('score', 'userid') VALUES (99,
 $userid);") or die ("<h1>Can't prepare</h1>");
echo "<p>Success on prepare</p>";

This is the heart of the code. Note that 99 is used for debugging. Somewhere in
this file you would place your user interface code to provide the actual value. You can
do it here, or you can provide the user interface in the previous file (phpsql2.php) in
conjunction with the Add a score button. It could bring up a dialog, or it could pick up a
value from the current game, or anything that makes sense to you and the user. If you get
the value from the previous file, store it in a hidden field and pass it forward as is done
with userid and name in other places.

$query->execute() or die ("Can't execute");
echo "<p>Success on execute</p>";

//$result = $query->fetchAll() or die ("Can't fetchAll");
//echo "Success on fetchAll
";

Chapter 11 ■ Using the Simple Database with a PHP Web Site

134

This code is commented out as a reminder that it’s used in cases where you are
retrieving data and is not needed here. The execute succeeds or fails, but there’s no
separate result.

?>

<h1>New score added</h1>

 </body>
 </html>

Using Try/Catch Blocks with PHP and PDO
The testing for success used in this file uses traditional PHP and PDO coding. You can
use more modern coding with try/catch blocks. (The or die code used as placeholders
earlier in this chapter can well be converted to this style.) Following is the general pattern:

try {
 $sqlite->query("DELETE FROM Score WHERE rowid = $rowIDToDelete");
} catch (PDOException $e) {
 echo $e->getMessage();
}

This code assumes that the Delete button passes the rowid of the score to delete in a
hidden field. Remember that rowid is provided by SQLite unless you choose to provide a
primary key. Most of the time, you’ll find that using the default SQLite rowid is useful for
situations like this where you have to delete a given row.

Note, too, that for single queries, this syntax rather than prepare and execute may be
simpler to write. When you need to reuse a query, prepare and execute are usually better.

Summary
This chapter provides a simple model for using a SQLite database with PHP. The process
is simple.

1.	 Let the user select data to see.

2.	 Show the requested data.

3.	 Allow the user to add new data.

The last step is not required in all cases, but another step often is: allowing the user
to delete the requested data that is shown in step 2. You would add a Delete button on
that page. Place it inside a form and pass control to another page that does the delete.
The delete will look very much like phpsql3.php except that instead of an INSERT, you’ll
be using DELETE. (There’s an example of a DELETE statement in the previous section,
“Using Try/Catch Blocks with PHP and PDO.”)

135

Chapter 12

Using the Simple Database
with a Core Data/iOS App

This chapter will show you how to use Core Data to build an iOS app that re-implements
the PHP pages shown in Chapter 11. The basics of this app from the Core Data side of
things will apply to OS X as well as to iOS, but the Master-Detail Application template
is specifically designed to take advantage of the features of iOS. OS X has a separate
feature, Bindings, that also very conveniently works together with Core Data. However, it’s
different from the table-based interface that’s used on iOS.

For now it’s time to move forward to implement the PHP code in Chapter 11 with
Core Data/iOS.

The Story Continues…
Chapter 8 provides a guide to working with the Xcode Core Data model editor. You see
the steps involved in creating a new project from the Master-Detail Application template
that’s part of Xcode and then converting it to a more complex data structure. At the end
of the chapter, you have two entities and two relationships connecting them. Figure 12-1
shows the database in the Core Data model editor as it is at the end of Chapter 8. (Note
that both Score and User are selected in the sidebar, so the attributes and relationships
shown in the editor are those for both of those entities—the union of the attributes and
relationships to use database terminology.)

http://dx.doi.org/10.1007/978-1-4842-1766-5_11
http://dx.doi.org/10.1007/978-1-4842-1766-5_11
http://dx.doi.org/10.1007/978-1-4842-1766-5_8
http://dx.doi.org/10.1007/978-1-4842-1766-5_8

Chapter 12 ■ Using the Simple Database with a Core Data/iOS App

136

If you want to follow along with this chapter, you can either make a copy of that
database or download the example file for this chapter. (For this chapter, a new project
called Scores has been created but the name of the project is totally up to you.)

The two entities in the Core Data model, User and Score, are the same tables that
you’ve used throughout. One of the important parts of Core Data is that it manages
primary and foreign keys for you. SQLite does create a primary key for you (rowid) unless
you explicitly don’t want to use it. Core Data with SQLite does that, too, but it happens
behind the scenes. If you open a Core Data SQLite file with a utility, you’ll see the keys in
the database.

■ Caution  You can look at the SQLite databases, but remember that Core Data manages
them. Don’t make changes to them. In the best of cases, you’ll immediately break your Core
Data project. In the worst cases, you’ll create a time bomb that will go off when you (and
your users) least expect it and have the least amount of time to deal with it. If you already
have a SQLite database and want to import it to Core Data, the simplest way is to export the
data (perhaps to a neutral format like CSV—or comma-separated values) and then to import
it into your Core Data app.

Adjusting the Data Model and Template for
Core Data
The data model needs to be revised so that it no longer relies on explicit keys (Core Data
uses them in the background), and there a few tweaks to the existing code are necessary
so that it runs properly.

Figure 12-1.  Start from the database from Chapter 9

http://dx.doi.org/10.1007/978-1-4842-1766-5_9

Chapter 12 ■ Using the Simple Database with a Core Data/iOS App

137

Getting Rid of Keys and Revising the Data Model
The data model used in Chapter 8 is designed to match basic data that is used in various
projects in this book. In this chapter, it’s possible to modify that data model to get rid of
some excess baggage that Core Data doesn’t need. Specifically, the major change you can
make is to get rid of the primary keys. Core Data manages its own primary keys, so there’s
no reason to duplicate that.

“But wait!” you may think. “How do I relate a score to a user without a primary key?”
This question is very common when database-savvy developers first use Core Data.

For years (decades, for many) we’ve relied on those primary keys. Getting rid of them is
difficult—it’s almost a physical hurt. What’s important to remember is that your objective
is to relate two entities—in this case a specific score to a specific user. The primary key
on one side and the foreign key on the other side make that possible, but they’re an
implementation issue: what you want to do is relate a specific score to a specific user.

The data model from Chapter 8 (shown here as Figure 12-1) omits those keys—both
the primary and foreign keys. The absence of those keys created no difficulty in Chapter 8,
and there’s no problem now. The table views of the database that have been used until
now have been designed to be implemented on various platforms, but for building a Core
Data app, they can be revised to omit the no-longer-needed keys.

Changing timeStamp to name
If you’ve modified the Chapter 9 version of the code or the Xcode Master-Detail
Application template, you have probably changed the Event entity to User and replaced
the timeStamp date attribute with a name string attribute. It’s not necessary to do this in this
order, but it’s what you may have done. Then, you may have created a new entity, Score.

It’s also possible to change Event to Score and create User as a new entity. In another
scenario, you can delete Event and create new entities for both User and Score. Either
way, you should wind up with the data model shown in Figure 12-1.

Use the find navigator in Xcode to search your project for timeStamp. If you’ve
already changed the data model, the only reference you will find is the initialization code
in MasterViewController’s insertNewObject function. If you have changed timeStamp to
name, you’ll wind up with the following line of code:

newManagedObject.setValue(NSDate(), forKey: "name")

(This code started out with forKey: "timeStamp").
The new attribute is a string, not a date. You can get around this problem quite

easily: simply use the description function of most NSObject instances (and their
descendants). That function returns a string value of whatever the instance is. Thus,
change the line to read

newManagedObject.setValue(NSDate().description, forKey: "name")

It’s still going to set the current date, but this time it will be used as a string
(description) rather than a NSDate instance.

http://dx.doi.org/10.1007/978-1-4842-1766-5_8
http://dx.doi.org/10.1007/978-1-4842-1766-5_8
http://dx.doi.org/10.1007/978-1-4842-1766-5_8
http://dx.doi.org/10.1007/978-1-4842-1766-5_9

Chapter 12 ■ Using the Simple Database with a Core Data/iOS App

138

Create a New Database on Your Device or Simulator
Remove the app from the simulator or from your device. You’ll get a warning that you will
remove all its data: that’s exactly what you want to do. You’ve changed the data model,
and data that was created with a previous data model won’t work. (There are migration
routines in Core Data, but they are beyond the scope of Introducing SQLite.)

Add the Score Table and Interface to the App
The first step is to see what you have now. Then you can move on to adding Score
detail information.

Making Sure You Can Add New Users with + in the
Master View Controller
If you’re not seeing timestamps when you click + at the top left of the master view
controller, you may have replaced the Event entity with Score. The code that
controls which entity you create with the + is in fetchedResultController in
MasterViewController.swift.

Following is the relevant line of code:

let entity = NSEntityDescription.entityForName
 ("User", inManagedObjectContext: self.managedObjectContext!)

This started out in the Xcode template as:

let entity = NSEntityDescription.entityForName
 ("Event", inManagedObjectContext: self.managedObjectContext!)

With your revisions, you may have wound up with:

let entity = NSEntityDescription.entityForName
 ("Score", inManagedObjectContext: self.managedObjectContext!)

You want to create User entities, so make sure that you revise the code if necessary.

Chapter 12 ■ Using the Simple Database with a Core Data/iOS App

139

Working with the Detail View
When you run the app now, you’ll be able to add new items to the list of users (formerly
the list of events but all you’ve done is change the name). When you add a new user, you
can click/tap on it to see its details in the Detail View Controller as shown in Figure 12-2.

Figure 12-2.  See detail information in the detail view (right) with the master view at the left

Make certain that what you see matches Figure 12-2 (at least mostly—this is a
landscape-oriented iPhone 6 Plus. Once you’ve done that, you can move on.

Working with the Detail View for Score
The goal here is to replace the existing detail view with a table controller that displays all
the scores for a given user and gives you the ability to add new ones. Figure 12-3 shows
what you’re aiming for.

Chapter 12 ■ Using the Simple Database with a Core Data/iOS App

140

■ Note T he values for scores are UNIX timestamps (seconds since January 1, 1970).
They’re easily gotten from NSDate in Cocoa and Cocoa Touch, and they provide different
numerical values so you can test your code. The Master View Controller continues to use a
timestamp that is displayed as a timestamp.

This will entail three steps:

1.	 Create subclasses of NSObject for User and Score. (This was
described in Chapter 9.)

2.	 Modify MasterViewController to use the new subclasses.

3.	 Replace the existing detail view controller in the storyboard
with a table-view controller-based detail view controller.

Figure 12-3.  A table-based detail view for scores

http://dx.doi.org/10.1007/978-1-4842-1766-5_9

Chapter 12 ■ Using the Simple Database with a Core Data/iOS App

141

4.	 Modify the code in DetailViewController to work with the
table view controller-based detail view controller.

5.	 Modify MasterViewController to pass a reference to the
current user to the new detail view controller so that its scores
can be displayed.

These can be done in any order after Step 1.

Use NSManagedObject Subclasses
The code in MasterViewController creates a new User entity as described in the previous
section. Once you have subclasses available, you should use them. In insertNewObject in
ManagedObjectController, find the following line of code:

let newObject = NSEntityDescription.insertNewObjectForEntityForName
 (entity.name!, inManagedObjectContext: context)

Change it to

let newUser = NSEntityDescription.insertNewObjectForEntityForName
 (entity.name!, inManagedObjectContext: context) as! User

In the line that follows, use the subclass instead of key-value coding. Instead of

newManagedObject.setValue(NSDate().description, forKey: "name")

Use the new subclass with the following line:

newUser.name = NSDate().description

Use a Table View Controller for DetailViewController
The easiest way to do this is to remove the current DetailViewController from the
storyboard. (It is shown in Figure 12-4.)

www.allitebooks.com

http://www.allitebooks.org

Chapter 12 ■ Using the Simple Database with a Core Data/iOS App

142

Then drag a table view controller from the object library at the right of the window
into the storyboard. Place it where the detail view controller was, and control-drag from the
navigation controller to the new table view controller. For the relationship, choose root view
controller (you’ll be asked as soon as you release the mouse button on the control-drag).

Modify DetailViewController Code for
DetailViewController
There are a few changes to DetailViewController.

Using the Subclasses
You need to modify the code so that DetailViewController is a subclass of
UITableViewController rather than UIViewController.

Change this line at the top of the file from

class DetailViewController: UIViewController {

to the following:

class DetailViewController: UITableViewController {

Also change the storyboard so that the new DetailViewController’s type is
DetailViewController (it might not be).

Remove references to the label from DetailViewController (it’s called
DetailDescriptionLabel).

Figure 12-4.  Locate the Detail View Controller in the storyboard and remove it

Chapter 12 ■ Using the Simple Database with a Core Data/iOS App

143

There are a few housekeeping chores to tidy up the code. Change the variable
declaration for detail to detailUser (at the top of the file).

Change detail to detailUser

var detailUser: User? {
 didSet {
 // Update the view.
 self.configureView
 }
}

Change configureCell to Use the Subclass
Here is what configureCell should look like now that it uses the Score subclass. Note that
there’s a bit of conversion going on as the NSSet of scores for a given user (a relationship)
is converted to an array (so that the nth element can be found for the table). Then, the nth
element (which is a Score) is examined to find its score value (Score.score).

func configureCell(cell: UITableViewCell, atIndexPath indexPath:
NSIndexPath) {
 if let scores = detailUser?.scores {
 let scoresArray = scores.allObjects as NSArray
 let selectedRowArrayElement = scoresArray [indexPath.row] as! Score
 let scoreForSelectedRow = selectedRowArrayElement.score
 cell.textLabel!.text = "Score: " + scoreForSelectedRow.description
 }
}

Modify MasterViewController to Pass the User to
DetailViewController
By default, the object selected in the master detail view list is passed to DetailItem in
DetailViewController. It’s declared as AnyObject? You’ll need to change it to use the
new detailUser variable you’ve created. In prepareForSegue, change the line

controller.detailItem = object

to the following:

controller.detailUser = (object as! User)

You now need to connect the table and support the relevant protocols. This code is
actually in MasterViewController because you need to manage a table view controller
there. You’ll just need to copy it to DetailViewController.

Chapter 12 ■ Using the Simple Database with a Core Data/iOS App

144

And you’ll need to import Core Data at the top of DetailViewController.

import CoreData

Summary
You now have the basics of an app that uses the built-in SQLite database, the Xcode Core
Data model editor and Core Data framework to work with the database, and the Cocoa
Touch framework for iOS to bring it all together.

What you’ve seen in working with PHP and Core Data and in the summary of
Android is that there are languages (PHP and others) as well as frameworks (Cocoa Touch
and Cocoa) and application programming interfaces (APIs) (Android) that build on
SQLite. The degree to which the SQL syntax for SQLite is exposed varies from very little
(Core Data) to a great deal (PHP) and various middle roads such as Android.

What is important is that you understand the principles and functionality.
Remember, too, that in building any database-driven app, the more that you can put into
your database the less code you have to write. Take advantage of validation options, GROUP
BY clauses, and everything else that you can find. The less code you write the less time it
will take (to write and to debug!).

145

�       � A, B
AppDelegate

iOS
document directory, 104
header creation, 104
managed object model, 105–106
persistent store

coordinator creation, 105
synthesizing properties, 104

OS X
applicationDocuments

Directory, 107
managedObjectContext, 109
managedObjectModel, 108
persistentStoreCoordinator, 108

Automatic reference counting (ARC), 101

�       � C, D, E
Core Data

attributes, 66, 68–69
data model, 64
data model inspector, 67
fetched properties, 66
framework, 62
relational database, 69

creation, 70
graph view, 71
rules, 72
table view, 72
User to Score, 71

relationship, 66
Core Data/iOS

data model
getting rid of keys, 137
simulator, 138

and template, 136
timeStamp to name, 137

Score table
configureCell, 143
detailUser, 143
detail view, 139
Master View Controller, 138, 143
NSManagedObject Subclasses, 141
Table View Controller, 141
using subclass, 142

Core Data stack
AppDelegate, iOS

(see AppDelegate, iOS)
AppDelegate, OS X

(see AppDelegate, OS X)
brackets, 99–100
chain statements, 100
fetch data, 110
function or method, 99
headers and bodies, 100
managed object context, 98
managed object model, 98
message-based language, 99
method declarations, 101
NSManagedObject

bridging header, 118–119
choose entities, 116–117
create instance, 113
create subclass, 115
graph view, 113

persistent store coordinator, 98
quoted string, 99
retrieve data, 99
saving, iOS, 111
saving, OS X, 112
semicolon, 100
view controller, 102

Index

■ index

146

�       � F, G, H
foreach loop, 56
Foreign Key (FK), 35

�       � I, J, K, L, M
iOS

create document directory, 78
managed object context, 80
managedObjectModel code, 78
and OS X (see Core Data)
persistent store coordinator, 79

�       � N
NSManagedObject

Build Settings, 94
choose bridging header, 94
choose entity, 92
choose language, 93
create subclass, 90
data model, 88
newManagedObject, 89

�       � O
Objective-C, ARC, 101
Organized data, 1
OS X

documentsdirectory, 81
managedObjectContext, 84
managedObjectModel, 82
persistentStoreCoordinator, 82

�       � P, Q, R
PHP and Android apps, 61
PHP data object (PDO), 42, 61
PHP/SQLite

create database, 48
create PDO object, 51
execute method, 52
fetch method, 52
prepare method, 52
$result, 53
$row, 53
Scores Table, 48
server-side

programming language, 46

test.php, 47
Users and Scores Table, 49
Users Table, 48

PHP Web Site
database

add data, 127
attribute, 121
column, 121
display data, 126
property, 121
query and update, 124
Score and User Table, 123
Score Table, 122
User Table, 122

implementation
add new data, 133
drop-down list, 130
POST variables, 131
structure, 128

Try/Catch Blocks, 134

�       � S, T, U, V, W
Scores Table, 31
Self-join, 29
SQLite, 9

definition, 10
multiple users, 11
self-contained

code, 12
data, 13

single user, 11
transactions and

acid compliant, 13–14
Sqlite3

create database, 16
database deletion, 17
deleting data, 27
graphical SQLite editor

adding column, 22
alter table, 24
create new table, 21
data types, 22
sqlite_master table, 20
sql structure, 24
system tables, 20
tables, 19
views, 20

insert data, 24
mydatabase, 17

■ Index

147

open existing database, 17
retrieve data, 26
syntax, 18

SQLite, Android/Java
frameworkl/language, 55
extends SQLiteOpenHelper, 58
static values

APIs, 57
db.insert method, 59
NoteBookProvider.java, 57
NotePad class, 57

SQLite/Core Data, Swift
AppDelegate, 77

iOS (see iOS)
OS X (see OS X)

fetch requests, 84
managed object context, 76
managed object model, 75
Master-Detail

Application, 77
persistent store

coordinator, 75
retrieve data, 76
saving iOS, 85
saving OS X, 86

SQLite, database
attributes, 2
basic concepts, 4
implementation, 3

query structure
columns names, 6
data source, 6
SELECT data, 6
WHERE clause, 7

relational model, 4
relational table, 5
structured and organized, 2

SQLite, Objective-C.
See Core Data stack

Sqlite, relational model
joining tables, 37
scores table, 31
SELECT Statement, 32

primary keys, 33
UPDATE command, 34
using foreign key, 34

users table, 30
SQLite statements, 39

grouping data, 41
ordering data, 40
PDO, 42
test data, 40

Store and retrieve data, 15
Structured data, 1

�       � X, Y, Z
Xcode Core Data model editor, 63

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	Chapter 1: Getting Up to Speed with Databases and SQLite
	 Moving Beyond Big
	 Databases Are Structured and Organized
	 Databases Are Smart
	Writing Code Is Just the Beginning
	Parlez-vous Python? Sprechen Sie Scala?

	 Relational Databases and SQL to the Rescue
	 Looking Inside a Relational Table and Query
	 Basic Query Structure
	SQL Action: SELECT
	SQL Data to Select: List of Column Names
	SQL Data Source: Table Name
	SQL Condition: WHERE

	 Looking at Other Query Choices

	Chapter 2: Understanding What SQLite Is
	 Putting a Database in Perspective
	 Defining SQLite
	 SQLite Is Designed for a Single User
	Single User Doesn’t Mean Single-Thread
	Using SQLite with Multiple Users

	 SQLite Is Self-Contained
	Self-Contained Code
	Self-Contained Data

	 SQLite Supports Transactions and Is ACID-Compliant

	Chapter 3: Using SQLite Basics: Storing and Retrieving Data
	 Using sqlite3
	 Run sqlite3 and Let It Create a New Database
	 Create and Name a New sqlite3 Database
	 Delete the Database
	 Run sqlite3 and Open an Existing Database

	 Experimenting with SQLite Syntax
	 Exploring Your sqlite3 Database with a Graphical SQLite Editor
	 Creating a Table
	 Using a Graphical SQLite Editor
	 Creating Table Columns
	 Using SQLite3

	 Inserting Data into a Table
	 Using a Graphical User Interface
	 Using SQLite3

	 Retrieving Data
	 Using a Graphical User Interface
	 Using sqlite3

	 Deleting Data
	 Summary

	Chapter 4: Working with the Relational Model and SQLite
	 Building the Users Table
	 Building the Scores Table
	 Relating the Tables
	 Using Aliases to Identify Multiple Tables in a SELECT Statement
	 Using the rowid Primary Key
	 Changing a Name in One Table
	 Using a Foreign Key

	 Joining the Tables
	 Summary

	Chapter 5: Using SQLite Features—What You Can Do with SELECT Statements
	 Looking at the Test Data
	 Ordering Data Makes It Easier to Use
	 Grouping Data Can Consolidate It

	 Using Variables in Queries
	 Summary

	Chapter 6: Using SQLite with PHP
	 Putting PHP and SQLite Together: The Basics
	 Verifying PHP in Your Environment
	 Preparing the SQLite Database

	 Connecting to Your SQLite Database
	 1. Create a New PDO Object
	 2. Create and Prepare the Query
	 3. Execute the Query
	 4. Fetch the Results
	 5. Use the Results

	 Summary

	Chapter 7: Using SQLite with Android/Java
	 Integrating SQLite with Any Operating System, Framework, or Language
	 Using Android and SQLite
	 Using the Static Values
	Static Values May Be in the APIs
	Static Values May Be in Imported Files.
	Static Values May Be in the Main File

	 Extend SQliteOpenHelper

	 Summary

	Chapter 8: Using SQLite with Core Data (iOS and OS X)
	 Introducing the Core Data Framework
	 Using the Core Data Model Editor
	 Using Entities
	 Working with Attributes
	 Managing Relationships

	 Summary

	Chapter 9: Using SQLite/Core Data with Swift (iOS and OS X)
	 Looking at the Core Data Stack
	 Fetching Data to the Core Data Stack
	 Structuring a Core Data App
	 Passing a Managed Object Context to a View Controller in iOS
	 Setting Up the Core Data Stack in AppDelegate for iOS
	Creating applicationDocumentsDirectory in iOS
	Creating managedObjectModel in iOS
	Creating persistentStoreCoordinator in iOS
	Creating managedObjectContext in iOS

	 Setting Up the Core Data Stack in AppDelegate for OS X
	Creating application DocumentsDirectory in OS X
	Creating managedObjectModel in OS X
	Creating persistentStoreCoordinator in OS X
	Creating managedObjectContext in OS X

	 Creating a Fetch Request in iOS
	 Saving the Managed Object Context
	 Saving in iOS
	 Saving in OS X

	 Working with NSManagedObject
	 Creating a New NSManagedObject Instance

	 Working with a Subclass of NSManagedObject
	 Summary

	Chapter 10: Using SQLite/Core Data with Objective-C (iOS and Mac)
	 Looking at the Core Data Stack
	 Fetching Data to the Core Data Stack
	 Objective-C Highlights
	 Using Quoted Strings
	 Objective-C Is a Messaging Language
	 Using Brackets in Objective-C
	 Chaining Messages
	 Ending Statements with a Semicolon
	 Separating Headers and Bodies in Objective-C
	 Looking at Method Declarations

	 Handling nil in Objective- C
	 Structuring a Core Data App with Objective-C
	 Passing a Managed Object Context to a View Controller in iOS
	 Setting up the Core Data Stack in AppDelegate for iOS
	Creating the App Delegate Header
	Synthesizing Properties in AppDelegate. m
	Creating applicationDocumentsDirectory in iOS
	Creating managedObjectModel in iOS and OS X
	Creating persistentStoreCoordinator in iOS
	Creating managedObjectContext in iOS

	 Setting Up the Core Data Stack in AppDelegate for OS X
	Creating applicationDocumentsDirectory in OS X
	Creating managedObjectModel in OS X
	Creating persistentStoreCoordinator in OS X
	Creating managedObjectContext in OS X

	 Creating a Fetch Request in iOS
	 Saving the Managed Object Context
	 Saving in iOS
	 Saving in OS X

	 Working with NSManagedObject
	 Creating a New NSManagedObject Instance

	 Working with a Subclass of NSManagedObject
	 Summary

	Chapter 11: Using the Simple Database with a PHP Web Site
	 Reviewing the Database
	 Previewing the Web Site
	 Implementing the PHP Web Site
	 Looking at the Basic PHP/SQLite Structure
	 Building the Drop-Down Selection List (phpsql1.php)
	 Showing the Selected Data (phpsql2.php)
	 Adding New Data (phpsql3.php)

	 Using Try/Catch Blocks with PHP and PDO
	 Summary

	Chapter 12: Using the Simple Database with a Core Data/iOS App
	 The Story Continues…
	 Adjusting the Data Model and Template for Core Data
	 Getting Rid of Keys and Revising the Data Model
	 Changing timeStamp to name
	 Create a New Database on Your Device or Simulator

	 Add the Score Table and Interface to the App
	 Making Sure You Can Add New Users with + in the Master View Controller
	 Working with the Detail View

	 Working with the Detail View for Score
	 Use NSManagedObject Subclasses
	 Use a Table View Controller for DetailViewController
	 Modify DetailViewController Code for DetailViewController
	Using the Subclasses
	Change detail to detailUser
	Change configureCell to Use the Subclass

	 Modify MasterViewController to Pass the User to DetailViewController

	 Summary

	Index

