
www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

Introduction to Computing

Using Python

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

Introduction to Computing

Using Python

An Application Development Focus

Ljubomir Perkovic
DePaul University

www.allitebooks.com

http://www.allitebooks.org

VP AND EXECUTIVE PUBLISHER Don Fowley

EXECUTIVE EDITOR Beth Lang Golub

PROJECT LEAD Samantha Mandel

EDITORIAL PROGRAM ASSISTANT Elizabeth Mills

EXECUTIVE MARKETING MANAGER Christopher Ruel

CREATIVE DIRECTOR Harry Nolan

SENIOR DESIGNER Wendy Lai

COVER PHOTO ©simon2579/iStockphoto

SENIOR PRODUCTION EDITOR Sujin Hong

This book was set in Times New Roman 10 by Ljubomir Perkovic and printed and bound

by Courier. The cover was printed by Courier.

This book is printed on acid-free paper. ∞

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of knowledge and

understanding for more than 200 years, helping people around the world meet their needs

and fulfill their aspirations. Our company is built on a foundation of principles that include

responsibility to the communities we serve and where we live and work. In 2008, we

launched a Corporate Citizenship Initiative, a global effort to address the environmental,

social, economic, and ethical challenges we face in our business. Among the issues we are

addressing are carbon impact, paper specifications and procurement, ethical conduct

within our business and among our vendors, and community and charitable support. For

more information, please visit our website: www.wiley.com/go/citizenship.

Copyright © 2012 John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, electronic, mechanical, photocopying, recording, scanning

or otherwise, except as permitted under Section 107 or 108 of the 1976 United States

Copyright Act, without either the prior written permission of the Publisher or

authorization through payment of the appropriate per-copy fee to the Copyright Clearance

Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, website www.copyright.com.

Requests to the Publisher for permission should be addressed to the Permissions

Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774,

(201) 748-6011, fax (201) 748-6008, website www.wiley.com/go/permissions.

Evaluation copies are provided to qualified academics and professionals for review

purposes only, for use in their courses during the next academic year. These copies are

licensed and may not be sold or transferred to a third party. Upon completion of the review

period, please return the evaluation copy to Wiley. Return instructions and a free of charge

return mailing label are available at www.wiley.com/go/returnlabel. If you have chosen to

adopt this textbook for use in your course, please accept this book as your complimentary

desk copy. Outside of the United States, please contact your local sales representative.

ISBN: 978-0-470-61846-2

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

www.allitebooks.com

http://www.allitebooks.org

To my father, Milan Perković (1937 - 1970),

who did not get the chance to complete his book.

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

Contents

Preface xvii

1
Introduction to Computer Science 1

1.1 Computer Science 2

What Do Computing Professionals Do? 2
Models, Algorithms, and Programs. 3
Tools of the Trade 3
What Is Computer Science? 4

1.2 Computer Systems 4

Computer Hardware 4
Operating Systems 5
Networks and Network Protocols 6
Programming Languages 7
Software Libraries 7

1.3 Python Programming Language 8

Short History of Python 8
Setting Up the Python Development Environment 8

1.4 Computational Thinking 9

A Sample Problem 9
Abstraction and Modeling 10
Algorithm . 10
Data Types 11
Assignments and Execution Control Structures 12

Chapter Summary . 13

vii

www.allitebooks.com

http://www.allitebooks.org

viii Contents

2
Python Data Types 15

2.1 Expressions, Variables, and Assignments 16

Algebraic Expressions and Functions 16
Boolean Expressions and Operators 18
Variables and Assignments 20
Variable Names 22

2.2 Strings. 23

String Operators 23
Indexing Operator 25

2.3 Lists. 27

List Operators 27
Lists Are Mutable, Strings Are Not 29
List Methods 29

2.4 Objects and Classes 31

Object Type 32
Valid Values for Number Types 33
Operators for Number Types 34
Creating Objects. 35
Implicit Type Conversions 36
Explicit Type Conversions 37
Class Methods and Object-Oriented Programming 38

2.5 Python Standard Library. 39

Module math 39
Module fractions 40

2.6 Case Study: Turtle Graphics Objects 41

Chapter Summary . 45

Solutions to Practice Problems 46

Exercises . 48

3
Imperative Programming 53

3.1 Python Programs 54

Our First Python Program. 54
Python Modules 56
Built-In Function print() 56
Interactive Input with input() 57
Function eval(). 58

www.allitebooks.com

http://www.allitebooks.org

Contents ix

3.2 Execution Control Structures 59

One-Way Decisions. 59
Two-Way Decisions 62
Iteration Structures 64
Nesting Control Flow Structures 67
Function range() 68

3.3 User-Defined Functions 69

Our First Function 69
print() versus return 71
Function Definitions Are “Assignment” Statements 72
Comments. 73
Docstrings . 73

3.4 Python Variables and Assignments 75

Mutable and Immutable Types 76
Assignments and Mutability 77
Swapping . 78

3.5 Parameter Passing 79

Immutable Parameter Passing 80
Mutable Parameter Passing 81

3.6 Case Study: Automating Turtle Graphics 82

Chapter Summary . 84

Solutions to Practice Problems 85

Exercises . 88

Problems . 88

4
Text Data, Files, and Exceptions 95

4.1 Strings, Revisited 96

String Representations 96
The Indexing Operator, Revisited 98
String Methods 99

4.2 Formatted Output 102

Function print() 102
String Method format() 104
Lining Up Data in Columns 106

4.3 Files. 109

File System 109
Opening and Closing a File 111
Patterns for Reading a Text File 114
Writing to a Text File 117

x Contents

4.4 Errors and Exceptions 118

Syntax Errors 118
Built-In Exceptions 119

4.5 Case Study: Logging File Access 121

A Thin Wrapper Function 122
Logging File Names 122
Getting and Formatting the Date and Time 123
Final Implementation of openLog() 125

Chapter Summary . 125

Solutions to Practice Problems 126

Exercises . 128

Problems . 130

5
Execution Control Structures 133

5.1 Decision Control and the if Statement 134

Three-Way (and More!) Decisions 134
Ordering of Conditions 136

5.2 for Loop and Iteration Patterns. 137

Loop Pattern: Iteration Loop 137
Loop Pattern: Counter Loop 138
Loop Pattern: Accumulator Loop 140
Accumulating Different Types 141
Loop Patterns: Nested Loop 143

5.3 More on Lists: Two-Dimensional Lists 145

Two-Dimensional Lists 146
Two-Dimensional Lists and the Nested Loop Pattern 147

5.4 while Loop. 149

5.5 More Loop Patterns 151

Iteration Patterns: Sequence Loop 151
Loop Pattern: Infinite Loop 153
Loop Pattern: Loop and a Half 153

5.6 Additional Iteration Control Statements 155

break Statement 155
continue Statement 156
pass Statement 157

Chapter Summary . 157

Solutions to Practice Problems 158

Exercises . 161

Problems . 163

Contents xi

6
Containers and Randomness 171

6.1 Dictionaries . 172

User-Defined Indexes as Motivation for Dictionaries 172
Dictionary Class Properties 173
Dictionary Operators 175
Dictionary Methods 176
A Dictionary as a Substitute for Multiway Condition 178
Dictionary as a Collection of Counters 179

6.2 Other Built-In Container Types 182

Class tuple 182
tuple Objects Can Be Dictionary Keys 183
Dictionary Method items(), Revisited 184
Class set . 185
Using the set Constructor to Remove Duplicates 186
set Operators 187
set Methods 188

6.3 Character Encodings and Strings 189

Character Encodings 189
ASCII . 190
Unicode . 191
UTF-8 Encoding for Unicode Characters 193

6.4 Module random . 194

Choosing a Random Integer 195
Choosing a Random “Real” 196
Shuffling, Choosing, and Sampling at Random. 197

6.5 Case Study: Games of Chance 198

Blackjack . 198
Creating and Shuffling the Deck of Cards 199
Dealing a Card 200
Computing the Value of a Hand 200
Comparing the Player’s and the House’s Hands 201
Main Blackjack Function 202

Chapter Summary . 203

Solutions to Practice Problems 203

Exercises . 206

Problems . 208

xii Contents

7
Namespaces 215

7.1 Encapsulation in Functions 216

Code Reuse 216
Modularity (or Procedural Decomposition) 217
Encapsulation (or Information Hiding) 217
Local Variables 217
Namespaces Associated with Function Calls 218
Namespaces and the Program Stack 219

7.2 Global versus Local Namespaces 223

Global Variables 223
Variables with Local Scope 224
Variables with Global Scope 224
Changing Global Variables Inside a Function 226

7.3 Exceptional Control Flow 227

Exceptions and Exceptional Control Flow 227
Catching and Handling Exceptions. 228
The Default Exception Handler 230
Catching Exceptions of a Given Type 230
Multiple Exception Handlers 231
Controlling the Exceptional Control Flow 232

7.4 Modules as Namespaces 235

Module Attributes 235
What Happens When Importing a Module 236
Module Search Path 236
Top-Level Module 238
Different Ways to Import Module Attributes 240

7.5 Classes as Namespaces 242

A Class Is a Namespace 242
Class Methods Are Functions Defined in the Class Namespace . . 243

Chapter Summary . 244

Solutions to Practice Problems 244

Exercises . 245

Problems . 248

Contents xiii

8
Object-Oriented Programming 251

8.1 Defining a New Python Class. 252
Methods of Class Point 252
A Class and Its Namespace 253
Every Object Has an Associated Namespace 254
Implementation of Class Point 254
Instance Variables 255
Instances Inherit Class Attributes 256
Class Definition, More Generally 257
Documenting a Class 258
Class Animal. 259

8.2 Examples of User-Defined Classes 260
Overloaded Constructor Operator 260
Default Constructor 261
Playing Card Class 262

8.3 Designing New Container Classes. 263
Designing a Class Representing a Deck of Playing Cards 263
Implementing the Deck (of Cards) Class 264
Container Class Queue 266
Implementing a Queue Class 267

8.4 Overloaded Operators 268
Operators Are Class Methods 269
Making the Class Point User Friendly 270
Contract between the Constructor and the repr() Operator . . . 272
Making the Queue Class User Friendly 274

8.5 Inheritance . 276
Inheriting Attributes of a Class 276
Class Definition, in General 279
Overriding Superclass Methods 279
Extending Superclass Methods 282
Implementing a Queue Class by Inheriting from list 283

8.6 User-Defined Exceptions 284
Raising an Exception 285
User-Defined Exception Classes 286
Improving the Encapsulation of Class Queue 286

8.7 Case Study: Indexing and Iterators 287
Overloading the Indexing Operators 287
Iterators and OOP Design Patterns 289

Chapter Summary . 292

Solutions to Practice Problems 293

Exercises . 296

Problems . 299

xiv Contents

9
Graphical User Interfaces 309

9.1 Basics of tkinter GUI Development 310
Widget Tk: The GUI Window. 310
Widget Label for Displaying Text 310
Displaying Images 312
Packing Widgets 313
Arranging Widgets in a Grid 315

9.2 Event-Based tkinter Widgets 317
Button Widget and Event Handlers 317
Events, Event Handlers, and mainloop() 319
The Entry Widget 320
Text Widget and Binding Events 323
Event Patterns and the tkinter Class Event 324

9.3 Designing GUIs . 326
Widget Canvas 326
Widget Frame as an Organizing Widget 329

9.4 OOP for GUIs . 331
GUI OOP Basics. 331
Shared Widgets Are Assigned to Instance Variables 333
Shared Data Are Assigned to Instance Variables 335

9.5 Case Study: Developing a Calculator 336
The Calculator Buttons and Passing Arguments to Handlers . . . 337
Implementing the “Unofficial” Event Handler click() 338

Chapter Summary . 341

Solutions to Practice Problems 341

Exercises . 346

Problems . 346

10
Recursion 351

10.1 Introduction to Recursion 352
Recursive Functions 352
Recursive Thinking 354
Recursive Function Calls and the Program Stack 356

10.2 Examples of Recursion 358
Recursive Number Sequence Pattern 358
Fractals . 360
Virus Scanner 364

Contents xv

10.3 Run Time Analysis 367

The Exponent Function 367
Counting Operations 368
Fibonacci Sequence 369
Experimental Analysis of Run Time 370

10.4 Searching . 374

Linear Search. 374
Binary Search 374
Other Search Problems 377

10.5 Case Study: Tower of Hanoi. 379

Classes Peg and Disk 383

Chapter Summary . 385

Solutions to Practice Problems 385

Exercises . 387

Problems . 388

11
The Web and Search 395

11.1 The World Wide Web 396

Web Servers and Web Clients 396
“Plumbing” of the WWW 397
Naming Scheme: Uniform Resource Locator 397
Protocol: HyperText Transfer Protocol 398
HyperText Markup Language 399
HTML Elements 400
Tree Structure of an HTML Document. 401
Anchor HTML Element and Absolute Links 401
Relative Links. 402

11.2 Python WWW API 403

Module urllib.request 403
Module html.parser 405
Overriding the HTMLParser Handlers 407
Module urllib.parse 408
Parser That Collects HTTP Hyperlinks 409

11.3 String Pattern Matching 411

Regular Expressions 411
Python Standard Library Module re 414

11.4 Case Study: Web Crawler 415

Recursive Crawler, Version 0.1 416
Recursive Crawler, Version 0.2 418
The Web Page Content Analysis 420

xvi Contents

Chapter Summary . 422
Solutions to Practice Problems 423
Exercises . 425
Problems . 426

12
Databases and Data Processing 429

12.1 Databases and SQL 430
Database Tables 430
Structured Query Language 432
Statement SELECT. 432
Clause WHERE 434
Built-In SQL Functions 436
Clause GROUP BY 436
Making SQL Queries Involving Multiple Tables 437
Statement CREATE TABLE 439
Statements INSERT and UPDATE 439

12.2 Database Programming in Python 440
Database Engines and SQLite 440
Creating a Database with sqlite3 441
Committing to Database Changes and Closing the Database . . . 442
Querying a Database Using sqlite3 443

12.3 Functional Language Approach 445
List Comprehension 445
MapReduce Problem Solving Framework 447
MapReduce, in the Abstract 450
Inverted Index 451

12.4 Parallel Computing 453
Parallel Computing 453
Class Pool of Module multiprocessing 454
Parallel Speedup 457
MapReduce, in Parallel 458
Parallel versus Sequential MapReduce 459

Chapter Summary . 461
Solutions to Practice Problems 462
Exercises . 465
Problems . 466

Index 471

Preface
This textbook is an introduction to programming, computer application development, and

the science of computing. It is meant to be used in a college-level introductory program-

ming course. More than just an introduction to programming, the book is a broad introduc-

tion to computer science and to the concepts and tools used for modern computer applica-

tion development.

The computer programming language used in the book is Python, a language that has a

gentler learning curve than most. Python comes with powerful software libraries that make

complex tasks—such as developing a graphics application or finding all the links in a web

page—a breeze. In this textbook, we leverage the ease of learning Python and the ease of

using its libraries to do more computer science and to add a focus on modern application

development. The result is a textbook that is a broad introduction to the field of computing

and modern application development.

The textbook’s pedagogical approach is to introduce computing concepts and Python

programming in a breadth-first manner. Rather than covering computing concepts and

Python structures one after another, the book’s approach is more akin to learning a natural

language, starting from a small general-purpose vocabulary and then gradually extending

it. The presentation is in general problem oriented, and computing concepts, Python struc-

tures, algorithmic techniques, and other tools are introduced when needed, using a “right

tool at the right moment” model.

The book uses the imperative-first and procedural-first paradigm but does not shy away

from discussing objects early. User-defined classes and object-oriented programming are

covered later, when they can be motivated and students are ready. The last three chapters

of the textbook use the context of web crawling and search engines to introduce a broad

array of topics. These include foundational concepts such as recursion, regular expressions,

depth-first search, and Google’s MapReduce framework, as well as practical tools such as

GUI widgets, HTML parsers, SQL, and multicore programming.

This textbook can be used in a course that introduces computer science and program-

ming to computer science majors. Its broad coverage of foundational computer science

topics as well as current technologies will give the student a broad understanding of the

field and a confidence to develop “real” modern applications that interact with the web

and/or a database. The textbook’s broad coverage also makes it ideal for students who need

to master programming and key computing concepts but will not take more than one or two

computing courses, in particular math, science, and engineering majors.

The Book’s Technical Features
The textbook has a number of features that engage students and encourage them to get their

hands dirty. For one, the book makes heavy use of examples that use the Python interactive

xvii

xviii Preface

shell. Students can easily reproduce these one-liners on their own. After doing so, students

will likely continue experimenting further using the immediate feedback of the interactive

shell.

Throughout the textbook, there are inline practice problems whose purpose is to re-

inforce concepts just covered. The solutions to these problems appear at the end of the

corresponding chapter, allowing students to check their solution or take a peek in case they

are stuck.

The textbook uses Caution boxes to warn students of potential pitfalls. It also uses

Detour boxes to briefly explore interesting but tangential topics. The large number of boxes,

practice problems, figures, and tables create visual breaks in the text, making the volume

more approachable for today’s students.

Most chapters in the text include a case study that showcases the concepts and tools

covered in the chapter in context. Finally, the textbook contains a large number of end-of-
chapter problems, many of which are unlike problems typically found in an introductory

textbook.

Online Textbook Supplements
The link to the book’s online content is www.wiley.com/college/perkovic. These sup-

plements are available there:

• Powerpoint slides for each chapter

• Expanded tutorials on SQL and HTML

• Code examples appearing in the book

• Exercise and problem solutions (for instructors only)

• Project ideas for Chapters 5 to 12 (for instructors only)

• Exam problems (for instructors only)

For Students: How to Read This Book
This book is meant to help you master programming and develop computational thinking

skills. Programming and computational thinking are hands-on activities that require a com-

puter with a Python integrated development environment, a pen, and paper. Ideally, you

should have those tools next to you as you read this book.

The book makes heavy use of small examples that use Python’s interactive shell. Try

running those examples in your shell. Feel free to experiment further. It’s very unlikely the

computer will burst into flames if you make a mistake!

You should also attempt to solve all the practice problems as they appear in the text.

Problem solutions appear at the end of the corresponding chapter. If you get stuck, it’s OK

to peek at the solution; after doing so, try solving the problem without peeking.

The text uses Caution boxes to warn you of potential pitfalls. These are very important

and should not be skipped. The Detour boxes, however, discuss topics that are only tangen-

tially related to the main discussion. You may skip those if you like. Or you may go further

and explore the topics in more depth if you get intrigued.

At some point while reading this text, you may get inspired to develop your own app,

whether a card game or an app that keeps track of a set of stock market indexes in real time.

If so, just go ahead and try it! You will learn a lot.

www.allitebooks.com

http://www.allitebooks.org

Preface xix

Overview of the Book
This textbook consist of 12 chapters that introduce computing concepts and Python pro-

gramming in a breadth-first manner.

Tour of Python and Computer Science
Chapter 1 introduces the basic computing concepts and terminology. Starting with a dis-

cussion of what computer science is and what developers do, the concepts of modeling,

algorithm development, and programming are defined. The chapter describes the computer

scientist’s and application developer’s toolkit, from logic to systems, with an emphasis on

programming languages, the Python development environment, and computational think-

ing.

Chapter 2 covers core built-in Python data types: the integer, Boolean, floating-point,

string, and list types. To illustrate the features of the different types, the Python interactive

shell is used. Rather than being comprehensive, the presentation focuses on the purpose of

each type and the differences and similarities between the types. This approach motivates

a more abstract discussion of objects and classes that is ultimately needed for mastering

the proper usage of data types. The case study at the end of the chapter takes advantage of

this discussion to introduce Turtle graphics classes that enable students to do simple, fun

graphics interactively.

Chapter 3 introduces imperative and procedural programming including basic execu-
tion control structures. This chapter presents programs as a sequence of Python statements

stored in a file. To control how the statements are executed, basic conditional and iterative

control structures are introduced: the one-way and two-way if statements as well as the

simplest for loop patterns of iterating through an explicit sequence or a range of numbers.

The chapter introduces functions as a way to neatly package a small application; it also

builds on the material on objects and classes covered in Chapter 2 to describe how Python

does assignments and parameter passing.

The first three chapters provide a shallow but broad introduction to Python program-

ming and computers science. Core Python data types and basic execution control structures

are introduced so students can write simple but complete programs early. Functions are in-

troduced early as well to help students conceptualize what a program is doing, that is, what

inputs it takes and what output it produces. In other words, abstraction and encapsulation

of functions is used to help students better understand programs.

Focus on Algorithmic Thinking
Chapter 4 covers strings and text processing in more depth. It continues the coverage of

strings from Chapter 2 with a discussion of string value representations, string operators

and methods, and formatted output. File input/output (I/O) is introduced as well and, in

particular, the different patterns for reading text files. Finally, the context of file I/O is used

to motivate a discussion of exceptions and the different types of exceptions in Python.

Chapter 5 covers execution control structures and loop patterns in depth. Basic con-

ditional and iteration structures were introduced in Chapter 3 and then used in Chapter 4

(e.g., in the context of reading files). Chapter 5 starts with a discussion of multiway condi-

tional statements. The bulk of the chapter is spent on describing the different loop patterns:

the various ways for loops and while loops are used. Multidimensional lists are intro-

duced as well, in the context of the nested loop pattern. More than just covering Python

loop structures, this core chapter describes the different ways that problems can be broken

xx Preface

down. Thus, the chapter fundamentally is about problem solving and algorithms.

Chapter 6 completes the textbook’s coverage of Python’s built-in container data types
and their usage. The dictionary, set, and tuple data types are motivated and introduced. This

chapter also completes the coverage of strings with a discussion of character encodings and

Unicode. Finally, the concept of randomness is introduced in the context of selecting and

permuting items in containers.

Chapters 4 through 6 represent the second layer in the breadth-first approach this text-

book takes. One of the main challenges students face in a introductory programming course

is mastering of conditional and iteration structures and, more generally, the computational

problem-solving and algorithm development skills. The critical Chapter 5, on patterns of

applying execution control structures, appears after students have been using basic condi-

tional statements and iteration patterns for several weeks and have gotten somewhat com-

fortable with the Python language. Having gained some comfort with the language and

basic iteration, students can focus on the algorithmic issues rather than less fundamental

issues, such as properly reading input or formatting output.

Managing Program Complexity
Chapter 7 shifts gears and focuses on the software development process itself and the prob-

lem of managing larger, more complex programs. It introduces namespaces as the founda-
tion for managing program complexity. The chapter builds on the coverage of functions and

parameter passing in Chapter 3 to motivate the software engineering goals of code reuse,

modularity, and encapsulation. Functions, modules, and classes are tools that can be used to

achieve these goals, fundamentally because they define separate namespaces. The chapter

describes how namespaces are managed during normal control flow and during exceptional

control flow, when exceptions are handled by exception handlers.

Chapter 8 covers the development of new classes in Python and the object-oriented pro-
gramming (OOP) paradigm. The chapter builds on Chapter 7’s uncovering of how Python

classes are implemented through namespaces to explain how new classes are developed.

The chapter introduces the OOP concepts of operator overloading—central to Python’s de-

sign philosophy—and inheritance—a powerful OOP property that will be used in Chapters

9 and 11. Through abstraction and encapsulation, classes achieve the desirable software en-

gineering goals of modularity and code reuse. The context of abstraction and encapsulation

is then used to motivate user-defined exception classes and the implementation of iterative

behavior in user-defined container classes.

Chapter 9 introduces graphical user interfaces (GUIs) and showcases the power of
the OOP approach for developing GUIs. It uses the Tk widget toolkit, which is part of

the Python Standard Library. The coverage of interactive widgets provides the opportunity

to discuss the event-driven programming paradigm. In addition to introducing GUI devel-

opment, the chapter also showcases the power of OOP to achieve modular and reusable

programs.

The broad goal of Chapters 7 though 9 is to introduce students to the issues of program

complexity and code organization. They describe how namespaces are used to achieve func-

tional abstraction and data abstraction and, ultimately, encapsulated, modular, and reusable

code. Chapter 8 provides a comprehensive discussion of user-defined classes and OOP.

The full benefit of OOP, however, is best seen in context, which is what Chapter 9 is about.

Additional contexts and examples of OOP are shown in later chapters and specifically in

Sections 10.5, 11.2, 12.3, and 12.4. These chapters provide a foundation for the students’

future education in data structures and software engineering methodologies.

Preface xxi

Crawling through Foundations and Applications
Chapters 10 through 12, the last three chapters of the textbook, cover a variety of advanced

topics, from fundamental computer science concepts like recursion, regular expressions,

and depth-first search, to practical and contemporary tools like HTML parsers, SQL, and

multicore programming. The theme used to motivate and connect these topics is the de-

velopment of web crawlers, search engines, and data mining apps. The theme, however, is

loose, and each individual topic is presented independently to allow instructors to develop

alternate contexts and themes for this material as they see fit.

Chapter 10 introduces foundational computer science topics: recursion, search, and
the run-time analysis of algorithms. The chapter starts with a discussion of how to think

recursively. This skill is then put to use on a wide variety of problems from drawing fractals

to virus scanning. This last example is used to illustrate depth-first search. The benefits and

pitfalls of recursion lead to a discussion of algorithm run-time analysis, which is then used

in the context of analyzing the performance of various list search algorithms. This chapter

puts the spotlight on the theoretical aspects of computing and forms a basis for future

coursework in data structures and algorithms.

Chapter 11 introduces the World Wide Web as a central computing platform and as a
huge source of data for innovative computer application development. HTML, the language

of the web, is briefly discussed before tools to access resources on the web and parse web

pages are covered. To grab the desired content from web pages and other text content, reg-

ular expressions are introduced. The different topics covered in this chapter are put to use

together with depth-first traversal from the previous chapter in the context of developing

a web crawler. A benefit of touching HTML parsing and regular expressions in an intro-

ductory course is that students will be familiar with their uses in context before rigorously

covering them in a formal languages course.

Chapter 12 covers databases and the processing of large data sets. The database lan-

guage SQL is briefly described as well as a Python’s database application programming

interface in the context of storing data grabbed from a web page. Given the ubiquity of

databases in today’s computer applications, it is important for students to get an early ex-

posure to them and their use (if for no other reason than to be familiar with them before

their first internship). The coverage of databases and SQL is introductory only and should

be considered merely a basis for a later database course. This chapter also considers how

to leverage the multiple cores available on computers to process big data sets more quickly.

Google’s MapReduce problem-solving framework is described and used as a context for

introducing list comprehensions and the functional programming paradigm.

For Instructors: How to Use This Book
The material in this textbook was developed for a two quarter course sequence introducing

computer science and programming to computer science majors. The book therefore has

more than enough material for a typical 15-week course (and probably just the right amount

of material for a class of well-prepared and highly motivated students).

The first six chapters of the textbook provide a comprehensive coverage of impera-

tive/procedural programming in Python. They are meant to be covered in order, but it is

possible to cover Chapter 5 before Chapter 4. Furthermore, the topics in Chapter 6 may be

skipped and then introduced as needed.

Chapters 7 through 9 are meant to be covered in order to effectively showcase OOP. It

is important to cover Chapter 7 before Chapter 8 because it demystifies Python’s approach

xxii Preface

to class implementation and allows the more efficient coverage of OOP topics such as

operator overloading and inheritance. It is also beneficial, though not necessary, to cover

Chapter 9 after Chapter 8 because it provides a context in which OOP is shown to provide

great benefits.

Chapters 9 through 12 are all optional, depend only on Chapters 1 through 6—with the

few exceptions noted—and contain topics that can, in general, be skipped or reordered at

the discretion of the course instructor. Exceptions are Sections 9.4 and 9.5 that illustrate

the OOP approach to GUI development, as well as Sections 10.5, 11.2, 12.3, and 12.4, all

of which make use of user-defined classes. All these sections should follow Chapter 8.

Instructors using this book in a course that leaves OOP to a later course can cover

Chapters 1 through 7 and then choose topics from the non-OOP sections of Chapters 9

through 12. Instructors wishing to cover OOP should use Chapters 1 through 9 and then

choose topics from Chapters 10 through 12.

Acknowledgments
The material for this textbook was developed over three years in the context of teaching

the CSC241/242 course sequence (Introduction to Computer Science I and II) at DePaul

University. In those three years, six separate cohorts of computer science freshmen moved

through the course sequence. I used the different cohorts to try different pedagogical ap-

proaches, reorder and reorganize the material, and experiment with topics usually not taught

in a course introducing programming. The continuous reorganization and experimentation

made the course material less fluid and more challenging than necessary, especially for the

early cohorts. Amazingly, students maintained their enthusiasm through the low points in

the course, which in turn helped me maintain mine. I thank them all wholeheartedly for

that.

I would like to acknowledge the faculty and administration of DePaul’s School of Com-

puting for creating a truly unique academic environment that encourages experimentation

and innovation in education. Some of them also had a direct role in the creation and shaping

of this textbook. Associate Dean Lucia Dettori scheduled my classes so I had time to write.

Curt White, an experienced textbook author, encouraged me to start writing and put in a

good word for me with publishing house John Wiley & Sons. Massimo DiPierro, the creator

of the web2py web framework and a far greater Python authority than I will ever be, created

the first outline of the content of the CSC241/242 course sequence, which was the initial

seed for the book. Iyad Kanj taught the first iteration of CSC241 and selflessly allowed me

to mine the material he developed. Amber Settle is the first person other than me to use this

textbook in her course; thankfully, she had great success, though that is at least as much

due to her excellence as a teacher. Craig Miller has thought more deeply about fundamen-

tal computer science concepts and how to explain them than anyone I know; I have gained

some of his insights through many interesting discussions, and the textbook has benefited

from them. Finally, Marcus Schaefer improved the textbook by doing a thorough technical

review of more than half of the book.

My course lecture notes would have remained just that if Nicole Dingley, a Wiley book

rep, had not suggested that I make them into a textbook. Nicole put me in contact with Wi-

ley editor Beth Golub, who made the gutsy decision to trust a foreigner with a strange name

and no experience writing textbooks to write a textbook. Wiley senior designer Madelyn

Lesure, along with my friend and neighbor Mike Riordan, helped me achieve the simple

and clean design of the text. Finally, Wiley senior editorial assistant Samantha Mandel

worked tirelessly on getting my draft chapters reviewed and into production. Samantha

Preface xxiii

has been a model of professionalism and good grace throughout the process, and she has

offered endless good ideas for making the book better.

The final version of the book is similar to the original draft in surface only. The vast

improvement over the initial draft is due to the dozens of anonymous reviewers. The kind-

ness of strangers has made this a better book and has given me a new appreciation for the

reviewing process. The reviewers have been kind enough not only to find problems but

also offer solutions. For their careful and systematic feedback, I am grateful. Some of the

reviewers, including David Mutchler, who offered his name and email for further corre-

spondence, went beyond the call of duty and helped excavate the potential that lay buried

in my early drafts. Jonathan Lundell also provided a technical review of the last chapters

in the book. Because of time constraints, I was not able to incorporate all the valuable sug-

gestions I received from them, and the responsibility for any any omissions in the textbook

are entirely my own.

Finally I would like to thank my spouse, Lisa, and daughters, Marlena and Eleanor, for

the patience they had with me. Writing a book takes a huge amount of time, and this time

can only come from “family time” or sleep since other professional obligations have set

hours. The time I spent writing this book resulted in my being unavailable for family time

or my being crabby from lack of sleep, a real double whammy. Luckily, I had the foresight

to adopt a dog when I started working on this project. A dog named Muffin inevitably

brings more joy than any missing from me... So, thanks to Muffin.

About the Author
Ljubomir Perkovic is an associate professor at the School of Computing of DePaul Uni-

versity in Chicago. He received a Bachelor’s degree in mathematics and computer science

from Hunter College of the City University of New York in 1990. He obtained his Ph.D.

in algorithms, combinatorics, and optimization from the School of Computer Science at

Carnegie Mellon University in 1998.

Prof. Perkovic has started teaching the introductory programming sequence for majors

at DePaul in the mid-2000s. His goal was to share with beginning programmers the ex-

citement that developers feel when working on a cool new app. He incorporated into the

course concepts and technologies used in modern application development. The material

he developed for the course forms the basis of this book.

His research interests include distributed computing, computational geometry, graph

theory and algorithms, and computational thinking. He has received a Fulbright Research

Scholar award for his research in computational geometry and a National Science Foun-

dation grant for a project to expand computational thinking across the general education

curriculum.

This page intentionally left blank

CHAPTER

1Introduction to
Computer Science
1.1 Computer Science 2

1.2 Computer Systems 4

1.3 Python Programming Language 8

1.4 Computational Thinking 9

Chapter Summary 13

IN THIS INTRODUCTORY CHAPTER, we provide the context for the
book and introduce the key concepts and terminology that we will be
using throughout. The starting point for our discussion are several
questions. What is computer science? What do computer scientists and
computer application developers do? And what tools do they use?

Computers, or more generally computer systems, form one set of
tools. We discuss the different components of a computer system
including the hardware, the operating system, the network and the
Internet, and the programming language used to write programs. We
specifically provide some background on the Python programming
language, the language used in this book.

The other set of tools are the reasoning skills, grounded in logic and
mathematics, required to develop a computer application. We introduce
the idea of computational thinking and illustrate how it is used in the
process of developing a small web search application.

The foundational concepts and terminology introduce in this chapter
are independent of the Python programming language. They are relevant
to any type of application development regardless of the hardware or
software platform or programming language used.

1

2 Chapter 1 Introduction to Computer Science

1.1 Computer Science
This textbook is an introduction to programming. It is also an introduction to Python, the

programming language. But most of all, it is an introduction to computing and how to look

at the world from a computer science perspective. To understand this perspective and define

what computer science is, let’s start by looking at what computing professionals do.

What Do Computing Professionals Do?
One answer is to say: they write programs. It is true that many computing professionals

do write programs. But saying that they write programs is like saying that screenwriters

(i.e., writers of screenplays for movies or television series) write text. From our experience

watching movies, we know better: screenwriters invent a world and plots in it to create sto-

ries that answer the movie watcher’s need to understand the nature of the human condition.

Well, maybe not all screenwriters.

So let’s try again to define what computing professionals do. Many actually do not write

programs. Even among those who do, what they are really doing is developing computer

applications that address a need in some activity we humans do. Such computing pro-

fessionals are often called computer application developers or simply developers. Some

developers even work on applications, like computer games, that are not that different from

the imaginary worlds, intricate plots, and stories that screenwriters create.

Not all developers develop computer games. Some create financial tools for investment

bankers, and others create visualization tools for doctors (see Table 1.1 for other examples.)

What about the computing professionals who are not developers? What do they do?

Some talk to clients and elicit requirements for computer applications that clients need.

Table 1.1 The range of
computers science.
Listed are examples of
human activities and, for
each activity, a software
product built by computer
application developers
that supports performing
the activity.

Activity Computer Application

Defense Image processing software for target detection and

tracking

Driving GPS-based navigation software with traffic views on

smartphones and dedicated navigation hardware

Education Simulation software for performing dangerous or

expensive biology laboratory experiments virtually

Farming Satellite-based farm management software that keeps

track of soil properties and computes crop forecasts

Films 3D computer graphics software for creating

computer-generated imagery for movies

Media On-demand, real-time video streaming of television

shows, movies, and video clips

Medicine Patient record management software to facilitate

sharing between specialists

Physics Computational grid systems for crunching data

obtained from particle accelerators

Political activism Social network technologies that enable real-time

communication and information sharing

Shopping Recommender system that suggests products that

may be of interest to a shopper

Space exploration Mars exploration rovers that analyze the soil to find

evidence of water

Section 1.1 Computer Science 3

Others are managers who oversee an application development team. Some computing pro-

fessionals support their clients with newly installed software and others keep the software

up to date. Many computing professionals administer networks, web servers, or database

servers. Artistic computing professionals design the interfaces that clients use to interact

with an application. Some, such as the author of this textbook, like to teach computing,

and others offer information technology (IT) consulting services. Finally, more than a few

computing professionals have become entrepreneurs and started new software businesses,

many of which have become household names.

Regardless of the ultimate role they play in the world of computing, all computing

professionals understand the basic principles of computing and how computer applications

are developed and how they work. Therefore, the training of a computing professional

always starts with the mastery of a programming language and the software development

process. In order to describe this process in general terms, we need to use slightly more

abstract terminology.

Models, Algorithms, and Programs
To create a computer application that addresses a need in some area of human activity, de-

velopers invent a model that represents the “real-world” environment in which the activity

occurs. The model is an abstract (imaginary) representation of the environment and is de-

scribed using the language of logic and mathematics. The model can represent the objects

in a computer game, stock market indexes, an organ in the human body, or the seats on an

airplane.

Developers also invent algorithms that operate in the model and that create, transform,

and/or present information. An algorithm is a sequence of instructions, not unlike a cooking

recipe. Each instruction manipulates information in a very specific and well-defined way,

and the execution of the algorithm instructions achieves a desired goal. For example, an

algorithm could compute collisions between objects in a computer game or the available

economy seats on an airplane.

The full benefit of developing an algorithm is achieved with the automation of the ex-

ecution of the algorithm. After inventing a model and an algorithm, developers implement

the algorithm as a computer program that can be executed on a computer system. While

an algorithm and a program are both descriptions of step-by-step instructions of how to

achieve a result, an algorithm is described using a language that we understand but that

cannot be executed by a computer system, and a program is described using a language

that we understand and that can be executed on a computer system.

At the end of this chapter, in Section 1.4, we will take up a sample task and go through

the steps of developing a model and an algorithm implementing the task.

Tools of the Trade
We already hinted at a few of the tools that developers use when working on computer ap-

plications. At a fundamental level, developers use logic and mathematics to develop models

and algorithms. Over the past half century or so, computer scientists have developed a vast

body of knowledge—grounded in logic and mathematics—on the theoretical foundations

of information and computation. Developers apply this knowledge in their work. Much of

the training in computer science consists of mastering this knowledge, and this textbook is

the first step in that training.

The other set of tools developers use are computers, of course, or more generally com-

puter systems. They include the hardware, the network, the operating systems, and also the

4 Chapter 1 Introduction to Computer Science

programming languages and programming language tools. We describe all these systems

in more detail in Section 1.2. While the theoretical foundations often transcend changes in

technology, computer system tools are constantly evolving. Faster hardware, improved op-

erating systems, and new programming languages are being created almost daily to handle

the applications of tomorrow.

What Is Computer Science?
We have described what application developers do and also the tools that they use. What

then is computer science? How does it relate to computer application development?

While most computing professionals develop applications for users outside the field of

computing, some are studying and creating the theoretical and systems tools that developers

use. The field of computer science encompasses this type of work. Computer science can

be defined as the study of the theoretical foundations of information and computation and

their practical implementation on computer systems.

While application development is certainly a core driver of the field of computer sci-

ence, its scope is broader. The computational techniques developed by computer scientists

are used to study questions on the nature of information, computation, and intelligence.

They are also used in other disciplines to understand the natural and artificial phenomena

around us, such as phase transitions in physics or social networks in sociology. In fact,

some computer scientists are now working on some of the most challenging problems in

science, mathematics, economics, and other fields.

We should emphasize that the boundary between application development and com-

puter science (and, similarly, between application developers and computer scientists) is

usually not clearly delineated. Much of the theoretical foundations of computer science

have come out of application development, and theoretical computer science investigations

have often led to innovative applications of computing. Thus many computing profession-

als wear two hats: the developer’s and the computer scientist’s.

1.2 Computer Systems
A computer system is a combination of hardware and software that work together to exe-

cute application programs. The hardware consists of physical components—that is, com-

ponents that you can touch, such as a memory chip, a keyboard, a networking cable, or

a smartphone. The software includes all the nonphysical components of the computer, in-

cluding the operating system, the network protocols, the programming language tools, and

the associated application programming interface (API).

Computer Hardware
The computer hardware refers to the physical components of a computer system. It may

refer to a desktop computer and include the monitor, the keyboard, the mouse, and other

external devices of a computer desktop and, most important, the physical “box” itself with

all its internal components.

The core hardware component inside the box is the central processing unit (CPU) . The

CPU is where the computation occurs. The CPU performs computation by fetching pro-

gram instructions and data and executing the instructions on the data. Another key internal

component is main memory, often referred to as random access memory (RAM). That

is where program instructions and data are stored when the program executes. The CPU

www.allitebooks.com

http://www.allitebooks.org

Section 1.2 Computer Systems 5

fetches instructions and data from main memory and stores the results in main memory.

The set of wirings that carry instructions and data between the CPU and main memory is

commonly called a bus. The bus also connects the CPU and main memory to other internal

components such as the hard drive and the various adapters to which external devices (such

as the monitor, the mouse, or the network cables) are connected.

The hard drive is the third core component inside the box. The hard drive is where files

are stored. Main memory loses all data when the computer is shut down; the hard drive,

however, is able to store a file whether the computer is powered on or off. The hard drive

also has a much, much higher capacity than main memory.

The term computer system may refer to a single computer (desktop, laptop, smartphone,

or pad). It may also refer to a collection of computers connected to a network (and thus to

each other). In this case, the hardware also includes any network wiring and specialized

network hardware such as routers.

It is important to understand that most developers do not work with computer hardware

directly. It would be extremely difficult to write programs if the programmer had to write

instructions directly to the hardware components. It would also be very dangerous because

a programming mistake could incapacitate the hardware. For this reason, there exists an

interface between application programs written by a developer and the hardware.

Operating Systems
An application program does not directly access the keyboard, the computer hard drive, the

network (and the Internet), or the display. Instead it requests the operating system (OS) to

do so on its behalf. The operating system is the software component of a computer system

that lies between the hardware and the application programs written by the developer. The

operating system has two complementary functions:

1. The OS protects the hardware from misuse by the program or the programmer and

2. The OS provides application programs an interface through which programs can

request services from hardware devices.

In essence, the OS manages access to the hardware by the application programs executing

on the machine.

DETOUR
Origins of Today’s Operating Systems

The mainstream operating systems on the market today are Microsoft Windows
and UNIX and its variants, including Linux and Apple OS X.

The UNIX operating system was developed in the late 1960s and early 1970s
by Ken Thompson at AT&T Bell Labs. By 1973, UNIX was reimplemented by
Thompson and Dennis Ritchie using C, a programming language just created by
Ritchie. As it was free for anyone to use, C became quite popular and program-
mers ported C and UNIX to various computing platforms. Today, there are several
versions of UNIX, including Apple’s Mac OS X.

The origin of Microsoft’s Windows operating systems is tied to the advent of
personal computers. Microsoft was founded in the late 1970s by Paul Allen and
Bill Gates. When IBM developed the IBM Personal Computer (IBM PC) in 1981,
Microsoft provided the operating system called MS DOS (Microsoft Disk Operating
System). Since then Microsoft added a graphical interface to the operating system

6 Chapter 1 Introduction to Computer Science

and renamed it Windows. The latest version is Windows 7.
Linux is a UNIX-like operating sytem developed in the early 1990s by Linus Tor-

valds. His motivation was to build a UNIX-like operating system for personal com-
puters since, at the time, UNIX was restricted to high-powered workstations and
mainframe computers. After the initial development, Linux became a community-
based, open source software development project. That means that any devel-
oper is welcome to join in and help in the further development of the Linux OS.
Linux is one of the best examples of successful open-source software develop-
ment projects.

Networks and Network Protocols
Many of the computer applications we use daily require the computer to be connected to

the Internet. Without an Internet connection, you cannot send an email, browse the web,

listen to Internet radio, or update your software. In order to be connected to the Internet,

though, you must first connect to a network that is part of the Internet.

A computer network is a system of computers that can communicate with each other.

There are several different network communication technologies in use today, some of

which are wireless (e.g., Wi-Fi) and others that use network cables (e.g., Ethernet).

An internetwork is the connection of several networks. The Internet is an example of

an internetwork. The Internet carries a vast amount of data and is the platform upon which

the World Wide Web (WWW) and email are built.

DETOUR
Beginning of the Internet

On October 29, 1969, a computer at the University of California at Los Angeles
(UCLA) made a network connection with a computer at the Stanford Research
Institute (SRI) at Stanford University. The ARPANET, the precursor to today’s Inter-
net, was born.

The development of the technologies that made this network connection pos-
sible started in the early 1960s. By that time, computers were becoming more
widespread and the need to connect computers to share data became apparent.
The Advanced Research Projects Agency (ARPA), an arm of the U.S. Department
of Defense, decided to tackle the issue and funded network research at several
American universities. Many of the networking technologies and networking con-
cepts in use today were developed during the 1960s and then put to use on Octo-
ber 29, 1969.

The 1970s saw the development of the TCP/IP network protocol suite that is
still in use today. The protocol specifies, among other things, how data travels
from one computer on the Internet to another. The Internet grew rapidly during
the 1970s and 1980s but was not widely used by the general public until the early
1990s, when the World Wide Web was developed.

Section 1.2 Computer Systems 7

Programming Languages
What distinguishes computers from other machines is that computers can be programmed.

What this means is that instructions can be stored in a file on the hard drive, and then loaded

into main memory and executed on demand. Because machines cannot process ambiguity

the way we (humans) can, the instructions must be precise. Computers do exactly what

they are told and cannot understand what the programmer “intended” to write.

The instructions that are actually executed are machine language instructions. They are

represented using binary notation (i.e., a sequence of 0s and 1s). Because machine lan-

guage instructions are extremely hard to work with, computer scientists have developed

programming languages and language translators that enable developers to write instruc-

tions in a human readable language and then translate them into machine language. Such

language translators are referred to as assemblers, compilers, or interpreters, depending on

the programming language.

There are many programming languages out there. Some of them are specialized lan-

guages meant for particular applications such as 3D modeling or databases. Other lan-

guages are general-purpose and include C, C++, C#, Java, and Python.

While it is possible to write programs using a basic text editor, developers use Inte-
grated Development Environments (IDEs) that provide a wide array of services that support

software development. They include an editor to write and edit code, a language translator,

automated tools for creating binary executables, and a debugger.

DETOUR
Computer Bugs

When a program behaves in a way that was not intended, such as crashing, freez-
ing the computer, or simply producing erroneous output, we say that the program
has a bug (i.e., an error). The process of removing the error and correcting the
program is called debugging. A debugger is a tool that helps the developer find the
instructions that cause the error.

The term “bug” to denote an error in a system predates computers and com-
puter science. Thomas Edison, for example, used the term to describe faults and
errors in the engineering of machines all the way back in the 1870s. Interestingly,
there have also been cases of actual bugs causing computer failures. One exam-
ple, as reported by computing pioneer Grace Hopper in 1947, is the moth that
caused the Mark II computer at Harvard, one of the earliest computers, to fail.

Software Libraries
A general-purpose programming language such as Python consists of a small set of general-

purpose instructions. This core set does not include instructions to download web pages,

draw images, play music, find patterns in text documents, or access a database. The reason

why is essentially because a “sparser” language is more manageable for the developer.

Of course, there are application programs that need to access web pages or databases.

Instructions for doing so are defined in software libraries that are separate from the core

language, and they must be explicitly imported into a program in order to be used. The

description of how to use the instructions defined in a library is often referred to as the

application programming interface (API).

8 Chapter 1 Introduction to Computer Science

1.3 Python Programming Language
In this textbook, we introduce the Python programming language and use it to illustrate

core computer science concepts, learn programming, and learn application development in

general. In this section, we give some background on Python and how to set up a Python

IDE on your computer.

Short History of Python
The Python programming language was developed in the late 1980s by Dutch programmer

Guido van Rossum while working at CWI (the Centrum voor Wiskunde en Informatica

in Amsterdam, Netherlands). The language was not named after the large snake species

but rather after the BBC comedy series Monty Python’s Flying Circus. Guido van Rossum

happens to be a fan. Just like the Linux OS, Python eventually became an open source soft-

ware development project. However, Guido van Rossum still has a central role in deciding

how the language is going to evolve. To cement that role, he has been given the title of

“Benevolent Dictator For Life” by the Python community.

Python is a general-purpose language that was specifically designed to make programs

very readable. Python also has a rich library making it possible to build sophisticated ap-

plications using relatively simple-looking code. For these reasons, Python has become a

popular application development language and also the preferred “first” programming lan-

guage.

!

CAUTION
Python 2 versus Python 3

There are currently two major versions of Python in use. Python 2 was originally
made available in 2000; its latest release is 2.7. Python 3 is a new version of
Python that fixes some less-than-ideal design decisions made in the early develop-
ment of the Python language. Unfortunately, Python 3 is not backward compatible
with Python 2. This means that a program written using Python 2 usually will not
execute properly with a Python 3 interpreter.

In this textbook, we have chosen to use Python 3 because of its more consis-
tent design. To learn more about the difference between the two releases, see:

http://wiki.python.org/moin/Python2orPython3

Setting Up the Python Development Environment
If you do not have Python development tools installed on your computer already, you will

need to download a Python IDE. The official list of Python IDEs is at

http://wiki.python.org/moin/IntegratedDevelopmentEnvironments

We illustrate the IDE installation using the standard Python development kit that in-

cludes the IDLE IDE. You may download the kit (for free) from:

http://python.org/download/

Listed there are installers for all mainstream operating systems. Choose the appropriate one

for your system and complete the installation.

To get started with Python, you need to open a Python interactive shell window. The

IDLE interactive shell included with the Python IDE is shown in Figure 1.1.

Section 1.4 Computational Thinking 9

Figure 1.1 The IDLE IDE.
The IDLE Integrated
Development Environment
is included in the standard
implementation of Python.
Shown is the IDLE
interactive shell. At the >>>
prompt, you can type single
Python instructions. The
instruction is executed by
the Python interpreter when
the Enter/Return key is
pressed.

The interactive shell expects the user to type a Python instruction. When the user types

the instruction print('Hello world') and then presses the Enter/Return key on the

keyboard, a greeting is printed:

Python 3.2.1 (v3.2.1:ac1f7e5c0510, Jul 9 2011, 01:03:53)
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "copyright", "credits" or "license()" for more information.
>>> print('Hello world')
Hello world

The interactive shell is used to execute single Python instructions like print('Hello
world'). A program typically consists of multiple instructions that must be stored in a

file before being executed.

1.4 Computational Thinking
In order to illustrate the software development process and introduce the software develop-

ment terminology, we consider the problem of automating a web search task. To model the

relevant aspects of the task and describe the task as an algorithm, we must understand the

task from a “computational” perspective. Computational thinking is a term used to describe

the intellectual approach through which natural or artificial processes or tasks are under-

stood and described as computational processes. This skill is probably the most important

one you will develop in your training as a computer scientist.

A Sample Problem
We are interested in purchasing about a dozen prize-winning novels from our favorite online

shopping web site. The thing is, we do not want to pay full price for the books. We would

rather wait and buy the books on sale. More precisely, we have a target price for each book

and will buy a book only when its sale price is below the target. So, every couple of days,

we visit the product web page of every book on our list and, for each book, check whether

the price has been reduced to below our target.

10 Chapter 1 Introduction to Computer Science

As computer scientists, we should not be satisfied with manually visiting web page after

web page. We would rather automate the search process. In other words, we are interested

in developing an application that visits the web pages of the books on our list and finds the

books whose price is below the target. To do this, we need to describe the search process in

computational terms.

Abstraction and Modeling
We start by simplifying the problem statement. The “real world” that is the context for the

problem contains information that is not really relevant. For example, it is not necessar-

ily important that the products are books, let alone prize-winning novels. Automating the

search process would be the same if the products were climbing gear or fashion shoes.

It also is not important that there are 12 products on our list. More important is that

there is a list (of products); our application should be able to handle a list of 12, 13, 11,

or any number of products. The additional benefit of ignoring the “dozen novels” detail is

that the application we end up with will be reusable on an arbitrarily long list of arbitrary

products.

What are the relevant aspects of the problem? One is that each product has an associated

web page that lists its price. Another is that we have a target price for each product. Finally,

the web itself is a relevant aspect as well. We can summarize the relevant information as

consisting of:

a. the web

b. a list that contains addresses of product web pages

c. a list that contains target prices

Let’s call the first list Addresses and the second Targets.

We need to be a bit more precise with the descriptions of our lists, because it is not clear

how addresses in list Addresses correspond to target prices in list Targets. We clarify

this by numbering the products 0, 1, 2, 3, . . . (computer scientists start counting from 0)

and then ordering the addresses and targets so the web page address and target price of a

product are in the same position in their respective list, as shown in Figure 1.2.

Figure 1.2 Lists of web
page addresses and
target prices. The web
page address and target
price for product 0 are first
in their respective lists. For
product 1, they are both
second, for product 2,
they are third, etc.

Product 0 1 2 ...

Addresses Prod. 0 address Prod. 1 address Prod. 2 address ...

Targets Prod. 0 target Prod. 1 target Prod. 2 target ...

The process of distilling the relevant aspects of a problem is called abstraction. It is

a necessary step so the problem is described precisely, using the language of logic and

mathematics. The result of abstraction is a model that represents all the relevant aspects of

the problem.

Algorithm
The search application we want to develop should “visit” product web pages “one after

another” and, for each product, “check” whether the price has been reduced to below the

target price. While this description of how the application should work may be clear to us, it

Section 1.4 Computational Thinking 11

is not quite precise enough. For example, what do we mean by “visit,” “one after another,”

and “check”?

When we “visit” a web page, we are really downloading it and displaying it in our

browser (or reading it). When we say that we are going to visit pages “one after another,”

we need to be clear that each page will be visited exactly once; we also should be explicit

about the order in which the pages will be visited. Finally, in order to “check” whether the

price has been reduced enough, we need to first find the price in the web page.

To facilitate the eventual implementation of the search process as a computer program,

we need to describe the search using more precise step-by-step instructions or, in other

words, an algorithm. The algorithm should consist of an unambiguous description of the

steps that, when executed on a specified input, produce the desired output.

We start the development of the algorithm by clearly specifying the input data (i.e., the

information we start with) and the output data (i.e., the information we desire to obtain):

Input: An ordered list of web page addresses called Addresses and an ordered list of

target prices called Targets of the same size

Output: (Printed on the screen.) Web page addresses for products whose price is less than

the target price

Now we can describe the algorithm:

1 Let N be the number of products in list Addresses.
2

3 For every product I = 0, 1, ..., N-1, execute these statements:
4

5 Let ADDR be the address in list Addresses for product I
6

7 Download the web page whose address is ADDR and
8 let PAGE be the content of this web page
9

10 Find in PAGE the current price of product I and
11 let CURR be this value
12

13 Let TARG be the product I target price from list Targets
14

15 If CURR < TARG:
16 Print ADDR

This description of the algorithm is not real code that can be executed on a computer. It is

simply a precise description of what we need to do to acomplish a task and is often refered

to as pseudocode. An algorithm can also be described using actual executable code. In the

rest of this book, we will describe our algorithms using Python programs.

Data Types
The description of the search algorithm includes references to various data:

a. N, the number of products

b. ADDR, the address of a web page

c. PAGE, the content of a web page

d. CURR and TARG, the current and target prices

e. The lists Addresses and Targets

12 Chapter 1 Introduction to Computer Science

The names N, I, ADDR, PAGE, CURR, and TARG are called variables, just as in algebra. The

names Addresses and Targets are also variables. The purpose of variables is to store

values so that they can be retrieved later. For example, the value of ADDR, set in line 5 of

the algorithm, is retrieved to be printed in line 16.

Let’s take a closer look at the type of values these data can have. The number of products

N will be a nonnegative integer value. The current price CURR and the target price TARG will

be positive numbers likely using decimal point notation; we describe them as positive non-

integer numbers. What about the “value” of the web page address ADDR and the “value”

of the web page content? Both are best described as sequences of characters (we ignore

non-text content). Finally, we have the two lists. The list of addresses Addresses is an

ordered sequence of addresses (which are character sequences), whereas the list of target

prices Targets is an ordered sequence of prices (which are numbers).

The data type refers to the range of values data can have (e.g., integer, non-integer

number, sequence of characters, or list of other values) and also to the operations that can

be performed on the data. In the algorithm, we perform the following operations, among

others, on the data:

a. We compare numbers CURR and TARG
b. We find the address of product I in list Addresses
c. We search the web page content for a price

d. We create a sequence 0, 1, 2, ..., N-1 from integer N

In case a., we make the assumption that number types can be compared. In case b., we

assume that we can retrieve product I from list Addresses. In case c., we assume that we

can search a sequence of characters and look for something that looks like a price. In case

d., we assume that we can create a sequence from 0 up to and not including an integer.

The point we are making is this: An algorithm consists of instructions that manipulate

data and how the data is allowed to be manipulated depends on the data type. Consider case

d., for example. While this operation makes sense for integer data type N, it does not make

sense at all for, say, the web page address data ADDR. So the integer data type supports the

operation of creating a sequence, whereas the “character sequence” data type does not.

So, in order to be able to think “computationally,” we really need to know what types of

data we can use and what operations can be performed on that data. Because we will think

“computationally” in the context of Python programming, we will need to know the data

types and the operations that Python supports. Our first order of business is thus to learn

Python’s core data types and, in particular, the different operations that these data types

support. This will be the topic of Chapter 2.

Assignments and Execution Control Structures
In addition to different types of data, the product search algorithm we developed uses differ-
ent kinds of instructions. Several instructions in the algorithm assign a value to a variable:

a. In line 1, we assign a value to variable N.

b. In line 5, we assign a value to variable ADDR.

c. In line 8, we assign a value to variable PAGE.

d. In line 11, we assign a value to variable CURR.

e. In line 13, we assign a value to variable TARG.

While the values assigned to the variables are of different types, the same kind of instruction

is used to do the assignment. This kind of instruction is called an assignment statement.

Chapter 1 Chapter Summary 13

A different kind of instruction is used in line 15. This instruction compares the current

price CURR with the target price TARG; if the value of CURR is less than the value of TARG—

and only then—the statement in line 16 is executed (and the value of ADDR is printed).

The If instruction in line 15 is a kind of instruction referred to as a conditional control
structure.

Line 3 illustrates yet another kind of instruction. This instruction will repeatedly exe-

cute the statements in lines 5 to 16, once for every value of I. So, the statements 5 to 16

will be executed for I equal to 0, and then again for I equal to 1, and then again for I
equal to 2, and so on. After the statements 5 to 16 have been executed for I equal to N-1,

the execution of the instruction in line 3 is complete. This instruction is referred to as an

iteration control structure. The word iteration means “the action of repeating a process.”

The process that is repeated in our algorithm is the execution of statements in lines 5 to 16.

Conditional and iteration control structures are together referred to as execution con-
trol structures. Execution control structures are used to control the flow of execution of

the statements in a program. In other words, they determine the order in which the state-

ments are executed, under what conditions, and how many times. Together with assignment

statements, execution control structures are the fundamental building blocks for describing

computational solutions to problems and developing algorithms. We introduce Python’s

execution control structures in Chapter 3, after having reviewed Python’s core data types in

Chapter 2.

Chapter Summary
This chapter introduces the field of computer science, the work computer scientists and

developers do, and the tools that computer scientists and developers use.

Computer science studies, on one hand, the theoretical foundations of information and

computation and, on the other, the hands-on techniques to implement applications on com-

puter systems. Computer application developers use the concepts and techniques of com-

puter science in the context of application development. They formulate abstract repre-

sentations that model a particular real or imaginary environment, create algorithms that

manipulate data in the model, and then implement the algorithm as a program that can be

executed on a computer system.

The computer science tools include the abstract tools of math and logic and the concrete

computer system tools. Computer system tools include the hardware and the software. In

particular, they include the programming language and the programming language tools

through which the developer ultimately controls the different system components.

The abstract tools that computer scientists use are the computational thinking skills,

based on logic and mathematics, that are necessary to describe problems, tasks, and pro-

cesses through the lens of abstraction and computation. In order to be able to do this, we

need to master a language of abstraction and computation. The best way to do this, of

course, is to master a programming language. In effect, the programming language is the

glue that connects the system and the abstract tools of a developer. That is why mastery of

a programming language is the core skill of a computer scientist.

This page intentionally left blank

CHAPTER

2Python Data
Types
2.1 Expressions, Variables, and Assignments 16

2.2 Strings 23

2.3 Lists 27

2.4 Objects and Classes 31

2.5 Python Standard Library 39

2.6 Case Study: Turtle Graphics Objects 41

Chapter Summary 45

Solutions to Practice Problems 46

Exercises 48

IN THIS CHAPTER, we introduce a very small subset of Python. While
small, it is broad enough to start doing interesting things right away. In the
next chapters we fill in the details. We begin by using Python as a
calculator that evaluates algebraic expressions. We then introduce
variables as a way to “remember” results of such evaluations. Finally we
show how Python works with values other than numbers: values to
represent logical values true and false, text values, and lists of values.

Having seen the core types of data supported by Python, we take a
step back and define precisely the concept of a data type and that of an
object that stores a value of a given type. With data stored in objects, we
can ignore how the data is represented and stored in the computer and
work only with the abstract but familiar properties that the object’s type
makes explicit. This idea of abstracting important properties is a central
one in computer science to which we come back several times.

In addition to the core, built-in data types, Python comes with a large
library of additional types organized into modules. In this chapter’s case
study, we use the turtle graphics module to visually illustrate the concepts
introduced in this chapter: objects, types, and names; data abstraction
and classes; and information hiding.

15

16 Chapter 2 Python Data Types

2.1 Expressions, Variables, and Assignments
Let’s start with something familiar. We use the Python IDE interactive shell as a calculator

to evaluate Python expressions, starting with simple algebraic expressions. Our goal is to

illustrate how Python is intuitive and usually behaves the way you would expect.

Algebraic Expressions and Functions
At the interactive shell prompt >>> , we type an algebraic expression, such as 3 + 7, and hit

the Enter key on the keyboard to view the result of evaluating the expression:

>>> 3 + 7
10

Let’s try expressions that use different algebraic operators:

>>> 3 * 2
6
>>> 5 / 2
2.5
>>> 4 / 2
2.0

In the first two expressions, integers are added or multiplied and the result is an integer,

which is what you expect. In the third expression, an integer is divided by another and

the result is shown in decimal point notation. This is because when an integer is divided by

another, the result is not necessarily an integer. The rule in Python is to return a number with

a decimal point and a fractional part, even when the result is an integer. This is illustrated

in the last expression, where integer 4 is divided by 2 and the result shown is 2.0 rather than

2.

Values without the decimal point are said to be of type integer or simply int. Values

with decimal points and fractional parts are said to be of type floating point or simply

float. Let us continue evaluating expressions using values of both types:

>>> 2 * 3 + 1
7
>>> (3 + 1) * 3
12
>>> 4.321 / 3 + 10
11.440333333333333
>>> 4.321 / (3 + 10)
0.3323846153846154

Multiple operators are used in these expressions, which raises the question: In what or-

der should the operations be evaluated? The standard algebra precedence rules apply in

Python: Multiplication and division take precedence over addition and subtraction and, just

as in algebra, parentheses are used when we want to explicitly specify the order in which

operations should take place. If all else fails, expressions are evaluated from using the left-
to-right evaluation rule. This last rule is used in the next expression, where the addition is

executed after the subtraction:

>>> 3 - 2 + 1
2

Section 2.1 Expressions, Variables, and Assignments 17

All the expressions we have evaluated so far are plain algebraic expressions involving num-

ber values (of type int or type float), algebraic operators (such as +, -, /, and *), and

parentheses. When you hit the Enter key, the Python interpreter will read the expression

and evaluate it in a way that you expect. Here is one more, slightly unusual, example of an

algebraic expression:

>>> 3
3

Python evaluates expression 3 to . . . 3.

The two types of number values, int and float, have somewhat different properties.

For example, when two int values are added, subtracted, or multiplied, the result is an int
value. If at least one float value appears in the expression, however, the result is always a

float value. Note that a float value is also obtained when two integer values (e.g., 4 and

2) are divided.

Several other algebraic operators are commonly used. To compute 24, you need to use

the exponentiation operator **:

>>> 2**3
8
>>> 2**4
16

So xy is computed using the Python expression x**y.

In order to obtain the integer quotient and the remainder when two integer values are

divided, operators // and % are used. The // operator in expression a//b returns the integer

quotient obtained when integer a is divided by integer b. The % operator in expression a%b
computes the remainder obtained when integer a is divided by integer b. For example:

>>> 14 // 3
4
>>> 14 % 3
2

In the first expression, 14 // 3 evaluates to 4 because 3 goes into 14 four times. In the

second expression, 14 % 3 evaluates to 2 because 2 is the remainder when 14 is divided

by 3.

Python also supports mathematical functions of the kind you have used in an algebra

class. Recall that, in algebra, the notation

f(x) = x + 1

is used to define function f() that takes an input, denoted by x, and returns a value, which

is x + 1 in this case. In order to use this function on input value 3, for example, you would

use the notation f(3), which evaluates to 4.

Python functions are similar. For example, the Python function abs() can be used to

compute the absolute value of a number value:

>>> abs(-4)
4
>>> abs(4)
4
>>> abs(-3.2)
3.2

18 Chapter 2 Python Data Types

Some other functions that Python makes available are min() and max(), which return

the minimum or maximum, respectively, of the input values:

>>> min(6, -2)
-2
>>> max(6, -2)
6
>>> min(2, -4, 6, -2)
-4
>>> max(12, 26.5, 3.5)
26.5

Practice Problem
2.1

Write Python algebraic expressions corresponding to the following statements:

(a) The sum of the first 5 positive integers

(b) The average age of Sara (age 23), Mark (age 19), and Fatima (age 31)

(c) The number of times 73 goes into 403

(d) The remainder when 403 is divided by 73

(e) 2 to the 10th power

(f) The absolute value of the difference between Sara’s height (54 inches) and Mark’s

height (57 inches)

(g) The lowest price among the following prices: $34.99, $29.95, and $31.50

Boolean Expressions and Operators
Algebraic expressions evaluate to a number, whether of type int or float or one of the

other number types that Python supports. In an algebra class, expressions other than alge-

braic expressions are also common. For example, the expression 2 < 3 does not evaluate to

a number; it evaluates to either True or False (True in this case). Python can also evaluate

such expressions, which are called Boolean expressions. Boolean expressions are expres-

sions that evaluate to one of two Boolean values: True or False. These values are said to

be of Boolean type, a type just like int and float and denoted bool in Python.

Comparison operators (such as < or >) are commonly used operators in Boolean ex-

pressions. For example:

>>> 2 < 3
True
>>> 3 < 2
False
>>> 5 - 1 > 2 + 1
True

The last expression illustrates that algebraic expressions on either side of a comparison

operators are evaluated before the comparison is made. As we will see later in this chapter,

algebraic operators take precedence over comparison operators. For example, in 5 - 1 >
2 + 1, the operators - and + are evaluated first, and then the comparison is made between

the resulting values.

Section 2.1 Expressions, Variables, and Assignments 19

In order to check equality between values, the comparison operator == is used. Note

that the operator has two = symbols, not one. For example:

>>> 3 == 3
True
>>> 3 + 5 == 4 + 4
True
>>> 3 == 5 - 3
False

There are a few other logical comparison operators:

>>> 3 <= 4
True
>>> 3 >= 4
False
>>> 3 != 4
True

The Boolean expression 3 <= 4 uses the <= operator to test whether the expression on

the left (3) is less than or equal to the expression of the right (4). The Boolean expression

evaluates to True, of course. The >= operator is used to test whether the operand on the left

is greater than or equal to the operand on the right. The expression 3 != 4 uses the != (not

equal) operator to test whether the expressions on the left and right evaluate to different

values.

Practice Problem
2.2

Translate the following statements into Python Boolean expressions and evaluate them:

(a) The sum of 2 and 2 is less than 4.

(b) The value of 7 // 3 is equal to 1 + 1.

(c) The sum of 3 squared and 4 squared is equal to 25.

(d) The sum of 2, 4, and 6 is greater than 12.

(e) 1,387 is divisible by 19.

(f) 31 is even. (Hint: what does the remainder when you divide by 2 tell you?)

(g) The lowest price among $34.99, $29.95, and $31.50 is less than $30.00.

Just as algebraic expression can be combined into larger algebraic expression, Boolean

expressions can be combined together using Boolean operators and , or , and not to form

larger Boolean expressions. The and operator applied to two Boolean expressions will

evaluate to True if both expressions evaluate to True; if either expression evaluates to

False, then it will evaluate to False:

>>> 2 < 3 and 4 > 5
False
>>> 2 < 3 and True
True

Both expressions illustrate that comparison operators are evaluated before Boolean opera-

tors. This is because comparison operators take precedence over Boolean operators, as we

will see later in this chapter.

20 Chapter 2 Python Data Types

The or operator applied to two Boolean expressions evaluates to False only when both

expressions are false. If either one is true or if both are true, then it evaluates to True.

>>> 3 < 4 or 4 < 3
True
>>> 3 < 2 or 2 < 1
False

The not operator is a unary Boolean operator, which means that it is applied to a single
Boolean expression (as opposed to the binary Boolean operators and and or). It evaluates

to False if the expression is true or to True if the expression is false.

>>> not (3 < 4)
False

DETOUR
George Boole and Boolean Algebra

George Boole (1815–1864) developed Boolean algebra, the foundation upon which
the digital logic of computer hardware and the formal specification of programming
languages are built.

Boolean algebra is the algebra of values true and false. Boolean algebra in-
cludes operators and, or, and not, which can be used to create Boolean expres-
sions, expressions that evaluate to true or false. The truth tables below define how
these operators evaluate.

p q p and q
true true true
true false false
false true false
false false false

p q p or q
true true true
true false true
false true true
false false false

p not p
true false
false true

Variables and Assignments
Let us continue with our algebra theme for a bit more. As we already know from algebra, it

is useful to assign names to values, and we call those names variables. For example, value

3 may be assigned to variable x in an algebra problem as follows: x = 3. The variable x can

be thought of as a name that enables us to retrieve value 3 later on. In order to retrieve it,

we just need to evaluate x in an expression.

The same can be done in Python. A value can be assigned to a variable:

>>> x = 4

The statement x = 4 is called an assignment statement. The general format of an assign-

ment statement is:

<variable> = <expression>

An expression we refer to as <expression> lies on the right-hand side of the = operator;

it can be an algebraic, Boolean, or other kind of expression. On the left-hand side is a

variable referred to as <variable>. The assignment statement assigns to <variable> the

value that <expression> evaluates to. In the last example, x is assigned value 4.

Section 2.1 Expressions, Variables, and Assignments 21

Once a value has been assigned to a variable, the variable can be used in a Python

expression:

>>> x
4

When Python evaluates an expression containing a variable, it will evaluate the variable to

its assigned value and then perform the operations in the expression:

>>> 4 * x
16

An expression involving variables may appear on the right side of an assignment statement:

>>> counter = 4 * x

In statement counter = 4 * x, x is first evaluated to 4, then the expression 4 * 4 is

evaluated to 16, and then 16 gets assigned to variable counter:

>>> counter
16

So far, we have defined two variable names: x with value 4 and counter with value 16.

What about, say, the value of variable z that has not been assigned yet? Let’s see:

>>> z
Traceback (most recent call last):

File "<pyshell#1>", line 1, in <module>
z

NameError: name 'z' is not defined

Not sure what we expected . . . but here we got our first (an, unfortunately, not the last)

error message. It turns out that if a variable—z in this case—has not been assigned a value,

it just does not exist. When Python tries to evaluate an unassigned name, an error will occur

and a message (such as name 'z' is not defined) is printed out. We will learn more

about errors (also called exceptions) in Chapter 4.

Practice Problem
2.3

Write Python statements that correspond to the below actions and execute them:

(a) Assign integer value 3 to variable a.

(b) Assign 4 to variable b.

(c) Assign to variable c the value of expression a * a + b * b.

You may remember from algebra that the value of a variable can change. The same is

true with Python variables. For example, suppose that the value of variable x is initially 4:

>>> x
4

Now let’s assign value 7 to variable x:

>>> x = 7
>>> x
7

So the assignment statement x = 7 changed the value of x from 4 to 7.

22 Chapter 2 Python Data Types

!

CAUTION
Assignment and Equality Operators

Be careful to distinguish the assignment statement = and the equality operator ==.
This is an assignment statement that assigns 7 to variable x:

>>> x = 7

The following, however, is a Boolean expression that compares the value of vari-
able x with number 7 and returns True if they are equal:

>>> x == 7
True

The expression evaluates to True because variable x has value 7.

Variable Names
The characters making up a variable name can be lowercase and uppercase letters from the

alphabet (a through z and A through Z), the underscore character (_), and, except for the

first character, digits 0 through 9:

• myList and _list are OK, but 5list is not.

• list6 and l_2 are OK, but list-3 is not.

• mylist and myList are different variable names.

Even when a variable name is “legal” (i.e., follows the rules), it might not be a “good”

name. Here are some generally accepted conventions for designing good names:

• A name should be meaningful: Name price is better than name p.

• For a multiple-word name, use either the underscore as the delimiter (e.g., temp_var
and interest_rate) or use camelCase capitalization (e.g., tempVar, TempVar,

interestRate or InterestRate); pick one style and use it consistently throughout

your program.

• Shorter meaningful names are better than longer ones.

In this textbook, all variable names start with a lowercase character.

DETOUR
Variable Names in Python 3 and Beyond

The restriction on the characters used for variable names is true only for Python
versions before 3.0. Those versions of Python use the ASCII character encoding
(which includes characters in the English alphabet only and is described in more
detail in Chapter 6) as the default character set.

Starting with Python 3.0, the Unicode character encoding (also discussed in
Chapter 6) is the default character encoding. With this change, many more char-
acters (e.g., Cyrillic, Chinese, or Arabic characters) can be used in variable names.

Section 2.2 Strings 23

The change reflects the important social and economic role that globalization has
in today’s world.

At this moment, most programming languages still require names of variables
and other objects to use the ASCII character encoding. For this reason, while this
textbook follows the Python 3.0 and later standards, we restrict ourselves to the
ASCII character encoding when devising variable names.

The below names are used as reserved keywords of the Python language. You cannot

use them other than as Python commands.

False break else if not while
None class except import or with
True continue finally in pass yield
and def for is raise
as del from lambda return
assert elif global nonlocal try

2.2 Strings
In addition to number and Boolean types, Python supports a large number of other, more

complex, types. The Python string type, denoted str, is used to represent and manipulate

text data or, in other words, a sequence of characters, including blanks, punctuation, and

various symbols. A string value is represented as a sequence of characters that is enclosed

within quotes:

>>> 'Hello, World!'
'Hello, World!'
>>> s = 'hello'
>>> s
'hello'

The first expression, 'Hello, world!', is an expression that contains just one string value

and it evaluates to itself, just as expression 3 evaluates to 3. The statement s = 'hello'
assigns string value 'hello' to variable s. Note that s evaluates to its string value when

used in an expression.

String Operators
Python provides operators to process text (i.e., string values). Like numbers, strings can be

compared using comparison operators: ==, !=, < , >, and so on. Operator ==, for example,

returns True if the strings on either side of the operator have the same value:

>>> s == 'hello'
True
>>> t = 'world'
>>> s != t
True
>>> s == t
False

24 Chapter 2 Python Data Types

While == and != test whether two strings are equal or not, the comparison operators <
and > compare strings using the dictionary order:

>>> s < t
True
>>> s > t
False

(For now, we appeal to intuition when referring to dictionary order; we define it precisely

in Section 6.3.)

The + operator, when applied to two strings, evaluates to a new string that is the con-
catenation (i.e., the joining) of the two strings:

>>> s + t
'helloworld'
>>> s + ' ' + t
'hello world'

In the second example, the names s and t are evaluated to the string values 'hello' and

'world', respectively, which are then concatenated with the single blank space string ' '.

If we can add two strings, can we, perhaps, multiply them?

>>> 'hello ' * 'world'

Traceback (most recent call last):
File "<pyshell#146>", line 1, in <module>

'hello ' * 'world'
TypeError: cannot multiply sequence by non-int of type 'str'

Well . . . it doesn’t look like we can. If you take a moment and think about it, it is not really

clear what multiplying two strings would mean anyway. Adding them (i.e., concatenating

them) makes more sense. Overall, the design of the Python programming language and the

meaning of the standard operators (+, *, /, etc.) for various types of values (integer, floating

point, Boolean, string, etc.) is intuitive. So, intuitively, what do you think should happen

when a string gets multiplied by an integer? Let’s try it:

>>> 3 * 'A'
'AAA'
>>> 'hello ' * 2
'hello hello '
>>> 30 * '-'
'------------------------------'

Multiplying a string s by an integer k gives us a string obtained by concatenating k copies

of string s. Note how we easily obtained a line (useful for presenting your simple text

output, say) by multiplying string '-' 30 times.

With the in operator, we can check whether a character appears in a string:

>>> s = 'hello'
>>> 'h' in s
True
>>> 'g' in s
False

www.allitebooks.com

http://www.allitebooks.org

Section 2.2 Strings 25

Usage Explanation

x in s True if string x is a substring of string s, and false otherwise

x not in s False if string x is a substring of string s, and true otherwise

s + t Concatenation of string s and string t
s * n, n * s Concatenation of n copies of s
s[i] Character of string s at index i
len(s) Length of string s

Table 2.1 String operators.
Only a few commonly used
string operators are shown;
many more are available.
To obtain the full list in your
interactive shell, use the
help() documentation
function:
>>> help(str)

The in operator also can be used to check whether a string appears in another:

>>> 'll' in s
True

Since 'll' appears in string s, we say that 'll' is a substring of s.

The length of a string can be computed using the len() function:

>>> len(s)
5

In Table 2.1, we summarize the usage and explanation for commonly used string operators.

Practice Problem
2.4

Start by executing the assignment statements:

>>> s1 = 'ant'
>>> s2 = 'bat'
>>> s3 = 'cod'

Write Python expressions using s1, s2, and s3 and operators + and * that evaluate to:

(a) 'ant bat cod'
(b) 'ant ant ant ant ant ant ant ant ant ant '
(c) 'ant bat bat cod cod cod'
(d) 'ant bat ant bat ant bat ant bat ant bat ant bat ant bat '
(e) 'batbatcod batbatcod batbatcod batbatcod batbatcod '

Indexing Operator
The individual characters of a string can be accessed using the indexing operator []. We

define the concept of an index first. The index of a character in a string is the character’s

offset (i.e., position in the string) with respect to the first character. The first character has

index 0, the second has index 1 (because it is one away from the first character), the third

character has index 2, and so on. The indexing operator [] takes a nonnegative index i and

returns a string consisting of the single character at index i (see Figure 2.1):

>>> s[0]
'h'
>>> s[1]
'e'
>>> s[4]
'o'

26 Chapter 2 Python Data Types

Figure 2.1 The string
index and index operator.
Index 0 refers to the first
character, while index i
refers to the character that
is i positions to the right
of the first character.
Expression s[0], using
the indexing operator [],
evaluates to string 'h';
s[1] evaluates to 'e';
s[4] evaluates to 'o'.

s h e l l o

Index 0 1 2 3 4

s[0] h e l l o

s[1] h e l l o

s[4] h e l l o

Practice Problem
2.5

Start by executing the assignment:

s = '0123456789'

Now write expressions using string s and the indexing operator that evaluate to:

(a) '0'
(b) '1'
(c) '6'
(d) '8'
(e) '9'

Negative indexes may be used to access the characters from the back (right side) of the

string. For example, the last character and second to last can be retrieved using negative

indexes -1 and -2, respectively (see also Figure 2.2):

>>> s[-1]
'o'
>>> s[-2]
'l'

Figure 2.2 Index operator
using negative indexes.
The index -1 refers to the
last character; so s[-1]
evaluates to string 'o'.
s[-2] evaluates to 'l'.

Negative Index -5 -4 -3 -2 -1

s h e l l o

Index 0 1 2 3 4

s[-1] h e l l o

s[-2] h e l l o

Section 2.3 Lists 27

We have only scratched the surface of the text-processing capabilities of Python. We

will come back to strings and text processing several times in this textbook. For now, we

continue our tour of Python’s data types.

2.3 Lists
In many situations we organize data into a list: a shopping list, a list of courses, a list of

contacts on your cell phone, a list of songs in your audio player, and so on. In Python, lists

are usually stored in a type of object called a list. A list is a sequence of objects. The objects

can be of any type: numbers, strings, even other lists. For example, here is how we would

assign to the variable pets the list of strings representing several pets:

>>> pets = ['goldfish', 'cat', 'dog']

The variable pets evaluates to the list:

>>> pets
['goldfish', 'cat', 'dog']

In Python, a list is represented as a comma-separated sequence of objects enclosed within

square brackets. An empty list is represented as []. Lists can contain items of different

types. For example, the list named things in

>>> things = ['one', 2, [3, 4]]

has three items: the first is string 'one', the second is integer 2, and the third item is list

[3, 4].

List Operators
Most of the string operators we have seen in the previous section can be used on lists in

similar ways. For example, the items in the list may be accessed individually using the

indexing operator, just as individual characters can be accessed in a string:

>>> pets[0]
'goldfish'
>>> pets[2]
'dog'

Figure 2.3 illustrates the list pets along with the indexing of the list items. Negative indexes

can be used too:

>>> pets[-1]
'dog'

Negative index -3 -2 -1

pets 'goldfish' 'cat' 'dog'

Index 0 1 2

Figure 2.3 A list of string
objects. List pets is a
sequence of objects. The
first object, at index 0, is
string 'goldfish'. Positive
and negative indexes can
be used, just like for strings.

28 Chapter 2 Python Data Types

Table 2.2 List operators
and functions. Only some
of the commonly used list
operators are shown here.
To obtain the full list in your
interactive shell, use the
help() documentation
function:
>>> help(list)

Usage Explanation

x in lst True if object x is in list lst, false otherwise

x not in lst False if object x is in list lst, true otherwise

lstA + lstB Concatenation of lists lstA and lstB
lst * n, n * lst Concatenation of n copies of list lst
lst[i] Item at index i of list lst
len(lst) Length of list lst
min(lst) Smallest item in list lst
max(lst) Largest item in list lst
sum(lst) Sum of items in list lst

The length of a list (i.e., the number of items in it) is computed using function len():

>>> len(pets)
3

Like strings, lists can be “added,” meaning that they can be concatenated. They can also be

“multiplied” by an integer k, which means that k copies of the list are concatenated:

>>> pets + pets
['goldfish', 'cat', 'dog', 'goldfish', 'cat', 'dog']
>>> pets * 2
['goldfish', 'cat', 'dog', 'goldfish', 'cat', 'dog']

If you want to check whether string 'rabbit' is in the list, you can use the in operator

in a Boolean expression that evaluates to True if string 'rabbit' appears in list pets:

>>> 'rabbit' in pets
False
>>> 'dog' in pets
True

In Table 2.2 we summarize the usage of some of the string operators. We include in

the table functions min(), max(), and sum(), which can take a list as input and return the

smallest item, the largest item, or the sum of the items, respectively, in the list:

>>> lst = [23.99, 19.99, 34.50, 120.99]
>>> min(lst)
19.99
>>> max(lst)
120.99
>>> sum(lst)
199.46999999999997

Practice Problem
2.6

First execute the assignment

words = ['bat', 'ball', 'barn', 'basket', 'badminton']

Now write two Python expressions that evaluate to the first and last, respectively, word in

words, in dictionary order.

Section 2.3 Lists 29

Lists Are Mutable, Strings Are Not
An important property of lists is that they are mutable. What that means is that the content

of a list can be changed. For example, suppose that we want to be more specific about the

type of cat in list pets. We would like pets[1] to evaluate to 'cymric cat' instead of

just plain 'cat'. To do this, we assign 'cymric cat' to pets[1]:

>>> pets[1] = 'cymric cat'
>>> pets
['goldfish', 'cymric cat', 'dog']

So, the list no longer contains the string 'cat' at index 1; instead, it contains the string

'cymric cat'.

While lists are mutable, string are not. What that means is that we cannot change the

individual characters of a string value. For example, suppose that we misspelled the type of

cat:

>>> myCat = 'cymric bat'

We would like to correct the mistake by changing the character at index 7 from a 'b' to a

'c'. Let’s try:

>>> myCat[7] = 'c'
Traceback (most recent call last):

File "<pyshell#35>", line 1, in <module>
myCat[7] = 'c'

TypeError: 'str' object does not support item assignment

The error message essentially says that individual characters (items) of a string cannot

be changed (assigned to). We say that strings are immutable. Does that mean that we are

stuck with a misspelled value for myCat? No, not at all. We can simply reassign a brand

new value to variable myCat:

>>> myCat = 'cymric cat'
>>> myCat
'cymric cat'

We will discuss assignments to strings and list—and other immutable and mutable

types—further in Section 3.4.

List Methods
We have seen functions that operate on lists such as, for example, the min() function:

>>> numbers = [6, 9, 4, 22]
>>> min(numbers)
4

In expression min(numbers), we say that function min() is called with one input argu-

ment, the list numbers.

There are also functions that are called on lists. For example, to add 'guinea pig' to

list pets, we would call function append() on list pets as follows:

>>> pets.append('guinea pig')
>>> pets
['goldfish', 'cymric cat', 'dog', 'guinea pig']

30 Chapter 2 Python Data Types

Let’s do this again and add another 'dog' to list pets:

>>> pets.append('dog')
>>> pets
['goldfish', 'cymric cat', 'dog', 'guinea pig', 'dog']

Note the special way the function append() is called:

pets.append('guinea pig')

What this notation means is that function append() is called on list pets with input

'guinea pig'. The effect of executing the statement pets.append(’guinea pig’) is

that the input argument 'guinea pig' is added at the end of list pets.

The function append() is a list function. What this means is that function append()
cannot be called on its own; it always has to be called on some list lst, using the notation

lst.append(). We will refer to such functions as methods.

Another example of a list method is the count() method. When called on a list with

an input argument, it returns the number of times the input argument appears in the list:

>>> pets.count('dog')
2

Again, we say that method count() is called on list pets (with input argument 'dog').

To remove the first occurrence of 'dog', we can use the list method remove():

>>> pets.remove('dog')
>>> pets
['goldfish', 'cymric cat', 'guinea pig', 'dog']

The list method reverse() reverses the order of the objects:

>>> pets.reverse()
>>> pets
['dog', 'guinea pig', 'cymric cat', 'goldfish']

Some commonly used list methods are shown in Table 2.3. You can view a listing of

all list methods in the interactive shell using the help() documentation function:

>>> help(list)
Help on class list in module builtins:
...

Table 2.3 Some list
methods. Functions
append(), insert(),
pop(), remove(),
reverse(), and sort()
modify the list lst. To
obtain the full listing of list
methods in your interactive
shell, use the help()
documentation function:
>>> help(list)

Usage Explanation

lst.append(item) Adds item to the end of list lst
lst.count(item) Returns the number of occurrences of item in list lst
lst.index(item) Returns the index of the first occurrence of item in list

lst
lst.insert(index, item) Inserts item into list just before index index
lst.pop() Removes last item in the list

lst.remove(item) Removes first occurrence of item in the list

lst.reverse() Reverses the order of items in the list

lst.sort() Sorts the list

Section 2.4 Objects and Classes 31

The sort() method sorts the items in the list in increasing order, using the ordering

that “naturally” applies to the objects in the list. Since list pets contains string objects, the

order will be lexicographical (i.e., dictionary order):

>>> pets.sort()
>>> pets
['cymric cat', 'dog', 'goldfish', 'guinea pig']

A list of numbers would be sorted using the usual increasing number order:

>>> lst = [4, 2, 8, 5]
>>> lst.sort()
>>> lst
[2, 4, 5, 8]

What would happen if we tried to sort a list containing numbers and strings? Since

strings and integers cannot be compared, the list cannot be sorted and an error would occur.

Check it.

Practice Problem
2.7

Given the list of student homework grades

>>> grades = [9, 7, 7, 10, 3, 9, 6, 6, 2]

write:

(a) An expression that evaluates to the number of 7 grades

(b) A statement that changes the last grade to 4

(c) An expression that evaluates to the maximum grade

(d) A statement that sorts the list grades
(e) An expression that evaluates to the average grade

2.4 Objects and Classes
We have so far seen how to use several types of values that Python supports: int, float,

bool, str, and list. Our presentation has been informal to emphasize the often-intuitive

approach Python uses to manipulate values. Intuition takes us only so far, though. At this

point, we step back for a moment to understand more formally what we mean by a type,

and by operators and methods supported by the type.

In Python, every value, whether a simple integer value (such as 3) or a more complex

value (such as the string 'Hello, World!' or the list ['hello', 4, 5]) is stored in

memory as an object. It is useful to think of an object as a container for the value that sits

inside your computer’s memory.

The container idea captures the motivation behind objects. The actual representation

and processing of, say, integer values on a computer system is quite complicated. Doing

arithmetic with integer values, however, is quite straightforward. Objects are containers

for values, integer or other, that hide the complexity of integer storage and processing and

provide the programmer with the only the information that she needs: the value of the object

and what kind of operations can be applied to it.

32 Chapter 2 Python Data Types

Object Type
Every object has associated with it a type and a value. We illustrate this in Figure 2.4 with

four objects: an integer object with value 3, a floating point object with value 3.0, a string

object with value 'Hello World', and a list object with value [1, 1, 2, 3, 5, 8].

Figure 2.4 Four objects.
Illustrated are four objects of
different types. Each object
has a type and a value.

3 3.0 'Hello World' [1,1,2,3,5,8]

type: int type: float type: str type: list

An object’s type indicates what kind of values the object can hold and what kind of

operations can be performed on the object. The types we have seen so far include the

integer (int), floating point (float), Boolean (bool), string (str), and list (list) types.

The Python type() function can be used to determine an object’s type:

>>> type(3)
<class 'int'>
>>> type(3.0)
<class 'float'>
>>> type('Hello World')
<class 'str'>
>>> type([1, 1, 2, 3, 5, 8])
<class 'list'>

When used on a variable, the type() function will return the type of the object the variable

refers to:

>>> a = 3
>>> type(a)
<class 'int'>

!

CAUTION
Variables Do Not Have a Type

It is important to note that a variable does not have a type. A variable is just a
name. Only the object it refers to has a type. So, when we see

>>> type(a)
<class 'int'>

it really means that the object that variable a currently refers to is of type integer.
We emphasize currently because the type of object that a refers to may

change. For example, if we assign 3.0 to a:

a = 3.0

then a will refer to a float value:

>>> type(a)
<class 'float'>

The Python programming language is said to be object-oriented because values are

always stored in objects. In programming languages other than Python, values of certain

Section 2.4 Objects and Classes 33

types are not stored in abstract entities such as objects but explicitly in memory. The term

class is used to refer to types whose values are stored in objects. Because every value in

Python is stored in an object, every Python type is a class. In this book, we will use class
and type interchangeably.

Earlier in this chapter, we introduced several Python number types informally. To illus-

trate the concept of the object’s type, we now discuss their behaviors more precisely.

Valid Values for Number Types
Every object has a value that must be legal for the object’s type. For example, an integer

object can have value 3 but not 3.0 or 'three'. The integer values can be arbitrarily large.

For example, we can create an integer object whose value is 21024:

>>> x = 2**1024
>>> x
17976931348623159077293051907890247336179769789423065727343008
...
7163350510684586298239947245938479716304835356329624224137216

Actually, there is a limit to how large the value stored in an integer object can be: The value

is limited by the available computer memory. This is simply because it is not possible to

store an integer value that has more digits than can be stored in the computer memory.

The Python floating point (float) type is is used to represent real numbers as fractions

with finite decimal representations:

>>> pi = 3.141592653589793
>>> 2.0**30
1073741824.0

While integer values can have an arbitrarily large number of digits (limited only by the size

of the computer memory), the number of bits used to represent float values is limited,

typically to 64 bits on today’s laptop and desktop computers. This implies several things.

First, this means that very, very large numbers cannot be represented:

>>> 2.0**1024
Traceback (most recent call last):

File "<pyshell#92>", line 1, in <module>
2.0**1024

OverflowError: (34, 'Result too large')

An error occurs when we attempt to define a float value that requires more bits than

is available to represent float values. (Note that this can occur only with floating point

values; the integer value 2**1024 is OK, as we have already seen.) Also, smaller fractional

values will only be approximated rather than represented exactly:

>>> 2.0**100
1.2676506002282294e+30

What does this notation mean? This notation is called scientific notation, and it represents

the value 1.2676506002282294 · 1030. Compare this with the full precision of the corre-

sponding integer value:

>>> 2**100
1267650600228229401496703205376

34 Chapter 2 Python Data Types

Small fractional values will also be approximated:

>>> 2.0**-100
7.888609052210118e-31

and very small values are approximated by 0:

>>> 2.0**-1075
0.0

Operators for Number Types
Python provides operators and built-in mathematical functions like abs() and min() to

construct algebraic expressions. Table 2.4 lists the arithmetic expression operators available

in Python.

Table 2.4 Number-type
operators. Listed are the
operators that can be used
on number objects (e.g.,
bool, int, float). If one of
the operands is a float,
the result is always a float
value; otherwise, the result
is an int value, except for
the division (/) operator,
which always gives a
float value.

Operation Description Type (if x and y are integers)

x + y Sum Integer

x - y Difference Integer

x * y Product Integer

x / y Division Float

x // y Integer division Integer

x % y Remainder of x // y Integer

-x Negative x Integer

abs(x) Absolute value of x Integer

x**y x to the power y Integer

For every operation other than division (/), the following holds: If both operands x and

y (or just x for unary operations - and abs()) are integers, the result is an integer. If one

of the operands is a float value, the result is a float value. For division (/), the result is

a float value, regardless of the operands.

Comparison operators are used to compare values. There are six comparison opera-

tions in Python, as shown in Table 2.5. Note that in Python, comparisons can be chained

arbitrarily:

>>> 3 <= 3 < 4
True

When an expression contains more than one operator, evaluating the expression requires

that an order is specified. For example, does the expression 2 * 3 + 1 evaluate to 7 or 8?

>>> 2 * 3 + 1
7

Table 2.5 Comparison
operators. Two numbers of
the same or different type
can be compared with the
comparison operators.

Operation Description

< Less than

<= Less than or equal

> Greater than

>= Greater than or equal

== Equal

!= Not equal

Section 2.4 Objects and Classes 35

Operator Description

[expressions...] List definition

x[], x[index:index] Indexing operator

** Exponentiation

+x, -x Positive, negative signs

*, /, //, % Product, division, integer division, remainder

+, - Addition, subtraction

in, not in, <, <=, >,

>=, <>, !=, ==
Comparisons, including membership and

identity tests

not x Boolean NOT

and Boolean AND

or Boolean OR

Table 2.6 Operator
precedence. The operators
are listed in order of
precedence from highest on
top to lowest at the bottom;
operators in the same row
have the same precedence.
Higher-precedence
operations are performed
first, and equal precedence
operations are performed in
left-to-right order.

The order in which operators are evaluated is defined either explicitly using parentheses or

implicitly using either the operator precedence rules or the left-to-right evaluation rule if

the operators have the same precedence. The operator precedence rules in Python follow

the usual algebra rules and are illustrated in Table 2.6. Note that relying on the left-to-right

rule is prone to human error, and good developers prefer to use parentheses instead. For

example, rather than relying on the left-to-right rule to evaluate expression:

>>> 2 - 3 + 1
0

a good developer would use parentheses to clearly indicate her intent:

>>> (2 - 3) + 1
0

Practice Problem
2.8

In what order are the operators in the below expressions evaluated?

(a) 2 + 3 == 4 or a >= 5
(b) lst[1] * -3 < -10 == 0
(c) (lst[1] * -3 < -10) in [0, True]
(d) 2 * 3**2
(e) 4 / 2 in [1, 2, 3]

Creating Objects
To create an integer object with value 3 (and assign it to variable x), we can use this state-

ment:

>>> x = 3

Note that the type of the integer object that is created is not explicitely specified. Python

also supports a way to create objects that makes the object type explicit:

>>> x = int(3)
>>> x
3

36 Chapter 2 Python Data Types

The function int() is called a constructor; it is used to explicitly instantiate an integer

object. The value of the object is determined by the function argument: The object created

with int(3) has value 3. If no argument is given, a default value is given to the object.

>>> x = int()
>>> x
0

So the default value for integers is 0.

The constructor functions for the floating point, list, and string types are float(),

list(), and str(), respectively. We illustrate their usage with no argument to determine

the default values for those types. For float objects, the default value is 0.0:

>>> y = float()
>>> y
0.0

The default values for strings and lists are, respectively, '' (the empty string) and [] (the

empty list):

>>> s = str()
>>> s
''
>>> lst = list()
>>> lst
[]

Implicit Type Conversions
If an algebraic or logical expression involves operands of different types, Python will con-

vert each operand to the type that contains the others. For example, True is converted to 1

before integer addition is executed to give an integer result:

>>> True + 5
6

The reason for this seemingly strange behavior is that the Boolean type is really just a

“subtype” of the integer type, as illustrated in Figure 2.5. Boolean values True and False
typically behave like values 1 and 0, respectively, in almost all contexts.

Figure 2.5 Number types
conversions. In an
arithmetic expression with
operands of different types,
values are converted to the
type that contains the
others, where containment
is as shown. Conversion
from integer to float may
result in an overflow.

bool int float

Because integers can be written using decimal-point notation (3 is 3.0) but not vice

versa (2.65 cannot be represented as an integer), the int type is contained in the float type,

as shown in Figure 2.5. Consider, for example, the expression 3 + 0.35 in which an int
value and a float value are added. The float type contains the int type so 3 is converted

Section 2.4 Objects and Classes 37

to 3.0 before floating point addition of two float values is done:

>>> 3 + 0.35
3.35

!

CAUTION
Conversion from int to float

Recall that the range of values that int objects can have is much larger than
the range of float objects. While the int type is contained in the float type,
this doesn’t imply that int values can always be converted to a float value.
For example, the expression 2**10000+3 evaluates without difficulties to an int
value, but its conversion to float results in an overflow:

>>> 2**10000+3.0
Traceback (most recent call last):

File "<pyshell#139>", line 1, in <module>
2**10000+3.0

OverflowError: Python int too large to convert to C double

Explicit Type Conversions
Type conversions can also be done explicitly using the constructor functions we just intro-

duced. For example, the int() constructor creates an integer from a float input argument;

it does so by removing the fractional part of the argument:

>>> int(3.4)
3
>>> int(-3.6)
-3

The float() constructor applied to an integer will change the representation to a floating

point one, unless an overflow occurs.

>>> float(3)
3.0

The conversion from string to a number type will work only if it makes sense (i.e., the

string is a valid representation of a value of the type); otherwise it results in an error:

>>> int('3.4')
Traceback (most recent call last):

File "<pyshell#123>", line 1, in <module>
int('3.4')

ValueError: invalid literal for int() with base 10: '3.4'
>>> float('3.4')
3.4

The string constructor str(), when applied to a number, returns the string representa-

tion of the number:

>>> str(2.72)
'2.72'

38 Chapter 2 Python Data Types

Practice Problem
2.9

What is the type of the object that these expressions evaluate to?

(a) False + False
(b) 2 * 3**2.0
(c) 4 // 2 + 4 % 2
(d) 2 + 3 == 4 or 5 >= 5

Class Methods and Object-Oriented Programming
One way to think of a type (i.e., class) is to see it as the set of all operators and methods

that can be applied to objects of the class. The list class, for example, can be defined by

the operators and methods of the list class, some of which were shown in Figures 2.2

and 2.3. We have used, for example, list methods append(), count(), and remove()
as follows:

>>> pets = ['goldfish', 'cat', 'dog']
>>> pets.append('guinea pig')
>>> pets.append('dog')
>>> pets
['goldfish', 'cat', 'dog', 'guinea pig', 'dog']
>>> pets.count('dog')
2
>>> pets.remove('dog')
>>> pets
['goldfish', 'cat', 'guinea pig', 'dog']
>>> pets.reverse()
>>> pets
['dog', 'guinea pig', 'cat', 'goldfish']

To see all the methods supported by the class list, use the help() documentation tool:

>>> help(list)

We now formally explain the notation used in the previous method calls. In every case,

we have a list object, pets, followed by a dot (.), followed by the method (function)

call. The meaning of, say,

pets.append('guinea pig')

is: The listmethod append() is called on the list object petswith string input 'guinea
pig'. In general, the notation

o.m(x,y)

means that method m is called on object o with inputs x and y. The method m should be a

method of the class object o belongs to.

Every operation done in Python is a method invocation of this format. You may wonder

because expression x + y does not seem to fit this format, but as we will see in Chapter

8, it does. This approach to manipulating data, where the data is stored in objects and

methods are invoked on objects, is called object-oriented programming (OOP). OOP is a

powerful approach to code organization and development. We will learn a lot more about

it in Chapter 8.

Section 2.5 Python Standard Library 39

2.5 Python Standard Library
The core Python programming language comes with functions such as max() and sum()
and classes such as int, str, and list. While those are by no means all the built-in Python

functions and classes, the core Python language is deliberately small for efficiency and

ease-of-use purposes. In addition to the core functions and classes, Python has many, many

more functions and classes defined in the Python Standard Library. The Python Standard

Library consists of thousands of functions and classes organized into components called

modules.

Each module contains a set of functions and/or classes related to a particular application

domain. More than 200 built-in modules together form the Python Standard Library. Each

module in the Standard Library contains functions and classes to support application pro-

gramming in a certain domain. The Standard Library includes modules to support, among

others:

• Network programming

• Web application programming

• Graphical user interface (GUI) development

• Database programming

• Mathematical functions

• Pseudorandom number generators

We will eventually use all of these modules. Right now we will see how to use the math
and fraction modules.

Module math
The core Python language supports only basic mathematical operators; we have learned

about them earlier in this chapter. For other mathematical functions such as the square root

function or the trigonometric functions, the math module is required. The math module

is a library of mathematical constants and functions. To use a math module function, the

module must first be explicitly imported:

>>> import math

The import statement makes available all the math functions defined in module math.

(We leave the more detailed explanation of how the import statement works for the next

chapter and also Chapter 6.)

The square root function sqrt() is defined in module math, but we cannot use it like

this:

>>> sqrt(3)
Traceback (most recent call last):

File "<pyshell#28>", line 1, in <module>
sqrt(3)

NameError: name 'sqrt' is not defined

Clearly, the Python interpreter doesn’t know about sqrt, the name of the square root func-

tion. We must tell the interpreter explicitly where (i.e., which module) to look for it:

>>> math.sqrt(3)
1.7320508075688772

40 Chapter 2 Python Data Types

Table 2.7 Module math.
Listed are some functions
and constants in the
module. After importing the
module, you can obtain the
full list in your interactive
shell using the help()
function:
>>> help(math)

Function Explanation

sqrt(x)
√

x
ceil(x) �x� (i.e., the smallest integer ≥ x)

floor(x) �x� (i.e., the largest integer ≤ x)

cos(x) cos(x)
sin(x) sin(x)
log(x, base) logbase(x)
pi 3.141592653589793

e 2.718281828459045

Table 2.7 lists some of the commonly used functions defined in the math module.

Also shown are two mathematical constants defined in the module. The value of variable

math.pi is an approximation for the mathematical constant π , and the value of math.e is

an approximation for the Euler constant e.

Practice Problem
2.10

Write Python expressions corresponding to the following:

(a) The length of the hypotenuse in a right triangle whose other two sides have lengths

a and b
(b) The value of the expression that evaluates whether the length of the above hypotenuse

is 5

(c) The area of a disk of radius a
(d) The value of the Boolean expression that checks whether a point with coordinates x

and y is inside a circle with center (a,b) and radius r

Module fractions
The fractions module makes available a new type of number: the Fraction type. The

Fraction type is used to represent fractions and do rational arithmetic, such as:

1

2
+

3

4
=

5

4

To use the fractions module, we first need to import it:

>>> import fractions

To create a Fraction object, we use the Fraction() constructor with two arguments: a

numerator and a denominator. Here is how we can define 3
4 and 1

2 :

>>> a = fractions.Fraction(3, 4)
>>> b = fractions.Fraction(1, 2)

Note how we must specify where the class Fractions is defined: in the fractions mod-

ule. When we evaluate expression a, we get

>>> a
Fraction(3, 4)

Note that a does not evaluate to 0.75.

Section 2.6 Case Study: Turtle Graphics Objects 41

As with other numbers, Fraction objects can be added, and the result is a Fraction
object:

>>> c = a + b
>>> c
Fraction(5, 4)

What is the difference between the float type and the fractions.Fraction type? We

mentioned earlier that float values are stored in the computer using a limited number of

bits, typically 64 of them. That means that the range of values that float objects can store

is limited. For example, 0.51075 cannot be represented as a float value and thus evaluates

to 0:

>>> 0.5**1075
0.0

The range of values representable with fractions.Fraction objects is much, much

larger and limited only by the available memory, just as for the int type. So we can easily

compute 1
2

1075
:

>>> fractions.Fraction(1, 2)**1075
Fraction(1, 404804506614621236704990693437834614099113299528284236
713802716054860679135990693783920767402874248990374155728633623822
779617474771586953734026799881477019843034848553132722728933815484
186432682479535356945490137124014966849385397236206711298319112681
620113024717539104666829230461005064372655017292012526615415482186
989568)

Why not always use the fractions.Fraction type? Because expressions involving float
values evaluate much, much faster than expressions involving fractions.Fraction val-

ues.

2.6 Case Study: Turtle Graphics Objects
In our first case study, we will use a graphics tool to (visually) illustrate the concepts cov-

ered in this chapter: objects, classes and class methods, object-oriented programming, and

modules. The tool, Turtle graphics, allows a user to draw lines and shapes in a way that is

similar to using a pen on paper.

DETOUR
Turtle Graphics

Turtle graphics has a long history all the way back to the time when the field of
computer science was developing. It was part of the Logo programming language
developed by Daniel Bobrow, Wally Feurzig, and Seymour Papert in 1966. The
Logo programming language and its most popular feature, turtle graphics, was
developed for the purpose of teaching programming.

The turtle was originally a robot, that is, a mechanical device controlled by
a computer operator. A pen was attached to the robot and it left a trace on the
surface as the robot moved according to functions input by the operator.

42 Chapter 2 Python Data Types

Turtle graphics is available to Python developers through the turtle module. In the

module are defined 7 classes and more than 80 class methods and functions. We will not

exhaustively cover all the features of the module turtle. We only introduce a sufficient

number to allow us to do interesting graphics while cementing our understanding of objects,

classes, class methods, functions, and modules. Feel free to explore this fun tool on your

own.

We start by importing the turtle module and then instantiating a Screen object.

>>> import turtle
>>> s = turtle.Screen()

You will note that a new window appears with a white background after executing the

second statement. The Screen object is the canvas on which we draw. The Screen class

is defined in the turtle module. Later we will introduce some Screen methods that change

the background color or close the window. Right now, we just want to start drawing.

To create our pen or, using the turtle graphics terminology, our turtle, we instantiate a

Turtle object we name t:

>>> t = turtle.Turtle()

A Turtle object is essentially a pen that is initially located at the center of the screen,

at coordinates (0,0). The Turtle class, defined in the turtle module, provides many

methods for moving the turtle. As we move the turtle, it leaves a trace behind. To make our

first move, we will use the forward() method of the Turtle class. So, to move forward

100 pixels, the method forward() is invoked on Turtle object t with 100 (pixels) as the

distance:

>>> t.forward(100)

The effect is shown in Figure 2.6.

Figure 2.6 Turtle graphics.
The black arrow tip
represents the Turtle
object. The line is the trace
left by the turtle after
moving forward 100 pixels.

Note that the move is to the right. When instantiated, the turtle faces right (i.e., to

the east). To make the turtle face a new direction, you can rotate it counterclockwise or

clockwise using the left() or right() methods, both Turtle class methods. To rotate

90 degrees counterclockwise, the method left() is invoked on Turtle object t with the

argument 90:

>>> t.left(90)

We can have several Turtle objects simultaneously on the screen. Next, we create a new

Turtle instance that we name u and make both turtles do some moves:

>>> u = turtle.Turtle()
>>> u.left(90)
>>> u.forward(100)
>>> t.forward(100)
>>> u.right(45)

The current state of the two turtles and the trace they made is shown in Figure 2.7.

Section 2.6 Case Study: Turtle Graphics Objects 43

Figure 2.7 Two Turtle
objects. The Turtle object
on the left is facing
northeast whereas the
Turtle object on the right is
facing north.

In the example we just completed, we used three methods of class Turtle: forward(),

left(), and right(). In Table 2.8, we list those and some other methods (but by no means

all). To illustrate some of the additional methods listed in the table, we go through the steps

necessary to draw a smiley face emoticon shown in Figure 2.8.

Usage Explanation

t.forward(distance) Move turtle in the direction the turtle is headed by

distance pixels

t.left(angle) Rotate turtle counterclockwise by angle degrees

t.right(angle) Rotate turtle clockwise by angle degrees

t.undo() Undo the previous move

t.goto(x, y) Move turtle to coordinates defined by x and y; if

pen is down, draw line

t.setx(x) Set the turtle’s first coordinate to x
t.sety(y) Set the turtle’s second coordinate to y
t.setheading(angle) Set orientation of turtle to angle, given in degrees;

Angle 0 means east, 90 is north, and so on

t.circle(radius) Draw a circle with given radius; the center of the

circle is radius pixels to the left of the turtle

t.circle(radius, angle) Draw only the part the circle (see above)

corresponding to angle
t.dot(diameter, color) Draw a dot with given diameter and color
t.penup() Pull pen up; no drawing when moving

t.pendown() Put pen down; drawing when moving

t.pensize(width) Set the pen line thickness to width
t.pencolor(color) Set the pen color to color described by string color

Table 2.8 Some methods
of the Turtle class.
After importing the module
turtle, you can obtain the
full list of Turtle methods
in your interactive shell
using
help(turtle.Turtle)

Figure 2.8 A Turtle smiley
face drawing.

44 Chapter 2 Python Data Types

We start by instantiating a Screen and a Turtle object and setting the pen size.

>>> import turtle
>>> s = turtle.Screen()
>>> t = turtle.Turtle()
>>> t.pensize(3)

We then define the coordinates where the chin of the smiley face will be located, and then

move to that location.

>>> x = -100
>>> y = 100
>>> t.goto(x, y)

Oooops! We drew a line from coordinate (0, 0) to coordinate (-100, 100); all we wanted

was to move the pen, without leaving a trace. So we need to undo the last move, lift the

pen, and then move it.

>>> t.undo()
>>> t.penup()
>>> t.goto(x, y)
>>> t.pendown()

Now we want to draw the circle outlining the face of our smiley face. We call the method

circle() of the class Turtle with one argument, the radius of the circle. The circle is

drawn as follows: The current turtle position will be a point of the circle, and the center of

the circle is defined to be to the turtle’s left, with respect to the current turtle heading.

>>> t.circle(100)

Now we want to draw the left eye. We choose the left eye coordinates relative to (x,y) (i.e.,

the chin position) and “jump” to that location. We then use the dot function to draw a black

dot of diameter 10.

>>> t.penup()
>>> t.goto(x - 35, y + 120)
>>> t.pendown()
>>> t.dot(25)

Next, we jump and draw the right eye.

>>> t.penup()
>>> t.goto(x + 35, y + 120)
>>> t.pendown()
>>> t.dot(25)

Finally, we draw the smile. I chose the exact location of the left endpoint of the smile using

trial and error. You could also use geometry and trigonometry to get it right if you prefer.

We use here a variant of the method circle() that takes a second argument in addition to

the radius: an angle. What is drawn is just a section of the circle, a section corresponding

to the given angle. Note that we again have to jump first.

>>> t.penup()
>>> t.goto(x - 60.62, y + 65)
>>> t.pendown()
>>> t.setheading(-60)
>>> t.circle(70, 120)

Chapter 2 Chapter Summary 45

Usage Explanation

s.bgcolor(color) Changes the background color of screen s to color

described by string color
s.clearscreen() Clears screen s
s.turtles() Returns the list of all turtles in the screen s
s.bye() Closes the screen s window

Table 2.9 Methods of the
Screen class. Shown are
only some of the Screen
class methods. After
importing module turtle,
you can obtain the full list of
Screen methods in your
interactive shell using
help(turtle.Screen)

We’re done! As we end this case study, you may wonder how to close cleanly your

turtle graphics window. The Screen method bye() closes it:

>>> s.bye()

This method and several other Screen methods are listed in Table 2.9.

Practice Problem
2.11

Start by executing these statements:

>>> s = turtle.Screen()
>>> t = turtle.Turtle(shape='turtle')
>>> t.penup()
>>> t.goto(-300, 0)
>>> t.pendown()

A turtle pen will appear on the left side of the screen. Then execute a sequence of Python

turtle graphics statements that will produce this image:

Chapter Summary
This chapter is an overview of Python concepts and its core built-in data types.

We introduce the interactive shell as a way to evaluate expressions. We start first with

algebraic expressions that evaluate to a number and then Boolean expressions that evaluate

to values True or False. We also introduce variables and the assignment statement, which

is used to give a variable name to a value.

This chapter introduces the core Python built-in types: int, float, bool, str, and

list. We go over the built-in number operators and explain the difference between the

46 Chapter 2 Python Data Types

number types int, float, and bool. We introduce the string (str) operators (we leave

string methods for Chapter 4); we cover, in particular, the important indexing operator. For

the list type, we introduce both its operators and its methods.

After defining several built-in classes, we step back and define the concept of an object

and of a class. We then use those concepts to define class constructors and type conversion.

Python’s Standard Library includes many modules that contain functions and types

beyond the built-in ones. We introduce the useful math module that gives us access to many

classic math functions. Finally, in the chapter’s case study, we introduce the fun drawing

module turtle.

Solutions to Practice Problems
2.1 The expressions are:

(a) 1 + 2 + 3 + 4 + 5
(b) (23 + 19 + 31) / 3)
(c) 403 // 73
(d) 403 % 73
(e) 2**10
(f) abs(54 - 57)
(g) min(34.99, 29.95, 31.50)

2.2 The Boolean expressions are:

(a) 2 + 2 < 4 which evaluates to False
(b) 7 // 3 == 1 + 1 which evaluates to True
(c) 3**2 + 4**2 == 25 which evaluates to True
(d) 2 + 4 + 6 > 12 which evaluates to False
(e) 1387 % 19 == 0 which evaluates to True
(f) 31 % 2 == 0 which evaluates to False
(g) min(34.99, 29.95, 31.50) < 30.00 evaluates to True

2.3 The sequence of statements in the interactive shell is:

>>> a = 3
>>> b = 4
>>> c = a * a + b * b

2.4 The expressions are:

(a) s1 + ''+ s2 + ''+ s3
(b) 10 * (s1 + '')
(c) s1 + '' + 2 * (s2 + '') + 2 * (s3 + '') + s3
(d) 7 * (s1 + ''+ s2 + '')
(e) 3 * (2 * s2 + s3 + '')

2.5 The expressions are:

(a) s[0], (b) s[1], (c) s[6], (d) s[8], and (e) s[9].

2.6 The expressions are min(words) and max(words).

Chapter 2 Solutions to Practice Problems 47

2.7 The method calls are:

(a) grades.count(7)
(b) grades[-1] = 4
(c) max(grades)
(d) grades.sort()
(e) sum(grades) / len(grades)

2.8 The order is indicated using parentheses:

(a) ((2 + 3) == 4) or (a >= 5)
(b) (((lst[1]) * (-3)) < (-10)) == 0
(c) (((lst[1]) * (-3)) < (-10)) in [0, True]
(d) 2 * (3**2)
(e) (4 / 2) in [1, 2, 3]

2.9 Check these solutions for yourself by evaluating all the expressions in the interactive

shell.

(a) While the two operands are Boolean, the + operator is an int operator, not a bool
operator. The result (0) is an int value.

(b) A float value.

(c) An int value.

(d) The expressions on both sides of the or operator evaluate to bool values so the result

is a bool value.

2.10 The expressions are:

(a) math.sqrt(a**2 + b**2)
(b) math.sqrt(a**2 + b**2) == 5
(c) math.pi * a**2
(d) (x - a)**2 + (y - b)**2 < r**2

2.11 We assume the starting position is the leftmost point of the "wave" curve. To draw

the first “valley,” we need to make the turtle point southeast and then draw a 90◦ section of

the circle:

>>> t.seheading(-45)
>>> t.circle(50, 90)

We then repeat this pair of statements eight times. To draw the sun, we need to lift the pen,

move it, put the pen down, and draw a circle:

>>> t.penup()
>>> t.goto(-100, 200)
>>> t.pendown()
>>> t.circle(50)
>>> t.penup()
>>> t.goto(0, -50)

We end by moving the turtle so it can swim in the sea.

48 Chapter 2 Python Data Types

Exercises

2.12 Write Python expressions corresponding to these statements:

(a) The sum of the first seven positive integers

(b) The average age of Sara (age 65), Fatima (57), and Mark (age 45)

(c) 2 to the 20th power

(d) The number of times 61 goes into 4356

(e) The remainder when 4365 is divided by 61

2.13 Start by evaluating, in the interactive shell, the assignment:

>>> s1 = '-'
>>> s2 = '+'

Now write string expressions involving s1 and s2 and string operators + and * that evaluate

to:

(a) '-+'
(b) '–+'
(c) '+––'
(d) '+––+––'
(e) '+––+––+––+––+––+––+––+––+––+––+'
(f) '+–+++––+–+++––+–+++––+–+++––+–+++––'

Try to make your string expressions as succinct as you can.

2.14 Start by running, in the shell, the following assignment statement:

>>> s = 'abcdefghijklmnopqrstuvwxyz'

Now write expressions using string s and the indexing operator that evaluate to 'a', 'c',

'z', 'y', and 'q'.

2.15 Start by executing

s = 'goodbye'

Then write a Boolean expression that check whether:

(a) The first character of string s is 'g'
(b) The seventh character of s is g
(c) The first two characters of s are g and a
(d) The next to last character of s is x
(e) The midle character of s is d
(f) The first and last characters of string s are equal

(g) The last 4 characters of string s match the string 'tion'
Note: These seven statements should evaluate to True, False, False, False, True, False,

and False, respectively.

2.16 Write the corresponding Python assignment statements:

(a) Assign 6 to variable a and 7 to variable b.

(b) Assign to variable c the average of variables a and b.

Chapter 2 Exercises 49

(c) Assign to variable inventory the list containing strings 'paper', 'staples', and

'pencils'.

(d) Assign to variables first, middle and last the strings 'John', 'Fitzgerald',

and 'Kennedy'.

(e) Assign to variable fullname the concatenation of string variables first, middle,

and last. Make sure you incorporate blank spaces appropriately.

2.17 Write Boolean expressions corresponding to the following logical statements and

evaluate the expressions:

(a) The sum of 17 and -9 is less than 10.

(b) The length of list inventory is more than five times the length of string fullname.

(c) c is no more than 24.

(d) 6.75 is between the values of integers a and b.

(e) The length of string middle is larger than the length of string first and smaller

than the length string last.

(f) Either the list inventory is empty or it has more than 10 objects in it.

2.18 Write Python statements corresponding to the following:

(a) Assign to variable flowers a list containing strings 'rose', 'bougainvillea',

'yucca', 'marigold', 'daylilly', and 'lilly of the valley'.

(b) Write a Boolean expression that evaluates to True if string 'potato' is in list

flowers, and evaluate the expression.

(c) Assign to list thorny the sublist of list flowers consisting of the first three objects

in the list.

(d) Assign to list poisonous the sublist of list flowers consisting of just the last object

of list flowers.

(e) Assign to list dangerous the concatenation of lists thorny and poisonous.

2.19 A dartboard of radius 10 and the wall it is hanging on are represented using the two-

dimensional coordinate system, with the board’s center at coordinate (0,0). Variables x and

y store the x- and y-coordinate of a dart hit. Write an expression using variables x and y
that evaluates to True if the dart hits (is within) the dartboard, and evaluate the expression

for these dart coordinates:

(a) (0,0)

(b) (10,10)

(c) (6, 6)

(d) (7,8)

2.20 A ladder put up right against a wall will fall over unless put up at a certain angle less

than 90 degrees. Given variables length and angle storing the length of the ladder and the

angle that it forms with the ground as it leans against the wall, write a Python expression

involving length and angle that computes the height reached by the ladder. Evaluate the

expression for these values of length and angle:

(a) 16 feet and 75 degrees

(b) 20 feet and 0 degrees

(c) 24 feet and 45 degrees

(d) 24 feet and 80 degrees

50 Chapter 2 Python Data Types

Note: You will need to use the trig formula:

length=
height

sin(angle)

The math module sin() function takes its input in radians. You will thus need to convert

the angle given in degrees to the angle given in radians using:

radians=
π ∗degrees

180

2.21 Write an expression involving a three-letter string s that evaluates to a string whose

characters are the characters of s in reverse order. If s is 'top', the expression should

evaluate to 'pot'.

2.22 Write an expression involving string s containing the last and first name of a person—

separated by a blank space—that evaluates to the person’s initials. If the string contained

my first and last name, the expression would evaluate to 'LP'.

2.23 The range of a list of numbers is the largest difference between any two numbers

in the list. Write a Python expression that computes the range of a list of numbers lst. If

the list lst is, say, [3, 7, -2, 12], the expression should evaluate to 14 (the difference

between 12 and -2).

2.24 Write the relevant Python expression or statement, involving a list of numbers lst
and using list operators and methods for these specifications:

(a) An expression that evaluates to the index of the middle element of lst
(b) An expression that evaluates to the middle element of lst
(c) A statement that sorts the list lst in descending order

(d) A statement that removes the first number of list lst and puts it at the end

2.25 Add a pair of parentheses to each expression so that it evaluates to True.

(a) 0 == 1 == 2

(b) 2 + 3 == 4 + 5 == 7

(c) 1 < -1 == 3 > 4

For each expression, explain in what order the operators were evaluated.

2.26 Write Python statements that draw a square of side length 100 pixels using Turtle

graphics. Make sure you import the module turtle first. Your first two and last statement

should be as shown:

>>> s = turtle.Screen() # create screen
>>> t = turtle.Turtle() # create turtle

... # now write a sequence of statements

... # that draw the square

>>> s.bye() # delete the Screen when done

2.27 Using the approach from Problem 2.26, write Python statements that draw a diamond

of side length 100 pixels using Turtle graphics.

Chapter 2 Exercises 51

2.28 Using the approach from Problem 2.26, write Python statements that draw a pentagon

of side length 100 pixels using Turtle graphics. Then do a hexagon, a heptagon, and an

octogon.

2.29 Using the approach from Problem 2.26, write Python statements that draw the inter-

secting circles of radius 100 pixels shown using Turtle graphics:

The sizes of the circles do not matter; their centers should be, more or less, the points

of an equilateral triangle.

2.30 Using the approach from Problem 2.26, write Python statements that draw four con-

centric circles similar to the concentric circles of a dartboard.

2.31 Add three more swimming turtles to the picture shown in Practice Problem 2.11.

2.32 Using Turtle graphics, illustrate the relative size of the sun and the earth by draw-

ing two circles. The circle representing earth should have a radius of 1 pixel. The circle

representing the sun should have a radius of 109 pixels.

2.33 Using Turtle graphics, draw a five-pointed star by repeating the following five times:

move the turtle a 100 pixels and then rotate it right 144 degrees. When done, consider how

to draw the six-pointed star (commonly referred to as the Star of David).

2.34 Using Turtle graphics, draw an image showing the six sides of a dice. You may

represent each side inside a separate square.

2.35 Using Turtle graphics, draw the lines of a basketball field. You may choose the Na-

tional Basketball Association (NBA) or International Basketball Federation (FIBA) speci-

fications, which you can easily find on the web.

2.36 Using Turtle graphics, draw an image showing the (visible) phases of the moon as

seen from your hemisphere: waxing crescent, first quarter, waxing gibbous, full, waning

gibbous, third quarter, and waning crescent. You can find illustrations of the phases of the

moon on the web.

This page intentionally left blank

CHAPTER

3Imperative
Programming
3.1 Python Programs 54

3.2 Execution Control Structures 59

3.3 User-Defined Functions 69

3.4 Python Variables and Assignments 75

3.5 Parameter Passing 79

3.6 Case Study: Automating Turtle Graphics 82

Chapter Summary 84

Solutions to Practice Problems 85

Exercises 88

Problems 88

IN THIS CHAPTER, we discuss how to develop Python programs. A
Python program is a sequence of Python statements that are executed in
order. To achieve different program behavior depending on a condition, we
introduce a few decision and iteration control flow structures that control
whether and how many times particular statements are executed.

As we develop more code, we will note that, often, the same group of
Python statements is used repeatedly and implements a task that can be
described abstractly. Python gives developers the ability to wrap code into
functions so the code can be executed with just one function call. One
benefit of functions is code reuse. Another is that they simplify the
developer’s job by (1) hiding the code implementing the function from the
developer and (2) making explicit the abstract task achieved by the code.
In the chapter case study, we continue the use of turtle graphics to
illustrate code reuse, information hiding, and functional abstraction.

The concepts covered in this chapter are fundamental programming
language concepts, not just Python concepts. This chapter also
introduces the process of breaking down problems into steps that can be
described computationally using Python statements.

53

54 Chapter 3 Imperative Programming

3.1 Python Programs
In Chapter 2, we used the interactive shell to evaluate Python expressions and execute

single Python statements. A Python program that implements a computer application is a

sequence of multiple Python statements. This sequence of Python statements is stored in

one or more files created by the developer using an editor.

Our First Python Program

In order to write your first program, you will need to use the editor that is included in the

Python IDE you are using. How the editor is opened depends on the IDE. For example, if

you are using the IDLE Python IDE, click on the File tab in the IDLE window and then

on the New Window button. This will open up a new window, which you will use to type

your first Python program.

Module: hello.py
1 line1 = 'Hello Python developer...'
2 line2 = 'Welcome to the world of Python!'
3 print(line1)
4 print(line2)

This program consists of four statements, one in each line. Lines 1 and 2 have assign-

ment statements and lines 3 and 4 are calls to the print() function. Once you have typed

the program, you will want to execute it. You can do so using your Pyton IDE; again, the

steps you need to take to run your program will depend on the type of IDE you are us-

ing. For example, if you are using the IDLE IDE, just hit key F5 on your keyboard (or,

using your mouse, click on the Run tab of the IDLE shell window menu and the on the

Run Module button.) You will be asked to save the program in a file. The file name must

have the suffix '.py'. After you have saved the file (as hello.py, say, in a folder of your

choice), the program is executed and this is printed in the interactive shell:

>>> ========================= RESTART ==========================
>>>
Hello Python developer...
Welcome to the world of Python!

The Python interpreter has executed all the statements in the program in order, from

line 1 to line 4. Figure 3.1 shows the flowchart of this program. A flowchart is a diagram

that illustrates the flow of execution of a program. In this first example, the flowchart shows

that the four statements are executed in order from top to bottom.

!

CAUTION
Restarting the Shell

When we executed hello.py, the Python interpreter printed this line before the
actual program output:

>>> ======================== RESTART =========================
...

Section 3.1 Python Programs 55

This line indicates that the Python shell got restarted. Restarting the shell has the
effect of erasing all the variables that have been defined in the shell so far. The
reason why this is necessary is because the program must execute in a blank-
slate, default shell environment.

The interactive shell can also be restarted directly. In IDLE, you would do so
by clicking on the Shell tag in the IDLE window and then on the Restart Shell
button. In the next example, we restart the shell after variable x has been assigned
3 and expression x has evaluated to 3:

>>> x = 3
>>> x
3
>>> ======================== RESTART =========================
>>> x
Traceback (most recent call last):

File "<pyshell#4>", line 1, in <module>
x

NameError: name 'x' is not defined
>>>

In the restarted shell, note that x is no longer defined.

An application program is typically run from outside a software development environ-

ments such as IDLE, so it is important to know how to execute Python programs at the

command line. An easy way to run your program is to run this command at the prompt of

a command line window:

> python hello.py
Hello Python developer...
Welcome to the world of Python!

(Make sure your run the program from within the folder containing the Python program.)

line1 = 'Hello Python developer...'

line2 = 'Welcome to the world of Python!'

print(line1)

print(line2)

Figure 3.1 First program
flowchart. Each statement
of the program is inside its
own box; the program
execution flow is shown
using arrows connecting
the boxes.

56 Chapter 3 Imperative Programming

DETOUR
Editors

An editor like Microsoft Word is a poor choice for writing and editing programs.
A specialized editor for programmers comes with tools to facilitate and speed up
the program development process. Such a software development environment is
called an Integrated Development Environment (IDE).

Several IDEs can be used to develop Python programs. Each has features
that are helpful for Python programming, including automatic indentation, abilities
to run/debug Python code from within the editor, and easy access to the Python
Standard Library. Three popular IDEs are IDLE (which is included with the Python
development kit), Komodo, and PyDev with Eclipse.

Python Modules
The file hello.py we have created and saved is an example of a user-defined Python

module. In Chapter 2, we have used the term module to describe the built-in Standard

Library components math, fractions, and turtle. Those are built-in Python modules.

What is common between hello.py and the built-in modules we have seen?

A module is simply a file containing Python code. Every file containing Python code

and whose file name ends in .py is a Python module. The file hello.py we created is a

module, and so are files math.py, fractions.py and turtle.py hidden in some folder

on your computer and implementing the corresponding Standard Library components.

The code in a module is, of course, meant to be executed. For example, when we ran

hello.py by hitting F5 , the code in the module got executed, from beginning to end.

When we execute an import statement on a module such as math or turtle, it is equiva-

lent to hitting F5 (well, not quite, but we will handle that in Chapter 7). When we execute

>>> import math

the code in the file math.py gets executed. That Python code just happens to define a bunch

of math functions.

Built-In Function print()
Our first program has two lines of code in which the function print() is used. This func-

tion prints, within the interactive shell, whatever argument is given to it. For example, if

given a number, it prints the number:

>>> print(0)
0

Similarly, if given a list, it prints it:

>>> print([0, 0, 0])
[0, 0, 0]

A string argument is printed without the quotes:

>>> print('zero')
zero

Section 3.1 Python Programs 57

If the input argument contains an expression, the expression is evaluated and the result is

printed:

>>> x = 0
>>> print(x)
0

Note that, in our first program, each print() statement "printed" its argument on a

separate line.

Interactive Input with input()
Often an executing program needs to interact with the user. The input() function is used

for that purpose. It is always used on the right side of an assignment statement, as in:

>>> x = input('Enter your first name: ')

When Python executes this input() function, Python will first print its input argument

(string 'Enter your first name: ') in the shell:

Enter your first name:

and then it will interrupt the execution and wait for the user to type something at the key-

board. The printed string 'Enter your first name: ' is essentially a prompt. When

the user types something and hits the Enter/Return key on her keyboard, the execution

will resume and whatever the user has typed will be assigned to variable name:

>>> name = input('Enter your first name: ')
Enter your first name: Ljubomir
>>> name
'Ljubomir'

Note that Python treats as a string whatever the user types (e.g., Ljubomir in the example).

The input() function is meant to be used in a program. We illustrate this with a more

personalized version of the hello.py greeting program. The next program asks the user to

enter his first and last name and then prints a personalized greeting on the screen.

Module: input.py
1 first = input('Enter your first name: ')
2 last = input('Enter your last name: ')
3 line1 = 'Hello '+ first + ' ' + last + '...'
4 print(line1)
5 print('Welcome to the world of Python!')

When we run this program, the statement in line 1 is executed first; it prints the message

'Enter your first name: ' and interrupts the execution of the program until the user

types something using the keyboard and presses the Enter/Return key. Whatever the user

typed is assigned to variable first. Line 2 is similar. In line 3, string concatenation is used

to create the greeting string printed in line 4. Here is a sample execution of the program:

>>>
Enter your first name: Ljubomir
Enter your last name: Perkovic
Hello Ljubomir Perkovic...
Welcome to the world of Python!

58 Chapter 3 Imperative Programming

!

CAUTION
Function input() Returns a String

We just saw that when the input function is called, whatever the user types is
treated as a string. Let’s check what happens when the user enters a number:

>>> x = input('Enter a value for x: ')
Enter a value for x: 5
>>> x
'5'

The Python interpreter treats the value entered as a string '5', not integer 5. We
check this:

>>> x == 5
False
>>> x == '5'
True

The input() function will always treat whatever the user types as a string.

Function eval()
If you expect the user to enter a value that is not a string, you need to explicitly ask Python

to evaluate what the user types as a Python expression using the eval() function.

The function eval() takes a string as input and evaluates the string as if it were a

Python expression. Here are some examples:

>>> eval('3')
3
>>> eval('3 + 4')
7
>>> eval('len([3, 5, 7, 9])')
4

The function eval() can be used together with the function input() when we expect the

user to type an expression (a number, a list, etc.) when requested. All we need to do is wrap

the eval() function around the input() function: The effect is that whatever the user

types will be evaluated as an expression. For example, here is how we would ensure that a

number entered by the user is treated as a number:

>>> x = eval(input('Enter x: '))
Enter x: 5

We check that x is indeed a number and not a string:

>>> x == 5
True
>>> x == '5'
False

Section 3.2 Execution Control Structures 59

Practice Problem
3.1

Implement a program that requests the current temperature in degrees Fahrenheit from the

user and prints the temperature in degrees Celsius using the formula

celsius=
5

9
(fahrenheit 32)

Your program should execute as follows:

>>>
Enter the temperature in degrees Fahrenheit: 50
The temperature in degrees Celsius is 10.0

3.2 Execution Control Structures
A Python program is a sequence of statements that are executed in succession. In the short

programs we have seen so far, the same sequence of statements is executed, in order starting

from the statement in line 1 and regardless of the values input by the user, if any. That

is not what we usually experience when using an application on a computer. Computer

applications usually do different things depending on the values input. For example, the

game you just finished playing may stop or continue running, depending on whether you

click on the Exit or the Play Again button. We now introduce Python statements that

can control which statements are executed and also which statements should be executed

repeatedly.

One-Way Decisions
Suppose we want to develop a program that asks the user to enter the current temperature

and then prints an appropriate message only if it is more than 86 degrees. This program

would behave as shown if the user enters 87:

>>>
Enter the current temperature: 87
It is hot!
Be sure to drink liquids.

The program would behave as shown if the user enters 67:

>>>
Enter the current temperature: 67

In other words, if the temperature is 86 or less, no message is printed. If the temperature is

more than 86, then the message

It is hot!
Be sure to drink liquids.

is printed.

To achieve the described behavior (i.e., the conditional execution of a code fragment)

there has to be a way to control whether to execute a fragment of code based on a condition.

If the condition is true, then the code fragment is executed; otherwise it is not.

60 Chapter 3 Imperative Programming

Figure 3.2 Flowchart for
program oneWay. The
input() statement is
executed first and the value
entered by the user is
assigned name temp.
The if statement checks
condition temp > 86.
If true, the two print()
statements are executed
and the program terminates;
if false, the program just
terminates.

temp = input('Enter the current temperature: ')

temp > 86:

print('It is hot!'

print('Be sure to drink liquids')

True

False

The if statement is used to implement conditional execution. Here is how we would

use the if statement to implement the desired program:

Module: oneWay.py
1 temp = eval(input('Enter the current temperature: '))
2

3 if temp > 86:
4 print('It is hot!')
5 print('Be sure to drink liquids.')

(Note the use of a blank line to make the program more readable.) The if statement encom-

passes line 3 through 5 in the program. In line 3, the if keyword is followed by the con-

dition temp > 86. If the condition evaluates to True, the indented statements below line

3 are executed. If the condition temp > 86 evaluates to False, those indented statements

are not executed. Figure 3.2 illustrates (using dashed lines) the two possible execution flows

for the program.

Now suppose that we need to add a feature to our program: We would like the program

to print 'Goodbye!' before terminating, whether the temperature input by the user is high

or not. The program would need to behave as follows:

>>>
Enter the current temperature: 87
It is hot!
Be sure to drink liquids.
Goodbye.

or as follows

>>>
Enter the current temperature: 67
Goodbye.

Section 3.2 Execution Control Structures 61

temp = input('Enter the current temperature: ')

temp > 86:

print('It is hot!')

print('Be sure to drink liquids.')

print('Goodbye.')

True

False

Figure 3.3 Flowchart for
program oneWay2.
Regardless of whether the
if statement condition is
true or false, the statement
print('Goodbye.') is
executed after the if
statement.

A print('Goodbye') needs to be executed after the if statement. This means that the

print('Goodbye') statement must be placed in the program (1) below the indented if
block of code and (2) with the same indentation as the first line of the if statement:

Module: oneWay2.py
1 temp = eval(input('Enter the current temperature: '))
2

3 if temp > 86:
4 print('It is hot!')
5 print('Be sure to drink liquids.')
6

7 print('Goodbye.')

After line 3 of this program is executed, either the indented block of code in lines 4 and

5 is executed, or it is not. Either way, the execution resumes with the statement in line 7.

The flowchart corresponding to program oneWay2.py is shown in Figure 3.3.

In general, the format of an if statement is:

if <condition>:
<indented code block>

<non-indented statement>

The first line of an if statement consists of the if keyword, followed by Boolean expres-

sion <condition> (i.e., an expression that evaluates to True or False), followed by a

colon, which indicates the end of the condition. Below the first line and indented with re-

spect to the if keyword will be the block of code that is executed if condition evaluates

to True.

If <condition> evaluates to False, the indented block of code is skipped. In either

case, whether the indented code has been executed or not, the execution continues with

the Python statement <non-indented statement> directly below, and with the same

indentation as, the first line of the if statement.

62 Chapter 3 Imperative Programming

!

CAUTION
Indentation

In Python, proper indentation of Python statements is critical. Compare

if temp > 86:

print('Its hot!')
print('Be sure to drink liquids.')

print('Goodbye.')

with

if temp > 86:

print('It is hot!')
print('Be sure to drink liquids.')
print('Goodbye.')

In the first code fragment, the statement print('Goodbye.') has the same
indentation as the first line of the if statement. It is therefore a statement that is
executed after the if statement, regardless of whether the if statement condition
is true or false.

In the second code fragment, the statement print('Goodbye.') is indented
with respect to the first line of the if statement. It is therefore part of the block that
is executed only if the if statement condition is true.

Practice Problem
3.2

Translate these conditional statements into Python if statements:

(a) If age is greater 62, print 'You can get your pension benefits'.

(b) If name is in list ['Musial', 'Aaraon', 'Williams', 'Gehrig', 'Ruth'],

print 'One of the top 5 baseball players, ever!'.

(c) If hits is greater than 10 and shield is 0, print 'You are dead...'.

(d) If at least one of the Boolean variables north, south, east, and west is True, print

'I can escape.'.

Two-Way Decisions
In a one-way decision if statement, an action is performed only if a condition is true. Then,

whether the condition is true or false, execution resumes with the statement following the

if statement. In other words, no special action is performed if the condition is false.

Sometimes, however, that is not what we want. We may need to perform one action

when the condition is true and another if the condition is false. Continuing with the temper-

ature example, suppose we would like to print an alternative message if the value of temp
is not greater than 86. We can achieve this behavior with a new version of the if statement,

one that uses the else clause. We use program twoWay.py to illustrate this.

Section 3.2 Execution Control Structures 63

Module: twoWay.py
1 temp = eval(input('Enter the current temperature: '))
2

3 if temp > 86:
4

5 print('It is hot!')
6 print('Be sure to drink liquids.')
7

8 else:
9

10 print('It is not hot.')
11 print('Bring a jacket.')
12

13 print('Goodbye.')

When line 3 of the program is executed, there are two cases. If the value of temp is

greater than 86, the indented block

print('It is hot!')
print('Be sure to drink liquids.')

is executed. If temp is not greater than 86, the indented block below else is executed

instead:

print('It is not hot.')
print('Bring a jacket.')

In both cases, execution resumes with the statement following, and indented the same

as, the if/else statement (i.e., the statement in line 13). The flowchart illustrating the two

possible execution flows is shown in Figure 3.4.

temp = input('Enter the current temperature: ')

temp > 86:

print('It is not hot.') print('It is hot!')

print('Bring a jacket.') print('Be sure to drink liquids.')

print('Goodbye.')

TrueFalse

Figure 3.4 Flowchart for
program twoWay. If the
condition temp > 86 is
true, the body of the if
statement gets executed;
if false, the body of the
else clause gets executed.
In both cases, execution
resumes with the
statements after the
if/else pair of statements.

64 Chapter 3 Imperative Programming

The more general version of the if statement has the following format:

if <condition>:
<indented code block 1>

else:
<indented code block 2>

<non-indented statement>

The indented code section <indented code block 1> is executed if <condition> eval-

uates to True; if <condition> evaluates to False, the indented code section <indented
code block 2> is executed instead. After executing one or the other code block, execu-

tion resumes with the statement <non-indented statement>.

Practice Problem
3.3

Translate these into Python if/else statements:

(a) If year is divisible by 4, print 'Could be a leap year.'; otherwise print 'Definitely not

a leap year.'

(b) If list ticket is equal to list lottery, print 'You won!'; else print 'Better luck next

time...'

Practice Problem
3.4

Implement a program that starts by asking the user to enter a login id (i.e., a string). The

program then checks whether the id entered by the user is in the list ['joe', 'sue',
'hani', 'sophie'] of valid users. Depending on the outcome, an appropriate message

should be printed. Regardless of the outcome, your function should print 'Done.' before

terminating. Here is an example of a successful login:

>>>
Login: joe
You are in!
Done.

And here is one that is not:

>>>
Login: john
User unknown.
Done.

Iteration Structures
In Chapter 2 we introduced strings and lists. Both are sequences of objects. A string can

be viewed as a sequence of one-character strings; a list is a sequence of objects of any type

(strings, numbers, even other lists). A task that is common to all sequences is to perform an

action on every object in the sequence. For example, you could go down your list of contacts

and send a party invite to contacts living nearby. Or you could go through a shopping list to

check that you purchased everything on it. Or you could go through the characters of your

name in order to spell it.

www.allitebooks.com

http://www.allitebooks.org

Section 3.2 Execution Control Structures 65

Let’s use this last example. Suppose we would like to implement a short program that

spells the string entered by the user:

>>>
Enter a word: Lena
The word spelled out:
L
e
n
a

The program first requests the user to enter a string. Then, after printing the line 'The
word spelled out:', the characters of the string entered by the user are printed one per

line. We can start the implementation of this program as follows:

name = input('Enter a word: ')
print('The word spelled out:')
...

In order to complete this program, we need a method that will allow us to execute a

print() statement for every character of the string name. The Python for loop statement

can be used to do exactly this. This program implements the behavior we want:

Module: spelling.py
1 name = input('Enter a word: ')
2 print('The word spelled out: ')
3

4 for char in name:
5 print(char)

The for loop statement encompasses lines 4 and 5 of the program. In line 4, char is

a variable name. The for loop statement will repeatedly assign characters of string name
to variable char. If name is string 'Lena', char will first have value 'L', then 'e', then

'n', and finally 'a'. For each value of char, the indented print statement print(char)
is executed. Figure 3.5 illustrates the workings of this loop.

a L e n a

Iteration 1: char = L

Iteration 2: char = e

Iteration 3: char = n

Iteration 4: char = a

Figure 3.5 Iteration
through a string. The
variable char is assigned
'L' in iteration 1, 'e' in
iteration 2, 'n' in iteration
3, and 'a' in iteration 4; in
every iteration, the current
value of char is printed. So
when char is 'L', 'L' gets
printed; when char is 'e',
'e' gets printed, and so on.

66 Chapter 3 Imperative Programming

The for loop can also be used to iterate over the items of a list. In the next example, we

use, in the interactive shell, a for loop to iterate over string objects representing my pets:

>>> animals = ['fish', 'cat', 'dog']
>>> for animal in animals:

print(animal)

fish
cat
dog

The for loop executes the indented section print(animal) three times, once for each

value of animal; the value of animal is first 'fish', then 'cat', and finally 'dog', as

illustrated in Figure 3.6.

Figure 3.6
Iteration through a list.
The value of variable
animal is set to 'fish' in
iteration 1, then to 'cat' in
iteration 2, and finally to
'dog'. In each iteration, the
value of animal is printed.

0 1 2

animals 'fish' 'cat' 'dog'

Iteration 1: animal = 'fish'

Iteration 2: animal = 'cat'

Iteration 3: animal = 'dog'

!

CAUTION
The for Loop Variable

The variable char in

for char in name:
print(char)

and the variable animal in

for animal in animals:
print(animal)

are just variable names, chosen to make the program more meaningful. We could
have just as easily written the loops with, say, variable name x:

for x in name:
print(x)

for x in animals:
print(x)

Note: If we change the name of the for loop variable, we also need to change any
occurrence of it in the body of the for loop.

Section 3.2 Execution Control Structures 67

In general, the for loop statement has this format:

for <variable> in <sequence>:
<indented code block >

<non-indented code block>

The for loop will successively assign objects from <sequence> to <variable>, in order

as they appear from left to right. The <indented code block>, typically called the body
of the for loop, is executed once for every value of <variable>. We say that the for loop

iterates through the objects in the sequence. After <indented code block> has been

executed for the last time, execution resumes with the statements after the for loop; they

will be below, and use the same indentation as, the first line of the for loop statement.

Nesting Control Flow Structures
Let’s use the for loop to write a program that combines a for loop and an if statement.

We would like to write an application that starts by asking the user to enter a phrase. After

the user has done so, the program will print all the vowels in the phrase, and no other letter.

The program should behave like this:

>>>
Enter a phrase: test case
e
a
e

This program will consist of several components. We need an input() statement to

read in the phrase, a for loop to iterate over the characters of the input string, and, in every

iteration of the for loop, an if statement to check whether the current character is a vowel.

If so, it gets printed. Next is the complete program.

Module: for.py
1 phrase = input('Enter a phrase: ')
2

3 for c in phrase:
4 if c in 'aeoiuAEIOU':
5 print(c)

Note that we combined a for loop and an if statement and that indentation is used

to specify the body of each. The if statement body is just print(c) while the for loop

statement body is:

if c in 'aeiouAEIOU':
print(c)

Practice Problem
3.5

Implement a program that requests from the user a list of words (i.e., strings) and then

prints on the screen, one per line, all four-letter strings in the list.

>>>
Enter word list: ['stop', 'desktop', 'top', 'post'])
stop
post

68 Chapter 3 Imperative Programming

Function range()
We just saw how the for loop is used to iterate over the items of a list or the characters of

a string. It is often necessary to iterate over a sequence of numbers in a given range, even if

the list of numbers is not explicitly given. For example, we may be searching for a divisor

of a number. Or we could be iterating over the indexes 0, 1, 2, . . . of a sequence object. The

built-in function range() can be used together with the for loop to iterate over a sequence

of numbers in a given range. Here is how we can iterate over the integers 0, 1, 2, 3, 4:

>>> for i in range(5):
print(i)

0
1
2
3
4

Function range(n) is typically used to iterate over the integer sequence 0, 1, 2, . . . , n 1.

In the last example, variable i is set to 0 in the first iteration; in the following iterations, i
gets assigned values 1, 2, 3, and finally 4 (as n = 5). As in previous for loop examples, the

indented code section of the for loop is executed in every iteration, for every value of i.

Practice Problem
3.6

Write the for loop that will print these sequences of numbers, one per line, in the interactive

shell.

(a) Integers from 0 to 9 (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

(b) Integers from 0 to 1 (i.e., 0, 1)

The range() function can also be used to iterate over more complex sequences of

numbers. If we would like the sequence to start at a nonzero number start and end before
number end, we make the function call range(start,end). For example, this for loop

iterates over the sequence 2, 3, 4:

>>> for i in range(2, 5):
print(i)

2
3
4

In order to generate sequences that use a step size other than 1, a third argument can be used.

The function call range(start, end, step) can be used to iterate over the sequence of

integers starting at start, using a step size of step and ending before end. For example,

the next loop will iterate over the sequence 1, 4, 7, 10, 13:

>>> for i in range(1, 14, 3):
print(i)

The sequence printed by the for loop starts at 1, uses a step size of 3, and ends before 14.

Therefore it will print 1, 4, 7, 10, and 13.

Section 3.3 User-Defined Functions 69

Practice Problem
3.7

Write the for loop that will print the following sequences of numbers, one per line.

(a) Integers from 3 up to and including 12

(b) Integers from 0 up to but not including 9, but with a step of 2 instead of the default

of 1 (i.e., 0, 2, 4, 6, 8)

(c) Integers from 0 up to but not including 24 with a step of 3

(d) Integers from 3 up to but not including 12 with a step of 5

3.3 User-Defined Functions
We have already seen and used several built-in Python functions. The function len(), for

example, takes a sequence (a string or a list, say) and returns the number of items in the

sequence:

>>> len('goldfish')
8
>>> len(['goldfish', 'cat', 'dog'])
3

Function max() can take two numbers as input and returns the maximum of the two:

>>> max(4, 7)
7

Function sum() can take a list of numbers as input and returns the sum of the numbers:

>>> sum([4, 5, 6, 7])
22

Some functions can even be called without arguments:

>>> print()

In general, a function takes 0 or more input arguments and returns a result. One of the

useful things about functions is that they can be called, using a single-line statement, to

complete a task that really requires multiple Python statements. Even better, usually the

developer using the function does not need to know what those statements are. Because

developers do not need to worry about how functions work, functions simplify the devel-

opment of programs. For this reason, Python and other programming languages make it

possible for developers to define their own functions.

Our First Function
We illustrate how functions are defined in Python using the next example: a Python function

that takes a number as input and computes and returns the value x2 + 1. We expect this

function to behave like this:

>>> f(9)
82
>>> 3 * f(3) + 4
34

70 Chapter 3 Imperative Programming

Function f() can be defined in a Python module as:

Module: ch3.py
1 def f(x):
2 return x**2 + 1

In order to use function f() (to compute, say, f(3) or f(9)), we first have to execute this

two-line statement by running the module containing it (e.g., by pressing F5). After the

function definition statement has been executed, function f() can be used.

You can also define function f() directly in the interactive shell in this way:

>>> def f(x):
return x**2 + 1

Let’s check whether it is defined:

>>> 2 * f(2)
10

The Python function definition statement has this general format:

def <function name> (<0 or more variables>):
<indented function body>

A function definition statement starts with the def keyword. Following it is the name of

the function; in our example, the name is f. Following the name and in parentheses are the

variable names that stand in for the input arguments, if any. In function f(), the x in

def f(x):

has the same role as x in the math function f (x): to serve as the name for the input value.

The first line of the function definition ends with a colon. Below and indented is the

body of the function, a set of Python statements that implement the function. They are

executed whenever the function is called. If a function is to return a value, then the return
statement is used to specify the value to be returned. In our case, the value x2+1 is returned.

Practice Problem
3.8

Define, directly in the interactive shell, function average() that takes two numbers as

input and returns the average of the numbers. A sample usage is:

>>> average(2, 3.5)
2.75

Practice Problem
3.9

Implement function perimeter() that takes, as input, the radius of a circle (a nonnegative

number) and returns the perimeter of the circle. You should write your implementation in

a module you will name perimeter.py. A sample usage is:

>>> perimeter(1)
6.283185307179586

Not all functions need to return a value, as we will see in the next example.

Section 3.3 User-Defined Functions 71

print() versus return

As another example of a user-defined function, we develop a personalized hello() func-

tion. It takes as input a name (a string) and prints a greeting:

>>> hello('Sue')
Hello, Sue!

We implement this function in the same module as function f():

Module: ch3.py
1 def hello(name):
2 print('Hello, '+ name + '!')

When function hello() is called, it will print the concatenation of string 'Hello, ', the

input string, and string '!'.

Note that function hello() prints output on the screen; it does not return anything.

What is the difference between a function calling print() or returning a value?

!

CAUTION
Statement return versus Function print()

A common mistake is to use the print() function instead of the return statement
inside a function. Suppose we had defined function f() in this way:

def f(x):
print(x**2 + 1)

It would seem that such an implementation of function f() works fine:

>>> f(2)
5

However, when used in an expression, function f() will not work as expected:

>>> 3 * f(2) + 1
5
Traceback (most recent call last):

File '<pyshell#103>', line 1, in <module>
3 * f(2) + 1

TypeError: unsupported operand type(s) for *:
'int' and 'NoneType'

When evaluating f(2) in the expression 3 * f(2) + 1, the Python inter-
preter evaluates (i.e., executes) f(2), which prints the value 5. You can actually
see this 5 in the line before the “Traceback” error line.

So f() prints the computed value, but it does not return it. This means that
f(2) returns nothing and thus evaluates to nothing in an expression. Actually,
Python has a name for the “nothing” type: It is the 'NoneType' referred to in
the error message shown. The error itself is caused by the attempt to multiply an
integer value with “nothing.”

That said, it is perfectly OK to call print() inside a function, as long as the
intent is to print rather than return a value.

72 Chapter 3 Imperative Programming

Practice Problem
3.10

Write function negatives() that takes a list as input and prints, one per line, the negative
values in the list. The function should not return anything.

>>> negatives([4, 0, -1, -3, 6, -9])
-1
-3
-9

Function Definitions Are “Assignment” Statements
To illustrate that functions are really ordinary Python statements, similar in fact to assign-

ment statements, we use this short program:

Module: dynamic.py
1 s = input('Enter square or cube: ')
2 if s == 'square':
3 def f(x):
4 return x*x
5 else:
6 def f(x):
7 return x*x*x

In it, function f() is defined within a Python program, just as an assignment statement

can be in a program. The actual definition of f() depends on the input entered by the user

at execution time. By typing cube at the prompt, function f() is defined to be the cubic

function:

>>>
Enter square or cube: cube
>>> f(3)
27

If, however, the user types square, then f() would be the quadratic function.

!

CAUTION
First Define the Function, Then Use It

Python does not allow calling a function before it is defined, just as a variable
cannot be used in an expression before it is assigned.

Knowing this, try to figure out why running this module would result in an error:

print(f(3))

def f(x):
return x**2 + 1

Answer: When a module is executed, the Python statements are executed top to
bottom. The print(f(3)) statement will fail because the name f is not defined
yet.

Section 3.3 User-Defined Functions 73

Will we get an error when running this module?

def g(x):
return f(x)

def f(x):
return x**2 + 1

Answer: No, because functions f() and g() are not executed when the module is
run, they are just defined. After they are defined, they can both be executed without
problems.

Comments
Python programs should be well documented for two reasons:

1. The user of the program should understand what the program does.

2. The developer who develops and/or maintains the code should understand how the

program works.

Documentation for the program developer and the future maintainer is important because

undocumented code is harder to maintain, even by the programmer who wrote the code.

Such documentation is done mainly using comments written by the function developer

right next the program.

A comment is anything that follows the # symbol in a line. Here is how we add a

comment to explain the implementation of function f():

Module: ch3.py
1 def f(x):
2 return x**2 + 1 # f(x) should evaluate to x*x + 1

The comment—anything that follows # in the line—is ignored by Python.

While comments are necessary, it is also important not to overcomment. Comments

should not make it difficult to read the program. Ideally, your programs should use mean-

ingful variable names and simple, well-designed code so the program is, or is almost, self-

explanatory. That is actually easier to achieve in Python than in most other languages.

Comments should be used to identify the main components of the program and explain the

trickier parts.

Docstrings
Functions should also be documented for the function users. The built-in functions we have

seen so far all have documentation that can be viewed using function help(). For example:

>>> help(len)
Help on built-in function len in module builtins:

len(...)
len(object) -> integer

Return the number of items of a sequence or mapping.

74 Chapter 3 Imperative Programming

If we use help on our first function f(), surprisingly we get some documentation as well.

>>> help(f)
Help on function f in module __main__:

f(x)

In order to get something more useful, however, the function developer needs to add a

special comment to the function definition, one that will be picked up by the help() tool.

This comment, called a docstring, is a string that should describe what the function does

and must be placed directly below the first line of a function definition. Here is how we

would add docstring 'returns x**2+1' to our function f():

Module: ch3.py
1 def f(x):
2 'returns x**2 + 1'
3 return x**2 + 1 # compute x**2 + 1 and return obtained value

Let’s also add a docstring to our function hello():

Module: ch3.py
1 def hello(name):
2 'a personalized hello function'
3 print('Hello,' + name + ' !')

With the docstrings in place, the help() function will use them as part of the function

documentation. For example, the docstring 'returns x**2+1' is displayed when viewing

the documentation for function f():

>>> help(f)
Help on function f in module __main__:

f(x)
returns x**2 + 1

Similarly, the docstring is displayed when viewing the documentation for hello():

>>> help(hello)
Help on function hello in module __main__:

hello(name)
a personalized hello function

Practice Problem
3.11

Add docstring returns average of x and y to function average() and docstring

prints the negative numbers in list lst to function negatives() from Prac-

tice Problems 3.8 and 3.10. Check your work using the help() documentation tool. You

should get, for example:

>>> help(average)
Help on function average in module __main__:

average(x, y)
returns average of x and y

Section 3.4 Python Variables and Assignments 75

3.4 Python Variables and Assignments
Functions are either called from within the interactive shell or by another program, which

we will refer to as the calling program. In order to be able to design functions, we need to

understand how values created in the calling program—or the interactive shell—are passed

as input arguments to the function. To do this, however, we first need to understand exactly

what happens in an assignment statement.

Let’s consider this question in the context of the assignment a = 3. First, let’s note that

before executing this assignment, the identifier a does not exists:

>>> a
Traceback (most recent call last):

File "<pyshell#15>", line 1, in <module>
a

NameError: name 'a' is not defined

When the assignment

>>> a = 3

is executed, the integer object 3 and its name a are created. Python will store the name in a

table maintained by Python. This is illustrated in Figure 3.7.

a b c d

3 3.0 'hello' [2,3,5,8,11]

Figure 3.7 Assignments to
new variables. The int
object (with value) 3 is
assigned to variable a,
the float object 3.0 is
assigned to b, the str
object 'hello' is assigned
to c, and the list object
[2, 3, 5, 8, 11] is
assigned to d.

The variable a now refers to the integer object with value 3:

>>> a
3

Figure 3.7 shows that additional variables are in the table: variable b referring to float
object 3.0, variable c referring to str object 'hello', and variable d referring to list
object [2, 3, 5, 8, 11]. In other words, it illustrates that these assignments have also

been made:

>>> b = 3.0
>>> c = 'hello'
>>> d = [2, 3, 5, 8, 11]

In general, a Python assignment statement has this syntax:

<variable> = <expression>

The <expression> to the right of the = assignment operator is evaluated and the result-

ing value is stored in an object of the appropriate type; then the object is assigned to

<variable>, which is said to refer to the object or to be bound to the object.

76 Chapter 3 Imperative Programming

Mutable and Immutable Types
Subsequent assignments to a, such as

>>> a = 6

will reuse the existing name a. The result of this assignment is that variable a will be refer

to another object, integer object 6. The int object 3 no longer is referred to by a variable,

as shown in Figure 3.8.

Figure 3.8 Assigning an
immutable object to an
existing variable. The int
object 6 is assigned to
existing variable a; the int
object 3 is no longer
assigned to a variable and
can no longer be accessed.

a b c d

6 3 3.0 'hello' [2,3,5,8,11]

The important thing to note is that the assignment a = 6 did not change the value of the

integer object 3. Instead, a new integer object 6 is created, and variable a now refers to it. In

fact, there is no way to change the value of the object containing value 3. This illustrates an

important feature of Python: Python int objects cannot be changed. Integer objects are not

the only objects that cannot be modified. Types whose objects cannot be modified are called

immutable. All Python number types (bool, int, float, and complex) are immutable.

We saw in Chapter 2 that a list object can change. For example:

>>> d = [2, 3, 5, 8, 11]
>>> d[3] = 7
>>> d
[2, 3, 5, 7, 11]

The list d is modified in the second statement: the entry at index 3 is changed to 7, as shown

in Figure 3.9. Types whose objects can be modified are called mutable types. The list type

Figure 3.9 Lists are
mutable. The assignment
d[3] = 7 replaces the
object at index 3 of d with
new int object 7.

d
Before:

[2,3,5,8,11]

d
After:

[2,3,5,7,11]

is mutable. The number types are immutable. What about the string type?

>>> c = 'hello'
>>> c[1] = 'i'
Traceback (most recent call last):

File "<pyshell#23>", line 1, in <module>
c[1] = 'i'

TypeError: 'str' object does not support item assignment

We cannot modify a character of string object. The string type is immutable.

Section 3.4 Python Variables and Assignments 77

Assignments and Mutability
We often have the situation when multiple variables refer to the same object. (This is, in

particular, the case when a value is passed as an input to a function.) We need to understand

what happens when one of the variables is assigned another object. For example, suppose

we do:

>>> a = 3
>>> b = a

The first assignments creates an integer object with value 3 and gives it name a. In the

second assignment, the expression a evaluates to the integer object 3, which then receives

another name, b, as shown in Figure 3.10:

a b

3

Figure 3.10 Multiple
references to the same
object. The assignment
b = a evaluates the
expression to the right of
the = sign to object 3 and
assigns that object to
variable b.

Now, what happens when we assign something else to a?

>>> a = 6

The assignment a = 6 does not change the value of the object from 3 to 6 because the int
type is immutable. Variable a should now refer to a new object with value 6. What about

b?

>>> a
6
>>> b
3

Variable b still refers to the object with value 3, as shown in Figure 3.11:

a b

6 3

Figure 3.11 Multiple
assignments and
mutability. If a and b refer
to the same object 3 and
then object 6 is assigned to
a, b will still refer to object 3.

The point is this: If two variables refer to the same immutable object, that modifying

one variable will not affect the other.

Now let’s consider what happens with lists. We start by assigning a list to a and then

assigning a to b.

>>> a = [3, 4, 5]
>>> b = a

78 Chapter 3 Imperative Programming

We expect a and b to refer to the same list. That is indeed the case, as shown in Figure 3.12:

Figure 3.12 Multiple
assignments on a mutable
object. Both a and b refer
to the same list; the
assignment b[1] = 8
and the assignment
a[-1] = 16 will change the
same list, so any change to
the list referred by b will
change the list referred to
by a and vice versa.

a b

[3,4,5]

Now let’s see what happens when we assign a new object to b[1]:

>>> b[1] = 8
>>> b
[3, 8, 5]
>>> a
[3, 8, 5]

As we saw in Chapter 2, lists can be modified. The list b is modified by the assignment

b[1] = 8. But because variable a is bound to the same list, a will be changed as well.

Similarly, changes to list a will modify list b: assignment a[-1] = 16 will make new

object 16 be the last object in lists a and b.

Practice Problem
3.12

Draw a diagram representing the state of names and objects after this execution:

>>> a = [5, 6, 7]
>>> b = a
>>> a = 3

Swapping
We now consider a fundamental assignment problem. Let a and b refer to two integer

values:

>>> a = 6
>>> b = 3

Suppose we need to swap the values of a and b. In other words, after the swap, a will refer

to 3 and b will refer to 6, as shown in Figure 3.13.

Figure 3.13 Swapping
values. Variables a and b
swap the objects they refer
to; Python supports the
multiple assignment
statement, which makes
swapping easy.

Before:
a b

6 3

After:
a b

6 3

Section 3.5 Parameter Passing 79

If we start by assigning the value of b to a:

a = b

then variable a will refer to the same object that variable b refers to. So we will have both

a and b refer to 3 and we would have “lost” integer object 6. Before we execute a = b, we

must save a reference to 6 and then assign that to b at the end:

>>> temp = a # temp refers to 6
>>> a = b # a refers to 3
>>> b = temp # b refers to 6

In Python, there is a much simpler way to achieve the swap. Python supports the mul-

tiple assignment statement:

>>> a = 6
>>> b = 3
>>> a, b = b, a
>>> a
3
>>> b
6

In the multiple assignment statement a, b = b, a, the two expressions on the right of =
are evaluated to two objects and then each is assigned to the corresponding variable.

Before we move on from our discussion of Python assignments, we note another cool

Python feature. A value can be assigned to several variables simultaneously:

>>> i = j = k = 0

The three variables i, j, and k are all set to 0.

Practice Problem
3.13

Suppose a nonempty list team has been assigned. Write a Python statement or statements

that swap the first and last value of the list. So, if the original list is:

>>> team = ['Ava', 'Eleanor', 'Clare', 'Sarah']

then the resulting list should be:

>>> team
['Sarah', 'Eleanor', 'Clare', 'Ava']

3.5 Parameter Passing
With a better understanding of how assignments happen in Python, we can understand how

input arguments are passed in function calls. Functions are either called from within the

interactive shell or by another program. We refer to either as the calling program. The

input arguments in a function call are names of objects created in the calling program.

These names may refer to objects that are mutable or immutable. We separately consider

each case.

80 Chapter 3 Imperative Programming

Immutable Parameter Passing
We use the function g() to discuss the effect of a passing a reference to an immutable

object in a function call.

Module: ch3.py
1 def g(x):
2 x = 5

Let’s start by assigning integer 3 to variable name a:

>>> a = 3

In this assignment statement, integer object 3 is created and given name a, as shown in

Figure 3.14:

Figure 3.14 An
assignment in the main
program. Integer object
3 is assigned name a in
the main program, the
interactive shell.

interactive shell

a

3

This figure illustrates that name a has been defined in the context of the interactive

shell. It refers to an integer object whose value is 3. Now let’s call function g() with name

a as the input argument:

>>> g(a)

When this function call is made, the argument a is evaluated first. It evaluates to integer

object 3. Now, recall that function g() was defined as:

def g(x):
x = 5

The name x in def g(x): is now set to refer to the input integer object 3. In effect, it is as

if we have executed the assignment x = a:

Figure 3.15 Parameter
passing. The function call
g(a) passes the reference
a as the input argument.
Variable x, defined at the
beginning of the execution
of g(), will be assigned this
reference. Both a and x will
refer to the same object.

interactive shell

a

3

function g()

x

Thus, at the start of the execution of g(a), there are two variables that refer to the single

object 3: variable a defined in the interactive shell and variable x defined in function g()
(see Figure 3.15).

Section 3.5 Parameter Passing 81

During the execution of g(a), variable x is assigned 5. Since integer objects are im-

mutable, a no longer refers to 3 but to new integer object 5, as shown in Figure 3.16.

Variable a, however, still refers to object 3.

interactive shell

a

3

function g()

x

5

Figure 3.16 Immutable
parameter passing. When
x = 5 is executed, x will
refer to a new integer object
with value 5. The integer
object with value 3 is
unchanged. The name a
in the main program, the
interactive shell, still refers
to it.

The point of this example is this. The function g() did not, and cannot, modify the

value of a in the interactive shell. In general, when calling and executing a function, the

function will not modify the value of any variable passed as a function argument if the

variable refers to an immutable object.

What if we pass a reference to a mutable object, however?

Mutable Parameter Passing
We use the next function to see what happens when the name of a mutable object is passed

as the argument of a function call.

Module: ch3.py
1 def h(lst):
2 lst[0] = 5

Consider what happens when we execute:

>>> myList = [3, 6, 9, 12]
>>> h(myList)

In the assignment statement, a list object is created and assigned name myList. Then

the function call h(myList) is made. When function h() starts executing, the list referred

to by myList will be assigned to variable name lst defined in the function definition of

h(). So we have the situation illustrated in Figure 3.17.

interactive shell

myList

[3,6,9,12]

function g()

lst
Figure 3.17 Mutable
parameter passing. The
function call h() passes
the reference to a list as an
argument. So name myList
in the interactive shell and
name lst in h() now refer
to the same list.

While executing function h(), lst[0] is assigned 5 and so lst[0] will refer to new

object 5. Since lists are mutable, the list object referred to by lst changes. Because variable

myList in the interactive shell refers to the same list object, it means that the list object

referred to by myList changes as well. We illustrate this in Figure 3.18.

82 Chapter 3 Imperative Programming

Figure 3.18 Functions can
modify mutable
arguments. Since lists are
mutable, the assignment
lst[0] = 5 replaces the
list entry at index 0 to 5.
Since name myList in
the main program, the
interactive shell, refers to
the same list, the change
will be visible in the main
program.

function f()

myList

[5,6,9,12]

function g()

lst

This example illustrates that when a mutable object, like list object [3,6,9,12], is

passed as an argument in a function call, it may be modified by the function.

Practice Problem
3.14

Implement function swapFL() that takes a list as input and swaps the first and last ele-

ments of the list. You may assume the list will be nonempty. The function should not return

anything.

>>> ingredients = ['flour', 'sugar', 'butter', 'apples']
>>> swapFL(ingredients)
>>> ingredients
['apples', 'sugar', 'butter', 'flour']

3.6 Case Study: Automating Turtle Graphics
In Chapter 2 we implemented a sequence of Python statements—in other words, a program—

that draws the picture of a smiley face. Take a another look at this sequence of statements.

You will notice that the statements were repetitive and somewhat tedious to type. This

sequence of commands appeared several times:

t.penup()
t.goto(x, y)
t.pendown()

This sequence of Turtle method calls was used to move the Turtle object t to a new

location (with coordinates (x,y)) without leaving a trace; in other words, it was used to

make the Turtle object jump to the new location.

It would save us a lot of typing if we could replace that sequence of Python statements

with just one. That is exactly what functions are for. What we want to do is to develop a

function that takes a Turtle object and coordinates x and y as input arguments and makes

the Turtle object jump to coordinate (x,y). Here is that function:

Module: turtlefunctions.py
1 def jump(t, x, y):
2 'makes turtle t jump to coordinates (x, y)'
3

4 t.penup()
5 t.goto(x, y)
6 t.pendown()

Section 3.6 Case Study: Automating Turtle Graphics 83

Using this function instead of three statements shortens the process of drawing the smi-

ley face image. It also makes the program more understandable because the function call

jump(t, x, y):

1. Better describes the action performed by the Turtle object

2. Hides the low-level and technical pen-up and -down operations, thus removing com-

plexity from the program.

Suppose now we want to be able to draw several smiley faces next to each other as

shown in Figure 3.19.

Figure 3.19 Two smiley
faces. Ideally, each smiley
face should be drawn with
just one function call.

To do this, it would be useful to develop a function that takes as input a Turtle ob-

ject and coordinates x and y and draws a smiley face at coordinate (x,y). If we name this

function emoticon(), we could use and reuse it to draw the image.

>>> import turtle
>>> s = turtle.Screen()
>>> t = turtle.Turtle()
>>> emoticon(t, -100, 100)
>>> emoticon(t, 150, 100)

Here is the implementation of the function:

Module: ch3.py
1 def emoticon(t,x,y):
2 'turtle t draws a smiley face with chin at coordinate (x, y)'
3 # set turtle direction and pen size
4 t.pensize(3)
5 t.setheading(0)
6

7 # move to (x, y) and draw head
8 jump(t, x, y)
9 t.circle(100)

10

11 # draw right eye
12 jump(t, x+35, y+120)
13 t.dot(25)
14

15 # draw left eye
16 jump(t, x-35, y+120)
17 t.dot(25)
18

19 #draw smile
20 jump(t, x-60.62, y+65)
21 t.setheading(-60) # smile is a 120 degree
22 t.circle(70, 120) # section of a circle

84 Chapter 3 Imperative Programming

We should note a few things about the program. Note the docstring with the strange

triple quotes. In Python, strings, statements, and most expressions usually cannot span mul-

tiple lines. A string, whether defined with single quotes, as in 'example', or with double

quotes, as in "example", cannot span multiple lines of a Python program. If, however, we

need to define a string that does contain multiple lines, we must use triple quotes, as in

'''example''' or """example""".

The rest of the function follows the steps we have already developed in the case study

in Chapter 2. Note how we use the jump() function to make the program shorter and the

steps of the program more intuitive.

Practice Problem
3.15

Implement function olympic(t) that makes turtle t draw the Olympic rings shown below.

Use the jump() function from module ch3. You should be able to get the image drawn by

executing:

>>> import turtle
>>> s = turtle.Screen()
>>> t = turtle.Turtle()
>>> olympic(t)

Chapter Summary
Chapter 3 introduces tools for writing Python programs and basic program development

concepts.

We start by writing very simple interactive programs that use built-in functions print(),

input(), and eval(). Then, to create programs that execute differently depending on the

input entered by the user, we introduce the if statement. We describe its one-way and

two-way decision formats.

We introduce next the for loop statement, in its simplest form: as a way to iterate over

the items of a list or the characters of a string. We also introduce the range() function,

which enables iteration over a sequence of integers in a given range.

A focus of this chapter is how to define new functions in Python. The syntax of a

function definition statement is introduced. We pay special attention to parameter passing

(i.e., how parameters are passed when calling a function). To understand parameter passing,

we take a closer look at how assignments work. Finally, we introduce the ways to document

a function, through comments and a docstring.

In the case study, we showcase the benefits of functions—code reuse and hiding the

implementation details—by developing several turtle graphics functions.

Chapter 3 Solutions to Practice Problems 85

Solutions to Practice Problems
3.1 An input() statement is used to request a temperature. The value entered by the user

is treated as a string. One way to convert the string value to a number is with the eval()
function, which evaluates the string as an expression. An arithmetic expression is used for

the conversion from degrees Fahrenheit to degrees Celsius and the result is then printed.

fahr = eval(input('Enter the temperature in degrees Fahrenheit: '))
cels = (fahr - 32) * 5 / 9
print('The temperature in degrees Celsius is', cels)

3.2 The if statement in the interactive shell is shown without the result of the execution:

>>> if age > 62:
print('You can get your pension benefits!')

>>> if name in ['Musial','Aaron','Williams','Gehrig','Ruth']:
print('One of the top 5 baseball players, ever!')

>>> if hits > 10 and shield == 0:
print('You\'re dead ...')

>>> if north or south or east or west:
print('I can escape.')

3.3 The if statement in the interactive shell is shown without the result of the execution:

>>> if year % 4 == 0:
print('Could be a leap year.')

else:
print('Definitely not a leap year.')

>>> if ticket == lottery:
print('You won!')

else:
print('Better luck next time...')

3.4 List users is defined first. The id is then requested using function input(). The

condition id in users is used in an if statement to determine the appropriate message:

users = ['joe', 'sue', 'hani', 'sophie']
id = input('Login: ')
if id in users:

print('You are in!')
else:

print('User unknown.')
print('Done.')

Figure 3.20 presents the flowchart describing the different execution flows of this program.

3.5 We use a for loop to iterate through the words in the list. For each word, we check

whether it has length 4; if so, we print it.

wordList = eval(input('Enter word list: '))
for word in wordList:

if len(word) == 4:
print(word)

86 Chapter 3 Imperative Programming

Figure 3.20 Program
flowchart. The solid arrows
show the execution flow that
always occurs. The dashed
arrows show the possible
execution flows that occur
depending on a condition.

users = ['joe','sue','hani','sophie']

id = input('Login: ')

id in users

print('User unknown.') print('You are in!')

print('Done.')

TrueFalse

3.6 The for loops are:

>>> for i in range(10):
print(i)

>>> for i in range(2):
print(i)

3.7 We omit the complete for loop:

(a) range(3, 13), (b) range(0, 10, 2), (c) range(0, 24, 3), and (d) range(3,
12, 5).

3.8 The function average() takes two inputs. We use variable names x and y to refer to

the input arguments. The average of x and y is (x+y)/2:

>>> def average(x, y):
'returns average of x and y'
return (x + y) / 2

3.9 The perimeter of a circle of radius r is 2πr. The math function needs to be imported so

the value math.pi can be obtained:

import math
def perimeter(radius):

'returns perimeter of circle of given radius'
return 2 *math.pi * radius

3.10 The function should iterate over all numbers in the list and test each to determine

whether it is negative; if so, the number is printed.

def negatives(lst):
'prints the negative numbers in list lst'
for i in lst:

if i < 0:
print(i)

Chapter 3 Solutions to Practice Problems 87

3.11 The docstrings are shown in the solutions of the respective Practice Problems.

3.12 When variable a is assigned 3, a is bound to the new object 3. Variable b is still bound

to the list object.

a b

[5,6,7] 3

3.13 The parallel assignment statement is the easiest way to achieve the swap:

>>> team[0], team[-1] = team[-1], team[0]

Another way would be to use a temporary variable temp:

>>> temp = team[0]
>>> team[0] = team[-1]
>>> team[-1] = temp

3.14 This function just wraps the swapping code we developed in the previous practice

problem.

def swapFL(lst):
lst[0], lst[-1] = lst[-1], lst[0]

3.15 The solution uses the jump() functions from module turtlefunctions we devel-

oped in the case study. In order for Python to import this module, it must be in the same

folder as the module containing the olympic() function.

import turtlefunctions
def olympic(t):

'has turtle t draw the olympic rings'
t.pensize(3)
jump(t, 0, 0) # bottom of top center circle
t.setheading(0)

t.circle(100) # top center circle
turtlefunctions.jump(t, -220, 0)
t.circle(100) # top left circle
turtlefunctions.jump(t, 220, 0)
t.circle(100) # top right circle
turtlefunctions.jump(t, 110, -100)
t.circle(100) # bottom right circle
turtlefunctions.jump(t, -110, -100)
t.circle(100) # bottom left circle

88 Chapter 3 Imperative Programming

Exercises

3.16 Use the eval() function to evaluate these strings as Python expressions:

(a) '2 * 3 + 1'
(b) 'hello'
(c) "'hello’ + ' '+ 'world!'"
(d) "'ASCII'.count('I')"
(e) 'x = 5'

Which evaluations result in an error? Explain why.

3.17 Assume a, b, and c have been defined in the interactive shell as shown:

>>> a, b, c = 3, 4, 5

Within the interactive shell, write if statements that print 'OK' if:

(a) a is less than b.

(b) c is less than b.

(c) The sum of a and b is equal to c.

(d) The sum of the squares a and b is equal to c squared.

3.18 Repeat the previous problem with the additional requirement that 'NOT OK' is printed

if the condition is false.

3.19 Write a for loop that iterates over a list of strings lst and prints the first three

characters of every word. If lst is the list ['January', 'February', 'March'] then

the following should be printed:

Jan
Feb
Mar

3.20 Write a for loop that iterates over a list of numbers lst and prints the numbers in

the list whose square is divisible by 8. For example, if lst is [2, 3, 4, 5, 6, 7, 8,
9], then the numbers 4 and 8 should be printed.

3.21 Write for loops that use the function range() and print the following sequences:

(a) 0 1

(b) 0

(c) 3 4 5 6

(d) 1

(e) 0 3

(f) 5 9 13 17 21

Problems
Note: In the programs that use interactive input of nonstring values, you will need to use

the function eval() to force Python to treat the user’s input as a Python expression (rather

than just a string).

Chapter 3 Problems 89

3.22 Implement a program that requests a list of words from the user and then prints each

word in the list that is not 'secret'.

>>>
Enter list of words: ['cia','secret','mi6','isi','secret']
cia
mi6
isi

3.23 Implement a program that requests a list of student names from the user and prints

those names that start with letters A through M.

>>>
Enter list: ['Ellie', 'Steve', 'Sam', 'Owen', 'Gavin']
Ellie
Gavin

3.24 Implement a program that requests a nonempty list from the user and prints on the

screen a message giving the first and last element of the list.

>>>
Enter a list: [3, 5, 7, 9]
The first list element is 3
The last list element is 9

3.25 Implement a program that requests a positive integer n from the user and prints the

first four multiples of n:

>>>
Enter n: 5
0
5
10
15

3.26 Implement a program that requests an integer n from the user and prints on the screen

the squares of all numbers from 0 up to, but not including, n.

>>>
Enter n: 4
0
1
4
9

3.27 Implement a program that requests a positive integer n and prints on the screen all the

positive divisors of n. Note: 0 is not a divisor of any integer, and n divides itself.

>>>
Enter n: 49
1
7
49

90 Chapter 3 Imperative Programming

3.28 Implement a program that requests four numbers (integer or floating-point) from the

user. Your program should compute the average of the first three numbers and compare the

average to the fourth number. If they are equal, your program should print 'Equal' on the

screen.

>>>
Enter first number: 4.5
Enter second number: 3
Enter third number: 3
Enter last number: 3.5
Equal

3.29 Implement a program that requests the user to enter the x and y coordinates (each

between 10 and 10) of a dart and computes whether the dart has hit the dartboard, a circle

with center (0,0) and radius 8. If so, string It is in! should be printed on the screen.

>>>
Enter x: 2.5
Enter y: 4
It is in!

3.30 Write a program that requests a positive four-digit integer from the user and prints

its digits. You are not allowed to use the string data type operations to do this task. Your

program should simply read the input as an integer and process it as an integer, using

standard arithmetic operations (+, *, -, /, %, etc).

>>>
Enter n: 1234
1
2
3
4

3.31 Implement function reverse_string() that takes as input a three-letter string and

returns the string with its characters reversed.

>>> reverse_string('abc')
'cba'
>>> reverse_string('dna')
'and'

3.32 Implement function pay() that takes as input two arguments: an hourly wage and the

number of hours an employee worked in the last week. Your function should compute and

return the employee’s pay. Any hours worked beyond 40 is overtime and should be paid at

1.5 times the regular hourly wage.

>>> pay(10, 10)
100
>>> pay(10, 35)
350
>> pay(10, 45)
475

Chapter 3 Problems 91

3.33 The probability of getting n heads in a row when tossing a fair coin n times is 2n.

Implement function prob() that takes a nonnegative integer n as input and returns the

probability of n heads in a row when tossing a fair coin n times.

>>> prob(1)
0.5
>>> prob(2)
0.25

3.34 Implement function reverse_int() that takes a three-digit integer as input and

returns the integer obtained by reversing its digits. For example, if the input is 123, your

function should return 321. You are not allowed to use the string data type operations to

do this task. Your program should simply read the input as an integer and process it as an

integer using operators such as // and %. You may assume that the input integer does not

end with the 0 digit.

>>> reverse_int(123)
321
>>> reverse_int(908)
809

3.35 Implement function points() that takes as input four numbers x1, y1, x2, y2 that

are the coordinates of two points (x1,y1) and (x2,y2) in the plane. Your function should

compute:

• The slope of the line going through the points, unless the line is vertical

• The distance between the two points

Your function should print the computed slope and distance in the following format. If the

line is vertical, the value of the slope should be string 'infinity'. Note: Make sure you

convert the slope and distance values to a string before printing them.

>>> points(0, 0, 1, 1)
The slope is 1.0 and the distance is 1.41421356237
>>> points(0, 0, 0, 1)
The slope is infinity and the distance is 1.0

3.36 Implement function abbreviation() that takes a day of the week as input and

returns its two-letter abbreviation.

>>> abbreviation('Tuesday')
'Tu'

3.37 The computer game function collision() checks whether two circular objects col-

lide; it returns True is they do and False otherwise. Each circular object will be given by

its radius and the (x,y) coordinates of its center. Thus the function will take six numbers

as input: the coordinates x1 and y1 of the center and the radius r1 of the first circle, and the

coordinates x2 and y2 of the center and the radius r2 of the second circle.

>>> collision(0, 0, 3, 0, 5, 3)
True
>>> collision(0, 0, 1.4, 2, 2, 1.4)
False

92 Chapter 3 Imperative Programming

3.38 Implement function partition() that splits a list of soccer players into two groups.

More precisely, it takes a list of first names (strings) as input and prints the names of those

soccer players whose first name starts with a letter between and including A and M.

>>> partition(['Eleanor', 'Evelyn', 'Sammy', 'Owen', 'Gavin'])
Eleanor
Evelyn
Gavin
>>> partition(['Xena', 'Sammy', 'Owen'])
>>>

3.39 Write function lastF() that takes as input a string of the form 'FirstName LastName'
and returns a string of the form 'LastName, F.'. (Only the initial should be output for

the first name.)

>>> lastF('John Locke')
'Locke, J.'
>>> lastF('Albert Camus')
'Camus, A.'

3.40 Implement function avg() that takes as input a list that contains lists of numbers.

Each number list represents the grades a particular student received for a course. For ex-

ample, here is an input list for a class of four students:

[[95, 92, 86, 87], [66, 54], [89, 72, 100], [33, 0, 0]]

The function avg should print, one per line, every student’s average grade. You may assume

that every list of grades is nonempty, but you may not assume that every student has the

same number of grades.

>>> avg([[95, 92, 86, 87], [66, 54], [89, 72, 100], [33, 0, 0]])
90.0
60.0
87.0
11.0

3.41 The computer game function hit() takes five numbers as input: the x and y coordi-

nates of the center and the radius of a circle C, and the x and y coordinates of a point P. The

function should return True if point P is inside or on circle C and False otherwise.

>>> hit(0, 0, 3, 3, 0)
True
>>> hit(0, 0, 3, 4, 0)
False

3.42 Implement function ion2e() that takes a string as input and returns a copy of the

word back with the following change: if the entered word ends in 'ion', then 'ion' is

replaced with 'e'.

>>> ion2e('congratulation')
'congratulate'
>>> ion2e('marathon')
'marathon'

Chapter 3 Problems 93

3.43 Write a function distance() that takes as input a number: the time elapsed (in sec-

onds) between the flash and the sound of thunder. Your function should return the distance

to the lightning strike in kilometers. The speed of sound is approximately 340.29 meters

per second; there are 1000 meters in one kilometer.

>>> distance(3)
1.0208700000000002
>>> distance(6)
2.0417400000000003

3.44 (This problem builds on Problem 2.28.) Implement function polygon() that takes a

number n ≥ 3 as input and draws, using Turtle graphics, an n-sided regular polygon.

3.45 Using Turtle graphics, implement function planets(), which will simulate the plan-

etary motion of Mercury, Venus, Earth, and Mars during one rotation of planet Mars. You

can assume that:

(a) At the beginning of the simulation, all planets are lined up (say along the negative

y-axis).

(b) The distances of Mercury, Venus, Earth, and Mars from the Sun (the center of rota-

tion) are 58, 108, 150, and 228 pixels.

(c) For every 1 degree circular motion of Mars, Earth, Venus, and Mercury will move 2,

3, and 7.5 degrees, respectively.

The figure below shows the state of the simulation when Earth is about a quarter of the way

around the Sun. Note that Mercury has almost completed its first rotation.

This page intentionally left blank

CHAPTER

4Text Data, Files,
and Exceptions
4.1 Strings, Revisited 96

4.2 Formatted Output 102

4.3 Files 109

4.4 Errors and Exceptions 118

4.5 Case Study: Logging File Access 121

Chapter Summary 125

Solutions to Practice Problems 126

Exercises 128

Problems 130

IN THIS CHAPTER, we focus on the Python tools and problem-solving
patterns for processing text and files.

We take a running start by continuing the discussion of the string
class we began in Chapter 2. We discuss, in particular, the extensive set
of string methods that give Python powerful text-processing capabilities.
We then go over the text-processing tools Python provides to control the
format of output text.

After having mastered text processing, we cover files and file
input/output (I/O) (i.e., how to read from and write to files from within a
Python program).

Much of today’s computing involves the processing of text content
stored in files. We define several patterns for reading files that prepare the
file content for processing.

Working with data coming interactively from the user or from a file
introduces a source of errors for our program that we cannot really control.
We go over the common errors that can occur. Finally, in this chapter’s
case study, we showcase the text-processing and I/O concepts introduced
in the chapter in the context of an application that logs accesses to files.

95

96 Chapter 4 Text Data, Files, and Exceptions

4.1 Strings, Revisited
In Chapter 2 we introduced the string class str. Our goal then was to show that Python

supported values other than numbers. We showed how string operators make it possible to

write string expressions and process strings in a way that is as familiar as writing algebraic

expressions. We also used strings to introduce the indexing operator [].

In this section we cover strings and what can be done with them in more depth. We

show, in particular, a more general version of the indexing operator and many of the com-

monly used string methods that make Python a strong text-processing tool.

String Representations
We already know that a string value is represented as a sequence of characters that is en-

closed within quotes, whether single or double quotes:

>>> "Hello, World!"
'Hello, World!'
>>> 'hello'
'hello'

!

CAUTION
Forgetting Quote Delimiters

A common mistake when writing a string value is to forget the quotes. If the quotes
are omitted, the text will be treated as a name (e.g., a variable name) not a string
value. Since, typically, there will be no value assigned to the variable, an error will
result. Here is an example:

>>> hello
Traceback (most recent call last):

File "<pyshell#35>", line 1, in <module>
hello

NameError: name 'hello' is not defined

The error message reported that name hello is not defined. In other words, the
expression hello was treated as a variable, and the error was the result of trying
to evaluate it.

If quotes delimit a string value, how do we construct strings that contain quotes? If the

text contains a single quote, we can use double quote delimiters, and vice versa:

>>> excuse = 'I am "sick"'
>>> fact = "I'm sick"

If the text contains both type of quotes, then the escape sequence \' or \" is used to indicate

that a quote is not the string delimiter but is part of the string value. So, if we want to create

the string value

I'm "sick".

we would write:

>>> excuse = 'I\'m "sick"'

Section 4.1 Strings, Revisited 97

Let’s check whether this worked:

>>> excuse
'I\'m "sick"'

Well, this doesn’t seem to work. We would like to see: I'm "sick". Instead we still see

the escape sequence \'. To have Python print the string nicely, with the escape sequence \'
properly interpreted as an apostrophe, we need to use the print()function. The print()
function takes as input an expression and prints it on the screen; in the case of a string

expression, the print() function will interpret any escape sequence in the string and omit

the string delimiters:

>>> print(excuse)

I'm "sick"

In general, an escape sequence in a string is a sequence of characters starting with a \ that

defines a special character and that is interpreted by function print().

String values defined with the single- or double-quote delimiters must be defined in a

single line. If the string is to represent multiline text, we have two choices. One is to use

triple quotes, as we do in this poem by Emily Dickinson:

>>> poem = '''
To make a prairie it takes a clover and one bee, -
One clover, and a bee,
And revery.
The revery alone will do
If bees are few.
'''

Let’s see what the variable poem evaluates to:

>>> poem
'\nTo make a prairie it takes a clover and one bee, -\nOne clover
, and a bee,\nAnd revery.\nThe revery alone will do\nIf bees are
few.\n'

We have here another example of string containing an escape sequence. The escape se-

quence \n stands in for a new line character, also When it appears in a string argument of

the print() function, the new line escape sequence \n starts a new line:

>>> print(poem)

To make a prairie it takes a clover and one bee, -
One clover, and a bee,
And revery.
The revery alone will do
If bees are few.

Another way to create a multiline string is to encode the new line characters explicitly:

>>> poem = '\nTo make a prairie it takes a clover and one bee, -\n
One clover, and a bee,\nAnd revery.\nThe revery alone
will do\nIf bees are few.\n'

98 Chapter 4 Text Data, Files, and Exceptions

The Indexing Operator, Revisited

In Chapter 2, we introduced the indexing operator []:

>>> s = 'hello'
>>> s[0]
'h'

The indexing operator takes an index i and returns the single-character string consisting of

the character at index i.

The indexing operator can also be used to obtain a slice of a string. For example:

>>> s[0:2]
'he'

The expression s[0:2] evaluates to the slice of string s starting at index 0 and ending

before index 2. In general, s[i:j] is the substring of string s that starts at index i and

ends at index j-1. Here are more examples, also illustrated in Figure 4.1:

>>> s[3:4]
'l'
>>> s[-3:-1]
'll'

The last example shows how to get a slice using negative indexes: The substring ob-

tained starts at index 3 and ends before index 1 (i.e., at index 2). If the slice we want

starts at the first character of a string, we can drop the first index:

>>> s[:2]
'he'

In order to obtain a slice that ends at the last character of a string, we must drop the second

index:

>>> s[-3:]
'llo'

Figure 4.1 Slicing. s[0:2]
evaluates to the slice of
string s starting at index 0
and ending before index 2.
Expression s[:2] evaluates
to the same slice.
Expression s[3:4] is
equivalent to s[3].
Expression s[-3:-1] is the
slice of string s that starts at
index 3 and ends before
index 1.

-5 -4 -3 -2 -1Reverse Index

s h e l l o

Index 0 1 2 3 4

s[0:2] h e l l o

s[3:4] h e l l o

s[-3:-1] h e l l o

Section 4.1 Strings, Revisited 99

Practice Problem
4.1

Start by executing the assignment:

s = '0123456789'

Now write expressions using string s and the indexing operator that evaluate to:

(a) '234'
(b) '78'
(c) '1234567'
(d) '0123'
(e) '789'

!

CAUTION
Slicing Lists

The indexing operator is one of many operators that are shared between the string
and the list classes. The indexing operator can also be used to obtain a slice of a
list. For example, if pets is defined as

>>> pets = ['goldfish', 'cat', 'dog']

we can get slices of pets with the indexing operator:

>>> pets[:2]
['goldfish', 'cat']
>>> pets[-3:-1]
['goldfish', 'cat']
>>> pets[1:]
['cat', 'dog']

A slice of a list is a list. In other words, when the indexing operator is applied to
a list with two arguments, it will return a list. Note that this is unlike the case when
the indexing operator is applied to a list with only one argument, say an index i; in
that case, the item of the list at index i is returned.

String Methods
The string class supports a large number of methods. These methods provide the developer

with a text-processing toolkit that simplifies the development of text-processing applica-

tions. Here we cover some of the more commonly used methods.

We start with the string method find(). When it is invoked on string s with one string

input argument target, it checks whether target is a substring of s. If so, it returns the

index (of the first character) of the first occurrence of string target; otherwise, it returns

-1. For example, here is how method find() is invoked on string message using target

string 'top secret':

>>> message = '''This message is top secret and should not
be divulged to anyone without top secret clearance'''
>>> message.find('top secret')
16

100 Chapter 4 Text Data, Files, and Exceptions

Index 16 is output by method find() since string 'top secret' appears in string message
starting at index 16.

The method count(), when called by string s with string input argument target,

returns the number of times target appears as a substring of s. For example:

>>> message.count('top secret')
2

The value 2 is returned because string 'top secret' appears twice in message.

The function replace(), when invoked on string s, takes two string inputs, old and

new, and outputs a copy of string s with every occurrence of substring old replaced by

string new. For example:

>>> message.replace('top', 'no')
'This message is no secret and should not\n
be divulged to anyone without no secret clearance'

Has this changed the string message? Let’s check:

>>> print(message)
This message is top secret and should not
be divulged to anyone without top secret clearance

So string messagewas not changed by the replace()method. Instead, a copy of message,

with appropriate substring replacements, got returned. This string cannot be used later on

because we have not assigned it a variable name. Typically, the replace() method would

be used in an assignment statement like this:

>>> public = message.replace('top', 'no')
>>> print(public)
This message is no secret and should not
be divulged to anyone without no secret clearance

Recall that strings are immutable (i.e., they cannot be modified). This is the reason

why string method replace() returns a (modified) copy of the string invoking the method

rather than changing the string. In the next example, we showcase a few other methods that

return a modified copy of the string:

>>> message = 'top secret'
>>> message.capitalize()
'Top secret'
>>> message.upper()
'TOP SECRET'

Method capitalize(), when called by string s, makes the first character of s uppercase;

method upper() makes all the characters uppercase.

The very useful string method split() can be called on a string in order to obtain a

list of words in the string:

>>> 'this is the text'.split()
['this', 'is', 'the', 'text']

In this statement, the method split() uses the blank spaces in string 'this is the
text' to create word substrings that are put into a list and returned. The method split()
can also be called with a delimiter string as input: The delimiter string is used in place of

Section 4.1 Strings, Revisited 101

the blank space to break up the string. For example, to break up the string

>>> x = '2;3;5;7;11;13'

into a list of number, you would use ';' as the delimiter:

>>> x.split(';')
['2', '3', '5', '7', '11', '13']

Finally, another useful string method is translate(). It is used to replace certain

characters in a string with others based on a mapping of characters to characters. Such a

mapping is constructed using a special type of string method that is called not by a string

object but by the string class str itself:

>>> table = str.maketrans('abcdef', 'uvwxyz')

The variable table refers to a “mapping” of characters a,b,c,d,e,f to characters u,v,w,x,y,z,

respectively. We discuss this mapping more thoroughly in Chapter 6. For our purposes here,

it is enough to understand its use as an argument to the method translate():

>>> 'fad'.translate(table)
'zux'
>>> 'desktop'.translate(table)
'xysktop'

The string returned by translate() is obtained by replacing characters according to the

mapping described by table. In the last example, d and e are replaced by x and y, but the

other characters remain the same because mapping table does not include them.

A partial list of string methods is shown in Table 4.1. Many more are available, and to

view them all, use the help() tool:

>>> help(str)
...

Usage Returned Value

s.capitalize() A copy of string s with the first character capitalized if

it is a letter in the alphabet

s.count(target) The number of occurrences of substring target in

string s
s.find(target) The index of the first occurrence of substring target in

string s
s.lower() A copy of string s converted to lowercase

s.replace(old, new) A copy of string s in which every occurrence of

substring old, when string s is scanned from left to

right, is replaced by substring new
s.translate(table) A copy of string s in which characters have been

replaced using the mapping described by table
s.split(sep) A list of substrings of strings s, obtained using delimiter

string sep; the default delimiter is the blank space

s.strip() A copy of string s with leading and trailing blank

spaces removed

s.upper() A copy of string s converted to uppercase

Table 4.1 String methods.
Only some of the commonly
used string methods are
shown. Since strings are
immutable, none of these
methods mutates string s.
Methods count() and
find() return an integer,
method split() returns a
list, and the remaining
methods return a (usually)
modified copy of string s.

102 Chapter 4 Text Data, Files, and Exceptions

Practice Problem
4.2

Assuming that variable forecast has been assigned string

'It will be a sunny day today'

write Python statements corresponding to these assignments:

(a) To variable count, the number of occurrences of string 'day' in string forecast.

(b) To variable weather, the index where substring 'sunny' starts.

(c) To variable change, a copy of forecast in which every occurrence of substring

'sunny' is replaced by 'cloudy'.

4.2 Formatted Output
The results of running a program are typically shown on the screen or written to a file.

Either way, the results should be presented in a way that is visually effective. The Python

output formatting tools help achieve that. In this section we learn how to format output

using features of the print() function and the string format() method. The techniques

we learn here will transfer to formatting output to files, which we discuss in the next section.

Function print()
The print() function is used to print values onto the screen. Its input is an object and it

prints a string representation of the object’s value. (We explain where this string represen-

tation comes from in Chapter 8.)

>>> n = 5
>>> print(n)
5

Function print() can take an arbitrary number of input objects, not necessarily of the

same type. The values of the objects will be printed in the same line, and blank spaces (i.e.,

characters ' ') will be inserted between them:

>>> r = 5/3
>>> print(n, r)
5 1.66666666667
>>> name = 'Ida'
>>> print(n, r, name)
5 1.66666666667 Ida

The blank space inserted between the values is just the default separator. If we want to

insert semicolons between values instead of blank spaces, we can do that too. The print()
function takes an optional separation argument sep, in addition to the objects to be printed:

>>> print(n, r, name, sep=';')
5;1.66666666667;Ida

The argument sep=';' specifies that semicolons should be inserted to separate the printed

values of n, r, and name.

In general, when the argument sep=<some string> is added to the arguments of the

print() function, the string <some string> will be inserted between the values. Here

Section 4.2 Formatted Output 103

are some common uses of the separator. If we want to print each value separated by the

string ', ' (comma and blank space) we would write:

>>> print(n, r, name, sep=', ')
5, 1.66666666667, Ida

If we want to print the values in separate lines, the separator should be the new line char-

acter, '\n':

>>> print(n, r, name, sep='\n')
5
1.66666666667
Ida

Practice Problem
4.3

Write a statement that prints the values of variables last, first, and middle in one line,

separated by a horizontal tab character. (The Python escape sequence for the horizontal tab

character is \t.) If the variables are assigned like this:

>>> last = 'Smith'
>>> first = 'John'
>>> middle = 'Paul'

the output should be:

Smith John Paul

The print() function supports another formatting argument, end, in addition to sep.

Normally, each successive print() function call will print in a separate line:

>>> for name in ['Joe', 'Sam', 'Tim', 'Ann']:
print(name)

Joe
Sam
Tim
Ann

The reason for this behavior is that, by default, the print() statement appends a new line

character (\n) to the arguments to be printed. Suppose that the output we really want is:

Joe! Sam! Tim! Ann!

(We just saw our good friends, and we are in an exclamatory kind of mood.) When the

argument end=<some string> is added to the arguments to be printed, the string <some
string> is printed after all the arguments have been printed. If the argument end=<some
string> is missing, then the default string '\n', the new line character, is printed instead;

this causes the current line to end. So, to get the screen output in the format we want, we

need to add the argument end = '! ' to our print() function call:

>>> for name in ['Joe', 'Sam', 'Tim', 'Ann']:
print(name, end='! ')

Joe! Sam! Tim! Ann!

104 Chapter 4 Text Data, Files, and Exceptions

Practice Problem
4.4

Write function even() that takes a positive integer n as input and prints on the screen all

numbers between, and including, 2 and n divisible by 2 or by 3, using this output format:

>>> even(17)
2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16,

String Method format()
The sep argument can be added to the arguments of a print() function call to insert the

same string between the values printed. Inserting the same separator string is not always

what we want. Consider the problem of printing the day and time in the way we expect to

see time, given these variables:

>>> weekday = 'Wednesday'
>>> month = 'March'
>>> day = 10
>>> year = 2010
>>> hour = 11
>>> minute = 45
>>> second = 33

What we want is to call the print() function with the preceding variables as input argu-

ments and obtain something like:

Wednesday, March 10, 2010 at 11:45:33

It is clear that we cannot use a separator argument to obtain such an output. One way to

achieve this output would be to use string concatenation to construct a string in the right

format:

>>> print(weekday+', '+month+' '+str(day)+', '+str(year)
+' at '+str(hour)+':'+str(minute)+':'str(second))

SyntaxError: invalid syntax (<pyshell#36>, line 1)

Ooops, I made a mistake. I forgot a + before str(second). That fixes it (check it!) but

we should not be satisfied. The reason why I messed up is that the approach I used is very

tedious and error prone. There is an easier, and far more flexible, way to format the output.

The string (str) class provides a powerful class method, format(), for this purpose.

The format() string method is invoked on a string that represents the format of the

output. The arguments of the format() function are the objects to be printed. To explain

the use of the format() function, we start with a small version of our date and time exam-

ple, in which we only want to print the time:

>>> '{0}:{1}:{2}'.format(hour, minute, second)
'11:45:33'

The objects to be printed (hour, minute, and second) are arguments of the format()
method. The string invoking the format() function—that is, the string '{0}:{1}:{2}'—

is the format string: It describes the output format. All the characters outside the curly

braces—that is, the two columns (':')—are going to be printed as is. The curly braces

{0}, {1}, and {2} are placeholders where the objects will be printed. The numbers 0, 1,

Section 4.2 Formatted Output 105

and 2 explicitly indicate that the placeholders are for the first, second, and third arguments

of the format() function call, respectively. See Figure 4.2 for an illustration.

' {0} : {1} : {2} '.format (hour, minute, second) Figure 4.2 Output
formatting. The arguments
of the format() function
are printed at the positions
indicated by the curly brace
placeholders.

Figure 4.3 shows what happens when we move the indexes 0, 1, and 2 in the previous

example:

>>> '{2}:{0}:{1}'.format(hour, minute, second)
'33:11:45'

' {2} : {0} : {1} '.format (hour, minute, second) Figure 4.3 Explicit
placeholder mapping.

The default, when no explicit number is given inside the curly braces, is to assign the first

placeholder (from left to right) to the first argument of the format() function, the second

placeholder to the second argument, and so on, as shown in Figure 4.4:

>>> '{}:{}:{}'.format(hour, minute, second)
'11:45:33'

' {} : {} : {} '.format (hour, minute, second) Figure 4.4 Default
placeholder mapping.

Let’s go back to our original goal of printing the date and time. The format string we need

is '{}, {} {}, {} at {}:{}:{}' assuming that the format() function is called on

variables weekday, month, day, year, hours, minutes, seconds in that order.
We check this (see also Figure 4.5 for the illustration of the mapping of variables to

placeholders):

>>> print('{}, {} {}, {} at {}:{}:{}'.format(weekday, month,
day, year, hour, minute, second))

Wednesday, March 10, 2010 at 11:45:33

'{}, {} {}, {} at {}:{}:{}'.format(weekday,month,day,year,hour,minute,second) Figure 4.5 Mapping of day
and time variables to
placeholders.

106 Chapter 4 Text Data, Files, and Exceptions

Practice Problem
4.5

Assume variables first, last, street, number, city, state, zipcode have already

been assigned. Write a print statement that creates a mailing label:

John Doe
123 Main Street
AnyCity, AS 09876

assuming that:

>>> first = 'John'
>>> last = 'Doe'
>>> street = 'Main Street'
>>> number = 123
>>> city = 'AnyCity'
>>> state = 'AS'
>>> zipcode = '09876'

Lining Up Data in Columns
We now consider the problem of presenting data “nicely” lined up in columns. To motivate

the problem, just think about how the From, Subject and Date fields in your email client

are organized, or how the train or airline departure and arrival information is shown on

screens. As we start dealing with larger amount of data, we too sometimes will need to

present results in column format.

To illustrate the issues, let’s consider the problem of properly lining up values of func-

tions i2, i3 and 2i for i = 1,2,3, . . . Lining up the values properly is useful because it

illustrates the very different growth rates of these functions:

i i**2 i**3 2**i
1 1 1 2
2 4 8 4
3 9 27 8
4 16 64 16
5 25 125 32
6 36 216 64
7 49 343 128
8 64 512 256
9 81 729 512

10 100 1000 1024
11 121 1331 2048
12 144 1728 4096

Now, how can we obtain this output? In our first attempt, we add a sep argument to the

print() function to insert an appropriate number of spaces between the values printed in

each row:

>>> print('i i**2 i**3 2**i')
>>> for i in range(1,13):

print(i, i**2, i**3, 2**i, sep=' ')

Section 4.2 Formatted Output 107

The output we get is:

i i**2 i**3 2**i
1 1 1 2
2 4 8 4
3 9 27 8
4 16 64 16
5 25 125 32
6 36 216 64
7 49 343 128
8 64 512 256
9 81 729 512
10 100 1000 1024
11 121 1331 2048
12 144 1728 4096

While the first few rows look OK, we can see that the entries in the same column are not

properly lined up. The problem is that a fixed size separator pushes entries farther to the

right as the number of digits in the entry increases. A fized size separator is not the right

tool for the job. The proper way to represent a column of numbers is to have all the unit

digits line up. What we need is a way to fix the width of each column of numbers and print

the values right-justified within these fixed-width columns. We can do that with format

strings.

Inside the curly braces of a format string, we can specify how the value mapped to

the curly brace placeholder should be presented; we can specify its field width, alignment,
decimal precision, type, and so on.

We can specify the (minimum) field width with a decimal integer defining the number

of character positions reserved for the value. If not specified or if the specified field width

is insufficient, then the field width will be determined by the number of digits/characters in

the displayed value. Here is an example:

>>> '{0:3},{1:5}'.format(12, 354)
' 12, 354'

In this example, we are printing integer values 12 and 354. The format string has a

placeholder for 12 with '0:3' inside the braces. The 0 refers to the first argument of the

format() function (12), as we’ve seen before. Everything after the ':' specifies the for-

matting of the value. In this case, 3 indicates that the width of the placeholder should be 3.

Since 12 is a two-digit number, an extra blank space is added in front. The placeholder for

354 contains '1:5', so an extra two blank spaces are added in front.

When the field width is larger than the number of digits, the default is to right-justify—

that is, push the number value to the right. Strings are left-justified. In the next example, a

field of width 10 characters is reserved for each argument first and last. Note that extra

blanks are added after the string value:

>>> first = 'Bill'
>>> last = 'Gates'
>>> '{:10}{:10}'.format(first, last)
'Bill Gates '

The precision is a decimal number that specifies how many digits should be displayed

before and after the decimal point of a floating-point value. It follows the field width and a

period separates them. In the next example, the field width is 8 but only four digits of the

108 Chapter 4 Text Data, Files, and Exceptions

Table 4.2 Integer
presentation types. They
allow an integer value to be
output is different formats.

Type Explanation

b Outputs the number in binary

c Outputs the Unicode character corresponding to the integer value

d Outputs the number in decimal notation (default)

o Outputs the number in base 8

x Outputs the number in base 16, using lowercase letters for the

digits above 9

X Outputs the number in base 16, using uppercase letters for the

digits above 9

floating-point value are displayed:

>>> '{:8.4}'.format(1000 / 3)
' 333.3'

Compare this with the unformatted output:

>>> 1000 / 3
333.3333333333333

The type determines how the value should be presented. The available integer presenta-

tion types are listed in Table 4.2. We illustrate the different integer type options on integer

value 10:

>>> n = 10
>>> '{:b}'.format(n)
'1010'
>>> '{:c}'.format(n)
'\n'
>>> '{:d}'.format(n)
'10'
>>> '{:x}'.format(n)
'a'
>>> '{:X}'.format(n)
'A'

Two of the presentation-type options for floating-point value are f and e. The type

option f displays the value as a fixed-point number (i.e., with a decimal point and fractional

part).

>>> '{:6.2f}'.format(5 / 3)
' 1.67'

In this example, the format specification ':6.2f' reserves a minimum width of 6 with

exactly two digits past the decimal point for a floating-point value represented as a fixed-

point number. The type option e represents the value in scientific notation in which the

exponent is shown after the character e:

>>> '{:e}'.format(5 / 3)
'1.666667e+00'

This represents 1.666667 ·100.

Now let’s go back to our original problem of presenting the values of functions i2, i3,

Section 4.3 Files 109

and 2i for i = 1,2,3, . . . up to at most 12. We specify a minimum width of 3 for the values

i and 6 for the values of i2, i3, and 2i to obtain the output in the desired format.

Module: text.py
1 def growthrates(n):
2 'prints values of below 3 functions for i = 1, ..,n'
3 print(' i i**2 i**3 2**i')
4 format_str = '{0:2d} {1:6d} {2:6d} {3:6d}'
5 for i in range(2,n+1):
6 print(format_str.format(i, i**2, i**3, 2**i))

Practice Problem
4.6

Implement function roster() that takes a list containing student information and prints

out a roster, as shown below. The student information, consisting of the student’s last name,

first name, class, and average course grade, will be stored in that order in a list. Therefore,

the input list is a list of lists. Make sure the roster printed out has 10 slots for every string

value and 8 for the grade, including 2 slots for the decimal part.

>>> students = []
>>> students.append(['DeMoines', 'Jim', 'Sophomore', 3.45])
>>> students.append(['Pierre', 'Sophie', 'Sophomore', 4.0])
>>> students.append(['Columbus', 'Maria', 'Senior', 2.5])
>>> students.append(['Phoenix', 'River', 'Junior', 2.45])
>>> students.append(['Olympis', 'Edgar', 'Junior', 3.99])
>>> roster(students)
Last First Class Average Grade
DeMoines Jim Sophomore 3.45
Pierre Sophie Sophomore 4.00
Columbus Maria Senior 2.50
Phoenix River Junior 2.45
Olympia Edgar Junior 3.99

4.3 Files
A file is a sequence of bytes stored on a secondary memory device, such as a disk drive. A

file could be a text document or spreadsheet, an html file, or a Python module. Such files

are referred to as text files. Text files contain a sequence of characters that are encoded

using some encoding (ASCII, utf-8, etc.). A file also can be an executable application (like

python.exe), an image or an audio file. Theses file are referred t as binary files because they

are just a sequence of bytes and there is no encoding.

All files are managed by the file system, which we introduce next.

File System
The file system is the component of a computer system that organizes files and provides

ways to create, access, and modify files. While files may be physically stored on various

secondary (hardware) memory devices, the file system provides a uniform view of the files

110 Chapter 4 Text Data, Files, and Exceptions

Figure 4.6 Mac OS X file
system organization. The
file system consists of text
files (e.g., example.txt and
chin.txt) and binary files
(e.g., date) and folders (the
blue rectangles) organized
into a tree hierarchy; the
root of tree is a folder
named /. The figure shows
only a fragment of a file
system that usually consists
of thousands of folders and
many more files.

/

Applications

Firefox.app Python 3.1

bin

date

Users

Shared lperkovic

example.txt chin.txt

var

that hides the differences between how files are stored on the different hardware devices.

The effect is that reading or writing files is the same, whether the file is on a hard drive,

flash memory stick, or DVD-RW.

Files are grouped together into directories or folders. A folder may contain other folders

in addition to (regular) files. The file system organizes files and folders into a tree structure.

The MAC OS X file system organization is illustrated in Figure 4.6. It is a convention in

computer science to draw hierarchical tree structures upside down with the root of the tree

on top.

The folder on top of the hierarchy is called the root directory. In UNIX, Mac OS X,

and Linux file systems, the root folder is named /; in the MS Windows OS, every hardware

device will have its own root directory (e.g., C:\). Every folder and file in a file system

has a name. However, a name is not sufficient to locate a file efficiently. Every file can be

specified using a pathname that is useful for locating the file efficiently. The file pathname

can be specified in two ways.

The absolute pathname of a file consists of the sequence of folders, starting from the

root directory, that must be traversed to get to the file. The absolute pathname is represented

as a string in which the sequence of folders is separated by forward (/) or backward (\)

slashes, depending on the operating system.

For example, the absolute pathname of folder Python 3.1 is

/Applications/Python 3.1

while the absolute pathname of file example.txt is

/Users/lperkovic/example.txt

This is the case on UNIX, Mac OS X, and Linux boxes. On a Windows machine, the slashes

are backward and the “first slash,” the name of the root folder, is instead C:\.

Every command or program executed by the computer system has associated with it a

current working directory. When using the command shell, the current working directory is

typically listed at the shell prompt. When executing a Python module, the current working

directory is typically the folder containing the module. After running a Python module

from within the interactive shell (e.g., by pressing F5 in the IDLE interactive shell), the

folder containing the module becomes the current working directory for the interactive shell

commands that follow.

The relative pathname of a file is the sequence of directories that must be traversed,

starting from the current working directory, to get to the file. If the current working direc-

tory is Users, the relative pathname of file example.txt in Figure 4.6 is

lperkovic/example.txt

Section 4.3 Files 111

If the current working directory is lperkovic, the relative pathname of executable file

date is

../../bin/date

The double-period notation (..) is used to refer to the parent folder, which is the folder

containing the current working directory.

Opening and Closing a File
Processing a file consists of these three steps:

1. Opening a file for reading or writing

2. Reading from the file and/or writing to the file

3. Closing the file

The built-in function open() is used to open a file, whether the file is a text file or a

binary file. In order to read file example.txt, we must first open it:

infile = open('example.txt', 'r')

The function open() takes three string arguments: a file name and, optionally, a mode and

an encoding; we will not discuss the encoding argument until Chapter 6. The file name is

really the pathname (absolute or relative) of the file to be opened. In the last example, the

file relative pathname is example.txt. Python will look for a file named example.txt in

the current working directory (recall that this will be the folder containing the module that

was last imported); if no such file exists, an exception occurs. For example:

>>> infile = open('sample.txt')
Traceback (most recent call last):

File "<pyshell#339>", line 1, in <module>
infile = open('sample.txt')

IOError: [Errno 2] No such file or directory: 'sample.txt'

The file name could also be the absolute path of the file such as, for example

/Users/lperkovic/example.txt

on a UNIX box or

C:/Users/lperkovic/example.txt

on a Windows machine.

!

CAUTION
Backslashes or Forward Slashes in File System Paths?

In UNIX, Linux, and Mac OS X systems, the forward slash / is used as the delimiter
in a path. In Microsoft Window systems, the backslash \ is used:

C:\Users\lperkovic\example.txt

That said, Python will accept the forward slash / in paths on a Windows system.
This is a nice feature because the backslash \ inside a string is interpreted as the
start of an escape sequence.

112 Chapter 4 Text Data, Files, and Exceptions

The mode is a string that specifies how we will interact with the opened file. In function

call open('example.txt', 'r'), the mode 'r' indicates that the opened file will be

read from; it also specifies that the file will be read from as a text file.

In general, the mode string may contain one of r, w, a, or r+, to indicate whether the

file should be opened for reading, writing, appending, or reading and writing, respectively.

If missing, the default is r. In addition, t or b could also appear in the mode string: t
indicates that the file is a text file while b indicates it is a binary file. If neither is present,

the file will be opened as a text file. So open('example.txt', 'r') is equivalent to

open('example.txt', 'rt'), which is equivalent to open('example.txt'). This is

all summarized in Table 4.3.

Table 4.3 File mode. The
file mode is a string that
describes how the file will
be used: read from, written
to, or both, byte by byte or
using a text encoding.

Mode Description

r Reading mode (default)

w Writing mode; if the file already exists, its content is wiped

a Append mode; writes are appended to the end of the file

r+ Reading and writing mode (beyond the scope of this book)

t Text mode (default)

b Binary mode

The difference between opening a file as a text or binary file is that binary files are

treated as a sequence of bytes and are not decoded when read or encoded when written to.

Text files, however, are treated as encoded files using some encoding.

The open() function returns an object of an Input or Output Stream type that supports

methods to read and/or write characters. We refer to this object as a file object. Different

modes will give us file objects of different file types. Depending on the mode, the file type

will support all or some of the methods described in Table 4.4.

The separate read methods are used to read the content of the file in different ways. We

show the difference between the three on file example.txt whose content is:

File: example.txt 1 The 3 lines in this file end with the new line character.
2

3 There is a blank line above this line.

We start by opening the file for reading as a text input stream:

>>> infile = open('example.txt')

Table 4.4 File methods.
File objects such as those
returned by the open()
function support these
methods.

Method Usage Explanation

infile.read(n) Read n characters from the file infile or until the end of

the file is reached, and return characters read as a string

infile.read() Read characters from file infile until the end of the file

and return characters read as a string

infile.readline() Read file infile until (and including) the new line

character or until end of file, whichever is first, and return

characters read as a string

infile.readlines() Read file infile until the end of the file and return the

characters read as a list lines

outfile.write(s) Write string s to file outfile
file.close() Close the file

Section 4.3 Files 113

With every opened file, the file system will associate a cursor that points to a character

in the file. When the file is first opened, the cursor typically points to the beginning of the

file (i.e., the first character of the file), as shown in Figure 4.7. When reading the file, the

characters that are read are the characters that start at the cursor; if we are writing to the

file, then anything we write will be written starting at the cursor position.

We now use the read() function to read just one character. The read() function will

return the first character in the file as a (one character) string.

>>> infile.read(1)
'T'

After the character 'T' is read, the cursor will move and point to the next character, which

is 'h' (i.e., the first unread character); see Figure 4.7. Let’s use the read() function again,

but now to read five characters at a time. What is returned is a string of the five characters

following the character 'T' we initially read:

>>> infile.read(5)
'he 3 '

The function readline() will read characters from the file up to the end of the line (i.e.,

the new line character \n) or until the end of the file, whichever happens first. Note that in

our case the last character of the string returned by readline() is the new line character:

>>> infile.readline()
'lines in this file end with the new line character.\n'

The cursor now points to the beginning of the second line, as shown in Figure 4.7. Finally,

we use the read() function without arguments to read the remainder of the file:

>>> infile.read()
'\nThere is a blank line above this line.\n'

The cursor now points at the “End-Of-File” (EOF) character, which indicates the end of the

file.

Initially:
The 3 lines in this file end with the new line character.

There is a blank line above this line.
^

After read(1):
The 3 lines in this file end with the new line character.

There is a blank line above this line.
^

After read(5):
The 3 lines in this file end with the new line character.

There is a blank line above this line.
^

After readline():
The 3 lines in this file end with the new line character.

There is a blank line above this line.^

After read():
The 3 lines in this file end with the new line character.

There is a blank line above this line.

^

Figure 4.7 Reading file
example.txt. When a file
is read, the cursor will move
as the characters are read
and always point to the first
unread character. After
read(1), the character 'T'
is read and the cursor will
move to point at 'h'. After
read(5), the string 'he 3
' is read and the cursor will
move to point at 'l'. After
readline(), the rest of the
first line is read and the
cursor moves to point at the
beginning of the second line
which happens to be empty
(except for the new line
character.)

114 Chapter 4 Text Data, Files, and Exceptions

To close the opened file that infile refers to, you just do:

infile.close()

Closing a file releases the file system resources that keep track of information about the

opened file (i.e., the cursor position information).

!

CAUTION
Line Endings

If a file is read from or written to as a binary file, the file is just a sequence of
bytes and there are no lines. An encoding must exist to have a code for a new
line (i.e., a new line character). In Python, the new line character is represented by
the escape sequence \n. However text file formats are platform dependent, and
different operating systems use a different byte sequence to encode a new line:

• MS Windows uses the \r\n 2-character sequence.

• Linux/UNIX and Mac OS X use the \n character.

• Mac OS up to version 9 uses the \r character.

Python translates platform-dependent line-ends into \n when reading and trans-
lates \n back to platform-dependent line-ends when writing. By doing this, Python
becomes platform independent.

Patterns for Reading a Text File
Depending on what you need to do with a file, there are several ways to access the file

content and prepare it for processing. We describe several patterns to open a file for reading

and read the content of the file. We will use the file example.txt again to illustrate the

patterns:

1 The 3 lines in this file end with the new line character.
2

3 There is a blank line above this line.

One way to access the text file content is to read the content of the file into a string

object. This pattern is useful when the file is not too large and string operations will be

used to process the file content. For example, this pattern can be used to search the file

content or to replace every occurrence of a substring with another.

We illustrate this pattern by implementing function numChars(), which takes the name

of a file as input and returns the number of characters in the file. We use the read() function

to read the file content into a string:

Module: text.py
1 def numChars(filename):
2 'returns the number of characters in file filename'
3 infile = open(filename, 'r')
4 content = infile.read()
5 infile.close()
6

7 return len(content)

Section 4.3 Files 115

When we run this function on our example file, we obtain:

>>> numChars('example.txt')
98

Practice Problem
4.7

Write function stringCount() that takes two string inputs—a file name and a target

string—and returns the number of occurrences of the target string in the file.

>>> stringCount('example.txt', 'line')
4

The file reading pattern we discuss next is useful when we need to process the words

of a file. To access the words of a file, we can read the file content into a string and use the

string split() function, in its default form, to split the content into a list of words. (So, our

definition of a word in this example is just a contiguous sequence of nonblank characters.)

We illustrate this pattern on the next function, which returns the number of words in a file.

It also prints the list of words, so we can see the list of words.

Module: text.py
1 def numWords(filename):
2 'returns the number of words in file filename'
3 infile = open(filename, 'r')
4 content = infile.read() # read the file into a string
5 infile.close()
6

7 wordList = content.split() # split file into list of words
8 print(wordList) # print list of words too
9 return len(wordList)

Shown is the output when the function is run on our example file:

>>> numWords('example.txt')
['The', '3', 'lines', 'in', 'this', 'file', 'end', 'with',
'the', 'new', 'line', 'character.', 'There', 'is', 'a',
'blank', 'line', 'above', 'this', 'line.']

20

In function numWords(), the words in the list may include punctuation symbols, such as

the period in 'line.'. It would be nice if we removed punctuation symbols before splitting

the content into words. Doing so is the aim of the next problem.

Practice Problem
4.8

Write function words() that takes one input argument—a file name—and returns the list

of actual words (without punctuation symbols !,.:;?) in the file.

>>> words('example.txt')
['The', '3', 'lines', 'in', 'this', 'file', 'end', 'with',
'the', 'new', 'line', 'character', 'There', 'is', 'a',
'blank', 'line', 'above', 'this', 'line']

116 Chapter 4 Text Data, Files, and Exceptions

Sometimes a text file needs to be processed line by line. This is done, for example,

when searching a web server log file for records containing a suspicious IP address. A log

file is a file in which every line is a record of some transaction (e.g., the processing of a web

page request by a web server). In this third pattern, the readlines() function is used to

obtain the content of the file as a list of lines. We illustrate the pattern on a simple function

that counts the number of lines in a file by returning the length of this list. It also will print

the list of lines so we can see what the list looks like.

Module: text.py
1 def numLines(filename):
2 'returns the number of lines in file filename'
3 infile = open(filename, 'r') # open the file and read it
4 lineList = infile.readlines() # into a list of lines
5 infile.close()
6

7 print(lineList) # print list of lines
8 return len(lineList)

Let’s test the function on our example file. Note that the new line character \n is included

in each line:

>>> numLines('example.txt')
['The 3 lines in this file end with the new line character.\n',
'\n', 'There is a blank line above this line.\n']

3

All file processing patterns we have seen so far read the whole file content into a string

or a list of strings (lines). This approach is OK if the file is not too large. If the file is large,

a better approach would be to process the file line by line; that way we avoid having the

whole file in main memory. Python supports iteration over lines of a file object. We use this

approach to print each line of the example file:

>>> infile = open('example.txt')
>>> for line in infile:

print(line,end='')

The 3 lines in this file end with the new line character.

There is a blank line above this line.

In every iteration of the for loop, the variable line will refer to the next line of the file.

In the first iteration, variable line refers to the line 'The three lines in ...'; in the

second, it refers to '\n'; and in the final iteration, it refers to 'There is a blank ...'.

Thus, at any point in time, only one line of the file needs to be kept in memory.

Practice Problem
4.9

Implement function myGrep() that takes as input two strings, a file name and a target

string, and prints every line of the file that contains the target string as a substring.

>>> myGrep('example.txt', 'line')
The 3 lines in this file end with the new line character.
There is a blank line above this line.

Section 4.3 Files 117

Writing to a Text File
In order to write to a text file, the file must be opened for writing:

>>> outfile = open('test.txt', 'w')

If there is no file test.txt in the current working directory, the open() function will

create it. If a file text.txt exists, its content will be erased. In both cases, the cursor

will point to the beginning of the (empty) file. (If we wanted to add more content to the

(existing) file, we would use the mode 'a' instead of 'w'.)

Once a file is opened for writing, function write() is used to write strings to it. It will

write the string starting at the cursor position. Let’s start with a one-character string:

>>> outfile.write('T')
1

The value returned is the number of characters written to the file. The cursor now points to

the position after T, and the next write will be done starting at that point.

>>> outfile.write('his is the first line.')
22

In this write, 22 characters are written to the first line of the file, right after T. The cursor

will now point to the position after the period.

>>> outfile.write(' Still the first line...\n')
25

Everything written up until the new line character is written in the same line. With the '\n'
character written, what follows will go into the second line:

>>> outfile.write('Now we are in the second line.\n')
31

The \n escape sequence indicates that we are done with the second line and will write the

third line next. To write something other than a string, it needs to be converted to a string

first:

>>> outfile.write('Non string value like '+str(5)+' must be
converted first.\n')

49

Here is where the string format() function is helpful. To illustrate the benefit of using

string formatting, we print an exact copy of the previous line using string formatting:

>>> outfile.write('Non string value like {} must be converted
first.\n'.format(5))

49

Just as for reading, we must close the file after we are done writing:

>>> outfile.close()

The file test.txt will be saved in the current working directory and will have this content:

1 This is the first line. Still the first line...
2 Now we are in the second line.
3 Non string value like 5 must be converted first.
4 Non string value like 5 must be converted first.

118 Chapter 4 Text Data, Files, and Exceptions

!

CAUTION
Flushing the Output

When a file is opened for writing, a buffer is created in memory. All writes to the file
are really writes to this buffer; nothing is written onto the disk, at least not just yet.

The reason for not writing to disk is that writing to secondary memory such as
a disk takes a long time, and a program making many writes would be very slow
if each write had to done onto the secondary memory. What this means though is
that no file is created in the file system until the file and the writes are flushed. The
close() function will flush writes from the buffer to the file on disk before closing,
so it is critical not to forget to close the file. You can also flush the writes without
closing the file using the flush() function:

>>> outfile.flush()

4.4 Errors and Exceptions
We usually try to write programs that do not produce errors, but the unfortunate truth is

that even programs written by the most experienced developers sometimes crash. And even

if a program is perfect, it could still produce errors because the data coming from outside

the program (interactively from the user or from a file) is malformed and causes errors in

the program. This is a big problem with server programs, such as web, mail, and gam-

ing servers: We definitely do not want an error caused by a bad user request to crash the

server. Next we study some of the types of errors that can occur before and during program

execution.

Syntax Errors
Two basic types of errors can occur when running a Python program. Syntax errors are

errors that are due to the incorrect format of a Python statement. These errors occur while

the statement or program is being translated to machine language and before it is being

executed. A component of Python’s interpreter called a parser discovers these errors. For

example, expression:

>>> (3+4]
SyntaxError: invalid syntax

is an invalid expression that the parser cannot process. Here are some more examples:

>>> if x == 5
SyntaxError: invalid syntax
>>> print 'hello'
SyntaxError: invalid syntax
>>> lst = [4;5;6]
SyntaxError: invalid syntax
>>> for i in range(10):
print(i)
SyntaxError: expected an indented block

Section 4.4 Errors and Exceptions 119

In each of these statements, the error is due to an incorrect syntax (format) of a Python

statement. So these errors occur before Python has even a chance of executing the statement

on the given arguments, if any.

Practice Problem
4.10

Explain what causes the syntax error in each statement just listed. Then write a correct

version of each Python statement.

Built-In Exceptions
We now focus on errors that occur during the execution of the statement or program. They

do not occur because of a malformed Python statement or program but rather because the

program execution gets into an erroneous state. Here are some examples. Note that in each

case, the syntax (i.e., the format of the Python statement) is correct.

An error caused by a division by 0:

>>> 4 / 0
Traceback (most recent call last):

File "<pyshell#52>", line 1, in <module>
4 / 0

ZeroDivisionError: division by zero

An error caused by an invalid list index:

>>> lst = [14, 15, 16]
>>> lst[3]
Traceback (most recent call last):

File "<pyshell#84>", line 1, in <module>
lst[3]

IndexError: list index out of range

An error caused by an unassigned variable name:

>>> x + 5
Traceback (most recent call last):

File "<pyshell#53>", line 1, in <module>
x + 5

NameError: name 'x' is not defined

An error caused by incorrect operand types:

>>> '2' * '3'
Traceback (most recent call last):

File "<pyshell#54>", line 1, in <module>
'2' * '3'

TypeError: cant multiply sequence by non-int of type 'str'

An error caused by an illegal value:

>>> int('4.5')
Traceback (most recent call last):

File "<pyshell#80>", line 1, in <module>
int('4.5')

ValueError: invalid literal for int() with base 10: '4.5'

120 Chapter 4 Text Data, Files, and Exceptions

In each case, an error occurs because the statement execution got into an invalid state.

Dividing by 0 is invalid and so is using a list index that is outside of the range of valid

indexes for the given list. When this happens, we say that the Python interpreter raises an
exception. What this means is that an object gets created, and this object contains all the

information relevant to the error. For example, it will contain the error message that indi-

cates what happened and the program (module) line number at which the error occurred.

(In the preceding examples, the line number is always 1 because there is only one statement

in an interactive shell statement “program”.) When an error occurs, the default is for the

statement or program to crash and for error information to be printed.

The object created when an error occurs is called an exception. Every exception has a

type (a type as in int or list) that is related to the type of error. In the last examples, we

saw these exception types: ZeroDivisionError, IndexError, NameError, TypeError,

and ValueError. Table 4.5 describes these and a few other common errors.

Let’s see a few more examples of exceptions. An OverflowError object is raised when

a floating-point expression evaluates to a floating-point value outside the range of values

representable using the floating-point type. In Chapter 3, we saw this example:

>>> 2.0**10000
Traceback (most recent call last):

File "<pyshell#92>", line 1, in <module>
2.0**10000

OverflowError: (34, 'Result too large')

Interestingly, overflow exceptions are not raised when evaluating integer expressions:

>>> 2**10000
1995063116880758384883742162683585083823496831886192454852008949852943
... # many more lines of numbers
0455803416826949787141316063210686391511681774304792596709376

(You may recall that values of type int are, essentially, unbounded.)

The KeyboardInterupt exception is somewhat different from other exceptions be-

cause it is interactively and explicitly raised by the program user. By hitting Ctrl - C dur-

ing the execution of a program, the user can interrupt a running program. This will cause

Table 4.5 Common
exception types. When an
error occurs during program
execution, an exception
object is created. The type
of this objects depends
on the type of error that
occured. Only a few of the
built-in exception types are
listed.

Exception Explanation

KeyboardInterrupt Raised when user hits Ctrl-C, the interrupt key

OverflowError Raised when a floating-point expression evaluates

to a value that is too large

ZeroDivisionError Raised when attempting to divide by 0

IOError Raised when an I/O operation fails for an

I/O-related reason

IndexError Raised when a sequence index is outside the range

of valid indexes

NameError Raised when attempting to evaluate an unassigned

identifier (name)

TypeError Raised when an operation of function is applied to

an object of the wrong type

ValueError Raised when operation or function has an argument

of the right type but incorrect value

Section 4.5 Case Study: Logging File Access 121

the program to get into an erroneous, interrupted, state. The exception raised by the Python

interpreter is of type KeyboardInterrupt. Users typically hit Ctrl - C to interrupt a

program (when, for example, it runs too long):

>>> for i in range(2**100):
pass

The Python statement pass does nothing (for real)! It is used wherever code is required to

appear (as in the body of a for loop) but no action is to be done. By hitting Ctrl - C , we

stop the program and get a KeybordInterrupt error message:

>>> for i in range(2**100):
pass

KeyboardInterrupt

An IOError exception is raised when an input/output operation fails. For example, we

could be trying to open a file for reading but a file with the given name does not exist:

>>> infile = open('exaple.txt')
Traceback (most recent call last):

File "<pyshell#55>", line 1, in <module>
infile = open('exaple.txt')

IOError: [Errno 2] No such file or directory: 'exaple.txt'

An IOError exception is also raised when a user attempts to open a file she is not permitted

to access.

4.5 Case Study: Logging File Access
We showcase the material covered in this chapter by developing an application that records

file accesses. Every time a user opens a file using this application, a record—refered to as a

log—is created and then appended to a special text file—referred to as the log file. The log

is a one-line string that includes the name of the opened file and the access time and date.

Let’s illustrate what the application should be doing more precisely. Recall that to open

the file example.txt for reading, we need to use the function open():

>>> infile = open('example.txt', 'r')

What we want to develop is a similar function, called openLog(), that also opens a

file. Just like function open(), it would take as input the (path)name of a file and return a

reference to the opened file:

File: example.txt>>> infile = openLog('example.txt', 'r')

In addition, the function openLog() would create a log and append it to a log file called

log.txt. This means that if we were to open and read the file log.txt, the last line would

contain a log associated with the access to example.txt we just did:

>>> logfile = open('log.txt')
>>> for log in logfile:

print(log, end = '')

Friday Aug/05/11 08:56 AM: File example.txt opened.

122 Chapter 4 Text Data, Files, and Exceptions

(We assume that file log.txt did not exist prior to opening example.txt.)

Any subsequent file accesses that use openLog() would also be logged. So if we were

to open another file right after, say for writing:

File: example2.txt >>> outfile = openLog('example2.txt', 'w')

then the log recording this access would be appended to the existing log file. We would

check that in this way:

>>> logfile = open('log.txt')
>>> for log in logfile:

print(log, end = '')

Friday Aug/05/11 08:56 AM: File example.txt opened.
Friday Aug/05/11 08:57 AM: File example2.txt opened.

So, there would be a log in log.txt corresponding to every instance when a file was

opened using function openLog().

The reason to log file accesses is that doing so enables us to obtain valuable statistics.

For example, if the files were web pages hosted on a web server, the log file could be used

to obtain statistics on

• The number of web page requests handled daily

• Busy and slow times

• The most popular content on the web site

among others. This information could be used to fine-tune the web server performance.

A Thin Wrapper Function
Let’s start the implementation of function openLog(). The function takes as input the

(path)name of a file and a file mode and returns a reference to the opened file. If we ignore

the need to record the file access, the implementation is simply:

def openLog(filename, mode):
infile = open(filename, mode)
return infile

The function openLog() uses the existing function open() to open the file and obtain the

reference to the opened file, which it then returns. When the implementation of a func-

tion f() is essentially a single call to another function g(), we say that function f() is a

wrapper around function g().

Logging File Names
We now expand the implementation of openLog() to include the recording of the name

of the opened file. What this means is that every time function openLog() is called, the

following must be done:

1. The log file is opened.

2. The log is created and appended at the end of the log file.

3. The log file is closed.

Section 4.5 Case Study: Logging File Access 123

This intermediate implementation of openLog(), implements these steps:

def openLog(filename, mode):
infile = open(filename, mode)

open file log.txt in append mode and append log
outfile = open('log.txt', 'a')
outfile.write('File {} opened.\n'.format(filename))
outfile.close()

return infile

What remains to be done is to log the access time. The current date and time are ob-

tained by “asking” the underlying operating system. In Python, the time module is the

application programming interface (API) through which a Python program obtains time

information from the operating system.

Getting and Formatting the Date and Time

The time module provides an API to the operating system time utilities as well as tools to

format date and time values. We start by importing the time module:

>>> import time

Several functions in the time module return some version of the current time. The time()
function returns the time in seconds since the epoch:

>>> time.time()
1268762993.335

DETOUR
Epoch, Time, and UTC Time

Computers keep track of time by keeping track of the number of seconds since a
certain point in time, the epoch. On UNIX- and Linux-based computers (including
Mac OS X), the epoch starts at 00:00:00 of January, 1, 1970, Greenwich time.

In order to keep track of the correct number of seconds since the epoch, com-
puters need to know how long a second takes. Every computer has in its central
processing unit (CPU) a quartz clock for this purpose (and also to control the length
of the “clock cycle”.) The problem with quartz clocks is that they are not “perfect”
and will deviate from “real time” after a while. This is a problem with today’s net-
worked computers because many Internet applications require the computers to
agree on time (at least within a small error).

Today’s networked computers keep synchronizing their quartz clocks with time
servers across the Internet whose job is to serve the “official time” called the Co-
ordinated Universal Time, or UTC time. UTC is the average time of about a dozen
atomic clocks and is supposed to track the mean solar time (based on Earth’s
rotation around the sun) at the Royal Observatory in Greenwich England.

With time servers across the Internet serving this internationally agreed stan-
dard time, computers can agree on what time it is (within a small error).

124 Chapter 4 Text Data, Files, and Exceptions

You can check the epoch for your computer system using another function that returns

the time in a format very different from time():

>>> time.gmtime(0)
time.struct_time(tm_year=1970, tm_mon=1, tm_mday=1, tm_hour=
0, tm_min=0, tm_sec=0, tm_wday=3, tm_yday=1, tm_isdst=0)

The value returned by the function is a bit complex; we discuss what type of object the

function gmtime() returns in Chapter 6. But we do not need to know this to see that the

epoch (i.e., the time and date 0 seconds since the epoch) is 00:00:00 on January 1, 1970

UTC. It is UTC time, because the function gmtime(), if given integer input s, returns the

UTC time s seconds since the start of the epoch. If no argument is given to the function

gmtime(), it will return the current UTC time. The related function localtime() returns

the local time zone current time instead:

>>> time.localtime()
time.struct_time(tm_year=2010, tm_mon=3, tm_mday=16, tm_hour=
13, tm_min=50, tm_sec=46, tm_wday=1, tm_yday=75, tm_isdst=1)

The output format is not very readable (and is not designed to be). Module time provides

a formatting function strftime() that outputs time in the desired format. This function

takes a format string and the time returned by gmtime() or localtime() and outputs the

time in a format described by the format string. Here is an example, illustrated in Figure 4.8:

>>> time.strftime('%A %b/%d/%y %I:%M %p', time.localtime())
'Tuesday Mar/16/10 02:06 PM'

Figure 4.8 Mapping
directives. The directives
%A, %b, %d, %y, %I, %M, and
%p map to date and time
values in the output string
according to the map
described in Table 4.6.

%A %b / %d / %y %I : %M %p

Tuesday Mar / 16 / 10 02 : 06 PM

In this example, strftime() prints the time returned by time.localtime() in the

format specified by the format string '%A %b/%d/%y %I:%M %p'. The format string in-

cludes directives %A, %b, %d, %y, %I, %M, and %p that specify what date and time values

to output at the directive’s location, using the mapping shown in Table 4.6. All the other

characters (/, :, and the blank spaces) of the format string are copied to the output as is.

Practice Problem
4.11

Start by setting t to be the local time 1,500,000,000 seconds from the start of January 1,

1970 UTC:

>>> import time
>>> t = time.localtime(1500000000)

Construct the next strings by using the string time format function strftime():

(a) 'Thursday, July 13 2017'
(b) '09:40 PM Central Daylight Time on 07/13/2017'
(c) 'I will meet you on Thu July 13 at 09:40 PM.'

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 Chapter Summary 125

Directive Output

%a Abbreviated weekday name

%A Full weekday name

%b Abbreviated month name

%B Full month name

%d The day of the month as a decimal number between 01 and 31

%H The hours as a number between 00 and 23

%I The hours as a number between 01 and 12

%M The minutes as a number between 00 and 59

%p AM or PM

%S Seconds as a number between 00 and 61

%y Year without century as a number between 00 and 99

%Y Year as a decimal number

%Z Time zone name

Table 4.6 Time format
string directives. Only
some of the commonly used
directives for formatting date
and time values are shown.

Final Implementation of openLog()
We can now complete the implementation of function openLog().

Module: ch4.py
1 import time
2 def openLog(filename, mode = 'r'):
3 '''open file filename in given mode and return reference to
4 opened file; also log the file access in file log.txt'''
5

6 infile = open(filename, mode)
7

8 # obtain current time
9 now = time.localtime()

10 nowFormat = time.strftime('%A %b/%d/%y %I:%M %p', now)
11

12 # open file log.txt in append mode and append log
13 outfile = open('log.txt', 'a')
14 log = '{}: File {} opened.\n' # format string
15 outfile.write(log.format(nowFormat, filename))
16 outfile.close()
17

18 return infile

Chapter Summary
In this chapter we introduce Python text-processing and file-processing tools.

We revisit the string str class that was introduced in Chapter 2 and describe the differ-

ent ways string values can be defined, using single, double, or triple quotes. We describe

how to use escape sequences to define special characters in strings. Finally, we introduce

the methods supported by the class str, as only string operators were covered in Chapter 2.

A string method we focus on is method format(), which is used to control the format

of the string when printed using the print() function. We explain the syntax of format

126 Chapter 4 Text Data, Files, and Exceptions

strings that describe the output format. After having mastered string output formatting, you

will be able to focus on more complex aspects of your programs rather than on achieving

the desired output format.

This chapter also introduces file-processing tools. We first explain the concepts of a file

and of a file system. We introduce methods to open and close a file and methods read(),

to read a file, and write(), to write a string to a file. Depending on how a file will be

processed, there are different patterns for reading a file, and we describe them.

Programming errors were discussed informally in previous chapters. Because of the

higher likelihood of errors when working with files, we formally discuss what errors are and

define exceptions. We list the different types of exceptions students are likely to encounter.

In the chapter case study, we put another spotlight on output formatting in the context of

developing an application that logs accesses to files. We also introduce the valuable Stan-

dard Library module time that provides functions to obtain the time and also formatting

functions that output time in a desired format.

Solutions to Practice Problems
4.1 The expressions are:

(a) s[2:5], (b) s[7:9], (c) s[1:8], (d) s[:4], and (e) s[7:] (or s[-3:]).

4.2 The method calls are:

(a) count = forecast.count('day')
(b) weather = forecast.find('sunny')
(c) change = forecast.replace('sunny', 'cloudy')

4.3 The tab character is used as the separator.

>>> print(last, first, middle, sep='\t')

4.4 The function range() is used to iterate over integers from 2 to n; each such integer is

tested and, if divisible by 2 or 3, printed with a end = ', ' argument.

def even(n)
for i in range(2,n+1):

if i%2 == 0 or i%3 == 0:
print(i, end=', ')

4.5 We only need to place a comma and two new line characters appropriately:

>>> fstring = '{} {}\n{} {}\n{}, {} {}'
>>> print(fstring.format(first,last,number,street,city,state,zipcode))

4.6 The solution uses the floating-point presentation type f:

def roster(students):
'prints average grad for a roster of students'
print('Last First Class Average Grade')
for student in students:

print('{:10}{:10}{:10}{:8.2f}'.format(student[0],
student[1], student[2], student[3]))

Chapter 4 Solutions to Practice Problems 127

4.7 Making the file content into a string allows the use of string functions to count the

number of occurrences of substring target.

def stringCount(filename, target):
'''returns the number of occurrences of string

target in content of file filename'''
infile = open(filename)
content = infile.read()
infile.close()
return content.count(target)

4.8 To remove punctuation from a text, one can use the string translate() method to

replace every punctuation character with the empty string '':

def numWords2(filename):
'returns the number of words in file filename'
infile = open(filename, 'r')
content = infile.read()
infile.close()
table = str.maketrans('!,.:;?', 6*' ')
content=content.translate(table)
content=content.lower()
return content.split()

4.9 Iterating over the lines of the file does the job:

def myGrep(filename, target):
'prints every line of file filename containing string target'
infile = open(filename)
for line in infile:

if target in line:
print(line, end='')

4.10 The causes of the syntax errors and the correct versions are:

(a) The left parenthesis and the right bracket do not match. The intended expression is

probably either (3+4) (evaluating to integer 7) or [3+4] (evaluating to a list con-

taining integer 7).

(b) The column is missing; the correct expression is if x == 5:.

(c) print() is a function and thus must be called with parentheses and with arguments,

if any, inside them; the correct expression is print('hello').

(d) The objects in a list are separated by commas: lst=[4,5,6] is correct.

(e) The statement(s) in the body of a for loop must be indented.

>>> for i in range(3):
print(i)

4.11 The format strings are obtained as shown:

(a) time.strftime('%A, %B %d %Y', t)
(b) time.strftime('%I:%M %p %Z Central Daylight Time on %m/%d/%Y',t)
(c) time.strftime('I will meet you on %a %B %d at %I:%M %p.', t)

128 Chapter 4 Text Data, Files, and Exceptions

Exercises

4.12 Start by running, in the interactive shell, this assignment statement:

>>> s = 'abcdefghijklmnopqrstuvwxyz'

Now write expressions using string s and the indexing operator that evaluate to 'bcd',

'abc', 'defghijklmnopqrstuvwx', 'wxy', and 'wxyz'.

4.13 Let string s be defined as:

s = 'goodbye'

Write Python Boolean expressions that correspond to these propositions:

(a) The slice consisting of the second and third character of s is 'bc'.

(b) The slice consisting of the first 14 characters of s is 'abcdefghijklmn'.

(c) The slice of s excluding the first 14 characters is 'opqrstuvwxyz'.

(d) The slice of s excluding the first and last characters is 'bcdefghijklmnopqrstuvw'.

4.14 Translate each line into a Python statement:

(a) Assign to variable log the next string, which happens to be a fragment of a log of a

request for a picture from a web server:

128.0.0.1 - - [12/Feb/2011:10:31:08 -0600] "GET /docs/test.txt HTTP/1.0"

(b) Assign to variable address the first 15 characters of string log, using the indexing

operator on string log.

(c) Assign to variable date the splice of string log containing the date (26/Apr ...
-4000), using the indexing operator on string log.

4.15 For each of the below string values of s, write the expression involving s and the

string methods split() that evaluates to list:

['10', '20', '30', '40', '50', '60']

(a) s = '10 20 30 40 50 60'
(b) s = '10,20,30,40,50,60'
(c) s = '10&20&30&40&50&60'
(d) s = '10 - 20 - 30 - 40 - 50 - 60'

4.16 Implement a program that requests three words (strings) from the user. Your program

should print Boolean value True if the words were entered in dictionary order; otherwise

nothing is printed.

>>>
Enter first word: bass
Enter second word: salmon
Enter third word: whitefish
True

4.17 Translate each line into a Python statement using appropriate string methods:

(a) Assign to variable message the string 'The secret of this message is that
it is secret.'

(b) Assign to string length the length of string message, using operator len().

Chapter 4 Exercises 129

(c) Assign to variable count the number of times the substring 'secret' appears in

string message, using string method count().

(d) Assign to variable censored a copy of string message with every occurrence of

substring 'secret' replaced by 'xxxxxx', using string method replace().

4.18 Suppose variable s has been assigned in this way:

s = '''It was the best of times, it was the worst of times; it
was the age of wisdom, it was the age of foolishness; it was the
epoch of belief, it was the epoch of incredulity; it was ...'''

(The beginning of A Tale of Two Cities by Charles Dickens.) Then do the following, in

order, each time:

(a) Write a sequence of statements that produce a copy of s, named newS, in which

characters ., ,, ;, and \n have been replaced by blank spaces.

(b) Remove leading and trailing blank spaces in newS (and name the new string newS).

(c) Make the all characters in newS lowercase (and name the new string newS).

(d) Compute the number of occurences in newS of string 'it was'.

(e) Change every occurence of was to is (and name the new string newS).

(f) Split newS into a list of words and name the list listS.

4.19 Write Python statements that print the next formatted outputs using the already as-

signed variables first, middle, and last:

>>> first = 'Marlena'
>>> last = 'Sigel'
>>> middle = 'Mae'

(a) Sigel, Marlena Mae
(b) Sigel, Marlena M.
(c) Marlena M. Sigel
(d) M. M. Sigel

4.20 Given string values for the sender, recipient, and subject of an email, write a string

format expression that uses variables sender, recipient, and subject and that prints as

shown here:

>>> sender = 'tim@abc.com'
>>> recipient = 'tom@xyz.org'
>>> subject = 'Hello!'
>>> print(???) # fill in
From: tim@abc.com
To: tom@xyz.org
Subject: Hello!

4.21 Write Python statements that print the values of π and the Euler constant e in the

shown formats:

(a) pi = 3.1, e = 2.7
(b) pi = 3.14, e = 2.72
(c) pi = 3.141593e+00, e = 2.718282e+00
(d) pi = 3.14159, e = 2.71828

130 Chapter 4 Text Data, Files, and Exceptions

Problems

4.22 Write a function month() that takes a number between 1 and 12 as input and returns

the three-character abbreviation of the corresponding month. Do this without using an if
statement, just string operations. Hint: Use a string to store the abbreviations in order.

>>> month(1)
'Jan'
>>> month(11)
'Nov'

4.23 Write a function average() that takes no input but requests that the user enter a

sentence. Your function should return the average length of a word in the sentence.

>>> average()
Enter a sentence: A sample sentence
5.0

4.24 Implement function cheer() that takes as input a team name (as a string) and prints

a cheer as shown:

>>> cheer('Huskies')
How do you spell winner?
I know, I know!
H U S K I E S !
And that's how you spell winner!
Go Huskies!

4.25 Write function vowelCount() that takes a string as input and counts and prints the

number of occurrences of vowels in the string.

>>> vowelCount('Le Tour de France')
a, e, i, o, and u appear, respectively, 1, 3, 0, 1, 1 times.

4.26 The cryptography function crypto() takes as input a string (i.e., the name of a

file in the current directory). The function should print the file on the screen with this

modification: Every occurrence of string 'secret' in the file should be replaced with

string 'xxxxxx'.

File: crypto.txt >>> crypto('crypto.txt')
I will tell you my xxxxxx. But first, I have to explain
why it is a xxxxxx.

And that is all I will tell you about my xxxxxx.

4.27 Write a function fcopy() that takes as input two file names (as strings) and copies

the content of the first file into the second.

File: crypto.txt >>> fcopy('example.txt','output.txt')
>>> open('output.txt').read()
'The 3 lines in this file end with the new line character.\n\n
There is a blank line above this line.\n'

Chapter 4 Problems 131

4.28 Implement function links() that takes as input the name of an HTML file (as a

string) and returns the number of hyperlinks in that file. To do this you will assume that

each hyperlink appears in an anchor tag. You also need to know that every anchor tag ends

with the substring <\a>.

Test your code on HTML file twolinks.html or any HTML file downloaded from the

web into the folder where your program is.

File: twolinks.html>>> links('twolinks.html')
2

4.29 Write a function stats() that takes one input argument: the name of a text file. The

function should print, on the screen, the number of lines, words, and characters in the file;

your function should open the file only once.

File: example.txt>>>stats('example.txt')
line count: 3
word count: 20
character count: 98

4.30 Implement function distribution() that takes as input the name of a file (as a

string). This one-line file will contain letter grades separated by blanks. Your function

should print the distribution of grades, as shown.

File: grades.txt>>> distribution('grades.txt')
6 students got A
2 students got A-
3 students got B+
2 students got B
2 students got B-
4 students got C
1 student got C-
2 students got F

4.31 Implement function duplicate() that takes as input a string and the name of a file

in the current directory and returns True if the file contains duplicate words and False
otherwise.

File: Duplicates.txt

File: noDuplicates.txt

>>> duplicate('Duplicates.txt')
True
>>> duplicate('noDuplicates.txt')
False

4.32 The function censor() takes the name of a file (a string) as input. The function

should open the file, read it, and then write it into file censored.txt with this modifi-

cation: Every occurrence of a four-letter word in the file should be replaced with string

'xxxx'.

File: example.txt>>> censor('example.txt')

Note that this function produces no output, but it does create file censored.txt in the

current folder.

This page intentionally left blank

CHAPTER

5
Execution Control
Structures
5.1 Decision Control and the if Statement 134

5.2 for Loop and Iteration Patterns 137

5.3 More on Lists: Two-Dimensional Lists 145

5.4 while Loop 149

5.5 More Loop Patterns 151

5.6 Additional Iteration Control Statements 155

Chapter Summary 157

Solutions to Practice Problems 158

Exercises 161

Problems 163

THIS CHAPTER COVERS, in more depth, the Python statements and
techniques that provide control over what code blocks will be executed
when, and how often.

We start the discussion with the Python decision control structure, the
if statement. The if statement was introduced in Chapter 3 in its
one-way and two-way formats. We introduce here the general format: a
multiway decision control structure that allows an arbitrary number of
conditions and associated alternative code blocks to be defined.

We provide next an in-depth coverage of the Python iteration control
structures and techniques. Two Python statements provide the ability to
execute a block of code repeatedly: the for loop and the while loop. Both
are used in many different ways. The bulk of this chapter is spent on the
different iteration patterns, and when and how to use them.

Understanding different iteration patterns is really about
understanding different approaches to breaking up problems and solving
them iteratively. This chapter is thus fundamentally about problem solving.

133

134 Chapter 5 Execution Control Structures

5.1 Decision Control and the if Statement
The if statement is the fundamental decision control structure that enables alternative code

blocks to be executed based on some conditions. In Chapter 3 we introduced the Python if
statement. We first saw it in its simplest form, the one-way decision format:

if <condition>:
<indented code block>

<non-indented statement>

The statements in <indented code block> are executed only if <condition> is True;

if <condition> is False, no alternative code block is executed. Either way, execution

resumes with the statement <non-indented statement> that is below and with the same

indentation as the if statement.

The two-way decision format of the if statement is used when two alternative code

blocks have to be executed depending on a condition:

if <condition>:
<indented code block 1>

else:
<indented code block 2>

<non-indented statement>

If condition is true, <indented code block 1> is executed; otherwise, <indented
code block 2> is executed. Note that the conditions under which the two code blocks get

executed are mutually exclusive. In either case, execution again resumes with the statement

<non-indented statement>.

Three-Way (and More!) Decisions
The most general format of the Python if statement is the multiway (three or more) deci-

sion control structure:

if <condition1>:
<indented code block 1>

elif <condition2>:
<indented code block 2>

elif <condition3>:
<indented code block 3>

else: # there could be more elif statements
<indented code block last>

<non-indented statement>

This statement is executed in this way:

• If <condition1> is true, then <indented code block 1> is executed.

• If <condition1> is false but <condition2> is true, then <indented code block
2> is executed.

• If <condition1> and <condition2> are false but <condition3> is true, then

<indented code block 3> is executed.

• If no condition is true, then <indented code block last> is executed.

In all cases, the execution will resume with the statement <non-indented statement>.

Section 5.1 Decision Control and the if Statement 135

The elif keyword stands for “else if”. An elif statement is followed by a condition

just like the if statement. An arbitrary number of elif statements can follow one if
statement, and an else statement may follow them all (but is optional). Associated with

every if and elif statement, and also with the optional else statement, is an indented

code block. Python will execute the code block of the first condition that evaluates to True;

no other code block is executed. If no condition evaluates to True and an else statement

exists, the code block of the else statement is executed.

In function temperature() shown next, we expand the temperature example from

Chapter 3 to illustrate the three-way if statement:

Module: ch5.py
1 def temperature(t):
2 'prints message based on temperature value t'
3 if t > 86:
4 print('It is hot!')
5 elif t > 32:
6 print('It is cool.')
7 else: # t <= 32
8 print('It is freezing!')

For a given value of t, the indented code block of the first condition that is true is exe-

cuted; if neither the first nor second condition is true, then the indented code corresponding

to the else statement is executed:

>>> temperature(87)
It is hot!
>>> temperature(86)
It is cool.
>>> temperature(32)
It is freezing!

The flowchart of the possible executions of this function is shown in Figure 5.1.

temp > 86

print('It is hot!')

temp > 32

print('It is freezing!') print('It is cool.')

True

False

True

False

Figure 5.1 Flowchart of
function temperature().
First checked is the
condition t > 86. If
true, then the statement
print('It is hot!') is
executed. If false, then
the condition t > 32 is
checked. If true, then the
statement print('It is
cool!') is executed. If
false, then the statement
print('It is
freezing!') is executed.

136 Chapter 5 Execution Control Structures

Ordering of Conditions
There is an issue with multiway decision structures that does not exist with one- or two-

way if statements. The order in which the conditions appear in a multiway if statement

is important. To see this, try to figure out what is wrong with the order of the conditions in

the next implementation of the function temperature().

def temperature(t):
if t > 32:

print('It is cool.')
elif t > 86:

print('It is hot!')
else:

print('It is freezing!')

The problem with this implementation is that 'It is cool' will be printed for all
values of t greater than 32. So, if t is 104, what is printed is 'It is cool.'. In fact, 'It
is hot!' will never get printed, no matter how high the value of t is. The issue is that

conditions t > 32 and t > 86 are not mutually exclusive, as conditions corresponding to

code blocks in a two-way decision structure are.

One way to fix the wrong implementation is to make the conditions mutually exclusive

explicitly:

def temperature(t):
if 32 < t <= 86: # add t <= 86 condition

print('It is cool.')
elif t > 86:

print('It is hot!')
else: t <= 32

print('It is freezing!')

However, explicitly making the conditions mutually exclusive can make the code un-

necessarily complicated. Another way to fix the wrong implementation is by implicitly
making the conditions mutually exclusive, as we did in the original implementation of

function temperature(). Let’s explain this.

The temperature() application should have three distinct code blocks, each corre-

sponding to a particular temperature range: t > 86◦, 32◦ < t ≤ 86◦, and t ≤ 32◦. One of

these ranges must become the first condition of the three-way if statement, say t > 86.

Any subsequent condition in a three-way if statement will be tested only if the first

condition fails (i.e., the value of t is no more than 86). Therefore, any subsequent condi-

tion includes, implicitly, condition t <= 86. So, the explicit second condition t > 32 is

really 32 < t <= 86. Similarly, the implicit condition for the else statement is t <= 32
because it is executed only if t is at most 32.

Practice Problem
5.1

Implement function myBMI() that takes as input a person’s height (in inches) and weight

(in pounds) and computes the person’s Body Mass Index (BMI). The BMI formula is:

bmi=
weight∗703

height2

Your functions should print the string 'Underweight' if bmi< 18.5, 'Normal' if 18.5<=
bmi< 25, and Overweight if bmi>= 25.

Section 5.2 for Loop and Iteration Patterns 137

>>> myBMI(190, 75)
Normal
>>> myBMI(140, 75)
Underweight

5.2 for Loop and Iteration Patterns
In Chapter 3, we introduced the for loop. In general, the for loop has this structure:

for <variable> in <sequence>:
<indented code block>

<non-indented statement>

The variable <sequence> must refer to an object that is a string, list, range, or any

container type that can be iterated over—we will see what this means in Chapter 8. When

Python runs the for loop, it assigns successive values in <sequence> to <variable>
and executes the <indented code block> for every value of <variable>. After the

<indented code block> has been executed for the last value in <sequence>, execution

resumes with statement <non-indented statement> that is below the indented block

and has the same indentation as the first line of the for loop statement.

The for loop, and loops in general, have many uses in programming, and there are

different ways to use loops. In this section, we describe several basic loop usage patterns.

Loop Pattern: Iteration Loop
So far in this book, we have used the for loop to iterate over the items of a list:

>>> l = ['cat', 'dog', 'chicken']
>>> for animal in l:

print(animal)

cat
dog
chicken

We have used it to iterate over the characters of a string:

>>> s = 'cupcake'
>>> for c in s:

if c in 'aeiou':
print(c)

u
a
e

Iterating through an explicit sequence of values and performing some action on each

value is the simplest usage pattern for a for loop. We call this usage pattern the iteration
loop pattern. This is the loop pattern we have used most so far in this book. We include, as

our final example of an iteration loop pattern, the code from Chapter 4 that reads a file line

138 Chapter 5 Execution Control Structures

by line and prints each line in the interactive shell:

>>> infile = open('test.txt', 'r')
>>> for line in infile:

print(line, end='')

In this example, the iteration is not over characters of a string or items of a list but over

the lines of the file-like object infile. Even though the container is different, the basic

iteration pattern is the same.

Loop Pattern: Counter Loop
Another loop pattern we have been using is iterating over a sequence of integers specified

with the function range():

>>> for i in range(10):
print(i, end=' ')

0 1 2 3 4 5 6 7 8 9

We use this pattern, which we name the counter loop pattern, when we need to execute a

block of code for every integer in some range. For example, we may want to find (and print)

all even numbers from 0 up to some integer n:

>>> n = 10
>>> for i in range(n):

if i % 2 == 0:
print(i, end = ' ')

0 2 4 6 8

Practice Problem
5.2

Write a function named powers() that takes a positive integer n as input and prints, on the

screen, all the powers of 2 from 21 to 2n.

>>> powers(6)
2 4 8 16 32 64

A very common reason to iterate over a sequence of consecutive integers is to generate

the indexes of a sequence, whether the sequence is a list, string, or other. We illustrate this

with a new pets list.

>>> pets = ['cat', 'dog', 'fish', 'bird']

We can print the animals in the list using the iteration loop pattern:

>>> for animal in pets:
print(animal)

cat
dog
fish
bird

Section 5.2 for Loop and Iteration Patterns 139

Instead of iterating through the items of list pets, we could also iterate through the indexes
of list pets and achieve the same result:

>>> for i in range(len(pets)): # i is assigned 0, 1, 2, . . .
print(pets[i]) # print object at index i

cat
dog
fish
bird

Note how the range() and len() functions work in tandem to generate the indexes 0, 1,

2, and 3 of list pets. The execution of the loop is illustrated in Figure 5.2.

pets 'cat' 'dog' 'fish' 'bird'

i = 0 'cat'

i = 1 'dog'

i = 2 'fish'

i = 3 'bird'

Figure 5.2 Counter
pattern. In the for loop,
variable i is successively
assigned values 0, 1, 2,
and 3. For every value of i,
the list object pets[i] is
printed: string 'cat' when
i is 0, 'dog' when i is 1,
and so on.

The second approach, using iteration through list indexes, is more complicated and less

intuitive than the approach that iterates through list items. Why would one use it?

Well, there are situations when it is necessary to iterate through a sequence by index

rather than by value. For example, consider the problem of checking whether a list lst of

numbers is sorted in increasing order. To do this it suffices to check that each number in the

list is smaller than the next one—if there is a next one. Let’s try to implement this approach

by iterating through the items of the list:

for item in lst:
now compare item with the next object in list lst

We’re stuck. How do we compare a list item with the one following it? The problem is that

we do not really have a way to access the object in list lst that is after object item.

If we iterate through the list by list index rather than by list item, we do have a way:

The object that follows the item at index i must be at index i+1:

for i in range(len(lst)):
compare lst[i] and lst[i+1]

The next question to resolve is how to compare lst[i] and lst[i+1]. If condition

lst[i] < lst[i+1] is true, we do not need to do anything but go check the next ad-

jacent pair in the next iteration of the loop. If the condition is false—that is, lst[i] >=
lst[i+1] is true—then we know that list lst cannot be in increasing order and we can

immediately return false. So, we only need a one-way if statement inside the loop:

for i in range(len(lst)):
if lst[i] >= lst[i+1]:

return False

140 Chapter 5 Execution Control Structures

In this loop, variable i gets assigned indexes of list lst. For every value of i, we check

whether the object at position i is greater than or equal to the object at position i+1. If

that is the case, we can return False. If the for loop terminates, that means that every

consecutive pair of objects in list lst is in increasing order and therefore the whole list is

increasing.

It turns out that we have made mistake in this code. Note that we compare list items at

index 0 and 1, 1 and 2, 2 and 3, all the way to items at index len(lst)-1 and len(lst).

But there is no item at index len(lst). In other words, we do not need to compare the

last list item with the “next item” in the list. What we need to do is shorten the range over

which the for loop iterates by 1.

Here is our final solution in the form of a function that takes as input a list and returns

True if the list is sorted in increasing order and False otherwise:

Module: ch5.py
1 def sorted(lst):
2 'returns True if sequence lst is increasing, False otherwise'
3 for i in range(0, len(lst)-1): # i = 0, 1, 2, ..., len(lst)-2
4 if lst[i] > lst[i+1]:
5 return False
6 return True

Practice Problem
5.3

Write function arithmetic() that takes a list of integers as input and returns True if

they form an arithmetic sequence. (A sequence of integers is an arithmetic sequence if the

difference between consecutive items of the list is always the same.)

>>> arithmetic([3, 6, 9, 12, 15])
True
>>> arithmetic([3, 6, 9, 11, 14])
False
>>> arithmetic([3])
True

Loop Pattern: Accumulator Loop
A common pattern in loops is to accumulate “something” in every iteration of the loop.

Given a list of numbers numList, for example, we might want to sum the numbers up. To

do this using a for loop, we first need to introduce a variable mySum that will hold the sum.

This variable is initialized to 0; then a for loop can be used to iterate through the numbers

in numList and add them to mySum. For example:

>>> numList = [3, 2, 7, -1, 9]
>>> mySum = 0 # initializing the accumulator
>>> for num in numList:

mySum = mySum + num # adding to the accumulator

>>> mySum # the sum of numbers in numList
20

Section 5.2 for Loop and Iteration Patterns 141

numList 3 2 7 -1 9 mySum = 0

num = 3 mySum = mySum + num = 3

num = 2 mySum = mySum + num = 5

num = 7 mySum = mySum + num = 12

num = -1 mySum = mySum + num = 11

num = 9 mySum = mySum + num = 20

Figure 5.3 Accumulator
pattern. The for loop
iterates over the numbers
in list numList. In every
iteration, the current number
is added to the accumulator
mySum using the assignment
mySum = mySum + num.

The execution of the previous for loop example is illustrated in Figure 5.3. The variable

mySum serves as the accumulator. In this case, it is an integer accumulator initialized to 0

because we are summing integers and 0 is the identity for addition (i.e., 0 doesn’t affect

addition). Every value of num is added to the accumulator with the assignment

mySum = mySum + num

In the expression to the right of the assignment operator =, the value of num and the current

value of the accumulator mySum are added together. The assignment then puts the result of

this addition back into the accumulator mySum. We say that mySum is incremented by the

value of num. This operation is so common that there is a shortcut for it:

mySum += num

Let’s recompute the sum using this shortcut:

>>> mySum = 0
>>> for num in numList:

mySum += num

We refer to the pattern of this for loop as the accumulator loop pattern.

Accumulating Different Types
We illustrate the accumulator pattern with several more examples. Recall that in Chapter 2,

we introduced the built-in function sum() that can be used to add up the values in a list:

>>> sum(numList)
20

So, writing a for loop to sum up the numbers in a list was not really necessary. Usually,

however, a built-in function is not available. What if, for example, we wanted to multiply

all the numbers in the list? An approach similar to the one we used for the sum might work:

>>> myProd = 0 # initializing the product
>>> for num in numList: # num gets values from numList

myProd = myProd * num # myProd is multiplied by num
>>> myProd # what went wrong?
0

142 Chapter 5 Execution Control Structures

What went wrong? We initialized the accumulator product myProd to 0; the problem is

that 0 times anything is 0. When we multiply myProd by every value in numList, we will

always get 0 back. The value 0 was a good choice for initializing a sum because 0 is the

identity for the addition operator. The identity value for the product operator is 1:

>>> myProd = 1
>>> for num in numList:

myProd = myProd * num

>>> myProd
-378

Practice Problem
5.4

Implement function factorial() that takes as input a nonnegative integer and returns its

factorial. The factorial of a nonnegative integer n, denoted n!, is defined in this way:

n! =

{
1 if n = 0

n× (n 1)× (n 2)× ...×2×1 if n > 0

So, 0! = 1, 3! = 6, and 5! = 120.

>>> factorial(0)
1
>>> factorial(3)
6
>>> factorial(5)
120

In our first two examples of accumulator patterns, the accumulators were of a number

type. If we accumulate (concatenate) characters into a string, the accumulator should be

a string. What string value should the accumulator be initialized to? It has to be a value

that is the identity for string concatenation (i.e., has the property: When concatenated with

some character, the resulting string should just be the character). The empty string '' (not

the blank space!) is thus the identity for string concatenation.

Practice Problem
5.5

An acronym is a word formed by taking the first letters of the words in a phrase and then

making a word from them. For example, RAM is an acronym for random access memory.

Write a function acronym() that takes a phrase (i.e., a string) as input and then returns the

acronym for that phrase. Note: The acronym should be all uppercase, even if the words in

the phrase are not capitalized.

>>> acronym('Random access memory')
'RAM'
>>> acronym('central processing unit')
'CPU'

If we accumulate objects into a list, the accumulator should be a list. What is the identity

for list concatenation? It is the empty list [].

Section 5.2 for Loop and Iteration Patterns 143

Practice Problem
5.6

Write function divisors() that takes a positive integer n as input and returns the list of

all positive divisors of n.

>>> divisors(1)
[1]
>>> divisors(6)
[1, 2, 3, 6]
>>> divisors(11)
[1, 11]

Loop Patterns: Nested Loop
Suppose we would like to develop a function nested() that takes one positive integer n as

input and prints, on the screen, these n lines:

0 1 2 3 ... n-1
0 1 2 3 ... n-1
0 1 2 3 ... n-1
...
0 1 2 3 ... n-1

For example:

>>> n = 5
>>> nested(n)
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4

As we have seen, in order to print one line, it suffices to do:

>>> for i in range(n):
print(i,end=' ')

0 1 2 3 4

In order to get n such lines (or 5 lines in this case), all we need to do is repeat the loop n
times (or 5 times in this case). We can do that with an additional outer for loop, which will

repeatedly execute the for loop:

>>> for j in range(n): # outer loop iterates 5 times
for i in range(n): # inner loop prints 0 1 2 3 4

print(i, end = ' ')

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Oops, this is not what we wanted. The statement print(i, end=' ') forces all the num-

bers in one line. What we want is to start a new line after each sequence 0 1 2 3 4 has

been printed. In other words, we need to call function print() with no arguments every

144 Chapter 5 Execution Control Structures

time the inner loop

for i in range(n):
print(i, end = ' ')

has been executed. Here is our final solution:

Module: ch5.py
1 def nested(n):
2 'prints n lines each containing value 0 1 2 ... n-1'
3 for j in range(n): # repeat n times:
4 for i in range(n): # print 0, 1, ..., n-1
5 print(i, end = ' ')
6 print() # move cursor to next line

Note that we needed to use a variable name in the outer for loop different from the variable

name in the inner for loop (i).

In this program, a loop statement is contained inside another loop statement. We refer

to this type of loop pattern as a nested loop pattern. A nested loop pattern may contain

more than two nested loops.

Practice Problem
5.7

Write a function xmult() that takes two lists of integers as input and returns a list contain-

ing all products of integers from the first list with the integers from the second list.

>>> xmult([2], [1, 5])
[2, 10]
>>> xmult([2, 3], [1, 5])
[2, 10, 3, 15]
>>> xmult([3, 4, 1], [2, 0])
[6, 0, 8, 0, 2, 0]

Suppose now we would like to write another function, nested2(), that takes one pos-

itive integer n and prints, on the screen, these n lines:

0
0 1
0 1 2
0 1 2 3
...
0 1 2 3 ... n-1

For example:

>>> nested2(5)
0
0 1
0 1 2
0 1 2 3
0 1 2 3 4

What needs to be changed in function nested() to create this output? In nested(), the

complete line 0 1 2 3 ... n-1 is printed for every value of variable j. What we now

Section 5.3 More on Lists: Two-Dimensional Lists 145

want is to:

• Print 0 when j is 0.

• Print 0 1 when j is 1.

• Print 0 1 2 when j is 2, and so on.

Inner loop variable i needs to iterate not over range(n) but over values 0, 1, 2, . . . , j,

that is, over range(j+1). This suggests this solution:

Module: ch5.py
1 def nested2(n):
2 'prints n lines 0 1 2 ... j for j = 0, 1, ..., n-1'
3 for j in range(n): # j = 0, 1, ..., n-1
4 for i in range(j+1): # print 0 1 2 ... j
5 print(i, end = ' ')
6 print() # move to next line

Practice Problem
5.8

One way to sort a list of n different numbers in increasing order is to execute n 1 passes

over the numbers in the list. Each pass compares all adjacent numbers in the list and swaps

them if they are out of order. At the end of the first pass, the largest item will be the last

in the list (at index n 1). Therefore, the second pass can stop before reaching the last

element, as it is already in the right position; the second pass will place the second largest

item in the next to last position. In general, pass i will compare pairs at indexes 0 and 1, 1

and 2, 2 and 3, . . . , and i 1 and i; at the end of the pass, the ith largest item will be at

index n i. Therefore, after pass n 1, the list will be in increasing order.

Write a function bubbleSort() that takes a list of numbers as input and sorts the list

using this approach.

>>> lst = [3, 1, 7, 4, 9, 2, 5]
>>> bubblesort(lst)
>>> lst
[1, 2, 3, 4, 5, 7, 9]

5.3 More on Lists: Two-Dimensional Lists
Lists we have seen so far can be viewed as one-dimensional tables. For example, the list

>>> l = [3, 5, 7]

can be viewed as the table

3 5 7

A one-dimensional table can easily be represented in Python as a list. But what about

two-dimensional tables like the next one?

146 Chapter 5 Execution Control Structures

4 7 2 5

5 1 9 2

8 3 6 6

A two-dimensional table such as this is represented in Python as a list of lists, also

referred to as a two-dimensional list.

Two-Dimensional Lists
A two-dimensional table can be viewed as consisting of a bunch of rows (or one-dimensional

tables). That is exactly how two-dimensional tables are represented in Python: a list of list

elements, with each list element corresponding to a row of the table. For example, the

preceding two-dimensional table is represented in Python as:

>>> t = [[4, 7, 2, 5], [5, 1, 9, 2], [8, 3, 6, 6]]
>>> t
[[4, 7, 2, 5], [5, 1, 9, 2], [8, 3, 6, 6]]

List t is illustrated in Figure 5.4; note that t[0] corresponds to the first row of the table,

t[1] corresponds to the second row, and t[2] corresponds to the third row. We check this:

>>> t[0]
[4, 7, 2, 2]
>>> t[1]
[5, 1, 9, 2]

So far there really is nothing new here: We knew that a list could contain another list.

What is special here is that each list element is of the same size. Now, how do we access

(read or write) individual table items? An item in a two-dimensional table is typically ac-

cessed by using its “coordinates” (i.e., its row index and column index). For example, the

value 8 in the table is in row 2 (counting from the topmost row and starting with index 0)

and column 0 (counting from the leftmost column). In other words, 8 is located at index 0
of of list t[2], or at t[2][0] (see Figure 5.4). In general, the item located in row i and

Figure 5.4
Two-dimensional list. List
t represents a 2D table. The
first row of the table is t[0],
the second is t[1], and the
third is t[2]. The items in
the first row are t[0][0],
t[0][1], t[0][2], and
t[0][3]. The items in the
second row are t[1][0],
t[1][1], t[1][2],
t[1][3], and so on.

t[0][0] t[0][1] t[0][2] t[0][3]

t[0] 4 7 2 5

t[1][0] t[1][1] t[1][2] t[1][3]

t[1] 5 1 9 2

t[2][0] t[2][1] t[2][2] t[2][3]

t[2] 8 3 6 6

Section 5.3 More on Lists: Two-Dimensional Lists 147

column j of a two-dimensional list t is accessed with the expression t[i][j]:

>>> t[2][0] # the element in row 2, column 0
8
>>> t[0][0] # the element in row 0, column 0
4
>>> t[1][2] # the element in row 1, column 2
9

To assign a value to the entry in row i and column j, we simply use the assignment state-

ment. For example:

>>> t[2][3] = 7

The entry in row 2 and column 3 of t is now 7:

>>> t
[[4, 7, 2, 5], [5, 1, 9, 2], [8, 3, 6, 7]]

Sometimes we need to access all entries of a two-dimensional list in some order and

not just a single entry at a specified row and column. To visit entries of a two-dimensional

list systematically, the nested loop pattern is used.

Two-Dimensional Lists and the Nested Loop Pattern
When we printed the value of two-dimensional list t, the output we got was a list of lists

rather than a table with rows in different lines. Often it is nice to print the content of a

two-dimensional list so it looks like a table. The next approach uses the iteration pattern to

print each row of the table in a separate line:

>>> for row in t:
print(row)

[4, 7, 2, 5]
[5, 1, 9, 2]
[8, 3, 6, 7]

Suppose that instead of printing each row of the table as a list, we would like to have a

function print2D() that prints the items in t as shown next:

>>> print2D(t)
4 7 2 5
5 1 9 2
8 3 6 7

We use the nested loop pattern to implement this function. The outer for loop is used to

generate the rows, while the inner for loop iterates over the items in a row and prints them:

Module: ch5.py
1 def print2D(t):
2 'prints values in 2D list t as a 2D table'
3 for row in t:
4 for item in row: # print item followed by
5 print(item, end=' ') # a blank space
6 print() # move to next line

148 Chapter 5 Execution Control Structures

Let’s consider one more example. Suppose we need to develop function incr2D() that

increments the value of every number in a two-dimensional list of numbers:

>>> print2D(t)
4 7 2 5
5 1 9 2
8 3 6 7
>>> incr2D(t)
>>> print2D(t)
5 8 3 6
6 2 10 3
9 4 7 8

Clearly, the function incr2D() will need to execute:

t[i][j] += 1

for every row index i and column index j of an input two-dimensional list t. We can use

the nested loop pattern to generate all combinations of row and column index.

The outer loop should generate the row indexes of t. To do this we need to know the

number of rows in t. It is simply len(t). The inner loop should generate the column

indexes of t. We are hitting a snag here. How do we find out how many columns t has?

Well, it is actually the number of items in a row, and since we assume that all rows have

the same number of items, we can arbitrarily pick the first row to obtain the number of

columns: len(l[0]). Now we can implement the function:

Module: ch5.py
1 def incr2D(t):
2 'increments each number in 2D list of numbers t'
3 nrows = len(t) # number of rows
4 ncols = len(t[0]) # number of columns
5

6 for i in range(nrows): # i is the row index
7 for j in range(ncols): #j is the column index
8 t[i][j] += 1

The nested loop pattern is used in this program to access the items of two-dimensional

list t row by row, from left to right, top to bottom. First accessed are the items in row 0—

t[0][0], t[0][1], t[0][2], and t[0][3], in that order—as illustrated in Figure 5.5.

After that, items in row 1 are accessed, from left to right, and then items in row 2, and so

on.

Figure 5.5 Nested loop
pattern. The outer for loop
generates row indexes. The
inner for loop generates
column indexes. The arrow
illustrates the execution of
the inner for loop for the
first-row index (0).

j=0 j=1 j=2 j=3

i=0 4 7 2 5

i=1 5 1 9 2

i=2 8 3 6 7

7 2

Section 5.4 while Loop 149

Practice Problem
5.9

Write a function add2D() that takes two two-dimensional lists of same size (i.e., same

number of rows and columns) as input arguments and increments every entry in the first

list with the value of the corresponding entry in the second list.

>>> t = [[4, 7, 2, 5], [5, 1, 9, 2], [8, 3, 6, 6]]
>>> s = [[0, 1, 2, 0], [0, 1, 1, 1], [0, 1, 0, 0]]
>>> add2D(t,s)
>>> for row in t:

print(row)

[4, 8, 4, 5]
[5, 2, 10, 3]
[8, 4, 6, 6]

5.4 while Loop
In addition to for loops, there is another, more general iteration control structure in Python:

the while loop. In order to understand how the while loop works, we start by reviewing

how a one-way if statement works:

if <condition>:
<indented code block>

<non-indented statement>

Recall that the <indented code block> is executed when <condition> is true; af-

ter the <indented code block> has been executed, the program execution continues

with <non-indented statement>. If <condition> is false, program execution goes

straight to <non-indented statement>.

The format of a while statement is essentially identical to the format of a one-way if
statement:

while <condition>:
<indented code block>

<non-indented statement>

Just as for an if statement, in a while statement, the <indented code block> is

executed if <condition> is true. But, after the <indented code block> has been exe-

cuted, program execution goes back to checking whether <condition> is true. If so, then

the <indented code block> is executed again. As long as <condition> is true, the

<indented code block> keeps getting executed, again and again. When <condition>
evaluates to false, then the execution jumps to the <non-indented statement>. The

while loop flowchart in Figure 5.6 illustrates the possible execution paths.

When is the while loop useful? We illustrate that with the next problem. Suppose we

have the silly idea to compute the first multiple of 73 that is greater than 3,951. One way

to solve this problem is to successively generate positive multiples of 73 until we get to a

number greater than 3,951. A for loop implementation of this idea would start with:

for multiple in range(73, ???, 73)}:
...

150 Chapter 5 Execution Control Structures

Figure 5.6 while
statement flowchart.
The conditional block will
repeatedly get executed,
as long as the condition
evaluates to true. When the
condition evaluates to false,
the statement that follows
the while loop gets
executed.

<indented code block> <condition>

<non-indented statement>

True

False

The idea is to use function range() to generate the sequence of multiples of 73: 73, 146,

219, . . . The problem is that we do not know where to stop (i.e., what to replace ??? with).

A while loop is perfect for situations in which we need to iterate but we do not know

how many times. In our case, we need to keep generating multiples of 73 as long as the

multiples are ≤ 3,951. In other words, while multiple ≤ 73, we generate the next multiple.

Let’s translate that into Python:

while multiple <= 3951:
multiple += 73

The variable multiple needs to be initialized before the while loop. We can initialize

it to the first positive multiple of 73, which is 73. In every iteration of the while loop, the

condition multiple <= 3951 is checked. If true, multiple is incremented to the next

multiple of 73:

>>> bound = 3951
>>> multiple = 73
>>> while multiple <= bound:

multiple += n

>>> multiple
4015

When the while loop condition evaluates to False, the execution of the loop stops.

The value of multiple is then greater than bound. Since the previous value of multiple
was not greater, it will have the value we want: the smallest multiple greater than bound.

Practice Problem
5.10

Write a function interest() that takes one input, a floating-point interest rate (e.g., 0.06

which corresponds to a 6% interest rate). Your function should compute and return how

long (in years) it will take for an investment to double in value. Note: The number of years

it takes for an investment to double does not depend on the value of the initial investment.

>>> interest(0.07)
11

Section 5.5 More Loop Patterns 151

5.5 More Loop Patterns
With the while loop in hand, as well as a few additional loop control structures we will

introduce, we can develop a few more useful loop patterns.

Iteration Patterns: Sequence Loop
Some problems, particularly coming from science, engineering, and finance, can be solved

by generating a sequence of numbers that eventually reaches a desired number. We illustrate

this pattern on the well-known Fibonacci number sequence:

1,1,2,3,5,8,13,21,34,55,89, ...

The Fibonacci number sequence starts with integers 1 and 1 and goes on forever by apply-

ing this rule: The current number in the sequence is the sum of the previous two numbers

in the sequence.

DETOUR
Fibonacci Numbers

The Fibonacci sequence is named after Leonardo of Pisa, known as Fibonacci,
who introduced it to the Western world. The sequence was actually known much
earlier among Indian mathematicians.

Fibonacci developed the sequence as a model for the growth of an idealized
rabbit population. He assumed that (1) rabbits are able to mate at the age of one
month and (2) it takes one month for baby rabbits to be born. The number of rabbit
pairs at the end of month i is described by the ith Fibonacci number in this way:

• Initially, at the beginning of month 1, there is only one 1 pair.

• At the end of the month 1, the pair mates but there is still just 1 pair.

• At the end of month 2, the original pair produces a pair of rabbits and mates
again, so now there are 2 pairs.

• At the end of month 3, the original pair produces a pair of rabbits again and
mates again. The second pair mates but has no offspring yet. Now there are
3 pairs.

• At the end of month 4, the original pair and the second pair produces a pair
of rabbits each, so now there are 5 pairs.

A natural problem is to compute the ith Fibonacci number. Problem 5.32 at the end of

this chapter asks you to do just that. Right now we are going to solve a slightly different

problem. We would like to compute the first Fibonacci number greater than some given

integer bound. We will do that by generating the sequence of Fibonacci numbers and stop-

ping when we reach a number greater than bound. So, if our current Fibonacci number is

current, our while loop condition will be

while current <= bound:

If the condition is true, we need to generate the next Fibonacci number or, in other words,

the next value of current. To do this, we need keep track of the Fibonacci number that

152 Chapter 5 Execution Control Structures

comes before current. So we need to have another variable, say, previous, in addition to

a variable current for the current Fibonacci number. Before the while loop, we initialize

previous and current to the first and second Fibonacci numbers:

Module: ch5.py
1 def fibonacci(bound):
2 'returns the smallest Fibonacci number greater than bound'
3 previous = 1 # first Fibonacci number
4 current = 1 # second Fibonacci number
5 while current <= bound:
6 # current becomes previous, and new current is computed
7 previous, current = current, previous+current
8 return current

Note the use of the parallel assignment statement to compute the new values for current
and previous.

In function fibonacci(), the loop is used to generate a sequence of numbers until a

condition is satisfied. We refer to this loop pattern as the sequence loop pattern. In the next

problem, we apply the sequence loop pattern to approximate the value of the mathematical

constant e, called the Euler constant.

Practice Problem
5.11

It is known that the precise value of e is equal to this infinite sum:

1

0!
+

1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
+ . . .

An infinite sum is impossible to compute. We can get an approximation of e by computing

the sum of the first few terms in the infinite sum. For example, eo = 1
0! = 1 is a (lousy)

approximation for e. The next sum, e1 =
1
0! +

1
1! = 2, is better but still quite bad. The next

one, e2 =
1
0! +

1
1! +

1
2! = 2.5, looks better. The next few sums show that we are heading in

the right direction:

e3 =
1

0!
+

1

1!
+

1

2!
+

1

3!
= 2.6666 . . .

e4 =
1

0!
+

1

1!
+

1

2!
+

1

3!
+

1

4!
= 2.7083 . . .

Now, because, e4 e3 =
1
4! >

1
5! +

1
6! +

1
7! + . . . , we know that e4 is within 1

4! of the actual

value for e. This gives us a way to compute an approximation of e that is guaranteed to be

within a given range of the true value of e.

Write a function approxE() that takes as input a float value error and returns a value

that approximates constant e to within error. You will do this by generating the sequence

of approximation e0,e1,e2, . . . until the difference between the current approximation and

the previous one is no greater than error.

>>> approxE(0.01)
2.7166666666666663
>>> approxE(0.000000001)
2.7182818284467594

Section 5.5 More Loop Patterns 153

Loop Pattern: Infinite Loop
The while loop can be used to create an infinite loop, which is a loop that runs “forever”:

while True:
<indented code block>

Because True is always true, <indented code block>will get executed again and again.

Infinite loops are useful when the program is meant to provide a service indefinitely. A

web server (i.e., a program that serves web pages) is an example of a program that provides

a service. It repeatedly receives web page requests from your—and other people’s—web

browser and sends back the requested web page. The next example illustrates the use of the

infinite loop pattern in a much simpler “greeting service.”

We would like to write a function hello2() that repeatedly requests users to input their

name and then, when users have done so and pressed Return , greets them:

>>> hello2()
What is your name? Sam
Hello Sam
What is your name? Tim
Hello Tim

Here is a straightforward implementation that uses the infinite loop pattern:

Module: ch5.py
1 def hello2():
2 '''a greeting service; it repeatedly requests the name
3 of the user and then greets the user'''
4 while True:
5 name = input('What is your name? ')
6 print('Hello {}'.format(name))

How do you stop a program that use the infinite loop pattern? Any running program, in-

cluding one that runs an infinite loop, can be broken—more precisely, interrupted—from

outside the program (externally) by typing (simultaneously) Ctrl - C on the keyboard.

That is how you should stop the execution of the above hello2() function.

Loop Pattern: Loop and a Half
A while loop should also be used when a program must repeatedly process some input

values until a flag is reached. (A flag is an arbitrary value that is chosen to indicate the end

of the input.)

More specifically, consider the problem of developing a function cities() that repeat-

edly requests city names (i.e., strings) from the user and accumulates them in a list. The

user indicates the end of the input by entering the empty string, at which point the function

should return the list of all cities entered by the user. Here is the behavior we expect to see:

>>> cities()
Enter city: Lisbon
Enter city: San Francisco
Enter city: Hong Kong
Enter city:
['Lisbon', 'San Francisco', 'Hong Kong']
>>>

154 Chapter 5 Execution Control Structures

If the user enters no city, the empty list should be returned:

>>> cities()
Enter city:
[]

Clearly, function cities() should be implemented using a loop that interactively asks

the user to enter a city in every iteration. Since the number of iterations is not known, we

need to use a while loop. The condition of this while loop should check whether the user

entered the empty string. That means that the user should be asked to enter the first city

before even entering the while loop. We will, of course, also need to ask the user to enter

a city in every iteration of the while loop:

Module: ch5.py
1 def cities():
2 '''returns the list of cities that are interactively entered
3 by the user; the empty string ends the interactive input'''
4 lst = []
5

6 city = input('Enter city: ') # ask user to enter first city
7

8 while city != '': # if city is not the flag value
9 lst.append(city) # append city to list

10 city = input('Enter city: ') # and ask user once again
11

12 return lst

Note that the function uses the accumulator loop pattern to accumulate the cities into a list.

In function cities(), there are two input() function calls: one before the while
loop statement and one inside the while loop code block. A way to eliminate one of those

“redundant” statements and make the code more intuitive is to use an infinite loop and an

if statement inside the body of the while loop. The if statement would test whether the

user entered the flag value:

Module: ch5.py
1 def cities2():
2 '''returns the list of cities that are interactively entered
3 by the user; the empty string ends the interactive input'''
4 lst = []
5

6 while True: # forever repeat:
7 city = input('Enter city: ') # ask user to enter city
8

9 if city == '': # if city is the flag value
10 return lst # return list
11

12 lst.append(city) # append city to list

When executing function cities2(), the last iteration of the while loop is the one during

which the user enters the empty string. In this iteration, only “half” of the body of the for
loop is executed; the statement lst.append(city) is skipped. For this reason, the loop

pattern in cities2() is commonly referred to as the loop-and-a-half pattern.

Section 5.6 Additional Iteration Control Statements 155

DETOUR
More Loop Patterns

In this book we describe the core loop patterns only. Other loop patterns have
been proposed. If you want to see more, this web site keeps track loop patterns
proposed by various computer scientists:

http://max.cs.kzoo.edu/patterns/Repetition.shtml

5.6 Additional Iteration Control Statements
We end this chapter by introducing several Python statements that provide further control

over iteration. We use simple examples so that we can clearly illustrate how they work.

break Statement
The break statement can be added to the code block of a loop (whether a for loop or

a while loop). When it is executed, the current loop iteration is stopped and the loop is

exited. Execution then resumes with the statement that follows the loop statement. If the

break statement appears in the code block of a loop of a nested loop pattern, only the

innermost loop containing the break is exited.

To illustrate the usage of the break statement, we start with another implementation

of the function that prints the numbers in a two-dimensional list of numbers in a 2D table

format:

Module: ch5.py
1 def print2D2(table):
2 'prints values in 2D list of numbers t as a 2D table'
3 for row in table:
4 for num in row:
5 print(num, end=' ')
6 print()

Let’s test the code:

>>> table = [[2, 3, 0, 6], [0, 3, 4, 5], [4, 5, 6, 0]]
>>> print2D2(table)
2 3 0 6
0 3 4 5
4 5 6 0

Suppose that instead of printing the complete row, we want to print only those numbers

in the row up to, and not including, the first 0 entry in the row. A function before0()
doing this would behave as follows:

>>> before0(table)
2 3

4 5 6

156 Chapter 5 Execution Control Structures

To implement before0(), we modify the implementation of print2D() by adding

an if statement, inside the inner for loop code block, that checks whether the current

value of num is 0. If so, the break statement is executed. This will terminate the inner for
loop. Note that the break statement does not terminate the outer for loop; execution thus

resumes at the next row of the table.

Module: ch5.py
1 def before0(table):
2 '''prints values in 2D list of numbers t as a 2D table;
3 only values in row up to first 0 are printed'''
4 for row in table:
5

6 for num in row: # inner for loop
7 if num == 0: # if num is 0
8 break # terminate inner for loop
9 print(num, end=' ') # otherwise print num

10

11 print() # move cursor to next line

The break statement does not affect the outer for loop, which will iterate through all the

rows of the table regardless of whether the break statement has been executed.

continue Statement
The continue statement can be added to the code block of a loop, just like the break state-

ment. When the continue statement is executed, the current, innermost loop iteration is

stopped, and execution resumes with the next iteration of the current, innermost loop state-

ment. Unlike the break statement, the continue statement does terminate the innermost

loop; it only terminates the current iteration of the innermost loop.

To illustrate the usage of the continue statement, we modify the print2D2() func-

tion to skip the printing of 0 values in the table. The modified function, which we call

ignore0(), should behave like this:

>>> table = [[2, 3, 0, 6], [0, 3, 4, 5], [4, 5, 6, 0]]
>>> ignore0(table)
2 3 6
3 4 5
4 5 6

Note that the 0 values in the table are ignored. Let’s implement ignore0():

Module: ch5.py
1 def ignore0(table):
2 '''prints values in 2D list of numbers t as a 2D table;
3 0 values are no printed'''
4 for row in table:
5

6 for num in row: # inner for loop
7 if num == 0: # if num is 0, terminate
8 continue # current inner loop iteration
9 print(num, end=' ') # otherwise print num

10

11 print() # move cursor to next line

Chapter 5 Chapter Summary 157

pass Statement
In Python, every function definition def statement, if statement, or for or while loop

statement must have a body (i.e., a nonempty indented code block). A syntax error while

parsing the program would occur if the code block is missing. In the rare occasion when

the code in the blocks really doesn’t have to do anything, we still have to put some code

in it. For this reason Python provides the pass statement, which does nothing but is still a

valid statement.

In the next example we illustrate its usage, in a code fragment that prints the value of n
only if the value of n is odd.

if n % 2 == 0:
pass # do nothing for even number n

else:
print(n) # print odd number n only

If the value of n is even, the first code block is executed. The block is just a pass statement,

which does nothing.

The pass statement is used when the Python syntax requires code (bodies of functions

and execution control statements). The pass statement is also useful when a code body has

not yet been implemented.

Chapter Summary
This key chapter covers the Python control flow structures in depth.

We start by revisiting the if control flow construct introduced in Chapter 2. We de-

scribe its most general format, the multiway decision structure that uses the elif state-

ment. While one- and two-way conditional structures are defined with only one condition,

multiway conditional structures have, in general, multiple conditions. If the conditions are

not mutually exclusive, the order in which the conditions appear in the multiway if state-

ment is important, and care must be taken to ensure that the order will give the desired

behavior.

The bulk of this chapter describes the different ways that iteration structures are used.

First covered are the fundamental iteration, counter, accumulator, and nested loop patterns.

These are not only the most common loop patterns, but they are also the building blocks for

more advanced loop patterns. The nested loop pattern is particularly useful for processing

two-dimensional lists, which we introduce in this chapter.

Before describing more advanced iteration patterns, we introduce another Python loop

construct, the while loop. It is more general than the for loop construct and can be used

to implement loops that would be awkward to implement using the for loop. Using the

while loop construct, we describe the sequence, infinite, interactive, and loop-and-a-half

loop patterns.

At the end of the chapter, we introduce several more iteration control statements (break,

continue, and pass) that give a bit more control over iteration structures and code devel-

opment.

The decision and iteration control flow structures are the building blocks used to de-

scribe algorithmic solutions to problems. How to effectively apply these structures when

solving a problem is one of the fundamental skills of a computing professional. Mastering

multiway conditional structures and understanding when and how to apply the iteration

patterns described in this chapter is the first step toward the development of this skill.

158 Chapter 5 Execution Control Structures

Solutions to Practice Problems
5.1 After computing the BMI, we use a multiway if statement to decide what to print:

def myBMI(weight, height):
'prints BMI report'
bmi = weight * 703 / height**2
if bmi < 18.5:

print('Underweight')
elif bmi < 25:

print('Normal')
else: # bmi >= 25

print('Overweight')

5.2 We need to print 21, 22, 23, . . . , 2n (i.e., 2i for all integers i from 1 to n). To iterate

over the range from 1 up to (and including) n, we use function call range(1, n+1):

def powers(n):
'prints 2**i for i = 1, 2, ..., n'
for i in range(1, n+1):

print(2**i, end=' ')

5.3 We need to check that the difference between adjacent list values are all the same.

One way to do this is to check that they are all equal to the difference between the first

two list items, l[0] and l[1]. So, we need to check that l[2]-l[1], l[3]-l[2], . . . ,

l[n-1]-l[n-2], where n is the size of list l, are all equal to diff = l[1] - l[0]. Or,

to put it another way, we need to check that l[i+1] - l[i] = diff for i = 1, 2, . . . ,

n 2, values obtained by iterating through range(1, len(l)-1):

def arithmetic(lst):
'''returns True if list lst contains an arithmetic sequence,

False otherwise'''
if len(lst) < 2: # a sequence of length < 2 is arithmetic

return True
checking that difference between successive items is equal
to the difference between the first two numbers
diff = l[1] - l[0]
for i in range(1, len(l)-1):

if l[i+1] - l[i] != diff:
return False

return True

5.4 We need to multiply (accumulate) integers 1, 2, 3, . . . , n. The accumulator res is

initialized to 1, the identity for multiplication. Then we iterate over sequence 2, 3, 4, . . . ,

n and multiply res by each number in the sequence:

def factorial(n):
'returns n! for input integer n'
res = 1
for i in range(2,n+1):

res *= i
return res

Chapter 5 Solutions to Practice Problems 159

5.5 In this problem we would like to iterate over the words of the phrase and accumulate
the first letter in every word. So we need to break the phrase into a list of words using the

string split() method and then iterate over the words in this list. We will add the first

letter of every word to the accumulator string res.

def acronym(phrase):
'returns the acronym of the input string phrase'
splits phrase into a list of words
words = phrase.split()
accumulate first character, as an uppercase, of every word
res = ''
for w in words:

res = res + w[0].upper()
return res

5.6 Divisors of n include 1, n, and perhaps more numbers in between. To find them, we

can iterate over all integers given by range(1, n+1) and check each integer whether it is

a divisor of n.

def divisors(n):
'returns the list of divisors of n'
res = []
for i in range(1, n+1):

if n % i == 0:
res.append(i)

return res

5.7 We will use the nested loop pattern to multiply every integer in the first list with

every integer in the second list. The outer for loop will iterate over the integers in the first

list. Then, for every such integer i, the inner for loop will iterate over the integers of the

second list, and each such integer is multiplied by i; the product is accumulated into a list

accumulator.

def xmult(l1, l2):
'''returns the list of products of items in list l1

with items in list l2'''
l = []
for i in l1:

for j in l2:
l.append(i*j)

return l

5.8 As discussed in the problem statement, in the first pass you need to successively com-

pare items at indexes 0 and 1, 1 and 2, 2 and 3, . . . , up to len(lst)-2 and len(lst)-1.

We can do this by generating the sequence of integers from 0 up to but not including

len(lst)-1.

In the second pass, we can stop the pairwise comparisons with the pair of items at

indexes len(lst)-3 and len(lst)-2, so the indexes we need in the second pass go from

0 up to but not including len(lst)-2. This suggests that we should use the outer loop

to generate the upper bounds len(lst)-1 for pass 1, len(lst)-2 for pass 2, down to 1

(when the final comparison between the first two list items is made).

160 Chapter 5 Execution Control Structures

The inner loop implements a pass that compares adjacent list items up to items at in-

dexes i-1 and i and swaps improperly ordered items:

def bubblesort(lst):
'sorts list lst in nondecreasing order'
for i in range(len(lst)-2, 0, -1):

perform pass that ends at
i = len(lst)-2, len(lst)-1, ..., 0
for j in range(i):

compare items at index j and j+1
for every j = 0, 1, ..., i-1
if lst[j] > lst[j+1]:

swap numbers at index j and j+1
lst[j], lst[j+1] = lst[j+1], lst[j]

5.9 We use the nested loop pattern to generate all pairs of column and row indexes and add

up the corresponding entries:

def add2D(t1, t2):
'''t1 and t2 are 2D lists with the same number of rows and

same number of equal sized columns

add2D increments every item t1[i][j] by t2[i][j]'''
nrows = len(t1) # number of rows
ncols = len(t1[0]) # number of columns
for i in range(nrows): # for every row index i

for j in range(ncols): # for every column index j
t1[i][j] += t2[i][j]

5.10 First note that the number of years required for an investment to double in value does

not depend on the amount invested. So we can assume the original investment is $100. We

use a while loop to add the yearly interest to the investment x. The while loop condition

will check whether x < 200. What the problem asks is how many times we have executed

the while loop. To count it, we use the counter loop pattern:

def interest(rate):
'''returns the number of years for investment

to double for the given rate'''
amount = 100 # initial account balance
count = 0
while amount < 200:

while investment not doubled in value
count += 1 # add one more year
amount += amount*rate # add interest

return count

5.11 We start by assigning the first approximation (1) to prev and the second (2) to

current. The while loop condition is then current - prev > error. If the condition

is true, then we need to generate new value for prev and current. The value of current
becomes previous and the new current value is then previous + 1/factorial(???).

What should ??? be? In the first iteration, it should be 2, because the third approximation

Chapter 5 Exercises 161

is the value of the second + 1
2! . In the next iteration, it should be 3, then 4, and so on. We

obtain this solution:

def approxE(error):
'returns approximation of e within error'
prev = 1 # approximation 0
current = 2 # approximation 1
i = 2 # index of next approximation
while current-prev > error:

while difference between current and previous
approximation is too large

current approximation
prev = current # becomes previous

compute new approximation
current = prev + 1/factorial(i) # based on index i
i += 1 # index of next approximation

return current

Exercises

5.12 Implement function test() that takes as input one integer and prints 'Negative',

'Zero', or 'Positive' depending on its value.

>>> test(-3)
Negative
>>> test(0)
Zero
>>> test(3)
Positive

5.13 Read every exercise 5.14 to 5.22 and decide what loop pattern should be used in each.

5.14 Write function mult3() that takes as input a list of integers and prints only the

multiples of 3, one per line.

>>> mult3([3, 1, 6, 2, 3, 9, 7, 9, 5, 4, 5])
3
6
3
9
9

5.15 Implement the function vowels() that takes as input a string and prints the in-

dexes of all vowels in the string. Hint: A vowel can be defined as any character in string

'aeiouAEIOU'

>>> vowels('Hello WORLD')
1
4
7

162 Chapter 5 Execution Control Structures

5.16 Implement function indexes() that takes as input a word (as a string) and a one-

character letter (as a string) and returns a list of indexes at which the letter occurs in the

word.

>>> indexes('mississippi', 's')
[2, 3, 5, 6]
>>> indexes('mississippi', 'i')
[1, 4, 7, 10]
>>> indexes('mississippi', 'a')
[]

5.17 Write function doubles() that takes as input a list of integers and outputs the integers

in the list that are exactly twice the previous integer in the list, one per line.

>>> doubles([3, 0, 1, 2, 3, 6, 2, 4, 5, 6, 5])
2
6
4

5.18 Implement function four_letter() that takes as input a list of words (i.e., strings)

and returns the sublist of all four letter words in the list.

>>> four_letter(['dog', 'letter', 'stop', 'door', 'bus', 'dust'])
['stop', 'door', 'dust']

5.19 Write a function inBoth() that takes two lists and returns True if there is an item

that is common to both lists and False otherwise.

>>> inBoth([3, 2, 5, 4, 7], [9, 0, 1, 3])
True

5.20 Write a function intersect() that takes two lists, each containing no duplicate

values, and returns a list containing values that are present in both lists (i.e., the intersection

of the two input lists).

>>> intersect([3, 5, 1, 7, 9], [4, 2, 6, 3, 9])
[3, 9]

5.21 Implement the function pair() that takes as input two lists of integers and one integer

n and prints the pairs of integers, one from the first input list and the other from the second

input list, that add up to n. Each pair should be printed.

>>> pair([2, 3, 4], [5, 7, 9, 12], 9)
2 7
4 5

5.22 Implement the function pairSum() that takes as input a list of distinct integers lst
and an integer n, and prints the indexes of all pairs of values in lst that sum up to n.

>>> pairSum([7, 8, 5, 3, 4, 6], 11)
0 4
1 3
2 5

Chapter 5 Problems 163

Problems
5.23 Write function pay() that takes as input an hourly wage and the number of hours an

employee worked in the last week. The function should compute and return the employee’s

pay. Overtime work should be paid in this way: Any hours beyond 40 but less than or equal

60 should be paid at 1.5 times the regular hourly wage. Any hours beyond 60 should be

paid at 2 times the regular hourly wage.

>>> pay(10, 35)
350
>>> pay(10, 45)
475
>>> pay(10, 61)
720

5.24 Write function case() that takes a string as input and returns 'capitalized', 'not
capitalized', or 'unknown', depending on whether the string starts with an uppercase

letter, lowercase letter, or something other than a letter in the English alphabet, respectively.

>>> case('Android')
'capitalized'
>>> case('3M')
'unknown'

5.25 Implement function leap() that takes one input argument—a year—and returns

True if the year is a leap year and False otherwise. (A year is a leap year if it is divisible by

4 but not by 100, unless it is divisible by 400 in which case it is a leap year. For example,

1700, 1800 and 1900 are not leap years but 1600 and 2000 are.)

>>> leap(2008)
True
>>> leap(1900)
False
>>> leap(2000)
True

5.26 Rock, Paper, Scissors is a two-player game in which each player chooses one of

three items. If both player choose the same item, the game is tied. Otherwise, the rules that

determine the winner are:

(a) Rock always beats Scissors (Rock crushes Scissors)

(b) Scissors always beats Paper (Scissors cut Paper)

(c) Paper always beats Rock (Paper covers Rock)

Implement function rps() that takes the choice ('R', 'P', or 'S') of player 1 and the

choice of player 2, and returns -1 if player 1 wins, 1 if player 2 wins, or 0 if there is a tie.

>>> rps('R', 'P')
1
>>> rps('R', 'S')
-1
>>> rps('S', 'S')
0

164 Chapter 5 Execution Control Structures

5.27 Write function letter2number() that takes as input a letter grade (A, B, C, D, F,

possibly with a - or +) and returns the corresponding number grade. The numeric values

for A, B, C, D, and F are 4, 3, 2, 1, 0. A + increases the number grade value by 0.3 and a -

decreases it by 0.3.

>>> letter2number('A-')
3.7
>>> letter2number('B+')
3.3
>>> letter2number('D')
1.0

5.28 Write function geometric() that takes a list of integers as input and returns True if

the integers in the list form a geometric sequence. A sequence a0, a1, a2, a3, a4, . . . , an 2,

an 1 is a geometric sequence if the ratios a1/a0, a2/a1, a3/a2, a4/a3, . . . , an 1/an 2 are

all equal.

>>> geometric([2, 4, 8, 16, 32, 64, 128, 256])
True
>>> geometric([2, 4, 6, 8])
False

5.29 Write function lastfirst() that takes one argument—a list of strings of the format

<LastName, FirstName>—and returns a list consisting two lists:

(a) A list of all the first names

(b) A list of all the last names

>>> lastfirst(['Gerber, Len', 'Fox, Kate', 'Dunn, Bob'])
[['Len', 'Kate', 'Bob'], ['Gerber', 'Fox', 'Dunn']]

5.30 Develop the function many() that takes as input the name of a file in the current

directory (as a string) and outputs the number of words of length 1, 2, 3, and 4. Test your

function on file sample.txt.

File: sample.txt >>> many('sample.txt')
Words of length 1 : 2
Words of length 2 : 5
Words of length 3 : 1
Words of length 4 : 10

5.31 Write a function subsetSum() that takes as input a list of positive numbers and a

positive number target. Your function should return True if there are three numbers in

the list that add up to target. For example, if the input list is [5, 4, 10, 20, 15, 19]
and target is 38, then True should be returned since 4+ 15+ 19 = 38. However, if the

input list is the same but the target value is 10, then the returned value should be False

because 10 is not the sum of any three numbers in the given list.

>>> subsetSum([5, 4, 10, 20, 15, 19], 38)
True
>>> subsetSum([5, 4, 10, 20, 15, 19], 10)
False

Chapter 5 Problems 165

5.32 Implement function fib() that takes a nonnegative integer n as input and returns the

nth Fibonacci number.

>>> fib(0)
1
>>> fib(4)
5
>>> fib(8)
34

5.33 Implement a function mystery() that takes as input a positive integer n and answers

this question: How many times can n be halved (using integer division) before reaching 1?

This value should returned.

>>> mystery(4)
2
>>> mystery(11)
3
>>> mystery(25)
4

5.34 Write a function statement() that takes as input a list of floating-point numbers,

with positive numbers representing deposits to and negative numbers representing with-

drawals from a bank account. Your function should return a list of two floating-point num-

ber; the first will be the sum of the deposits, and the second (a negative number) will be the

sum of the withdrawals.

>>> statement([30.95, -15.67, 45.56, -55.00, 43.78])
[-70.67, 120.29]

5.35 Implement function pixels() that takes as input a two-dimensional list of nonnega-

tive integer entries (representing the values of pixels of an image) and returns the number of

entries that are positive (i.e., the number of pixels that are not dark). Your function should

work on two-dimensional lists of any size.

l = [[0, 156, 0, 0], [34, 0, 0, 0], [23, 123, 0, 34]]
>>> pixels(l)
5
>>> l = [[123, 56, 255], [34, 0, 0], [23, 123, 0], [3, 0, 0]]
>>> pixels(l)
7

5.36 Implement function prime() that takes a positive integer as input and returns True
if it is a prime number and False otherwise.

>>> prime(2)
True
>>> prime(17)
True
>>> prime(21)
False

166 Chapter 5 Execution Control Structures

5.37 Write function mssl() (minimum sum sublist) that takes as input a list of integers.

It then computes and returns the sum of the maximum sum sublist of the input list. The

maximum sum sublist is a sublist (slice) of the input list whose sum of entries is largest.

The empty sublist is defined to have sum 0. For example, the maximum sum sublist of the

list

[4, -2, -8, 5, -2, 7, 7, 2, -6, 5]
is [5, -2, 7, 7, 2] and the sum of its entries is 19.

>>> l = [4, -2, -8, 5, -2, 7, 7, 2, -6, 5]
>>> mssl(l)
19
>>> mssl([3,4,5])
12
>>> mssl([-2,-3,-5])
0

In the last example, the maximum sum sublist is the empty sublist because all list items are

negative.

5.38 Write function collatz() that takes a positive integer x as input and prints the

Collatz sequence starting at x. A Collatz sequence is obtained by repeatedly applying this

rule to the previous number x in the sequence:

x =
{

x/2 if x is even

3x+1 if x is odd.

Your function should stop when the sequence gets to number 1. Note: It is an open question

whether the Collatz sequence of every positive integer always ends at 1.

>>> collatz(10)
10
5
16
8
4
2
1

5.39 Write function exclamation() that takes as input a string and returns it with this

modification: Every vowel is replaced by four consecutive copies of itself and an exclama-

tion mark (!) is added at the end.

>>> exclamation('argh')
'aaaargh!'
>>> exclamation('hello')
'heeeelloooo!'

5.40 The constant π is an irrational number with value approximately 3.1415928 . . . The

precise value of π is equal to this infinite sum:

π = 4/1 4/3+4/5 4/7+4/9 4/11+ . . .

We can get a good approximation of π by computing the sum of the first few terms.

Write a function approxPi() that takes as input a float-value error and approximates

Chapter 5 Problems 167

constant π within error by computing the preceding sum, term by term, until the differ-

ence between the current sum and the previous sum (with one less term) is no greater than

error. The function should return the new sum.

>>> approxPi(0.01)
3.1611986129870506
>>> approxPi(0.0000001)
3.1415928535897395

5.41 A polynomial of degree n with coefficients a0,a1,a2,a3, . . . ,an is the function

p(x) = a0 +a1x+a2x2 +a3 ∗ x3 + . . . +an ∗ xn

This function can be evaluated at different values of x. For example, if p(x) = 1+2x+
x2, then p(2) = 1+2∗2+22 = 9. If p(x) = 1+ x2 + x4, then p(2) = 21 and p(3) = 91.

Write a function poly() that takes as input a list of coefficients a0, a1, a2, a3, . . . ,

an of a polynomial p(x) and a value x. The function will return p(x), which is the value of

the polynomial when evaluated at x. Note that the usage below is for the three examples

shown.

>>> poly([1, 2, 1], 2)
9
>>> poly([1, 0, 1, 0, 1], 2)
21
>>> poly([1, 0, 1, 0, 1], 3)
91

5.42 Implement function primeFac() that takes as input a positive integer n and returns a

list containing all the numbers in the prime factorization of n. (The prime factorization of

a positive integer n is the unique list of prime numbers whose product is n.)

>>> primeFac(5)
[5]
>>> primeFac(72)
[2, 2, 2, 3, 3]

5.43 Implement function evenrow() that takes a two-dimensional list of integers and

returns True if each row of the table sums up to an even number and False otherwise (i.e.,

if some row sums up to an odd number).

>>> evenrow([[1, 3], [2, 4], [0, 6]])
True
>>> evenrow([[1, 3], [3, 4], [0, 5]])
False
>>> evenrow([[1, 3, 2], [3, 4, 7], [0, 6, 2]])
True
>>> evenrow([[1, 3, 2], [3, 4, 7], [0, 5, 2]])
False

5.44 A substitution cipher for the digits 0, 1, 2, 3, . . . , 9 substitutes each digit in 0, 1, 2,

3, . . . , 9 with another digit in 0, 1, 2, 3, . . . , 9. It can be represented as a 10-digit string

specifying how each digit in 0, 1, 2, 3, . . . , 9 is substituted. For example, the 10-digit string

168 Chapter 5 Execution Control Structures

'3941068257' specifies a substitution cipher in which digit 0 is substituted with digit 3, 1

with 9, 2 with 4, and so on. To encrypt a nonnegative integer, substitute each of its digits

with the the digit specified by the encryption key.

Implement function cipher() that takes as input a 10-digit string key and a digit string

(i.e., the clear text to be encrypted) and returns the encryption of the clear text.

>>> encrypt('3941068257', '132')
'914'
>>> encrypt('3941068257', '111')
'999'

5.45 The function avgavg() takes as input a list whose items are lists of three numbers.

Each three-number list represents the three grades a particular student received for a course.

For example, here is an input list for a class of four students:

[[95,92,86], [66,75,54],[89, 72,100],[34,0,0]]

The function avgavg() should print, on the screen, two lines. The first line will contain a

list containing every student’s average grade. The second line will contain just one number:

the average class grade, defined as the average of all student average grades.

>>> avgavg([[95, 92, 86], [66, 75, 54],[89, 72, 100], [34, 0, 0]])
[91.0, 65.0, 87.0, 11.333333333333334]
63.5833333333

5.46 An inversion in a sequence is a pair of entries that are out of order. For example, the

characters F and D form an inversion in string 'ABBFHDL' because F appears before D; so

do characters H and D. The total number of inversions in a sequence (i.e., the number of

pairs that are out of order) is a measure of how unsorted the sequence is. The total number

of inversions in 'ABBFHDL' is 2. Implement function inversions() that takes a sequence

(i.e., a string) of uppercase characters A through Z and returns the number of inversions in

the sequence.

>>> inversions('ABBFHDL')
2
>>> inversions('ABCD')
0
>>> inversions('DCBA')
6

5.47 Write function d2x() that takes as input a nonnegative integer n (in the standard

decimal representation) and an integer x between 2 and 9 and returns a string of digits that

represents the base-x representation of n.

>>> d2x(10, 2)
'1010'
>>> d2x(10, 3)
'101'
>>> d2x(10, 8)
'12'

5.48 Let list1 and list2 be two lists of integers. We say that list1 is a sublist of list2
if the elements in list1 appear in list2 in the same order as they appear in list1, but

Chapter 5 Problems 169

not necessarily consecutively. For example, if list1 is defined as

[15, 1, 100]

and list2 is defined as

[20, 15, 30, 50, 1, 100]

then list1 is a sublist of list2 because the numbers in list1 (15, 1, and 100) appear in

list2 in the same order. However, list

[15, 50, 20]

is not a sublist of list2.

Implement function sublist() that takes as input lists list1 and list2 and returns

True if list1 is a sublist of list2, and False otherwise.

>>> sublist([15, 1, 100], [20, 15, 30, 50, 1, 100])
True
>>> sublist([15, 50, 20], [20, 15, 30, 50, 1, 100])
False

5.49 The Heron method is a method the ancient Greeks used to compute the square root of

a number n. The method generates a sequence of numbers that represent better and better

approximations for
√

n. The first number in the sequence is an arbitrary guess; every other

number in the sequence is obtained from the previous number prev using the formula

1

2
(prev+

n
prev

)

Write function heron() that takes as input two numbers: n and error. The function should

start with an initial guess of 1.0 for
√

n and then repeatedly generate better approximations

until the difference (more precisely, the absolute value of the difference) between succes-

sive approximations is at most error.

>>> heron(4.0, 0.5)
2.05
>>> heron(4.0, 0.1)
2.000609756097561

This page intentionally left blank

CHAPTER

6
Containers and
Randomness
6.1 Dictionaries 172

6.2 Other Built-In Container Types 182

6.3 Character Encodings and Strings 189

6.4 Module random 194

6.5 Case Study: Games of Chance 198

Chapter Summary 203

Solutions to Practice Problems 203

Exercises 206

Problems 208

THE FOCUS OF THIS CHAPTER are the other built-in container classes
available in Python. While lists are useful general-purpose containers,
there are situations when they are awkward or inefficient to use. For this
reason, Python provides other built-in container classes.

In a dictionary container, values stored in the container can be
indexed using user-specified indexes we call keys. Dictionaries have many
different uses, including counting, and they are general-purpose
containers just as list containers are. In addition to dictionaries, we also
explain when and how to use the tuple and set built-in container classes.

We also come back to strings one more time and look at them as
containers of characters. In today’s interconnected world, text is created in
one place and read in another, and computers have to be able to deal with
encoding and decoding characters from different writing systems. We
introduce Unicode as the current standard for encoding characters.

In order to introduce a whole new class of problems and applications,
including computer games, we end this chapter with a discussion of how
to generate “random” numbers. Then, in this chapter’s case study, we use
randomness to develop a simple blackjack game.

171

172 Chapter 6 Containers and Randomness

6.1 Dictionaries
We start the chapter by introducing the very important dictionary container built-in type.

User-Defined Indexes as Motivation for Dictionaries
Suppose we need to somehow store employee records for a company with 50,000 employ-

ees. Ideally, we would like to be able to access each employee’s record using only the

employee’s Social Security Number (SSN) or ID number, like this:

>>> employee[987654321]
['Yu', 'Tsun']
>>> employee[864209753]
['Anna', 'Karenina']
>>> employee[100010010]
['Hans', 'Castorp']

At index 987654321 of container named employee is stored the the first and last name

of the employee with SSN 987-65-4321, Yu Tsun. The first and last name are stored in a

list, which could contain additional information, such as address, date of birth, position,

and so on. At index 864209753 and 100010010 will be stored the records for ['Anna',
'Karenina'] and ['Hans', 'Castorp']. In general, stored at index i will be the record

(first and last name) of the employee with SSN i.
If employee were a list, it would have to be a very big list. It would need to be

larger than the integer value of the largest employee SSN. Since SSNs are 9-digit numbers,

employee would need to be as large as 1,000,000,000. That’s big. Even if our system can

accommodate a list so large, it would be a huge waste: Most of the list will be empty. Only

50,000 list positions will be used. There is one more problem with lists: SSNs are not really

integer values since they are typically denoted using dashes, such as 987-65-4321, and can

start with a 0, such as 012-34-5678. Values like 987-65-4321 and 012-34-5678 are better

represented as string values '012-34-5678' or '987-65-4321'.

The issue is that list items are meant to be accessed using an integer index that repre-

sents the item’s position in a collection. What we want is something else: We would like to

access items using “user-defined indexes,” such as '012-34-5678' or '987-65-4321',

as illustrated in Figure 6.1.

Figure 6.1 Motivation for a
dictionary. A dictionary is a
container that stores items
that are accessible using
“user-specified” indexes.

index '987-65-4321' '864-20-9753' '100-01-0010'

item ['Anna','Karenina'] ['Yu','Tsun'] ['Hans','Castorp']

Python has a built-in container type called a dictionary that enables us to use “user-

defined indexes”. Here is how we can define a dictionary named employee that behaves as

we would like:

>>> employee = {
'864-20-9753': ['Anna', 'Karenina'],
'987-65-4321': ['Yu', 'Tsun'],
'100-01-0010': ['Hans', 'Castorp']}

We wrote the assignment statement using multiple lines to clearly emphasize that “index”

'864-20-9753' corresponds to value ['Anna', 'Karenina'], index '987-65-4321'

Section 6.1 Dictionaries 173

corresponds to value ['Yu', 'Tsun'], and so on. Let’s check that the dictionary employee
works as we want:

>>> employee['987-65-4321']
['Yu', 'Tsun']
>>> employee['864-20-9753']
['Anna', 'Karenina']

The dictionary employee differs from a list in that an item in a dictionary is accessed

using a user-specified “index” rather than the index representing the items position in the

container. We discuss this more precisely next.

Dictionary Class Properties
The Python dictionary type, denoted dict, is a container type, just like list and str. A

dictionary contains (key, value) pairs. The general format of the expression that evaluates

to a dictionary object is:

{<key 1>:<value 1>, <key 2>:<value 2>, ..., <key i>:<value i>}

This expression defines a dictionary containing i key:value pairs. The key and the value are

both objects. The key is the “index” that is used to access the value. So, in our dictionary

employee, '100-01-0010' is the key and ['Hans', 'Castorp'] is the value.

The (key, value) pairs in a dictionary expression are separated by commas and enclosed

in curly braces (as opposed to square brackets, [], used for lists.) The key and value in each

(key, value) pair are separated by a colon (:) with the key being to the left and the value to

the right of the colon. Keys can be of any type as long as the type is immutable. So string

and number objects can be keys while objects of type list cannot. The value can be of any

type.

We often say that a key maps to its value or is the index of the value. Because dictionar-

ies can be viewed as a mapping from keys to values, they are often referred to as maps. For

example, here is a dictionary mapping day abbreviations 'Mo', 'Tu', 'We', and 'Th' (the

keys) to the corresponding days 'Monday', 'Tuesday', 'Wednesday', and 'Thursday'
(the values):

>>> days = {'Mo':'Monday', 'Tu':'Tuesday', 'We':'Wednesday',
'Th':'Thursday'}

The variable days refers to a dictionary, illustrated in Figure 6.2, with four (key, value)

pairs. The (key, value) pair 'Mo':'Monday' has key 'Mo' and value 'Monday', the (key,

value) pair 'Tu':'Tuesday' has key 'Tu' and value 'Tuesday', etc.

key 'Mo' 'Tu' 'We' 'Th'

value 'Monday' 'Tuesday' 'Wednesday' 'Thursday'

Figure 6.2 Dictionary
days. The dictionary
maps string keys 'Mo',
'Tu', 'We', and 'Th' to
string values 'Monday',
'Tuesday', and so on.

Values in the dictionary are accessed by key, not index (or offset). To access value

'Wednesday' in dictionary days, we use key 'We'

>>> days['We']
'Wednesday'

174 Chapter 6 Containers and Randomness

and not index 2

>>> days[2]
Traceback (most recent call last):

File "<pyshell#27>", line 1, in <module>
days[2]

KeyError: 2

The KeyError exception tells us that we are using an illegal, in this case undefined, key.

The (key, value) pairs in the dictionary are not ordered, and no ordering assumption can

be made. For example, we could define a dictionary d as:

>>> d = {'b':23, 'a':34, 'c':12}

However, when we evaluate d, we may not get the (key, value) pairs in the order in which

they were defined:

>>> d
{'a': 34, 'c': 12, 'b': 23}

Dictionaries are mutable, like lists. A dictionary can be modified to contain a new (key,

value) pair:

>>> days['Fr'] = 'friday'
>>> days
{'Fr': 'friday', 'Mo': 'Monday', 'Tu': 'Tuesday',
'We': 'Wednesday', 'Th': 'Thursday'}

This implies that dictionaries have dynamic size. The dictionary can also be modified so an

existing key refers to a new value:

>>> days['Fr'] = 'Friday'
>>> days
{'Fr': 'Friday', 'Mo': 'Monday', 'Tu': 'Tuesday',
'We': 'Wednesday', 'Th': 'Thursday'}

An empty dictionary can be defined using the default dict() constructor or simply as:

>>> d = {}

Practice Problem
6.1

Write a function birthState() that takes as input the full name of a recent U.S. president

(as a string) and returns his birth state. You should use this dictionary to store the birth state

for each recent president:

{'Barack Hussein Obama II':'Hawaii',
'George Walker Bush':'Connecticut',
'William Jefferson Clinton':'Arkansas',
'George Herbert Walker Bush':'Massachussetts',
'Ronald Wilson Reagan':'Illinois',
'James Earl Carter, Jr':'Georgia'}

>>> birthState('Ronald Wilson Reagan')
'Illinois'

Section 6.1 Dictionaries 175

Dictionary Operators
The dictionary class supports some of the same operators that the list class supports. We

already saw that the indexing operator ([]) can be used to access a value using the key as

the index:

>>> days['Fr']
'Friday'

The indexing operator can also be used to change the value corresponding to a key or to

add a new (key, value) pair to the dictionary:

>>> days
{'Fr': 'Friday', 'Mo': 'Monday', 'Tu': 'Tuesday',
'We': 'Wednesday', 'Th': 'Thursday'}
>>> days['Sa'] = 'Sat'
>>> days
{'Fr': 'Friday', 'Mo': 'Monday', 'Tu': 'Tuesday',
'We': 'Wednesday', 'Th': 'Thursday', 'Sa': 'Sat'}

The length of a dictionary (i.e., the number of (key, value) pairs in it) can be obtained using

the len function:

>>> len(days)
6

The in and not in operators are used to check whether an object is a key in the dictionary:

>>> 'Fr' in days
True
>>> 'Su' in days
False
>>> 'Su' not in days
True

Table 6.1 shows some of the operators that can be used with dictionaries.

Operation Explanation

k in d True if k is a key in dictionary d, else False

k not in d False if k is a key in dictionary d, else True

d[k] Value corresponding to key k in dictionary d
len(d) Number of (key, value) pairs in dictionary d

Table 6.1 Class dict
operators. The usage and
explanation for commonly
used dictionary operators
are shown.

There are operators that the list class supports but the class dict does not. For ex-

ample, the indexing operator [] cannot be used to get a slice of a dictionary. This makes

sense: A slice implies an order, and there is no order in a dictionary. Also not supported are

operators +, *, max(), min(), and sum(), among others.

Practice Problem
6.2

Implement function rlookup() that provides the reverse lookup feature of a phone book.

Your function takes, as input, a dictionary representing a phone book. In the dictionary,

phone numbers (keys) are mapped to individuals (values). Your function should provide a

simple user interface through which a user can enter a phone number and obtain the first

and last name of the individual assigned that number.

176 Chapter 6 Containers and Randomness

>>> rphonebook = {'(123)456-78-90':['Anna','Karenina'],
'(901)234-56-78':['Yu', 'Tsun'],
'(321)908-76-54':['Hans', 'Castorp']}

>>> rlookup(rphonebook)
Enter phone number in the format (xxx)xxx-xx-xx: (123)456-78-90
('Anna', 'Karenina')
Enter phone number in the format (xxx)xxx-xx-xx: (453)454-55-00
The number you entered is not in use.
Enter phone number in the format (xxx)xxx-xx-xx:

Dictionary Methods
While the list and dict class share quite a few operators, there is only one method that

they share: pop(). This method takes a key, and if the key is in the dictionary, it removes

the associated (key, value) pair from the dictionary and returns the value:

>>> days
{'Fr': 'Friday', 'Mo': 'Monday', 'Tu': 'Tuesday',
'We': 'Wednesday', 'Th': 'Thursday', 'Sa': 'Sat'}
>>> days.pop('Tu')
'Tuesday'
>>> days.pop('Fr')
'Friday'
>>> days
{'Mo': 'Monday', 'We': 'Wednesday', 'Th': 'Thursday',
'Sa': 'Sat'}

We now introduce some more dictionary methods. When dictionary d1 calls method

update() with input argument dictionary d2, all the (key, value) pairs of d2 are added

to d1, possibly writing over (key, value) pairs of d1. For example, suppose we have a

dictionary of our favorite days of the week:

>>> favorites = {'Th':'Thursday', 'Fr':'Friday','Sa':'Saturday'}

We can add those days to our days dictionary:

>>> days.update(favorites)
>>> days
{'Fr': 'Friday', 'Mo': 'Monday', 'We': 'Wednesday',
'Th': 'Thursday', 'Sa': 'Saturday'}

The (key, value) pair 'Fr':'Friday' has been added to days and the (key, value) pair

'Sa':'Saturday' has replaced the pair 'Sa':'Sat', originally in dictionary days. Note

that only one copy of (key, value) pair 'Th':'Thursday' can be in the dictionary.

Particularly useful dictionary methods are keys(), values(), and items(): They

return the keys, values, and (key, value) pairs, respectively, in the dictionary. To illustrate

how to use these methods, we use dictionary days defined as:

>>> days
{'Fr': 'Friday', 'Mo': 'Monday', 'We': 'Wednesday',
'Th': 'Thursday', 'Sa': 'Saturday'}

Section 6.1 Dictionaries 177

The method keys() returns the keys of the dictionary:

>>> keys = days.keys()
>>> keys
dict_keys(['Fr', 'Mo', 'We', 'Th', 'Sa'])

The container object returned by method keys() is not a list. Let’s check its type:

>>> type(days.keys())
<class 'dict_keys'>

OK, it’s a type we have not seen before. Do we really have to learn everything there is to

know about this new type? At this point, not necessarily. We only really need to understand

its usage. So, how is the object returned by the keys() method used? It is typically used to

iterate over the keys of the dictionary, for example:

>>> for key in days.keys():
print(key, end=' ')

Fr Mo We Th Sa

Thus, the dict_keys class supports iteration. In fact, when we iterate directly over a dic-

tionary, as in:

>>> for key in days:
print(key, end=' ')

Fr Mo We Th Sa

the Python interpreter translates the statement for key in days to the statement for
key in days.keys() before executing it.

Table 6.2 lists some of the commonly used methods that the dictionary class supports;

as usual, you can learn more by looking at the online documentation or by typing

>>> help(dict)
...

in the interpreter shell. The dictionary methods values() and items() shown in Table 6.2

also return objects that we can iterate over. The method values() is typically used to

iterate over the values of a dictionary:

>>> for value in days.values():
print(value, end=', ')

Friday, Monday, Wednesday, Thursday, Saturday,

Operation Explanation

d.items() Returns a view of the (key, value) pairs in d as tuples

d.get(k) Returns the value of key k, equivalent to d[k]
d.keys() Returns a view of the keys of d
d.pop(k) Removes the (key, value) pair with key k from d and

returns the value

d.update(d2) Adds the (key, value) pairs of dictionary d2 to d
d.values() Returns a view of the values of d

Table 6.2 Methods of the
dict class. Listed are
some commonly used
methods of the dictionary
class. d refers to a
dictionary.

178 Chapter 6 Containers and Randomness

The method items() is typically used to iterate over the (key, value) pairs of the dictionary:

>>> for item in days.items():
print(item, end='; ')

('Fr', 'Friday'); ('Mo', 'Monday'); ('We', 'Wednesday');
('Th', 'Thursday'); ('Sa', 'Saturday');

The (key, value) pairs in the container obtained by evaluating days.items() are shown

in a format we have not seen before. This format is a representation of a container object

of type tuple, which we introduce in the next section.

DETOUR
View Objects

The objects returned by methods keys(), values(), and items() are referred
to as view objects. View object provide a dynamic view of the dictionary’s keys,
values, and (key, value) pairs, respectively. What this means is that when the dic-
tionary changes, the view reflects these changes.

For example, suppose we define dictionary days and view keys as:

>>> days
{'Fr': 'Friday', 'Mo': 'Monday', 'We': 'Wednesday',
'Th': 'Thursday', 'Sa': 'Saturday'}
>>> keys = days.keys()
>>> keys
dict_keys(['Fr', 'Mo', 'We', 'Th', 'Sa'])

The name keys refers to a view of the keys of dictionary days. Now let’s delete a
key (and associated value) in dictionary days:

>>> del(days['Mo'])
>>> days
{'Fr': 'Friday', 'We': 'Wednesday', 'Th': 'Thursday',
'Sa': 'Saturday'}

Note that the view keys has changed as well:

>>> keys
dict_keys(['Fr', 'We', 'Th', 'Sa'])

The container objects returned by keys(), value(), and items() have types that also

support various setlike operations, like union and intersection. These operations allow us

to, say, combine the keys of two dictionaries or find the values common to both dictionaries.

We discuss those operations in more detail in Section 6.2, when we cover the set built-in

type.

A Dictionary as a Substitute for Multiway Condition
When we introduced dictionaries at the start of this section, our motivation was the need

for a container with user-defined indexes. We now show alternate uses for dictionaries.

Suppose we would like to develop a small function, named complete(), that takes the

Section 6.1 Dictionaries 179

abbreviation of a day of week, such as 'Tu', and returns the corresponding day, which for

input 'Tu' would be 'Tuesday':

>>> complete('Tu')
'Tuesday'

One way to implement the function would be to use a multiway if statement:

def complete(abbreviation):
'returns day of the week corresponding to abbreviation'
if abbreviation == 'Mo':

return 'Monday'
elif abbreviation == 'Tu':

return 'Tuesday'
elif ...

...
else: # abbreviation must be Su

return 'Sunday'

We omit part of the implementation, because it is long, because you should be able to

finish it, and also because it is tedious to read and write. We also omit it because it is not

an effective way to implement the function.

The main problem with the implementation is that it simply overkill to use a seven-

way if statement to implement what is really a “mapping” from day abbreviations to the

corresponding days. We now know how to implement such as mapping using a dictionary.

Here is a better implementation of function complete():

Module: ch6.py
1 def complete(abbreviation):
2 'returns day of the week corresponding to abbreviation'
3

4 days = {'Mo': 'Monday', 'Tu':'Tuesday', 'We': 'Wednesday',
5 'Th': 'Thursday', 'Fr': 'Friday', 'Sa': 'Saturday',
6 'Su':'Sunday'}
7

8 return days[abbreviation]

Dictionary as a Collection of Counters
An important application of the dictionary type is its use in computing the number of oc-

currences of “things” in a larger set. A search engine, for example, may need to compute

the frequency of each word in a web page in order to calculate its relevance with respect to

search engine queries.

On a smaller scale, suppose that we would like to count the frequency of each name in

a list of student names such as:

>>> students = ['Cindy', 'John', 'Cindy', 'Adam', 'Adam',
'Jimmy', 'Joan', 'Cindy', 'Joan']

More precisely, we would like to implement a function frequency() that takes a list such

as students as input and computes the number of occurrences of each distinct list item.

As usual, there are different ways to implement function frequency(). However, the

best way is to have a counter for each distinct item in the list and then iterate over the items

180 Chapter 6 Containers and Randomness

Figure 6.3 Dynamically
created counters.
Counters are created
dynamically, in the course
of iterating over the list
students. When the first
item, 'Cindy', is visited, a
counter for string 'Cindy'
is created. When second
item, 'John', is visited,
a counter for 'John' is
created. When the third
item, 'Cindy', is visited,
the counter corresponding
to 'Cindy' is incremented.

After visiting 'Cindy':
key 'Cindy'

value 1

After visiting 'John':
key 'Cindy' 'John'

value 1 1

After visiting 'Cindy':
key 'Cindy' 'John'

value 2 1

in the list: For each visited item, the corresponding counter is incremented. In order for this

to work, we need to answer three questions:

1. How do we know how many counters we need?

2. How do we store all the counters?

3. How do we associate a counter with a list item?

The answer to the first question is not to worry about how many counters we need but

to create them dynamically, as needed. In other words, we create a counter for an item

only when, in the course of iterating over the list, we encounter the item for the first time.

Figure 6.3 illustrates the states of the counters after visiting the first, second, and third name

in list students.

Practice Problem
6.3

Draw the state of the counters after visiting the next three names in list students. Make a

drawing after visiting 'Adam', another after visiting the second 'Adam', and still another

after visiting 'Jimmy' using Figure 6.3 as your model.

Figure 6.3 gives us an insight on how to answer the second question: We can use a

dictionary to store the counters. Each item counter will be a value in the dictionary, and

the item itself will be the key corresponding to the value. For example, the string 'Cindy'
would be the key and the corresponding value would be its counter. The dictionary mapping

of keys to values also answers the third question.

Now we can also decide what the function frequency() should return: a dictionary

mapping each distinct item in the list to the number of times it occurs in the list. Here is an

example usage of this function:

>>> students = ['Cindy', 'John', 'Cindy', 'Adam', 'Adam',
'Jimmy', 'Joan', 'Cindy', 'Joan',]

>>> frequency(students)
{'John': 1, 'Joan': 2, 'Adam': 2, 'Cindy': 3, 'Jimmy': 1}

In the dictionary returned by the call frequency(students), shown in Figure 6.4, the

Section 6.1 Dictionaries 181

key 'Cindy' 'John' 'Adam' 'Jimmy' 'Joan'

value 3 1 2 1 2

Figure 6.4 Dictionary as a
container of counters.
This dictionary is the
output of running function
frequency() on list
students.

keys are the distinct names in the list students and the values are the corresponding

frequencies: so 'John' occurs once, 'Joan' occurs twice, and so on.

With all the pieces of the puzzle in place, we can now implement the function:

Module: ch6.py
1 def frequency(itemList):
2 'returns frequency of items in itemList'
3 counters = {} # initialize dictionary of counters
4

5 for item in itemList:
6

7 if item in counters: # counter for item already exists
8 counters[item] += 1 # so increment it
9 else: # counter for item is created

10 counters[item] = 1 # an initialized to 1
11

12 return counters

The dictionary counters is initialized to an empty dictionary in line 3. The for loop

iterates through the list of items itemList, and for every item:

• Either the counter corresponding to the item is incremented,

• Or, if no counter exists yet for the item, a counter corresponding to the item is created

and initialized to 1.

Note the use of an accumulator pattern to accumulate frequency counts.

Practice Problem
6.4

Implement function wordcount() that takes as input a text—as a string— and prints the

frequency of each word in the text. You may assume that the text has no punctuation and

words are separated by blank spaces.

>>> text = 'all animals are equal but some \
animals are more equal than others'
>>> wordCount(text)
all appears 1 time.
animals appears 2 times.
some appears 1 time.
equal appears 2 times.
but appears 1 time.
are appears 2 times.
others appears 1 time.
than appears 1 time.
more appears 1 time.

182 Chapter 6 Containers and Randomness

6.2 Other Built-In Container Types
In this section, we introduce two more useful container classes: tuple and set.

Class tuple
In Practice Problem 6.2, we defined a dictionary that maps phone numbers to (the first and

last name of) individuals:

>>> rphonebook = {'(123)456-78-90':['Anna','Karenina'],
'(901)234-56-78':['Yu', 'Tsun'],
'(321)908-76-54':['Hans', 'Castorp']}

We used this dictionary to implement a reverse phone book lookup application: Given a

phone number, the app returns the individual that number is assigned to. What if, instead,

we wanted to build an app that implements a standard phone book lookup: Given a person’s

first and last name, the app would return the phone number assigned to that individual.

For the standard lookup app, a dictionary such as rphonebook is not appropriate. What

we need is a mapping from individuals to phone numbers. So let’s define a new dictionary

that is, effectively, the inverse of the mapping of rphonebook:

>>> phonebook = {['Anna','Karenina']:'(123)456-78-90',
['Yu', 'Tsun']:'(901)234-56-78',
['Hans', 'Castorp']:'(321)908-76-54'}

Traceback (most recent call last):
File "<pyshell#242>", line 1, in <module>

phonebook = {['Anna','Karenina']:'(123)456-78-90',
TypeError: unhashable type: 'list'

Oops, we have a problem. The problem is that we are trying to define a dictionary whose

keys are list objects. Recall that the list type is mutable and that dictionary keys must be

of a type that is immutable.

To the rescue comes a Python collection class that behaves like a list in almost every

aspect except that it is immutable: the class tuple. A tuple object contains a sequence of

values separated by commas and enclosed in parentheses (()) instead of brackets ([]):

>>> days = ('Mo', 'Tu', 'We')
>>> days
('Mo', 'Tu', 'We')

Let’s check the type of the object days refers to:

>>> type(days)
<class 'tuple'>

The parentheses are optional in simple expressions like this assignment:

>>> days = 'Mo', 'Tu', 'We', 'Th'
>>> days
('Mo', 'Tu', 'We', 'Th')

The indexing operator can be used to access tuple items using the item’s offset as the index,

just like in list objects:

>>> days[2]
'We'

Section 6.2 Other Built-In Container Types 183

However, any attempt to change the tuple object results in a TypeError exception being

thrown:

>>> days[4] = 'th'
Traceback (most recent call last):

File "<pyshell#261>", line 1, in <module>
days[4] = 'th'

TypeError: 'tuple' object does not support item assignment

Also, adding new items to a tuple object is not allowed:

>>> days[5] = 'Fr'
Traceback (most recent call last):

File "<pyshell#260>", line 1, in <module>
days[5] = 'Fr'

TypeError: 'tuple' object does not support item assignment

So, as in lists, items in tuple containers are ordered and are accessed using an index

(offset). Unlike lists, tuple containers are immutable. To learn more about the tuple class,

read the online documentation or just use the documentation function help().

tuple Objects Can Be Dictionary Keys
Because tuple objects are immutable, they can be used as dictionary keys. Let’s get back to

our original goal of constructing a dictionary that maps (the first and last name of) individ-

uals to phone numbers. We can now use tuple objects as keys, instead of list objects:

>>> phonebook = {('Anna','Karenina'):'(123)456-78-90',
('Yu', 'Tsun'):'(901)234-56-78',
('Hans', 'Castorp'):'(321)908-76-54'}

>>> phonebook
{('Hans', 'Castorp'): '(321)908-76-54',
('Yu', 'Tsun'): '(901)234-56-78',
('Anna', 'Karenina'): '(123)456-78-90'}

Let’s check that the indexing operator works as we want:

>>> phonebook[('Hans', 'Castorp')]
'(321)908-76-54'

Now you can implement the standard phone book lookup tool.

Practice Problem
6.5

Implement function lookup() that implements a phone book lookup application. Your

function takes, as input, a dictionary representing a phone book. In the dictionary, tuples

containing first and last names of individual (the keys) are mapped to strings containing

phone numbers (the values). Here is an example:

>>> phonebook = {('Anna','Karenina'):'(123)456-78-90',
('Yu', 'Tsun'):'(901)234-56-78',
('Hans', 'Castorp'):'(321)908-76-54'}

Your function should provide a simple user interface through which a user can enter the first

and last name of an individual and obtain the phone number assigned to that individual.

184 Chapter 6 Containers and Randomness

>>> lookup(phonebook)
Enter the first name: Anna
Enter the last name: Karenina
(123)456-78-90
Enter the first name: Yu
Enter the last name: Tsun
(901)234-56-78

Dictionary Method items(), Revisited
Before moving on, let’s go back and take another look at the dictionary method items().

We used it in the previous section to iterate over the (key, value) pairs of dictionarydays:

>>> days = {'Mo': 'Monday', 'Tu': 'Tuesday', 'We': 'Wednesday',
'Th': 'Thursday'}

The items() dictionary method returns a container that contains tuple objects, one for

each (key, value) pair:

>>> days.items()
dict_items([('We', 'Wednesday'), ('Mo', 'Monday'),

('Th', 'Thursday'), ('Tu', 'Tuesday')])

Each tuple contains two items: the key and the value of the corresponding (key, value)

pair.

!

CAUTION
One-Item Tuple

Suppose we need to create a one-item tuple, such as:

>>> days = ('Mo')

Let’s evaluate the value and type of the object days:

>>> days
'Mo'
>>> type(days)
<class 'str'>

What we got is no tuple at all! It’s just string 'Mo'. The parentheses were essen-
tially ignored. Let’s do another example to clarify what’s going on:

>>> t = (3)
>>> t
3
>>> type(3)
<class 'int'>

It’s clear that the parentheses are treated as parentheses should be in an arith-
metic expression. In fact, the same was true when we evaluated ('Mo'); while
surrounding strings with parentheses may seem odd, the Python string operators

Section 6.2 Other Built-In Container Types 185

* and + do sometimes require us to use them to indicate the order in which string
operations should be evaluated, as the next example shows:

>>> ('Mo'+'Tu')*3
'MoTuMoTuMoTu'
>>> 'Mo'+('Tu'*3)
'MoTuTuTu'

How do we create a one element tuple? What differentiates the parentheses in a
general tuple from parentheses in an expression is that enclosed in the tuple
parentheses will be comma-separated items. So, the commas make the difference,
and all we need to do is add a comma after the first, and only, item to get a one-item
tuple object:

>>> days = ('Mo',)

Let’s check that we got a tuple object:

>>> days
('Mo',)
>>> type(days)
<class 'tuple'>

Class set
Another built-in Python container type is the set class. The set class has all the properties

of a mathematical set. It is used to store an unordered collection of items, with no duplicate

items allowed. The items must be immutable objects. The set type supports operators

that implement the classical set operations: set membership, intersection, union, symmetric

difference, and so on. It is thus useful whenever a collection of items is modeled as a

mathematical set. It is also useful for duplicate removal.

A set is defined using the same notation that is used for mathematical sets: a sequence

of items separated by commas and enclosed in curly braces: { }. Here is how we would

assign the set of three phone numbers (as strings) to variable phonebook1:

>>> phonebook1 = {'123-45-67', '234-56-78', '345-67-89'}

We check the value and type of phonebook1:

>>> phonebook1
{'123-45-67', '234-56-78', '345-67-89'}
>>> type(phonebook1)
<class 'set'>

If we had defined a set with duplicate items, they would be ignored:

>>> phonebook1 = {'123-45-67', '234-56-78', '345-67-89',
'123-45-67', '345-67-89'}

>>> phonebook1
{'123-45-67', '234-56-78', '345-67-89'}

186 Chapter 6 Containers and Randomness

Using the set Constructor to Remove Duplicates

The fact that sets cannot have duplicates gives us the first great application for sets: remov-

ing duplicates from a list. Suppose we have a list with duplicates, such as this list of ages

of students in a class:

>>> ages = [23, 19, 18, 21, 18, 20, 21, 23, 22, 23, 19, 20]

To remove duplicates from this list, we can convert the list to a set, using the set constructor.

The set constructor will eliminate all duplicates because a set is not supposed to have them.

By converting the set back to a list, we get a list with no duplicates:

>>> ages = list(set(ages))
>>> ages
[18, 19, 20, 21, 22, 23]

There is, however, one major caveat: The elements have been reordered.

!

CAUTION
Empty Sets

To instantiate an empty set, we may be tempted to do this:

>>> phonebook2 = {}

When we check the type of phonebook2, however, we get a dictionary type:

>>> type(phonebook2)
<class 'dict'>

The problem here is that curly braces ({}) are used to define dictionaries as well,
and {} represents an empty dictionary. If that is that case, then two questions are
raised:

1. How does Python then differentiate between set and dictionary notation?
2. How do we create an empty set?

The answer to the first question is this: Even though both sets and dictionaries
are denoted using curly braces enclosing a comma-separated sequence of items,
the items in dictionaries are (key, value) pairs of objects separated by colons (:),
whereas the items in sets are not separated by colons.

The answer to the second question is that we have to use the set constructor
explicitly when creating an empty set:

>>> phonebook2 = set()

We check the value and type of phonebook2 to make sure that we have an empty
set:

>>> phonebook2
set()
>>> type(phonebook2)
<class 'set'>

Section 6.2 Other Built-In Container Types 187

set Operators
The set class supports operators that correspond to the usual mathematical set operations.

Some are operators that can also be used with list, string, and dictionary types. For example,

the in and not in operators are used to test set membership:

>>> '123-45-67' in phonebook1
True
>>> '456-78-90' in phonebook1
False
>>> '456-78-90' not in phonebook1
True

The len() operator returns the size of the set:

>>> len(phonebook1)
3

Comparison operators ==, !=, <, <=, >, and >= are supported as well, but their meaning is

set-specific. Two sets are “equal” if and only if they have the same elements:

>>> phonebook3 = {'345-67-89','456-78-90'}
>>> phonebook1 == phonebook3
False
>>> phonebook1 != phonebook3
True

As shown in Figure 6.5, sets phonebook1 and phonebook3 do not contain the same ele-

ments.

phonebook1

123-45-67

234-56-78
345-67-89 456-78-90

phonebook3 phonebook2
Figure 6.5 Three phone
book sets. The Venn
diagram of sets
phonebook1, phonebook2,
and phonebook3 is shown.

A set is “less than or equal to” another set if it is a subset of it, and a set is “less than

another set” if it is a proper subset of it. So, for example:

>>> {'123-45-67', '345-67-89'} <= phonebook1
True

As Figure 6.5 shows, the set {'123-45-67', '345-67-89'} is a subset of set phonebook1.

However, phonebook1 is not a proper subset of phonebook1:

>>> phonebook1 < phonebook1
False

The mathematical set operations union, intersection, difference, and symmetric differ-

ence are implemented as set operators |, &, -, and ^, respectively. Each set operation takes

two sets and returns a new set. The union of two sets contains all elements that are in either

set:

>>> phonebook1 | phonebook3
{'123-45-67', '234-56-78', '345-67-89', '456-78-90'}

188 Chapter 6 Containers and Randomness

The intersection of two sets contains all elements that are in both sets:

>>> phonebook1 & phonebook3
{'345-67-89'}

The difference between two sets contains all elements that are in the first set but not the

second one:

>>> phonebook1 - phonebook3
{'123-45-67', '234-56-78'}

The symmetric difference of two sets contains all elements that are either in the first set or

in the second set, but not both:

>>> phonebook1 ^ phonebook3
{'123-45-67', '234-56-78', '456-78-90'}

Use Figure 6.5 to check that the set operators work as expected.

Before we move on to discussing the set class methods, we summarize in Table 6.3

the commonly used set operators that we just covered.

Table 6.3 Class set
operators. Shown are the
usage and explanation
for commonly used set
operators.

Operation Explanation

x in s True if x is in set s, else False
x not in s False if x is in set s, else True
len(s) Returns the size of set s
s == t True if sets s and t contain the same elements, False

otherwise

s != t True if sets s and t do not contain the same elements,

False otherwise

s <= t True if every element of set s is in set t, False otherwise

s < t True if s <= t and s != t
s | t Returns the union of sets s and t
s & t Returns the intersection of sets s and t
s - t Returns the difference between sets s and t
s ^ t Returns the symmetric difference of sets s and t

set Methods
In addition to operators, the set class supports a number of methods. The set method

add() is used to add an item to a set:

>>> phonebook3.add('123-45-67')
>>> phonebook3
{'123-45-67', '345-67-89', '456-78-90'}

The method remove() is used to remove an item from a set:

>>> phonebook3.remove('123-45-67')
>>> phonebook3
{'345-67-89', '456-78-90'}

Finally, the method clear() is used to empty a set:

>>> phonebook3.clear()

Section 6.3 Character Encodings and Strings 189

We check that phonebook3 is indeed empty:

>>> phonebook3
set()

To learn more about the set class, read the online documentation or use the help() docu-

mentation function.

Practice Problem
6.6

Implement function sync() that takes a list of phone books (where each phone book is a

set of phone numbers) as input and returns a phone book (as a set) containing the union of

all the phone books.

>>> phonebook4 = {'234-56-78', '456-78-90'}
>>> phonebooks = [phonebook1, phonebook2, phonebook3, phonebook4]
>>> sync(phonebooks)
{'234-56-78', '456-78-90', '123-45-67', '345-67-89'}

6.3 Character Encodings and Strings
The string type, str, is the Python type for storing text values. In Chapters 2 and 4, we have

seen how to create string objects and manipulate them using string operators and methods.

The assumption then was that we were dealing with string objects containing English text.

That assumption helped make string processing intuitive, but it also hid the complexity, and

richness, of string representations. We now discuss the complexity of text representations

that is due to the huge number of symbols and characters in the world languages we speak

and write. We discuss specifically what kind of characters strings can contain.

Character Encodings
String objects are used to store text, that is, a sequence of characters. The characters could

be upper- and lowercase letters from the alphabet, digits, punctuation marks, and possibly

symbols like the dollar sign ($). As we saw in Chapter 2, in order to create a variable whose

value is the text ’An apple costs $0.99!’, we just need to do:

>>> text = 'An apple costs $0.99!'

The variable text then evaluates to the text:

>>> text
'An apple costs $0.99!'

While all this may sound very clean and straightforward, strings are somewhat messy. The

problem is that computers deal with bits and bytes, and string values need to be somehow

encoded with bits and bytes. In other words, each character of a string value needs to be

mapped to a specific bit encoding, and this encoding should map back to the character.

But why should we care about this encoding? As we saw in Chapters 2 and 4, ma-

nipulating strings is quite intuitive, and we certainly did not worry about how strings are

encoded. Most of the time, we do not have to worry about it. However, in a global Internet,

documents created in one location may need to be read in another. We need to know how

190 Chapter 6 Containers and Randomness

to work with characters from other writing systems, whether they are characters from other

languages, such as French, Greek, Arabic, or Chinese, or symbols from various domains,

such as math, science, or engineering. As importantly, we need to understand how strings

are represented because, as computer scientists, we do like to know what is below the hood.

ASCII
For many years, the standard encoding for characters in the English language was ASCII

encoding. The American Standard Code for Information Interchange (ASCII) was devel-

oped in the 1960s. It defines a numeric code for 128 characters, punctuation, and a few

other symbols common in the American English language. Table 6.4 shows the decimal

ASCII codes for the printable characters.

Let’s explain what the entries of this table mean. The decimal ASCII code for lowercase

a is 97. The & sign is encoded with decimal ASCII code 38. ASCII codes 0 through 32 and

127 include nonprintable characters, such as backspace (decimal code 8), horizontal tab

(decimal code 9), and line feed (decimal code 10). You can explore the ASCII encodings

using the Python function ord(), which returns the decimal ASCII code of a character:

>>> ord('a')
97

The sequence of characters of a string value (such as 'dad') is encoded as a sequence

of ASCII codes 100, 97, and 100. What is stored in memory is exactly this sequence of

codes. Of course, each code is stored in binary. As ASCII decimal codes go from 0 to 127,

they can be encoded with seven bits; because a byte (eight bits) is the smallest memory

storage unit, each code is stored in one byte.

For example, the decimal ASCII code for lowercase a is 97, which corresponds to

binary ASCII code 1100001. So, in the ASCII encoding, character a is encoded in a single

byte with the first bit being a 0 and the remaining bits being 1100001. The resulting byte

01100001 can be described more succinctly using a two-digit hex number 0x61 (6 for the

leftmost four bits, 0110, and 1 for the rightmost 4 bits, 0001). In fact, it it common to use

hex ASCII codes (as a shorthand for ASCII binary codes).

Table 6.4 ASCII encoding.
Printable ASCII characters
and their corresponding
decimal codes are shown.
The character for decimal
code 43, for example, is the
operator +. The character
for decimal code 32 is
the blank space, which is
displayed as a blank space.

32 48 0 64 @ 80 P 96 ` 112 p

33 ! 49 1 65 A 81 Q 97 a 113 q

34 " 50 2 66 B 82 R 98 b 114 r

35 # 51 3 67 C 83 S 99 c 115 s

36 $ 52 4 68 D 84 T 100 d 116 t

37 % 53 5 69 E 85 U 101 e 117 u

38 & 54 6 70 F 86 V 102 f 118 v

39 ' 55 7 71 G 87 W 103 g 119 w

40 (56 8 72 H 88 X 104 h 120 x

41) 57 9 73 I 89 Y 105 i 121 y

42 * 58 : 74 J 90 Z 106 j 122 z

43 + 59 ; 75 K 91 [107 k 123 {

44 , 60 < 76 L 92 \ 108 l 124 |

45 - 61 = 77 M 93] 109 m 125 }

46 . 62 > 78 N 94 ^ 110 n 126 ~
47 / 63 ? 79 O 95 _ 111 o

Section 6.3 Character Encodings and Strings 191

The symbol &, for example, is encoded with decimal ASCII code 38, which corre-

sponds to binary code 0100110 or hex code 0x26.

Practice Problem
6.7

Write a function encoding() that takes a string as input and prints the ASCII code—in

decimal, hex, and binary notation—of every character in it.

>>> encoding('dad')
Char Decimal Hex Binary
d 100 64 1100100
a 97 61 1100001
d 100 64 1100100

The function chr() is the inverse of function ord(). It take a numeric code and returns

the character corresponding to it.

>>> chr(97)
'a'

Practice Problem
6.8

Write function char(low, high) that prints the characters corresponding to ASCII deci-

mal codes i for all values of i from low up to and including high.

>>> char(62, 67)
62 : >
63 : ?
64 : @
65 : A
66 : B
67 : C

Unicode
ASCII is an American standard. As such, it does not provide for characters not in the Amer-

ican English language. There is no French ‘é’, Greek ‘Δ’, or Chinese ‘世’ in ASCII encod-

ing. Encodings other than ASCII were developed to handle different languages or groups

of languages. This raises a problem, however: With the existence of different encodings, it

is likely that some encodings are not installed on a computer. In a globally interconnected

world, a text document that was created on one computer will often need to be read on

another, a continent away. What if the computer reading the document does not have the

right encoding installed?

Unicode was developed to be the universal character-encoding scheme. It covers all

characters in all written languages, modern or ancient, and includes technical symbols from

science, engineering, and mathematics, punctuation, and so on. In Unicode, every character

is represented by an integer code point. The code point is not necessarily the actual byte

representation of the character, however; it is just the identifier for the particular character.

For example, the code point for lowercase ‘k’ is the integer with hex value 0x006B,

192 Chapter 6 Containers and Randomness

which corresponds to decimal value 107. As you can see in Table 6.4, 107 is also the

ASCII code for letter ‘k’. Unicode conveniently uses a code point for ASCII characters

that is equal to their ASCII code.

How do you incorporate Unicode characters into a string? To include character ‘k’, for

example, you would use the Python escape sequence \u006B:

>>> '\u006B'
'k'

In the next example, the escape sequence \u0020 is used to denote the Unicode character

with code point 0x0020 (in hex, corresponding to decimal 32). This is, of course, the blank

space (see Table 6.4):

>>> 'Hello\u0020World !'
'Hello World !'

We now try a few examples in several different languages. Let’s start with my name in

Cyrillic:

>>> '\u0409\u0443\u0431\u043e\u043c\u0438\u0440'
'Љубомир'

Here is ‘Hello World!’ in Greek:

>>> '\u0393\u03b5\u03b9\u03b1\u0020\u03c3\u03b1\u03c2
\u0020\u03ba\u03cc\u03c3\u03bc\u03bf!'

'Γεια σας κόσμο!'

Finally, let’s write ‘Hello World!’ in Chinese:

>>> chinese = '\u4e16\u754c\u60a8\u597d!'
>>> chinese
'世界您好!'

DETOUR
String Comparisons, Revisited

Now that we know how strings are represented, we can understand how string
comparison works. First, the Unicode code points, being integers, give a natural
ordering to all the characters representable in Unicode. So, for example, the blank
space ‘ ’ is earlier in this ordering than Cyrillic character ‘Љ’ because the Unicode
code point for ‘ ’ (which is 0x0020) is a smaller integer than the Unicode code point
for ‘Љ’ (which is 0x0409):

>>> '\u0020' > '\u0409'
False
>>> '\u0020' < '\u0409'
True

Unicode was designed so that for any pair of characters from the same alpha-
bet, one that is earlier in the alphabet than the other will have a smaller Unicode
code point. For example, ‘a’ is before ‘d’ in the alphabet, and the code point for ‘a’
is smaller than the code point for ‘d’. In this way, the Unicode characters form an
ordered set of characters that is consistent with all the alphabets Unicode covers.

Section 6.3 Character Encodings and Strings 193

When two strings are compared, we have said that the comparison is done
using dictionary order. Another name for dictionary order is lexicographic order.
This order can be precisely defined, now that we understand that characters come
from an ordered set (Unicode). The word

a1a2a3 . . . ak

appears earlier in the lexicographic order than word

b1b2b3 . . . bl

if either:

• a1 = b1, a2 = b2, . . . , ak = bk, and k < l, Or

• for the smallest index i for which ai and bi are different, the Unicode code
point for ai is smaller than the Unicode code point for bi.

Let’s check that the basic string operators work on this string.

>>> len(chinese)
5
>>> chinese[0]
'世'

String operators work regardless of the alphabet used in the string. Now let’s see whether

the ord() and chr() functions extend from ASCII to Unicode:

>>> ord(chinese[0])
19990
>>> chr(19990)
'世'

They do! Note that 19990 is the decimal value of hex value 0x4e16, which is of course

the Unicode code point of character 世. Thus, the built-in function ord() really takes a

Unicode character and outputs the decimal value of its Unicode code point, and chr()
does the inverse. The reason they both also work for ASCII characters is that the Unicode

code points for ASCII characters are, by design and as noted, the ASCII codes.

UTF-8 Encoding for Unicode Characters
A Unicode string is a sequence of code points that are numbers from 0 to 0x10FFFF. Unlike

ASCII codes, however, Unicode code points are not what is stored in memory. The rule for

translating a Unicode character or code point into a sequence of bytes is called an encoding.

There is not just one but several Unicode encodings: UTF-8, UTF-16, and UTF-32.

UTF stands for Unicode Transformation Format, and each UTF-x defines a different way

to map a Unicode code point to a byte sequence. UTF-8 has become the preferred encoding

for e-mail, web pages, and other applications where characters are stored or sent across a

network. In fact, the default encoding when you write Python 3 programs is UTF-8. One

of the features of UTF-8 is: Every ASCII character (i.e., every symbol in Table 6.4) has

a UTF-8 encoding that is exactly the 8-bit (1-byte) ASCII encoding. This means that an

194 Chapter 6 Containers and Randomness

ASCII text is a Unicode text encoded with the UTF-8 encoding.

In some situations, your Python program will receive text without a specified encoding.

This happens, for example, when the program downloads a text document from the World

Wide Web (as we will see in Chapter 11). In that case, Python has no choice but to treat the

“text” as a sequence of raw bytes stored in an object of type bytes. This is because files

downloaded from the web could be images, video, audio, and not just text.

Consider this content of a text file downloaded from the web:

>>> content
b'This is a text document\nposted on the\nWWW.\n'

Variable content refers to an object of type bytes. As you can verify, the letter b in the

front of the “string” indicates that:

>>> type(content)
<class 'bytes'>

To decode it to a string encoded using the UTF-8 Unicode encoding, we need to use the

decode() method of the bytes class:

>>> content.decode('utf-8')
'This is a text document\nposted on the\nWWW.\n'

If the method decode() is called without arguments, the default, platform-dependent en-

coding is used, which is UTF-8 for Python 3 (or ASCII for Python 2).

DETOUR
Files and Encodings

The third, optional, argument to the open() function, used to open a file, is the
encoding to use when reading, or writing, the text file. If not specified, the default
platform-dependent encoding will be used. This argument should be used only in
text mode; an error will occur if used for binary files. Let’s open file chinese.txt
by explicitly specifying the UTF-8 encoding:

>>> infile = open('chinese.txt', 'r', encoding='utf-8')
>>> print(infile.read())
你好世界!

(translation: Hello World!)

6.4 Module random
Random numbers are useful for running simulations in science, engineering, and finance.

They are needed in modern cryptographic protocols that provide computer security, com-

munication privacy, and authentication. They also are a necessary component in games of

chance, such as poker or blackjack, and help make computer games less predictable.

Truly random numbers are not easy to obtain. Most computer applications that require

random numbers use numbers generated by a pseudorandom number generator instead.

The “pseudo” in “pseudorandom” means fake, or not real. Pseudorandom number gener-

Section 6.4 Module random 195

ators are programs that produce a sequence of numbers that “look” random and are good

enough for most applications that need a random numbers.

In Python, pseudorandom number generators and associated tools are available through

the random module. As usual, if we need to use functions in the random module, we need

to import it first:

>>> import random

Next we describe a few functions in the random module that are particularly useful.

Choosing a Random Integer
We start with function randrange(), which takes a pair of integers a and b and returns

some number in the range from—and including—a up to—and not including—b with each

number in the range equally likely. Here is how we would use this function to simulate

several (six-sided) die tosses:

>>> random.randrange(1,7)
2
>>> random.randrange(1,7)
6
>>> random.randrange(1,7)
5
>>> random.randrange(1,7)
1
>>> random.randrange(1,7)
2

Practice Problem
6.9

Implement function guess() that takes as input an integer n and implements a simple,

interactive number guessing game. The function should start by choosing a random num-

ber in the range from 0 up to but not including n. The function will then repeatedly ask

the user to guess the chosen number; When the user guesses correctly, the function should

print a 'You got it.' message and terminate. Each time the user guesses incorrectly, the

function should help the user by printing message 'Too low.', or 'Too high.'.

>>> guess(100)
Enter your guess: 50
Too low.
Enter your guess: 75
Too high.
Enter your guess: 62
Too high.
Enter your guess: 56
Too low.
Enter your guess: 59
Too high.
Enter your guess: 57
You got it!

196 Chapter 6 Containers and Randomness

DETOUR
Randomness

We usually think of the result, heads or tails, of a coin toss as a random event.
Most games of chance depend on the generation of random events (die tosses,
card shuffling, roulette spins, etc). The problem with these methods of generating
random events is that they are not appropriate for generating randomness quickly
enough for a running computer program. It is, in fact, not easy to get a computer
program to generate truly random numbers. For this reason, computer scientists
have developed deterministic algorithms called pseudorandom number generators
that generate numbers that “appear” random.

Choosing a Random “Real”
Sometimes what we need in an application is not a random integer but a random number

chosen from a given number interval. The function uniform() takes two numbers a and b
and returns a float number x such that a ≤ x ≤ b (assuming a ≤ b), with each float value

in the range equally likely. Here is how we would use it to obtain several random numbers

between 0 and 1:

>>> random.uniform(0,1)
0.9896941090637834
>>> random.uniform(0,1)
0.3083484771618912
>>> random.uniform(0,1)
0.12374451518957152

Practice Problem
6.10

There is a way to estimate the value of mathematical constant π by throwing darts at a dart-

board. It is not a good way to estimate π , but it is fun. Suppose that you have a dartboard

of radius 1 inside a 2×2 square on the wall. Now throw darts at random and suppose that

out of n darts that hit the square, k hit the dartboard (see Figure 6.6.)

Figure 6.6 Dartboard
inside a square. Shown
are 10 random dart hits with
8 lying inside the dartboard.
In this case, the estimate for
π would be: 4∗8

10 = 3.2.

··

·

·· ·
· · ·

·
2

2

Because the darts were randomly thrown, the ratio k/n should approximate the ratio of

the area of the dartboard (π × 12) and the area of the square surrounding it (22). In other

words, we should have:

k
n
≈ π

4

Section 6.4 Module random 197

The formula can be rewritten so it can be used to estimate π:

π ≈ 4k
n

Implement function approxPi() that takes as input an integer n, simulates n random

dart throws into the 2 × 2 square containing the dartboard, counts the number of darts

hitting the dartboard, and returns an estimate of π based on the count and n. Note: In

order to simulate a random dart hit into the square, you just need to obtain random x and y
coordinates of the hit.

>>> approxPi(1000)
3.028
>>> approxPi(100000)
3.1409600000000002
>>> approxPi(1000000)
3.141702
>>>

Shuffling, Choosing, and Sampling at Random
Let’s illustrate a few more functions from the random module. The function shuffle()
shuffles, or permutes, the objects in a sequence not unlike how a deck of cards is shuffled

prior to a card game like blackjack. Each possible permutation is equally likely. Here is

how we can use this function to shuffle a list twice:

>>> lst = [1,2,3,4,5]
>>> random.shuffle(lst)
>>> lst
[3, 4, 1, 5, 2]
>>> random.shuffle(lst)
>>> lst
[1, 3, 2, 4, 5]

The function choice() allows us to choose an item from a container uniformly at

random. Given list

>>> lst = ['cat', 'rat', 'bat', 'mat']

here is how we would choose a list item uniformly at random:

>>> random.choice(lst)
'mat'
>>> random.choice(lst)
'bat'
>>> random.choice(lst)
'rat'
>>> random.choice(lst)
'bat'

If, instead of needing just one item, we want to choose a sample of size k, with every

sample equally likely, we would use the sample() function. It takes as input the container

and the number k.

198 Chapter 6 Containers and Randomness

Here is how we would choose random samples of list lst of size 2 or 3:

>>> random.sample(lst, 2)
['mat', 'bat']
>>> random.sample(lst, 2)
['cat', 'rat']
>>> random.sample(lst, 3)
['rat', 'mat', 'bat']

6.5 Case Study: Games of Chance
Games of chance such as poker and blackjack have transitioned to the digital age very

successfully. In this case study, we show how to develop a blackjack application. As we

develop this application, we will make use of several concepts introduced in this chapter:

sets, dictionaries, Unicode characters, and of course randomness through card shuffling.

Blackjack

Blackjack can be played with a standard deck of 52 cards. In a one-person blackjack game,

the player plays against the house (i.e., the dealer). The house deals the cards, plays using a

fixed strategy, and wins in case of a tie. Our blackjack application will simulate the house.

The player (i.e., the user of the application) is trying to beat the house.

DETOUR
Blackjack Game Rules

The game starts with the house dealing cards from a shuffled deck to the player
and to itself (the house). The first card is handed to the player, the second to
the house, the third to the player, and the fourth to the house. Each gets two
cards. Then the player is offered the opportunity to take an additional card, which
is usually referred to as “to hit”.

The goal in blackjack is to get a hand whose card values add up to as close to
21 as possible without going over. The value of each number card is its rank, and
the value of each face card is 10. The ace is valued at either 1 or 11, whichever
works out better (i.e., gets closer to 21 without exceeding it). By hitting one or more
times, the player tries to get his hand value closer to 21. If the player’s hand value
goes over 21 after a hit, he loses.

When the player decides to stand (i.e., pass the opportunity to hit), it is the
house’s turn to take additional cards. The house is required to use a fixed strategy:
It must hit if its best hand value is less than 17 and stand if it is 17 or greater. Of
course, if the house’s best hand value goes over 21, the player wins.

When the house stands, the player’s hand is compared with the house’s hand.
If the player has a higher-valued hand, he wins. If he has a lower-valued hand,
he loses. In case of a tie, no one wins (i.e., the player keeps his bet) except if the
player’s and the house’s hands tied at 21 and either the house or the player has
a blackjack hand (an ace and a value 10 card), in which case the blackjack hand
wins.

Section 6.5 Case Study: Games of Chance 199

Let’s illustrate with a few examples how we want the blackjack application to work.

When you start the app, the house should deal two cards to you and two to itself:

>>> blackjack()
House: 7 ♠ A ♥

You: 6 ♠ 10 ♠
Would you like to hit (default) or stand?

The house dealt a 6 and a 10 of spades to you and a 7 of spades and an ace of heart to itself.

The house then asks you whether you want to hit. Suppose you hit:

You got 8 ♣
You went over... You lose.

You receive an 8 of clubs; since your hand value is 10+ 8+ 6 > 21, you lose. Let’s try

another example:

>>> blackjack()
House: 5 ♦ 7 ♠

You: 2 ♠ 8 ♥
Would you like to hit (default) or stand?
You got 9 ♣
Would you like to hit (default) or stand? s
House got A ♥
House got 5 ♣
You win.

After getting your first two cards, you decide to hit and receive a 9 of clubs. With a hand

value of 19, you decide to stand. The house then hits once and gets an ace. With an ace

value of 11, the house’s total is 5+7+11=23, so the ace value of 1 is used instead, making

the house’s hand value 5+7+1 = 13. Since 13 < 17, the house must hit again and gets a

5. With a hand value of 18, the house must stand and the player wins.

In this final example, the house loses because it went over:

>>> blackjack()
House: 2 ♦ 10 ♣

You: 4 ♦ 8 ♠
Would you like to hit (default) or stand?
You got A ♠
Would you like to hit (default) or stand? s
House got 10 ♥
House went over... You win.

Rather than develop the blackjack application as a single function, we develop it in

modular fashion, using several small functions. The modular approach has two main bene-

fits. One is that smaller functions are easier to write, test, and debug. Another is that some of

the functions may be reused in some other card-playing game app. In fact, the first function

we implement returns a shuffled deck, which is useful in most card games.

Creating and Shuffling the Deck of Cards
The game starts with a shuffled deck of 52 cards. Each card is defined by its rank and suit,

and every combination of rank and suit defines a card. To generate all 52 combinations of

rank and suit, we first create a set of ranks and a set of suits (using Unicode suit characters).

200 Chapter 6 Containers and Randomness

Then we use a nested loop pattern to generate every combination of rank and suit. Finally,

we use the shuffle() function of the random module to shuffle the deck:

Module: blackjack.py
1 def shuffledDeck():
2 'returns shuffled deck'
3

4 # suits is a set of 4 Unicode symbols: black spade and club,
5 # and white diamond and heart
6 suits = {'\u2660', '\u2661', '\u2662', '\u2663'}
7 ranks = {'2','3','4','5','6','7','8','9','10','J','Q','K','A'}
8 deck = []
9

10 # create deck of 52 cards
11 for suit in suits:
12 for rank in ranks: # card is the concatenation
13 deck.append(rank+' '+suit) # of suit and rank
14

15 # shuffle the deck and return
16 random.shuffle(deck)
17 return deck

A list is used to hold the cards in the shuffled deck because a list defines an ordering

on the items it contains. A blackjack hand, however, does not need to be ordered. Still, we

choose lists to represent the player’s and the house’s hands. Next we develop a function

that deals a card to either the player or the house.

Dealing a Card
The next function is used to deal the top card in a shuffled deck to one of the blackjack

participants. It also returns the card dealt.

Module: blackjack.py
1 def dealCard(deck, participant):
2 'deals single card from deck to participant'
3 card = deck.pop()
4 participant.append(card)
5 return card

Note that this function can also be reused in other card game apps. The next function,

however, is blackjack specific.

Computing the Value of a Hand
Next we develop the function total() that takes a blackjack hand (i.e., a list of cards) and

uses the best assignment of values to aces to return the best possible value for the hand.

Developing this function makes sense, not because it can be reused in other card games but

because it encapsulates a very specific and somewhat complex computation.

The mapping of cards to their blackjack values is somewhat tricky. Therefore, we use a

dictionary to map the assignments of values to the ranks (dictionary keys) with the ace being

assigned 11. The hand value is computed with these assignments using an accumulator loop

pattern. In parallel, we also count the number of aces, in case we want to switch the value

Section 6.5 Case Study: Games of Chance 201

of an ace down to 1.

If the hand value obtained is 21 or below, it is returned. Otherwise, the value of each

ace in the hand, if any and one by one, is converted to 1 until the hand value drops below

21.

Module: blackjack.py
1 def total(hand):
2 'returns the value of the blackjack hand'
3 values = {'2':2, '3':3, '4':4, '5':5, '6':6, '7':7, '8':8,
4 '9':9, '1':10, 'J':10, 'Q':10, 'K':10, 'A':11}
5 result = 0
6 numAces = 0
7

8 # add up the values of the cards in the hand
9 # also add the number of aces

10 for card in hand:
11 result += values[card[0]]
12 if card[0] == 'A':
13 numAces += 1
14

15 # while value of hand is > 21 and there is an ace
16 # in the hand with value 11, convert its value to 1
17 while result > 21 and numAces > 0:
18 result -= 10
19 numAces -= 1
20

21 return result

Comparing the Player’s and the House’s Hands
Another part of the blackjack implementation that we can develop as a separate function

is the comparison between the player’s hand and the house’s. Blackjack rules are used to

determine, and announce, the winner.

Module: blackjack.py
1 def compareHands(house, player):
2 'compares house and player hands and prints outcome'
3

4 # compute house and player hand total
5 houseTotal, playerTotal = total(house), total(player)
6

7 if houseTotal > playerTotal:
8 print('You lose.')
9 elif houseTotal < playerTotal:

10 print('You win.')
11 elif houseTotal == 21 and 2 == len(house) < len(player):
12 print('You lose.') # house wins with a blackjack
13 elif playerTotal == 21 and 2 == len(player) < len(house):
14 print('You win.') # players wins with a blackjack
15 else:
16 print('A tie.')

202 Chapter 6 Containers and Randomness

Main Blackjack Function
We now implement the main function, blackjack(). The functions we have developed so

far make the program easier to write and easier to read as well.

Module: blackjack.py
1 def blackjack()
2 'simulates the house in a game of blackjack'
3

4 deck = shuffledDeck() # get shuffled deck
5

6 house = [] # house hand
7 player = [] # player hand
8

9 for i in range(2): # dealing initial hands in 2 rounds
10 dealCard(deck, player) # deal to player first
11 dealCard(deck, house) # deal to house second
12

13 # print hands
14 print('House:{:>7}{:>7}'.format(house[0] , house[1]))
15 print(' You:{:>7}{:>7}'.format(player[0], player[1]))
16

17 # while user requests an additional card, house deals it
18 answer = input('Hit or stand? (default: hit): ')
19 while answer in {'', 'h', 'hit'}:
20 card = dealCard(deck, player)
21 print('You got{:>7}'.format(card))
22

23 if total(player) > 21: # player total is > 21
24 print('You went over... You lose.')
25 return
26

27 answer = input('Hit or stand? (default: hit): ')
28

29 # house must play the "house rules"
30 while total(house) < 17:
31 card = dealCard(deck, house)
32 print('House got{:>7}'.format(card))
33

34 if total(house) > 21: # house total is > 21
35 print('House went over... You win.')
36 return
37

38 # compare house and player hands and print result
39 compareHands(house, player)

In lines 6 and 7, the shuffled deck is used to deal the initial hands, which are then

printed. In lines 18 to 25, the interactive loop pattern is used to implement the player’s

requests for additional cards. After each card is dealt, the value of the player’s hand is

checked. Lines 30 to 36 implement the house rule for completing the house hand.

Chapter 6 Solutions to Practice Problems 203

Chapter Summary
This chapter starts by introducing several built-in Python container classes that complement

the string and list classes we have been using so far.

The dictionary class dict is a container of (key, value) pairs. One way to view a dictio-

nary is to see it as as container that stores values that are accessible through user-specified

indexes called keys. Another is to see it as a mapping from keys to values. Dictionaries are

as useful as lists in practice. A dictionary can be used, for example, as a substitute for a

multiway conditional structure or as a collection of counters.

In some situations, the mutability of lists is a problem. For example, we cannot use lists

as keys of a dictionary because lists are mutable. We introduce the built-in class tuple,

which is essentially an immutable version of class list. We use tuple objects when we

need an immutable version of a list.

The last built-in container class covered in this boo is the class set that implements

a mathematical set, that is, a container that supports mathematical set operations, such as

union and intersection. As all elements of a set must be distinct, sets can be used to easily

remove duplicates from other containers.

In this chapter, we also complete the coverage of Python’s built-in string type str that

we started in Chapter 2 and continued in Chapter 4. We describe the range of characters

that a string object can contain. We introduce the Unicode character encoding scheme, the

default in Python 3 (but not Python 2), which enables developers to work with strings that

use non-American English characters.

Finally, this chapter introduces the Standard Library module random. The module sup-

ports functions that return pseudorandom numbers, which are needed in simulations and

computer games. We also introduce random module functions shuffle(), choice(),

and sample() that enable us to do shuffling and sampling on container objects.

Solutions to Practice Problems
6.1 The function takes a president’s name (president) as input. This name maps to a

state. The mapping of presidents’ names to states is best described using a dictionary. Af-

ter the dictionary is defined, the function simply returns the value corresponding to key

president:

def birthState(president):
'returns the birth state of the given president'

states = {'Barack Hussein Obama II':'Hawaii',
'George Walker Bush':'Connecticut',
'William Jefferson Clinton':'Arkansas',
'George Herbert Walker Bush':'Massachussetts',
'Ronald Wilson Reagan':'Illinois',
'James Earl Carter, Jr':'Georgia'}

return states[president]

6.2 The reverse lookup service is implemented with an infinite, interactive loop pattern.

In each iteration of this loop, the user is requested to enter a number. The phone number

entered by the user is mapped, using the phone book, to a name. This name is then printed.

204 Chapter 6 Containers and Randomness

def rlookup(phonebook):
'''implements an interactive reverse phone book lookup service

phonebook is a dictionary mapping phone numbers to names'''
while True:

number = input('Enter phone number in the\
format (xxx)xxx-xx-xx: ')

if number in phonebook:
print(phonebook[number])

else:
print('The number you entered is not in use.')

6.3 See Figure 6.7.

Figure 6.7 Counters
states. When string 'Adam'
is visited, (key, value) pair
('Adam', 1) is added
to the dictionary. When
another string 'Adam'
is visited, the value in this
same (key, value) pair is
incremented by one.
Another (key, value) pair
is added when visiting
string 'Jimmy'.

key 'Cindy' 'John' 'Adam'

value 2 1 1

key 'Cindy' 'John' 'Adam'

value 2 1 2

key 'Cindy' 'John' 'Adam' 'Jimmy'

value 2 1 2 1

6.4 The first thing to do is split the text and obtain a list of words. Then the standard pattern

for counting using a dictionary of counter is used.

def wordCount(text):
'prints frequency of each word in text'
wordList = text.split() # split text into list of words
counters ={} # dictionary of counters
for word in wordList:

if word in counters: # counter for word exists
counters[word] += 1

else: # counter for word doesn't exist
counters[word] = 1

for word in counters: # print word counts
if counters[word] == 1:

print('{:8} appears {} time.'.format(word,\
counters[word]))

else:
print('{:8} appears {} times.'.format(word,\

counters[word]))

Chapter 6 Solutions to Practice Problems 205

6.5 The infinite loop pattern is used to provide a long-running service. In every iteration,

the user is asked to enter a first and a last name, which are then used to build a tuple object.

This object is used as a key for the phone book dictionary. If the dictionary contains a value

corresponding to this key, the value is printed; otherwise, an error message is printed.

def lookup(phonebook):
'''implements interactive phone book service using the input

phonebook dictionary'''
while True:

first = input('Enter the first name: ')
last = input('Enter the last name: ')

person = (first, last) # construct the key

if person in phonebook: # if key is in dictionary
print(phonebook[person]) # print value

else: # if key not in dictionary
print('The name you entered is not known.')

6.6 The goal is to obtain the union of all the sets appearing in a list. The accumulator

pattern is the right loop pattern for doing this. The accumulator should be a set that is

initialized to be empty:

def sync(phonebooks):
'returns the union of sets in phonebooks'
res = set() # initialize the accumulator

for phonebook in phonebooks:
res = res | phonebook # accumulate phonebook into res

return res

6.7 The iteration pattern is used to iterate over the characters of the string. In each iteration,

the ASCII code of the current character is printed:

def encoding(text):
'prints ASCII codes of characters in S, one per line'
print('Char Decimal Hex Binary') # print column headings

for c in text:
code = ord(c) # compute ASCII code
print character and its code in decimal, hex, and binary
print(' {} {:7} {:4x} {:7b}'.format(c,code,code,code))

6.8 We use a counter loop pattern to generate integers from low to high. The character

corresponding to each integer is printed:

def char(low,high):
'''prints the characters with ASCII codes

in the range from low to high'''
for i in range(low, high+1):

print integer ASCII code and corresponding character
print('{} : {}'.format(i, chr(i)))

206 Chapter 6 Containers and Randomness

6.9 The randrange() function of the random module is used to generate the secret num-

ber to be guessed. An infinite loop and a loop-and-a-half pattern are used to implement the

interactive service:

import random
def guess(n):

'an interactive number guessing game'
secret = random.randrange(0,n) # generate secret number

while True:
user enters a guess
guess = eval(input('Enter you guess: '))
if guess == secret:

print('You got it!')
break

elif guess < secret:
print('Too low.')

else: # guess > secret
print('Too high.')

6.10 Each random dart throw hit is simulated by choosing, uniformly at random, an x and

a y coordinate between 1 and 1. If the resulting point (x,y) is within distance 1 from the

origin (0,0) (i.e., the center of the dartboard) the point represents a hit. An accumulator

loop pattern is used to add up all the “hits.”

import random
def approxPi(total):

'return approximate value of pi based on "dart throwing"'
count = 0 # counts darts hitting dartboard
for i in range(total):

x = random.uniform(-1,1) # x-coordinate of dart
y = random.uniform(-1,1) # y coordinate of dart
if x**2+y**2 <= 1: # if dart hit dartboard

count += 1 # increment count
return 4*count/total

Exercises

6.11 Implement function easyCrypto() that takes as input a string and prints its en-

cryption defined as follows: Every character at an odd position i in the alphabet will be

encrypted with the character at position i+ 1, and every character at an even position i
will be encrypted with the character at position i 1. In other words, ‘a’ is encrypted with

‘b’, ‘b’ with ‘a’, ‘c’ with ‘d’, ‘d’ with ‘c’, and so on. Lowercase characters should remain

lowercase, and uppercase characters should remain uppercase.

>>> easyCrypto('abc')
bad
>>> easyCrypto('Z00')
YPP

Chapter 6 Exercises 207

6.12 Redo Problem 5.27 using a dictionary instead of a multiway if statement.

6.13 Define a dictionary called agencies that stores a mapping of acronyms CCC, FCC,

FDIC, SSB, WPA (the keys) to federal government agencies ‘Civilian Conservation Corps’,

‘Federal Communications Commission’, ‘Federal Deposit Insurance Corporation’, ‘Social

Security Board’, and ‘Works Progress Administration’ (the values) created by President

Roosevelt during the New Deal. Then:

(a) Add the map of acronym SEC to ‘Securities and Exchange Commission’.

(b) Change the value the value of key SSB to ‘Social Security Administration’.

(c) Remove the (key, value) pairs with keys CCC and WPA.

6.14 Repeat Exercise 6.13 with this change: Before making changes to agencies, define

acronyms to be the view of its keys. After making the changes, evaluate acronyms.

6.15 The dictionary used in Practice Problem 6.5 assumes that only one person can have

a certain first and last name. In a typical phone book, however, there can be more than one

person with the same first and last name. A modified dictionary that maps a (last name, first

name) tuple to a list of phone numbers could be used to implement a more realistic phone

book. Reimplement the lookup() function from Practice Problem 6.5 so it can take such

a dictionary (i.e., with list values) as input and return all the numbers that a (last name, first

name) tuple maps to.

6.16 Using a counter loop pattern, construct sets mult3, mult5, and mult7 of nonnegative

multiples of 3, 5, and 7, respectively, less than 100. Then, using these three sets, write set

expressions that return

(a) Multiples of 35

(b) Multiples of 105

(c) Multiples of 3 or 7

(d) Multiples of 3 or 7, but not both

(e) Multiples of 7 that are not multiples of 3

6.17 Write a function hexASCII() that prints the correspondence between the lowercase

characters in the alphabet and the hexadecimal representation of their ASCII code. Note:
A format string and the format string method can be used to represent a number value in

hex notation.

>>> hexASCII()
a:61 b:62 c:63 d:64 e:65 f:66 g:67 h:68 i:69 j:6a k:6b l:6c m:6d
n:6e o:6f p:70 q:71 r:72 s:73 t:74 u:75 v:76 w:77 x:78 y:79 z:7a

6.18 Implement function coin() that returns 'Heads' or 'Tails' with equal probability.

>>> coin()
'Heads'
>>> coin()
'Heads'
>>> coin()
'Tails'

6.19 Using an online translator such as Google Translate, translate the phrase ‘My name is

Ada’ into Arabic, Japanese, and Serbian. Then copy and paste the translations into your

208 Chapter 6 Containers and Randomness

interactive shell and assign them as strings to variable names arabic, japanese, and

serbian. Finally, for each string, print the Unicode code point of each character in the

string using an iteration loop pattern.

Problems

6.20 Write function reverse() that takes as input a phone book, that is, a dictionary map-

ping names (the keys) to phone numbers (the values). The function should return another

dictionary representing the reverse phone book mapping phone numbers (the keys) to the

names (the values).

>>> phonebook = {'Smith, Jane':'123-45-67',
'Doe, John':'987-65-43','Baker,David':'567-89-01'}

>>> reverse(phonebook)
{'123-45-67': 'Smith, Jane', '567-89-01': 'Baker,David',
'987-65-43': 'Doe, John'}

6.21 Write function ticker() that takes a string (the name of a file) as input. The file

will contain company names and stock (ticker) symbols. In this file, a company name will

occupy a line and its stock symbol will be in the next line. Following this line will be a line

with another company name, and so on. Your program will read the file and store the name

and stock symbol in a dictionary. Then it will provide an interface to the user so the user

can obtain the stock symbol for a given company. Test your code on the NASDAQ 100 list

of stock given in file nasdaq.txt.

File: nasdaq.txt >>> ticker('nasdaq.txt')
Enter Company name: YAHOO
Ticker symbol: YHOO
Enter Company name: GOOGLE INC
Ticker symbol: GOOG
...

6.22 The mirror image of string vow is string wov, and the mirror image wood is string

boow. The mirror image of string bed cannot be represented as a string, however, because

the mirror image of e is not a valid character.

Develop function mirror() that takes a string and returns its mirror image but only if

the mirror image can be represented using letters in the alphabet.

>>> mirror('vow')
'wov'
>>> mirror('wood')
'boow'
>>> mirror('bed')
'INVALID'

6.23 You would like to produce a unique scary dictionary but have a hard time finding the

thousands of words that should go into such a dictionary. Your brilliant idea is to write a

function scaryDict() that reads in an electronic version of a scary book, say Frankenstein
by Mary Wollstonecraft Shelley, picks up all the words in it, and writes them in alphabetical

Chapter 6 Problems 209

order in a new file called dictionary.txt. You can eliminate one- and two-letter words

because none of them are scary.

You will notice that punctuation in the text makes this exercise a bit more complicated.

You can handle it be replacing punctuation with blanks or empty strings.

File: frankenstein.txt>>> scaryDict('frankenstein.txt')
abandon
abandoned
abbey
abhor
abhorred
abhorrence
abhorrent
...

6.24 Implement function names() that takes no input and repeatedly asks the user to enter

the first name of a student in a class. When the user enters the empty string, the function

should print for every name the number of students with that name.

>>> names()
Enter next name: Valerie
Enter next name: Bob
Enter next name: Valerie
Enter next name: Amelia
Enter next name: Bob
Enter next name:
There is 1 student named Amelia
There are 2 students named Bob
There are 2 students named Valerie

6.25 Write function different() that takes a two-dimensional table as input and returns

the number of distinct entries in the table.

>>> t = [[1,0,1],[0,1,0]]
>>> different(t)
2
>>> t = [[32,12,52,63],[32,64,67,52],[64,64,17,34],[34,17,76,98]]
>>> different(t)
10

6.26 Write function week() that takes no arguments. It will repeatedly ask the user to enter

an abbreviation for a day of the week (Mo, Tu, We, Th, Fr, Sa, or Su) and then print the

corresponding day.

>>> week()
Enter day abbreviation: Tu
Tuesday
Enter day abbreviation: Su
Sunday
Enter day abbreviation: Sa
Saturday
Enter day abbreviation:

210 Chapter 6 Containers and Randomness

6.27 At the end of this and other textbooks, there usually is an index that lists the pages

where a certain word appears. In this problem, you will create an index for a text but,

instead of page number, you will use the line numbers.

You will implement function index() that takes as input the name of a text file and

a list of words. For every word in the list, your function will find the lines in the text file

where the word occurs and print the corresponding line numbers (where the numbering

starts at 1). You should open and read the file only once.

File: raven.txt >>> index('raven.txt', ['raven', 'mortal', 'dying', 'ghost',
'ghastly', 'evil','demon'])

ghost 9
dying 9
demon 122
evil 99, 106
ghastly 82
mortal 30
raven 44, 53, 55, 64, 78, 97, 104, 111, 118, 120

6.28 Implement function translate() that provides a rudimentary translation service.

The function input is a dictionary mapping words in one language (the first language) to

corresponding words in another (the second language). The function provides a service that

lets users type a phrase in the first language interactively and then obtain a translation into

the second language, by pressing the Enter/Return key. Words not in the dictionary should

be translated as ____.

6.29 In your class, many students are friends. Let’s assume that two students sharing

a friend must be friends themselves; in other words, if students 0 and 1 are friends and

students 1 and 2 are friends, then students 0 and 2 must be friends. Using this rule, we can

partition the students into circles of friends.

To do this, implement a function networks() that takes two input arguments. The first

is the number n of students in the class. We assume students are identified using integers

0 through n 1. The second input argument is a list of tuple objects that define friends.

For example, tuple (0,2) defines students 0 and 2 as friends. Function networks() should

print the partition of students into circles of friends as illustrated:

>>> networks(5, [(0, 1), (1, 2), (3, 4)])
Social network 0 is {0, 1, 2}
Social network 1 is {3, 4}

6.30 Implement function simul() that takes as input an integer n and simulates n rounds

of Rock, Paper, Scissors between players Player 1 and Player 2. The player who wins the

most rounds wins the n-round game, with ties possible. Your function should print the result

of the game as shown. (You may want to use your solution to Problem 5.26.)

>>> simul(1)
Player 1
>>> simul(1)
Tie
>>> simul(100)
Player 2

Chapter 6 Problems 211

6.31 Craps is a dice-based game played in many casinos. Like blackjack, a player plays

against the house. The game starts with the player throwing a pair of standard, six-sided

dice. If the player rolls a total of 7 or 11, the player wins. If the player rolls a total of 2,

3, or 12, the player loses. For all other roll values, the player will repeatedly roll the pair

of dice until either she rolls the initial value again (in which case she wins) or 7 (in which

case she loses)

(a) Implement function craps() that takes no argument, simulates one game of craps,

and returns 1 if the player won and 0 if the player lost.

>>> craps()
0
>>> craps()
1
>>> craps()
1

(b) Implement function testCraps() that takes a positive integer n as input, simulates

n games of craps, and returns the fraction of games the player won.

>>> testCraps(10000)
0.4844
>>> testCraps(10000)
0.492

6.32 You may know that the streets and avenues of Manhattan form a grid. A random walk

through the grid (i.e., Manhattan) is a walk in which a random direction (N, E, S, or W)

is chosen with equal probability at every intersection. For example, a random walk on a

5×11 grid starting (5,2) could visit grid points (6, 2), (7, 2), (8, 2), (9, 2), (10, 2), back to

(9, 2) and then back to (10, 2) before leaving the grid.

Write function manhattan() that takes the number of rows and columns in the grid,

simulates a random walk starting in the center of the grid, and computes the number of

times each intersection has been visited by the random walk. Your function should print

the table line by line once the random walk moves outside the grid.

>>> manhattan(5, 11)
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

6.33 The two-player card game War is played with a standard deck of 52 cards. A shuffled

deck is evenly split among the two players who keep their decks face-down. The game

consists of battles until one of the players runs out of cards. In a battle, each player reveals

the card on top of their deck; the player with the higher card takes both cards and adds them

face-down to the bottom of her stack. If both cards have the same value, a war occurs.

In a war, each player lays, face-down, their top three cards and picks one of them. The

player who picks the higher valued card adds all eight cards to the bottom of their deck. In

case of another tie, wars are repeated until a player wins and collects all cards on the table.

If a player runs out of cards before laying down three cards in a war, they are allowed to

complete the war, using their last card as their pick.

In War, the value of a number card is its rank, and the values of cards with rank A, K, Q,

212 Chapter 6 Containers and Randomness

and J are 14, 13, 12, and 11, respectively.

(a) Write a function war() that simulates one game of war and returns a tuple containing

the number of battles, wars, and two-round wars in the game. Note: When adding

cards to the bottom of a player’s deck, make sure to shuffle the cards first to add

additional randomness to the simulation.

(b) Write a function warStats() that takes a positive integer n as input, simulates n
games of war, and computes the average number of battles, wars, and two-round

wars.

6.34 Develop a simple game that teaches kindergartners how to add single-digit numbers.

Your function game() will take an integer n as input and then ask n single-digit addition

questions. The numbers to be added should be chosen randomly from the range [0,9] (i.e.,

0 to 9 inclusive). The user will enter the answer when prompted. Your function should print

'Correct' for correct answers and 'Incorrect' for incorrect answers. After n questions,

your function should print the number of correct answers.

>>> game(3)
8 + 2 =
Enter answer: 10
Correct.
6 + 7 =
Enter answer: 12
Incorrect.
7 + 7 =
Enter answer: 14
Correct.
You got 2 correct answers out of 3

6.35 The Caesar cipher is an encryption technique in which every letter of the message

is replaced by the letter that is a fixed number of positions down the alphabet. This “fixed

number” is referred to as the key, which can have any value from 1 to 25. If the key is 4,

for example, then letter A would be replaced by E, B by F, C by G, and so on. Characters

at the end of the alphabet, W, X, Y, and Z would be replaced by A, B, C, and D.

Write function caesar that takes as input a key between 1 and 25 and a text file name

(a string). Your function should encode the file content with a Caesar cipher using the input

key and write the encrypted content into a new file cipher.txt (as well as print it on the

screen).

File: clear.txt >>> caesar(3,'clear.txt')
"Vsb Pdqxdo (Wrs vhfuhw)\n\n1. Dozdbv zhdu d gdun frdw.\n2. Dozdbv
zhdu brxu djhqfb'v edgjh rq brxu frdw.\n"

6.36 George Kingsley Zipf (1902–1950) observed that the frequency of the kth most com-

mon word in a text is roughly proportional to 1/k. This means that there is a constant value

C such that for most words w in the text the following is true:

If word w is kth most common then freq(w)∗ k ≈C

Here, by frequency of word w, freq(w), we mean the number of times the word occurs

in the text divided by the total number of words in the text.

Chapter 6 Problems 213

Implement function zipf() that takes a file name as input and verifies Zipf’s obser-

vation by printing the value freq(w) ∗ k for the first 10 most frequent words w in the file.

Ignore capitalization and punctuation when processing the file.

File: frankenstein.txt>>> zipf('frankenstein.txt')
0.0557319552019
0.0790477076165
0.113270715149
0.140452498306
0.139097394747
0.141648177917
0.129359248582
0.119993091629
0.122078888284
0.134978942754

This page intentionally left blank

CHAPTER

7
Namespaces
7.1 Encapsulation in Functions 216

7.2 Global versus Local Namespaces 223

7.3 Exceptional Control Flow 227

7.4 Modules as Namespaces 235

7.5 Classes as Namespaces 242

Chapter Summary 244

Solutions to Practice Problems 244

Exercises 245

Problems 248

THIS CHAPTER presents namespaces as a fundamental construct for
managing program complexity. As computer programs increase in
complexity, it becomes necessary to adopt a modular approach and
develop them using several smaller components that are developed,
tested, and debugged individually. These components—whether they are
functions, modules, or classes—must work together as a program but they
also should not interfere, in unintended ways, with each other.

Modularity and “noninterference” (usually called encapsulation) are
made possible thanks to the fact that each component has its own
namespace. Namespaces organize the naming scheme in functions,
modules, and classes so that names defined inside a component are not
visible to other components. Namespaces play a key role in the execution
of function calls and the normal control flow of a program. We contrast this
with the exceptional control flow that is caused by a raised exception. We
introduce exception handling as a way to control this control flow.

This chapter covers concepts and techniques that fundamentally deal
with program design. We apply them in Chapter 8 to create new classes
and in Chapter 10 to understand how recursive functions execute.

215

216 Chapter 7 Namespaces

7.1 Encapsulation in Functions
In Chapter 3, we introduced functions as wrappers that package a fragment of code. To

recall the reasons for wrapping code into functions—and then using those functions—we

look back at the turtle graphics jump() function we developed in Chapter 3:

Module: turtlefunctions.py
1 def jump(t, x, y):
2 'makes turtle t jump to coordinates (x,y)'
3 t.penup()
4 t.goto(x,y)
5 t.pendown()

The function jump() provides a succinct way to make the turtle object t move to a new lo-

cation without leaving a trace. In Chapter 3, we used jump() multiple times in the function

emoticon() that draws a smiley face:

Module: turtlefunctions.py
1 def emoticon(t,x,y):
2 'directs turtle t to draw a smiley face with chin at (x,y)'
3 t.pensize(3) # set turtle heading and pen size
4 t.setheading(0)
5 jump(t,x,y) # move to (x,y) and draw head
6 t.circle(100)
7 jump(t,x+35,y+120) # move and draw right eye
8 t.dot(25)
9 jump(t,x-35,y+120) # move and draw left eye

10 t.dot(25)
11 jump(t,x-60.62,y+65) # move and draw smile
12 t.setheading(-60)
13 t.circle(70,120) # 120 degree section of a circle

The functions jump() and emoticon() illustrate some of the benefits of functions: code

reuse, encapsulation, and modularity. We explain each in more detail.

Code Reuse
A fragment of code that is used multiple times in a program—or by multiple programs—

can be packaged in a function. That way, the programmer types the code fragment only

once, inside a function definition, and then calls the function wherever the code fragment

is needed. The program ends up being shorter, with a single function call replacing a code

fragment, and clearer, because the name of the function can be more descriptive of the

action being performed by the code fragment. Debugging also becomes easier because a

bug in the code fragment will need to be fixed only once.

In function emoticon() , we use function jump() four times, making the emoticon()
function shorter and more readable. We also make it easier to modify: Any change to how

the jump should be done will need to be implemented only once, inside the jump() func-

tion. In fact, the function emoticon() would not even need to be modified.

We saw another example of code reuse in the case study at the end of Chapter 6, where

we developed a blackjack application. Because shuffling a standard deck of 52 cards and

dealing a card to a game participant is common to most card games, we implemented each

action in a separate, reusable function.

Section 7.1 Encapsulation in Functions 217

Modularity (or Procedural Decomposition)
The complexity of developing a large program can be dealt with by breaking down the

program into smaller, simpler, self-contained pieces. Each smaller piece (e.g., function)

can be designed, implemented, tested, and debugged independently.

We broke the problem of drawing a smiley face into two functions. The function jump()
is independent of the function emoticon() and can be tested and debugged independently.

Once function jump() has been developed, the function emoticon() is easier to imple-

ment. We also used the modular approach to develop the blackjack application using five

functions in Chapter 6.

Encapsulation (or Information Hiding)
When using a function in a program, typically the developer does not need to know its

implementation details, but only what it does. In fact, removing the implementation details

from the developer’s radar makes her job easier.

The developer of the function emoticon() does not need to know how function jump()
works, just that it lifts turtle t and drops it at coordinates (x,y). This simplifies the process

of developing function emoticon(). Another benefit of encapsulation is that if the im-

plementation of function jump() changes (and is made more efficient, for example), the

function emoticon() would not have to change.

In the blackjack application, the functions that shuffle the deck and compute the value

of a hand encapsulate the code doing the actual work. The benefit here is that the main

blackjack program contains meaningful function calls, such as

deck = shuffledDeck() # get shuffled deck

and

dealCard(deck, player) # deal to player first

rather than code that is harder to read.

Local Variables
There is a potential danger when the developer using a function does not know its imple-

mentation details. What if, somehow, the execution of the function inadvertently affects the

calling program (i.e., the program that made the function call)? For example, the developer

could accidentally use a variable name in the calling program that happens to be defined

and used in the executing function. In order to achieve encapsulation, those two variables

should be separate. Variable names defined (i.e., assigned) inside a function should be “in-

visible” to the calling program: They should be variables that exist only locally, in the

context of the execution of the function, and they should not affect variables of the same

name in the calling program. This invisibility is achieved thanks to the fact that variables

defined inside functions are local variables.

We illustrate this with the next function:

Module: ch7.py
1 def double(y):
2 x = 2
3 print('x = {}, y = {}'.format(x,y))
4 return x*y

218 Chapter 7 Namespaces

After running the module ch7, we check that names x and y have not been defined in the

interpreter shell:

>>> x
Traceback (most recent call last):

File "<pyshell#37>", line 1, in <module>
x

NameError: name 'x' is not defined
>>> y
Traceback (most recent call last):

File "<pyshell#38>", line 1, in <module>
y

NameError: name 'y' is not defined

Now let’s execute double():

>>> res = double(3)
x = 2, y = 3

During the execution of the function, variables x and y exist: y is assigned 3, and then x is

assigned 2. However, after the execution of the function, the names x and y do not exist in

the interpreter shell:

>>> x
Traceback (most recent call last):

File "<pyshell#40>", line 1, in <module>
x

NameError: name 'x' is not defined
>>> y
Traceback (most recent call last):

File "<pyshell#41>", line 1, in <module>
y

NameError: name 'y' is not defined

Clearly x and y exist only during the execution of the function.

Namespaces Associated with Function Calls
Actually, something even stronger is true: The names x and y that are defined during the

execution of double() are invisible to the calling program (the interpreter shell in our

example) even during the execution of the function. To convince ourselves of this, let’s

define values x and y in the shell and then execute function double() again:

>>> x,y = 20,30
>>> res = double(4)
x = 2, y = 4

Let’s check whether the variables x and y (defined in the interpreter shell) have changed:

>>> x,y
(20, 30)

No, they did not. This example shows that there are two separate pairs of variable names

x and y: the pair defined in the interpreter shell and the pair defined during the execution

of the function. Figure 7.1 illustrates that the interpreter shell and the executing function

Section 7.1 Encapsulation in Functions 219

interpreter shell

x y

20 30 4 2

function call double(4)

y x
Figure 7.1 Namespaces.
Variable names x and y are
defined in the interpreter
shell. During the execution
of double(4) separate,
local variables y and x get
defined in the namespace
of the function call.

double() each has its own, separate space for names. Each space is called a namespace.

The interpreter shell has its namespace. Each function call creates a new namespace. Dif-

ferent function calls will have different corresponding namespaces. The net effect is that

each function call has its own “execution area” so it does not interfere with the execution

of the calling program or other functions.

Names that are assigned during the execution of a function call are said to be local
names, and they are local with respect to a function call. Names that are local to a function

exist only in the namespace associated with the function call. They:

• Are only visible to the code inside the function.

• Do not interfere with names defined outside of the function, even if they are the same.

• Exist only during the execution of the function; they do not exist before the function

starts execution and they no longer exist after the function completes execution.

Practice Problem
7.1

Define functions f() and g() in this way:

>>> def f(y):
x = 2
print('In f(): x = {}, y = {}'.format(x,y))
g(3)
print('In f(): x = {}, y = {}'.format(x,y))

>>> def g(y):
x = 4
print('In g(): x = {}, y = {}'.format(x,y))

Using Figure 7.1 as your model, show graphically the variables names, their values, and

the namespaces of functions f() and g() during the execution of function g() when this

call is made:

>>> f(1)

Namespaces and the Program Stack
We know that a new namespace is created for every function call. If we call a function that

in turn calls a second function that in turn calls a third function, there would be three names-

paces, one for each function call. We now discuss how these namespaces are managed by

220 Chapter 7 Namespaces

the operating system (OS). This is important because without OS support for managing

namespaces, function calls could not be made.

We use this module as our running example:

Module: stack.py
1 def h(n):
2 print('Start h')
3 print(1/n)
4 print(n)
5

6 def g(n):
7 print('Start g')
8 h(n-1)
9 print(n)

10

11 def f(n):
12 print('Start f')
13 g(n-1)
14 print(n)

After we run the module, we make the function call f(4) from the shell:

>>> f(4)
Start f
Start g
Start h
0.5
2
3
4

Figure 7.2 illustrates the execution of f(4).

Figure 7.2 Execution of
f(4). The execution starts
in the namespace of
function call f(4), where
n is 4. Function call g(3)
creates a new namespace
in which n is 3; function g()
executes using that value
of n. Function call h(2)
creates another namespace
in which n is 2; function h()
uses that value of n. When
the execution of h(2)
terminates, the execution of
g(3) and its corresponding
namespace, in which n is
3, is restored. When g(3)
terminates, the execution of
f(4) is restored.

n = 4
print('Start f')
g(n-1)

n = 3
print('Start g')
h(n-1)

n = 2
print('Start h')
print(1/n)
print(n)

print(n)
print(n)

Running f(4)

Running g(3)

Back to f(4)

Running h(2)

Back to g(3)

Section 7.1 Encapsulation in Functions 221

Figure 7.2 shows the three different namespaces and the different value that n has in

each. To understand how these namespaces are managed, we go through the execution of

f(4) carefully.

When we start executing f(4), the value of n is 4. When the function call g(3) is made,

the value of n in the namespace of the function call g(3) is 3. However, the old value of

n, 4, is still needed because the execution of f(4) is not complete; line 14 will need to be

executed after g(3) is done.

Before the execution of g(3) gets started, the underlying OS stores all the information

necessary to complete the execution of f(4):

• The value of variable n (in this case, the value n = 4)

• The line of code where the execution of f(4) should resume at (in this case, line 14)

This information is stored by the OS in an area of main memory called the program stack.

It is referred to as a stack because the OS will push the information on top of the program

stack before executing g(3), as shown in Figure 7.3.

}
Stack frame for f(4)

n = 4
line 14

Program stack

Figure 7.3 Stack frame. A
function call stores its local
variables in its stack frame;
if another function is called,
then the line to be executed
next is stored too.

The program stack area storing the information related to a specific unfinished function

call is called the stack frame.

When function call g(3) starts executing, the value of n is 3. During the execution of

g(3), function h() is called on input n-1 = 2. Before the call is made, the stack frame

corresponding to g(3) is pushed onto the program stack, as shown in Figure 7.4.

}
Stack frame for g(3)

n = 3
line 9

}
Stack frame for f(4)

n = 4
line 14

Program stack

Figure 7.4 Program stack.
If a function is called inside
another function, the stack
frame for the called function
is stored on top of the stack
frame of the calling function.

In Figure 7.5, we again illustrate the execution of function call f(4), but this time we

also show how the OS uses the program stack to store the namespace of an unfinished

function call so it can restore the namespace when the function call resumes. In the top half

of Figure 7.5, the sequence of function calls is illustrated with black arrows. Each call has

a corresponding “push” of a frame to the program stack, shown with blue arrows.

Now let’s resume our careful analysis of the execution of f(4). When h(2) executes,

n is 2 and values 1/n = 0.5 and n = 2 are printed. Then h(2) terminates. At this point,

the execution should return to function call g(3). So the namespace associated with g(3)
needs to get restored and the execution of g(3) should continue from where it left off. The

222 Chapter 7 Namespaces

Figure 7.5 Execution of
f(4), part 2. The function
call f(4) executes in its
own namespace. When
function call g(3) is made,
the namespace of f(4) is
pushed onto the program
stack. The call g(3) runs in
its own namespace. When
the call h(2) is made, the
namespace of g(3) is also
pushed onto the program
stack. When function call
h(2) terminates, the
namespace of g(3) is
restored by popping the top
stack frame of the program
stack; its execution
continues from the line
stored in the stack frame
(i.e., line 9). When g(3)
terminates, the namespace
of f(4) and its execution
are restored by popping the
program stack again.

n = 4
print('Start f')
g(n-1)

n = 3
print('Start g')
h(n-1)

n = 2
print('Start h')
print(1/n)
print(n)

print(n)
print(n)

Running f(4)

Namespace f(4)

Running g(3)

Back to f(4)

Namespace g(3)

Program stack

Program stack

Running h(2)

Back to g(3)

Namespace h(2)

Program stack

Program stack

line 14

n = 4

line 14

n = 4

n = 4

line 14

n = 3

line 9

n = 4

line 14

n = 3

line 9

OS will do this by popping a frame from the top of the program stack and using the values

in the frame to:

• Restore the value of n to 3 (i.e., restore the namespace).

• Continue the execution of g(3) starting with the line 9.

Executing line 9 will result in the printing of n = 3 and the termination of g(3). As shown

in Figure 7.5, the program stack is then popped again to restore the namespace of function

call f(4) and to continue the execution of f(4) starting at line 14. This results in the

printing of n = 4 and the termination of f(4).

DETOUR
Program Stacks and Buffer Overflow Attacks

The program stack is an essential component of an OS’s main memory. The pro-
gram stack contains a stack frame for every function call. A stack frame is used to
store variables (like n) that are local with respect to the function call. Also, when
a call to another function is made, the stack frame is used to store the line num-
ber (i.e., memory address) of the instruction where execution should be resumed,
once that other function terminates.

The program stack also presents a vulnerability in a computer system, one that
is often exploited in a type of computer system attack known as the buffer overflow

Section 7.2 Global versus Local Namespaces 223

attack. The vulnerability is that the input argument of a function call, say the 4
in f(4), may written into the program stack, as illustrated in Figure 7.5. In other
words, the OS allocates a small space in the program stack to store the expected
input argument (in our case, an integer value).

A malicious user could call the function with an argument that is much larger
than the allocated space. This argument could contain nefarious code and would
also overwrite one of the existing line numbers in the program stack with a new
line number. This new line number would, of course, point to the nefarious code.

Eventually, the executing program will pop the stack frame containing the over-
written line number and start executing instructions starting from that line.

7.2 Global versus Local Namespaces
We have seen that every function call has a namespace associated with it. This namespace

is where names defined during the execution of the function live. We say that the scope of

these names (i.e., the space where they live) is the namespace of the function call.

Every name (whether a variable name, function name, type name—and not just a local

name) in a Python program has a scope, that is, a namespace where it lives. Outside of

its scope, the name does not exist, and any reference to it will result in an error. Names

assigned inside (the body of) a function are said to have local scope (local with respect to

a function call), which means that their namespace is the one associated with the function

call.

Names assigned in the interpreter shell or in a module outside of any function are said

to have global scope. Their scope is the namespace associated with the shell or the whole

module. Variables with global scope are referred to as global variables.

Global Variables
When you execute a Python statement in the interpreter shell, you are doing so in a name-

space associated with the shell. In this context, this namespace is the global namespace,

and the variables defined in it, such as a in

>>> a = 0
>>> a
0

are global variables whose scope is global.

When you execute a module, whether from within or from outside your integrated de-

velopment environment, there is a namespace associated with the executing module. This

namespace is the global namespace during the execution of the module. Any variable that is

defined in the module outside of any function, such as a in the one-line module scope.py

Module: scope.py
1 # a really small module
2 a = 0

is a global variable.

224 Chapter 7 Namespaces

Variables with Local Scope
We use a sequence of examples to illustrate the difference between global and local scopes.

Our first example is this strange module:

Module: scope1.py
1 def f(b): # f has global scope, b has local scope
2 a = 6 # this a has scope local to function call f()
3 return a*b # this a is the local a
4

5 a = 0 # this a has global scope
6 print('f(3) = {}'.format(f(3)))
7 print('a is {}'.format(a)) # global a is still 0

When we run this module, the function definition is executed first, and then the last three

lines of the module are executed in succession. Names f and a have global scope. When

function f(3) is called in line 6, local variables b and then a get defined in the namespace

of the function call f(3). The local variable a is unrelated to the global name a, as shown

in Figure 7.6.

Figure 7.6 Local variables.
In line 5, integer 0 is
assigned to global variable
name a. During execution of
function call f(3) in line 6,
a separate variable a, local
with respect to the function
call, gets defined and is
assigned integer 3.

module scope1

a

0 3 6

function f()

b a

This is printed when the module executes:

>>>
f(3) = 18
a is 0

Note that when evaluating the product a*b while executing f(3), the local name a is used.

Variables with Global Scope
To get our next example, we remove line 2 from module scope1:

Module: scope2.py
1 def f(b):
2 return a*b # this a is the global a
3

4 a = 0 # this a has global scope
5 print('f(3) = {}'.format(f(3)))
6 print('a is {}'.format(a)) # global a is still 0

When we run the module scope2, function call f(3) will be made. Figure 7.7 shows the

variable names, and the namespaces they are defined in, when function call f(3) executes.

When the product a*b is evaluated during the execution of f(3), no local variable a
exists in the namespace associated with function call f(3). The variable a that is used is

Section 7.2 Global versus Local Namespaces 225

module scope2

a

0 3

function f()

b
Figure 7.7 Global
variables. During the
execution of function call
f(3) in line 5, variable a is
evaluated when computing
the product a*b. Because
no name a exists in the
function call namespace,
the name a defined in the
global namespace is used.

now the global variable a, whose value is 0. When you run this example, you get:

>>>
f(3) = 0
a is 0

How does the Python interpreter decide whether to evaluate a name as a local or as a global

name?

Whenever the Python interpreter needs to evaluate a name (of a variable, function, etc.),

it searches for the name definition in this order:

1. First the enclosing function call namespace

2. Then the global (module) namespace

3. Finally the namespace of module builtins

In our first example, module scope1, name a in product a*b evaluated to a local name;

in the second example, module scope2, because no name a was defined in the local name-

space of the function call, a evaluates to the global name a.

Built-in names (such as sum(), len(), print(), etc.) are names that are predefined

in the module builtins that Python automatically imports upon start-up. (We discuss this

built-in module in more detail in Section 7.4.) Figure 7.8 shows the different namespaces

that exist when the function call f(3) gets executed in module scope2.

function f()

b

global namespace

a f

module builtins

print

3

0 f()

printf()

Figure 7.8 Searching for a
name definition. Three
namespaces exist during
the execution of f(3) when
running module scope2.
Whenever the Python
interpreter needs to
evaluate a name, it starts
the search for the name in
the local namespace. If the
name is not found there, it
continues the search in the
global namespace. If the
name is not found there
either, the name search
then moves to the
builtins namespace.

226 Chapter 7 Namespaces

Figure 7.8 illustrates how names are evaluated during the execution of statement print(a*b)
in line 2 of function f() while executing f(3). The execution of print(a*b) involves

three name searches, all starting with the local namespace of function call f(3):

1. The Python interpreter first searches for name a. First it looks in the local namespace

of function f(3). Since it is not there, it looks next in the global namespace, where

it finds name a.

2. The search for name b starts and ends in the local namespace.

3. The search for (function) name print starts in the local namespace, continues

through the global namespace, and ends, successfully, in the namespace of module

builtins.

Changing Global Variables Inside a Function
In our last example, we consider this situation: Suppose that in function f() of module

scope1, the intention of statement a = 0 was to modify the global variable a. As we saw

in module scope1, the statement a = 0 inside function f() will instead create a new local

variable of the same name. If our intention was to have the function change the value of a
global variable, then we must use the global reserved keyword to indicate that a name is

global. We use this module to explain the keyword global:

Module: scope3.py
1 def f(b):
2 global a # all references to a in f() are to the global a
3 a = 6 # global a is changed
4 return a*b # this a is the global a
5

6 a = 0 # this a has global scope
7 print('f(3) = {}'.format(f(3)))
8 print('a is {}'.format(a)) # global a has been changed to 6

In line 3, the assignment a = 6 changes the value of the global variable a because the

statement global a specifies that the name a is global rather than local. This concept is

illustrated in Figure 7.9.

Figure 7.9 Keyword
global. During execution
of f(3), the assignment
a = 6 is executed. Because
name a is defined to refer to
the global name a, it is the
global a that gets assigned.
No name a is created in the
local namespace of the
function call.

module scope3

a

0 3 6

function f()

b

When you run the module, the modified value of global variable a is used to compute

f(3):

>>>
f(3) = 18
a is 6

Section 7.3 Exceptional Control Flow 227

Practice Problem
7.2

For each name in the next module, indicate whether it is a global name or whether it is local

in f(x) or local in g(x).

Module: fandg.py

1 def f(y):
2 x = 2
3 return g(x)
4

5 def g(y):
6 global x
7 x = 4
8 return x*y
9

10 x = 0
11 res = f(x)
12 print('x = {}, f(0) = {}'.format(x, res))

7.3 Exceptional Control Flow
While the focus of the discussion in this chapter has been on namespaces, we have also

touched on another fundamental topic: how the operating system and namespaces sup-

port the “normal” execution control flow of a program, and especially function calls. We

consider, in this section, what happens when the “normal” execution control flow gets in-

terrupted by an exception and ways to control this exceptional control flow. This section

also continues the discussion of exceptions we started in Section 4.4.

Exceptions and Exceptional Control Flow
The reason why error objects are called exceptions is because when they get created, the

normal execution flow of the program (as described by, say, the program’s flowchart) is

interrupted, and the execution switches to the so called exceptional control flow (which

the flowchart typically does not show as it is not part of the normal program execution).

The default exceptional control flow is to stop the program and print the error message

contained in the exception object.

We illustrate this using the functions f(), g(), and h() we defined in Section 7.1. In

Figure 7.2, we illustrated the normal flow of execution of function call f(4). In Figure 7.10,

we illustrate what happens when we make the function call f(2) from the shell.

The execution runs normally all the way to function call h(0). During the execu-

tion of h(0), the value of n is 0. Therefore, an error state occurs when the expression

1/n is evaluated. The interpreter raises a ZeroDivisionError exception and creates a

ZeroDivisionError exception object that contains information about the error.

The default behavior when an exception is raised is to interrupt the function call in

which the error occurred. Because the error occurred while executing h(0), the execution

of h(0) is interrupted. However, the error also occurred during the execution of function

calls g(1) and f(2), and the execution of both is interrupted as well. Thus, statements

shown in gray in Figure 7.10 are never executed.

228 Chapter 7 Namespaces

Figure 7.10 Execution of
f(2). The normal execution
control flow of function
call f(2) from the shell is
shown with black arrows:
f(2) calls g(1), which, in
turn, calla h(0). When the
evaluation of expression
1/n = 1/0 is attempted,
a ZeroDivisionError
exception is raised. The
normal execution control
flow is interrupted: Function
call h(0) does not run to
completion, and neither
do g(1) or f(2). The
exceptional control flow is
shown with a dashed arrow.
Statements that are not
executed are shown in
gray. Since call f(2) is
interrupted, the error
information is output in
the shell.

>>> f(2)
n = 2
print('Start f')
g(n-1)

n = 1
print('Start g')
h(n-1)

n = 0
print('Start h')
print(1/n)
print(n)

print(n)
print(n)

f(2)
crashes
>>>

Running shell Running f(2)

Running g(1)

Running h(0)

When execution returns to the shell, the information contained in the exception object

is printed in the shell:

Traceback (most recent call last):
File "<pyshell#116>", line 1, in <module>

f(2)
File "/Users/me/ch7.py", line 13, in f

g(n-1)
File "/Users/me/ch7.py", line 8, in g

h(n-1)
File "/Users/me/ch7.py", line 3, in h

print(1/n)
ZeroDivisionError: division by zero

In addition to the type of error and a friendly error message, the output also includes a

traceback, which consists of all the function calls that got interrupted by the error.

Catching and Handling Exceptions
Some programs should not terminate when an exception is raised: server programs, shell

programs, and pretty much any program that handles requests. Since these programs receive

requests from outside the program (interactively from the user or from a file), it is difficult

to ensure that the program will not enter an erroneous state because of malformed input.

These programs need to continue providing their service even if internal errors occur. What

this means is that the default behavior of stopping the program when an error occurs and

printing an error message must be changed.

We can change the default exceptional control flow by specifying an alternate behavior

when an exception is raised. We do this using the try/except pair of statements. The next

Section 7.3 Exceptional Control Flow 229

small application illustrates how to use them:

Module: age1.py
1 strAge = input('Enter your age: ')
2 intAge = int(strAge)
3 print('You are {} years old.'.format(intAge))

The application asks the user to interactively enter her age. The value entered by the

user is a string. This value is converted to an integer before being printed. Try it!

This program works fine as long as the user enters her age in a way that makes the

conversion to an integer possible. But what if the user types “fifteen” instead?

>>>
Enter your age: fifteen
Traceback (most recent call last):

File "/Users/me/age1.py", line 2, in <module>
intAge = int(strAge)

ValueError: invalid literal for int() with base 10: 'fifteen'

A ValueError exception is raised because string 'fifteen' cannot be converted to an

integer.

Instead of “crashing” while executing the statement age = int(strAge), wouldn’t it

be nicer if we could tell the user that they were supposed to enter their age using decimal

digits. We can achieve this using the next try and except pair of statements:

Module: age2.py
1 try:
2 # try block --- executed first; if an exception is
3 # raised, the execution of the try block is interrupted
4 strAge = input('Enter your age: ')
5 intAge = int(strAge)
6 print('You are {} years old.'.format(intAge))
7 except:
8 # except block --- executed only if an exception
9 # is raised while executing the try block

10 print('Enter your age using digits 0-9!')

The try and except statements work in tandem. Each has an indented code block below

it. The code block below the try statement, from line to 5, is executed first. If no errors

occur, then the code block below except is ignored:

>>>
Enter your age: 22
You are 22 years old.

If, however, an exception is raised during the execution of a try code block (say,

strAge cannot be converted to an integer), the Python interpreter will skip the execution of

the remaining statements in the try code block and execute the code block of the except
statement (i.e., line 9) instead:

>>>
Enter your age: fifteen
Enter your age using digits 0-9!

Note that the first line of the try block got executed, but not the last.

230 Chapter 7 Namespaces

The format of a try/except pair of statements is:

try:
<indented code block 1>

except:
<indented code block 2>

<non-indented statement>

The execution of <indented code block 1> is attempted first. If it goes through without

any raised exceptions, then <indented code block 2> is ignored and execution contin-

ues with <non-indented statement>. If, however, an exception is raised during the

execution of <indented code block 1>, then the remaining statements in <indented
code block 1> are not executed; instead <indented code block 2> is executed. If

<indented code block 2> runs to completion without a new exception being raised,

then the execution continues with <non-indented statement>.

The code block <indented code block 2> is referred to as the exception handler,

because it handles a raised exception. We will also say that an except statement catches
an exception.

The Default Exception Handler
If a raised exception is not caught by an except statement (and thus not handled by a user-

defined exception handler), the executing program will be interrupted and the traceback and

information about the error are output. We saw this behavior when we ran module age1.py
and entered the age as a string:

>>>
Enter your age: fifteen
Traceback (most recent call last):

File "/Users/me/age1.py", line 2, in <module>
intAge = int(strAge)

ValueError: invalid literal for int() with base 10: 'fifteen'

This default behavior is actually the work of Python’s default exception handler. In

other words, every raised exception will be caught and handled, if not by a user-defined

handler then by the default exception handler.

Catching Exceptions of a Given Type
In the module age2.py, the except statement can catch an exception of any type. The

except statement could also be written to catch only a certain type of exception, say

ValueError exceptions:

Module: age3.py
1 try:
2 # try block
3 strAge = input('Enter your age: ')
4 intAge = int(strAge)
5 print('You are {} years old.'.format(intAge))
6 except ValueError:
7 # except block --- executed only if a ValueError
8 # exception is raised in the try block
9 print('Enter your age using digits 0-9!')

Section 7.3 Exceptional Control Flow 231

If an exception is raised while executing the try code block, then the exception handler is

executed only if the type of the exception object matches the exception type specified in

the corresponding except statement (ValueError in this case). If an exception is raised

that does match the type specified in the except statement, then the except statement will

not catch it. Instead, the default exception handler will handle it.

Multiple Exception Handlers
There could be not just one but several except statements following one try statement,

each with its own exception handler. We illustrate this with the next function readAge(),

which attempts to open a file, read the first line, and convert it to an integer in a single try
code block.

Module: ch7.py
1 def readAge(filename):
2 '''converts first line of file filename to
3 an integer and prints it'''
4 try:
5 infile = open(filename)
6 strAge = infile.readline()
7 age = int(strAge)
8 print('age is',age)
9 except IOError:

10 # executed only if an IOError exception is raised
11 print('Input/Output error.')
12 except ValueError:
13 # executed only if a ValueError exception is raised
14 print('Value cannot be converted to integer.')
15 except:
16 # executed if an exception other than IOError
17 # or ValueError is raised
18 print('Other error.')

Several types of exceptions could be raised while executing the try code block in function

readAge. The file might not exist:

>>> readAge('agg.txt')
Input/Output error.

In this case, what happened was that an IOError exception got raised while executing the

first statement of the try code block; the remaining statements in the code section were

skipped and the IOError exception handler got executed.

Another error could be that the first line of the file age.txt does not contain something

that can be converted to an integer value:

File: age.txt>>> readAge('age.txt')
Value cannot be converted to integer

The first line of file age.txt is 'fifteen\n', so a ValueError exception is raised when

attempting to convert it to an integer. The associated exception handler prints the friendly

message without interrupting the program.

The last except statement will catch any exception that the first two except statements

did not catch.

232 Chapter 7 Namespaces

DETOUR
Maiden Flight of Ariane 5

On June 4, 1996, the Ariane 5 rocket developed over many years by the Euro-
pean Space Agency flew its first test flight. Seconds after the launch, the rocket
exploded.

The crash happened when an overflow exception got raised during a conver-
sion from floating-point to integer. The cause of the crash was not the unsuccess-
ful conversion (it turns out that it was of no consequence); the real cause was
that the exception was not handled. Because of this, the rocket control software
crashed and shut the rocket computer down. Without its navigation system, the
rocket started turning uncontrollably, and the onboard monitors made the rocket
self-destruct.

This was probably one of the most expensive computer bugs in history.

Practice Problem
7.3

Create a “wrapper” function safe-open() for the open() function. Recall that when

open() is called to open a file that doesn’t exist in the current working directory, an excep-

tion is raised:

>>> open('ch7.px', 'r')

Traceback (most recent call last):
File "<pyshell#19>", line 1, in <module>

open('ch7.px', 'r')
IOError: [Errno 2] No such file or directory: 'ch7.px'

If the file exist, a reference to the opened file object is returned:

>>> open('ch7.py', 'r')
<_io.TextIOWrapper name='ch7.py' encoding='US-ASCII'>

When safe-open() is used to open a file, a reference to the opened file object should be

returned if no exception is raised, just like for the open() function. If an exception is raised

while trying to open the file, safe-open() should return None.

>>> safe-open('ch7.py', 'r')
<_io.TextIOWrapper name='ch7.py' encoding='US-ASCII'>
>>> safe-open('ch7.px', 'r')
>>>

Controlling the Exceptional Control Flow
We started this section with an example illustrating how a raised exception interrupts the

normal flow of a program. We now look at ways to manage the exceptional flow using

appropriately placed exception handlers. We again use the functions f(), g(), and h()
defined in module stack.py, shown next, as our running example.

Section 7.3 Exceptional Control Flow 233

Module: stack.py1 def h(n):
2 print('Start h')
3 print(1/n)
4 print(n)
5

6 def g(n):
7 print('Start g')
8 h(n-1)
9 print(n)

10

11 def f(n):
12 print('Start f')
13 g(n-1)
14 print(n)

In Figure 7.10, we showed how the evaluation of f(2) causes an exception to be raised. The

ZeroDivisionError exception is raised when an attempt is made to evaluate 1/0 while

executing h(0). Since the exception object is not caught in function calls h(0), g(1), and

f(2), these function calls are interrupted, and the default exception handler handles the

exception, as shown in Figure 7.10.

Suppose we would like to catch the raised exception and handle it by printing 'Caught!'
and then continuing with the normal flow of the program. We have several choices where

to write a try code block and catch the exception. One approach is to to put the outermost

function call f(2) in a try block (see also Figure 7.11):

>>> try:
f(2)

except:
print('Caught!')

>>> try:

f(2)
n = 2
print('S...')
g(n-1)

n = 1
print('S...')
h(n-1)

n = 0
print('Start h')
print(1/n)
print(n)

print(n)
print(n)

except:
print('Caught!')

Running shell

Running f(2)

Running g(1)

Running h(0)

Figure 7.11 Execution of
f(2) with an exception
handler. We run f(2) in
a try code block. The
execution runs normally
until an exception is raised
while executing h(0). The
normal flow of execution is
interrupted: Function call
h(0) does not run to
completion, and neither do
g(1) or f(2). The dashed
arrow shows the exceptional
execution flow. Statements
that are not executed are
shown in gray. The except
statement corresponding to
the try block catches the
exception and the matching
handler handles it.

234 Chapter 7 Namespaces

The execution in Figure 7.11 parallels the one illustrated in Figure 7.10 until the point

when function call f(2), made from the shell, is interrupted because of a raised exception.

Because the function call was made in a try block, the exception is caught by the cor-

responding except statement and handled by its exception handler. The resulting output

includes the string 'Caught!' printed by the handler:

Start f
Start g
Start h
Caught!

Compare this to the execution shown in Figure 7.10, when the default exception handler

handled the exception.

In the previous example, we chose to implement an exception handler at the point where

function f(2) is called. This represents a design decision by the developer of function f()
that it is up to the function user to worry about handling exceptions.

In the next example, the developer of function h makes the design decision that func-

tion h() should handle any exception that occur during its execution. In this example, the

function h() is modified so that its code is inside a try block:

Module: stack2.py
1 def h(n):
2 try:
3 print('Start h')
4 print(1/n)
5 print(n)
6 except:
7 print('Caught!')

(Functions f() and g() remain the same as in stack.py.) When we run f(2), we get:

>>> f(2)
Start f
Start g
Start h
Caught!
1
2

Figure 7.12 illustrates this execution. The execution parallels the one in Figure 7.11

until the exception is raised when evaluating 1/0. Since the evaluation is now inside a try
block, the corresponding except statement catches the exception. The associated handler

prints 'Caught!'. When the handler is done, the normal execution control flow resumes,

and function call h(0) runs to completion as do g(1) and f(2).

Practice Problem
7.4

What statements in module stack.py are not executed when running f(2), assuming

these modifications are made in stack.py:

(a) Add a try statement that wraps the line print(1/n) in h() only.

(b) Add a try statement that wraps the three lines of code in g().

(c) Add a try statement that wraps the line h(n-1) in g() only.

In each case, the exception handler associated with the try block just prints 'Caught!'.

Section 7.4 Modules as Namespaces 235

>>> f(2)
n = 2
print('Start f')
g(n-1)

n = 1
print('Start g')
h(n-1)

n = 0
try:
print('Start h')
print(1/n)
print(n)
except:
print('Caught!')

print(n)
print(n)

Running shell Running f(2)

Running g(1)

Running h(0)

Figure 7.12 Execution of
f(2) with an exception
handler inside h(). The
normal execution flow is
shown with black arrows.
When an attempt is made
to evaluate 1/n = 1/0, a
ZeroDivisionError
exception is raised and the
normal flow of execution is
interrupted. The dashed
arrow shows the exceptional
flow of execution, and
statements that are not
executed are shown in
gray. Since the exception
occurred in a try block,
the corresponding except
statement catches the
exception, and its
associated handler handles
it. The normal flow of
execution then resumes,
with h(0), g(1), and h(2)
all running to completion.

7.4 Modules as Namespaces
So far, we have used the term module to describe a file containing Python code. When the

module is executed (imported), then the module is (also) a namespace. This namespace

has a name, which is the name of the module. In this namespace will live the names that

are defined in the global scope of the module: the names of functions, values, and classes

defined in the module. These names are all referred to as the module’s attributes.

Module Attributes
As we have already seen, to get access to all the functions in the Standard Library module

math, we import the module:

>>> import math

Once a module is imported, the Python built-in function dir() can be used to view all the

module’s attributes:

>>> dir(math)
['__doc__', '__file__', '__name__', '__package__', 'acos',
'acosh', 'asin', 'asinh', 'atan', 'atan2', 'atanh', 'ceil',

'copysign', 'cos', 'cosh', 'degrees', 'e', 'exp', 'fabs',
'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'hypot', 'isinf',
'isnan', 'ldexp', 'log', 'log10', 'log1p', 'modf', 'pi', 'pow',
'radians', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'trunc']

236 Chapter 7 Namespaces

(The list may be slightly different depending on the version of Python you are using.) You

can recognize many of the math functions and constants we have been using. Using the

familiar notation to access the names in the module, you can view the objects these names

refer to:

>>> math.sqrt
<built-in function sqrt>
>>> math.pi
3.141592653589793

We can now understand what this notation really means: math is a namespace and the

expression math.pi, for example, evaluates the name pi in the namespace math.

DETOUR
“Other” Imported Attributes

The output of the dir() function shows that there are attributes in the math
namespace module that are clearly not math functions or constants: __doc__,
__file__, __name__, and __package__. These names exist for every imported
module. These names are defined by the Python interpreter at import time and are
kept by the Python interpreter for bookkeeping purposes.

The name of the module, the absolute pathname of the file containing the mod-
ule, and the module docstring are stored in variables __name__, __file__, and
__doc__, respectively.

What Happens When Importing a Module
When the Python interpreter executes an import statement, it:

1. Looks for the file corresponding to the module.

2. Runs the module’s code to create the objects defined in the module.

3. Creates a namespace where the names of these objects will live.

We discuss the first step in detail next. The second step consists of executing the code in

the module. This means that all Python statements in the imported module are executed

from top to bottom. All assignments, function definitions, class definitions, and import

statements will create objects (whether integer or string objects, or functions, or modules,

or classes) and generate the attributes (i.e., names) of the resulting objects. The names will

be stored in a new namespace whose name is typically the name of the module.

Module Search Path
Now we look into how the interpreter finds the file corresponding to the module to be

imported. An import statement only lists a name, the name of the module, without any

directory information or .py suffix. Python uses a Python search path to locate the module.

The search path is simply a list of directories (folders) where Python will look for modules.

The variable name path defined in the Standard Library module sys refers to this list. You

can thus see what the (current) search path is by executing this in the shell:

>>> import sys
>>> sys.path
['/Users/me/Documents', ...]

Section 7.4 Modules as Namespaces 237

(We omit the long list of directories containing the Standard Library modules.) The module

search path always contains the directory of the top-level module, which we discuss next,

and also the directories containing the Standard Library modules. At every import state-

ment, Python will search for the requested module in each directory in this list, from left to

right. If Python cannot find the module, then an ImportError exception is raised.

For example, suppose we want to import the module example.py that is stored in home

directory /Users/me (or whatever directory you saved the file example.py in):

Module: example.py
1 'an example module'
2 def f():
3 'function f'
4 print('Executing f()')
5

6 def g():
7 'function g'
8 print('Executing g()')
9

10 x = 0 # global var

Before we import the module, we run function dir() to check what names are defined in

the shell namespace:

>>> dir()
['__builtins__', '__doc__', '__name__', '__package__']

The function dir(), when called without an argument, returns the names in the current

namespace, which in this case is the shell namespace. It seems only “bookkeeping” names

are defined. (Read the next Detour about the name __builtins__.)

Now let’s try to import the module example.py:

>>> import example
Traceback (most recent call last):

File "<pyshell#24>", line 1, in <module>
import example

ImportError: No module named example

It did not work because directory /Users/me is not in list sys.path. So let’s append it:

>>> import sys
>>> sys.path.append('/Users/me')

and try again:

>>> import example
>>> example.f
<function f at 0x15e7d68>
>>> example.x
0

It worked. Let’s run dir() again and check that the module example has been imported:

>>> dir()
['__builtins__', '__doc__', '__name__', '__package__', 'example',
'sys']

238 Chapter 7 Namespaces

DETOUR
Module builtins

The name __builtins__ refers to the namespace of the builtins module,
which we referred to in Figure 7.8.

The builtins module contains all the built-in types and functions and is usu-
ally imported automatically upon starting Python. You can check that by listing the
attributes of module builtins using the dir() function:

>>> dir(__builtins__)
['ArithmeticError', 'AssertionError', ..., 'vars', 'zip']

Note: Use dir(__builtins__), not dir('__builtins__').

Practice Problem
7.5

Find the random module in one of the directories listed in sys.path, open it, and find the

implementations of functions randrange(), random(), and sample(). Then import the

module into the interpreter shell and view its attributes using the dir() function.

Top-Level Module
A computer application is a program that is typically split across multiple files (i.e., mod-

ules). In every Python program, one of the modules is special: It contains the “main pro-

gram” by which we mean the code that starts the application. This module is referred to

as the top-level module. The remaining modules are essentially “library” modules that are

imported by the top-level module and contain functions and classes that are used by the

application.

We have seen that when a module is imported, the Python interpreter creates a few

“bookkeeping” variables in the module namespace. One of these is variable __name__.

Python will set its value in this way:

• If the module is being run as a top-level module, attribute __name__ is set to the

string __main__.

• If the file is being imported by another module, whether the top-level or other, at-

tribute __name__ is set to the module’s name.

We use the next module to illustrate how __name__ is assigned:

Module: name.py
1 print('My name is {}'.format(__name__))

When this module is executed by running it from the shell (e.g., by hitting F5 in the IDLE

shell), it is run as the main program (i.e., the top-level module):

>>>
My name is __main__

So the __name__ attribute of the imported module is set to __main__.

Section 7.4 Modules as Namespaces 239

DETOUR
Top-Level Module and the Module Search Path

In the last subsection, we mentioned that the directory containing the top-level
module is listed in the search path. Let’s check that this is indeed the case. First
run the previous module name.py that was saved in, say, directory /Users/me.
Then check the value of sys.path:

>>> import sys
>>> sys.path
['/Users/me', '/Users/lperkovic/Documents', ...]

Note that directory /Users/me is in the search path.

The module name is also the top-level module when it is run at the command line:

> python name.py
My name is __main__

If, however, another module imports module name, then module name will not be top

level. In the next import statement, the shell is the top-level program that imports the mod-

ule name.py:

>>> import name
My name is name

Here is another example. The next module has only one statement, a statement that

imports module name.py:

Module: import.py
1 import name

When module import.py is run from the shell, it is run as the main program that imports

module name.py:

>>>
My name is name

In both cases, the __name__ attribute of the imported module is set to the name of the

module.

The __name__ attribute of a module is useful for writing code that should be executed

only when the module is run as the top-level module. This would be the case, for example,

if the module is a “library” module that contains function definitions and the code is used

for debugging. All we need to do is make the debugging code a code block of this if
statement:

if __name__ == '__main__':
code block

If the module is run as a top-level module, the code block will be executed; otherwise it

will not.

240 Chapter 7 Namespaces

Practice Problem
7.6

Add code to module example.py that calls the functions defined in the module and prints

the values of variables defined in the module. The code should execute when the module is

run as a top-level module only, such as when it is run from the shell:

>>>
Testing module example:
Executing f()
Executing g()
0

Different Ways to Import Module Attributes
We now describe three different ways to import a module and its attributes, and we discuss

the relative benefits of each. We again use the module example as our running example:

Module: example.py
1 'an example module'
2 def f():
3 print('Executing f()')
4

5 def g():
6 print('Executing g()')
7

8 x = 0 # global var

One way to get access to functions f() or g(), or global variable x, is to:

>>> import example

This import statement will find the file example.py and run the code in it. This

will instantiate two function objects and one integer object and create a namespace, called

example, where the names of the created objected will be stored. In order to access and

use the module attributes, we need to specify the module namespace:

>>> example.f()
Executing f()

As we have seen, calling f() directly would result in an error. Therefore, the import
statement did not bring name f into the namespace of module __main__ (the module

that imported example); it only brings the name of the module example, as illustrated in

Figure 7.13.

Figure 7.13 Importing a
module. The statement
import example creates
name example in the calling
module namespace which
will refer to the namespace
associated with the
imported module example.

namespace __main__

example

f() g() 0

module example

f g x

Section 7.4 Modules as Namespaces 241

namespace __main__

f

f() g() 0

module example

f g x
Figure 7.14 Importing a
module attribute. Module
attributes can be imported
into the calling module
namespace. The statement
from example import f
creates name f in the
calling module namespace
that refers to the appropriate
function object.

Instead of importing the name of the module, it is also possible to import the names of

the needed attributes themselves using the from command:

>>> from example import f

As illustrated in Figure 7.14, from copies the name of attribute f to the scope of the main

program, the module doing the import, so that f can be referred to directly, without having

to specify the module name.

>>> f()
Executing f()

Note that this code copies only the name of attribute f, not of attribute g (see Fig-

ure 7.14). Referring to g directly results in an error:

>>> g()
Traceback (most recent call last):

File "<pyshell#7>", line 1, in <module>
g()

NameError: name 'g' is not defined

Finally, is is also possible to use from to import all the attributes of a module using the

wild card *:

>>> from example import *
>>> f()
Executing f()
>>> x
0

Figure 7.15 shows that all the attributes of example are copied to the namespace __main__.

namespace __main__

f g x

f() g() 0

module example

f g x
Figure 7.15 Importing all
the module’s attributes.
The statement
from example import *
imports all the attributes of
example into the calling
module namespace.

Which way is best? That might not be the right question. Each of the three approaches

has some benefits. Just importing the module name has the benefit of keeping the names

in the module in a namespace separate from the main module. This guarantees that there

242 Chapter 7 Namespaces

will be no clash between a name in the main module and the same name in the imported

module.

The benefit of importing individual attributes from the module is that we do not have to

use the namespace as a prefix when we refer to the attribute. This helps make the code less

verbose and thus more readable. The same is true when all module attributes are imported

using import *, with the additional benefit of doing it succinctly. However, it is usually

not a good idea to use import * because we may inadvertently import a name that clashes

with a global name in the main program.

7.5 Classes as Namespaces
In Python, a namespace is associated with every class. In this section we explain what that

means. We discuss, in particular, how Python uses namespaces in a clever way to implement

classes and class methods.

But first, why should we care how Python implements classes? We have been using

Python’s built-in classes without ever needing to look below the hood. There will be times,

however, when we will want to have a class that does not exist in Python. Chapter 8 ex-

plains how to develop new classes. There it will be very useful to know how Python uses

namespaces to implement classes.

A Class Is a Namespace
Underneath the hood, a Python class is essentially a plain old namespace. The name of

the namespace is the name of the class, and the names stored in the namespace are the

class attributes (e.g., the class methods). For example, the class list is a namespace called

list that contains the names of the methods and operators of the list class, as shown in

Figure 7.16.

Figure 7.16 The
namespace list and its
attributes. The class list
defines a namespace that
contains the names of all
list operators and methods.
Each name refers to the
appropriate function object.

Namespace list

__add__ count pop sort
...

__add__()__add__() count()count() pop()pop() sort()sort()

Recall that to access an attribute of an imported module, we need to specify the name-

space (i.e., the module name) in which the attribute is defined:

>>> import math
>>> math.pi
3.141592653589793

Similarly, the attributes of the class list can be accessed by using list as the namespace:

>>> list.pop
<method 'pop' of 'list' objects>
>>> list.sort
<method 'sort' of 'list' objects>

Section 7.5 Classes as Namespaces 243

Just as for any other namespace, you can use the built-in function dir() to find out all the

names defined in the list namespace:

>>> dir(list)
['__add__', '__class__', '__contains__', '__delattr__',
...,
'index', 'insert', 'pop', 'remove', 'reverse', 'sort']

These are names of the operators and methods of the list class.

Class Methods Are Functions Defined in the Class Namespace
We now look at how class methods are implemented in Python. We continue to use the

class list as our running example. Suppose, for example, that you would like to sort this

list:

>>> lst = [5,2,8,1,3,6,4,7]

In Chapter 2, we learned how to do this:

>>> lst.sort()

We know now that function sort() is really a function defined in the namespace list.

In fact, when the Python interpreter executes the statement

>>> lst.sort()

the first thing it will do is translate the statement to

>>> list.sort(lst)

Try executing both statements and you will see that the result is the same!

When method sort() is invoked on the list object lst, what really happens is that the

function sort(), defined in namespace list, is called on list object lst. More generally,

Python automatically maps the invocation of a method by an instance of a class, such as

instance.method(arg1, arg2, ...)

to a call to a function defined in the class namespace and using the instance as the first

argument:

class.method(instance, arg1, arg2, ...)

where class is the type of instance. This last statement is the statement that is actually

executed.

Let’s illustrate this with a few more examples. The method invocation by list lst

>>> lst.append(9)

gets translated by the Python interpreter to

>>> list.append(lst, 9)

The method invocation by dictionary d

>>> d.keys()

gets translated to

>>> dict.keys(d)

244 Chapter 7 Namespaces

From these examples, you can see that the implementation of every class method must

include an additional input argument, corresponding to the instance calling the method.

Chapter Summary
This chapter covers programming language concepts and constructs that are key to manag-

ing program complexity. The chapter builds on the introductory material on functions and

parameter passing from Sections 3.3 and 3.5 and sets up a framework that will be useful

when learning how to develop new Python classes in Chapter 8 and when learning how

recursive functions execute in Chapter 10.

One of the main benefits of functions—encapsulation—follows from the black box

property of functions: Functions do not interfere with the calling program other than through

the input arguments (if any) and returned values (if any). This property of functions holds

because a separate namespace is associated with each function call, and thus a variable

name defined during the execution of the function call is not visible outside of that function

call.

The normal execution control flow of a program, in which functions call other functions,

requires the management of function call namespaces by the OS through a program stack.

The program stack is used to keep track of the namespaces of active function calls. When

an exception is raised, the normal control flow of the program is interrupted and replaced

by the exceptional control flow. The default exceptional control flow is to interrupt every

active function call and output an error message. In this chapter, we introduce exception

handling, using the try/except pair of statements, as a way to manage the exceptional

control flow and, when it makes sense, use it as part of the program.

Namespaces are associated with imported modules as well as classes and, as shown in

Chapter 8, objects as well. The reason for this is the same as for functions: Components of

a program are easier to manage if they behave like black boxes that do not interfere with

each other in unintended ways. Understanding Python classes as namespaces is particularly

useful in the next chapter, where we learn how to develop new classes.

Solutions to Practice Problems
7.1 During the execution of g(3), function call f(1) has not terminated yet and has a

namespace associated with it; in this namespace, local variable names y and x are defined,

with values 1 and 2, respectively. Function call g(3) also has a namespace associated with

it, containing different variable names y and x, referring to values 3 and 4, respectively.

function f()

y x

1 2 3 4

function g()

y x

Chapter 7 Exercises 245

7.2 The answers are shown as inline comments:

def f(y): # f is global, y is local to f()
x = 2 # x is local to f()
return g(x) # g is global, x is local to f()

def g(y): # g is global, y is local to g()
global x # x is global
x = 4 # x is global
return x*y # x is global, y is local to g()

x = 0 # x is global
res = f(x) # res, f and x are global
print('x = {}, f(0) = {}'.format(x, res)) # same here

7.3 The function should take the same arguments as the open() function. The statements

that open the file and return the reference to the opened file should be in the try code

section. The exception handler should just return None.

def safe-open(filename, mode):
'returns handle to opened file filename, or None if error occurred'
try:

try block
infile = open(filename, mode)
return infile

except:
exept block
return None

7.4 These statements are not executed:

(a) Every statement is executed.

(b) The last statements in h() and g().

(c) The last statements in h().

7.5 On Windows, the folder containing the module random is C:\\Python3x\lib, where

x can be 1, 2, or other digit, depending on the version of Python 3 you are using; on a Mac,

it is /Library/Frameworks/Python.Framework/Versions/3.x/lib/python31.

7.6 This code is added at the end of file example.py:

if __name__ == '__main__':
print('Testing module example:')
f()
g()
print(x)

Exercises

7.7 Using Figure 7.5 as your model, illustrate the execution of function call f(1) as well

as the state of the program stack. Function f() is defined in module stack.py.

246 Chapter 7 Namespaces

7.8 What is the problem with the next program?

Module: probA.py
1 print(f(3))
2 def f(x):
3 return 2*x+1

Does the next program exhibit the same problem?

Module: probB.py
1 def g(x):
2 print(f(x))
3

4 def f(x):
5 return 2*x+1
6

7 g(3)

7.9 The blackjack application developed in Section 6.5 consists of five functions. There-

fore, all variables defined in the program are local. However, some of the local variables

are passed as arguments to other functions, and the objects they refer to are therefore (in-

tentionally) shared. For each such object, indicate in which function the object was created

and which functions have access to it.

7.10 This exercise relates to modules one, two, and three:

Module: one.py
1 import two
2

3 def f1():
4 two.f2()
5

6 def f4():
7 print('Hello!')

Module: two.py 1 import three
2

3 def f2():
4 three.f3()

Module: three.py 1 import one
2

3 def f3():
4 one.f4()

When module one is imported into the interpreter shell, we can execute f1():

>>> import one
>>> one.f1()
Hello!

Chapter 7 Exercises 247

(For this to work, list sys.path should include the folder containing the three modules.)

Using Figures 7.13 as your model, draw the namespaces corresponding to the three im-

ported modules and also the shell namespace. Show all the names defined in the three

imported namespaces as well as the objects they refer to.

7.11 After importing one in the previous problem, we can view the attributes of one:

>>> dir(one)
['__builtins__', '__doc__', '__file__', '__name__', '__package__',
'f1', 'f4', 'two']

However, we cannot view the attributes of two in the same way:

>>> dir(two)
Traceback (most recent call last):

File "<pyshell#202>", line 1, in <module>
dir(two)

NameError: name 'two' is not defined

Why is that? Note that importing module one forces the importing of modules two and

three. How can we view their attributes using function dir()?

7.12 Using Figure 7.2 as your model, illustrate the execution of function call one.f1().

Function f1() is defined in module one.py.

7.13 Modify the module blackjack.py from Section 6.5 so that when the module is run

as the top module, the function blackjack() is called (in other words, a blackjack game

starts). Test your solution by running the program from your system’s command-line shell:

> python blackjack.py
House: 7 ♣ 8 ♦

You: 10 ♣ J ♠
Hit or stand? (default: hit):

7.14 Let list lst be:

>>> lst = [2,3,4,5]

Translate the next list method invocations to appropriate calls to functions in namespace

list:

(a) lst.sort()
(b) lst.append(3)
(c) lst.count(3)
(d) lst.insert(2, 1)

7.15 Translate the following string method invocations to functions calls in namespace

str:

(a) 'error'.upper()
(b) '2,3,4,5'.split(',')
(c) 'mississippi'.count('i')
(d) 'bell'.replace('e', 'a')
(e) ' '.format(1, 2, 3)

248 Chapter 7 Namespaces

Problems

7.16 The first input argument of function index() in Problem 6.27 is supposed to be the

name of a text file. If the file cannot be found by the interpreter or if it cannot be read as a

text file, an exception will be raised. Reimplement function index() so that the message

shown here is printed instead:

>>> index('rven.txt', ['raven', 'mortal', 'dying', 'ghost'])
File 'rven.txt' not found.

7.17 In Problem 6.34, you were asked to develop an application that asks users to solve

addition problems. Users were required to enter their answers using digits 0 through 9.

Reimplement the function game() so it handles nondigit user input by printing a friendly

message like “Please write your answer using digits 0 though 9. Try again!” and then giving

the user another opportunity to enter an answer.

>>> game(3)
8 + 2 =
Enter answer: ten
Please write your answer using digits 0 though 9. Try again!
Enter answer: 10
Correct.

7.18 The blackjack application developed in Section 6.5 includes the function dealCard()
that pops the top card from the deck and passes it to a game participant. The deck is imple-

mented as a list of cards, and popping the top card from the deck corresponds to popping

the list. If the function is called on an empty deck, an attempt to pop an empty list is made,

and an IndexError exception is raised.

Modify the blackjack application by handling the exception raised when trying to deal

a card from an empty deck. Your handler should create a new shuffled deck and deal a card

from the top of this new deck.

7.19 Implement function inValues() that asks the user to input a set of nonzero floating-

point values. When the user enters a value that is not a number, give the user a second

chance to enter the value. After two mistakes in a row, quit the program. Add all correctly

specified values when the user enters 0. Use exception handling to detect improper inputs.

>>> inValues()
Please enter a number: 4.75
Please enter a number: 2,25
Error. Please re-enter the value.
Please enter a number: 2.25
Please enter a number: 0
7.0
>>> inValues()
Please enter a number: 3.4
Please enter a number: 3,4
Error. Please re-enter the value.
Please enter a number: 3,4
Two errors in a row. Quitting ...

Chapter 7 Problems 249

7.20 In Problem 7.19, the program quits only when the user makes two mistakes in a row.

Implement the alternative version of the program that quits when the user makes the second

mistake, even if it follows a correct entry by the user.

7.21 If you type Ctrl - C while the shell is executing the input() function, a KeyboardInterrupt
exception will be raised. For example:

>>> x = input() # Typing Ctrl-C
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
KeyboardInterrupt

Create a wrapper function safe_input() which works just like function input() except

that it returns None when an exception is raised.

>>> x = safe_input() # Typing Ctrl-C
>>> x # x is None
>>> x = safe_input() # Typing 34
34
>>> x # x is 34
'34'

This page intentionally left blank

CHAPTER

8Object-Oriented
Programming
8.1 Defining a New Python Class 252

8.2 Examples of User-Defined Classes 260

8.3 Designing New Container Classes 263

8.4 Overloaded Operators 268

8.5 Inheritance 276

8.6 User-Defined Exceptions 284

8.7 Case Study: Indexing and Iterators 287

Chapter Summary 292

Solutions to Practice Problems 293

Exercises 296

Problems 299

THIS CHAPTER DESCRIBES how to implement new Python classes and
introduces object-oriented programming (OOP).

There are several reasons why programming languages such as
Python enable developers to define new classes. Classes that are
custom-built for a particular application will make the application program
more intuitive and easier to develop, debug, read, and maintain.

The ability to create new classes also enables a new approach to
structuring application programs. A function exposes to the user its
behavior but encapsulates (i.e., hides) its implementation. Similarly, a
class exposes to the user the methods that can be applied to objects of
the class (i.e., class instances) but encapsulates how the data contained
in the objects is stored and how the class methods are implemented. This
property of classes is achieved thanks to fine-grained, customized
namespaces that are associated with every class and object. OOP is a
software development paradigm that achieves modularity and code
portability by organizing application programs around components that
are classes and objects.

251

252 Chapter 8 Object-Oriented Programming

8.1 Defining a New Python Class
We now explain how to define a new class in Python. The first class we develop is the class

Point, a class that represents points in the plane or, if you prefer, on a map. More precisely,

an object of type Point corresponds to a point in the two-dimensional plane. Recall that

each point in the plane can be specified by its x-axis and y-axis coordinates as shown in

Figure 8.1.

Figure 8.1 A point in the
plane. An object of type
Point represents a point in
the plane. A point is defined
by its x and y coordinates.

x-axis

y-axis

x

y
(x,y)

Before we implement the class Point, we need to decide how it should behave, that is,

what methods it should support.

Methods of Class Point
Let’s describe how we would like to use the class Point. To create a Point object, we

would use the default constructor of the Point class. This is no different from using the

list() or int() default constructors to create a list or integer object.

>>> point = Point()

(Just a reminder: We have not implemented the class Point yet; the code here is only meant

to illustrate how we want the class Point to behave.)

Once we have a Point object, we would set its coordinates using the methods setx()
and sety():

>>> point.setx(3)
>>> point.sety(4)

At this point, Point object point should have its coordinates set. We could check this

using method get():

>>> p.get()
(3, 4)

The method get() would return the coordinates of point as a tuple object. Now, to move

point down by three units, we would use method move():

>>> p.move(0,-3)
>>> p.get()
(3, 1)

We should also be able to change the coordinates of point():

>>> p.sety(-2)
>>> p.get()
(3, -2)

We summarize the methods we want class Point to support in Table 8.1.

Section 8.1 Defining a New Python Class 253

Usage Explanation

point.setx(xcoord) Sets the x coordinate of point to xcoord
point.sety(ycoord) Sets the y coordinate of point to ycoord
point.get() Returns the x and y coordinates of point as a tuple

(x, y)
point.move(dx, dy) Changes the coordinates of point from the current

(x, y) to (x+dx, y+dy)

Table 8.1 Methods of class
Point. The usage for the
four methods of class Point
is shown; point refers to an
object of type Point.

A Class and Its Namespace

As we learned in Chapter 7, a namespace is associated with every Python class, and the

name of the namespace is the name of the class. The purpose of the namespace is to store

the names of the class attributes. The class Point should have an associated namespace

called Point. This namespace would contain the names of class Point methods, as shown

in Figure 8.2.

class Point namespace

setx sety get move

setx() sety() get() move()

Figure 8.2 Class Point
and its attributes. When
class Point is defined, a
namespace associated with
the class is defined too; this
namespace contains the
class attributes.

Figure 8.2 shows how each name in namespace Point refers to the implementation of

a function. Let’s consider the implementation of function setx().

In Chapter 7, we have learned that Python translates a method invocation like

>>> point.setx(3)

to

>>> Point.setx(point, 3)

So function setx() is a function that is defined in the namespace Point. It takes not

one but two arguments: the Point object that is invoking the method and an x-coordinate.

Therefore, the implementation of setx() would have to be something like:

def setx(point, xcoord):
implementation of setx

Function setx() would somehow have to store the x-coordinate xcoord so that it can

later be retrieved by, say, method get(). Unfortunately, the next code will not work

def setx(point, xcoord):
x = xcoord

because x is a local variable that will disappear as soon as function call setx() terminates.

Where should the value of xcoord be stored so that it can be retrieved later?

254 Chapter 8 Object-Oriented Programming

Every Object Has an Associated Namespace
We know that a namespace is associated with every class. It turns out that not only classes

but every Python object has its own, separate namespace. When we instantiate a new object

of type Point and give it name point, as in

>>> point = Point()

a new namespace called point gets created, as shown in Figure 8.3(a).

Figure 8.3 The namespace
of an object. (a) Every
Point object has a
namespace. (b) The
statement point.x = 3
assigns 3 to variable x
defined in namespace
point.

object point namespace

(a)

object point namespace

x

3

(b)

Since a namespace is associated with object point, we can use it to store values:

>>> point.x = 3

This statement creates name x in namespace point and assigns it integer object 3, as shown

in Figure 8.3(b).

Now let’s get back to implementing the method setx(). We now have a place to the x-

coordinate of a Point object. We store it the namespace associated with it. Method setx()
would be implemented in this way:

def setx(point, xcoord):
point.x = xcoord

Implementation of Class Point
We are now ready to write the implementation of class Point:

Module: ch8.py
1 class Point:
2 'class that represents points in the plane'
3 def setx(self, xcoord):
4 'set x coordinate of point to xcoord'
5 self.x = xcoord
6 def sety(self, ycoord):
7 'set y coordinate of point to ycoord'
8 self.y = ycoord
9 def get(self):

10 'return a tuple with x and y coordinates of the point'
11 return (self.x, self.y)
12 def move(self, dx, dy):
13 'change the x and y coordinates by dx and dy'
14 self.x += dx
15 self.y += dy

Section 8.1 Defining a New Python Class 255

The reserved keyword class is used to define a new Python class. The class statement

is very much like the def statement. A def statement defines a new function and gives the

function a name; a class statement defines a new type and gives the type a name. (They

are both also similar to the assignment statement that gives a name to an object.)

Following the class keyword is the name of the class, just as the function name follows

the def statement. Another similarity with function definitions is the docstring below the

class statement: It will be processed by the Python interpreter as part of the documentation

for the class, just as for functions.

A class is defined by its attributes. The class attributes (i.e., the four methods of class

Point) are defined in an indented code block just below the line

class Point:

The first input argument of each class method refers to the object invoking the method.

We have already figured out the implementation of method setx():

def setx(self, xcoord):
'sets x coordinate of point'
self.x = xcoord

We made one change to the implementation. The first argument that refers to the Point
object invoking method setx() is named self rather than point. The name of the first

argument can be anything really; the important thing is that it always refers to the object

invoking the method. However, the convention among Python developers is to use name

self for the object that the method is invoked on, and we follow that convention.

The method sety() is similar to setx(): It stores the y-coordinate in variable y, which

is also defined in the namespace of the invoking object. Method get() returns the values

of names x and y defined in the namespace of the invoking object. Finally, method move()
changes the values of variables x and y associated with the invoking object.

You should now test your new class Point. First execute the class definition by running

module ch8.py. Then try this, for example:

>>> a = Point()
>>> a.setx(3)
>>> a.sety(4)
>>> a.get()
(3, 4)

Practice Problem
8.1

Add method getx() to the class Point; this method takes no input and returns the x coor-

dinate of the Point object invoking the method.

>>> a.getx()
3

Instance Variables
Variables defined in the namespace of an object, such as variables x and y in the Point
object a, are called instance variables. Every instance (object) of a class will have its own

namespace and therefore its own separate copy of an instance variable.

256 Chapter 8 Object-Oriented Programming

For example, suppose we create a second Point object b as follows:

>>> b = Point()
>>> b.setx(5)
>>> b.sety(-2)

Instances a and b will each have its own copies of instance variables x and y, as shown in

Figure 8.4.

Figure 8.4 Instance
variables. Each object of
type Point has its own
instance variables x and y,
stored in the namespace
associated with the object.

object a

yx

43

object b

x y

5 -2

In fact, instance variables x and y can be accessed by specifying the appropriate in-

stance:

>>> a.x
3
>>> b.x
5

They can, of course, be changed directly as well:

>>> a.x = 7
>>> a.x
7

Instances Inherit Class Attributes
Names a and b refer to objects of type Point, so the namespaces of a and b should have

some relationship with the namespace Point that contains the class methods that can be

invoked on objects a and b. We can check this, using Python’s function dir(), which we

introduced in Chapter 7 and which takes a namespace and returns a list of names defined

it:

>>> dir(a)
['__class__', '__delattr__', '__dict__', '__doc__', '__eq__',
...
'__weakref__', 'get', 'move', 'setx', 'sety', 'x', 'y']

(We omit a few lines of output.)

As expected, instance variable names x and y appear in the list. But so do the methods

of the Point class: setx, sety, get, and move. We will say that object a inherits all the

attributes of class Point, just as a child inherits attributes from a parent. Therefore, all the

attributes of class Point are accessible from namespace a. Let’s check this:

>>> a.setx
<bound method Point.setx of <__main__.Point object at 0x14b7ef0>>

Section 8.1 Defining a New Python Class 257

object a

yx

object b

x y

class Point

setx sety get move
Figure 8.5 Instance and
class attributes. Each
object of type Point has its
own instance attributes x
and y. They all inherit the
attributes of class Point.

The relationship between namespaces a, b, and Point is illustrated in Figure 8.5. It is

important to understand that the method names setx, sety, get, and move are defined in

namespace Point, not in namespace a or b. Thus, the Python interpreter uses this procedure

when it evaluates expression a.setx:

1. It first attempts to find name setx in object (namespace) a.

2. If name setx does not exist in namespace a, then it attempts to find setx in name-

space Point (where it will find it).

Class Definition, More Generally
The format of the class definition statement is:

class <Class Name>:
<class variable 1> = <value>
<class variable 2> = <value>
...
def <class method 1>(self, arg11, arg12, ...):

<implementation of class method 1>
def <class method 2>(self, arg21, arg22, ...):

<implementation of class method 2>
...

(We will see more general version in later sections.)

The first line of a class definition consists of the class keyword followed by <Class
Name>, the name of the class. In our example, the name was Point.

The definitions of the class attributes follow the first line. Each definition is indented

with respect to the first line. Class attributes can be class methods or class variables. In

class Point, four class methods were defined, but no class variable. A class variable is one

whose name is defined in the namespace of the class.

Practice Problem
8.2

Start by defining the class Test and then creating two instances of Test in your interpreter

shell:

>>> class Test:
version = 1.02

>>> a = Test()
>>> b = Test()

258 Chapter 8 Object-Oriented Programming

The class Test has only one attribute, the class variable version that refers to float value

1.02.

(a) Draw the namespaces associated with the class and the two objects, the names—if

any—contained in them, and the value(s) the name(s) refer to.

(b) Execute these statements and fill in the question marks:

>>> a.version
???
>>> b.version
???
>>> Test.version
???
>>> Test.version=1.03
>>> a.version
???
>>> Point.version
???
>>> a.version = 'Latest!!'
>>> Point.version
???
>>> b.version
???
>>> a.version
???

(c) Draw the state of the namespaces after this execution. Explain why the last three

expressions evaluate the way they did.

Documenting a Class

In order to get usable documentation from the help() tool, it is important to document a

new class properly. The class Point we defined has a docstring for the class and also one

for every method:

>>> help(Point)
Help on class Point in module __main__:

class Point(builtins.object)
| class that represents a point in the plane
|
| Methods defined here:
|
| get(self)
| returns the x and y coordinates of the point as a tuple
|
...

(We omit the rest of the output.)

Section 8.1 Defining a New Python Class 259

Class Animal
Before we move on to the next section, let’s put into practice everything we have learned

so far and develop a new class called Animal that abstracts animals and supports three

methods:

• setSpecies(species): Sets the species of the animal object to species.

• setLanguage(language): Sets the language of the animal object to language.

• speak(): Prints a message from the animal as shown below.

Here is how we want the class to behave:

>>> snoopy = Animal()
>>> snoopy.setpecies('dog')
>>> snoopy.setLanguage('bark')
>>> snoopy.speak()
I am a dog and I bark.

We start the class definition with the first line:

class Animal:

Now, in an indented code block, we define the three class methods, starting with method

setSpecies(). Even though the method setSpecies() is used with one argument (the

animal species), it must be defined as a function that takes two arguments: the argument

self that refers to the object invoking the method and the species argument:

def setSpecies(self, species):
self.species = species

Note that we named the instance variable species the same as the local variable

species. Because the instance variable is defined in the namespace self and the local

variable is defined in the local namespace of the function call, there is no name conflict.

The implementation of method setLanguage() is similar to the implementation of

setSpecies. The method speak() is used without input arguments; therefore, it must be

defined with just input argument self. Here is the final implementation:

Module: ch8.py
1 class Animal:
2 'represents an animal'
3

4 def setSpecies(self, species):
5 'sets the animal species'
6 self.spec = species
7

8 def setLanguage(self, language):
9 'sets the animal language'

10 self.lang = language
11

12 def speak(self):
13 'prints a sentence by the animal'
14 print('I am a {} and I {}.'.format(self.spec, self.lang))

260 Chapter 8 Object-Oriented Programming

Practice Problem
8.3

Implement class Rectangle that represents rectangles. The class should support methods:

• setSize(width, length): Takes two number values as input and sets the length

and the width of the rectangle

• perimeter(): Returns the perimeter of the rectangle

• area(): Returns the area of the rectangle

>>> rectangle = Rectangle(3,4)
>>> rectangle.perimeter()
14
>>> rectangle.area()
12

8.2 Examples of User-Defined Classes
In order to get more comfortable with the process of designing and implementing a new

class, in this section we work through the implementation of several more classes. But first,

we explain how to make it easier to create and initialize new objects.

Overloaded Constructor Operator
We take another look at the class Point we developed in the previous section. To create a

Point object at (x,y)-coordinates (3,4), we need to execute three separate statements:

>>> a = Point()
>>> a.setx(3)
>>> a.sety(4)

The first statement creates an instance of Point; the remaining two lines initialize the

point’s x- and y-coordinates. That’s quite a few steps to create a point at a certain location.

It would be nicer if we could fold the instantiation and the initialization into one step:

>>> a = Point(3,4)

We have already seen types that allow an object to be initialized when created. Integers

can be initialized when created:

>>> x = int(93)
>>> x
93

So can objects of type Fraction from the built-in fractions module:

>>> import fractions
>>> x = fractions.Fraction(3,4)
>>> x
Fraction(3, 4)

Constructors that take input arguments are useful because they can initialize the state of the

object at the moment the object is instantiated.

Section 8.2 Examples of User-Defined Classes 261

In order to be able able to use a Point() constructor with input arguments, we must

explicitly add a method called __init__() to the implementation of class Point. When

added to a class, it will be automatically called by the Python interpreter whenever an object

is created. In other words, when Python executes

Point(3,4)

it will create a “blank” Point object first and then execute

self.__init__(3, 4)

where self refers to the newly created Point object. Note that since __init__() is a

method of the class Point that takes two input arguments, the function __init__() will

need to be defined to take two input arguments as well, plus the obligatory argument self:

Module: ch8.py
1 class Point:
2 'represents points in the plane'
3

4 def __init__(self, xcoord, ycoord):
5 'initializes point coordinates to (xcoord, ycoord)'
6 self.x = xcoord
7 self.y = ycoord
8

9 # implementations of methods setx(), sety(), get(), and move()

!

CAUTION
Function __init__() Is Called Every Time an Object Is Created

Because the __init__() method is called every time an object is instantiated,
the Point() constructor must now be called with two arguments. This means that
calling the constructor without an argument will result in an error:

>>> a = Point()
Traceback (most recent call last):

File "<pyshell#23>", line 1, in <module>
a = Point()

TypeError: __init__() takes exactly 3 positional arguments
(1 given)

It is possible to rewrite the __init__() function so it can handle two arguments,
or none, or one. Read on.

Default Constructor
We know that constructors of built-in classes can be used with or without arguments:

>>> int(3)
3
>>> int()
0

We can do the same with user-defined classes. All we need to do is specify the default

values of the input arguments xcoord and ycoord if input arguments are not provided. In

262 Chapter 8 Object-Oriented Programming

the next reimplementation of the __init__() method, we specify default values of 0:

Module: ch8.py
1 class Point:
2 'represents points in the plane'
3

4 def __init__(self, xcoord=0, ycoord=0):
5 'initializes point coordinates to (xcoord, ycoord)'
6 self.x = xcoord
7 self.y = ycoord
8

9 # implementations of methods setx(), sety(), get(), and move()

This Point constructor can now take two input arguments

>>> a = Point(3,4)
>>> a.get()
(3, 4)

or none

>>> b = Point()
>>> b.get()
(0, 0)

or even just one

>>> c = Point(2)
>>> c.get()
(2, 0)

The Python interpreter will assign the constructor arguments to the local variables xcoord
and ycoord from left to right.

Playing Card Class
In Chapter 6, we developed a blackjack application. We used strings such as '3 ♠' to

represent playing cards. Now that we know how to develop new types, it makes sense to

develop a Card class to represent playing cards.

This class should support a two-argument constructor to create Card objects:

>>> card = Card('3', '\u2660')

The string '\u2660' is the escape sequence that represents Unicode character ♠. The class

should also support methods to retrieve the rank and suit of the Card object:

>>> card.getRank()
'3'
>>> card.getSuit()
'♠'

That should be enough. We want the class Card to support these methods:

• Card(rank, suit): Constructor that initializes the rank and suit of the card

• getRank(): Returns the card’s rank

• getSuit(): Returns the card’s suit

Section 8.3 Designing New Container Classes 263

Note that the constructor is specified to take exactly two input arguments. We choose not

to provide default values for the rank and suit because it is not clear what a default playing

card would really be. Let’s implement the class:

Module: cards.py
1 class Card:
2 'represents a playing card'
3

4 def __init__(self, rank, suit):
5 'initialize rank and suit of playing card'
6 self.rank = rank
7 self.suit = suit
8

9 def getRank(self):
10 'return rank'
11 return self.rank
12

13 def getSuit(self):
14 'return suit'
15 return self.suit

Note that the method __init__() is implemented to take two arguments, which are the

rank and suit of the card to be created.

Practice Problem
8.4

Modify the class Animal we developed in the previous section so it supports a two, one, or

no input argument constructor:

>>> snoopy = Animal('dog', 'bark')
>>> snoopy.speak()
I am a dog and I bark.
>>> tweety = Animal('canary')
>>> tweety.speak()
I am a canary and I make sounds.
>>> animal = Animal()
>>> animal.speak()
I am a animal and I make sounds.

8.3 Designing New Container Classes
While Python provides a diverse set of container classes, there will always be a need to

develop container classes tailored for specific applications. We illustrate this with a class

that represents a deck of playing cards and also with the classic queue container class.

Designing a Class Representing a Deck of Playing Cards
We again use the blackjack application from Chapter 6 to motivate our next class. In the

blackjack program, the deck of cards was implemented using a list. To shuffle the deck,

264 Chapter 8 Object-Oriented Programming

we used the shuffle() method from the random module, and to deal a card, we used the

list method pop(). In short, the blackjack application was written using nonapplication-

specific terminology and operations.

The blackjack program would have been more readable if the list container and opera-

tions were hidden and the program was written using a Deck class and Deck methods. So

let’s develop such a class. But first, how would we want the Deck class to behave?

First, we should be able to obtain a standard deck of 52 cards using a default construc-

tor:

>>> deck = Deck()

The class should support a method to shuffle the deck:

>>> deck.shuffle()

The class should also support a method to deal the top card from the deck.

>>> deck.dealCard()
Card('9', '♠')
>>> deck.dealCard()
Card('J', '♦')
>>> deck.dealCard()
Card('10', '♦')
>>> deck.dealCard()
Card('8', '♣')

The methods that the Deck class should support are:

• Deck(): Constructor that initializes the deck to contain a standard deck of 52 playing

cards

• shuffle(): Shuffles the deck

• getSuit(): Pops and returns the card at the top of the deck

Implementing the Deck (of Cards) Class
Let’s implement the Deck class, starting with the Deck constructor. Unlike the two exam-

ples from the previous section (classes Point and Card), the Deck constructor does not

take input arguments. It still needs to be implemented because its job is to create the 52

playing cards of a deck and store them somewhere.

To create the list of the 52 standard playing cards, we can use a nested loop that is

similar to the one we used in function shuffledDeck() of the blackjack application. There

we created a set of suits and a set of ranks

suits = {'\u2660', '\u2661', '\u2662', '\u2663'}
ranks = {'2','3','4','5','6','7','8','9','10','J','Q','K','A'}

and then used a nested for loop to create every combination of rank and suit

for suit in suits:
for rank in ranks:

create card with given rank and suit and add to deck

We need a container to store all the generated playing cards. Since the ordering of cards

in a deck is relevant and the deck should be allowed to change, we choose a list just as we

did in the blackjack application in Chapter 6.

Section 8.3 Designing New Container Classes 265

Now we have some design decisions to make. First, should the list containing the play-

ing cards be an instance or class variable? Because every Deck object should have its own

list of playing cards, the list clearly should be an instance variable.

We have another design question to resolve: Where should the sets suits and ranks
be defined? They could be local variables of the __init__() function. They could also be

class variables of the class Deck. Or they could be instance variables. Because the sets will

not be modified and they are shared by all Deck instances, we decide to make them class

variables.

Take a look at the implementation of the method __init__() in module cards.py.

Since the sets suits and ranks are class variables of the class Deck, they are defined in

namespace Deck. Therefore, in order to access them in lines 12 and 13, you must specify a

namespace:

for suit in Deck.suits:
for rank in Deck.ranks:

add Card with given rank and suit to deck

We now turn our attention to the implementation of the two remaining methods of class

Deck. The method shuffle() should just call random module function shuffle() on

instance variable self.deck.

For method dealCard(), we need to decide where the top of the deck is. Is it at the

beginning of list self.deck or at the end of it? We decide to go for the end. The complete

class Deck is:

Module: cards.py
1 from random import shuffle
2 class Deck:
3 'represents a deck of 52 cards'
4

5 # ranks and suits are Deck class variables
6 ranks = {'2','3','4','5','6','7','8','9','10','J','Q','K','A'}
7

8 # suits is a set of 4 Unicode symbols representing the 4 suits
9 suits = {'\u2660', '\u2661', '\u2662', '\u2663'}

10

11 def __init__(self):
12 'initialize deck of 52 cards'
13 self.deck = [] # deck is initially empty
14

15 for suit in Deck.suits: # suits and ranks are Deck
16 for rank in Deck.ranks: # class variables
17 # add Card with given rank and suit to deck
18 self.deck.append(Card(rank, suit))
19

20 def dealCard(self):
21 'deal (pop and return) card from the top of the deck'
22 return self.deck.pop()
23

24 def shuffle(self):
25 'shuffle the deck'
26 shuffle(self.deck)

266 Chapter 8 Object-Oriented Programming

Practice Problem
8.5

Modify the constructor of the class Deck so the class can also be used for card games that

do not use the standard deck of 52 cards. For such games, we would need to provide the

list of cards explicitly in the constructor. Here is a somewhat artificial example:

>>> deck = Deck(['1', '2', '3', '4'])
>>> deck.shuffle()
>>> deck.dealCard()
'3'
>>> deck.dealCard()
'1'

Container Class Queue
A queue is a container type that abstracts a queue, such as a queue of shoppers in a su-

permarket waiting at the cashier’s. In a checkout queue, shoppers are served in a first-in

first-out (FIFO) fashion. A shopper will put himself at the end of the queue and the first

person in the queue is the next one served by the cashier. More generally, all insertions

must be at the rear of the queue, and all removals must be from the front.

We now develop a basic Queue class that abstracts a queue. It will support very restric-

tive accesses to the items in the queue: method enqueue() to add an item to the rear of the

queue and method dequeue() to remove an item from the front of the queue. As shown in

Table 8.2, the Queue class will also support method isEmpty() that returns true or false

depending on whether the queue is empty or not. The Queue class is said to be a FIFO

container type because the item removed is the item that entered the queue earliest.

Before we implement the Queue class, we illustrate its usage. We start by instantiating

a Queue object:

>>> fruit = Queue()

We then insert a fruit (as a string) into it:

>>> fruit.enqueue('apple')

Let’s insert a few more fruits:

>>> fruit.enqueue('banana')
>>> fruit.enqueue('coconut')

We can then dequeue the queue:

>>> fruit.dequeue()
'apple'

The method dequeue() should both remove and return the item at the front of the queue.

Table 8.2 Queue methods.
A queue is a container of a
sequence of items; the only
accesses to the sequence
are enqueue(item) and
dequeue() .

Method Description

enqueue(item) Add item to the end of the queue

dequeue() Remove and return the element at the front of the

queue

isEmpty() Returns True if the queue is empty, False otherwise

Section 8.3 Designing New Container Classes 267

front/rear

fruit 'apple'

front rear

fruit 'apple' 'banana'

front rear

fruit 'apple' 'banana' 'coconut'

front rear

fruit 'banana' 'coconut'

front/rear

fruit 'coconut'

Index 0 1 2

Figure 8.6 Queue
operations. Shown is the
state of the queue fruit
after the statements:
fruit.enqueue('apple')
fruit.enqueue('banana')
fruit.enqueue('coconut')
fruit.dequeue()
fruit.dequeue()

We dequeue two more times to get back an empty queue:

>>> fruit.dequeue()
'banana'
>>> fruit.dequeue()
'coconut'
>>> fruit.isEmpty()
True

Figure 8.6 shows the sequence of states the queue fruit went through as we executed the

previous commands.

Implementing a Queue Class
Let’s discuss the implementation of the Queue class. The most important question we need

to answer is how are we going to store the items in the queue. The queue can be empty or

contain an unbounded number of items. It also has to maintain the order of items, as that

is essential for a (fair) queue. What built-in type can be used to store, in order, an arbitrary

number of items and allow insertions on one end and deletions from the other?

The list type certainly satisfies these constraints, and we go with it. The next question

is: When and where in the Queue class implementation should this list be created? In our

example, it is clear that we expect that the default Queue constructor gives us an empty

queue. This means that we need to create the list as soon as the Queue object is created—

that is, in an __init__() method:

def __init__(self):
'instantiates an empty list that will contain queue items'
self.q = []

... # remainder of class definition

268 Chapter 8 Object-Oriented Programming

Now we move to the implementation of the three Queuemethods. The method isEmpty()
can be implemented easily just by checking the length of list self.q:

def isEmpty(self):
'returns True if queue is empty, False otherwise'
return (len(self.q) == 0)

The method enqueue() should put items into the rear of list self.q, and the method

dequeue() should remove items from the front of list self.q. We now need to decide

what is the front of the list self.q. We can choose the front to be the leftmost list element

(i.e., at index 0) or the rightmost one (at index 1). Both will work, and the benefit of each

depends on the underlying implementation of the built-in class list—which is beyond the

scope of this chapter.

In Figure 8.6, the first element of the queue is shown on the left, which we usually

associate with index 0, and we thus do the same in our implementation. Once we make this

decision, the Queue class can be implemented:

Module: ch8.py
1 class Queue:
2 'a classic queue class'
3

4 def __init__(self):
5 'instantiates an empty list'
6 self.q = []
7

8 def isEmpty(self):
9 'returns True if queue is empty, False otherwise'

10 return (len(self.q) == 0)
11

12 def enqueue (self, item):
13 'insert item at rear of queue'
14 return self.q.append(item)
15

16 def dequeue(self):
17 'remove and return item at front of queue'
18 return self.q.pop(0)

8.4 Overloaded Operators
There are a few inconveniences with the user-defined classes we have developed so far. For

example, suppose you create a Point object:

>>> point = Point(3,5)

and then tried to evaluate it:

>>> point
<__main__.Point object at 0x15e5410>

Not very user-friendly, is it? By the way, the code says that point refers of an object of

type Point—where Point is defined in the namespace of the top module—and that its

object ID—memory address, effectively—is 0x15e5410, in hex. In any case, probably that

Section 8.4 Overloaded Operators 269

is not the information we wanted to get when we evaluated point.

Here is another problem. To obtain the number of characters in a string or the number

of items in a list, dictionary, tuple, or set, we use the len() function. It seems natural to use

the same function to obtain the number of items in a Queue container object. Unfortunately,

we do not get that:

>>> fruit = Queue()
>>> fruit.enqueue('apple')
>>> fruit.enqueue('banana')
>>> fruit.enqueue('coconut')
>>> len(fruit)
Traceback (most recent call last):

File "<pyshell#356>", line 1, in <module>
len(fruit)

TypeError: object of type 'Queue' has no len()

The point we are making is this: The classes we have developed so far do not behave

like built-in classes. For user-defined classes to be useful and easy to use, it is important

to make them more more familiar (i.e., more like built-in classes). Fortunately, Python

supports operator overloading, which makes this possible.

Operators Are Class Methods
Consider the operator +. It can be used to add numbers:

>>> 2 + 4
6

It can also be used to concatenate lists and strings:

>>> [4, 5, 6] + [7]
[4, 5, 6, 7]
>>> 'strin' + 'g'
'string'

The + operator is said to be an overloaded operator. An overloaded operator is an

operator that has been defined for multiple classes. For each class, the definition—and thus

the meaning—of the operator is different. So, for example, the + operator has been defined

for the int, list, and str classes. It implements integer addition for the int class, list

concatenation for the list class, and string concatenation for the str class. The question

now is: How is operator + defined for a particular class?

Python is an object-oriented language and, as we have said, any “evaluation,” including

the evaluation of an arithmetic expression like 2 + 4, is really a method invocation. To see

what method exactly, you need to use the help() documentation tool. Whether you type

help(int), help(str), or help(list), you will see that the documentation for the +
operator is:

...
| __add__(...)
| x.__add__(y) <==> x+y

...

This means that whenever Python evaluates expression x + y, it first substitutes it with ex-

pression x.__add__(y), a method invocation by object x with object y as input argument,

270 Chapter 8 Object-Oriented Programming

and then evaluates the new, method invocation, expression. This is true no matter what x
and y are. So you can actually evaluate 2 + 3, [4, 5, 6] + [7] and 'strin'+ 'g'
using invocations to method __add__() instead:

>>> int(2).__add__(4)
6
>>> [4, 5, 6].__add__([7])
[4, 5, 6, 7]
>>> 'strin'.__add__('g')
'string'

DETOUR
Addition Is Just a Function, After All

The algebraic expression

>>> x+y

gets translated by the Python interpreter to

>>> x.__add__(y)

which is a method invocation. In Chapter 7, we learned that this method invocation
gets translated by the interpreter to

>>> type(x).__add__(x,y)

(Recall that type(x) evaluates to the class of object x.) This last expression is the
one that really gets evaluated.

This is true, of course, for all operators: Any expression or method invocation is
really a call by a function defined in the namespace of the class of the first operand.

The + operator is just one of the Python overloaded operators; Table 8.3 shows some

others. For each operator, the corresponding function is shown as well as an explanation

of the operator behavior for the number types, the list type, and the str type. All the

operators listed are also defined for other built-in types (dict, set, etc.) and can also be

defined for user-defined types, as shown next.

Note that the last operator listed is the overloaded constructor operator, which maps

to function __init__(). We have already seen how we can implement and an overloaded

constructor in a user-defined class. We will see that implementing other overloaded opera-

tors is very similar.

Making the Class Point User Friendly
Recall the example we started this section with:

>>> point = Point(3,5)
>>> point
<__main__.Point object at 0x15e5410>

What would we prefer point to evaluate to instead? Suppose that we want:

>>> point
Point(3, 5)

Section 8.4 Overloaded Operators 271

Operator Method Number List and String

x + y x.__add__(y) Addition Concatenation

x - y x.__sub__(y) Subtraction —

x * y x.__mul__(y) Multiplication Self-concatenation

x / y x.__truediv__(y) Division —

x // y x.__floordiv__(y) Integer division —

x % y x.__mod__(y) Modulus —

x == y x.__eq__(y) Equal to

x != y x.__ne__(y) Unequal to

x > y x.__gt__(y) Greater than

x >= y x.__ge__(y) Greater than or equal to

x < y x.__lt__(y) Less than

x <= y x.__le__(y) Less than or equal to

repr(x) x.__repr__() Canonical string representation

str(x) x.__str__() Informal string representation

len(x) x.__len__() — Collection size

<type>(x) <type>.__init__(x) Constructor

Table 8.3 Overloaded
operators. Some of the
commonly used overloaded
operators are listed, along
with the corresponding
methods and behaviors for
the number, list, and string
types.

To understand how we can achieve this, we first need to understand that when we eval-

uate point in the shell, Python will display the string representation of the object. The

default string representation of an object is its type and address, as in

<__main__.Point object at 0x15e5410>

To modify the string representation for a class, we need to implement the overloaded

operator repr() for the class. The operator repr() is called automatically by the inter-

preter whenever the object must be represented as a string. One example of when that is

the case is when the object needs to be displayed in the interpreter shell. So the familiar

representation [3, 4, 5] of a list lst containing numbers 3, 4, and 5

>>> lst
[3, 4, 5]

is really the display of the string output by the call repr(lst)

>>> repr(lst)
'[3, 4, 5]'

All built-in classes implement overloaded operator repr() for this purpose. To modify

the default string representation of objects of user-defined classes, we need to do the same.

We do so by implementing the method corresponding to operator repr() in Table 8.3,

method __repr__().

To get a Point object displayed in the format Point(<x>, <y>), all we need to do is

add the next method to the class Point:

Module: cards.py
1 class Point:
2

3 # other Point methods
4

5 def __repr__(self):
6 'return canonical string representation Point(x, y)'
7 return 'Point({}, {})'.format(self.x, self.y)

272 Chapter 8 Object-Oriented Programming

Now, when we evaluate a Point object in the shell, we get what we want:

>>> point = Point(3,5)
>>> point
Point(3, 5)

!

CAUTION
String Representations of Objects

There are actually two ways to get a string representation of an object: the over-
loaded operator repr() and the string constructor str().

The operator repr() is supposed to return the canonical string representation
of the object. Ideally, but not necessarily, this is the string representation you would
use to construct the object, such as '[2, 3, 4]' or 'Point(3, 5)'.

In other words, the expression eval(repr(o)) should give back the original
object o. The method repr() is automatically called when an expression evaluates
to an object in the interpreter shell and this object needs to be displayed in the shell
window.

The string constructor str() returns an informal, ideally very readable, string
representation of the object. This string representation is obtained by method call
o.__str__(), if method __str__() is implemented. The Python interpreter calls
the string constructor instead of the overloaded operator repr() whenever the
object is to be “pretty printed” using function print(). We illustrate the difference
with this class:

class Representation:
def __repr__(self):

return 'canonical string representation'
def __str__(self):

return 'Pretty string representation.'

Let’s test it:

>>> rep = Representation()
>>> rep
canonical string representation
>>> print(rep)
Pretty string representation.

Contract between the Constructor and the repr() Operator
The last caution box stated that the output of the overloaded operator repr() should be the

canonical string representation of the object. The canonical string representation of Point
object Point(3, 5) is 'Point(3, 5)'. The output of the repr() operator for the same

Point object is:

>>> repr(Point(3, 5))
'Point(3, 5)'

Section 8.4 Overloaded Operators 273

It seems we have satisfied the contract between the constructor and the representation op-

erator repr(): They are the same. Let’s check:

>>> Point(3, 5) == eval(repr(Point(3, 5)))
False

What did we do wrong?

Well, the problem is not with the constructor or the operator repr() but with the oper-

ator == : It does not consider two cards with the same rank and suit necessarily equal. Let’s

check:

>>> Point(3, 5) == Point(3, 5)
False

The reason for this somewhat strange behavior is that for user-defined classes the default

behavior for operator == is to return True only when the two objects we are comparing are

the same object. Let’s show that this is indeed the case:

>>> point = Point(3,5)
>>> point == point
True

As shown in Table 8.3, the method corresponding to the overloaded operator == is

method __eq__(). To change the behavior of overloaded operator ==, we need to imple-

ment method __eq__() in class Point. We do so in this final version of class Point:

Module: ch8.py
1 class Point:
2 'class that represents a point in the plane'
3

4 def __init__(self, xcoord=0, ycoord=0):
5 'initializes point coordinates to (xcoord, ycoord)'
6 self.x = xcoord
7 self.y = ycoord
8 def setx(self, xcoord):
9 'sets x coordinate of point to xcoord'

10 self.x = xcoord
11 def sety(self, ycoord):
12 'sets y coordinate of point to ycoord'
13 self.y = ycoord
14 def get(self):
15 'returns the x and y coordinates of the point as a tuple'
16 return (self.x, self.y)
17 def move(self, dx, dy):
18 'changes the x and y coordinates by i and j, respectively'
19 self.x += dx
20 self.y += dy
21 def __eq__(self, other):
22 'self == other is they have the same coordinates'
23 return self.x == other.x and self.y == other.y
24 def __repr__(self):
25 'return canonical string representation Point(x, y)'

274 Chapter 8 Object-Oriented Programming

The new implementation of class Point supports the == operator in a way that makes sense

>>> Point(3, 5) == Point(3, 5)
True

and also ensures that the contract between the constructor and the operator repr() is sat-

isfied:

>>> Point(3, 5) == eval(repr(Point(3, 5)))
True

Practice Problem
8.6

Implement overloaded operators repr() and == for the Card class. Your new Card class

should behave as shown:

>>> Card('3', '♠') == Card('3', '♠')
True
>>> Card('3', '♠') == eval(repr(Card('3', '♠')))
True

Making the Queue Class User Friendly
We now make the class Queue from the previous section friendlier by overloading operators

repr(), ==, and len(). In the process we find it useful to extend the constructor.

We start with this implementation of Queue:

Module: ch8.py
1 class Queue:
2 'a classic queue class'
3

4 def __init__(self):
5 'instantiates an empty list'
6 self.q = []
7

8 def isEmpty(self):
9 'returns True if queue is empty, False otherwise'

10 return (len(self.q) == 0)
11

12 def enqueue (self, item):
13 'insert item at rear of queue'
14 return self.q.append(item)
15

16 def dequeue(self):
17 'remove and return item at front of queue'
18 return self.q.pop(0)

Let’s first take care of the “easy” operators. What does it mean for two queues to be

equal? It means that they have the same elements in the same order. In other words, the

lists that contain the items of the two queues are the same. Therefore, the implementation

of operator __eq__() for class Queue should consist of a comparison between the lists

Section 8.4 Overloaded Operators 275

corresponding to the two Queue objects we are comparing:

def __eq__(self, other):
'''returns True if queues self and other contain

the same items in the same order'''
return self.q == other.q

The overloaded operator function len() returns the number of items in a container.

To enable its use on Queue objects, we need to implement the corresponding method

__len__() (see Table 8.3) in the Queue class. The length of the queue is of course the

length of the underlying list self.q:

def __len__(self):
'return number of items in queue'
return len(self.q)

Let’s now tackle the implementation of the repr() operator. Suppose we construct a

queue like this:

>>> fruit = Queue()
>>> fruit.enqueue('apple')
>>> fruit.enqueue('banana')
>>> fruit.enqueue('coconut')

What do we want the canonical string representation to look like? How about:

>>> fruit
Queue(['apple', 'banana', 'coconut'])

Recall that when implementing the overloaded operator repr(), ideally we should sat-

isfy the contract between it and the constructor. To satisfy it, we should be able to construct

the queue as shown:

>>> Queue(['apple', 'banana', 'coconut'])
Traceback (most recent call last):

File "<pyshell#404>", line 1, in <module>
Queue(['apple', 'banana', 'coconut'])

TypeError: __init__() takes exactly 1 positional argument (2 given)

We cannot because we have implemented the Queue constructor so it does not take any

input arguments. So, we decide to change the constructor, as shown next. The two benefits

of doing this are that (1) the contract between the constructor and repr() is satisfied and

(2) newly created Queue objects can now be initialized at instantiation time.

Module: ch8.py
1 class Queue:
2 'a classic queue class'
3

4 def __init__(self, q = None):
5 'initialize queue based on list q, default is empty queue'
6 if q == None:
7 self.q = []
8 else:
9 self.q = q

10

11 # methods enqueue, dequeue, and isEmpty defined here

276 Chapter 8 Object-Oriented Programming

12

13 def __eq__(self, other):
14 '''return True if queues self and other contain
15 the same items in the same order'''
16 return self.q == other.q
17

18 def __len__(self):
19 'returns number of items in queue'
20 return len(self.q)
21

22 def __repr__(self):
23 'return canonical string representation of queue'
24 return 'Queue({})'.format(self.q)

Practice Problem
8.7

Implement overloaded operators len(), repr(), and == for the Deck class. Your new

Deck class should behave as shown:

>>> len(Deck()))
52
>>> Deck() == Deck()
True
>>> Deck() == eval(repr(Deck()))
True

8.5 Inheritance
Code reuse is a fundamental software engineering goal. One of the main reasons for wrap-

ping code into functions is to more easily reuse the code. Similarly, a major benefit of

organizing code into user-defined classes is that the classes can then be reused in other

programs, just as it is possible to use a function in the development of another. A class can

be (re)used as-is, something we have been doing since Chapter 2. A class can also be “ex-

tended” into a new class through class inheritance. In this section, we introduce the second

approach.

Inheriting Attributes of a Class
Suppose that in the process of developing an application, we find that it would be very

convenient to have a class that behaves just like the built-in class list but also supports a

method called choice() that returns an item from the list, chosen uniformly at random.

More precisely, this class, which we refer to as MyList, would support the same meth-

ods as the class list and in the same way. For example, we would be able to create a

MyList container object:

>>> mylst = MyList()

We also would be able to append items to it using list method append(), compute the

Section 8.5 Inheritance 277

number of items in it using overloaded operator len(), and count the number of occur-

rences of an item using list method count():

>>> mylst.append(2)
>>> mylst.append(3)
>>> mylst.append(5)
>>> mylst.append(3)
>>> len(mylst)
4
>>> mylst.count(3)
2

In addition to supporting the same methods that the class list supports, the class

MyList should also support method choice() that returns an item from the list, with

each item in the list equally likely to be chosen:

>>> mylst.choice()
5
>>> mylst.choice()
2
>>> mylst.choice()
5

One way to implement the class MyList is the approach we took when developing

classes Deck and Queue. A list instance variable self.lst would be used to store the

items of MyList:

import random
class MyList:

def __init__(self, initial = []):
self.lst = initial

def __len__(self):
return len(self.lst)

def append(self, item):
self.lst.append(self, item)

implementations of remaining "list" methods

def choice(self):
return random.choice(self.lst)

This approach to developing class MyList would require us to write more than 30

methods. It would take a while and be tedious. Wouldn’t it be nicer if we could define class

MyList in a much shorter way, one that essentially says that class MyList is an “extension”

of class list with method choice() as an additional method? It turns out that we can:

Module: ch8.py
1 import random
2 class MyList(list):
3 'a subclass of list that implements method choice'
4

5 def choice(self):
6 'return item from list chosen uniformly at random'
7 return random.choice(self)

278 Chapter 8 Object-Oriented Programming

This class definition specifies that class MyList is a subclass of the class list and thus

supports all the methods that class list supports. This is indicated in the first line

class MyList(list):

The hierarchical structure between classes list and MyList is illustrated in Figure 8.7.

Figure 8.7 Hierarchy of
classes list and MyList.
Some of the attributes of
class list are listed, all of
which refer to appropriate
functions. Class MyList is a
subclass of class list and
inherits all the attributes of
class list. It also defines
an additional attribute,
method choice(). The
object referred to by mylst
inherits all the class
attributes from its class,
MyList, which includes the
attributes from class list.

__main__ namespace

mylst class MyList

choice

class list

__init__ append __len__ count
... ...

[2, 3, 5, 3]

Figure 8.7 shows a MyList container object called mylst that is created in the inter-

preter shell (i.e., in the __main__ namespace):

>>> mylst = MyList([2, 3, 5, 3])

The object mylst is shown as a “child” of class MyList. This hierarchical representation

illustrates that object mylst inherits all the attributes of class MyList. We saw that objects

inherit the attributes of their class in Section 8.1.

Figure 8.7 also shows class MyList as a “child” of class list. This hierarchical rep-

resentation illustrates that class MyList inherits all the attributes of list. You can check

that using the built-in function dir():

>>> dir(MyList)
['__add__', '__class__', '__contains__', '__delattr__',
...
'append', 'choice', 'count', 'extend', 'index', 'insert',
'pop', 'remove', 'reverse', 'sort']

What this means is that object mylst will inherit not only method choice() from class

MyList but also all the attributes of list. You can, again, check that:

>>> dir(mylst)
['__add__', '__class__', '__contains__', '__delattr__',
...
'append', 'choice', 'count', 'extend', 'index', 'insert',
'pop', 'remove', 'reverse', 'sort']

The class MyList is said to be a subclass of class list. The class list is the superclass
of class MyList.

Section 8.5 Inheritance 279

Class Definition, in General
When we implemented classes Point, Animal, Card, Deck, and Queue, we used this for-

mat for the first line of the class definition statement:

class <Class Name>:

To define a class that inherits attributes from an existing class <Super Class>, the first

line of the class definition should be:

class <Class Name>(<Super Class>):

It is also possible to define a class that inherits attributes from more than just one existing

class. In that case, the first line of the class definition statement is:

class <Class Name>(<Super Class 1>, <Super Class 2>, ...):

Overriding Superclass Methods
We illustrate class inheritance using another simple example. Suppose that we need a class

Bird that is similar to the class Animal from Section 8.1. The class Bird should support

methods setSpecies() and setLanguage(), just like class Animal:

>>> tweety = Bird()
>>> tweety.setSpecies('canary')
>>> tweety.setLanguage('tweet')

The class Bird should also support a method called speak(). However, its behavior differs

from the behavior of the Animal method speak():

>>> tweety.speak()
tweet! tweet! tweet!

Here is another example of the behavior we expect from class Bird:

>>> daffy = Bird()
>>> daffy.setSpecies('duck')
>>> daffy.setLanguage('quack')
>>> daffy.speak()
quack! quack! quack!

Let’s discuss how to implement class Bird. Because class Bird shares attributes with

existing class Animal (birds are animals, after all), we develop it as a subclass of Animal.

Let’s first recall the definition of class Animal from Section 8.1:

Module: ch8.py
1 class Animal:
2 'represents an animal'
3

4 def setSpecies(self, species):
5 'sets the animal species'
6 self.spec = species
7

8 def setLanguage(self, language):
9 'sets the animal language'

10 self.lang = language
11

280 Chapter 8 Object-Oriented Programming

12 def speak(self):
13 'prints a sentence by the animal'
14 print('I am a {} and I {}.'.format(self.spec, self.lang))

If we define class Bird as a subclass of class Animal, it will have the wrong behavior

for method speak(). So the question is this: Is there a way to define Bird as a subclass of

Animal and change the behavior of method speak() in class Bird?

There is, and it is simply to implement a new method speak() in class Bird:

Module: ch8.py
1 class Bird(Animal):
2 'represents a bird'
3

4 def speak(self):
5 'prints bird sounds'
6 print('{}! '.format(self.language) * 3)

Class Bird is defined to be a subclass of Animal. Therefore, it inherits all the attributes

of class Animal, including the Animal method speak(). There is a method speak()
defined in class Bird, however; this method replaces the inherited Animal method. We

say that the Bird method overrides the superclass method speak().

Now, when method speak() is invoked on a Bird object like daffy, how does the

Python interpreter decide which method speak() to invoke? We use Figure 8.8 to illustrate

how the Python interpreter searches for attribute definitions.

Figure 8.8 Namespaces
associated with classes
Animal and Bird, object
daffy, and the shell.
Omitted are the values of
instance variables and
implementations of class
methods.

__main__ namespace

daffy class Bird

speak

class Animal

setSpecies setLanguage speak

object daffy

spec lang

When the interpreter executes

>>> daffy = Bird()

it creates a Bird object named daffy and a namespace, initially empty, associated with it.

Now let’s consider how the Python interpreter finds the definition of setSpecies() in:

>>> daffy.setSpecies('duck')

Section 8.5 Inheritance 281

The interpreter looks for the definition of attribute setSpecies starting with the name-

space associated with object daffy and continuing up the class hierarchy. It does not find

the definition in the namespace associated with object daffy or in the namespace associ-

ated with class Bird. Eventually, it does find the definition of setSpecies in the names-

pace associated with class Animal.

The search for the method definition when the interpreter evaluates

>>> daffy.setLanguage('quack')

also ends with the namespace of class Animal.

However, when the Python interpreter executes

>>> daffy.speak()
quack! quack! quack!

the interpreter finds the definition of method speak() in class Bird. In other words, the

search for attribute speak never reaches the class Animal. It is the Bird method speak()
that is executed.

!

CAUTION
Attribute Names Issues

Now that we understand how object attributes are evaluated by the Python inter-
preter, we can discuss the problems that can arise with carelessly chosen attribute
names. Consider, for example, this class definition

class Problem:
def value(self, v):

self.value = v

and try:

>>> p = Problem()
>>> p.value(9)
>>> p.value
9

So far, so good. When executing p.value(9), the object p does not have an
instance variable value, and the attribute search ends with the function value()
in class Problem. An instance variable value is then created in the object itself,
and that is confirmed by the evaluation of the statement that follows, p.value.

Now suppose we try:

>>> p.value(3)
Traceback (most recent call last):

File "<pyshell#324>", line 1, in <module>
p.value(9)

TypeError: 'int' object is not callable

What happened? The search for attribute value started and ended with the object
p: The object has an attribute called value. That attribute refers to an integer
object, 9, which cannot be called like a function.

282 Chapter 8 Object-Oriented Programming

Extending Superclass Methods
We have seen that a subclass can inherit a method from a superclass or override it. It is

also possible to do extend a superclass method. We illustrate this using an example that

compares the three inheritance patterns.

When designing a class as a subclass of another class, inherited attributes are handled

in several ways. They can be inherited as is, they can be replaced, or they can be extended.

The next module shows three subclasses of class Super. Each illustrates one of the ways

an inherited attribute is handled.

Module: ch8.py
1 class Super:
2 'a generic class with one method'
3 def method(self): # the Super method
4 print('in Super.method')
5

6 class Inheritor(Super):
7 'class that inherits method'
8 pass
9

10 class Replacer(Super):
11 'class that overrides method'
12 def method(self):
13 print('in Replacer.method')
14

15 class Extender(Super):
16 'class that extends method'
17 def method(self):
18 print('starting Extender.method')
19 Super.method(self) # calling Super method
20 print('ending Extender.method')

In class Inheritor, attribute method() is inherited as is. In class Replacer, it is com-

pletely replaced. In Extender, attribute method() is overridden, but the implementation

of method() in class Extender calls the original method() from class Super. Effectively,

class Extender adds additional behavior to the superclass attribute.

In most cases, a subclass will inherit different attributes in different ways, but each

inherited attribute will follow one of these patterns.

Practice Problem
8.8

Implement a class Vector that supports the same methods as the class Point we devel-

oped in Section 8.4. The class Vector should also support vector addition and product

operations. The addition of two vectors

>>> v1 = Vector(1, 3)
>>> v2 = Vector(-2, 4)

is a new vector whose coordinates are the sum of the corresponding coordinates of v1 and

v2:

>>> v1 + v2
Vector(-1, 7)

Section 8.5 Inheritance 283

The product of v1 and v2 is the sum of the products of the corresponding coordinates:

>>> v1 * v2
10

In order for a Vector object to be displayed as Vector(., .) instead of Point(., .),

you will need to override method __repr__().

Implementing a Queue Class by Inheriting from list
The class Queue we developed in Sections 8.3 and 8.4 is just one way to design and imple-

ment a queue class. Another implementation becomes natural after we recognize that every

Queue object is just a “thin wrapper” for a list object. So why not design the Queue class

so that every Queue object is a list object? In other words, why not design the Queue
class as a subclass of list? So let’s do it:

Module: ch8.py
1 class Queue2(list):
2 'a queue class, subclass of list'
3

4 def isEmpty(self):
5 'returns True if queue is empty, False otherwise'
6 return (len(self) == 0)
7

8 def dequeue(self):
9 'remove and return item at front of queue'

10 return self.pop(0)
11

12 def enqueue (self, item):
13 'insert item at rear of queue'
14 return self.append(item)

Note that because variable self refers to a Queue2 object, which is a subclass of list,

it follows that self is also a list object. So list methods like pop() and append()
are invoked directly on self. Note also that methods __repr__() and __len__() do not

need to be implemented because they are inherited from the list superclass.

Developing class Queue2 involved a lot less work than developing the original class

Queue. Does that make it better?

!

CAUTION
Inheriting Too Much

While inheriting a lot is desirable in real life, there is such a thing as too much inher-
itance in OOP. While straightforward to implement, class Queue2 has the problem
of inheriting all the list attributes, including methods that violate the spirit of a
queue. To see this, consider this Queue2 object:

>>> q2
[5, 7, 9]

284 Chapter 8 Object-Oriented Programming

The implementation of Queue2 allows us to remove items from the middle of the
queue:

>>> q2.pop(1)
7
>>> q2
[5, 9]

It also allows us to insert items into the middle of the queue:

>>> q2.insert(1,11)
>>> q2
[5, 11, 9]

So 7 got served before 5 and 11 got into the queue in front of 9, violating queue
rules. Due to all the inherited list methods, we cannot say that class Queue2
behaves in the spirit of a queue.

8.6 User-Defined Exceptions
There is one problem with the implementation of class Queue we developed in Section 8.4.

What happens when we try to dequeue an empty queue? Let’s check. We first create an

empty queue:

>>> queue = Queue()

Next, we attempt to dequeue it:

>>> queue.dequeue()
Traceback (most recent call last):

File "<pyshell#185>", line 1, in <module>
queue.dequeue()

File "/Users/me/ch8.py",
line 156, in dequeue
return self.q.pop(0)

IndexError: pop from empty list

An IndexError exception is raised because we are trying to remove the item at index 0

from empty list self.q. What is the problem?

The issue is not the exception: Just as for popping an empty list, there is no other sensi-

ble thing to do when trying to dequeue an empty queue. The issue is the type of exception.

An IndexError exception and the associated message 'pop from empty list' are of

little use to the developer who is using the Queue class and who may not know that Queue
containers use list instance variables.

Much more useful to the developer would be an exception called EmptyQueueError
with a message like 'dequeue from empty queue'. In general, often it is a good idea to

define your own exception type rather than rely on a generic, built-in exception class like

IndexError. A user-defined class can, for example, be used to customize handling and the

reporting of errors.

Section 8.6 User-Defined Exceptions 285

In order to obtain more useful error messages, we need to learn two things:

1. How to define a new exception class

2. How to raise an exception in a program

We discuss how to do the latter first.

Raising an Exception
In our experience so far, when an exception is raised during the execution of a program,

it is raised by the Python interpreter because an error condition occurred. We have seen

one type of exception not caused by an error: It is the KeyboardInterrupt exception,

which typically is raised by the user. The user would raise this exception by simultaneously

clicking keys Ctrl - c to terminate an infinite loop, for example:

>>> while True:
pass

Traceback (most recent call last):
File "<pyshell#210>", line 2, in <module>

pass
KeyboardInterrupt

(The infinite loop is interrupted by a KeyboardInterrupt exception.)

In fact, all types of exceptions, not just KeyboardInterrupt exceptions, can be raised

by the user. The raise Python statement forces an exception of a given type to be raised.

Here is how we would raise a ValueError exception in the interpreter shell:

>>> raise ValueError()
Traceback (most recent call last):

File "<pyshell#24>", line 1, in <module>
raise ValueError()

ValueError

Recall that ValueError is just a class that happens to be an exception class. The raise
statement consists of the keyword raise followed by an exception constructor such as

ValueError(). Executing the statement raises an exception. If it is not handled by the

try/except clauses, the program is interrupted and the default exception handler prints

the error message in the shell.

The exception constructor can take an input argument that can be used to provide infor-

mation about the cause of the error:

>>> raise ValueError('Just joking ...')
Traceback (most recent call last):

File "<pyshell#198>", line 1, in <module>
raise ValueError('Just joking ...')

ValueError: Just joking ...

The optional argument is a string message that will be associated with the object: It is,

in fact, the informal string representation of the object, that is, the one returned by the

__str__() method and printed by the print() function.

In our two examples, we have shown that an exception can be raised regardless of

whether it makes sense or not. We make this point again in the next Practice Problem.

286 Chapter 8 Object-Oriented Programming

Practice Problem
8.9

Reimplement method dequeue() of class Queue so that a KeyboardInterrupt excep-

tion (an inappropriate exception type in this case) with message 'dequeue from empty
queue' (an appropriate error message, actually) is raised if an attempt to dequeue an empty

queue is made:

>>> queue = Queue()
>>> queue.dequeue()
Traceback (most recent call last):

File "<pyshell#30>", line 1, in <module>
queue.dequeue()

File "/Users/me/ch8.py", line 183, in dequeue
raise KeyboardInterrupt('dequeue from empty queue')

KeyboardInterrupt: dequeue from empty queue

User-Defined Exception Classes
We now describe how to define our own exception classes.

Every built-in exception type is a subclass of class Exception. In fact, all we have to

do to define a new exception class is to define it as a subclass, either directly or indirectly,

of Exception. That’s it.

As an example, here is how we could define a new exception class MyError that be-

haves exactly like the Exception class:

>>> class MyError(Exception):
pass

(This class only has attributes that are inherited from Exception; the pass statement is

required because the class statement expects an indented code block.) Let’s check that we

can raise a MyError exception:

>>> raise MyError('test message')
Traceback (most recent call last):

File "<pyshell#247>", line 1, in <module>
raise MyError('test message')

MyError: test message

Note that we were also able to associate error message 'test message' with the excep-

tion object.

Improving the Encapsulation of Class Queue
We started this section by pointing out that dequeueing an empty queue will raise an ex-

ception and print an error message that has nothing to do with queues. We now define a

new exception class EmptyQueueError and reimplement method dequeue() so it raises

an exception of that type if it is invoked on an empty queue.

We choose to implement the new exception class without any additional methods:

Module: ch8.py
1 class EmptyQueueError(Exception):
2 pass

Section 8.7 Case Study: Indexing and Iterators 287

Shown next is the new implementation of class Queue, with a new version of method

dequeue(); no other Queue method is modified.

Module: ch8.py
1 class Queue:
2 'a classic queue class'
3 # methods __init__(), enqueue(), isEmpty(), __repr__(),
4 # __len__(), __eq__() implemented here
5

6 def dequeue(self):
7 if len(self) == 0:
8 raise EmptyQueueError('dequeue from empty queue')
9 return self.q.pop(0)

With this new Queue class, we get a more meaningful error message when attempting

to dequeue an empty queue:

>>> queue = Queue()
>>> queue.dequeue()
Traceback (most recent call last):

File "<pyshell#34>", line 1, in <module>
queue.dequeue()

File "/Users/me/ch8.py", line 186, in dequeue
raise EmptyQueueError('dequeue from empty queue')

EmptyQueueError: dequeue from empty queue

We have effectively hidden away the implementation details of class Queue.

8.7 Case Study: Indexing and Iterators
In this case study, we will learn how to make a container class feel more like a built-in class.

We will see how to enable indexing of items in the container and how to enable iteration,

using a for loop, over the items in the container.

Because iterating over a container is an abstract task that generalizes over different

types of containers, software developers have developed a general approach for imple-

menting iteration behavior. This approach, called the iterator design pattern, is just one

among many OOP design patterns that have been developed and cataloged for the purpose

of solving common software development problems.

Overloading the Indexing Operators
Suppose that we are working with a queue, whether of type Queue or Queue2, and would

like to see what item is in the 2nd, 3rd, or 24th position in the queue. In other words, we

would like to use the indexing operator [] on the queue object.

We implemented the class Queue2 as a subclass of list. Thus Queue2 inherits all the

attributes of class list, including the indexing operator. Let’s check that. We first build the

Queue2 object:

>>> q2 = Queue2()
>>> q2.enqueue(5)
>>> q2.enqueue(7)
>>> q2.enqueue(9)

288 Chapter 8 Object-Oriented Programming

Now we use the indexing operator on it:

>>> q2[1]
7

Let’s now turn our attention to the original implementation, Queue. The only attributes

of class Queue are the ones we implemented explicitly. It therefore should not support the

indexing operator:

>>> q = Queue()
>>> q.enqueue(5)
>>> q.enqueue(7)
>>> q.enqueue(9)
>>> q
[5, 7, 9]
>>> q[1]
Traceback (most recent call last):

File "<pyshell#18>", line 1, in <module>
q[1]

TypeError: 'Queue' object does not support indexing

In order to be able to access Queue items using the indexing operator, we need to add

method __getitem__() to the Queue class. This is because when the indexing operator is

used on an object, as in q[i], the Python interpreter will translate that to a call to method

__getitem__(), as in q.__getitem(i); if method __getitem__() is not implemented,

then the object’s type does not support indexing.

Here is the implementation of __getitem__() we will add to class Queue:

def __getitem__(self, key):
return self.q[key]

The implementation relies on the fact that lists support indexing: To get the queue item at

index key, we return the item at index key of the list self.q. We check that it works:

>>> q = queue()
>>> q.enqueue(5)
>>> q.enqueue(7)
>>> q.enqueue(9)
>>> q[1]
7

OK, so we now can use the indexing operator to get the item of a Queue at index 1.

Does this mean we can change the item at index 1?

>>> q[1] = 27
Traceback (most recent call last):

File "<pyshell#48>", line 1, in <module>
q[1] = 27

TypeError: 'queue' object does not support item assignment

That’s a no. Method __getitem__() gets called by the Python interpreter only when we

evaluate self[key]. When we attempt to assign to self[key], the overloaded operator

__setitem__() is called by the Python interpreter instead. If we wanted to allow assign-

ments such as q[1] = 27, then we would have to implement a method __setitem__()
that takes a key and an item as input and places the item at position key.

Section 8.7 Case Study: Indexing and Iterators 289

A possible implementation of __setitem__() could be:

def __setitem__(self, key, item):
self.q[key] = item

This operation, however, does not make sense for a queue class, and we do not to add it.

One benefit of implementing the method __getitem__() is that it allows us to iterate

over a Queue container, using the iteration loop pattern:

>>> for item in q:
print(item)

5
7
9

Before implementing the method __getitem__(), we could not have done that.

Practice Problem
8.10

Recall that we can also iterate over a Queue container using the counter loop pattern (i.e.,

by going through the indexes):

>>> for i in range(len(q)):
print(q[i])

3
5
7
9

What overloaded operator, in addition to the indexing operator, needs to be implemented

to be able to iterate over a container using this pattern?

Iterators and OOP Design Patterns
Python supports iteration over all the built-in containers we have seen: strings, lists, dic-

tionaries, tuples, and sets. We have just seen that by adding the indexing behavior to a

user-defined container class, we can iterate over it as well. The remarkable thing is that the

same iteration pattern is used for all the container types:

for c in s: # s is a string
print(char)

for item in lst: # lst is a list
print(item)

for key in d: # d is a dictionary
print(key)

for item in q: # q is a Queue (user-defined class)
print(item)

290 Chapter 8 Object-Oriented Programming

The fact that the same code pattern is used to iterate over different types of containers

is no accident. Iteration over items in a container transcends the container type. Using the

same familiar pattern to encode iteration simplifies the work of the developer when reading

or writing code. That said, because each container type is different, the work done by the

for loop will have to be different depending on the type of container: Lists have indexes

and dictionaries do not, for example, so the for loop has to work one way for lists and

another way for dictionaries.
To explore iteration further, we go back to iterating over a Queue container. With our

current implementation, iteration over a queue starts at the front of the queue and ends at

the rear of the queue. This seems reasonable, but what if we really, really wanted to iterate

from the rear to the front, as in:

>>> q = [5, 7, 9]
>>> for item in q:

print(item)

9
7
5

Are we out of luck?
Fortunately, Python uses an approach to implement iteration that can be customized. To

implement the iterator pattern, Python uses classes, overloaded operators, and exceptions

in an elegant way. In order to describe it, we need to first understand how iteration (i.e., a

for loop) works. Let’s use the next for loop as an example:

>>> s = 'abc'
>>> for c in s:

print(c)

a
b
c

What actually happens in the loop is this: The for loop statement causes the method

__iter__() to be invoked on the container object (string 'abc' in this case.) This method

returns an object called an iterator; the iterator will be of a type that implements a method

called __next__(); this method is then used to access items in the container one at a time.

Therefore, what happens behind the scenes when the last for loop executes is this:

>>> s = 'abc'
>>> it = s.__iter__()
>>> it.__next__()
'a'
>>> it.__next__()
'b'
>>> it.__next__()
'c'
>>> it.__next__()
Traceback (most recent call last):

File "<pyshell#173>", line 1, in <module>
it.__next__()

StopIteration

Section 8.7 Case Study: Indexing and Iterators 291

After the iterator has been created, the method __next__() is called repeatedly. When

there are no more elements, __next__() raises a StopIteration exception. The for
loop will catch that exception and terminate the iteration.

In order to add custom iterator behavior to a container class, we need to do two things:

1. Add to the class method __iter__(), which returns an object of a iterator type (i.e.,

of a type that supports the __next()__ method).

2. Implement the iterator type and in particular the method __next__().

We illustrate this by implementing iteration on Queue containers in which queue items

are visited from the rear to the front of the queue. First, a method __iter__() needs to be

added to the Queue class:

Module: ch8.py
1 class Queue:
2 'a classic queue class'
3

4 # other Queue methods implemented here
5

6 def __iter__(self):
7 'returns Queue iterator'
8 return QueueIterator(self)

The Queue method __iter__() returns an object of type QueueIterator that we have

yet to implement. Note, however, that argument self is passed to the QueueIterator()
constructor: In order to have an iterator that iterates over a specific queue, it better have

access to the queue.

Now let’s implement the iterator class QueueIterator. We need to implement the

QueueIterator class constructor so it takes in a reference to the Queue container it will

iterate over:

class QueueIterator:
'iterator for Queue container class'

def __init__(self, q):
'constructor'
self.q = q

method next to be implemented

The method __next__() is supposed to return the next item in the queue. This means

that we need to keep track of what the next item is, using an instance variable we will call

index. This variable will need to be initialized, and the place to do that is in the constructor.

Here is the complete implementation:

Module: ch8.py
1 class QueueIterator:
2 'iterator for Queue container class'
3

4 def __init__(self, q):
5 'constructor'
6 self.index = len(q)-1
7 self.q = q
8

292 Chapter 8 Object-Oriented Programming

9 def __next__(self):
10 '''returns next Queue item; if no next item,
11 raises StopIteration exception'''
12 if self.index < 0: # no next item
13 raise StopIteration()
14

15 # return next item
16 res = self.q[self.index]
17 self.index -= 1
18 return res

The method __next__() will raise an exception if there are no more items to iterate over.

Otherwise, it will store the item at index index, decrement index, and return the stored

item.

Practice Problem
8.11

Develop subclass oddList of list that behaves just like a list except for the peculiar

behavior of the for loop:

>>> lst = oddList(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
>>> lst
['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']
>>> for item in lst:

print(item, end=' ')

a c e g

The iteration loop pattern skips every other item in the list.

Chapter Summary
In this chapter, we describe how to develop new Python classes. We also explain the benefits

of the object-oriented programming (OOP) paradigm and discuss core OOP concepts that

we will make use of in this chapter and in the chapters that follow.

A new class in Python is defined with the class statement. The body of the class

statement contains the definitions of the attributes of the class. The attributes are the class

methods and variables that specify the class properties and what can be done with instances

of the class. The idea that a class object can be manipulated by users through method

invocations alone and without knowledge of the implementation of these methods is called

abstraction. Abstraction facilitates software development because the programmer works

with objects abstractly (i.e., through “abstract” method names rather than “concrete” code).

In order for abstraction to be beneficial, the “concrete” code and data associated with

objects must be encapsulated (i.e., made “invisible” to the program using the object). En-
capsulation is achieved thanks to the fact that (1) every class defines a namespace in which

class attributes (variables and methods) live, and (2) every object has a namespace that

inherits the class attributes and in which instance attributes live.

In order to complete the encapsulation of a new, user-defined class, it may be necessary

to define class-specific exceptions for it. The reason is that if an exception is thrown when

Chapter 8 Solutions to Practice Problems 293

invoking a method on an object of the class, the exception type and error message should be

meaningful to the user of the class. For this reason, we introduce user-defined exceptions

in this chapter as well.

OOP is an approach to programming that achieves modular code through the use of

objects and by structuring code into user-defined classes. While we have been working

with objects since Chapter 2, this chapter finally shows the benefits of the OOP approach.

In Python, it is possible to implement operators such as + and == for user-defined

classes. The OOP property that operators can have different, and new, meanings depend-

ing on the type of the operands is called operator overloading (and is a special case of the

OOP concept of polymorphism). Operator overloading facilitates software development be-

cause (well-defined) operators have intuitive meanings and make the code look sparser and

cleaner.

A new, user-defined class can be defined to inherit the attributes of an already existing

class. This OOP property is referred to as class inheritance. Code reuse is, of course, the

ultimate benefit of class inheritance. We will make heavy use of class inheritance when

developing graphical user interfaces in Chapter 9 and HTML parsers in Chapter 11.

Solutions to Practice Problems
8.1 The method getx() takes no argument, other than self and returns xcoord, defined

in namespace self.

def getx(self):
'return x coordinate'
return self.xcoord

8.2 The drawing for part (a) is shown in Figure 8.9(a). For part (b), you can fill in the

question marks by just executing the commands. The drawing for part (c) is shown in

Figure 8.9(c). The last statement a.version returns string 'test'. This is because the

assignment a.version creates name version in namespace a.

object a object b

class Test

version

(a)

object a

version

object b

class Test

version

(c)

Figure 8.9 Solution for
Practice Problem 8.2.

8.3 When created, a Rectangle object has no instance variables. The method setSize()
should create and initialize instance variables to store the width and length of the rectangle.

These instance variables are then used by methods perimeter() and area(). Shown next

is the implementation of class Rectangle.

294 Chapter 8 Object-Oriented Programming

class Rectangle:
'class that represents rectangles'

def setSize(self, xcoord, ycoord):
'constructor'
self.x = xcoord
self.y = ycoord

def perimeter(self):
'returns perimeter of rectangle'
return 2*(self.x+self.y)

def area(self):
'returns area of rectangle'
return self.x*self.y

8.4 An __init__() method is added to the class. It includes default values for input

arguments species and language:

def __init__(self, species='animal', language='make sounds'):
'constructor'
self.spec = species
self.lang = language

8.5 Since we allow the constructor to be used with or without a list of cards, we need

to implement the function __init__() with one argument and have a default value for

it. This default value should really be a list containing the standard 52 playing cards, but

this list has not been created yet. We choose instead to set the default value to None, a

value of type NoneType and used to represent no value. We can thus start implementing

the __init__() as shown:

def __init__(self, cardList = None):
'constructor'
if cardList != None: # input deck provided

self.deck = cardList
else: # no input deck

self.deck is a list of 52 standard playing cards

8.6 The string returned by operator repr() must look like a statement that constructs a

Card object. Operator == returns True if and only if the two cards being compared have the

same rank and suit.

class Card:
other Card methods

def __repr__(self):
'return formal representation'
return "Card('{}', '{}')".format(self.rank, self.suit)

def __eq__(self, other):
'self = other if rank and suit are the same'
return self.rank == other.rank and self.suit == other.suit

Chapter 8 Solutions to Practice Problems 295

8.7 The implementations are shown next. The operator == decides that two decks are equal

if they have the same cards and in the same order.

class Deck:
other Deck methods

def __len__(self):
'returns size of deck'
return len(self.deck)

def __repr__(self):
'returns canonical string representation'
return 'Deck({})'.format(self.deck)

def __eq__(self, other):
'''returns True if decks have the same cards

in the same order'''
return self.deck == other.deck

8.8 The complete implementation of the Vector class is:

class Vector(Point):
'a 2D vector class'

def __mul__(self, v):
'vector product'
return self.x * v.x + self.y * v.y

def __add__(self, v):
'vector addition'
return Vector(self.x+v.x, self.y+v.y)

def __repr__(self):
'returns canonical string representation'
return 'Vector{}'.format(self.get())

8.9 If the length of the Queue object (i.e., self) is 0, a KeyboardInterrupt exception is

raised:

def dequeue(self):
'''removes and returns item at front of the queue

raises KeyboardInterrupt exception if queue is empty'''
if len(self) == 0:

raise KeyboardInterrupt('dequeue from empty queue')

return self.q.pop(0)

8.10 The operator len(), which returns the length of the container, is used explicitly in a

counter loop pattern.

8.11 The class oddList inherits all the attributes of list and overloads the __iter__()
method to return a ListIterator object. Its implementation is shown next.

296 Chapter 8 Object-Oriented Programming

class oddList(list):
'list with peculiar iteration loop pattern'

def __iter__(self):
'returns list iterator object'
return ListIterator(self)

An object of type ListIterator iterates over a oddList container. The constructor ini-

tializes the instance variables lst, which refers to the oddList container, and index,

which stores the index of the next item to return:

class ListIterator:
'peculiar iterator for oddList class'

def __init__(self, l):
'constructor'
self.lst = lst
self.index = 0

def __next__(self):
'returns next oddList item'
if self.index >= len(self.l):

raise StopIteration
res = self.l[self.index]
self.index += 2
return res

The __next__() method returns the item at position index and increments index by 2.

Exercises

8.12 Add method distance() to the class Point. It takes another Point object as input

and returns the distance to that point (from the point invoking the method).

>>> c = Point()
>>> c.setx(0)
>>> c.sety(1)
>>> d = Point()
>>> d.setx(1)
>>> d.sety(0)
>>> c.distance(d)
1.4142135623730951

8.13 Add to class Animal methods setAge() and getAge() to set and retrieve the age of

the Animal object.

>>> flipper = Animal()
>>> flipper.setSpecies('dolphin')
>>> flipper.setAge(3)
>>> flipper.getAge()
3

Chapter 8 Exercises 297

8.14 Add to class Point methods up(), down(), left(), and right() that move the

Point object by 1 unit in the appropriate direction. The implementation of each should not

modify instance variables x and y directly but rather indirectly by calling existing method

move().

>>> a = Point(3, 4)
>>> a.left()
>>> a.get()
(2, 4)

8.15 Add a constructor to class Rectangle so the length and width of the rectangle can

be set at the time the Rectangle object is created. Use default values of 1 if the length or

width are not specified.

>>> rectangle = Rectangle(2, 4)
>>> rectange.perimeter()
12
>>> rectangle = Rectangle()
>>> rectangle.area()
1

8.16 Translate these overloaded operator expressions to appropriate method calls:

(a) x > y
(b) x != y

(c) x % y
(d) x // y
(e) x or y

8.17 Overload appropriate operators for class Card so that you can compare cards based

on rank:

>>> Card('3', '♠') < Card('8', '♦')
True
>>> Card('3', '♠') > Card('8', '♦')
False
>>> Card('3', '♠') <= Card('8', '♦')
True
>>> Card('3', '♠') >= Card('8', '♦')
False

8.18 Implement a class myInt that behaves almost the same as the class int, except when

trying to add an object of type myInt. Then, this strange behavior occurs:

>>> x = myInt(5)
>>> x * 4
20
>>> x * (4 + 6)
50
>>> x + 6
'Whatever ...'

298 Chapter 8 Object-Oriented Programming

8.19 Implement your own string class myStr that behaves like the regular str class except

that:

• The addition (+) operator returns the sum of the lengths of the two strings (instead of

the concatenation).

• The multiplication (*) operator returns the product of the lengths of the two strings.

The two operands, for both operators, are assumed to be strings; the behavior of your im-

plementation can be undefined if the second operand is not a string.

>>> x = myStr('hello')
>>> x + 'universe'
13
>>> x * 'universe'
40

8.20 Develop a class myList that is a subclass of the built-in list class. The only differ-

ence between myList and list is that the sort method is overridden. myList containers

should behave just like regular lists, except as shown next:

>>> x = myList([1, 2, 3])
>>> x
[1, 2, 3]
>>> x.reverse()
>>> x
[3, 2, 1]
>>> x[2]
1
>>> x.sort()
You wish...

8.21 Suppose you execute the next statements using class Queue2 from Section 8.5:

>>> queue2 = Queue2(['a', 'b', 'c'])
>>> duplicate = eval(repr(queue2))
>>> duplicate
['a', 'b', 'c']
>>> duplicate.enqueue('d')
Traceback (most recent call last):

File "<pyshell#22>", line 1, in <module>
duplicate.enqueue('d')

AttributeError: 'list' object has no attribute 'enqueue'

Explain what happened and offer a solution.

8.22 Modify the solution of Practice Problem 8.11 so two list items are skipped in every

iteration of a for loop.

>>> lst = oddList(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])
>>> for item in lst:

print(item, end=' ')

a d g

Chapter 8 Problems 299

Problems

8.23 Develop a class BankAccount that supports these methods:

• __init__(): Initializes the bank account balance to the value of the input argument,

or to 0 if no input argument is given

• withdraw(): Takes an amount as input and withdraws it from the balance

• deposit(): Takes an amount as input and adds it to the balance

• balance(): Returns the balance on the account

>>> x = BankAccount(700)
>>> x.balance())
700.00
>>> x.withdraw(70)
>>> x.balance()
630.00
>>> x.deposit(7)
>>> x.balance()
637.00

8.24 Implement a class Polygon that abstracts regular polygons and supports class meth-

ods:

• __init__(): A constructor that takes as input the number of sides and the side

length of a regular n-gon (n-sided polygon) object

• perimeter(): Returns the perimeter of n-gon object

• area(): returns the area of the n-gon object

Note: The area of a regular polygon with n sides of length s is

s2n
4tan(π

n)

>>> p2 = Polygon(6, 1)
>>> p2.perimeter()
6
>>> p2.area()
2.5980762113533165

8.25 Implement class Worker that supports methods:

• __init__(): Constructor that takes as input the worker’s name (as a string) and the

hourly pay rate (as a number)

• changeRate(): Takes the new pay rate as input and changes the worker’s pay rate

to the new hourly rate

• pay(): Takes the number of hours worked as input and prints 'Not Implemented'

300 Chapter 8 Object-Oriented Programming

Next develop classes HourlyWorker and SalariedWorker as subclasses of Worker. Each

overloads the inherited method pay() to compute the weekly pay for the worker. Hourly

workers are paid the hourly rate for the actual hours worked; any overtime hours above

40 are paid double. Salaried workers are paid for 40 hours regardless of the number of

hours worked. Because the number of hours is not relevant, the method pay() for salaried

workers should also be callable without an input argument.

>>> w1 = Worker('Joe', 15)
>>> w1.pay(35)
Not implemented
>>> w2 = SalariedWorker('Sue', 14.50)
>>> w2.pay()
580.0
>>> w2.pay(60)
580.0
>>> w3 = HourlyWorker('Dana', 20)
>>> w3.pay(25)
500
>>> w3.changeRate(35)
>>> w3.pay(25)
875

8.26 Create a class Segment that represents a line segment in the plane and supports

methods:

• __init__(): Constructor that takes as input a pair of Point objects that represent

the endpoints of the line segment

• length(): Returns the length of the segment

• slope(): Returns the slope of the segment or None if the slope is unbounded

>>> p1 = Point(3,4)
>>> p2 = Point()
>>> s = Segment(p1, p2)
>>> s.length()
5.0
>>> s.slope()
0.75

8.27 Implement a class Person that supports these methods:

• __init__(): A constructor that takes as input a person’s name (as a string) and birth

year (as an integer)

• age(): Returns the age of the person

• name(): Returns the name of the person

Use function localtime() from the Standard Library module time to compute the age.

8.28 Develop a class Textfile that provides methods to analyze a text file. The class

Textfile will support a constructor that takes as input a file name (as a string) and in-

stantiates a Textfile object associated with the corresponding text file. The Textfile

Chapter 8 Problems 301

class should support methods nchars(), nwords(), and nlines() that return the number

of characters, words, and lines, respectively, in the associated text file. The class should

also support methods read() and readlines() that return the content of the text file as a

string or as a list of lines, respectively, just as we would expect for file objects.

Finally, the class should support method grep() that takes a target string as input and

searches for lines in the text file that contain the target string. The method returns the lines

in the file containing the target string; in addition, the method should print the line number,

where line numbering starts with 0.

File: raven.txt>>> t = Textfile('raven.txt')
>>> t.nchars()
6299
>>> t.nwords()
1125
>>> t.nlines()
126
>>> print(t.read())
Once upon a midnight dreary, while I pondered weak and weary,
...
Shall be lifted - nevermore!
>>> t.grep('nevermore')
75: Of `Never-nevermore.`
89: She shall press, ah, nevermore!
124: Shall be lifted - nevermore!

8.29 Add method words() to class Textfile from Problem 8.28. It takes no input and

returns a list, without duplicates, of words in the file.

8.30 Add method occurrences() to class Textfile from Problem 8.28. It takes no input

and returns a dictionary mapping each word in the file (the key) to the number of times it

occurs in the file (the value).

8.31 Add method average() to class Textfile from Problem 8.28. It takes no input and

returns, in a tuple object, (1) the average number of words per sentence in the file, (2) the

number of words in the sentence with the most words, and (3) the number of words in the

sentence with the fewest words. You may assume that the symbols delimiting a sentence

are in '!?.'.

8.32 Implement class Hand that represents a hand of playing cards. The class should have a

constructor that takes as input the player ID (a string). It should support method addCard()
that takes a card as input and adds it to the hand and method showHand() that displays the

player’s hand in the format shown.

>>> hand = Hand('House')
>>> deck = Deck()
>>> deck.shuffle()
>>> hand.addCard(deck.dealCard())
>>> hand.addCard(deck.dealCard())
>>> hand.addCard(deck.dealCard())
>>> hand.showHand()
House: 10 ♥ 8 ♠ 2 ♠

302 Chapter 8 Object-Oriented Programming

8.33 Reimplement the blackjack application from the case study in Chapter 6 using classes

Card and Deck developed in this chapter and class Hand from Problem 8.32.

8.34 Implement class Date that support methods:

• __init__(): Constructor that takes no input and initializes the Date object to the

current date

• display(): Takes a format argument and displays the date in the requested format

Use function localtime() from the Standard Library module time to obtain the current

date. The format argument is a string

• ’MDY’ : MM/DD/YY (e.g., 02/18/09)

• ’MDYY’ : MM/DD/YYYY (e.g., 02/18/2009)

• ’DMY’ : DD/MM/YY (e.g., 18/02/09)

• ’DMYY’ : DD/MM/YYYY (e.g., 18/02/2009)

• ’MODY’ : Mon DD, YYYY (e.g., Feb 18, 2009)

You should use methods localtime() and strftime() from Standard Library module

time.

>>> x = Date()
>>> x.display('MDY')
'02/18/09'
>>> x.display('MODY')
'Feb 18, 2009'

8.35 Develop a class Craps that allows you to play craps on your computer. (The craps

rules are described in Problem 6.31.) Your class will support methods:

• __init__(): Starts by rolling a pair of dice. If the value of the roll (i.e., the sum of

the two dice) is 7 or 11, then a winning message is printed. If the value of the roll

is 2, 3, or 12, then a losing message is printed. For all other roll values, a message

telling the user to throw for point is printed.

• forPoint(): Generates a roll of a pair of dice and, depending on the value of the

roll, prints one of three messages as appropriate (and as shown):

>>> c = Craps()
Throw total: 11. You won!
>>> c = Craps()
Throw total: 2. You lost!
>>> c = Craps()
Throw total: 5. Throw for Point.
>>> c.forPoint()
Throw total: 6. Throw for Point.
>>> c.forPoint()
Throw total: 5. You won!
>>> c = Craps()
Throw total: 4. Throw for Point.
>>> c.forPoint()
Throw total: 7. You lost!

Chapter 8 Problems 303

8.36 Implement class Pseudorandom that is used to generate a sequence of pseudorandom

integers using a linear congruential generator. The linear congruential method generates

a sequence of numbers starting from a given seed number x. Each number in the sequence

will be obtained by applying a (math) function f (x) on the previous number x in the se-

quence. The precise function f (x) is defined by three numbers: a (the multiplier), c (the

increment), and m (the modulus):

f (x) = (ax+ c) mod m

For example, if m = 31, a = 17, and c = 7, the linear congruential method would gen-

erate the next sequence of numbers starting from seed x = 12:

12,25,29,4,13,11,8,19,20, . . .

because f (12) = 25, f (25) = 29, f (29) = 4, and so on. The class Pseudorandom should

support methods:

• __init__(): Constructor that takes as input the values a, x, c, and m and initializes

the Pseudorandom object

• next(): Generates and returns the next number in the pseudorandom sequence

>> x = pseudorandom(17, 12, 7, 31)
>>> x.next()
25
>>> x.next()
29
>>> x.next()
4

8.37 Implement the container class Stat that stores a sequence of numbers and provides

statistical information about the numbers. It supports an overloaded constructor that initial-

izes the container and the methods shown.

>>> s = Stat()
>>> s.add(2) # adds 2 to the Stat container
>>> s.add(4)
>>> s.add(6)
>>> s.add(8)
>>> s.min() # returns minimum value in container
2
>>> s.max() # returns maximum value in container
8
>>> s.sum() # returns sum of values in container
20
>>> len(s) # returns number of items in container
4
>>> s.mean() # returns average of items in container
5.0
>>> 4 in s # returns True if in the container
True
>>> s.clear() # Empties the sequence

304 Chapter 8 Object-Oriented Programming

8.38 A stack is a sequence container type that, like a queue, supports very restrictive access

methods: All insertions and removals are from one end of the stack, typically referred to as

the top of the stack. Implement container class Stack that implements a stack. It should be

a subclass of object, support the len() overloaded operator, and support the methods:

• push(): Take an item as input and push it on top of the stack

• pop(): Remove and return the item at the top of the stack

• isEmpty(): Return True if the stack is empty, False otherwise

A stack is often referred to as a last-in first-out (LIFO) container because the last item

inserted is the first removed. The stack methods are illustrated next.

>>> s = Stack()
>>> s.push('plate 1')
>>> s.push('plate 2')
>>> s.push('plate 3')
>>> s
['plate 1', 'plate 2', 'plate 3']
>>> len(s)
3
>>> s.pop()
'plate 3'
>>> s.pop()
'plate 2'
>>> s.pop()
'plate 1'
>>> s.isEmpty()
True

8.39 Write a container class called PriorityQueue. The class should supports methods:

• insert(): Takes a number as input and adds it to the container

• min(): Returns the smallest number in the container

• removeMin(): Removes the smallest number in the container

• isEmpty(): Returns True if container is empty, False otherwise

The overloaded operator len() should also be supported.

>>> pq = PriorityQueue()
>>> pq.insert(3)
>>> pq.insert(1)
>>> pq.insert(5)
>>> pq.insert(2)
>>> pq.min()
1
>>> pq.removeMin()
>>> pq.min()
2
>>> pq.size()
3
>>> pq.isEmpty()
False

Chapter 8 Problems 305

8.40 Implement classes Square and Triangle as subclasses of class Polygon from Prob-

lem 8.24. Each will overload the constructor method __init__ so it takes only one argu-

ment l (the side length), and each will support an additional method area() that returns

the area of the n-gon object. The method __init__ should make use of the superclass

__init__ method, so no instance variables (l and n) are defined in subclasses. Note: The

area of an equilateral triangle of side length s is s2 ∗√3/2.

>>> s = Square(2)
>>> s.perimeter()
8
>>> s.area()
4
>>> t = Triangle(3)
>>> t.perimeter()
9
>>> t.area()
6.3639610306789285

8.41 Consider the class tree hierarchy:

Animal

Mammal

Cat Dog Primate

Hacker

Implement six classes to model this taxonomy with Python inheritance. In class Animal,

implement method speak() that will be inherited by the descendant classes of Animal as

is. Complete the implementation of the six classes so they exhibit this behavior:

>>> garfield = Cat()
>>> garfield.speak()
Meeow
>>> dude = Hacker()
>>> dude.speak()
Hello world!

8.42 Implement two subclasses of class Person described in Problem 8.27. The class

Instructor supports methods:

• __init__(): Constructor that takes the person’s degree in addition to name and

birth year

• degree(): Returns the degree of the instructor

The class Student, also a subclass of class Person, supports:

• __init__(): Constructor that takes the person’s major in addition to name and birth

year

• major(): Returns the major of the student

306 Chapter 8 Object-Oriented Programming

Your implementation of the three classes should behave as shown in the next code:

>>> x = Instructor('Smith', 1963, 'PhD')
>>> x.age()
45
>>> y = Student('Jones', 1987, 'Computer Science')
>>> y.age()
21
>>> y.major()
'Computer Science'
>>> x.degree()
'PhD'

8.43 In Problem 8.23, there are some problems with the implementation of the class

BankAccount, and they are illustrated here:

>>> x = BankAccount(-700)
>>> x.balance()
-700
>>> x.withdraw(70)
>>> x.balance()
-770
>>> x.deposit(-7)
>>> x.balance()
Balance: -777

The problems are: (1) a bank account with a negative balance can be created, (2) the

withdrawal amount is greater than the balance, and (3) the deposit amount is negative.

Modify the code for the BankAccount class so that a ValueError exception is thrown

for any of these violations, together with an appropriate message: 'Illegal balance',

'Overdraft', or 'Negative deposit'.

>>> x = BankAccount2(-700)
Traceback (most recent call last):
...
ValueError: Illegal balance

8.44 In Problem 8.43, a generic ValueError exception is raised if any of the three vio-

lations occur. It would be more useful if a more specific, user-defined exception is raised

instead. Define new exception classes NegativeBalanceError, OverdraftError, and

DepositError that would be raised instead. In addition, the informal string representa-

tion of the exception object should contain the balance that would result from the negative

balance account creation, the overdraft, or the negative deposit.

For example, when trying to create a bank account with a negative balance, the error

message should include the balance that would result if the bank account creation was

allowed:

>>> x = BankAccount3(-5)
Traceback (most recent call last):
...
NegativeBalanceError: Account created with negative balance -5

When a withdrawal results in a negative balance, the error message should also include the

Chapter 8 Problems 307

balance that would result if the withdrawal was allowed:

>>> x = BankAccount3(5)
>>> x.withdraw(7)
Traceback (most recent call last):
...
OverdraftError: Operation would result in negative balance -2

If a negative deposit is attempted, the negative deposit amount should be included in the

error message:

>>> x.deposit(-3)
Traceback (most recent call last):
...
DepositError: Negative deposit -3

Finally, reimplement the class BankAccount to use these new exception classes instead of

ValueError.

This page intentionally left blank

CHAPTER

9
Graphical User
Interfaces
9.1 Basics of tkinter GUI Development 310

9.2 Event-Based tkinter Widgets 317

9.3 Designing GUIs 326

9.4 OOP for GUIs 331

9.5 Case Study: Developing a Calculator 336

Chapter Summary 341

Solutions to Practice Problems 341

Exercises 346

Problems 346

THIS CHAPTER INTRODUCES graphical user interface (GUI)
development.

When you use a computer application—whether it is a web browser,
an email client, a computer game, or your Python integrated development
environment (IDE)—you typically do so through a GUI, using a mouse and
a keyboard. There are two reasons for using a GUI: A GUI gives a better
overview of what an application does, and it makes it easier to use the
application.

In order to develop GUIs, a developer will require a GUI application
programming interface (API) that provides the necessary GUI toolkit.
There are several GUI APIs for Python; in this text we use tkinter, a
module that is part of Python’s Standard Library.

Beyond the development of GUIs using tkinter, this chapter also
covers fundamental software development techniques that are naturally
used in GUI development. We introduce event-driven programming, an
approach for developing applications in which tasks are executed in
response to events (such a button clicks). We also learn that GUIs are
ideally developed as user-defined classes, and we take the opportunity to
once again showcase the benefit of object-oriented programming (OOP).

309

310 Chapter 9 Graphical User Interfaces

9.1 Basics of tkinter GUI Development
A graphical user interface (GUI) consists of basic visual building blocks such as buttons,

labels, text entry forms, menus, check boxes, and scroll bars, among others, all packed

inside a standard window. The building blocks are commonly referred to as widgets. In

order to develop GUIs, a developer will require a module that makes such widgets available.

We will use the module tkinter that is included in the Standard Library.

In this section, we explain the basics of GUI development using tkinter: how to create

a window, how to add text or images to it, and how to manipulate the look and location of

widgets.

Widget Tk: The GUI Window
In our first GUI example, we build a bare-bones GUI that consists of a window and nothing

else. To do this we import the class Tk from module tkinter and instantiate an object of

type Tk:

>>> from tkinter import Tk
>>> root = Tk()

A Tk object is a GUI widget that represents the GUI window; it is created without argu-

ments.

If you execute the preceding code, you will notice that creating a Tk() widget did not

get you a window on the screen. To get the window to appear, the Tk method mainloop()
needs to be invoked on the widget:

>>> root.mainloop()

You should now see a window like the one in Figure 9.1.

Figure 9.1 A tkinter GUI
window. The window can
be minimized and closed,
and looks and feels like
any other window in the
underlying operating
system.

This GUI window is just that: a window and nothing else. To display text or pictures

inside this window, we need to use the tkinter widget Label.

Widget Label for Displaying Text
The widget Label can be used to display text inside a window. Let’s illustrate its usage

by developing a GUI version of the classic “Hello World!” application. To get started, we

need to import the class Label in addition to class Tk from tkinter:

>>> from tkinter import Tk, Label
>>> root = Tk()

We then create a Label object that displays the text “Hello GUI world!”:

>>> hello = Label(master = root, text = 'Hello GUI world!')

Section 9.1 Basics of tkinter GUI Development 311

The first argument in this Label constructor, named master, specifies that the Label
widget will live inside widget root. A GUI typically contains many widgets organized in

a hierarchical fashion. When a widget X is defined to live inside widget Y, widget Y is said

to be the master of widget X.

The second argument, named text, refers to the text displayed by the Label widget.

The text argument is one of about two dozen optional constructor arguments that specify

the look of a Label widget (and of other tkinter widgets as well). We list some of those

optional arguments in Table 9.1 and show their usage in this section.

While the Label constructor specifies that the label widget lives inside widget root,

it does not specify where in the widget root the label should be placed. There are several

ways to specify the geometry of the GUI (i.e., the placement of the widgets inside their

master); we discuss them in more detail later in this section. One simple way to specify

the placement of a widget inside its master is to invoke method pack() on the widget. The

method pack() can take arguments that specify the desired position of the widget inside its

master; without any arguments, it will use the default position, which is to place the widget

centered and against the top boundary of its master:

>>> hello.pack() # hello is placed against top boundary of master
>>> root.mainloop()

Just as in our first example, the mainloop() method will get the GUI shown in Figure 9.2

started:

Figure 9.2 A text label.
The Label widget created
with the text argument will
display a text label. Note
that the label is packed
against the top boundary of
its master, the window itself.

As Table 9.1 illustrates, the text argument is only one of a number of optional widget

constructor arguments that define the look of a widget. We showcase some of the other

options in the next three GUI examples.

Option Description

text Text to display

image Image to display

width Width of widget in pixels (for images) or characters (for

text); if omitted, size is calculated based on content

height Height of widget in pixels (for images) or characters (for

text); if omitted, size is calculated based on content

relief Border style; possibilities are FLAT (default), GROOVE,

RAISED, RIDGE, and SUNKEN, all defined in tkinter
borderwidth Width of border, default is 0 (no border)

background Background color name (as a string)

foreground Foreground color name (as a string)

font Font descriptor (as a tuple with font family name, font

size, and—optionally—a font style)

padx,pady Padding added to the widget along the x- or y-axis

Table 9.1 tkinter widget
options. Shown are some
of the tkinter widget
options that can be used
to specify the look of the
widget. The values for the
options are passed as input
arguments to the widget
constructor. The options
can be used to specify the
look of all tkinter widgets,
not just widget Label.
The usage of the options
in this table is illustrated
throughout this section.

312 Chapter 9 Graphical User Interfaces

Displaying Images
A Label widget can be used to display more than just text. To display an image, an argu-

ment named image should be used in the Label constructor instead of a text argument.

The next example program places a GIF image inside a GUI window. (The example uses

file peace.gif, which should be in the same folder as module peace.py.)

File: peace.gif

Module: peace.py

1 from tkinter import Tk, Label, PhotoImage
2 root = Tk() # the window
3 # transform GIF image to a format tkinter can display
4 photo = PhotoImage(file='peace.gif')
5

6 peace = Label(master=root,
7 image=photo,
8 width=300, # width of label, in pixels
9 height=180) # height of label, in pixels

10 peace.pack()
11 root.mainloop()

The resulting GUI is shown in Figure 9.3. The constructor argument image must refer to an

image in a format that tkinter can display. The PhotoImage class, defined in the module

tkinter, is used to transform a GIF image into an object with such a format. Arguments

width and height specify the width and height of the label in pixels.

Figure 9.3 An image label.
With the image argument, a
Label widget displays an
image. Options width and
height specify the width
and height of the label, in
pixels. If the image is
smaller than the label, white
padding is added around it.

DETOUR
GIF and Other Image Formats

GIF is just one among many image file formats that have been defined. You are
probably familiar with the Joint Photographic Experts Group (JPEG) format used
primarily for photographs. Other commonly used image formats include Bitmap Im-
age File (BMP), Portable Document Format (PDF), and Tagged Image File Format
(TIFF).

In order to display images in formats other than GIF, the Python Imaging Library
(PIL) can be used. It contains classes that load images in one of 30+ formats and
convert them to tkinter-compatible image object. The PIL also contains tools for
processing images. For more information, go to

www.pythonware.com/products/pil/

Note: At the time of writing, the PIL was not updated to support Python 3.

Section 9.1 Basics of tkinter GUI Development 313

Packing Widgets
The tkinter geometry manager is responsible for the placement of widgets within their

master. If multiple widgets must be laid out, the placement will be computed by the geom-

etry manager using sophisticated layout algorithms (that attempt to ensure that the layout

looks good) and using directives given by the programmer. The size of a master widget

containing one or more widgets is based on their size and placement. Furthermore, the size

and layout will be dynamically adjusted as the GUI window is resized by the user.

The method pack() is one of the three methods that can be used to provide directives

to the geometry manager. (We will see another one, method grid(), later in this section.)

The directives specify the relative position of widgets within their master.

To illustrate how to use the directives and also to show additional widget constructor

options, we develop a GUI with with two image labels and a text label, shown in Figure 9.4:

Figure 9.4 Multiple
widgets GUI. Three Label
widgets are packed inside
the GUI window; the peace
image is pushed left, the
smiley face is pushed right,
and the text is pushed
down.

The optional argument side of method pack() is used to direct the tkinter geometry

manager to push a widget against a particular border of its master. The value of side can be

TOP, BOTTOM, LEFT, or RIGHT, which are constants defined in module tkinter; the default

value for side is TOP. In the implementation of the preceding GUI, we use the side option

to appropriately pack the three widgets:

File: peace.gif,smiley.gif

Module: smileyPeace.py

1 from tkinter import Tk,Label,PhotoImage,BOTTOM,LEFT,RIGHT,RIDGE
2 # GUI illustrates widget constructor options and method pack()
3 root = Tk()
4

5 # label with text "Peace begins with a smile.
6 text = Label(root,
7 font = ('Helvetica', 16, 'bold italic'),
8 foreground='white', # letter color
9 background='black', # background color

10 padx=25, # widen label 25 pixels left and right
11 pady=10, # widen label 10 pixels up and down
12 text='Peace begins with a smile.')
13 text.pack(side=BOTTOM) # push label down
14

15 # label with peace symbol image
16 peace = PhotoImage(file='peace.gif')
17 peaceLabel = Label(root,
18 borderwidth=3, # label border width
19 relief=RIDGE, # label border style
20 image=peace)
21 peaceLabel.pack(side=LEFT) # push label left

314 Chapter 9 Graphical User Interfaces

22 # label with smiley face image
23 smiley = PhotoImage(file='smiley.gif')
24 smileyLabel = Label(root,
25 image=smiley)
26 smileyLabel.pack(side=RIGHT) # push label right
27

28 root.mainloop()

Table 9.2 lists two other options for method pack(). The option expand, which can be

set to True or False, specifies whether the widget should be allowed to expand to fill any

extra space inside the master. If option expand is set to True, option fill can be used to

specify whether the expansion should be along the x-axis, the y-axis, or both.

Table 9.2 Some packing
options. In addition to
option side, method
pack() can take options
fill and expand.

Option Description

side Specifies the side (using constants TOP, BOTTOM, LEFT, or RIGHT defined in

tkinter) the widget will be pushed against; the default is TOP
fill Specifies whether the widget should fill the width or height of the space

given to it by the master; options include 'both', 'x', 'y', and 'none'
(the default)

expand Specifies whether the widget should expand to fill the space given to it; the

default is False, no expansion

The GUI program smileyPeace.py also showcases a few widget constructor options

we have not seen yet. A RIDGE-style border of width 3 around the peace symbol is specified

using options borderwith and relief. Also, the text label (a quote by Mother Theresa)

is constructed with options that specify white lettering (option foreground) on a black

background (option background) with extra padding of 10 pixels up and down (option

pady) and of 25 pixels left and right (option padx). The font option specifies that the text

font should be a bold, italic, Helvetica font of size 16 points.

Practice Problem
9.1

Write a program peaceandlove.py that creates this GUI:

File: peace.gif

The “Peace & Love” text label should be pushed to the left and have a black background

of size to fit 5 rows of 20 characters. If the user expands the window, the label should remain

right next to the left border of the window. The peace symbol image label should be pushed

to the right. However, when the user expands the window, white padding should fill the

space created. The picture shows the GUI after the user manually expanded it.

Section 9.1 Basics of tkinter GUI Development 315

!

CAUTION
Forgetting the Geometry Specification

It’s a common mistake to forget to specify the placement of the widgets. A wid-
get appears in a GUI window only after it has been packed in its master. This
is achieved by invoking, on the widget, the method pack(), the method grid(),
which we discuss shortly, or the method place(), which we do not go over.

Arranging Widgets in a Grid
We now consider a GUI that has more than just a couple of labels. How would you go about

developing the phone dial GUI shown in Figure 9.5?

Figure 9.5 Phone dial GUI.
This GUI’s labels are stored
in a 4×3 grid. Method
grid() is more suitable
than pack() for placing
widgets in a grid. Rows
(resp. columns) are indexed
top to bottom (resp. left to
right) starting from index 0.

We already know how to create each individual phone dial “button” using a Label
widget. What is not clear at all is how to get all 12 of them arranged in a grid.

If we need to place several widgets in a gridlike fashion, method grid() is more ap-

propriate than method pack(). When using method grid(), the master widget is split into

rows and columns, and each cell of the resulting grid can store a widget. To place a wid-

get in row r and column c, method grid() is invoked on the widget with the row r and

column c as input arguments, as shown in this implementation of the phone dial GUI:

Module: phone.py
1 from tkinter import Tk, Label, RAISED
2 root = Tk()
3 labels = [['1', '2', '3'], # phone dial label texts
4 ['4', '5', '6'], # organized in a grid
5 ['7', '8', '9'],
6 ['*', '0', '#']]
7

8 for r in range(4): # for every row r = 0, 1, 2, 3
9 for c in range(3): # for every row c = 0, 1, 2

10 # create label for row r and column c
11 label = Label(root,
12 relief=RAISED, # raised border
13 padx=10, # make label wide
14 text=labels[r][c]) # label text
15 # place label in row r and column c
16 label.grid(row=r, column=c)
17

18 root.mainloop()

316 Chapter 9 Graphical User Interfaces

In lines 5 through 8, we define a two-dimensional list that stores in row r and column

c the text that will be put on the label in row r and column c of the phone dial. Doing this

facilitates the creation and proper placement of the labels in the nested for loop in lines 10

through 19. Note the use of the method grid() with row and column input arguments.

Table 9.3 shows some options that can be used with the grid() method.

Table 9.3 Some grid()
method options. The
columnspan (i.e., rowspan)
option is used to place a
widget across multiple
columns (i.e., rows).

Option Description

column Specifies the column for the widget; default is column 0

columnspan Specifies how many columns the widgets should occupy

row Specifies the row for the widget; default is row 0

rowspan Specifies how many rows the widgets should occupy

!

CAUTION
Mixing pack() and grid()

The methods pack() and grid() use different methods to compute the layout of
the widgets. Those methods do not work well together, and each will try to optimize
the layout in its own way, trying to undo the other algorithm’s choices. The result is
that the program may never complete execution.

The short story is this: You must use one or the other for all widgets with the
same master.

Practice Problem
9.2

Implement function cal() that takes as input a year and a month (a number between 1 and

12) and starts up a GUI that shows the corresponding calendar. For example, the calendar

shown is obtained using:

>>> cal(2012, 2)

To do this, you will need to compute (1) the day of the week (Monday, Tuesday, . . .) on

which the first day of the month falls and (2) the number of days in the month (taking into

account leap years). The function monthrange() defined in the module calendar returns

exactly those two values:

>>> from calendar import monthrange
>>> monthrange(2012, 2) # year 2012, month 2 (February)
(2, 29)

The returned value is a tuple. The first value in the tuple, 2, corresponds to Wednesday

(Monday is 0, Tuesday is 1, etc.). The second value, 29, is the number of days in February

of year 2012, a leap year.

Section 9.2 Event-Based tkinter Widgets 317

DETOUR
Do You Want to Learn More?

This chapter is only an introduction to GUI development using tkinter. A compre-
hensive overview of GUI development and tkinter would fill a whole textbook. If
you want to learn more, start with the Python documentation at

http://docs.python.org/py3k/library/tkinter.html

There are also other free, online resources that you can use to learn more. The
“official” list of these resources is at

http://wiki.python.org/moin/TkInter

Two particularly useful resources (although they use Python 2) are at

http://www.pythonware.com/library/tkinter/introduction/
http://infohost.nmt.edu/tcc/help/pubs/tkinter/

9.2 Event-Based tkinter Widgets
We now explore the different types of widgets available in tkinter. In particular, we study

those widgets that respond to mouse clicks and keyboard inputs by the user. Such widgets

have an interactive behavior that needs to be programmed using a style of programming

called event-driven programming. In addition to GUI development, event-driven program-

ming is also used in the development of computer games and distributed client/server ap-

plications, among others.

Button Widget and Event Handlers
Let’s start with the classic button widget. The class Button from module tkinter repre-

sents GUI buttons. To illustrate its usage, we develop a simple GUI application, shown in

Figure 9.6, that contains just one button.

Figure 9.6 GUI with one
Button widget. The text
“Click it” is displayed on top
of the button. When the
button is clicked, the day
and time information is
printed.

The application works in this way: When you press the button “Click it”, the day and

time of the button click is printed in the interpreter shell:

>>>
Day: 07 Jul 2011
Time: 23:42:47 PM

318 Chapter 9 Graphical User Interfaces

You can click the button again (and again) if you like:

>>>
Day: 07 Jul 2011
Time: 23:42:47 PM

Day: 07 Jul 2011
Time: 23:42:50 PM

Let’s implement this GUI. To construct a button widget, we use the Button constructor.

Just as for the Label constructor, the first argument of the Button constructor must refer to

the button’s master. To specify the text that will be displayed on top of the button, the text
argument is used, again just as for a Label widget. In fact, all the options for customizing

widgets shown in Table 9.1 can be used for Button widgets as well.

The one difference between a button and a label is that a button is an interactive widget.

Every time a button is clicked, an action is performed. This “action” is actually imple-

mented as a function, which gets called every time the button is clicked. We can specify the

name of this function using a command option in the Button constructor. Here is how we

would create the button widget for the GUI just shown:

root = Tk()
button = Button(root, text='Click it', command=clicked)

When the button is clicked, the function clicked() will be executed. Now we need to

implement this function. When called, the function should print the current day and time

information. We use the module time, covered in Chapter 4, to obtain and print the local

time. The complete GUI program is then:

Module: clickit.py
1 from tkinter import Tk, Button
2 from time import strftime, localtime
3

4 def clicked():
5 'prints day and time info'
6 time = strftime('Day: %d %b %Y\nTime: %H:%M:%S %p\n',
7 localtime())
8 print(time)
9

10 root = Tk()
11

12 # create button labeled 'Click it' and event handler clicked()
13 button = Button(root,
14 text='Click it', # text on top of button
15 command=clicked) # button click event handler
16 button.pack()
17 root.mainloop()

The function clicked() is said to be an event handler; what it handles is the event of

the button “Click it” being clicked.

In the first implementation of clicked(), the day and time information is printed in

the shell. Suppose we prefer to print the message in its own little GUI window, as shown in

Figure 9.7, instead of the shell.

Section 9.2 Event-Based tkinter Widgets 319

Figure 9.7 Window
showinfo(). The function
showinfo() from module
tkinter.messagebox
displays a message in a
separate window. Clicking
the “OK” button makes the
window disappear.

In module tkinter.messagebox, there is a function named showinfo that prints a

string in a separate window. So, we can just replace the original function clicked() with:

Module: clickit.py
1 from tkinter.messagebox import showinfo
2

3 def clicked():
4 'prints day and time info'
5 time = strftime('Day: %d %b %Y\nTime: %H:%M:%S %p\n',
6 localtime())
7 showinfo(message=time)

Practice Problem
9.3

Implement a GUI app that contains two buttons labeled “Local time” and “Greenwich

time”. When the first button is pressed, the local time should be printed in the shell. When

the second button is pressed, the Greenwich Mean Time should be printed.

>>>
Local time
Day: 08 Jul 2011
Time: 13:19:43 PM

Greenwich time
Day: 08 Jul 2011
Time: 18:19:46 PM

You can obtain the current Greenwich Mean Time using the function gmtime() from mod-

ule time.

Events, Event Handlers, and mainloop()
Having seen the workings of the interactive Button widget, it is now a good time to explain

how a GUI processes user-generated events, such as button clicks. When a GUI is started

with the mainloop() method call, Python starts an infinite loop called an event loop. The

event loop is best described using pseudocode:

while True:
wait for a an event to occur
run the associated event handler function

In other words, at any point in time, the GUI is waiting for an event. When an event

such as a button click occurs, the GUI executes the function that is specified to handle the

event. When the handler terminates, the GUI goes back to waiting for the next event.

320 Chapter 9 Graphical User Interfaces

A button click is just one type of event that can occur in a GUI. Movements of the

mouse and pressing keys on the keyboard in an entry field also generate events the can be

handled by the GUI. We see examples of this later in this section.

DETOUR
Short History of GUIs

The first computer system with a GUI was the Xerox Alto computer developed in
1973 by researchers at Xerox PARC (Palo Alto Research Center) in Palo Alto, Cal-
ifornia. Founded in 1970 as a research and development division of Xerox Corpo-
ration, Xerox PARC was responsible for developing many now-common computer
technologies, such as laser printing, Ethernet, and the modern personal computer,
in addition to GUIs.

The Xerox Alto GUI was inspired by the text-based hyperlinks clickable with
a mouse in the On-Line System developed by researchers at Stanford Research
Institute International in Menlo Park, California, led by Douglas Engelbart. The Xe-
rox Alto GUI included graphical elements such as windows, menus, radio buttons,
check boxes, and icons, all manipulated using a mouse and a keyboard.

In 1979, Apple Computer’s cofounder Steve Jobs visited Xerox PARC, where
he learned of the mouse-controlled GUI of the Xerox Alto. He promptly integrated
it, first into the Apple Lisa in 1983 and then in the Macintosh in 1984. Since then,
all major operating systems have supported GUIs.

The Entry Widget
In our next GUI example, we introduce the Entry widget class. It represents the classic,

single-line text box you would find in a form. The GUI app we want to build asks the user

to enter a date and then computes the weekday corresponding to it. The GUI should look

as shown in Figure 9.8:

Figure 9.8 Weekday
application. The app
requests the user to type a
data in the format MMM DD,
YYY, as in “Jan 21, 1967”.

After the user types “Jan 21, 1967” in the entry box and clicks the button “Enter”, a

new window, shown in Figure 9.9, should pop up:

Figure 9.9 Pop-up window
of the weekday app. When
the user enters the date and
presses button “Enter”, the
weekday corresponding to
the date is shown in the
pop-up window.

Section 9.2 Event-Based tkinter Widgets 321

It is clear that the GUI should have a Label and a Button widget. For a text entry box,

we need to use the Entry widget defined in tkinter. The Entry widget is appropriate

for entering (and displaying) a single line of text. The user can enter text inside the widget

using the keyboard. We can now start the implementation of the GUI:

Module: day.py
1 # import statements and
2 # event handler compute() that computes and displays the weekday
3

4 root = Tk()
5

6 # label
7 label = Label(root, text='Enter date')
8 label.grid(row=0, column=0)
9

10 # entry
11 dateEnt = Entry(root)
12 dateEnt.grid(row=0, column=1)
13

14 # button
15 button = Button(root, text='Enter', command=compute)
16 button.grid(row=1, column=0, columnspan=2)
17

18 root.mainloop()

In line 13, we create an Entry widget. Note that we are using method grid() to place

the three widgets. The only thing left to do is to implement the event-handling function

compute(). Let’s first describe what this function needs to do:

1. Read the date from the entry dateEnt.

2. Compute the weekday corresponding to the date.

3. Display the weekday message in a pop-up window.

4. Erase the date from entry dateEnt.

The last step is a nice touch: We delete the date just typed in to make it easier to enter a

new date.

To read the string that is inside an Entry widget, we can use the Entry method get().

It returns the string that is inside the entry. To delete the string inside an Entry widget, we

need to use the Entry method delete(). In general, it is used to delete a substring of the

string inside the Entry widget. Therefore, it takes two indexes first and last and deletes

the substring starting at index first and ending before index last. Indexes 0 and END (a

constant defined in tkinter) are used to delete the whole string inside an entry. Table 9.4

shows the usage of these and other Entry methods.

Method Description

e.get() Returns the string inside the entry e
e.insert(index, text) Inserts text into entry e at the given index; if

index is END, it appends the string

e.delete(from, to) Deletes the substring in entry e from index from
up to and not including index to; delete(0, END)
deletes all the text in the entry

Table 9.4 Some Entry
methods. Listed are three
core methods of class
Entry. The constant END is
defined in tkinter and
refers to the index past the
last character in the entry.

322 Chapter 9 Graphical User Interfaces

Armed with the method of the Entry widget class, we can now implement the event-

handling function compute():

Module: day.py
1 from tkinter import Tk, Button, Entry, Label, END
2 from time import strptime, strftime
3 from tkinter.messagebox import showinfo
4

5 def compute():
6 '''display day of the week corresponding to date in dateEnt;
7 date must have format MMM DD, YYY (e.g., Jan 21, 1967)'''
8

9 global dateEnt # dateEnt is a global variable
10

11 # read date from entry dateEnt
12 date = dateEnt.get()
13

14 # compute weekday corresponding to date
15 weekday = strftime('%A', strptime(date, '%b %d, %Y'))
16

17 # display the weekday in a pop-up window
18 showinfo(message = '{} was a {}'.format(date, weekday))
19

20 # delete date from entry dateEnt
21 dateEnt.delete(0, END)
22

23 # rest of program

In line 9, we specify that dateEnt is a global variable. While that is not strictly neces-

sary (we are not assigning to dateEnt inside function compute()), it is a warning so the

programmer maintaining the code is aware that dateEnt is not a local variable.

In line 15, we use two functions from module time to compute the weekday corre-

sponding to a date. Function strptime() takes as input a string containing a date (date)

and a format string ('%b %d, %Y'), which uses directives from Table 4.6. The function

returns the date in an object of type time.struct_time. Recall from the case study in

Chapter 4 that function strftime() takes such an object and a format string ('%A') and

returns the date formatted according to the format string. Since the format string contains

only the directive %A that specifies the date weekday, only the weekday is returned.

Practice Problem
9.4

Implement a variation of GUI program day.py called day2.py. Instead of displaying the

weekday message in a separate pop-up window, insert it in front of the date in the entry

box, as shown. Also add a button labeled “Clear” that erases the entry box.

Section 9.2 Event-Based tkinter Widgets 323

Text Widget and Binding Events
We introduce next the Text widget, which is used to interactively enter multiple lines of

text in a way similar to entering text in a text editor. The Text widget class supports the

same methods get(), insert(), and delete() that class Entry does, albeit in a different

format (see Table 9.5).

Method Description

t.insert(index, text) Insert text into Text widget t before index index
t.get(from, to) Return the substring in Text widget t from index

from up to but not including index to
t.delete(from, to) Delete the substring in Text widget t between index

from up to but not including index to

Table 9.5 Some Text
methods. Unlike indexes
used for Entry methods,
indexes used in Text
methods are of the form
row.column (e.g., index 2.3
refers to the fourth character
in the third row).

We use a Text widget to develop an application that looks like a text editor, but “se-

cretly” records and prints every keystroke the user types in the Text widget. For example,

suppose you were to type the sentence shown in Figure 9.10:

Figure 9.10 Key logger
application. The key logger
GUI consists of a Text
widget. When the user types
text inside the text box, the
keystrokes are recorded
and printed in the shell.

This would be printed in the shell:

>>>
char = Shift_L
char = T
char = o
char = p
char = space
char = s
char = e
char = c
char = r
char = e
char = t
...

(We omit the rest of the characters.) This application is often referred to as a keylogger.

We now develop this GUI app. To create a Text widget big enough to contain five rows

of 20 characters, we use the width and height widget constructor options:

from tkinter import Text
t = Text(root, width=20, height=5)

In order to record every keystroke when we type inside the Text widget text, we need

to somehow associate an event-handling function with keystrokes. We achieve this with

324 Chapter 9 Graphical User Interfaces

the bind() method, whose purpose is to “bind” (or associate) an event type to an event
handler. For example, the statement

text.bind('<KeyPress>', record)

binds a keystroke, an event type described with string '<KeyPress>', to the event handler

record().

In order to complete the keylogger application, we need to learn a bit more about event

patterns and the tkinter Event class.

Event Patterns and the tkinter Class Event
In general, the first argument of the bind() method is the type of event we want to bind.

The type of event is described by a string that is the concatenation of one or more event
patterns. An event pattern has the form

<modifier-modifier-type-detail>

Table 9.6 shows some possible values for the modifier, type, and detail. For our keylogger

application, the event pattern will consist of just a type, KeyPress. Here are some other

examples of event patterns and associated target events:

• <Control-Button-1>: Hitting Ctrl and the left mouse button simultaneously

• <Button-1><Button-3>: Clicking the left mouse button and then the right one

• <KeyPress-D><Return>: Hitting the keyboard key D and then Enter/Return

• <Buttons1-Motion>: Mouse motion while holding left mouse button

The second argument to method bind() is the event-handling function. This function

must be defined by the developer to take exactly one argument, an object of type Event.

The class Event is defined in tkinter. When an event (like a key press) occurs, the Python

interpreter will create an object of type Event associated with the event and call the event-

handling function with the Event object passed as the single argument.

An Event object has many attributes that store information about the event that caused

its instantiation. For a key press event, for example, the Python interpreter will create

Table 9.6 Some event
pattern modifiers, types,
and details. An event
pattern is a string, delimited
by symbols < and >
consisting of up to two
modifiers, one type, and up
to one detail, in that order.

Modifier Description

Control Ctrl key

Button1 Left mouse button

Button3 Right mouse button

Shift Shift key

Type

Button Mouse button

Return Enter/Return key

KeyPress Press of a keyboard key

KeyRelease Release of a keyboard key

Motion Mouse motion

Detail

<button number> 1, 2, or 3 for left, middle, and right button, respectively

<key symbol> Key letter symbol

Section 9.2 Event-Based tkinter Widgets 325

an Event object and assign the pressed key symbol and (Unicode) number to attributes

keysym and keysum_num.

Therefore, in our keyLogger application, the event-handling function record() should

take this Event object as input, read the key symbol and number information stored in

it, and display them in the shell. This will achieve the desired behavior of continuously

displaying the keystrokes made by the GUI user.

Module: keyLogger.py
1 from tkinter import Tk, Text, BOTH
2

3 def record(event):
4 '''event handling function for key press event;
5 input event is of type tkinter.Event'''
6 print('char = {}'.format(event.keysym)) # print key symbol
7

8 root = Tk()
9

10 text = Text(root,
11 width=20, # set width to 20 characters
12 height=5) # set height to 5 rows of characters
13

14 # Bind a key press event with the event handling function record()
15 text.bind('<KeyPress>', record)
16

17 # widget expands if the master does
18 text.pack(expand = True, fill = BOTH)
19

20 root.mainloop()

Other Event object attributes are set by the Python interpreter, depending on the type

of event. Table 9.7 shows some of the attributes. The table also shows, for each attribute,

the type of event that will cause it to be defined. For example, the num attribute will be

defined by a ButtonPress event, but not by a KeyPress or KeyRelease event.

Attribute Event Type Description

num ButtonPress, ButtonRelease Mouse button pressed

time all Time of event

x all x-coordinate of mouse

y all y-coordinate of mouse

keysym KeyPress, KeyRelease Key pressed as string

keysym_num KeyPress, KeyRelease Key pressed as Unicode number

Table 9.7 Some Event
attributes. A few of
attributes of class Event are
shown. The type of event
that causes the attribute to
be defined is also shown. All
event types will set the time
attribute, for example.

Practice Problem
9.5

In the original day.py program, the user has to click button “Enter” after typing a date in

the entry box. Requiring the user to use the mouse right after typing his name using the

keyboard is an inconvenience. Modify the program day.py to allow the user just to press

the Enter/Return keyboard key instead of clicking the button “Enter”.

326 Chapter 9 Graphical User Interfaces

!

CAUTION Event-Handling Functions

There are two distinct types of event-handling functions in tkinter. A function
buttonHandler() that handles clicks on a Button widget is one type:

Button(root, text='example', command=buttonHandler)

Function buttonhandler() must be defined to take no input arguments.
A function eventHandler() that handles an event type is:

widget.bind('<event type>', eventHandler)

Function eventHandler() must be defined to take exactly one input argument
that is of type Event.

9.3 Designing GUIs
In this section, we continue to introduce new types of interactive widgets. We discuss how

to design GUIs that keep track of some values that are read or modified by event han-

dlers. We also illustrate how to design GUIs that contain multiple widgets in a hierarchical

fashion.

Widget Canvas
The Canvas widget is a fun widget that can display drawings consisting of lines and ge-

ometrical objects. You can think of it as a primitive version of turtle graphics. (In fact,

turtle graphics is essentially a tkinter GUI.)

We illustrate the Canvas widget by building a very simple pen drawing application.

The application consists of an initially empty canvas. The user can draw curves inside the

canvas using the mouse. Pressing the left mouse button starts the drawing of the curve.

Mouse motion while pressing the button moves the pen and draws the curve. The curve is

complete when the button is released. A scribble done using this application is shown in

Figure 9.11.

Figure 9.11 Pen drawing
app. This GUI implements
a pen drawing application.
A left mouse button press
starts the curve. You then
draw the curve by moving
the mouse while pressing
the left mouse button. The
drawing stops when the
button is released.

We get started by first creating a Canvas widget of size 100 × 100 pixels. Since the

drawing of the curve is to be started by pressing the left mouse button, we will need to

bind the event type <Button-1> to an event-handling function. Furthermore, since mouse

Section 9.3 Designing GUIs 327

motion while holding down the left mouse button draws the curve, we will also need to

bind the event type <Button1-Motion> to another event-handling function.

This is what we have so far:

Module: draw.py
1 from tkinter import Tk, Canvas
2

3 # event handlers begin and draw here
4

5 root = Tk()
6

7 oldx, oldy = 0, 0 # mouse coordinates (global variables)
8

9 # canvas
10 canvas = Canvas(root, height=100, width=150)
11

12 # bind left mouse button click event to function begin()
13 canvas.bind("<Button-1>", begin)
14

15 # bind mouse motion while pressing left button event
16 canvas.bind("<Button1-Motion>", draw)
17

18 canvas.pack()
19 root.mainloop()

We now need to implement the handlers begin() and draw() that will actually draw

the curve. Let’s discuss the implementation of draw() first. Every time the mouse is moved

while pressing the left mouse button, the handler draw() is called with an input argument

that is an Event object storing the new mouse position. To continue drawing the curve,

all we need to do is connect this new mouse position to the previous one with a straight

line. The curve that is displayed will effectively be a sequence of very short straight line

segments connecting successive mouse positions.

The Canvas method create_line() can be used to draw a straight line between

points. In its general form, it takes as input a sequence of (x,y) coordinates (x1, y1, x2,
y2, . . . , xn, yn) and draws a line segment from point (x1, y1) to point (x2,
y2), another one from point (x2, y2) to point (x3, y3), and so on. So, to connect the

old mouse position at coordinates (oldx, oldy) to the new one at coordinates (newx,
newy), we just need to execute:

canvas.create_line(oldx, oldy, newx, newy)

The curve is thus drawn by repeatedly connecting the new mouse position to the old

(previous) mouse position. This means that there must be an “initial” old mouse position

(i.e., the start of the curve). This position is set by the event handler begin() called when

the left mouse button is pressed:

Module: draw.py
1 def begin(event):
2 'initializes the start of the curve to mouse position'
3

4 global oldx, oldy
5 oldx, oldy = event.x, event.y

328 Chapter 9 Graphical User Interfaces

In handler begin(), the variables oldx and oldy receive the coordinates of the mouse

when the left mouse button is pressed. These global variables will be constantly updated

inside handler draw() to keep track of the last recorded mouse position as the curve is

drawn. We can now implement event handler draw():

Module: draw.py
1 def draw(event):
2 'draws a line segment from old mouse position to new one'
3 global oldx, oldy, canvas # x and y will be modified
4 newx, newy = event.x, event.y # new mouse position
5

6 # connect previous mouse position to current one
7 canvas.create_line(oldx, oldy, newx, newy)
8

9 oldx, oldy = newx, newy # new position becomes previous

Before we move on, we list in Table 9.8 some methods supported by widget Canvas.

Table 9.8 Some Canvas
methods. Only a few
methods of tkinter widget
class Canvas are listed.
Every object drawn in the
canvas has a unique ID
(which happens to be an
integer).

Method Description

create_line(x1, y1, x2, y2, ...) Creates line segments connecting points

(x1,y1), (x2,y2), . . . ; returns the ID

of the item constructed

create_rectangle(x1, y1, x2, y2) Creates a rectangle with vertexes at (x1,
y1) and (x2, y2); returns the ID of the

item constructed

create_oval(x1, y1, x2, y2) Creates an oval that is bounded by a

rectangle with vertexes at (x1, y1) and

(x2, y2); returns the ID of the item

constructed

delete(ID) Deletes item identified with ID

move(item, dx, dy) Moves item right dx units and down dy
units

!

CAUTION
Storing State in a Global Variable

In program draw.py, the variables oldx and oldy store the coordinates of the
mouse’s last position. These variables are initially set by function begin() and
then updated by function draw(). Therefore the variables oldx, oldy cannot be
local variables to either function and have to be defined as global variables.

The use of global variables is problematic because the scope of global vari-
ables is the whole module. The larger the module and the more names it contains,
the more likely it is that we inadvertently define a name twice in the module. This is
even more likely when variables, functions, and classes are imported from another
module. If a name is defined multiple times, all but one definition will be discarded,
which then typically results in very strange bugs.

In the next section, we learn how to develop GUIs as new widget classes using
OOP techniques. One of the benefits is that we will be able to store the GUI state
in instance variables rather than in global variables.

Section 9.3 Designing GUIs 329

Practice Problem
9.6

Implement program draw2.py, a modification of draw.py that supports deletion of the

last curve drawn on the canvas by pressing Ctrl and the left mouse button simultane-

ously. In order to do this, you will need to delete all the short line segments created by

create_line() that make up the last curve. This in turn means that you must store all the

segments forming the last curve in some type of container.

Widget Frame as an Organizing Widget
We now introduce the Frame widget, an important widget whose primary purpose is to

serve as the master of other widgets and facilitate the specification of the geometry of a

GUI. We make use of it in another graphics GUI we call plotter shown in Figure 9.12.

The plotter GUI allows the user to draw by moving a pen horizontally or vertically using

the buttons to the right of the canvas. A button click should move the pen 10 pixels in the

direction indicated on the button.

Figure 9.12 Plotter App.
This GUI presents a canvas
and four buttons controlling
the pen moves. Each button
will move the pen 10 units in
the indicated direction.

It is clear that the plotter GUI consists of a Canvas widget and four Button widgets.

What is less clear is how to specify the geometry of the widgets inside their master (i.e., the

window itself). Neither the pack() method nor the grid() method can be used to pack

the canvas and button widgets directly in the window so that they are displayed as shown

in Figure 9.12.

To simplify the geometry specification, we can use a Frame widget whose sole purpose

is to be the master of the four button widgets. The hierarchical packing of the widgets is

then achieved in two steps. The first step is to pack the four button widgets into their Frame
master using method grid(). Then we simply pack the Canvas and the Frame widgets

next to each other.

Module: plotter.py
1 from tkinter import Tk, Canvas, Frame, Button, SUNKEN, LEFT, RIGHT
2

3 # event handlers up(), down(), left(), and right()
4

5 root = Tk()
6

7 # canvas with border of size 100 x 150
8 canvas = Canvas(root, height=100, width=150,
9 relief=SUNKEN, borderwidth=3)

10 canvas.pack(side=LEFT)
11

330 Chapter 9 Graphical User Interfaces

12 # frame to hold the 4 buttons
13 box = Frame(root)
14 box.pack(side=RIGHT)
15

16 # the 4 button widgets have Frame widget box as their master
17 button = Button(box, text='up', command=up)
18 button.grid(row=0, column=0, columnspan=2)
19 button = Button(box, text='left',command=left)
20 button.grid(row=1, column=0)
21 button = Button(box, text='right', command=right)
22 button.grid(row=1, column=1)
23 button = Button(box, text='down', command=down)
24 button.grid(row=2, column=0, columnspan=2)
25

26 x, y = 50, 75 # pen position, initially in the middle
27

28 root.mainloop()

The four button event handlers are supposed to move the pen in the appropriate di-

rection. We only show the handler for the up button, leaving the implementation of the

remaining three handlers as an exercise:

Module: plotter.py
1 def up():
2 'move pen up 10 pixels'
3 global y, canvas # y is modified
4 canvas.create_line(x, y, x, y-10)
5 y -= 10

DETOUR
Why Does the y Coordinate Decrease When Moving Up?

The function up() is supposed to move the pen at position (x,y) up by 10 units.
In a typical coordinate system, that means that y should be increased by 10 units.
Instead, the value of y is decreased by 10 units.

The reason for this is that coordinate system in a canvas is not quite the same
as the coordinate system we are used to. The origin, that is, the position at coor-
dinates (0,0), is at the top left corner of the canvas. The x coordinates increase
to the right and the y coordinates increase to the bottom of the canvas. Therefore,
moving up means decreasing the y coordinate, which is what we do in function
up().

While peculiar, the Canvas coordinate system follows the screen coordinate
system. Every pixel on your screen has coordinates defined with respect to the
upper left corner of the screen, which has coordinates (0,0). Why does the screen
coordinate system use such a system?

It has to do with the order in which pixels are refreshed in a television set, the
precursor of the computer monitor. The top line of pixels is refreshed first from left
to right, and then the second, third, and so on.

Section 9.4 OOP for GUIs 331

Practice Problem
9.7

Complete the implementation of functions down(), left(), and right() in program

plotter.py .

9.4 OOP for GUIs
So far in this chapter, the focus of our presentation has been on understanding how to use

tkinter widgets. We developed GUI applications to illustrate the usage of the widgets.

To keep matters simple, we have not concerned ourselves about whether our GUI apps can

easily be reused.

To make a GUI app or any program reusable, it should be developed as a component (a

function or a class) that encapsulates all the implementation details and all the references to

data (and widgets) defined in the program. In this section, we introduce the OOP approach

to designing GUIs. This approach will make our GUI applications far easier to reuse.

GUI OOP Basics
In order to illustrate the OOP approach to GUI development, we reimplement the applica-

tion clickit.py. This application presents a GUI with a single button; when clicked, a

window pops up and displays the current time. Here is our original code (with the import

statements and comments removed so we can focus on the program structure):

Module: clickit.py
1 def clicked():
2 'prints day and time info'
3 time = strftime('Day: %d %b %Y\nTime: %H:%M:%S %p\n',
4 localtime())
5 showinfo(message=time)
6

7 root = Tk()
8 button = Button(root,
9 text='Click it',

10 command=clicked) # button click event handler
11 button.pack()
12 root.mainloop()

This program has a few undesirable properties. The names button and clicked have

global scope. (We ignore the window widget root as it is really “outside of the application,”

as we will see soon.) Also, the program is not encapsulated into a single named component

(function or class) that can be cleanly referred to and incorporated into a larger GUI.

The key idea of the OOP approach to GUI development is to develop the GUI app

as a new, user-defined widget class. Widgets are complicated beasts, and it would be an

overwhelming task to implement a widget class from scratch. To the rescue comes OOP

inheritance. We can ensure that our new class is a widget class simply by having it inherit

attributes from an existing widget class. Because our new class has to contain another

widget (the button), it should inherit from a widget class that can contain other widgets

(i.e., the Frame class).

The reimplementation of the GUI clickit.py therefore consists of defining a new

class, say ClickIt, that is a subclass of Frame. A ClickIt widget should contain inside

332 Chapter 9 Graphical User Interfaces

of it just one button widget. Since the button must be part of the GUI from the GUI start-up,

it will need to be created and packed at the time the ClickIt widget is instantiated. This

means the the button widget must be created and packed in the ClickIt constructor.

Now, what will be the master of the button? Since the button should be contained in the

instantiated ClickIt widget, its master is the widget itself (self).

Finally, recall that we have always specified a master when creating a widget. We also

should be able to specify the master of a ClickIt widget, so we can create the GUI in this

way:

>>> root = Tk()
>>> clickit = Clickit(root) # create ClickIt widget inside root
>>> clickit.pack()
>>> root.mainloop()

Therefore, the ClickIt constructor should be defined to take one argument, its master

widget. (By the way, this code shows why we chose not to encapsulate the window widget

root inside the class ClickIt.)

With all the insights we have just made, we can start our implementation of the ClickIt
widget class, in particular its constructor:

Module: ch9.py
1 from tkinter import Button, Frame
2 from tkinter.messagebox import showinfo
3 from time import strftime, localtime
4

5 class ClickIt(Frame):
6 'GUI that shows current time'
7

8 def __init__(self, master):
9 'constructor'

10 Frame.__init__(self, master)
11 self.pack()
12 button = Button(self,
13 text='Click it',
14 command=self.clicked)
15 button.pack()
16

17 # event handling function clicked()

There are three things to note about the constructor __init__(). First note in line 10

that the ClickIt __init__() constructor extends the Frame __init__() constructor.

There are two reasons why we are doing that:

1. We want the ClickIt widget to get initialized just like a Frame widget so it is a

full-fledged Frame widget.

2. We want the ClickIt widget to be assigned a master the same way any Frame
widget is assigned a master; we thus pass the master input argument of the ClickIt
constructor to the Frame constructor.

The next thing to note is that button is not a global variable, as it was in the original

program clickit.py. It is simply a local variable, and it cannot affect names defined in

the program that uses class ClickIt. Finally note that we defined the button event handler

to be self.clicked, which means that clicked() is a method of class ClickIt. Here

Section 9.4 OOP for GUIs 333

is its implementation:

Module: ch9.py
1 def clicked(self):
2 'prints day and time info'
3 time = strftime('Day: %d %b %Y\nTime: %H:%M:%S %p\n',
4 localtime())
5 showinfo(message=time)

Because it is a class method, the name clicked is not global, as it was in the original

program clickit.py.

The class ClickIt therefore encapsulates the code and the names clicked and button.

This means that neither of these names is visible to a program that uses a ClickIt widget,

which relieves the developer from worrying about whether names in the program will clash

with them. Furthermore, the developer will find it extremely easy to use and incorporate

a ClickIt widget in a larger GUI. For example, the next code incorporates the ClickIt
widget in a window and starts the GUI:

>>> root = Tk()
>>> app = Clickit(root)
>>> app.pack()
>>> root.mainloop()

Shared Widgets Are Assigned to Instance Variables

In our next example, we reimplement the GUI application day.py as a class. We use it

to illustrate when to give widgets instance variable names. The original program day.py
(again without import statements or comments) is:

Module: day.py
1 def compute():
2 global dateEnt # dateEnt is a global variable
3

4 date = dateEnt.get()
5 weekday = strftime('%A', strptime(date, '%b %d, %Y'))
6 showinfo(message = '{} was a {}'.format(date, weekday))
7 dateEnt.delete(0, END)
8

9 root = Tk()
10

11 label = Label(root, text='Enter date')
12 label.grid(row=0, column=0)
13

14 dateEnt = Entry(root)
15 dateEnt.grid(row=0, column=1)
16

17 button = Button(root, text='Enter', command=compute)
18 button.grid(row=1, column=0, columnspan=2)
19

20 root.mainloop()

334 Chapter 9 Graphical User Interfaces

In this implementation, names compute, label, dateEnt, and button have global

scope. We reimplement the application as a class called Day that will encapsulate those

names and the code.

The Day constructor should be responsible for creating the label, entry, and button wid-

gets, just as the ClickIt constructor was responsible for creating the button widget. There

is one difference, though: The entry dateEnt is referred to in the event handler compute().

Because of that, dateEnt cannot just be a local variable of the Day constructor. Instead,

we make it an instance variable that can be referred from the event handler:

Module: ch9.py
1 from tkinter import Tk, Button, Entry, Label, END
2 from time import strptime, strftime
3 from tkinter.messagebox import showinfo
4

5 class Day(Frame):
6 'an application that computes weekday corresponding to a date'
7

8 def __init__(self, master):
9 Frame.__init__(self, master)

10 self.pack()
11

12 label = Label(self, text='Enter date')
13 label.grid(row=0, column=0)
14

15 self.dateEnt = Entry(self) # instance variable
16 self.dateEnt.grid(row=0, column=1)
17

18 button = Button(self, text='Enter',
19 command=self.compute)
20 button.grid(row=1, column=0, columnspan=2)
21

22 def compute(self):
23 '''display weekday corresponding to date in dateEnt; date
24 must have format MMM DD, YYY (e.g., Jan 21, 1967)'''
25 date = self.dateEnt.get()
26 weekday = strftime('%A', strptime(date, '%b %d, %Y'))
27 showinfo(message = '{} was a {}'.format(date, weekday))
28 self.dateEnt.delete(0, END)

The Label and Button widgets do not need to be assigned to instance variables be-

cause they are never referenced by the event handler. They are simply given names that

are local to the constructor. The event handler compute() is a class method just like

clicked() in ClickIt. In fact, event handlers should always be class methods in a user-

defined widget class.

The class Day therefore encapsulates the four names that were global in program day.py.

Just as for the ClickIt class, it becomes very easy to incorporate a Day widget into a GUI.

To make our point, let’s run is a GUI that incorporates both:

>>> root = Tk()
>>> day = Day(root)
>>> day.pack()

Section 9.4 OOP for GUIs 335

Figure 9.13 Two
user-defined widgets in a
GUI. A user-defined widget
class can be used just like a
built-in widget class.

>>> clickit = ClickIt(root)
>>> clickit.pack()
>>> root.mainloop()

Figure 9.13 shows the resulting GUI, with a Day widget above a ClickIt widget.

Practice Problem
9.8

Reimplement the GUI application keylogger.py as a new, user-defined widget class. You

will need to decide whether it is necessary to assign the Text widget contained in this GUI

to an instance variable or not.

Shared Data Are Assigned to Instance Variables
To further showcase the encapsulation benefit of implementing a GUI as a user-defined

widget class, we reimplement the GUI application draw.py. Recall that this application

provides a canvas that the user can draw on using the mouse. The original implementation

is this:

Module: draw.py
1 from tkinter import Tk, Canvas
2

3 def begin(event):
4 'initializes the start of the curve to mouse position'
5 global oldx, oldy
6 oldx, oldy = event.x, event.y
7

8 def draw(event):
9 'draws a line segment from old mouse position to new one'

10 global oldx, oldy, canvas # x and y will be modified
11 newx, newy = event.x, event.y # new mouse position
12 canvas.create_line(oldx, oldy, newx, newy)
13 oldx, oldy = newx, newy # new position becomes previous
14

15 root = Tk()
16

17 oldx, oldy = 0, 0 # mouse coordinates (global variables)
18

19 canvas = Canvas(root, height=100, width=150)
20 canvas.bind("<Button-1>", begin)
21 canvas.bind("<Button1-Motion>", draw)
22 canvas.pack()
23

24 root.mainloop()

336 Chapter 9 Graphical User Interfaces

In the original implementation draw.py, we needed to use global variables oldx and

oldy to keep track of the mouse position. This was because event handlers begin() and

draw() referred to them. In the reimplementation as a new widget class, we can store the

mouse coordinates in instance variables instead.

Similarly, because canvas is referred to by event handler draw(), we must make it an

instance variable as well:

Module: ch9.py
1 from tkinter import Canvas, Frame, BOTH
2 class Draw(Frame):
3 'a basic drawing application'
4

5 def __init__(self, parent):
6 Frame.__init__(self, parent)
7 self.pack()
8

9 # mouse coordinates are instance variables
10 self.oldx, self.oldy = 0, 0
11

12 # create canvas and bind mouse events to handlers
13 self.canvas = Canvas(self, height=100, width=150)
14 self.canvas.bind("<Button-1>", self.begin)
15 self.canvas.bind("<Button1-Motion>", self.draw)
16 self.canvas.pack(expand=True, fill=BOTH)
17

18 def begin(self,event):
19 'handles left button click by recording mouse position'
20 self.oldx, self.oldy = event.x, event.y
21

22 def draw(self, event):
23 '''handles mouse motion, while pressing left button, by
24 connecting previous mouse position to the new one'''
25 newx, newy = event.x, event.y
26 self.canvas.create_line(self.oldx, self.oldy, newx, newy)
27 self.oldx, self.oldy = newx, newy

Practice Problem
9.9

Reimplement the plotter GUI application as a user-defined widget class that encapsulates

the state of the plotter (i.e., the pen position). Think carefully about which widgets need to

be assigned to instance variables.

9.5 Case Study: Developing a Calculator
In this chapter’s case study, we implement a basic calculator GUI, shown in Figure 9.14.

We use OOP techniques to implement it as a user-defined widget class, from scratch. In

the process, we explain how to write a single event-handling function that handles many

different buttons.

Section 9.5 Case Study: Developing a Calculator 337

Figure 9.14 GUI Calc. A
calculator application with
the usual four operators, a
square root and a square
function, and a memory
capability.

The Calculator Buttons and Passing Arguments to Handlers
Let’s get our hands dirty right away and tackle the code that creates the 24 buttons of the

calculator. We can use the approach based on a two-dimensional list of button labels and a

nested loop that we used in program phone.py from Section 9.1. Let’s get started.

Module: calc.py
1 # calculator button labels in a 2D list
2 buttons = [['MC', 'M+', 'M-', 'MR'],
3 ['C' , '\u221a', 'x\u00b2', '+'],
4 ['7' , '8' , '9' , '-'],
5 ['4' , '5' , '6' , '*'],
6 ['1' , '2' , '3' , '/'],
7 ['0' , '.' , '+-', '=']]
8

9 # create and place buttons in appropriate row and column
10 for r in range(6):
11 for c in range(4):
12 b = Button(self, # button for symbol buttons[r][c]
13 text=buttons[r][c],
14 width=3,
15 relief=RAISED,
16 command=???) # method ??? to be done
17 b.grid(row = r+1, column = c) # entry is in row 0

(We use Unicode characters \u221a and \u00b2 for the square root and the superscript in

x2.)

What’s missing in this code is the name of each event-handling function (note the ques-

tion marks ??? in line 16). With 24 different buttons, we need to have 24 different event

handlers. Writing 24 different handlers would not only be very painful, but it would also be

quite repetitive since many of them are essentially the same. For example, the 10 handlers

for the 10 “digit” buttons should all do essentially the same thing: append the appropriate

digit to the string in the entry field.

Wouldn’t it be nicer if we could write just one event handler called click() for all 24

buttons? This handler would take one input argument, the label of the clicked button, and

then handle the button click depending on what the label is.

338 Chapter 9 Graphical User Interfaces

The problem is that a button event handler cannot take an input argument. In other

words, the command option in the Button constructor must refer to a function that can and

will be called without arguments. So are we out of luck?

There is actually a solution to the problem, and it uses the fact that Python functions

can be defined so that when called without an input value, the input argument receives a

default value. Instead of having function click() be the official handler, we define, inside

the nested for loop, the handler to be a function cmd() that takes one input argument x—

which defaults to the label buttons[r][c]—and calls self.click(x). The next module

includes this approach (and the code that creates the Entry widget):

Module: calc.py
1 # use Entry widget for display
2 self.entry = Entry(self, relief=RIDGE, borderwidth=3,
3 width=20, bg='gray',
4 font=('Helvetica', 18))
5 self.entry.grid(row=0, column=0, columnspan=5)
6

7 # create and place buttons in appropriate row and column
8 for r in range(6):
9 for c in range(4):

10

11 # function cmd() is defined so that when it is
12 # called without an input argument, it executes
13 # self.click(buttons[r][c])
14 def cmd(x=buttons[r][c]):
15 self.click(x)
16

17 b = Button(self, # button for symbol buttons[r][c]
18 text=buttons[r][c],
19 width=3,
20 relief=RAISED,
21 command=cmd) # cmd() is the handler
22 b.grid(row=r+1, column=c) # entry is in row 0

In every iteration of the innermost for loop, a new function cmd is defined. It is defined

so that when called without an input value, it executes self.clicked(buttons[r][c]).

The label buttons[r][c] is the label of the button being created in the same iteration.

The button constructor will set cmd() to be the button’s event handler.

In summary, when the calculator button with label key is clicked, the Python interpreter

will execute self.click(key). To complete the calculator, we need only to implement

the “unofficial” event handler click().

Implementing the “Unofficial” Event Handler click()
The function click() actually handles every button click. It takes the text label key of

the clicked button as input and, depending on what the button label is, does one of several

things. If key is one of the digits 0 through 9 or the dot, then key should simply be appended

to the digits already in the Entry widget:

self.entry.insert(END, key)

(We will see in a moment that this is not quite enough.)

Section 9.5 Case Study: Developing a Calculator 339

If key is one of the operators +, -, *, or /, it means that we just finished typing an

operand, which is displayed in the entry widget, and are about to start typing the next

operand. To handle this, we use an instance variable self.expr that will store the expres-

sion typed so far, as a string. This means that we need to append the operand currently

displayed in the entry box and also the operator key:

self.expr += self.entry.get()
self.expr += key

In addition, we need to somehow indicate that the next digit typed is the start of the next

operand and should not be appended to the current value in the Entry widget. We do this

by setting a flag:

self.startOfNextOperand = True

This means that we need to rethink what needs to be done when key is one of the digits 0

through 9. If startOfNextOperand is True, we need to first delete the operand currently

displayed in the entry and reset the flag to False:

if self.startOfNextOperand:
self.entry.delete(0, END)
self.startOfNextOperand = False

self.entry.insert(END, key)

What should be done if key is =? The expression typed so far should be evaluated

and displayed in the entry. The expression consists of everything stored in self.expr
and the operand currently in the entry. Before displaying the result of the evaluation, the

operand currently in the entry should be deleted. Because the user may have typed an illegal

expression, we need to do all this inside a try block; the exception handler will display an

error message if an exception is raised while evaluating the expression.

We can now implement a part of the click() function:

Module: calc.py
1 def click(self, key):
2 'handler for event of pressing button labeled key'
3

4 if key == '=':
5 # evaluate the expression, including the value
6 # displayed in entry and display result
7 try:
8 result = eval(self.expr + self.entry.get())
9 self.entry.delete(0, END)

10 self.entry.insert(END, result)
11 self.expr = ''
12 except:
13 self.entry.delete(0, END)
14 self.entry.insert(END, 'Error')
15

16 elif key in '+*-/':
17 # add operand displayed in entry and operator key
18 # to expression and prepare for next operand
19 self.expr += self.entry.get()
20 self.expr += key
21 self.startOfNextOperand = True

340 Chapter 9 Graphical User Interfaces

22 # the cases when key is '\u221a', 'x\u00b2', 'C',
23 # 'M+', 'M-', 'MR', 'MC' are left as an exercise
24

25 elif key == '+-':
26 # switch entry from positive to negative or vice versa
27 # if there is no value in entry, do nothing
28 try:
29 if self.entry.get()[0] == '-':
30 self.entry.delete(0)
31 else:
32 self.entry.insert(0, '-')
33 except IndexError:
34 pass
35

36 else:
37 # insert digit at end of entry, or as the first
38 # figit if start of next operand
39 if self.startOfNextOperand:
40 self.entry.delete(0, END)
41 self.startOfNextOperand = False
42 self.entry.insert(END, key)

Note that the case when the user types the +- button is also shown. Each press of this button

should either insert a - operator in front of the operand in the entry if it positive, or remove

the - operator if it is negative. We leave the implementation of some of the other cases as a

practice problem.

Lastly, we implement the constructor. We have already written the code that creates the

entry and the buttons. Instance variables self.expr and self.startOfNextOperand
should also be initialized there. In addition, we should initialize an instance variable that

will represent the calculator’s memory.

Module: calc.py
1 def __init__(self, parent=None):
2 'calculator constructor'
3 Frame.__init__(self, parent)
4 self.pack()
5

6 self.memory = '' # memory
7 self.expr = '' # current expression
8 self.startOfNextOperand = True # start of new operand
9

10 # entry and buttons code

Practice Problem
9.10

Complete the implementation of the Calc class. You will need to implement the code that

handles buttons C, MC, M+, M-, and MR as well as the square root and square buttons.

Use the instance variable self.memory in the code handling the four memory buttons.

Implement the square root and the square button so that the appropriate operation is applied

to the value in the entry and the result is displayed in the entry.

Chapter 9 Solutions to Practice Problems 341

Chapter Summary
In this chapter, we introduce the development of GUIs in Python.

The specific Python GUI API we use is the Standard Library module tkinter. This

module defines widgets that correspond to the typical components of a GUI, such as but-

tons, labels, text entry forms, and so on. In this chapter, we explicitly cover widget classes

Tk, Label, Button, Text, Entry, Canvas, and Frame. To learn about other tkinter
widget classes, we give pointers to online tkinter documentation.

There are several techniques for specifying the geometry (i.e., the placement) of wid-

gets in a GUI. We introduce the widget class methods pack() and grid(). We also illus-

trate how to facilitate the geometry specification of more complex GUIs by organizing the

widgets in a hierarchical fashion.

GUIs are interactive programs that react to user-generated events such as mouse button

clicks, mouse motion, or keyboard key presses. We describe how to define the handlers

that are executed in response to these events. Developing event handlers (i.e., functions

that respond to events) is a style of programming called event-driven programming. We

encounter it again when we discuss the parsing of HTML files in Chapter 11.

Finally, and perhaps most important, we use the context of GUI development to show-

case the benefits of OOP. We describe how to develop GUI applications as new widget

classes that can be easily incorporated into larger GUIs. In the process, we apply OOP

concepts such class inheritance, modularity, abstraction, and encapsulation.

Solutions to Practice Problems
9.1 The width and height options can be used to specify the width and height of the text

label. (Note that a width of 20 means that 20 characters can fit inside the label.) To allow

padding to fill the available space around the peace symbol widget, the method pack() is

called with options expand = True and fill = BOTH.

Module: peaceandlove.py
1 from tkinter import Tk, Label, PhotoImage, BOTH, RIGHT, LEFT
2 root = Tk()
3

4 label1 = Label(root, text="Peace & Love", background='black',
5 width=20, height=5, foreground='white',
6 font=('Helvetica', 18, 'italic'))
7 label1.pack(side=LEFT)
8

9 photo = PhotoImage(file='peace.gif')
10

11 label2 = Label(root, image=photo)
12 label2.pack(side=RIGHT, expand=True, fill=BOTH)
13

14 root.mainloop()

9.2 Using iteration makes the creation of all the labels manageable. The first row of "days

of the week" labels can be best done by creating the list of days of the week, iterating over

this list, creating a label widget for each, and placing it in the appropriate column of row 0.

The relevant code fragment is shown next.

342 Chapter 9 Graphical User Interfaces

Module: ch9.py
1 days = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']
2 # create and place weekday labels
3 for i in range(7):
4 label = Label(root, text=days[i])
5 label.grid(row=0,column=i)

Iteration is also used to create and place the number labels. Variables week and weekday
keep track of the row and column, respectively.

Module: ch9.py
1 # obtain the day of the week for first of the month and
2 # the number of days in the month
3 weekday, numDays = monthrange(year, month)
4 # create calendar starting at week (row) 1 and day (column) 1
5 week = 1
6 for i in range(1, numDays+1): # for i = 1, 2, ..., numDays
7 # create label i and place it in row week, column weekday
8 label = Label(root, text=str(i))
9 label.grid(row=week, column=weekday)

10

11 # update weekday (column) and week (row)
12 weekday += 1
13 if weekday > 6:
14 week += 1
15 weekday = 0

9.3 Two buttons should be created instead of one. The next code fragment shows the

separate event-handling functions for each button.

Module: twotimes.py
1 def greenwich():
2 'prints Greenwich day and time info'
3 time = strftime('Day: %d %b %Y\nTime: %H:%M:%S %p\n',
4 gmtime())
5 print('Greenwich time\n' + time)
6

7 def local():
8 'prints local day and time info'
9 time = strftime('Day: %d %b %Y\nTime: %H:%M:%S %p\n',

10 localtime())
11 print('Local time\n' + time)
12

13 # Local time button
14 buttonl = Button(root, text='Local time', command=local)
15 buttonl.pack(side=LEFT)
16

17 # Greenwich mean time button
18 buttong = Button(root,text='Greenwich time', command=greenwich)
19 buttong.pack(side=RIGHT)

Chapter 9 Solutions to Practice Problems 343

9.4 We only describe the changes from program day.py. The event-handling function

compute() for button “Enter” should be modified to:

def compute():
global dateEnt # warning that dateEnt is a global variable
read date from entry dateEnt
date = dateEnt.get()
compute weekday corresponding to date
weekday = strftime('%A', strptime(date, '%b %d, %Y'))
display the weekday in a pop-up window
dateEnt.insert(0, weekday+' ')

The event-handling function for button “Clear” should be:

def clear():
'clears entry datEnt'
global dateEnt
dateEnt.delete(0, END)

Finally, the buttons should be defined as shown:

Enter button
button = Button(root, text='Enter', command=compute)
button.grid(row=1, column=0)

Clear button
button = Button(root, text='Clear', command=clear)
button.grid(row=1, column=1)

9.5 We need to bind the Enter/Return key press to an event-handling function that takes

an Event object as input. All this function really has to do is call the handler compute().

So we only need to add to day.py:

def compute2(event):
compute()

dateEnt.bind('<Return>', compute2)

9.6 The key is to store the items returned by canvas.create_line(x,y,newX,newY) in

some container, say list curve. This container should be initialized to an empty list every

time we start drawing:

Module: draw2.py
1 def begin(event):
2 'initializes the start of the curve to mouse position'
3 global oldx, oldy, curve
4 oldx, oldy = event.x, event.y
5 curve = []

As we move the mouse, the IDs of line segments created by Canvasmethod create_line()
need to be appended to list curve. This is shown in the reimplementation of event-handling

function draw(), shown next.

344 Chapter 9 Graphical User Interfaces

Module: draw2.py
1 def draw(event):
2 'draws a line segment from old mouse position to new one'
3 global oldx, oldy, canvas, curve # x and y will be modified
4 newx, newy = event.x, event.y # new mouse position
5 # connect previous mouse position to current one
6 curve.append(canvas.create_line(oldx, oldy, newx, newy))
7 oldx, oldy = newx, newy # new position becomes previous
8 def delete(event):
9 'delete last curve drawn'

10 global curve
11 for segment in curve:
12 canvas.delete(segment)
13 # bind Ctrl-Left button mouse click to delete()
14 canvas.bind('<Control-Button-1>', delete)

The event handler for the <Control-Button-1> event type, function delete(), should

iterate over the line segment ID in curve and call canvas.delete() on each.

9.7 The implementations are similar to function up():

Module: plotter.py
1 def down():
2 'move pen down 10 pixels'
3 global y, canvas # y is modified
4 canvas.create_line(x, y, x, y+10)
5 y += 10
6 def left():
7 'move pen left 10 pixels'
8 global x, canvas # x is modified
9 canvas.create_line(x, y, x-10, y)

10 x -= 10
11 def right():
12 'move pen right 10 pixels'
13 global x, canvas # x is modified
14 canvas.create_line(x, y, x+10, y)
15 x += 10

9.8 Because the Text widget is not used by the event handler, it is not necessary to assign

it to an instance variable.

Module: ch9.py
1 from tkinter import Text, Frame, BOTH
2 class KeyLogger(Frame):
3 'a basic editor that logs keystrokes'
4 def __init__(self, master=None):
5 Frame.__init__(self, master)
6 self.pack()
7 text = Text(width=20, height=5)
8 text.bind('<KeyPress>', self.record)
9 text.pack(expand=True, fill=BOTH)

Chapter 9 Solutions to Practice Problems 345

10 def record(self, event):
11 '''handles keystroke events by printing character
12 associated with key'''
13 print('char={}'.format(event.keysym))

9.9 Only the Canvas widget is referenced by the function move() that handles button

clicks, so it is the only widget that needs to be assigned to an instance variable, self.canvas.

The coordinates (i.e., state) of the pen will also need to be stored in instance variables

self.x and self.y. The solutions is in module ch9.py. Next is the constructor code

fragment that creates the button “up” and its handler; the remaining buttons are similar.

Module: ch9.py
1 # create up button
2 b = Button(buttons, text='up', command=self.up)
3 b.grid(row=0, column=0, columnspan=2)
4

5 def up(self):
6 'move pen up 10 pixels'
7 self.canvas.create_line(self.x, self.y, self.x, self.y-10)
8 self.y -= 10

9.10 Here is the code fragment that is missing:

Module: calc.py
1 elif key == '\u221a':
2 # compute and display square root of entry
3 result = sqrt(eval(self.entry.get()))
4 self.entry.delete(0, END)
5 self.entry.insert(END, result)
6

7 elif key == 'x\u00b2':
8 # compute and display the square of entry
9 result = eval(self.entry.get())**2

10 self.entry.delete(0, END)
11 self.entry.insert(END, result)
12

13 elif key == 'C': # clear entry
14 self.entry.delete(0, END)
15

16 elif key in {'M+', 'M-'}:
17 # add or subtract entry value from memory
18 self.memory = str(eval(self.memory+key[1]+self.entry.get()))
19

20 elif key == 'MR':
21 # replace value in entry with value stored in memory
22 self.entry.delete(0, END)
23 self.entry.insert(END, self.memory)
24

25 elif key == 'MC': # clear memory
26 self.memory = ''

346 Chapter 9 Graphical User Interfaces

Exercises

9.11 Develop a program that displays a GUI window with your picture on the left side and

your first name, last name, and place and date of birth on the right. The picture has to be in

the GIF format. If you do not have one, find a free online converter tool online and a JPEG

picture to the GIF format.

9.12 Modify the solution to Practice Problem 9.3 so that the times are displayed in a

separate pop-up window.

9.13 Modify the phone dial GUI from Section 9.1 so it has buttons instead of digits. When

the user dials a number, the digits of the number should be printed in the interactive shell.

9.14 In program plotter.py, the user has to click one of the four buttons to move the

pen. Modify the program to allow the user to use the arrow keys on the keyboard instead.

9.15 In the implementation of widget class Plotter, there are four very similar button

event handlers: up(), down(), left(), and right(). Reimplement the class using just

one function move() that takes two input arguments dx and dy and moves the pen from

position (x, y) to (x+dx, y+dx).

9.16 Add two more buttons to the Plotter widget. One, labeled “clear”, should clear the

canvas. The other, labeled “delete”, should erase the last pen move

9.17 Augment calculator widget Calc so that the user can type keyboard keys instead of

clicking buttons corresponding to the 10 digits, the dot ., and the operators +, -, *, and /.

Also allow the user to type the Enter/Return key instead of clicking button labeled =.

Problems

9.18 Implement a GUI application that allows users to compute their body mass index

(BMI), which we defined Practice Problem 5.1. Your GUI should look as shown below.

After entering the weight and height and then clicking the button, a new window should

pop up with the computed BMI. Make sure your GUI is user friendly by deleting the entered

weight and height so the user can enter new inputs without having to erase the old ones.

9.19 Develop a GUI application whose purpose is to compute the monthly mortgage pay-

ment given a loan amount (in $), the interest rate (in %), and the loan term (i.e., the number

of months that it will take to repay the loan). The GUI should have three labels and three

Chapter 9 Problems 347

entry boxes for users to enter this information. It should also have a button labeled “Com-

pute mortgage” that, when clicked, should compute and display the monthly mortgage in a

fourth entry box.

The monthly mortgage m is computed from the loan amount a, interest rate r, and loan

terms t as:
m = a× c× (1+ c)t

(1+ c)t 1

where c = r/1200.

9.20 Develop a widget class Finances that incorporates a calculator and a tool to compute

the monthly mortgage. In your implementation, you should use the Calc class developed

in the case study and a Mortgage widget from Problem 9.19.

9.21 Develop a GUI that contains just one Frame widget of size 480× 640 that has this

behavior: Every time the user clicks at some location in the frame, the location coordinates

are printed in the interactive shell.

>>>
you clicked at (55, 227)
you clicked at (426, 600)
you clicked at (416, 208)

9.22 Modify the phone dial GUI from Section 9.1 so it has buttons instead of digits and

an entry box on top. When the user dials a number, the number should be displayed in

the traditional U.S. phone number format. For example, if the user enters 1234567890, the

entry box should display 123-456-7890.

9.23 Develop new widget Game that implements a number guessing game. When started,

a secret random number between 0 and 9 is chosen. The user is then requested to enter

number guesses. Your GUI should have an Entry widget for the user to type the number

guess and a Button widget to enter the guess:

If the guess is correct, a separate window should inform the user of that. The user should

be able to enter guesses until he makes the correct guess.

9.24 In Problem 9.23, pressing the Enter/Return key on your keyboard after entering a

guess in the entry is ignored. Modify the the Game GUI so that pressing the key is equivalent

to pressing the button.

9.25 Modify the widget Game from Problem 9.24 so that a new game starts automatically

when the user has guessed the number. The window informing the user that she made the

correct guess should say something like “Let’s do this again . . .” Note that a new random

number would have to be chosen at the start of each game.

348 Chapter 9 Graphical User Interfaces

9.26 Implement GUI widget Craps that simulates the gambling game craps. The GUI

should include a button that starts a new game by simulating the initial roll of a pair of

dice. The result of the initial roll is then shown in an Entry widget, as shown.

If the initial roll is not a win or a loss, the user will have to click the button "Roll for

point", and keep clicking it until she wins.

9.27 Develop an application with a text box that measures how fast you type. It should

record the time when you type the first character. Then, every time you press the blank

character, it should print (1) the time you took to type the preceding word and (2) an esti-

mate of your typing speed in words per minute by averaging the time taken for typing the

words so far and normalizing over 1 minute. So, if the average time per word is 2 seconds,

the normalized measure is 30 words per minute.

9.28 Most calculators clear to 0 and not an empty display. Modify the calculator Calc
implementation so the default display is 0.

9.29 Develop new GUI widget class Ed that can be used to teach first-graders addition

and subtraction. The GUI should contain two Entry widgets and a Button widget labeled

"Enter".

At start-up, your program should generate (1) two single-digit pseudorandom num-

bers a and b and (2) an operation o, which could be addition or subtraction—with equal

likelihood—using the randrange() function in the random module. The expression a o
b will then be displayed in the first Entry widget (unless a is less than b and the oper-

ation o is subtraction, in which case b o a is displayed, so the result is never negative).

Expressions displayed could be, for example, 3+2, 4+7, 5-2, 3-3 but could not be 2-6.

The user will have to enter, in the second Entry widget, the result of evaluating the

expression shown in the first Entry widget and click the "Enter" button (just the Return

key on the keyboard. If the correct result is entered, a new window should say "You got

it!".

9.30 Augment the GUI you developed in Problem 9.29 so that a new problem gets gener-

ated after the user answers a problem correctly. In addition, your app should keep track of

the number of tries for each problem and include that information in the message displayed

when the user gets the problem right.

9.31 Enhance the widget Ed from Problem 9.30 so it does not repeat a problem given

recently. More precisely, ensure that a new problem is always different from the previous

10 problems.

9.32 Develop widget class Calendar that implements a GUI-based calendar application.

The Calendar constructor should take as input three arguments: the master widget, a year,

and a month (using numbers 1 through 12). For example, Calendar(root, 2012, 2)

Chapter 9 Problems 349

should create a Calendar widget within the master widget root. The Calendar widget

should display the calendar page for the given month and year, with a button for every day:

Then, when you click on a day, a dialog will appear:

This dialog gives you an entry field to enter an appointment. When you click button

“OK”, the dialog window will disappear. However, when you click the same day button

in the main calendar window again, the dialog window should reappear together with the

appointment information.

You may use the askstring function from module tkinter.simpledialog for the

dialog window. It takes the window title and label as input and returns whatever the user

typed. For example, the last dialog window was created with the function call

askstring('example', 'Enter text')

When the user clicks OK, the string typed in the entry box is returned by this function call.

The function can also take an optional argument initialvalue that takes a string and

puts it in the entry field:

askstring('example', ' Enter text', initialvalue='appt with John')

9.33 Modify class Calendar from Problem 9.32 so that it can be used for any month in

any year. When started, it should display the calendar for the current month. It should also

have two additional buttons labeled “previous” and “next” that, when clicked, switch the

calendar to the previous or next month.

This page intentionally left blank

CHAPTER

10
Recursion
10.1 Introduction to Recursion 352

10.2 Examples of Recursion 358

10.3 Run Time Analysis 367

10.4 Searching 374

10.5 Case Study: Tower of Hanoi 379

Chapter Summary 385

Solutions to Practice Problems 385

Exercises 387

Problems 388

IN THIS CHAPTER, we learn recursion, a powerful problem-solving
technique, and run time analysis.

Recursion is a problem-solving technique that expresses the solution
to a problem in terms of solutions to subproblems of the original problem.
Recursion can be used to solve problems that might otherwise be quite
challenging. The functions developed by solving a problem recursively will
naturally call themselves, and we refer to them as recursive functions. We
also show how namespaces and the program stack support the execution
of recursive functions.

We demonstrate the wide use of recursion in number patterns,
fractals, virus scanners, and searching. We make use of recursion in this
chapter’s case study to develop a tool to solve, and visualize the solution
to, the Tower of Hanoi problem. We also use recursion in Chapter 10
when developing web crawlers.

As we discuss when recursion should and should not be used, the
issue of program run time comes up. So far we have not worried much
about the efficiency of our programs. We now rectify this situation and use
the opportunity to analyze several fundamental search tasks.

351

352 Chapter 10 Recursion

10.1 Introduction to Recursion
A recursive function is a function that calls itself. In this section we explain what this

means and how recursive functions get executed. We also introduce recursive thinking as

an approach to problem solving. In the next section, we apply recursive thinking and how

to develop recursive functions.

Recursive Functions
Here is an example that illustrates what we mean by a function that calls itself:

Module: ch10.py
1 def countdown(n):
2 print(n)
3 countdown(n-1)

In the implementation of function countdown(), the function countdown() is called. So,

function countdown() calls itself. When a function calls itself, we say that it makes a

recursive call.
Let’s understand the behavior of this function by tracing the execution of function call

countdown(3):

• When we execute countdown(3), the input 3 is printed and then countdown() is

called on the input decremented by 1—that is, 3 1 = 2. We have 3 printed on the

screen, and we continue tracing the execution of countdown(2).

• When we execute countdown(2), the input 2 is printed and then countdown() is

called on the input decremented by 1—that is, 2 1= 1. We now have 3 and 2 printed

on the screen, and we continue tracing the execution of countdown(1).

• When we execute countdown(1), the input 1 is printed and then countdown() is

called on the input decremented by 1—that is, 1 1 = 0. We now have 3, 2, and 1

printed on the screen, and we continue tracing the execution of countdown(0).

• When we execute countdown(0), the input 0 is printed and then countdown()
is called on the input, 0, decremented by 1—that is, 0 1 = 1. We now have 3,

2, 1, and 0 printed on the screen, and now we continue tracing the execution of

countdown(-1).

• When we execute countdown(-1), . . .

It seems that the execution will never end. Let’s check:

>>> countdown(3)
3
2
1
0
-1
-2
-3
-4
-5
-6
...

Section 10.1 Introduction to Recursion 353

The behavior of the function is to count down, starting with the original input number. If

we let the function call countdown(3) execute for a while, we get:

...
-973
-974
Traceback (most recent call last):

File "<pyshell#2>", line 1, in <module>
countdown(3)

File "/Users/lperkovic/work/book/Ch10-RecursionandAlgs/ch10.py"...
countdown(n-1)

...

And after getting many lines of error messages, we end up with:

...
RuntimeError: maximum recursion depth exceeded

OK, so the execution was going to go on forever, but the Python interpreter stopped it. We

will explain why the Python VM does this soon. The main point to understand right now is

that a recursive function will call itself forever unless we modify the function so there is a

stopping condition.

To show this, suppose that the behavior we wanted to achieve with the countdown()
function is really:

>>> countdown(3)
3
2
1
Blastoff!!!

or

>>> countdown(1)
1
Blastoff!!!

or

>>> countdown(0)
Blastoff!!!

Function countdown() is supposed to count down to 0, starting from a given input n; when

0 is reached, Blastoff!!! should be printed.

To implement this version of countdown(), we consider two cases that depend on

the value of the input n. When the input n is 0 or negative, all we need to do is print

'Blastoff!!!':

def countdown(n):
'counts down to 0'
if n <= 0: # base case

print('Blastoff!!!')
else:

... # remainder of function

354 Chapter 10 Recursion

We call this case the base case of the recursion; it is the condition that will ensure that the

recursive function is not going to call itself forever.

The second case is when the input n is positive. In that case we do the same thing we

did before:

print(n)
countdown(n-1)

How does this code implement the function countdown() for input value n > 0? The

insight used in the code is this: Counting down from (positive number) n can be done by
printing n first and then counting down from n 1. This fragment of code is called the
recursive step. With the two cases resolved, we obtain the recursive function:

Module: ch10.py
1 def countdown(n):
2 'counts down to 0'
3 if n <= 0: # base case
4 print('Blastoff!!!')
5 else: # n > 0: recursive step
6 print(n) # print n first and then
7 countdown(n-1) # count down from n-1

A recursive function that terminates will always have:

1. One or more base cases, which provide the stopping condition for the recursion. In

function countdown(), the base case is the condition n ≤ 0, where n is the input.

2. One or more recursive calls, which must be on arguments that are “closer” to the

base case than the function input. In function countdown(), the sole recursive call

is made on n 1, which is “closer” to the base case than input n.

What is meant by “closer” depends on the problem solved by the recursive function.

The idea is that each recursive call should be made on problem inputs that are closer to the

base case; this will ensure that the recursive calls eventually will get to the base case that

will stop the execution.

In the remainder of this section and the next, we present many more examples of re-

cursion. The goal is to learn how to develop recursive functions. To do this, we need to

learn how to think recursively—that is, to describe the solution to a problem in terms of

solutions of its subproblems. Why do we need to bother? After all, function countdown()
could have been implemented easily using iteration. (Do it!) The thing is that recursive

functions provide us with an approach that is an alternative to the iterative approach we

used in Chapter 5. For some problems, this alternative approach actually is the easier, and

sometimes, much easier approach. When you start writing programs that search the Web,

for example, you will appreciate having mastered recursion.

Recursive Thinking
We use recursive thinking to develop recursive function vertical() that takes a non-

negative integer as input and prints its digits stacked vertically. For example:

>>> vertical(3124)
3
1
2
4

Section 10.1 Introduction to Recursion 355

To develop vertical() as a recursive function, the first thing we need to do is decide the

base case of the recursion. This is typically done by answering the question: When is the

problem of printing vertically easy? For what kind of nonnegative number?

The problem is certainly easy if the input n has only one digit. In that case, we just

output n itself:

>>> vertical(6)
6

So we make the decision that the base case is when n < 10. Let’s start the implementation

of the function vertical():

def vertical(n):
'prints digits of n vertically'
if n < 10: # base case: n has 1 digit

print(n) # just print n
else: # recursive step: n has 2 or more digits

remainder of function

Function vertical() prints n if n is less than 10 (i.e., n is a single digit number).

Now that we have a base case done, we consider the case when the input n has two or

more digits. In that case, we would like to break up the problem of printing vertically num-

ber n into “easier” subproblems, involving the vertical printing of numbers “smaller” than

n. In this problem, “smaller” should get us closer to the base case, a single-digit number.

This suggests that our recursive call should be on a number that has fewer digits than n.

This insight leads to the following algorithm: Since n has at least two digits, we break

the problem:

a. Print vertically the number obtained by removing the last digit of n; this number

is “smaller” because it has one less digit. For n = 3124, this would mean calling

function vertical() on 312.

b. Print the last digit. For n = 3124, this would mean printing 4.

The last thing to figure out is the math formulas for (1) the last digit of n and (2) the

number obtained by removing the last digit. The last digit is obtained using the modulus

(%) operator:

>>> n = 3124
>>> n%10
4

We can “remove” the last digit of n using the integer division operator (//):

>>> n//10
312

With all the pieces we have come up with, we can write the recursive function:

Module: ch10.py
1 def vertical(n):
2 'prints digits of n vertically'
3 if n < 10: # base case: n has 1 digit
4 print(n) # just print n
5 else: # recursive step: n has 2 or more digits
6 vertical(n//10) # recursively print all but last digit
7 print(n%10) # print last digit of n

356 Chapter 10 Recursion

Practice Problem
10.1

Implement recursive method reverse() that takes a nonnegative integer as input and

prints the digits of n vertically, starting with the low-order digit.

>>> reverse(3124)
4
2
1
3

Let’s summarize the process of solving a problem recursively:

1. First decide on the base case or cases of the problem that can be solved directly,

without recursion.

2. Figure out how to break the problem into one or more subproblems that are closer

to the base case; the subproblems are to be solved recursively. The solutions to the

subproblems are used to construct the solution to the original problem.

Practice Problem
10.2

Use recursive thinking to implement recursive function cheers() that, on integer input n,

outputs n strings 'Hip ' followed by Hurrah.

>>> cheers(0)
Hurray!!!
>>> cheers(1)
Hip Hurray!!!
>>> cheers(4)
Hip Hip Hip Hip Hurray!!!

The base case of the recursion should be when n is 0; your function should then print

Hurrah. When n > 1, your function should print 'Hip ' and then recursively call itself on

integer input n 1.

Practice Problem
10.3

In Chapter 5, we implemented function factorial() iteratively. The factorial function n!

has a natural recursive definition:

n! = 1 if n = 0

n · (n 1)! if n > 0

Reimplement function factorial() function using recursion. Also, estimate how many

calls to factorial() are made for some input value n > 0.

Recursive Function Calls and the Program Stack
Before we practice solving problems using recursion, we take a step back and take a closer

look at what happens when a recursive function gets executed. Doing so should help rec-

ognize that recursion does work.

Section 10.1 Introduction to Recursion 357

We consider what happens when function vertical() is executed on input n = 3124.

In Chapter 7, we saw how namespaces and the program stack support function calls and

the normal execution control flow of a program. Figure 10.1 illustrates the sequence of

recursive function calls, the associated namespaces, and the state of the program stack

during the execution of vertical(3124).

Module: ch10.py
1 def vertical(n):
2 'prints digits of n vertically'
3 if n < 10: # base case: n has 1 digit
4 print(n) # just print n
5 else: # recursive step: n has 2 or more digits
6 vertical(n//10) # recursively print all but last digit
7 print(n%10) # print last digit of n

The difference between the execution shown in Figure 10.1 and Figure 7.5 in Chap-

ter 7 is that in Figure 10.1, the same function gets called: function vertical() calls

vertical(), which calls vertical(), which calls vertical(). In Figure 7.5, function

f() calls g(), which calls h(). Figure 10.1 thus underlines that a namespace is associated

with every function call rather than with the function itself.

vertical(3124)

n = 3124
vertical(312)

n = 312
vertical(31)

n = 31
vertical(3)

n = 3
print(3)

print(1)

print(2)

print(4)

Execution of
vertical(3124)

Execution of
vertical(312)

Program stack

Program stack

Execution of
vertical(31)

Program stack

Program stack

Execution of
vertical(3)

Program stack

Program stack

n = 3124

line 7

n = 3124

line 7

n = 3124

line 7

n = 312

line 7

n = 3124

line 7

n = 312

line 7

n = 3124

line 7

n = 312

line 7

n = 31

line 7

n = 3124

line 7

n = 312

line 7

n = 31

line 7

Figure 10.1 Recursive
function execution.
vertical(3124) executes
in a namespace in which
n is 3124. Just before call
vertical(312) is made,
values in the namespace
(3124) and the next line to
execute (line 7) are stored
in the program stack. Then
vertical(312) executes
in a new namespace in
which n is 312. Stack
frames are similarly added
just before recursive calls
vertical(31) and
vertical(3). Call
vertical(3) executes in a
new namespace in which n
is 3 and 3 is printed. When
vertical(3) terminates,
the namespace of
vertical(31) is restored:
n is 31, and the statement in
line 7, print(n%10), prints
1. Similarly, namespaces of
vertical(312) and
vertical(3124) are
restored as well.

358 Chapter 10 Recursion

10.2 Examples of Recursion
In the previous section, we introduced recursion and how to solve problems using recursive

thinking. The problems we used did not really showcase the power of recursion: Each prob-

lem could have been solved as easily using iteration. In this section, we consider problems

that are far easier to solve with recursion.

Recursive Number Sequence Pattern
We start by implementing function pattern() that takes a nonnegative integer n and prints

a number pattern:

>>> pattern(0)
0
>>> pattern(1)
0 1 0
>>> pattern(2)
0 1 0 2 0 1 0
>>> pattern(3)
0 1 0 2 0 1 0 3 0 1 0 2 0 1 0
>>> pattern(4)
0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0

How do we even know that this problem should be solved recursively? A priori, we do not,

and we need to just try it and see whether it works. Let’s first identify the base case. Based

on the examples shown, we can decide that the base case is input 0 for which the function

pattern() should just print 0. We start the implementation of the function:

def pattern(n):
'prints the nth pattern'
if n == 0:

print(0)
else:

remainder of function

We now need to describe what the function pattern() does for positive input n. Let’s

look at the output of pattern(3), for example

>>> pattern(3)
0 1 0 2 0 1 0 3 0 1 0 2 0 1 0

and compare it to the output of pattern(2)

>>> pattern(2)
0 1 0 2 0 1 0

As Figure 10.2 illustrates, the output of pattern(2) appears in the output of pattern(3),

not once but twice:

Figure 10.2 Output of
pattern(3). The output of
pattern(2) appears twice.

pattern(3) 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0

pattern(2) pattern(2)

Section 10.2 Examples of Recursion 359

It seems that the correct output of pattern(3) can be obtained by calling the func-

tion pattern(2), then printing 3, and then calling pattern(2) again. In Figure 10.3, we

illustrate the similar behavior for the outputs of pattern(2) and pattern(1):

pattern(2) 0 1 0 2 0 1 0

pattern(1) pattern(1)

pattern(1) 0 1 0

pattern(0) pattern(0)

Figure 10.3 Outputs of
pattern(2) and
pattern(1). The output
of pattern(2) can be
obtained from the output of
pattern(1). The output
of pattern(1) can be
obtained from the output
of pattern(0).

In general, the output for pattern(n) is obtained by executing pattern(n-1), then

printing the value of n, and then executing pattern(n-1) again:

... # base case of function
else

pattern(n-1)
print(n)
pattern(n-1)

Let’s try the function as implemented so far:

>>> pattern(1)
0
1
0

Almost done. In order to get the output in one line, we need to remain in the same line after

each print statement. So the final solution is:

Module: ch10.py
1 def pattern(n):
2 'prints the nth pattern'
3 if n == 0: # base case
4 print(0, end=' ')
5 else: # recursive step: n > 0
6 pattern(n-1) # print n-1st pattern
7 print(n, end=' ') # print n
8 pattern(n-1) # print n-1st pattern

Practice Problem
10.4

Implement recursive method pattern2() that takes a nonnegative integer as input and

prints the pattern shown next. The patterns for inputs 0 and 1 are nothing and one star,

respectively:

>>> pattern2(0)
>>> pattern2(1)
*

The patterns for inputs 2 and 3 are shown next.

360 Chapter 10 Recursion

>>> pattern2(2)
*
**
*
>>> pattern2(3)
*
**
*

*
**
*

Fractals
In our next example of recursion, we will also print a pattern, but this time it will be a

graphical pattern drawn by a Turtle graphics object. For every nonnegative integer n, the

printed pattern will be a curve called the Koch curve Kn. For example, Figure 10.4 shows

Koch curve K5.

Figure 10.4 Koch curve
K5. A fractal curve often
resembles a snowflake.

We will use recursion to draw Koch curves such as K5. To develop the function that is

used to draw this and other Koch curves, we look at the first few Koch curves. Koch curves

K0, K1, K2, and K3 are shown on the left of Figure 10.5.

If you look carefully at the patterns, you might notice that each Koch curve Ki, for i> 0,

contains within itself several copies of Koch curve Ki 1. For example, curve K2 contains

four copies of (smaller versions of) curve K1.

Figure 10.5 Koch curves
with drawing instructions.
On the left, from top to
bottom, are Koch curves K0,
K1, K2, and K3. The drawing
instructions for Koch curves
K0, K1, and K2 are shown
as well. The instructions are
encoded using letters F, L,
and R corresponding to
“move forward”, “rotate left
60 degrees”, and “rotate
right 120 degrees”.

Koch curve turtle instructions

K0: F

K1: FLFRFLF

K2: FLFRFLFLFLFRFLFRFLFRFLFLFLFRFLF

K3:

Section 10.2 Examples of Recursion 361

More precisely, to draw Koch curve K2, a Turtle object could follow these instruc-

tions:

1. Draw Koch curve K1.

2. Rotate left 60 degrees.

3. Draw Koch curve K1.

4. Rotate right 120 degrees.

5. Draw Koch curve K1.

6. Rotate left 60 degrees.

7. Draw Koch curve K1.

Note that these instructions are described recursively. This suggests that what we need to

do is develop a recursive function koch(n) that takes as input a nonnegative integer n and

returns instructions that a Turtle object can use to draw Koch curve Kn. The instructions

can be encoded as a string of letters F, L, and R corresponding to instructions “move for-

ward”, “rotate left 60 degrees”, and “rotate right 120 degrees”, respectively. For example,

instructions for drawing Koch curves K0, K1, and K2 are shown on the right of Figure 10.5.

The function koch() should have this behavior:

>>> koch(0)
'F'
>>> koch(1)
'FLFRFLF'
>>> koch(2)
'FLFRFLFLFLFRFLFRFLFRFLFLFLFRFLF'

Now let’s use the insight we developed about drawing curve K2 in terms of drawing K1

to understand how the instructions to draw K2 (computed by function call koch(2)) are ob-

tained using instructions to draw K1 (computed by function call koch(1)). As Figure 10.6

illustrates, the instructions for curve K1 appear in the instructions of curve K2 four times:

koch(2) FLFRFLF L FLFRFLF R FLFRFLF L FLFRFLF

koch(1) koch(1) koch(1) koch(1)

Figure 10.6 Output of
Koch(2). Koch(1) can be
used to construct the output
of Koch(2).

Similarly, the instructions to draw K1, output by koch(1), contain the instructions to

draw K0, output by koch(0), as shown in Figure 10.7:

koch(1) F L F R F L F

koch(0) koch(0) koch(0) koch(0)

Figure 10.7 Output of
Koch(1). Koch(0) can be
used to construct the output
of Koch(1).

Now we can implement function koch() recursively. The base case corresponds to

input 0. In that case, the function should just return instruction 'F':

def koch(n):
if n == 0:

return 'F'
remainder of function

362 Chapter 10 Recursion

For input n > 0, we generalize the insight illustrated in Figures 10.6 and 10.7. The instruc-

tions output by koch(n) should be the concatenation:

koch(n-1) + 'L' + koch(n-1) + 'R' + koch(n-1) + 'L' + koch(n-1)

and the function koch() is then

def koch(n):
if n == 0:

return 'F'
return koch(n-1) + 'L' + koch(n-1) + 'R' + koch(n-1) + 'L' + \

koch(n-1)

If you test this function, you will see that it works. There is an efficiency issue with

this implementation, however. In the last line, we call function koch() on the same input
four times. Of course, each time the returned value (the instructions) is the same. Our

implementation is very wasteful.

!

CAUTION
Avoid Repeating the Same Recursive Calls

Often, a recursive solution is most naturally described using several identical re-
cursive calls. We just saw this with the recursive function koch(). Instead of re-
peatedly calling the same function on the same input, we can call it just once and
reuse its output multiple times.

The better implementation of function koch() is then:

Module: ch10.py
1 def koch(n):
2 'returns turtle directions for drawing curve Koch(n)'
3

4 if n == 0: # base case
5 return 'F'
6

7 tmp = koch(n-1) # recursive step: get directions for Koch(n-1)
8 # use them to construct directions for Koch(n)
9

10 return tmp + 'L' + tmp + 'R' + tmp + 'L' + tmp

The last thing we have to do is develop a function that uses the instructions returned by

function koch() and draws the corresponding Koch curve using a Turtle graphics object.

Here it is:

Module: ch10.py
1 from turtle import Screen,Turtle
2 def drawKoch(n):
3 'draws nth Koch curve using instructions from function koch()'
4

5 s = Screen() # create screen
6 t = Turtle() # create turtle
7 directions = koch(n) # obtain directions to draw Koch(n)
8

Section 10.2 Examples of Recursion 363

9 for move in directions: # follow the specified moves
10 if move == 'F':
11 t.forward(300/3**n) # move forward, length normalized
12 if move == 'L':
13 t.lt(60) # rotate left 60 degrees
14 if move == 'R':
15 t.rt(120) # rotate right 60 degrees
16 s.bye()

Line 11 requires some explanation. The value 300/3**n is the length of a forward turtle

move. It depends on the value of n so that, no matter what the value of n is, the Koch curve

has width 300 pixels and fits in the screen. Check this for n equal to 0 and 1.

DETOUR
Koch Curves and Other Fractals

The Koch curves Kn were first described in a 1904 paper by the Swedish math-
ematician Helge von Koch. He was particularly interested in the curve K∞ that is
obtained by pushing n to ∞.

The Koch curve is an example of a fractal. The term fractal was coined by
French mathematician Benoît Mandelbrot in 1975 and refers to curves that:

• Appear “fractured” rather than smooth

• Are self-similar (i.e., they look the same at different levels of magnification)

• Are naturally described recursively

Physical fractals, developed through recursive physical processes, appear in na-
ture as snowflakes and frost crystals on cold glass, lightning and clouds, shore-
lines and river systems, cauliflower and broccoli, trees and ferns, and blood and
pulmonary vessels.

Practice Problem
10.5

Implement function snowflake() that takes a nonnegative integer n as input and prints a

snowflake pattern by combining three Koch curves Kn in this way: When the turtle is fin-

ished drawing the first and the second Koch curve, the turtle should rotate right 120 degrees

and start drawing a new Koch curve. Shown here is the output of snowflake(4).

364 Chapter 10 Recursion

Virus Scanner
We now use recursion to develop a virus scanner, that is, a program that systematically

looks at every file in the filesystem and prints the names of the files that contain a known

computer virus signature. The signature is a specific string that is evidence of the presence

of the virus in the file.

DETOUR
Viruses and Virus Scanners

A computer virus is a small program that, usually without the user’s knowledge, is
attached to or incorporated in a file hosted on the user’s computer and does nefar-
ious things to the host computer when executed. A computer virus may corrupt or
delete data on a computer, for example.

A virus is an executable program, stored in a file as a sequence of bytes just like
any other program. If the computer virus is identified by a computer security expert
and the sequence of bytes is known, all that needs to be done to check whether
a file contains the virus is to check whether that sequence of bytes appears in the
file. In fact, finding the entire sequence of bytes is not really necessary; searching
for a carefully chosen fragment of this sequence is enough to identify the virus with
high probability. This fragment is called the signature of the virus: It is a sequence
of bytes that appears in the virus code but is unlikely to appear in an uninfected
file.

A virus scanner is a program that periodically and systematically scans every
file in the computer filesystem and checks each for viruses. The scanner applica-
tion will have a list of virus signatures that is updated regularly and automatically.
Each file is checked for the presence of some signature in the list and flagged if it
contains that signature.

We use a dictionary to store the various virus signatures. It maps virus names to virus

signatures:

>>> signatures = {'Creeper':'ye8009g2h1azzx33',
'Code Red':'99dh1cz963bsscs3',
'Blaster':'fdp1102k1ks6hgbc'}

(While the names in this dictionary are names of real viruses, the signatures are completely

fake.)

The virus scanner function takes, as input, the dictionary of virus signatures and the

pathname (a string) of the top folder or file. It then visits every file contained in the top

folder, its subfolders, subfolders of its subfolders, and so on. An example folder 'test'
is shown in Figure 10.8 together with all the files and folders that are contained in it,

directly or indirectly. The virus scanner would visit every file shown in Figure 10.8 and

could produce, for example, this output:

File: test.zip >>> scan('test', signatures)
test/fileA.txt, found virus Creeper
test/folder1/fileB.txt, found virus Creeper
test/folder1/fileC.txt, found virus Code Red
test/folder1/folder11/fileD.txt, found virus Code Red
test/folder2/fileD.txt, found virus Blaster
test/folder2/fileE.txt, found virus Blaster

Section 10.2 Examples of Recursion 365

test

folder1

fileB.txt fileC.txt folder11

fileD.txt

fileA.txt folder2

fileD.txt fileE.txt

Figure 10.8 Filesystem
fragment. Illustrated is
folder 'test' and all its
descendant folders and
files.

Because of the recursive structure of a filesystem (a folder contains files and other

folders), we use recursion to develop the virus scanner function scan(). When the input

pathname is the pathname of a file, the function should open, read, and search the file for

virus signatures; this is the base case. When the input pathname is the pathname of a folder,

scan() should recursively call itself on every file and subfolder of the input folder; this is

the recursive step.

In the implementation of function scan(), in order to simplify the program and also

illustrate how exceptions can be put to good use, we choose to assume that the input path-

name is a folder. Thus, without checking whether the input pathname refers to a file or

folder, we attempt to list the contents of the folder with that pathname. If the pathname is

really the pathname of a file, this will cause an error, and an exception will be raised.

For this reason, every recursive call scan() is made inside a try block. If an excep-

tion is raised while executing scan() on a pathname, it must be that the pathname is the

pathname of a file, not a folder. The except block that matches the try statement should

therefore contain the base case code that opens, reads, and searches the file for virus signa-

tures. The complete implementation is:

Module: ch10.py
1 import os
2 def scan(pathname, signatures):
3 '''recursively scans files contained, directly or
4 indirectly, in folder pathname'''
5

6 for item in os.listdir(pathname): # for every file or folder
7 # in folder pathname
8 # create pathname for item called next
9 # next = pathname + '/' + item # Mac only

10 # next = pathname + '\' + item # Windows only
11 next = os.path.join(pathname, item) # any OS
12

13 try: # blindly recurse on next
14 scan(next, signatures)
15 except: # base case: exception means that next is a file
16 # for every virus signature
17 for virus in signatures:
18

19 # check if file next has the virus signature
20 if open(next).read().find(signatures[virus]) >= 0:
21 print('{}, found virus {}'.format(next,virus))

366 Chapter 10 Recursion

This program uses functions from the Standard Library module os. The module os
contains functions that provide access to operating system resources such as the filesystem.

The two os module functions we are using are:

a. listdir(). Takes, as input, an absolute or relative pathname (as a string) of a folder

and returns the list of all files and subfolders contained in the input folder; an excep-

tion is raised if the method is called on a regular file

b. path.join(). Takes as input two pathnames, joins them into a new pathname, in-

serting \ or / as needed, and returns it.

We explain further why we need the second function. The function listdir() does not
return a list of pathnames but just a list of file and folder names. For example, when we

start executing scan('test'), the function listdir() will get called in this way:

>>> os.listdir('test')
['fileA.txt', 'folder1', 'folder2']

If we were to make the recursive call scan('folder1'), then, when this function call

starts executing, the function listdir() would get called on pathname 'folder1', with

this result:

>>> os.listdir('folder1')
Traceback (most recent call last):

File "<pyshell#387>", line 1, in <module>
os.listdir('folder1')

OSError: [Errno 2] No such file or directory: 'folder1'

The problem is that the current working directory during the execution of scan('test')
is the folder that contains the folder test; the folder 'folder1' is not in there, thus the

error.

Instead of making the call scan('folder1'), we need to make the call on a path-

name that is either absolute or relative with respect to the current working directory. The

pathname of 'folder1' can be be obtained by concatenating 'test' and 'folder1' as

follows

'test' + '/' + 'folder1'

(on a Windows box) or, more generally, concatenating pathname and item as follows

path = pathname + '\' + item

This works on Windows machines but not on UNIX, Linux, or MAC OS X machines, be-

cause pathnames use the forward slashes (/) in those operating systems. A better, portable

solution is to use the path.join() function from module os. It will work for all operating

systems and thus be system independent. For example, on a Mac:

>>> pathname = 'test'
>>> item = 'folder1'
>>> os.path.join(pathname, item)
'test/folder1'

Here is a similar example executed on a Windows box:

>>> pathname = 'C://Test/virus'
>>> item = 'folder1'
>>> os.path.join(pathname, item)
'C://Test/virus/folder1'

Section 10.3 Run Time Analysis 367

10.3 Run Time Analysis
The correctness of a program is of course our main concern. However, it is also important

that the program is usable or even efficient. In this section, we continue the use of recursion

to solve problems, but this time with an eye on efficiency. In our first example, we apply

recursion to a problem that does not seem to need it and get a surprising gain in efficiency.

In the second example, we take a problem that seems tailored for recursion and obtain an

extremely inefficient recursive program.

The Exponent Function
We consider next the implementation of the exponent function an. As we have seen already,

Python provides the exponentiation operator **:

>>> 2**4
16

But how is the operator ** implemented? How would we implement it if it was not avail-

able? The straightforward approach is to just multiply the value of a n times. The accumu-

lator pattern can be used to implement this idea:

Module: ch10.py
1 def power(a, n):
2 'returns a to the nth power'
3 res = 1
4 for i in range(n):
5 res *= a
6 return res

You should convince yourself that the function power() works correctly. But is this the

best way to implement the function power()? Is there an implementation that would run

faster? It is clear that the function power() will perform n multiplications to compute

an. If n is 10,000, then 10,000 multiplications are done. Can we implement power() so

significantly fewer multiplications are done, say about 20 instead of 10,000?

Let’s see what the recursive approach will give us. We are going to develop a recursive

function rpower() that takes inputs a and nonnegative integer n and returns an.

The natural base case is when the input n is 0. Then an = 1 and so 1 must be returned:

def rpower(a, n):
'returns a to the nth power'
if n == 0: # base case: n == 0

return 1
remainder of function

Now let’s handle the recursive step. To do this, we need to express an, for n > 0, recur-

sively in terms of smaller powers of a (i.e., “closer” to the base case). That is actually not

hard, and there are many ways to do it:

an = an 1 ×a

an = an 2 ×a2

an = an 3 ×a3

...

an = an/2 ×an/2

368 Chapter 10 Recursion

The appealing thing about the last expression is that the two terms, an/2 and an/2, are the

same; therefore, we can compute an by making only one recursive call to compute an/2.

The only problem is that n/2 is not an integer when n is odd. So we consider two cases.

As we just discovered, when the value of n is even, we can compute rpower(a, n)
using the result of rpower(a, n//2) as shown in Figure 10.9:

Figure 10.9 Computing an

recursively. When n is
even, an = an/2 ×an/2.

rpower(2, n) = 2×2× ...×2 × 2×2× ...×2

power(2, n//2) power(2, n//2)

When the value of n is odd, we still can use the result of recursive call rpower(a, n//2)
to compute rpower(a, n), albeit with an additional factor a, as illustrated in Figure 10.10:

Figure 10.10 Computing
an recursively. When n is
odd,
an = a�n/2� ×a�n/2� ×a.

rpower(2, n) = 2×2× ...×2 × 2×2× ...×2 × 2

power(2, n//2) power(2, n//2)

These insights lead us to the recursive implementation of rpower() shown next. Note

that only one recursive call rpower(a, n//2) is made.

Module: ch10.py
1 def rpower(a,n):
2 'returns a to the nth power'
3 if n == 0: # base case: n == 0
4 return 1
5

6 tmp = rpower(a, n//2) # recursive step: n > 0
7

8 if n % 2 == 0:
9 return tmp*tmp # a**n = a**(n//2) * a**a(n//2)

10 else: # n % 2 == 1
11 return a*tmp*tmp # a**n = a**(n//2) * a**a(n//2) * a

We now have two implementations of the exponentiation function, power() and rpower().

How can we tell which is more efficient?

Counting Operations
One way to compare the efficiency of two functions is to count the number of operations

executed by each function on the same input. In the case of power() and rpower(), we

limit ourselves to counting just the number of multiplications

Clearly, power(2, 10000) will need 10,000 multiplications. What about rpower(2,
10000)? To answer this question, we modify rpower() so it counts the number of mul-

tiplications performed. We do this by incrementing a global variable counter, defined

outside the function, each time a multiplication is done:

Module: ch10.py
1 def rpower(a,n):
2 'returns a to the nth power'
3 global counter # counts number of multiplications
4

5 if n==0:
6 return 1

Section 10.3 Run Time Analysis 369

7 # if n > 0:
8 tmp = rpower(a, n//2)
9

10 if n % 2 == 0:
11 counter += 1
12 return tmp*tmp # 1 multiplication
13

14 else: # n % 2 == 1
15 counter += 2
16 return a*tmp*tmp # 2 multiplications

Now we can do the counting:

>>> counter = 0
>>> rpower(2, 10000)
199506311688...792596709376
>>> counter
19

Thus, recursion led us to a way to do exponentiation that reduced the number of multipli-

cations from 10,000 to 23.

Fibonacci Sequence
We have introduced the Fibonacci sequence of integers in Chapter 5:

1,1,2,3,5,8,13,21,34,55,89, . . .

We also described a method to construct the Fibonacci sequence: A number in the

sequence is the sum of the previous two numbers in the sequence (except for the first two

1s). This rule is recursive in nature. So, if we are to implement a function rfib() that

takes a nonnegative integer n as input and returns the nth Fibonacci number, a recursive

implementation seems natural. Let’s do it.

Since the recursive rule applies to the numbers after the 0th and 1st Fibonacci number,

it makes sense that the base case is when n ≤ 1 (i.e., n = 0 or n = 1). In that case, rfib()
should return 1:

def rfib(n):
'returns nth Fibonacci number'
if n < 2: # base case

return 1
remainder of function

The recursive step applies to input n > 1. In that case, the nth Fibonacci number is the sum

of the n 1st and n 2nd:

Module: ch10.py
1 def rfib(n):
2 'returns nth Fibonacci number'
3 if n < 2: # base case
4 return 1
5

6 return rfib(n-1) + rfib(n-2) # recursive step

370 Chapter 10 Recursion

Let’s check that function rfib() works:

>>> rfib(0)
1
>>> rfib(1)
1
>>> rfib(4)
5
>>> rfib(8)
34

The function seems correct. Let’s try to compute a larger Fibonacci number:

>>> rfib(35)
14930352

Hmmm. It’s correct, but it took a while to compute. (Try it.) If you try

>>> rfib(100)
...

you will be waiting for a very long time. (Remember that you can always stop the program

execution by hitting Ctrl - c simultaneously.)

Is computing the 36th Fibonacci number really that time consuming? Recall that we

already implemented a function in Chapter 5 that returns the nth Fibonacci number:

Module: ch10.py
1 def fib(n):
2 'returns nth Fibonacci number'
3 previous = 1 # 0th Fibonacci number
4 current = 1 # 1st Fibonacci number
5 i = 1 # index of current Fibonacci number
6

7 while i < n: # while current is not nth Fibonacci number
8 previous, current = current, previous+current
9 i += 1

10

11 return current

Let’s see how it does:

>>> fib(35)
14930352
>>> fib(100)
573147844013817084101
>>> fib(10000)
54438373113565...

Instantaneous in all cases. Let’s investigate what is wrong with rfib().

Experimental Analysis of Run Time
One way to precisely compare functions fib() and rfib()—or other functions for that

matter—is to run them on the same input and compare their run times. As good (lazy)

programmers, we like to automate this process so we develop an application that can be

Section 10.3 Run Time Analysis 371

used to analyze the run time of a function. We will make this application generic in the

sense that it can be used on functions other than just fib() and rfib().

Our application consists of several functions. The key one that measures the run time

on one input is timing(): It takes as input (1) the name of a function (as a string) and

(2) an “input size” (as an integer), runs function func() on an input of the given size, and

returns the execution time.

Module: ch10.py
1 import time
2 def timing(func, n):
3 'runs func on input returned by buildInput'
4 funcInput = buildInput(n) # obtain input for func
5

6 start = time.time() # take start time
7 func(funcInput) # run func on funcInput
8 end = time.time() # take end time
9

10 return end - start # return execution time

This function uses the time() function from the time module to obtain the current time

before and after the execution of the function func; the difference between the two will

be the execution time. (Note: The timing can be affected by other tasks the computer may

doing, but we avoid dealing with this issue.)

DETOUR
Higher-Order Programming

In function timing(), the first input argument is func (i.e., the name of a function).
Treating a function like a value and passing it as an argument to another function
is a style of programming called higher-order programming.

Python supports higher-order programming because the name of a function is
treated no differently from the name of any other object, so it can be treated as a
value. Not all languages support higher-order programming. A few other ones that
do are LISP, Perl, Ruby, and Javascript.

The function buildInput() takes an input size and returns an object that is an appro-

priate input for function func() and has the right input size. This function is dependent on

the function func() we are analyzing. In the case of the Fibonacci functions fib() and

rfib(), the input corresponding to input size n is just n:

Module: ch10.py
1 def buildInput(n):
2 'returns input for Fibonacci functions'
3 return n

Comparing the run times of two functions on the same input does not tell us much

about which function is better (i.e., faster). It is more useful to compare the run times of

the two functions on several different inputs. In this way, we can attempt to understand the

behavior of the two functions as the input size (i.e., the problem size) becomes larger. We

develop, for that purpose, function timingAnalysis that runs an arbitrary function on a

series of inputs of increasing size and report run times.

372 Chapter 10 Recursion

Module: ch10.py 1 def timingAnalysis(func, start, stop, inc, runs):
2 '''prints average run times of function func on inputs of
3 size start, start+inc, start+2*inc, ..., up to stop'''
4 for n in range(start, stop, inc): # for every input size n
5 acc = 0.0 # initialize accumulator
6

7 for i in range(runs): # repeat runs times:
8 acc += timing(func, n) # run func on input of size n
9 # and accumulates run times

10 # print average run times foor input size n
11 formatStr = 'Run time of {}({}) is {:.7f} seconds.'
12 print(formatStr.format(func.__name__, n, acc/runs))

Function timingAnalysis takes, as input, function func and numbers start, stop, inc,

and runs. It first runs func on several inputs of size start and print the average run time.

Then it repeats that for input sizes start+inc, start+2*inc, . . . up to input size stop.

When we run timinAnalysis() on function fib() with input sizes 24, 26, 28, 30,

32, 34, we get:

>>> timingAnalysis(fib, 24, 35, 2, 10)
Run time of fib(24) is 0.0000173 seconds.
Run time of fib(26) is 0.0000119 seconds.
Run time of fib(28) is 0.0000127 seconds.
Run time of fib(30) is 0.0000136 seconds.
Run time of fib(32) is 0.0000144 seconds.
Run time of fib(34) is 0.0000151 seconds.

When we do the same on function rfib(), we get:

>>> timingAnalysis(rfib, 24, 35, 2, 10)
Run time of fibonacci(24) is 0.0797332 seconds.
Run time of fibonacci(26) is 0.2037848 seconds.
Run time of fibonacci(28) is 0.5337492 seconds.
Run time of fibonacci(30) is 1.4083670 seconds.
Run time of fibonacci(32) is 3.6589111 seconds.
Run time of fibonacci(34) is 9.5540136 seconds.

We graph the results of the two experiments in Figure 10.11.

Figure 10.11 Run time
graph. Shown are the
average run times, in
seconds, of fib() and
rfib() for inputs n = 24,
26, 28, 32, and 34.

n

time (sec)

24 26 28 30 32 34

2

4

6

8

fib(n)

rfib(n)

Section 10.3 Run Time Analysis 373

The run times of fib() are negligible. However, the run times of rfib() are increasing

rapidly as the input size increases. In fact, the run time more than doubles between succes-

sive input sizes. This means that the run time increases exponentially with respect to the

input size. In order to understand the reason behind the poor performance of the recursive

function rfib(), we illustrate its execution in Figure 10.12.

rfib(n)

rfib(n-1)

rfib(n-2)

rfib(n-3)

rfib(n-4) rfib(n-5)

rfib(n-4)

rfib(n-3)

rfib(n-4) rfib(n-5)

rfib(n-2)

rfib(n-3)

rfib(n-4) rfib(n-5)

rfib(n-4)

Figure 10.12 Tree of
recursive calls. Computing
rfib(n) requires making
two recursive calls:
rfib(n-1) and
rfib(b-2). Computing
rfib(n-1) requires making
recursive calls rfib(n-2)
and rfib(n-3); computing
rfib(n-2) requires
recursive calls rfib(n-3)
and rfib(n-4). The same
recursive calls will be made
multiple times. For example,
rfib(n-4) will be
recomputed five times.

Figure 10.12 shows some of the recursive calls made when computing rfib(n). To

compute rfib(n), recursive calls rfib(n-1) and rfib(n-2) must be made; to com-

pute rfib(n-1) and rfib(n-2), separate recursive calls rfib(n-2) and rfib(n-3),

and rfib(n-2) and rfib(n-3), respectively, must be made. And so on.

The computation of rfib() includes two separate computations of rfib(n-2) and

should therefore take more than twice as long as rfib(n-2). This explains the exponential

growth in run time. It also shows the problem with the recursive solution rfib(): It keeps

making and executing the same function calls, over and over. The function call rfib(n-4),

for example, is made and executed five times, even though the result is always the same.

Practice Problem
10.6

Using the run time analysis application developed in this section, analyze the run time of

functions power() and rpower() as well as built-in operator **. You will do this by run-

ning timingAnalysis() on functions power2(), rpower2(), and pow2() defined next

and using input sizes 20,000 through 80,000 with a step size of 20,000.

def power2(n):
return power(2,n)

def rpower2(n):
return rpower(2,n)

def pow2(n):
return 2**n

When done, argue which approach the built-in operator ** likely uses.

374 Chapter 10 Recursion

10.4 Searching
In the last section, we learned that the way we design an algorithm and implement a pro-

gram can have a significant effect on the program’s run time and ultimately its usefulness

with large input data sets. In this section, we consider how reorganizing the input data

set and adding structure to it can dramatically improve the run time, and usefulness, of

a program. We focus on several fundamental search tasks and usually use sorting to give

structure to the data set. We start with the fundamental problem of checking whether a

value is contained in a list.

Linear Search
Both the in operator and the index() method of the list class search a list for a given

item. Because we have been (and will be) using them a lot, it is important to understand

how fast they execute.

Recall that the in operator is used to check whether an item is in the list or not:

>>> lst = random.sample(range(1,100), 17)
>>> lst
[28, 72, 2, 73, 89, 90, 99, 13, 24, 5, 57, 41, 16, 43, 45, 42, 11]
>>> 45 in lst
True
>>> 75 in lst
False

The index() method is similar: Instead of returning True or False, it returns the index

of the first occurrence of the item (or raises an exception if the item is not in the list).

If the data in the list is not structured in some way, there is really only one way to

implement in and index(): a systematic search through the items in the list, whether from

index 0 and up, from index 1 and down, or something equivalent. This type of search is

called linear search. Assuming the search is done from index 0 and up, linear search would

look at 15 elements in the list to find 45 and all of them to find that 75 is not in the list.

A linear search may need to look at every item in the list. Its run time, in the worst case,

is thus proportional to the size of the list. If the data set is not structured and the data items

cannot be compared, linear search is really the only way search can be done on a list.

Binary Search
If the data in the list is comparable, we can improve the search run time by sorting the list

first. To illustrate this, we use the same list lst as used in linear search, but now sorted:

>>> lst.sort()
>>> lst
[2, 5, 11, 13, 16, 24, 28, 41, 42, 43, 45, 57, 72, 73, 89, 90, 99]

Suppose we are searching for the value of target in list lst. Linear search compares

target with the item at index 0 of lst, then with the item at index 1, 2, 3, and so on.

Suppose, instead, we start the search by comparing target with the item at index i, for

some arbitrary index i of lst. Well, there are three possible outcomes:

• We are lucky: lst[i] == target is true, or

• target < lst[i] is true, or

• target > lst[i] is true.

Section 10.4 Searching 375

Let’s do an example. Suppose the value of target is 45 and we compare it with the

item at index 5 (i.e., 24). It is clear that the third outcome, target > lst[i], applies in

this case. Because list lst is sorted, this tells us that target cannot possibly be to the left

of 24, that is, in sublist lst[0:5]. Therefore, we should continue our search for target
to the right of 24 (i.e., in sublist lst[6:17]), as illustrated in Figure 10.13.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 5 11 13 16 24 28 41 42 43 45 57 72 73 89 90 99

28 41 42 43 45 57 72 73 89 90 99

Figure 10.13 Binary
search. By comparing 45,
the value of target, with
the item at index 5 of lst,
we have reduced the search
space to the sublist
lst[6:].The main insight we just made is this: With just one comparison, between target and

list[5], we have reduced our search space from 17 list items to 11. (In linear search, a

comparison reduces the search space by just 1.) Now we should ask ourselves whether a

different comparison would reduce the search space even further.

In a sense, the outcome target > lst[5] was unlucky: target turns out to be in the

larger of lst[0:5] (with 5 items) and lst[6:17] (with 11 items). To reduce the role of

luck, we could ensure that both sublists are about the same size. We can achieve that by

comparing target to 42—that is, the item in the middle of the list (also called the median).

The insights we just developed are the basis of a search technique called binary search.

Given a list and a target, binary search returns the index of the target in the list, or 1 if the

target is not in the list.

Binary search is easy to implement recursively. The base case is when the list lst is

empty: target cannot possibly be in it, and we return 1. Otherwise, we compare target
with the list median. Depending on the outcome of the comparison, we are either done or

continue the search, recursively, on a sublist of lst.

We implement binary search as the recursive function search(). Because recursive

calls will be made on sublists lst[i:j] of the original list lst, the function search()
should take, as input, not just lst and target but also indices i and j:

Module: ch10.py
1 def search(lst, target, i, j):
2 '''attempts to find target in sorted sublist lst[i:j];
3 index of target is returned if found, -1 otherwise'''
4 if i == j: # base case: empty list
5 return -1 # target cannot be in list
6

7 mid = (i+j)//2 # index of median of l[i:j]
8

9 if lst[mid] == target: # target is the median
10 return mid
11 if target < lst[mid]: # search left of median
12 return search(lst, target, i, mid)
13 else: # search right of median
14 return search(lst, target, mid+1, j)

To start the search for target in lst, indices 0 and len(lst) should be given:

>>> target = 45
>>> search(lst, target, 0, len(lst))
10

376 Chapter 10 Recursion

Figure 10.14 Binary
search. The search for 45
starts in list lst[0:17].
After 45 is compared to the
list median (42), the search
continues in sublist
lst[9:17]. After 45 is
compared to this list’s
median (72), the search
continues in lst[9:12].
Since 45 is the median of
lst[9:12], the search
ends.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 5 11 13 16 24 28 41 42 43 45 57 72 73 89 90 99

43 45 57 72 73 89 90 99

43 45 57

Figure 10.14 illustrates the execution of this search.

To convince ourselves that binary search is, on average, much faster than linear search,

we perform an experiment. Using the timingAnalysis() application we developed in

the last section, we compare the performance of our function search() and the built-in

list method index(). To do this, we develop functions binary() and linear() that pick

a random item in the input list and call search() or invoke method index(), respectively,

to find the item:

Module: ch10.py
1 def binary(lst):
2 'chooses item in list lst at random and runs search() on it'
3 target=random.choice(lst)
4 return search(lst, target, 0, len(lst))
5

6 def linear(lst):
7 'choose item in list lst at random and runs index() on it'
8 target=random.choice(lst)
9 return lst.index(target)

The list lst of size n we will use is a random sample of n numbers in the range from 0 to

2n 1.

Module: ch10.py
1 def buildInput(n):
2 'returns a random sample of n numbers in range [0, 2n)'
3 lst = random.sample(range(2*n), n)
4 lst.sort()
5 return lst

Here are the results:

>>> timingAnalysis(linear, 200000, 1000000, 200000, 20)
Run time of linear(200000) is 0.0046095
Run time of linear(400000) is 0.0091411
Run time of linear(600000) is 0.0145864
Run time of linear(800000) is 0.0184283
>>> timingAnalysis(binary, 200000, 1000000, 200000, 20)
Run time of binary(200000) is 0.0000681
Run time of binary(400000) is 0.0000762
Run time of binary(600000) is 0.0000943
Run time of binary(800000) is 0.0000933

Section 10.4 Searching 377

It is clear that binary search is much faster and the run time of linear search grows propor-

tionally with the list size. The interesting thing about the run time of binary search is that it

does not seem to be increasing much. Why is that?

Whereas linear search may end up looking at every item in the list, binary search will

look at far fewer list items. To see this, recall our insight that with every binary search com-

parison, the search space decreases by more than a half. Of course, when the search space

becomes of size 1 or less, the search is over. The number of binary search comparisons in a

list of size n is bounded by this value: the number of times we can halve n division before

it becomes 1. In equation form, it is the value of x in

n
2x = 1

The solution to this equation is x = log2 n, the logarithm base two of n. This function does

indeed grow very slowly as n increases.

Other Search Problems
We look at several other fundamental search-like problems and analyze different approaches

to solving them.

Uniqueness Testing

We consider this problem: Given a list, is every item in it unique? One natural way to solve

this problem is to iterate over the list and for each list item check whether the item appears

more than once in the list. Function dup1 implements this idea:

Module: ch10.py
1 def dup1(lst):
2 'returns True if list lst has duplicates, False otherwise'
3 for item in lst:
4 if lst.count(item) > 1:
5 return True
6 return False

The list method count(), just like the in operator and the index method, must per-

form a linear search through the list to count all occurrences of a target item. So, in

duplicates1(), linear search is performed for every list item. Can we do better?

What if we sorted the list first? The benefit of doing this is that duplicate items will be

next to each other in the sorted list. Therefore, to find out whether there are duplicates, all

we need to do is compare every item with the item before it:

Module: ch10.py
1 def dup2(lst):
2 'returns True if list lst has duplicates, False otherwise'
3 lst.sort()
4 for index in range(1, len(lst)):
5 if lst[index] == lst[index-1]:
6 return True
7 return False

The advantage of this approach is that it does only one pass through the list. Of course,

there is a cost to this approach: We have to sort the list first.

378 Chapter 10 Recursion

In Chapter 6, we saw that dictionaries and sets can be useful to check whether a list

contains duplicates. Functions dup3() and dup4() use a dictionary or a set, respectively,

to check whether the input list contains duplicates:

Module: ch10.py
1 def dup3(lst):
2 'returns True if list lst has duplicates, False otherwise'
3 s = set()
4 for item in lst:
5 if item in s:
6 return False
7 else:
8 s.add(item)
9 return True

10

11 def dup4(lst):
12 'returns True if list lst has duplicates, False otherwise'
13 return len(lst) != len(set(lst))

We leave the analysis of these four functions as an exercise.

Practice Problem
10.7

Using an experiment, analyze the run time of functions dup1(), dup2(), dup3(), and

dup4(). You should test each function on 10 lists of size 2000, 4000, 6000, and 8000

obtained from:

import random
def buildInput(n):

'returns a list of n random integers in range [0, n**2)'
res = []
for i in range(n):

res.append(random.choice(range(n**2)))
return res

Note that the list returned by this function is obtained by repeatedly choosing n numbers in

the range from 0 to n2 1 and may or may not contain duplicates. When done, comment

on the results.

Selecting the kth Largest (Smallest) Item

Finding the largest (or smallest) item in an unsorted list is best done with a linear search.

Finding the second, or third, largest (or smallest) kth smallest can be also done with a

linear search, though not as simply. Finding the kth largest (or smallest) item for large k
can easily be done by sorting the list first. (There are more efficient ways to do this, but

they are beyond the scope of this text.) Here is a function that returns the kth smallest value

in a list:

Module: ch10.py
1 def kthsmallest(lst,k):
2 'returns kth smallest item in lst'
3 lst.sort()
4 return lst[k-1]

Section 10.5 Case Study: Tower of Hanoi 379

Computing the Most Frequently Occurring Item

The problem we consider next is searching for the most frequently occurring item in a list.

We actually know how to do this, and more: In Chapter 6, we saw how dictionaries can be

used to compute the frequency of all items in a sequence. However, if all we want is to find

the most frequent item, using a dictionary is overkill and a waste of memory space.

We have seen that by sorting a list, all the duplicate items will be next to each other. If

we iterate through the sorted list, we can count the length of each sequence of duplicates

and keep track of the longest. Here is the implementation of this idea:

Module: ch10.tex
1 def frequent(lst):
2 '''returns most frequently occurring item
3 in non-empty list lst'''
4 lst.sort() # first sort list
5

6 currentLen = 1 # length of current sequence
7 longestLen = 1 # length of longest sequence
8 mostFreq = lst[0] # item with longest sequence
9

10 for i in range(1, len(lst)):
11 # compare current item with previous
12 if lst[i] == lst[i-1]: # if equal
13 # current sequence continues
14 currentLen+=1
15 else: # if not equal
16 # update longest sequence if necessary
17 if currentLen > longestLen: # if sequence that ended
18 # is longest so far
19 longestLen = currentLen # store its length
20 mostFreq = lst[i-1] # and the item
21 # new sequence starts
22 currentLen = 1
23 return mostFreq

Practice Problem
10.8

Implement function frequent2() that uses a dictionary to compute the frequency of every

item in the input list and returns the item that occurs the most frequently. Then perform an

experiment and compare the run times of frequent() and frequent2() on a list obtained

using the buildInput() function defined in Practice Problem 10.7.

10.5 Case Study: Tower of Hanoi
In this case study, we consider the Tower of Hanoi problem, the classic example of a prob-

lem easily solved using recursion. We also use the opportunity to develop a visual applica-

tion by developing new classes and using object-oriented programming techniques.

Here is the problem. There are three pegs—which we call, from left to right, pegs 1,

2, and 3—and n ≥ 0 disks of different diameters. In the initial configuration, the n disks

380 Chapter 10 Recursion

are placed around peg 1 in increasing order of diameter, from top to bottom. Figure 10.15

shows the initial configuration for n = 5 disks.

Figure 10.15 Tower of
Hanoi with five disks.
The initial configuration.

The Tower of Hanoi problem asks to move the disks one at a time and achieve the final

configuration shown in Figure 10.16.

Figure 10.16 Tower of
Hanoi with five disks.
The final configuration.

There are restrictions how disks can be moved:

• Disks can be moved only one at a time.

• A disk must be released around a peg before another disk is picked up.

• A disk cannot be placed on top of a disk with smaller diameter.

We illustrate these rules in Figure 10.17, which shows three successive legal moves, starting

from the initial configuration from Figure 10.15.

Figure 10.17 Tower of
Hanoi with five disks: first
three moves. Configuration
(a) is the result of moving
the topmost, smallest disk
from peg 1 to peg 3.
Configuration (b) is the
result of moving the next
smallest disk from peg 1 to
peg 2. Note that moving
second smallest disk to peg
3 would have been an illegal
move. Configuration (c) is
the result of moving the disk
around peg 3 to peg 2.

(a)

(b)

(c)

We would like to develop a function hanoi() that takes a nonnegative integer n as

input and moves n disks from peg 1 to peg 3 using legal single-disk moves. To implement

hanoi() recursively, we need to find a recursive way to describe the solution (i.e., the

moves of the disks). To help us discover it, we start by looking at the simplest cases.

Section 10.5 Case Study: Tower of Hanoi 381

The easiest case is when n = 0: There is no disk to move! The next easiest case is when

n = 1: A move of the disk from peg 1 to peg 3 will solve the problem.

With n = 2 disks, the starting configuration is shown in Figure 10.18.

Figure 10.18 Tower of
Hanoi with two disks.
The initial configuration.

In order to move the two disks from peg 1 to peg 3, it is clear that we need to move the

top disk from peg 1 out of the way (i.e., to peg 2) so the larger disk can be moved to peg 3.

This is illustrated in Figure 10.19.

(a)

(b)

(c)

Figure 10.19 Tower of
Hanoi with two disks: the
solution. Disks are moved
in this order: (a) small disk
from peg 1 to peg 2, (b) the
large disk from peg 1 to peg
3, and (c) the small disk
from peg 2 to peg 3.

In order to implement function hanoi() in a clear and intuitive way (i.e., in terms

of moving disks from peg to peg) we need to develop classes that represent peg and disk

objects. We discuss the implementation of these classes later; at this point, we only need

to know how to use them, which we show using the help() tool. The documentation for

classes Peg and Disk is:

>>> help(Peg)
...
class Peg(turtle.Turtle, builtins.list)
| a Tower of Hanoi peg class
...
| __init__(self, n)
| initializes a peg for n disks
|
| pop(self)
| removes top disk from peg and returns it
|
| push(self, disk)
| pushes disk around peg
...

>>> help(Disk)
...
class Disk(turtle.Turtle)
| a Tower of Hanoi disk class

...
| Methods defined here:
|
| __init__(self, n)
| initializes disk n

382 Chapter 10 Recursion

We also need to develop function move() that takes two pegs as input and moves the

topmost disk from the first peg to the second peg:

Module: turtleHanoi.py
1 def move_disk(from_peg, to_peg):
2 'moves top disk from from_peg to to_peg'
3 disk = from_peg.pop()
4 to_peg.push(disk)

Using these classes and function, we can describe the solution of the Tower of Hanoi

problem with two disks, illustrated in Figures 10.18 and 10.19 as shown:

>>> p1 = Peg(2) # create peg 1
>>> p2 = Peg(2) # create peg 2
>>> p3 = Peg(2) # create peg 3
>>> p1.push(Disk(2)) # push larger disk onto peg 1
>>> p1.push(Disk(1)) # push smaller disk onto peg 1
>>> move_disk(p1, p2) # move top disk from peg 1 to peg 2
>>> move_disk(p1, p3) # move remaining disk from peg 1 to peg 3
>>> move_disk(p2, p3) # move disk from peg 2 to peg 3

Now let’s consider the case when n = 3 and try to describe the sequence of disk moves

for it recursively. We do this using the same approach we took for n = 2: We would like to

take the two top disks from peg 1 out of the way (i.e., put them around peg 2) so we can

move the largest disk from peg 1 to peg 3. Once we get the largest disk around peg 3, we

again need to move two disks, but this time from peg 2 to peg 3. This idea is illustrated in

Figure 10.20.

Figure 10.20 Tower of
Hanoi problem with three
disks. Configuration (a) is
the initial one. The next
one, (b), is the result of
recursively moving two
disks from peg 1 to peg 2.
Configuration (c) is the
result of moving the last
disk around peg 1 to peg 3.
Configuration (d) is the
result of recursively moving
2 disks from peg 2 to peg 3.

(a)

(b)

(c)

(d)

The question is: How do we move two disks (once from peg 1 to peg 2 and once from

peg 2 to peg 3)? Using recursion, of course! We already have a solution for moving two

disks, and we can use it. So, if function hanoi(n, peg1, peg2, peg3) moves n disks

from peg p1 to peg p3 using intermediate peg p2, the next code should solve the Tower of

Hanoi problem with three disks.

Section 10.5 Case Study: Tower of Hanoi 383

>>> p1 = Peg(3)
>>> p2 = Peg(3)
>>> p3 = Peg(3)
>>> p1.push(Disk(3))
>>> p1.push(Disk(2))
>>> p1.push(Disk(1))
>>> hanoi(2, p1, p3, p2)
>>> move_disk(p1, p3)
>>> hanoi(2, p2, p1, p3)

We can now implement the recursive function hanoi(). Note that the base case is when

n = 0, when there is nothing to do.

Module: turtleHanoi.py
1 def hanoi(n, peg1, peg2, peg3):
2 'move n disks from peg1 to peg3 using peg2'
3

4 # base case: n == 0. Do nothing
5

6 if n > 0: # recursive step
7 hanoi(n-1, peg1, peg3, peg2) # move top n-1 disks
8 # from peg1 to peg2
9 move_disk(peg1, peg3) # move largest disk

10 # from peg1 to peg2
11 hanoi(n-1, peg2, peg1, peg3) # move n-1 disks
12 # from peg2 to peg3

Classes Peg and Disk
We can now discuss the implementation of classes Peg and Disk. The Disk class is a

subclass of class Turtle. This means that all the attributes of Turtle are available to

make our Disk objects look right.

Module: turtleHanoi.py
1 from turtle import Turtle, Screen
2 class Disk(Turtle):
3 'a Tower of Hanoi disk class'
4

5 def __init__(self, n):
6 'initializes disk n'
7 Turtle.__init__(self, shape='square',visible=False)
8 self.penup() # moves should not be traced
9 self.sety(300) # moves are above the pegs

10 self.shapesize(1, 1.5*n, 2) # set disk diameter
11 self.fillcolor(1, 1, 1) # disk is white
12 self.showturtle() # disk is made visible

The class Peg is a subclass of two classes: Turtle, for the visual aspects, and list,

because a peg is a container of disks. Each Peg will have an x-coordinate determined by

class variable pos. In addition to the constructor, the class Peg supports stack methods

push() and pop() to put a disk around a peg or remove a disk from the peg.

384 Chapter 10 Recursion

Module: turtleHanoi.py
1 class Peg(Turtle,list):
2 'a Tower of Hanoi peg class, inherits from Turtle and list'
3 pos = -200 # x-coordinate of next peg
4

5 def __init__(self,n):
6 'initializes a peg for n disks'
7

8 Turtle.__init__(self, shape='square',visible=False)
9 self.penup() # peg moves should not be traced

10 self.shapesize(n*1.25,.75,1) # height of peg is function
11 # of the number of disks
12 self.sety(12.5*n) # bottom of peg is y=0
13 self.x = Peg.pos # x-coord of peg
14 self.setx(self.x) # peg moved to its x-coord
15 self.showturtle() # peg made visible
16 Peg.pos += 200 # position of next peg
17

18 def push(self, disk):
19 'pushes disk around peg'
20

21 disk.setx(self.x) # moves disk to x-coord of peg
22 disk.sety(10+len(self)*25)# moves disk vertically to just
23 # above the topmost disk of peg
24 self.append(disk) # adds disk to peg
25

26 def pop(self):
27 'removes top disk from peg and returns it'
28

29 disk = self.pop() # removes disk from peg
30 disk.sety(300) # lifts disk above peg
31 return disk

Finally, here is the code that starts the application for up to seven disks.

Module: turtleHanoi.py
1 def play(n):
2 'shows the solution of a Tower of Hanoi problem with n disks'
3 screen = Screen()
4 Peg.pos = -200
5 p1 = Peg(n)
6 p2 = Peg(n)
7 p3 = Peg(n)
8

9 for i in range(n): # disks are pushed around peg 1
10 p1.push(Disk(n-i)) # in decreasing order of diameter
11

12 hanoi(n, p1, p2, p3)
13

14 screen.bye()

Chapter 10 Solutions to Practice Problems 385

Chapter Summary
The focus of this chapter is recursion and the process of developing a recursive function

that solves a problem. The chapter also introduces formal run time analysis of programs

and applies it to various search problems.

Recursion is a fundamental problem-solving technique that can be applied to problems

whose solution can be constructed from solutions of “easier” versions of the problem. Re-

cursive functions are often far simpler to describe (i.e., implement) than nonrecursive solu-

tions for the same problem because they leverage operating system resources, in particular

the program stack.

In this chapter, we devolop recursive functions for a variety of problems, such as the

visual display of fractals and the search for viruses in the files of a filesystem. The main

goal of the exposition, however, is to make explicit how to do recursive thinking, a way to

approach problems that leads to recursive solutions.

In some instances, recursive thinking offers insights that lead to solutions that are more

efficient than the obvious or original solution. In other instances, it will lead to a solution

that is far worse. We introduce run time analysis of programs as a way to quantify and com-

pare the execution times of various programs. Run time analysis is not limited to recursive

functions, of course, and we use it to analyze various search problems as well.

In the chapter case study, we apply recursion to solve the Tower of Hanoi problem

and develop a graphical tool, using OOP techniques and the turtle graphics module, to

visualize the solution.

Solutions to Practice Problems
10.1 The function reverse() is obtained by modifying function vertical() (and re-

naming it, of course). Note that function vertical() prints the last digit after printing all

but the last digit. Function reverse() should just do the opposite:

def reverse(n):
'prints digits of n vertically starting with low-order digit'
if n < 10: # base case: one-digit number

print(n)
else: # n has at least 2 digits

print(n%10) # print last digit of n
reverse(n//10) # recursively print in reverse all but

the last digit

10.2 In the base case, when n = 0, just 'Hurray!!!' should be printed. When n > 0,

we know that at least one 'Hip' should be printed, which we do. That means that n 1

strings 'Hip' and then 'Hurray!!!' remain to be printed. That is exactly what recursive

call cheers(n-1) will achieve.

def cheers(n):
if n == 0:

print('Hurray!!!')
else: # n > 0

print('Hip', end=' ')
cheers(n-1)

386 Chapter 10 Recursion

10.3 By the definition of the factorial function n!, the base case of the recursion is n = 0 or

n = 1. In those cases, the function factorial() should return 1. For n > 1, the recursive

definition of n! suggests that function factorial() should return n * factorial(n-1):

def factorial(n):
'returns the factorial of integer n'
if n in [0, 1]: # base case

return 1
return factorial(n-1) * n # recursive step when n > 1

10.4 In the base case, when n = 0, nothing is printed. If n > 0, note that the output of

pattern2(n) consists of the output of pattern2(n-1), followed by a row of n stars,

followed by the output of pattern2(n-1):

def pattern2(n):
'prints the nth pattern'
if n > 0:

pattern2(n-1) # prints pattern2(n-1)
print(n * '*') # print n stars
pattern2(n-1) # prints pattern2(n-1)

10.5 As Figure 10.21 of snowflake(4) illustrates, a snowflake pattern consists of three

patterns koch(3) drawn along the sides of an equilateral triangle.

Figure 10.21 The pattern
snowflake(4).

To draw the pattern snowflake(n), all we need to do is draw pattern koch(n), turn

right 120 degrees, draw koch(n) again, turn right 120 degrees, and draw koch(n) one last

time.

def drawSnowflake(n):
'draws nth snowflake curve using function koch() 3 times'
s = Screen()
t = Turtle()
directions = koch(n)
for i in range(3):

for move in directions: # draw koch(n)
if move == 'F':

t.fd(300/3**n)
if move == 'L':

t.lt(60)
if move == 'R':

t.rt(120)
t.rt(120) # turn right 120 degrees

s.bye()

Chapter 10 Exercises 387

10.6 After running the tests, you will note that the run times of power2() are significantly

worse than the other two. Interestingly, the run times of pow2() and rpow2() are very,

very close. It seems that the built-in operator ** uses an approach that is equivalent to our

recursive solution.

10.7 Even though dup2() has the additional sorting step, you will note that dup1() is

much slower. This means that the multiple linear searches approach of dup1() is very

inefficient. The dictionary and set approaches in dup3 and dup4() did best, with the set

approach winning overall. The one issue with these last two approaches is that they both

use an extra container, so they take up more memory space.

10.8 You can use the function frequency from Chapter 6 to implement freqent2().

Exercises

10.9 Using Figure 10.1 as a model, draw all the steps that occur during the execution of

countdown(3), including the state of the program stack at the beginning and end of every

recursive call.

10.10 Swap statements in lines 6 and 7 of function countdown() to create function

countdown2(). Explain how it differs from countdown().

10.11 Using Figure 10.1 as a model, draw all the steps that occur during the execution of

countdown2(3), where countdown2() is the function from Exercise 10.10.

10.12 Modify the function countdown() so it exhibits this behavior:

>>> countdown3(5)
5
4
3

BOOOM!!!
Scared you...

2
1
Blastoff!!!

10.13 Using Figure 10.1 as a model, draw all the steps that occur during the execution of

pattern(2), including the state of the program stack at the beginning and end of every

recursive call.

10.14 The recursive formula for computing the number of ways of choosing k items out of

a set of n items, denoted C(n,k), is:

C(n,k) =

⎧⎨
⎩

1 if k = 0

0 if n < k
C(n 1,k 1)+C(n 1,k) otherwise

The first case says there is one way to choose no item; the second says that there is no way

to choose more items than available in the set. The last case separates the counting of sets

of k items containing the last set item and the counting of sets of k items not containing the

388 Chapter 10 Recursion

last set item. Write a recursive function combinations() that computes C(n,k) using this

recursive formula.

>>> combinations(2, 1)
0
>>> combinations(1, 2)
2
>>> combinations(2, 5)
10

10.15 Just as we did for the function rpower(), modify function rfib() so it counts the

number of recursive calls made. Then use this function to count the number of calls made

for n = 10,20,30.

10.16 Suppose someone started solving the Tower of Hanoi problem with five disks and

stopped at configuration illustrated in Figure 10.17(c). Describe a sequence of move() and

hanoi() function calls that will complete the move of the five disks from peg 1 to peg

3. Note: You can obtain the starting configuration by executing these statements in the

interactive shell:

>>> peg1 = Peg(5)
>>> peg2 = Peg(5)
>>> peg3 = Peg(5)
>>> for i in range(5,0,-1):

peg1.push(Disk(i))

>>> hanoi(2, peg1, peg3, peg2)

Problems

10.17 Write a recursive method silly() that takes one nonnegative integer n as input and

then prints n question marks, followed by n exclamation points. Your program should use

no loops.

>>> silly(0)
>>> silly(1)
* !
>>> silly(10)
* * * * * * * * * * ! ! ! ! ! ! ! ! ! !

10.18 Write a recursive method numOnes() that takes a nonnegative integer n as input and

returns the number of 1s in the binary representation of n. Use the fact that this is equal to

the number of 1s in the representation of n//2 (integer division), plus 1 if n is odd.

>>> numOnes(0)
0
>>> numOnes(1)
1
>>> numOnes(14)
3

Chapter 10 Problems 389

10.19 In Chapter 5 we developed Euclid’s Greatest Common Divisor (GCD) algorithm

using iteration. Euclid’s algorithm is naturally described recursively:

gcd(a,b) =
{

a if b = 0

gcd(b,a%b) otherwise

Using this recursive definition, implement recursive function rgcd() that takes two non-

negative numbers a and b, with a > b, and returns the GCD of a and b:

>>> rgcd(3,0)
3
>>> rgcd(18,12)
6

10.20 Write a method rem() that takes as input a list containing, possibly, duplicate values

and returns a copy of the list in which one copy of every duplicate value removed.

>>> rem([4])
[]
>>> rem([4, 4])
[4]
>>> rem([4, 1, 3, 2])
[]
>>> rem([2, 4, 2, 4, 4])
[2, 4, 4]

10.21 You’re visiting your hometown and are planning to stay at a friend’s house. It just

happens that all your friends live on the same street. In order to be efficient, you would

like to stay at the house of a friend who is in a central location in the following sense: the

same number of friends, within 1, live in either direction. If two friends’ houses satisfy this

criterion, choose the friend with the smaller street address.

Write function address() that takes a list of street numbers and returns the street

number you should stay at.

>>> address([2, 1, 8, 5, 9])
5
>>> address([2, 1, 8, 5])
2
>>> address([1, 1, 1, 2, 3, 3, 4, 4, 4, 5])
3

10.22 Write a recursive method base() that takes a nonnegative integer n and a positive

integer 1 < b < 10 and prints the base-b representation of integer n.

>>> base(0, 2)
0
>>> base(1, 2)
1
>>> base(10, 2)
1010
>>> base(10, 3)
1 0 1

390 Chapter 10 Recursion

10.23 Develop a recursive function tough() that takes two nonnegative integer arguments

and outputs a pattern as shown below. Hint: The first argument represents the indentation

of the pattern, whereas the second argument—always a power of 2—indicates the number

of “*”s in the longest line of “*”s in the pattern.

>>> f(0, 0)
>>> f(0, 1)
*

>>> f(0, 2)
*
**
*

>>> f(0, 4)
*
**
*

*
**
*

10.24 Implement the function permutations() that takes a list lst as input and returns

a list of all permutations of lst (so the returned value is a list of lists). Do this recursively

as follows: If the input list lst is of size 1 or 0, just return a list containing list lst.

Otherwise, make a recursive call on the sublist l[1:] to obtain the list of all permutations

of all elements of lst except the first element l[0]. Then, for each such permutation (i.e.,

list) perm, generate permutations of lst by inserting lst[0] into all possible positions of

perm.

>>> permutations([1, 2])
[[1, 2], [2, 1]]
>>> permutations([1, 2, 3])
[[1, 2, 3], [2, 1, 3], [2, 3, 1], [1, 3, 2], [3, 1, 2], [3, 2, 1]]
>>> permutations([1, 2, 3, 4])
[[1, 2, 3, 4], [2, 1, 3, 4], [2, 3, 1, 4], [2, 3, 4, 1],
[1, 3, 2, 4], [3, 1, 2, 4], [3, 2, 1, 4], [3, 2, 4, 1],
[1, 3, 4, 2], [3, 1, 4, 2], [3, 4, 1, 2], [3, 4, 2, 1],
[1, 2, 4, 3], [2, 1, 4, 3], [2, 4, 1, 3], [2, 4, 3, 1],
[1, 4, 2, 3], [4, 1, 2, 3], [4, 2, 1, 3], [4, 2, 3, 1],
[1, 4, 3, 2], [4, 1, 3, 2], [4, 3, 1, 2], [4, 3, 2, 1]]

10.25 Implement function anagrams() that computes anagrams of a given word. An

anagram of word A is a word B that can be formed by rearranging the letters of A. For

example, the word pot is an anagram of the word top. Your function will take as input the

name of a file of words and as well as a word, and print all the words in the file that are

anagrams of the input word. In the next examples, use file words.txt as your file of words.

File: words.txt
>>> anagrams('words.txt', 'trace')
crate
cater
react

Chapter 10 Problems 391

10.26 Write a function pairs1() that takes as inputs a list of integers and an integer

target value and returns True if there are two numbers in the list that add up to the target

and False otherwise. Your implementation should use the nested loop pattern and check

all the pairs of numbers in the list.

>>> pair([4, 1, 9, 3, 5], 13)
4 and 9 add up to 13
>>> pair([4, 1, 9, 3, 5], 11)
no pair adds up to 11

When done, reimplement the function as pairs2() in this way: It first sorts the list and

then searches for the pair. Then analyze the run time of your two implementations using

the timingAnalysis() app.

10.27 In this problem, you will develop a function that crawls through “linked” files. Every

file visited by the crawler will contain zero or more links, one per line, to other files and

nothing else. A link to a file is just the name of the file. For example, the content of file

'file0.txt' is:

file1.txt
file2.txt

The first line represents the link o file file1.txt and the second is a link to file2.txt.

Implement recursive method crawl() that takes as input a file name (as a string), prints

a message saying the file is being visited, opens the file, reads each link, and recursively

continues the crawl on each link. The below example uses a set of files packaged in archive

files.zip.

File: files.zip>>> crawl('file0.txt')
Visiting file0.txt
Visiting file1.txt
Visiting file3.txt
Visiting file4.txt
Visiting file8.txt
Visiting file9.txt
Visiting file2.txt
Visiting file5.txt
Visiting file6.txt
Visiting file7.txt

10.28 Pascal’s triangle is an infinite two-dimensional pattern of numbers whose first five

lines are illustrated in Figure 10.22. The first line, line 0, contains just 1. All other lines

start and end with a 1 too. The other numbers in those lines are obtained using this rule:

The number at position i is the sum of the numbers in position i 1 and i in the previous

line.

1

1

1

1

1 4

1

2

3

4

1

3

6

1

4 1

Figure 10.22 Pascal’s
triangle. Only the first five
lines of Pascal’s triangle are
shown.

392 Chapter 10 Recursion

Implement recursive function pascalLine() that takes a nonnegative integer n as in-

put and returns a list containing the sequence of numbers appearing in the nth line of Pas-

cal’s triangle.

>>> pascalLine(0)
[1]
>>> pascalLine(2)
[1, 2, 1]
>>> pascalLine(3)
[1, 3, 3, 1]

10.29 Implement recursive function traverse() that takes as input a pathname of a

folder (as a string) and an integer d and prints on the screen the pathname of every file

and subfolder contained in the folder, directly or indirectly. The file and subfolder path-

names should be output with an indentation that is proportional to their depth with respect

to the topmost folder. The next example illustrates the execution of traverse() on folder

'test' shown in Figure 10.8.

File: test.zip >>> traverse('test', 0)
test/fileA.txt
test/folder1

test/folder1/fileB.txt
test/folder1/fileC.txt
test/folder1/folder11

test/folder1/folder11/fileD.txt
test/folder2

test/folder2/fileD.txt
test/folder2/fileE.txt

10.30 Implement function search() that takes as input the name of a file and the path-

name of a folder and searches for the file in the folder and any folder contained in it, directly

or indirectly. The function should return the pathname of the file, if found; otherwise, None
should be returned. The below example illustrates the execution of search('file.txt',
'test') from the parent folder of folder 'test' shown in Figure 10.8.

File: test.zip >>> search('fileE.txt', 'test')
test/folder2/fileE.txt

10.31 The Lévy curves are fractal graphical patterns that can be defined recursively. Like

the Koch curves, for every nonnegative integer n > 0, the Lévy curve Ln can be defined

in terms of Lévy curve Ln 1; Lévy curve L0 is just a straight line. Figure 10.23 shows the

Lévy curve L8.

Figure 10.23 Lévy curve
L8.

Chapter 10 Problems 393

(a) Find more information about the Lévy curve online and use it to implement recursive

function levy() that takes a nonnegative integer n and returns turtle instructions

encoded with letters L, R and, F, where L means “rotate left 45 degrees,” R means

“rotate right 90 degrees,” and F means “go forward.”

>>> levy(0)
'F'
>>> levy(1)
'LFRFL'
>>> levy(2)
'LLFRFLRLFRFLL'

(b) Implement function drawLevy()) so it takes nonnegative integer n as input and

draws the Lévy curve Ln using instructions obtained from function levy().

10.32 Implement a function that draws patterns of squares like this:

(a) To get started, first implement function square() that takes as input a Turtle object

and three integers x, y, and s and makes the Turtle object trace a square of side

length s centered at coordinates (x,y).

>>> from turtle import Screen, Turtle
>>> s = Screen()
>>> t = Turtle()
>>> t.pensize(2)
>>> square(t, 0, 0, 200) # draws the square

(b) Now implement recursive function squares() that takes the same inputs as function

square plus an integer n and draws a pattern of squares. When n = 0, nothing is

drawn. When n = 1, the same square drawn by square(t, 0, 0, 200) is drawn.

When n = 2 the pattern is:

Each of the four small squares is centered at an endpoint of the large square and has

length 1/2.2 of the original square. When n = 3, the pattern is:

This page intentionally left blank

CHAPTER

11
The Web and
Search
11.1 The World Wide Web 396

11.2 Python WWW API 403

11.3 String Pattern Matching 411

11.4 Case Study: Web Crawler 415

Chapter Summary 422

Solutions to Practice Problems 423

Exercises 425

Problems 426

IN THIS CHAPTER, we introduce the World Wide Web (the WWW or
simply the web). The web is one of the most important development in
computer science. It has become the platform of choice for sharing
information and communicating. Consequently the web is a rich source for
cutting-edge application development.

We start this chapter by describing the three core WWW
technologies: Uniform Resource Locators (URLs), the HyperText Transfer
Protocol (HTTP), and the HyperText Markup Language (HTML). We focus
especially on HTML, the language of web pages. We then go over the
Standard Library modules that enable developers to write programs that
access, download, and process documents on the web. We focus, in
particular, on mastering tools such as HTML parsers and regular
expressions that help us process web pages and analyze the content of
text documents.

In this chapter’s case study, we develop a web crawler, that is, a
program that "crawls through the web." Our crawler analyzes the content
of each visited web page and works by calling itself recursively on every
link out of the web page. The crawler is the first step in the development of
a search engine, which we do in Chapter 12.

395

396 Chapter 11 The Web and Search

11.1 The World Wide Web
The World Wide Web (WWW or, simply, the web) is a distributed system of documents

linked through hyperlinks and hosted on web servers across the Internet. In this section, we

explain how the web works and describe the technologies that it relies on. We make use of

these technologies in the web-based applications we develop in this chapter.

Web Servers and Web Clients
As mentioned earlier, the Internet is a global network that connects computers around the

world. It allows programs running on two computers to send messages to each other. Typ-

ically, the communication occurs because one of the programs is requesting a resource (a

file, say) from the other. The program that is the provider of the resource is referred to as a

server. (The computer hosting the server program is often referred to as a server too.) The

program requesting the resource is referred to as a client.
The WWW contains a vast collection of web pages, documents, multimedia, and other

resources. These resources are stored on computers connected to the Internet that run a

server program called a web server. Web pages, in particular, are a critical resource on the

web as they contain hyperlinks to resources on the web.

A program that requests a resource from a web server is called a web client. The web

server receives the request and sends the requested resource (if if exists) back to the client.

Your favorite browser (whether it is Chrome, Firefox, Internet Explorer, or Safari) is a

web client. A browser has capabilities in addition to being able to request and receive web

resources. It also processes the resource and displays it, whether the resource is a web page,

text document, image, video, or other multimedia. Most important, a web browser displays

the hyperlinks contained in a web page and allows the user to navigate between web pages

by just clicking on the hyperlinks.

DETOUR
Brief History of the Web

The WWW was invented by English computer scientist Tim Berners-Lee while he
worked at the European Organization for Nuclear Research (CERN). His goal was
to create a platform that particle physicists around the world could use to share
electronic documents. The first-ever web site was put online on August 6, 1991,
and had the URL

http://info.cern.ch/hypertext/WWW/TheProject.html

The web quickly got accepted as a collaboration tool among scientists. How-
ever, it was not until the development of the Mosaic web browser (at the National
Center for Supercomputing Applications at the University of Illinois at Urbana-
Champaign) and its successor, Netscape, that its use among the general public
exploded. The web has grown a lot since then. In late 2010, Google recorded a
total of about 18 billion unique web pages hosted by servers in 239 countries.

The WWW Consortium (W3C), founded and headed by Berners-Lee, is the
international organization that is in charge of developing and defining the WWW
standards. Its membership includes information technology companies, nonprofit
organizations, universities, governmental entities, and individuals from across the
world.

Section 11.1 The World Wide Web 397

“Plumbing” of the WWW
In order to write application programs that use resources on the web, we need to know more

about the technologies that the web relies on. Before we go over them, let’s understand what

component of the web they implement.

In order to request a resource on the web, there must be a way to identify it. In other

words, every resource on the web must have a unique name. Furthermore, there must be a

way to locate the resource (i.e., find out which computer on the Internet hosts the resource).

Therefore, the web must have a naming and locator scheme that allows a web client to

identify and locate resources.

Once a resource is located, there needs to be a way to request the resource. Sending a

message like “Hey dude, get me that mp3!” is just not going to fly. The client and server

programs must communicate using an agreed-upon protocol that specifies precisely how

the web client and the web server are supposed to format the request message and the reply

message, respectively.

Web pages are a critical resource on the web. They contain formatted information and

data and also hyperlinks that enable web surfing. In order to specify the format of a web

page and incorporate hyperlinks into it, there needs to be a language that supports format-

ting instructions and hyperlink definitions.

These three components—the naming scheme, the protocol, and the web publishing

language—were all developed by Berners-Lee and are the technologies that really define

the WWW.

Naming Scheme: Uniform Resource Locator
In order to identify and access a resource on the web, each resource must have a unique

identifier. The identifier is called the Uniform Resource Locator (URL). The URL not only

uniquely identifies a resource but also specifies how to access it, just as a person’s address

can be used to find the person. For example, the mission statement of the W3C is hosted on

the consortium’s web site, and its URL is the string

http://www.w3.org/Consortium/mission.html

This string uniquely identifies the web resource that is the W3C mission document. It also

specifies the way to access it, as illustrated in Figure 11.1.

http } :// www.w3.org ⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ /Consortium/mission.html ⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

scheme host path

Figure 11.1 Anatomy of a
URL. A URL specifies the
scheme, the host, and the
pathname of the resource.

The scheme specifies how to access the resource. In Figure 11.1, the scheme is the

HTTP protocol that we will discuss shortly. The host (www.w3c.org) specifies the name

of the server hosting the document, which is unique to each server. The path is the rel-

ative pathname (see the definition in Section 4.3) of the document relative to a special

directory at the server called the web server root directory. In Figure 11.1, the path is

(/Consortium/mission.html).

Note that the HTTP protocol is just one of many schemes that a URL may specify. Other

schemes include the HTTPS protocol, which is the secure (i.e., encrypted) version of HTTP,

and the FTP protocol, which is the standard protocol for transferring files over the Internet:

https://webmail.cdm.depaul.edu/
ftp://ftp.server.net/

398 Chapter 11 The Web and Search

Other examples include the mailto and file schemes, as in

mailto:lperkovic@cs.depaul.edu
file:///Users/lperkovic/

The mailto scheme opens an email client, such as Microsoft Outlook, to write an email

(to me in the example). The file scheme is used to access folders or files in the local file

system (such as my home directory /Users/lperkovic/).

Protocol: HyperText Transfer Protocol
A web server is a computer program that serves web resources it hosts upon request. A

web client is a computer program that makes such a request (e.g., your browser). The client

makes the request by first opening a network connection to the server (not unlike opening

a file for reading and/or writing) and then sending a request message to the server through

the network connection (equivalent to writing to a file). If the requested content is hosted

at the server, the client will eventually receive—from the server and through the network

connection—a response message that contains the requested content (equivalent to reading

from a file).

Once the network connection is established, the communication schedule between the

client and the server as well as the precise format of the request and response messages is

specified by the HyperText Transfer Protocol (HTTP).
Suppose, for example, that you use your web browser to download the W3C mission

statement with URL:

http://www.w3.org/Consortium/mission.html

The request message your web browser will send to the host www.w3.org will start with

this line:

GET /Consortium/mission.html HTTP/1.1

The first line of the request message is referred to as the request line. The request line

must start with one of the HTTP methods. The method GET is one of the HTTP methods

and is the usual way that a resource is requested. Following it is the path embedded in

the resource’s URL; this path specifies the identity and location of the requested resource

relative to the web server’s root directory. The version of the HTTP protocol used ends the

request line.

The request message may contain additional lines, referred to as request headers, fol-

lowing the request line. For example, these headers follow the request line just shown:

Host: www.w3.org
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; ...
Accept: text/html,application/xhtml+xml,application/xml;...
Accept-Language: en-us,en;q=0.5
...

The request headers give the client a way to provide more information about the request to

the server, including the character encoding and the languages (such as English) that the

browser accepts, caching information, and so on.

When the web server receives this request, it uses the path that appears in the request

line to find the requested document. If successful, it creates a reply message that contains

the requested resource.

Section 11.1 The World Wide Web 399

The first few lines of the reply message are something like:

HTTP/1.1 200 OK
Date: Mon, 28 Feb 2011 18:44:55 GMT
Server: Apache/2
Last-Modified: Fri, 25 Feb 2011 04:22:57 GMT
...

The first line of this message, called the response line, indicates that the request was suc-

cessful; if it were not, an error message would appear. The remaining lines, called the

response headers, provide additional information to the client, such as the exact time when

the server serviced the request, the time when the requested resource was last modified,

the “brand” of the server program, the character encoding of the requested resource, and

others.

Following the headers is the requested resource, which in our example is an HTML

document (describing the mission of the W3 Consortium). If the client receiving this re-

sponse is a web browser, it will compute the layout of the document using the HTML codes

and display the formatted, interactive document in the browser.

HyperText Markup Language

The W3C mission document mission.html downloaded when pointing the browser to the

URL

http://www.w3.org/Consortium/mission.html

looks like a typical web page when viewed in the browser. It has headings, paragraphs, lists,

links, pictures, all nicely arranged to make the “content” readable. However, if you look at

the actual content of the text file mission.html, you will see this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" ...
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" ...
...
<script type="text/javascript" src="/2008/site/js/main" ...
</div></body></html>

(Only the beginning and the end of the file are shown.)

DETOUR
Viewing the Web Page Source File

You may view the actual content of the file that is displayed in your browser by
clicking, for example, on menu View and then item Page Source in Firefox or

on menu Page and then item View Source in Internet Explorer.

The file mission.html is the source file for the displayed web page. A web page

source file is written using a publishing language called the HyperText Markup Language
(HTML). This language is used to define the headings, lists, images, and hyperlinks of a

web page and incorporate video and other multimedia into it.

400 Chapter 11 The Web and Search

HTML Elements
An HTML source file is composed of HTML elements. Each element defines one compo-

nent (such as a heading, a list or list item, an image, or a link) of the associated web page.

In order to see how elements are defined in an HTML source file, we consider the web page

shown in Figure 11.2. It is a basic web page summarizing the W3C mission.

Figure 11.2 Web page
w3c.html. A web page
is composed of different
types of HTML elements.
Elements h1 and h2 specify
the largest and second
largest heading, p is the
paragraph element, br is
the line break element, ul is
the list element, li is the list
item element, and a is the
anchor element, which is
used to specify a hyperlink.

Heading h1

Paragraph p

Heading h2

List ul

Data

List items li

Anchor a

Data Line break br

Indicated in the figure are web page components that correspond to the different el-

ements of the document; what we actually see are the elements after they have been in-

terpreted by the browser. The actual element definitions are in the web page source file:

File: w3c.html 1 <html>
2 <head><title>W3C Mission Summary</title></head>
3 <body>
4 <h1>W3C Mission</h1>
5 <p>
6 The W3C mission is to lead the World Wide Web to its full
7 potential
by developing protocols and guidelines that
8 ensure the long-term growth of the Web.
9 </p>

10 <h2>Principles</h2>
11
12 Web for All
13 Web on Everything
14
15 See the complete
16
17 W3C Mission document
18 .
19 </body>
20 </html>

Consider the HTML element corresponding to heading “W3C Mission”:

<h1>W3C Mission</h1>

This is a large heading element named h1. It is described using the start tag <h1> and the

Section 11.1 The World Wide Web 401

end tag </h1>. The text contained in between will be represented as a large heading by the

browser. Note that the start and end tags contain the element name and are always delimited

with < and > brackets; the end tag has a backslash as well.

In general, an HTML element consists of three components:

1. A pair of tags: the start tag and the end tag

2. Optional attributes within the start tag

3. Other elements or data between the start and end tag

In HTML source file w3c.html, there is an example of an element (title) contained

inside another element (head):

<head><title>W3C Mission Summary</title></head>

Any element that appears between the start and end tag of another element is said to be con-

tained in it. This containment relation gives rise to a treelike hierarchical structure between

the elements of an HTML document.

Tree Structure of an HTML Document
The elements in an HTML document form a tree hierarchy similar to the tree hierarchy

of a filesystem (see Chapter 4). The root element of every HTML document must be

element html. Element html contains two elements (each optional but usually present).

The first is element head, which contains document metadata information, such as a title
element (which typically contains text data that is shown on top of the browser window

when viewing the document). The second element is body, which contains all the elements

and data that will be displayed within the browser window.

Figure 11.3 shows all the elements in file w3c.html. The figure makes explicit what

element is contained in another and the resulting tree structure of the document. This tree

structure and the HTML elements together determine the layout of the web page.

html

head

title

W3C Mission

body

h1

W3C Mission

p

The . . . potential

br

by . . . Web.

h2

Principles

ul

li

Web for All

li

Web on Everything
See the complete

a

W3C Mission document

Figure 11.3 Structure of
w3c.html. The elements of
an HTML document form a
hierarchical tree structure
that specifies how the
content is organized;
the elements and the
hierarchical structure are
used by the browser to
produce the web page
layout.

Anchor HTML Element and Absolute Links
The HTML anchor element (a) is used to create hyperlinked text. In source file w3c.html,

we create hyperlinked text in this way:

W3C Mission document

402 Chapter 11 The Web and Search

This is an example of an HTML element with an attribute. As we said at the beginning of

this section, the start tag of an element may contain one or more attributes. Each attribute is

assigned a value in the start tag. The anchor element a requires attribute href to be present

in the start tag; the value of the href attribute should be the URL of the linked resource. In

our example, that is

http://www.w3.org/Consortium/mission.html

This URL identifies the web page containing the mission statement of the W3C and hosted

on the server www.w3.org. The linked resource can be anything that can be identified with

a URL: an HTML page, an image, a sound file, a movie, and so on.

The text contained in the anchor element (e.g., the text W3C Mission document) is the

text displayed in the browser, in whatever format the browser uses to display hyperlinks. In

Figure 11.2, the hyperlinked text is shown underlined. When the hyperlinked text is clicked,

the linked resource is downloaded and displayed in the browser.

In our example, the URL specified in the hyperlink is an absolute URL, which means

that it explicitly specifies all the components of a URL: the scheme, the host, and the

complete path of the linked resource. In cases when the linked resource is accessible using

the same scheme and is stored on the same host as the HTML document containing the

link, a shortened version of the URL can be used, as we discuss next.

Relative Links
Suppose that you look at the source file of the web page with URL

http://www.w3.org/Consortium/mission.html

and find the anchor element

Facts About W3C

Note that the value of attribute href is not a complete URL; it is missing the scheme

and host specification, and only has the path /Consortium/facts.html. What is the

complete URL of the facts.html document?

The URL /Consortium/facts.html is a relative URL. Because it is contained in the

document with URL

http://www.w3.org/Consortium/mission.html

the URL /Consortium/facts.html is relative to it, and the missing scheme and host-

name are just http and www.w3.org. In other words, the complete URL of web page

/Consortium/facts.html is:

http://www.w3.org/Consortium/facts.html

Here is another example. Suppose that the document with URL

http://www.w3.org/Consortium/mission.html

contains anchor

Facts About W3C

What is the complete URL of facts.html? Again, relative URL facts.html is relative

to the URL of the document containing it, which is:

http://www.w3.org/Consortium/mission.html

Section 11.2 Python WWW API 403

In other words, facts.html is contained in directory Consortium on host www.w3.org.

Therefore, its complete URL is

http://www.w3.org/Consortium/facts.html

DETOUR
Learning More about HTML

Web development and HTML is not a focus of this textbook. If you want to learn
more about HTML, there are excellent free resources on the web, in particular the
HTML tutorial at

http://www.w3schools.com/html/default.asp

This tutorial also includes an interactive HTML editor that allows you to write HTML
code and view the result.

11.2 Python WWW API
In the previous two sections, we went over basic WWW concepts and covered the three key

technologies that make up the “plumbing” of the web. We have gained a basic understand-

ing of how the web works and the structure of an HTML source file. Now we can use the

web in our Python application programs. In this section we introduce a few of the Standard

Library modules that allow Python developers to access and process resources on the web.

Module urllib.request
We typically use browsers to access web pages on the web. A browser is just one type

of web client, however; any program can act as a web client and access and download

resources on the web. In Python, the Standard Library module urllib.request gives

developers this capability. The module contains functions and classes that allow Python

programs to open and read resources on the web in a way similar to how files are opened

and read.

The function urlopen() in module urlib.request is similar to the built-in function

open() that is used to open (local) files. There are three differences however:

1. urlopen() takes as input a URL rather than a local file pathname.

2. It results in an HTTP request being sent to the web server hosting the content.

3. It returns a complete HTTP response.

In the next example, we use function urlopen() to request and receive an HTML docu-

ment hosted at a server on the web:

>>> from urllib.request import urlopen
>>> response = urlopen('http://www.w3c.org/Consortium/facts.html')
>>> type(response)
<class 'http.client.HTTPResponse'>

The object returned by function urlopen() is of type HTTPResponse, which is a type

defined in Standard Library module http.client. Objects of this type encapsulate the

HTTP response from the server. As we saw earlier, the HTTP response includes the re-

404 Chapter 11 The Web and Search

quested resource but also additional information. For example, the HTTPResponse method

geturl() returns the URL of the requested resource:

>>> response.geturl()
'http://www.w3.org/Consortium/facts.html'

To obtain all the HTTP response headers, you can use method getheaders():

>>> for header in response.getheaders():
print(header)

('Date', 'Sat, 16 Jul 2011 03:40:17 GMT')
('Server', 'Apache/2')
('Last-Modified', 'Fri, 06 May 2011 01:59:40 GMT')
...
('Content-Type', 'text/html; charset=utf-8')

(Some headers are omitted.)

The HTTPResponse object returned by urlopen contains the requested resource. The

HTTPResponse class is said to be a filelike class because it supports methods read(),

readline(), and readlines(), the same methods supported by the types of objects re-

turned by the file-opening function open(). All these methods retrieve the content of the

requested resource. For example, let’s use the method read():

>>> html = response.read()
>>> type(html)
<class 'bytes'>

The method read() will return the content of the resource. If the file is an HTML docu-

ment, for example, then its content is returned. Note, however, that method read() returns

an object of type bytes. This is because resources opened by urlopen() could very well

be audio or video files (i.e., binary files). The default behavior for urlopen() is to assume

that the resource is a binary file and, when this file is read, a sequence of bytes is returned.

If the resource happens to be an HTML file (i.e., a text file), it makes sense to decode

the sequence of bytes into the Unicode characters they represent. We use the decode()
method of the bytes class (and covered in Section 6.3) to achieve this:

>>> html = html.decode()
>>> html
'<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">\n
...

</div></body></html>\n'

(Many lines are omitted.) Decoding an HTML document into a Unicode string makes

sense because an HTML document is a text file. Once decoded into a string, we can use

string operators and methods to process the document. For example, we can now find out

the number of times string 'Web' appears in (the source file of) web page

http://www.w3c.org/Consortium/facts.html

Here it is:

>>> html.count('Web')
26

Section 11.2 Python WWW API 405

With all we have learned so far, we can write a function that takes a URL of a web page

as input and returns the content of the web page source file as a string:

Module: ch11.py
1 from urllib.request import urlopen
2 def getSource(url):
3 'returns the content of resource specified by url as a string'
4 response = urlopen(url)
5 html = response.read()
6 return html.decode()

Let’s test it on Google web page:

>>> getSource('http://www.google.com')
'<!doctype html><html><head><meta http-equiv="content-type"
content="text/html; charset=ISO-8859-1"><meta name="description"
content="Search the world's information, including webpages,
...

Practice Problem
11.1

Write method news() that takes a URL of a news web site and a list of news topics (i.e.,

strings) and computes the number of occurrences of each topic in the news.

>>> news('http://bbc.co.uk',['economy','climate','education'])
economy appears 3 times.
climate appears 3 times.
education appears 1 times.

Module html.parser
Module urllib.request provides tools to request and download resources such as web

pages from the web. If the downloaded resource is an HTML file, we can read it into a

string and process it using string operators and methods. That may be sufficient to answer

some questions about the web page content, but what about, for example, picking up all the

URLs associated with anchor tags in the web page?

If you take a moment and think about it, it would be quite messy to use string operators

and methods to find all the anchor tag URLs in an HTML file. Yet it is clear what needs to

be done: Go through the file and pick up the value of the href attribute in every anchor start

tag. To do this, however, we need a way to recognize the different elements of the HTML

file (the title, headings, links, images, text data, etc.), in particular the anchor element start

tags. The process of analyzing a document in order to break it into components and obtain

its structure is called parsing.

The Python Standard Library module html.parser provides a class, HTMLParser,

that parses HTML files. When it is fed an HTML file, it will process it from beginning to

end, find all the start tags, end tags, text data, and other components of the source file, and

“process” each one of them.

To illustrate the usage of a HTMLParser object and describe what “process” means, we

use the HTML file w3c.html from Section 11.1.

406 Chapter 11 The Web and Search

Recall that file w3c.html starts with:

File: w3c.html <html>
<head><title>W3C Mission Summary</title></head>
<body>
<h1>W3C Mission</h1>

...

The HMLPParser class supports method feed() that takes, as input, the content of an

HTML source file, in string form. Therefore, to parse file w3c.html, we first need to read

it into a string and then feed it to the parser:

>>> infile = open('w3c.html')
>>> content = infile.read()
>>> infile.close()
>>> from html.parser import HTMLParser
>>> parser = HTMLParser()
>>> parser.feed(content)

When the last line is executed (i.e., when string content is fed to parser), this hap-

pens behind the scenes: The parser divides the string content into tokens that correspond

to HTML start tags, end tags, text data, and other HTML components, and then handles
the tokens in the order in which they appear in the source file. What this means is that for

each token, an appropriate handler method is invoked. The handlers are methods of class

HTMLParser. Some of them are listed in Table 11.1.

Table 11.1 Some
HTMLParser handlers.
These methods do nothing
when invoked; they need to
be overridden to produce
the desired behavior.

Token Handler Explanation

<tag attrs> handle_starttag(tag, attrs) Start tag handler

</tag> handle_endtag(tag) End tag handler

data handle_data(data) Arbitrary text data handler

When the parser encounters a start tag token, handler method handle_starttag()
is invoked; if the parser encounters a text data token, handler method handle_data()
is invoked. Method handle_starttag() takes, as input, the start tag element name and

a list containing the tag’s attributes (or None if the tag contains no attributes). Each at-

tribute is represented by a tuple storing the name and value of the attribute. Method

handle_data() takes just the text token as input. Figure 11.4 illustrates the parsing of

file w3c.html.

Figure 11.4 Parsing HTML
file w3c.html. Tokens are
handled in the order they
appear. The first token, start
tag <html>, is handled by
handle_starttag(). The
next token is the string
between tags <http> and
<head> consisting of a new
line character and a blank
space; considered text data,
it is handled by
handle_data().

Token Handler

<http> handle_starttag('http')

'' handle_data('\n ')

<head> handle_starttag('head sq)

'' handle_data('')

<title> handle_starttag('title')

'W3C Mission Summary' handle_data('W3CMission Summary')

</title> handle_endtag('title')

Section 11.2 Python WWW API 407

What do the HTMLParser class handler methods (like handle_starttag()) really

do? Well, nothing. The handler methods of class HTMLParser are implemented to do noth-

ing when called. That is why nothing interesting happened when we executed:

>>> parser.feed(content)

The HTMLParser class handler methods are really meant to be overridden by user-defined

handlers that implement the behavior desired by the programmer. In other words, class

HTMLParser is not supposed to be used directly but rather as a super class from which the

developer derives a parser that exhibits the parsing behavior desired by the programmer.

Overriding the HTMLParser Handlers
Let’s develop a parser that prints the URL value of the href attribute contained in every

anchor start tag of the fed HTML file. To achieve this behavior, the HTMLParser handler

that needs to be overridden is method handle_starttag(). Recall that this method han-

dles every start tag token. Instead of doing nothing, we want it now to check whether the

input tag is an anchor tag and, if so, find the href attribute in the list of attributes and print

its value. Here is the implementation of our LinkParser class:

Module: ch11.py
1 from html.parser import HTMLParser
2 class LinkParser(HTMLParser):
3 '''HTML doc parser that prints values of
4 href attributes in anchor start tags'''
5

6 def handle_starttag(self, tag, attrs):
7 'print value of href attribute if any'
8

9 if tag == 'a': # if anchor tag
10

11 # search for href attribute and print its value
12 for attr in attrs:
13 if attr[0] == 'href':
14 print(attr[1])

Note how, in lines 12 to 14, we search through the list of attributes to find the attribute

href. Let’s test our parser on this HTML file:

File: links.html1 <html>
2 <body>
3 <h4>Absolute HTTP link</h4>
4 Absolute link to Google
5 <h4>Relative HTTP link</h4>
6 Relative link to w3c.html.
7 <h4>mailto scheme</h4>
8 Click here to email me.
9 </body>

10 </html>

There are three anchor tags in the HTML file links.html: the first contains URL that

is a hyperlink to Google, the second contains a URL that is a link to local file w3c.html,

408 Chapter 11 The Web and Search

and the third contains a URL that actually starts the mail client. In the next code, we feed

the file to our parser and obtain the three URLs:

>>> infile = open('links.html')
>>> content = infile.read()
>>> infile.close()
>>> linkparser = LinkParser()
>>> linkparser.feed(content)
http://www.google.com
test.html
mailto:me@example.net

Practice Problem
11.2

Develop class MyHTMLParser as a subclass of HTMLParser that, when fed an HTML file,

prints the names of the start and end tags in the order that they appear in the document, and

with an indentation that is proportional to the element’s depth in the tree structure of the

document. Ignore HTML elements that do not require an end tag, such as p and br .

File: w3c.html >>> infile = open('w3c.html')
>>> content = infile.read()
>>> infile.close()
>>> myparser = MyHTMLParser()
>>> myparser.feed(content)
html start

head start
title start
title end

head end
body start

h1 start
h1 end
h2 start
h2 end
ul start

li start
...

a end
body end

html end

Module urllib.parse
The parser LinkParser we just developed prints the URL value of every anchor href
attribute. For example, when we run the following code on the W3C mission web page

>>> rsrce = urlopen('http://www.w3.org/Consortium/mission.html')
>>> content = rsrce.read().decode()
>>> linkparser = LinkParser()
>>> linkparser.feed(content)

Section 11.2 Python WWW API 409

we get an output that includes relative HTTP URLs like

/Consortium/contact.html

absolute HTTP URLs such as

http://twitter.com/W3C

and also non-HTTP URLs like

mailto:site-comments@w3.org

(We omit many lines of output.)

What if we are only interested in collecting the URLs that correspond to HTTP hy-

perlinks (i.e., URLs whose scheme is the HTTP protocol)? Note that we cannot just say

“collect those URLs that start with string http” because then we would miss the relative

URLs, such as /Consortium/contact.html. What we need is a way to construct an ab-

solute URL from a relative URL (like /Consortium/contact.html) and the URL of the

web page containing it (http://www.w3.org/Consortium/mission.html).

The Python Standard Library module urllib.parse provides a few methods that op-

erate on URLs, including one that does exactly what we want, method urljoin(). Here is

an example usage:

>>> from urllib.parse import urljoin
>>> url = 'http://www.w3.org/Consortium/mission.html'
>>> relative = '/Consortium/contact.html'
>>> urljoin(url, relative)
'http://www.w3.org/Consortium/contact.html'

Parser That Collects HTTP Hyperlinks
We now develop another version of the LinkParser class that we call Collector. It

collects only HTTP URLs and, instead of printing them out, it puts them into a list. The

URLs in the list will be in their absolute, rather than relative, format. Finally, the class

Collector should also support method getLinks() that returns this list.

Here is a sample usage we expect from a Collector parser:

>>> url = 'http://www.w3.org/Consortium/mission.html'
>>> resource = urlopen(url)
>>> content = resource.read().decode()
>>> collector = Collector(url)
>>> collector.feed(content)
>>> for link in collector.getLinks():

print(link)

http://www.w3.org/
http://www.w3.org/standards/
...
http://www.w3.org/Consortium/Legal/ipr-notice

(Again, many lines of output, all absolute URLs, are omitted.)

To implement Collector, we again need to override handle_starttag(). Instead

of simply printing the value of the href attribute contained in the start tag, if any, the han-

dler must process the attribute value so that that only absolute HTTP URLs are collected.

410 Chapter 11 The Web and Search

Therefore, the handler needs to do this with every href value it handles:

1. Transform the href value to an absolute URL.

2. Append it to a list if it is an HTTP URL.

To do the first step, the URL of the fed HTML file must be available to the handler. There-

fore, an instance variable of the Collector parser object must store the URL. This URL

must somehow be passed to the Collector object; we choose to pass the URL as an input

argument of the Collector constructor.

For the second step, we need to have a list instance variable to store all the URLs.

The list should be initialized in the constructor. Here is the complete implementation:

Module: ch11.py
1 from urllib.parse import urljoin
2 from html.parser import HTMLParser
3 class Collector(HTMLParser):
4 'collects hyperlink URLs into a list'
5

6 def __init__(self, url):
7 'initializes parser, the url, and a list'
8 HTMLParser.__init__(self)
9 self.url = url

10 self.links = []
11

12 def handle_starttag(self, tag, attrs):
13 'collect hyperlink URLs in their absolute format'
14 if tag == 'a':
15 for attr in attrs:
16 if attr[0] == 'href':
17 # construct absolute URL
18 absolute = urljoin(self.url, attr[1])
19 if absolute[:4] == 'http': # collect HTTP URLs
20 self.links.append(absolute)
21

22 def getLinks(self):
23 'returns hyperlinks URLs in their absolute format'
24 return self.links

Practice Problem
11.3

Augment class Collector so that it also collects all the text data into a string that can be

retrieved using method getData().

>>> url = 'http://www.w3.org/Consortium/mission.html'
>>> resource = urlopen(url)
>>> content = resource.read().decode()
>>> collector = LinksCollector(url)
>>> collector.feed(content)
>>> collector.getData()
'\nW3C Mission\n ...'

(Only the first few characters are shown.)

Section 11.3 String Pattern Matching 411

11.3 String Pattern Matching
Suppose we would like to develop an application that analyzes the content of a web page, or

any other text file, and looks for all email addresses in the page. The string method find()
can find only specific email addresses; it is not the right tool for finding all the substrings

that “look like email addresses” or fit the pattern of an email address.

In order to mine the text content of a web page or other text document, we need tools

that help us define text patterns and then search for strings in the text that match these text

patterns. In this section, we introduce regular expressions, which are used to describe string

patterns. We also introduce Python tools that find strings in a text that match a given string

pattern.

Regular Expressions
How do we recognize email addresses in a text document? We usually do not find this very

difficult. We understand that an email address follows a string pattern:

An email address consists of a user ID—that is, a sequence of "allowed"

characters—followed by the @ symbol followed by a hostname—that is, a

dot-separated sequence of allowed characters.

While this informal description of the string pattern of an email address may work for us,

it is not nearly precise enough to use in a program.

Computer scientists have developed a more formal way to describe a string pattern: a

regular expression. A regular expression is a string that consists of characters and regular
expression operators. We will now learn a few of these operators and how they enable us

to precisely define the desired string pattern.

The simplest regular expression is one that doesn’t use any regular expression operators.

For example, the regular expression best matches only one string, the string 'best':

Regular Expression Matching String(s)

best best

The operator . (the dot) has the role of a wildcard character: It matches any (Unicode)

character except the new line character ('\n'). Therefore 'be.t' matches best, but also

'belt', 'beet', 'be3t', and 'be!t', among others:

Regular Expression Matching String(s)

be.t best, belt, beet, bezt, be3t, be!t, be t, . . .

Note that regular expression be.t does not match string 'bet' because operator '.' must

match some character.

Regular expression operators *, +, and ? match a particular number of repetitions of the

previous character (or regular expression). For example, the operator * in regular expression

be*t matches 0 or more repetitions of the previous character (e). It therefore matches bt
and also bet, beet, and so on:

Regular Expressions Matching String(s)

be*t bt, bet, beet, beeet, beeeet, . . .

be+t bet, beet, beeet, beeeet, . . .

bee?t bet, beet

The last example also illustrates that operator + matches 1 or more repetitions, whereas ?
matches 0 or 1 repetition of the previous character (or regular expression).

412 Chapter 11 The Web and Search

The operator [] matches any one character listed within the square brackets: For exam-

ple, regular expression [abc] matches strings a, b, and c and no other string. The operator

-, when used within the operator [], specifies a range of characters. This range is specified

by the Unicode character ordering. So regular expression [l-o] matches strings l, m, n,

and o:

Regular Expressions Matching String(s)

be[ls]t belt, best
be[l-o]t belt, bemt, bent, beot
be[a-cx-z]t beat, bebt, bect, bext, beyt, bezt

In order to match a set of characters not in the range or not in a specified set, the caret

character ^ is used. For example, [^0-9] matches any character that is not a digit:

Regular Expressions Matching String(s)

be[^0-9]t belt, best, be#t, . . . (but not be4t).

be[^xyz]t belt, be5t, . . . (but not bext, beyt, and bezt).

be[^a-zA-Z]t be!t, be5t, be t, . . . (but not beat).

The operator | is an “or” operator: If A and B are two regular expressions, then regular

expression A|B matches any string that is matched by A or by B. For example, regular

expression hello|Hello matches strings 'hello' and 'Hello':

Regular Expressions Matching String(s)

hello|Hello hello, Hello.

a+|b+ a, b, aa, bb, aaa, bbb, aaaa, bbbb, . . .

ab+|ba+ ab, abb, abbb, . . . , and ba, baa, baaa, . . .

The description of operators we just described is summarized in Table 11.2.

DETOUR
Additional Regular Expression Operators

Python supports many more regular expression operators; we have only scratched
the surface in this section. To learn more about them, read the extensive docu-
mentation available online at:

http://docs.python.org/py3k/howto/regex.html
and

http://docs.python.org/py3k/library/re.html

Practice Problem
11.4

Each of the listed cases gives a regular expression and a set of strings. Select those strings

that are matched by the regular expression.

Regular Expression Strings

(a) [Hh]ello ello, Hello, hello
(b) re-?sign re-sign, resign, re-?sign
(c) [a-z]* aaa, Hello, F16, IBM, best
(d) [^a-z]* aaa, Hello, F16, IBM, best
(e) <.*> <h1>, 2 < 3, <<>>>>, ><

Section 11.3 String Pattern Matching 413

Operator Interpretation

. Matches any character except a new line character.

* Matches 0 or more repetitions of the regular expression immediately

preceding it. So in regular expression ab*, operator * matches 0 or

more repetitions of b, not ab.

+ Matches 1 or more repetitions of the regular expression immediately

preceding it.

? Matches 0 or 1 repetitions of the regular expression immediately

preceding it.

[] Matches any character in the set of characters listed within the

square brackets; a range of characters can be specified using the first

and last character in the range and putting '-' in between.

^ If S is a set or range of characters, then [^S] matches any character

not in S.

| If A and B are regular expressions, A|B matches any string that is

matched by A or B.

Table 11.2 Some regular
expression operator.
Operators ., *, +, and ?
apply to the regular
expression preceding the
operator. Operator | is
applied to the regular
expression to the left
and right of the operator.

Because operators *, ., and [have special meaning inside regular expressions, they

cannot be used to match characters '*', '.', or '['. In order to match characters with

special meaning, the escape sequence \ must be used. So, for example, regular expression

\[would match string '['. In addition to serving as an escape sequence identifier,

the backslash \ may also signal a regular expression special sequence. Regular expression

special sequences represent predefined sets of characters that are commonly used together.

Table 11.3 lists some of the regular expression special sequences.

Special Sequence Set of Characters

\d Matches any decimal digit; equivalent to [0-9]
\D Matches any nondigit character; equivalent to [^0-9]
\s Matches any whitespace character including the blank

space, the tab \t, the new line \n, and the carriage return \r
\S Matches any non-whitespace character

\w Matches any alphanumeric character; this is equivalent to

[a-zA-Z0-9_]
\W Matches any nonalphanumeric character; this is equivalent

to [^a-zA-Z0-9_]

Table 11.3 Some special
regular expression
sequences. Note that the
listed escape sequences
are to be used in regular
expressions only; they
should not be used in an
arbitrary string.

Practice Problem
11.5

For each of the listed informal pattern descriptions or sets of strings, define a regular ex-

pression that fits the pattern description or matches all the strings in the set and no other.

(a) aac, abc, acc
(b) abc, xyz
(c) a, ab, abb, abbb, abbbb, . . .

(d) Nonempty strings consisting of lowercase letters in the alphabet (a, b, c, . . . , z)

(e) Strings containing substring oe
(f) String representing and HTML start or end tag

414 Chapter 11 The Web and Search

Python Standard Library Module re
The module re in the Standard Library is Python’s tool for regular expression processing.

One of the methods defined in the module is method findall() that takes two inputs, a

regular expression and a string, and returns a list of all substrings of the input string that

the regular expression matches. Here are some examples:

>>> from re import findall
>>> findall('best', 'beetbtbelt?bet, best')
['best']
>>> findall('be.t', 'beetbtbelt?bet, best')
['beet', 'belt', 'best']
>>> findall('be?t', 'beetbtbelt?bet, best')
['bt', 'bet']
>>> findall('be*t', 'beetbtbelt?bet, best')
['beet', 'bt', 'bet']
>>> findall('be+t', 'beetbtbelt?bet, best')
['beet', 'bet']

If the regular expression matches two substrings such that one is contained in the other, the

function findall() will match the longer substring only. For example, in

>>> findall('e+', 'beeeetbet bt')
['eeee', 'e]'

the returned list does not contain substrings 'ee' and 'eee'. If the regular expression

matches two overlapping substrings, the function findall() returns the left one. The func-

tion findall() in fact scans the input string from left to right and collects matches into a

list in the order found. You can verify this when running:

>>> findall('[^bt]+', 'beetbtbelt?bet, best')
['ee', 'el', '?', 'e', ', ', 'es']

Here is another example:

>>> findall('[bt]+', 'beetbtbelt?bet, best')
['b', 'tbtb', 't', 'b', 't', 'b', 't']

!

CAUTION
Empty Strings Are Everywhere

Compare the last example with this one:

>>> findall('[bt]*', 'beetbtbelt?bet, best')
['b', '', '', 'tbtb', '', '', 't', '', 'b', '', 't', '', '',
'b', '', '', 't', '']

Because regular expression [bt]* matches the empty string '', the function
findall() looks for empty substrings in the input string 'beetbtbelt?bet,
best' that are not contained in a larger matching substring. It finds many empty
strings, one before every character that is not b or t. That includes the empty sub-
string between the first b and the first e, the empty substring between the first and
second e, and so on.

Section 11.4 Case Study: Web Crawler 415

Practice Problem
11.6

Develop function frequency() that takes a string as input, computes the frequency of

every word in the string, and returns a dictionary that maps words in the string to their

frequency. You should use a regular expression to obtain the list of all words in the string.

>>> content = 'The pure and simple truth is rarely pure and never\
simple.'

>>> frequency(content)
{'and': 2, 'pure': 2, 'simple': 2, 'is': 1, 'never': 1,
'truth': 1, 'The': 1, 'rarely': 1}

Another useful function defined in module re is search(). It also takes a regular ex-

pression and a string; it returns the first substring that is matched by the regular expression.

You can think of it as a more powerful version of string method find(). Here is an exam-

ple:

>>> from re import search
>>> match = search('e+', 'beetbtbelt?bet')
>>> type(match)
<class '_sre.SRE_Match'>

Method search returns a reference to an object of type SRE_Match, informally referred to

as a match object. The type supports, for example, methods to find the start and end index

of the match in the input string:

>>> match.start()
1
>>> match.end()
3

The matched substring of 'beetbtbelt?bet' starts at index 1 and ends before index 3.

Match objects also have an attribute variable called string that stores the searched string:

>>> match.string
'beetbtbelt?bet, best'

To find the matched substring, we need to get the slice of match.string from index

match.start() to index match.end():

>>> match.string[match.start():match.end()]
'ee'

11.4 Case Study: Web Crawler
We now put to use use what we have learned in this chapter to develop a basic web crawler,

that is, a program that systematically visits web pages by following hyperlinks. (Web

crawlers are also referred to as automatic indexers, web robots, or simply bots.) Every

time it visits a web page, our web crawler will analyze its content and print out its analysis.

The ultimate goal, which we will realize in the next chapter, is to use this analysis to build

a search engine.

416 Chapter 11 The Web and Search

Recursive Crawler, Version 0.1
A basic approach to implementing a web crawler is this: After completing the analysis of

the current web page, the web crawler will recursively analyze every web page reachable

from the current one with a hyperlink. This approach is very similar to the one we used

when implementing the virus scanner function scan() in Section 10.2. Function scan()
took as input a folder, put the content of the folder in a list, and then recursively called itself

on every item in the list. Our web crawler should take as input a URL, put the hyperlink

HTTP URLs contained in the associated web page into a list, and then recursively call itself

on every item in the list:

Module: ch11.py
1 def crawl1(url):
2 'recursive web crawler that calls analyze() on every web page'
3

4 # analyze() returns a list of hyperlink URLs in web page url
5 links = analyze(url)
6

7 # recursively continue crawl from every link in links
8 for link in links:
9 try: # try block because link may not be valid HTML file

10 crawl1(link)
11 except: # if an exception is thrown,
12 pass # ignore and move on.

Since function crawl1() is recursive, normally we would need to define a base case

for it. Without the base case, the crawler may just continue crawling forever. That is not

necessarily wrong in this case, as a crawler should continuously crawl the web. There is

an issue with this, however. A continuously running program may exhaust the computer’s

resources (such as memory), but that is outside of the scope of this text. So, for simplicity’s

sake, we choose to leave the base case out and let our crawler run free.

The function analyze() used in function crawl1() encapsulates the analysis of the

content of the web page with URL url. We will implement this aspect of analyze()
later. Function analyze() also returns the list of links in the web page. We need to im-

plement this part if we want to test our basic web crawler crawl1(). We do this using the

Collector parser we developed in Section 11.2:

Module: ch11.py
1 def analyze(url):
2 '''returns the list of http links, in absolute format, in
3 the web page with URL url'''
4 print('Visiting', url) # for testing
5

6 # obtain links in the web page
7 content = urlopen(url).read().decode()
8 collector = Collector(url)
9 collector.feed(content)

10 urls = collector.getLinks() # urls is the list of links
11

12 # analysis of web page content to be done
13

14 return urls

Section 11.4 Case Study: Web Crawler 417

one.html

Beijing × 3

Paris × 5

Chicago × 5

three.html

Chicago × 3

Beijing × 6

two.html

Bogota × 3

Beijing × 2

Paris × 1

four.html

Chicago × 3

Paris × 2

Nairobi × 1

five.html

Nairobi × 7

Bogota × 2

Figure 11.5 Five linked
web pages. Each page
contains a few occurrences
of some of the world’s major
cities. Page one.html, for
example, contains 3
occurrences of 'Beijing',
5 of 'Paris', and 5 of
'Chicago'. It also contains
hyperlinks to web pages
two.html and
three.html.

Now let’s test our crawler. We do so on a set of linked web pages represented in Fig-

ure 11.5. Each page contains a few words (world cities, actually) and links to some of the

other pages. For example, the HTML file five.html is:

File: five.html1 <html>
2 <body>
3 Nairobi Nairobi Nairobi Nairobi Nairobi
4 Nairobi Nairobi
5 Bogota
6 Bogota
7 </body>
8 </html>

When we run crawler crawl1() starting from web page one.html, we get this output:

>>> crawl1('http://reed.cs.depaul.edu/lperkovic/one.html')
Visiting http://reed.cs.depaul.edu/lperkovic/one.html
Visiting http://reed.cs.depaul.edu/lperkovic/two.html
Visiting http://reed.cs.depaul.edu/lperkovic/four.html
Visiting http://reed.cs.depaul.edu/lperkovic/five.html
Visiting http://reed.cs.depaul.edu/lperkovic/four.html
Visiting http://reed.cs.depaul.edu/lperkovic/five.html
...

(The execution did not stop and had to be interrupted by typing Ctrl - C .)

Let’s try to understand what happened. The crawler started at page one.html. There are

two links out of one.html. The first one is a link to two.html, and the crawler followed

it (more precisely, made a recursive call on it). The crawler then followed the only link

out of two.html to page four.html, and then, again, the only link from four.html to

five.html. The page five.html has three outgoing links. The first one happens to be the

link to page four.html, and the crawler follows it. From then on, the crawler will visit

418 Chapter 11 The Web and Search

Figure 11.6 An execution
of crawl1(). We start the
crawl by calling function
crawl1() on one.html.
The first link in one.html
is to two.html, and so a
recursive call is made on
two.html. From there,
recursive calls are made on
four.html and then on
five.html. There are three
links out of five.html.
Since the first link out of
five.html is to page
four.html, a recursive call
is made on four.html.
From there, a recursive call
is made on five.html . . .

one.html

two.html

four.html

five.html

Crawler goes back
and forth between
four.html and
five.html

pages four.html and five.html back and forth, until it crashes because it reaches the

maximum recursion depth or until it is interrupted. (See Figure 11.6 for an illustration.)

Clearly something went very wrong with this execution. Page three.html was never

visited, and the crawler got stuck going between pages four.html and five.html. We

can fix the second problem by having the crawler ignore the links to pages it has already

visited. To do this, we need to somehow keep track of visited pages.

Recursive Crawler, Version 0.2
In our second crawler implementation, we use a set object to store the URLs of visited web

pages. Because this set should be accessible from the namespace of every recursive call,

we define the set in the global namespace:

Module: ch11.py
1 visited = set() # initialize visited to an empty set
2 def crawl2(url):
3 '''a recursive web crawler that calls analyze()
4 on every visited web page'''
5

6 # add url to set of visited pages
7 global visited # while not necessary, warns the programmer
8 visited.add(url)
9

10 # analyze() returns a list of hyperlink URLs in web page url
11 links = analyze(url)
12

13 # recursively continue crawl from every link in links
14 for link in links:
15 # follow link only if not visited
16 if link not in visited:
17 try:
18 crawl2(link)
19 except:
20 pass

Section 11.4 Case Study: Web Crawler 419

one.html

three.html

two.html

four.html

five.html Figure 11.7 Execution of
crawl2(). Starting from
page one.html, the crawler
visits the same sequence
of pages as in Figure 11.6.
When the crawler reaches
five.html, it finds no link
to an unvisited page. It then
has to backtrack to page
four.html, then to page
two.html, then finally
one.html. The crawler then
follows the link out of page
one.html to unvisited page
three.html.

Lines 8 and 16 are the difference between crawl2() and crawl1(). By adding URLs

of visited web pages to set visited and avoiding links to web pages with URLs in visited,

we ensure that the crawler does not revisit a page. Let’s test this crawler on the same test

bed of web pages:

>>> crawl22('http://reed.cs.depaul.edu/lperkovic/one.html')
Visiting http://reed.cs.depaul.edu/lperkovic/one.html
Visiting http://reed.cs.depaul.edu/lperkovic/two.html
Visiting http://reed.cs.depaul.edu/lperkovic/four.html
Visiting http://reed.cs.depaul.edu/lperkovic/five.html
Visiting http://reed.cs.depaul.edu/lperkovic/three.html

The first four pages visited by the crawler are the same as the first four pages vis-

ited when testing crawler1(). The difference now is that each visited page is added to

set visited. When the crawler reaches page five.html, it finds links to one.html,

two.html, and four.html, all of which have been visited. Therefore, the recursive call of

crawl2() on page five.html terminates, and so do recursive calls on pages four.html
and two.html as well. The execution returns to the original function call of crawl2() on

page one.html. The second link in that page is to three.html. Since three.html has not

been visited, the crawler will go ahead and visit it next. See the illustration in Figure 11.7.

Practice Problem
11.7

Redevelop the second crawler as a class Crawler2. The set visited should be encapsu-

lated as an instance variable of the Crawler2 object rather than as a global variable.

>>> crawler2 = Crawler2()
>>> crawler2.crawl('http://reed.cs.depaul.edu/lperkovic/one.html')
Visiting http://reed.cs.depaul.edu/lperkovic/one.html
Visiting http://reed.cs.depaul.edu/lperkovic/two.html
Visiting http://reed.cs.depaul.edu/lperkovic/four.html
Visiting http://reed.cs.depaul.edu/lperkovic/five.html
Visiting http://reed.cs.depaul.edu/lperkovic/three.html

420 Chapter 11 The Web and Search

The Web Page Content Analysis
The current implementation of function analyze() analyzes the content of a web page for

the sole purpose of finding hyperlink URLs in it. Our original goal was to do more than

that: The function analyze() was supposed to analyze the content of each web page and

print this analysis out. We now add this additional functionality to function analyze() and

complete its implementation.

We choose that the web page analysis consists of computing (1) the frequency of every

word in the web page content (i.e., in the text data) and (2) the list of links contained in the

web page. We have already computed the list of links. To compute the word frequencies,

we can use function frequency() we developed in Practice Problem 11.6. Here is then

our final implementation:

Module: ch11.py
1 def analyze(url):
2 '''prints the frequency of every word in web page url and
3 prints and returns the list of http links, in absolute
4 format, in it'''
5

6 print('Visiting', url) # for testing
7

8 # obtain links in the web page
9 content = urlopen(url).read().decode()

10 collector = Collector(url)
11 collector.feed(content)
12 urls = collector.getLinks() # get list of links
13

14 # compute word frequencies
15 content = collector.getData() # get text data as a string
16 freq = frequency(content)
17

18 # print the frequency of every text data word in web page
19 print('\n{:50} {:10} {:5}'.format('URL', 'word', 'count'))
20 for word in freq:
21 print('{:50} {:10} {:5}'.format(url, word, freq[word]))
22

23 # print the http links found in web page
24 print('\n{:50} {:10}'.format('URL', 'link'))
25 for link in urls:
26 print('{:50} {:10}'.format(url, link))
27

28 return urls

Using this version of analyze(), let’s test our crawler again. We start the crawl with:

>>> crawl2('http://reed.cs.depaul.edu/lperkovic/one.html')

The output that is printed in the interactive shell is shown on the next page. Note: In order

to get the output to fit the width of the page and also to have a cleaner view of it, we edited

out from some of the URLs the substring

http://reed.cs.depaul.edu/lperkovic/

Section 11.4 Case Study: Web Crawler 421

Visiting http://reed.cs.depaul.edu/lperkovic/one.html

URL word count
one.html Paris 5
one.html Beijing 3
one.html Chicago 5

URL link
one.html two.html
one.html three.html

Visiting http://reed.cs.depaul.edu/lperkovic/two.html

URL word count
two.html Bogota 3
two.html Paris 1
two.html Beijing 2

URL link
two.html four.html

Visiting http://reed.cs.depaul.edu/lperkovic/four.html

URL word count
four.html Paris 2
four.html Nairobi 1
four.html Chicago 3

URL link
four.html five.html

Visiting http://reed.cs.depaul.edu/lperkovic/five.html

URL word count
five.html Bogota 2
five.html Nairobi 7

URL link
five.html four.html
five.html one.html
five.html two.html

Visiting http://reed.cs.depaul.edu/lperkovic/three.html

URL word count
three.html Beijing 6
three.html Chicago 3

URL link
three.html four.html

422 Chapter 11 The Web and Search

DETOUR
Depth-First and Breadth-First Traversals

The approach that the crawler version 0.2 uses to visit pages on the web is called
depth-first traversal. Traversal is synonymous with crawl for our purposes. The
depth-first term refers to the fact that, in this approach, the crawler can quickly
move away from the start of the crawl. To see this, look at Figure 11.7. It shows
that the crawler visits faraway pages four.html and five.html before it visits
neighboring page three.html.

The problem with depth-first traversal is that it may take a very long time
to visit a neighboring page. For example, if page five.html had a link to
www.yahoo.com or www.google.com, it is unlikely that the crawler would ever
visit page three.html.

For this reason, crawlers used by Google and other search providers use a
breadth-first traversal that ensures that pages are visited in the order of distance
(the number of links) from the starting web page. Problem 11.26 asks you to im-
plement this approach.

Chapter Summary
In this chapter, we introduced the development of computer applications that search and

collect data from documents near and far. We focused in particular on accessing, searching,

and collecting data hosted on the World Wide Web.

The web is certainly one of the most important applications running on the Internet

today. In the last 20 years, the web has revolutionized the way we work, shop, socialize,

and get entertainment. It enables communication and the sharing of information on an

unprecedented scale and has become an enormous repository of data. This data, in turn,

provides an opportunity for the development of new computer applications that collect

and process the data and produce valuable information. This chapter introduces the web

technologies, the Python Standard Library web APIs, and the algorithms that can be used

to to develop such applications,

We introduced the key web technologies: URLs, HTTP, and HTML. We also intro-

duced the Python Standard Library APIs for accessing resources on the web (module

urllib.request) and for processing web pages (module html.parser). We have seen

how to use both APIs to download a web page HTML source file and parse it to obtain the

web page content.

In order to process the content of a web page or any other text document, it is helpful to

have tools that recognize string patterns in texts. This chapter introduces such tools: regular

expressions and the Standard Library module re.

We apply the material covered in this chapter to develop a web crawler that visits web

page to web page by following hyperlinks. The web crawler uses a recursive algorithm

called depth-first search, a fundamental search algorithm.

Chapter 11 Solutions to Practice Problems 423

Solutions to Practice Problems
11.1 Once the HTML document is downloaded and decoded into a string, string methods

can be used:

def news(url, topics):
'''counts in resource with URL url the frequency

of each topic in list topics'''

response = urlopen(url)
html = response.read()
content = html.decode().lower()
for topic in topics:

n = content.count(topic)
print('{} appears {} times.'.format(topic,n))

11.2 The methods handle_starttag() and handle_endtag() need to be overridden.

Each should print the name of the element corresponding to the tag, appropriately indented.

The indentation is an integer value that is incremented with every start tag token and

decremented with every end tag token. (We ignore elements p and br.) The indentation

value should be stored as an instance variable of the parser object and initialized in the

constructor.

Module: ch11.py
1 from html.parser import HTMLParser
2 class MyHTMLParser(HTMLParser):
3 'HTML doc parser that prints tags indented '
4

5 def __init__(self):
6 'initializes the parser and the initial indentation'
7 HTMLParser.__init__(self)
8 self.indent = 0 # initial indentation value
9

10 def handle_starttag(self, tag, attrs):
11 '''prints start tag with and indentation proportional
12 to the depth of the tag's element in the document'''
13 if tag not in {'br','p'}:
14 print('{}{} start'.format(self.indent*' ', tag))
15 self.indent += 4
16

17 def handle_endtag(self, tag):
18 '''prints end tag with and indentation proportional
19 to the depth of the tag's element in the document'''
20 if tag not in {'br','p'}:
21 self.indent -= 4
22 print('{}{} end'.format(self.indent*' ', tag))

11.3 You should initialize an empty string instance variable self.text in the Collector
constructor. The handler handle_data() will then handle the text data token by concate-

nating it with self.text. The code is shown next.

424 Chapter 11 The Web and Search

Module: ch11.py
1 def handle_data(self, data):
2 'collects and concatenates text data'
3 self.text += data
4

5 def getData(self):
6 'returns the concatenation of all text data'
7 return self.text

11.4 The solutions are:

(a) Hello, hello
(b) 're-sign', 'resign'
(c) aaa, best
(d) F16, IBM
(e) <h1>, <<>>>>

11.5 The solutions are:

(a) a[abc]c
(b) abc|xyz
(c) a[b]*
(d) [a-z]+
(e) [a-zA-Z]*oe[a-zA-Z]*
(f) <[^>]*>

11.6 We already considered this problem in Chapter 6. The solution here uses a regular

expression to match words and is cleaner than the original solution.

def frequency(content):
pattern = '[a-zA-Z]+'
words = findall(pattern, content)
dictionary = {}
for w in words:

if w in dictionary:
dictionary[w] +=1

else:
dictionary[w] = 1

return dictionary

11.7 The set visited should be initialized in the constructor. The method crawl() is a

slight modification of function crawl2():

class Crawler2:
'a web crawler'

def __init__(self):
'initializes set visited to an empty set'
self.visited = set()

Chapter 11 Exercises 425

def crawl(self, url):
'''calls analyze() on web page url and calls itself

on every link to an unvisited web page'''
links = analyze(url)
self.visited.add(url)
for link in links:

if link not in self.visited:
try:

self.crawl(link)
except:

pass

Exercises

11.8 In each of the next cases, select those strings that are matched by the given regular

expression.

Regular Expression Strings

(a) [ab] ab, a, b, the empty string

(b) a.b. ab, acb, acbc, acbd
(c) a?b? ab, a, b, the empty string

(d) a*b+a* aa, b, aabaa, aaaab, ba
(e) [^\d]+ abc, 123, ?.?, 3M

11.9 For each informal pattern description or set of strings below, define a regular expres-

sion that fits the pattern description or matches all the strings in the set and no other.

(a) Strings containing an apostrophe (’)

(b) Any sequence of three lowercase letters in the alphabet

(c) The string representation of a positive integer

(d) The string representation of a nonnegative integer

(e) The string representation of a negative integer

(f) The string representation of an integer (whether positive or not)

(g) The string representation of a floating-point value using the decimal point notation

11.10 For each informal description listed next, write a regular expression that will match

File: frankenstein.txt
all the strings in file frankenstein.txt that match the description. Also find out the

answer using the findall() function of the module re.

(a) String ‘Frankenstein’

(b) Numbers appearing in the text

(c) Words that end with substring ‘ible’

(d) Words that start with an uppercase and end with ‘y’

(e) List of strings of the form ‘horror of <lowercase string> <lowercase string>’

(f) Expressions consisting of a word followed by the word ‘death’

(g) Sentences containing the word ‘laboratory’

11.11 Write a regular expression that matches an email address. This is not easy so your

goal should be to create an expression that matches email addresses as closely as you can.

426 Chapter 11 The Web and Search

11.12 Write a regular expression that matches the attribute href and its value (found in an

HTML start tag) in an HTML source file.

11.13 Write a regular expression that matches strings that represent a price in U.S. dollars.

Your expression should match strings such as '$13.29' and '$1,099.29', for example.

Your expression does not have to match prices beyond $9,999.99.

11.14 Write a regular expression that matches an absolute URL that uses the HTTP proto-

col. Again, this is tricky, and you should strive for the “best” expression you can.

11.15 Modify the crawler function crawl1() so that the crawler does not visit web pages

that are more than n click (hyperlinks) away. To do this, the function should take an ad-

ditional input, a nonnegative integer n. If n is 0, then no recursive calls should be made.

Otherwise, the recursive calls should pass n 1 as the argument to the crawl1() function.

11.16 Using Figure 10.1 as a model, draw all the steps that occur during the execution of

crawl2('one.html'), including the state of the program stack at the beginning and end

of every recursive call.

11.17 Modify the crawler function crawl2() so that the crawler only follows links hosted

on the same host as the starting web page.

11.18 Modify the crawler function crawl2() so that the crawler only follows links to

resources that are contained, directly or indirectly, in the web server filesystem folder con-

taining the starting web page.

Problems

11.19 In this book, we have seen three ways to remove punctuation from a string: using

string method replace() and using string method translate() in Chapter 4, and using

regular expressions in this chapter. Compare the running time of each using the experimen-

tal running time analysis framework from Section 10.3.

11.20 You would like to produce a unique scary dictionary but have a hard time remember-

ing the thousands of words that should go into a dictionary. Your brilliant idea is to imple-

ment function scary() that reads in an electronic version of a scary book, say Frankenstein
by Mary Wollstonecraft Shelley, picks up all the words in it, and writes them in alphabetic

order in a new file called dictionary.txt. Your function should take the filename (e.g.,

frankenstein.txt) as input. The first few lines in dictionary.txt should be:

File: frankenstein.txt a
abandon
abandoned
abbey
abhor
abhorred
abhorrence
abhorrent
...

Chapter 11 Problems 427

11.21 Implement function getContent() that takes as input a URL (as a string) and prints

only the text data content of the associated web page (i.e., no tags). Avoid printing blank

lines that follow a blank line and strip the whitespace in every line printed.

>>> getContent('http://www.nytimes.com/')
The New York Times - Breaking News, World News & Multimedia
Subscribe to The Times

Log In
Register Now

Home Page
...

11.22 Write function emails() that takes a document (as a string) as input and returns the

set of email addresses (i.e., strings) appearing in it. You should use a regular expression to

find the email addresses in the document.

>>> from urllib.request import urlopen
>>> url = 'http://www.cdm.depaul.edu'
>>> content = urlopen(url).read().decode()
>>> emails(content)
{'advising@cdm.depaul.edu', 'wwwfeedback@cdm.depaul.edu',
'admission@cdm.depaul.edu', 'webmaster@cdm.depaul.edu'}

11.23 Develop an application that implements the web search algorithm we developed in

Section 1.4. Your application should take as input a list of web page addresses and a list of

target prices of the same size; it should print those web page addresses that correspond to

products whose price is less than the target price. Use your solution to Problem 11.13 to

find the price in an HTML source file.

11.24 Develop a crawler that collects the email addresses in the visited web pages. You

can use function emails() from Problem 11.22 to find email addresses in a web page. To

get your program to terminate, you may use the approach from Problem 11.15 or Prob-

lem 11.17.

11.25 Another useful function in the module urllib.request module is the function

urlretrieve(). It takes as input a URL and a filename (both as strings) and copies the

content of the resource identified by the URL into a file named filename. Use this function

to develop a program that copies all the web pages from a web site, starting from the main

web page, to a local folder on your computer.

11.26 Implement a web crawler that uses breadth-first traversal rather than depth-first.

Unlike depth-first traversal, breadth-first traversal is not naturally implemented using re-

cursion. Instead, iteration and a queue (of the kind we developed in Section 8.3) are used.

The purpose of the queue is to store URLs that have been discovered but not visited yet.

Initially, the queue will contain the starting web page only, the only discovered URL at that

point. In every iteration of a while loop, the queue is dequeued to obtain a URL, and then
the associated web page is visited. Any link in the visited page with a URL that has not

been visited or discovered is then added to the queue. The while loop should iterate as

long as there are discovered but unvisited URLs (i.e., as long as the queue is not empty).

This page intentionally left blank

CHAPTER

12Databases and
Data Processing
12.1 Databases and SQL 430

12.2 Database Programming in Python 440

12.3 Functional Language Approach 445

12.4 Parallel Computing 453

Chapter Summary 461

Solutions to Practice Problems 462

Exercises 465

Problems 466

IN THIS CHAPTER, we introduce several approaches to handle the vast
amounts of data that are created, stored, accessed, and processed in
today’s computing applications.

We start by introducing relational databases and the language used
to access them, SQL. Unlike many of the programs we have developed so
far in this book, real-world application programs usually make heavy use
of databases to store and access data. This is because databases store
data in a way that enables easy and efficient access to the data. For this
reason, it is important to develop an early appreciation of the benefits of
databases and how to make effective use of them.

The amount of data generated by web crawlers, scientific
experiments, or the stock markets is so vast that no single computer can
process it effectively. Instead, a joint effort by multiple compute
nodes—whether computers, processors, or cores—is necessary. We
introduce an approach to develop parallel programs that make effective
use of the multiple cores of a modern microprocessor. We then use this to
develop the MapReduce framework, an approach for processing data
developed by Google that can scale from a few cores on a personal
computer to hundreds of thousands of cores in a server farm.

429

430 Chapter 12 Databases and Data Processing

12.1 Databases and SQL
Data that is processed by a program exists only while the program executes. In order for

data to persist beyond the execution of the program—so it can be processed later by some

other program, for example—the data must be stored in a file.

So far in this book, we have been using standard text files to store data persistently.

The advantage of text files is that they are general purpose and easy to work with. Their

disadvantage is that they have no structure; they have, in particular, no structure that permits

data to be efficiently accessed and processed.

In this section, we introduce a special type of file, called a database file or simply a

database, that stores data in structured way. The structure makes the data in a database

file amenable to efficient processing, including efficient insertion, update, deletion, and,

especially, access. A database is a far more appropriate data storage approach than a general

text file in many applications, and it is important to know how to work with databases.

Database Tables
In Chapter 11, we developed a web crawler—a program that visits web page after web

page by following hyperlinks. The crawler scans the content of each visited web page and

outputs information about it, including all the hyperlink URLs contained in the web page

and the frequency of every word in the page. If we ran the crawler on the set of linked web

pages shown in Figure 12.1, with each page containing names of some world cities with

indicated frequencies, the hyperlink URLs would be output in this format:

URL Link
one.html two.html
one.html three.html
two.html four.html
...

Figure 12.1 Five linked
web pages. Each page
contains a few occurrences
of some of the world’s major
cities. Page one.html, for
example, contains three
occurrences of 'Beijing',
five of 'Paris', and five of
'Chicago'. It also contains
hyperlinks to web pages
two.html and
three.html.

one.html

Beijing × 3

Paris × 5

Chicago × 5

three.html

Chicago × 3

Beijing × 6

two.html

Bogota × 3

Beijing × 2

Paris × 1

four.html

Chicago × 3

Paris × 2

Nairobi × 1

five.html

Nairobi × 7

Bogota × 2

Section 12.1 Databases and SQL 431

The first two lines, for example, indicate that page one.html contains links to pages

two.html and three.html.

The crawler would output the frequency of every word in every web page in this format:

URL Word Freq
one.html Beijing 3
one.html Paris 5
one.html Chicago 5
two.html Bogota 3
...

So page one.html contains three occurrences of 'Beijing', five of 'Paris', and five of

'Chicago'.

Suppose we are interested in analyzing the data set collected by the crawler. We might,

for example, be interested in making queries such as:

1. In which web pages does word X appear in?

2. What is the ranking of web pages containing word X, based on the number of oc-

currences of word X in the page?

3. How many pages contain word X?

4. What pages have a hyperlink to page Y?

5. What is the total number of occurrences of word ‘Paris’ across all web pages?

6. How many outgoing links does each visited page have?

7. How many incoming links does each visited page have?

8. What pages have a link to a page containing word X?

9. What page containing word X has the most incoming links?

Answering each of these questions on the data set produced by the crawler would be

quite cumbersome. The text file format of the data set would require the file to be read into

a string, and then ad hoc string operations would have to be used to retrieve the relevant

data. For example, to answer question 1., we would have to find all the lines in the file

containing word X, split each line into words (i.e., strings separated by blanks), collect the

first word in every line, and then eliminate duplicate URLs.

An alternative approach would be to save the information gathered by the crawler into

a database file rather than a general-purpose text file. A database file stores data in a struc-
tured way that enables efficient access and processing of the data.

Structured means that data in a database file is stored in one or more tables. Each table is

identified by a name, such as Customers or Products, and consists of columns and rows.

Each column has a name and contains data of a specific type: string, integer, real (float),

and so on. Each row of the table contains data corresponding to one database record.

In our example, the information obtained by the crawler on the web pages shown in

Figure 12.1 could be stored in two database tables shown in Figure 12.2. The first table,

called Hyperlinks, has columns named Url and Link. Each row (record) in that table has

a string X in column Page and a string Y in column Link and refers to a hyperlink with

URL Y in web page X. The second table, called Keywords, has columns named Url, Word,

and Freq. Each record consists of strings X and Y in columns Url and Word, respectively,

and integer Z in column Freq, and corresponds to word Y appearing in web page with

URL X with frequency Z.

With data stored in database tables, we can make data queries using a special database

programming language.

432 Chapter 12 Databases and Data Processing

Figure 12.2 Database
tables Hyperlink and
Keywords. The tables
contain data processed by a
crawler on the set of pages
shown in Figure 12.1. A row
of Hyperlinks corresponds
to a hyperlink from page
Url to page Link. A row in
Keywords corresponds to a
word occurring in page Url;
the frequency of Word in the
page is Freq.

Url Link
one.html two.html
one.html three.html
two.html four.html
three.html four.html
four.html five.html
five.html one.html
five.html two.html
five.html four.html

Url Word Freq
one.html Beijing 3

one.html Paris 5

one.html Chicago 5

two.html Bogota 3

two.html Beijing 2

two.html Paris 1

three.html Chicago 3

three.html Beijing 6

four.html Chicago 3

four.html Paris 2

four.html Nairobi 5

five.html Nairobi 7

five.html Bogota 2

(a) Table Hyperlinks (b) Table Keywords

Structured Query Language
Database files are not read from or written to by an application program using the usual file

input/output interface. They typically are also not accessed directly. Instead, the application

program usually sends commands to a special type of server program called a database
engine or a database management system that manages the database; that program will

access the database file on the application’s behalf.

The commands accepted by database engines are statements written in a query lan-

guage, the most popular of which is called Structured Query Language, typically referred

to as SQL. Next we introduce a small subset of SQL that we can use to write programs that

can make use of databases, when databases are the right choice for data storage.

Statement SELECT
The SQL statement SELECT is used make queries into a database. In its simplest form, this

statement is used to retrieve a column of a database table. For example, to retrieve column

Link from table Hyperlinks, you would use:

SELECT Link FROM Hyperlinks

The result of executing this statement is stored in a result table (also called a result set),
illustrated in Figure 12.3(a).

We use uppercase characters to highlight the SQL statement keywords; SQL statements

are not case-sensitive so we could use lowercase characters. In general, the SQL statement

SELECT retrieves a subset of columns from the table and has this format:

SELECT Column(s) FROM TableName

For example, to select the content of columns Url and Word from table Keywords, you

would use:

SELECT Url, Word FROM Keywords

The result table that is obtained in shown in Figure 12.3(b). In order to retrieve all the

columns of table Keywords, the wildcard symbol * may be used:

SELECT * FROM Hyperlinks

Section 12.1 Databases and SQL 433

Link
two.html
three.html
four.html
four.html
five.html
one.html
two.html
four.html

Url Word
one.html Beijing
one.html Paris
one.html Chicago
two.html Bogota
two.html Beijing
two.html Paris
three.html Chicago
three.html Beijing
four.html Chicago
four.html Paris
four.html Nairobi
five.html Nairobi
five.html Bogota

Link
two.html
three.html
four.html
five.html
one.html

SELECT Link
FROM Hyperlinks

(a)

SELECT Url, Word
FROM Keywords

(b)

SELECT DISTINCT Link
FROM Hyperlinks

(c)

Figure 12.3 Result tables
for three queries. Each
table is the result of the
query appearing below it.
Table (a) contains all the
Link values in table
Hyperlinks. Table (b)
contains all the Url and
Word values in table
Keywords. Table (c)
contains the distinct values
in Link values in table
Hyperlinks.

The result table obtained is the original table Hyperlinks shown in Figure 12.2(a).

When we made the query

SELECT Link FROM Hyperlinks

the result set we obtained included multiple copies of the same link. If we wanted to retrieve

only the distinct links in column Link, we could use the SQL DISTINCT keyword

SELECT DISTINCT Link FROM Hyperlinks

and we would obtain the result table shown in Figure 12.3(c).

DETOUR
Getting Your Hands Dirty with SQL

In the next section, we introduce the sqlite3 Python Standard Library module. It
provides an application programming interface (API) that enables Python programs
to access database files and execute SQL commands on them.

If you cannot wait and want to try running the SQL queries we just described,
you can use the SQLite command-line shell. It is a stand-alone program that al-
lows you to interactively execute SQL statements against a database file. You will,
however, first need to download the precompiled shell binary from:

www.sqlite.org/download.html

Save the binary executable in a directory that contains the database file you want
to work with. We illustrate next the usage of the SQLite command-line shell on
database file links.db (whose two tables are shown in Figure 12.2), so we save
the executable in the folder containing that file.

To run the SQLite command-line shell, you first need to open the command-
line shell of your system. Then, switch the directory to the directory containing

434 Chapter 12 Databases and Data Processing

the sqlite3 executable and run the code shown to access the database file
links.db:

> ./sqlite3 links.db
SQLite version 3.7.7.1
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite>

(This code works on Unix/Linux/Mac OS X systems; on MS Windows, you should
use the command sqlite3.exe links.db.)

At the sqlite> prompt, you can now execute SQL statements against the
database file links.db. The only additional requirement is that your SQL state-
ment must be followed by a semicolon (;). For example:

sqlite> SELECT Url, Word FROM Keywords;
one.html|Beijing
one.html|Paris
one.html|Chicago
two.html|Bogota
two.html|Beijing
...
five.html|Nairobi
five.html|Bogota
sqlite>

(A few lines of output have been omitted.) You can use the SQLite command-line
shell to execute every SQL statement described in this section.

Clause WHERE
In order to answer a question such as “In which pages does word X appear in?” we need

to make a database query that selects only some records in a table (i.e., those that satisfy

a certain condition). The SQL WHERE clause can be added to the SELECT statement

to conditionally select records. For example, to select the URLs of web pages containing

‘Paris’, you would use

SELECT Url FROM Keywords
WHERE Word = 'Paris'

The result set returned is illustrated in Figure 12.4(a). Note that string values in SQL also

use quotes as delimiters, just as in Python. In general, the format of the SELECT statement

with the WHERE clause is:

SELECT column(s) FROM table
WHERE column operator value

The condition column operator value restricts the rows to which the SELECT state-

ment is applied to only those that satisfy the condition. Operators that may appear in the

condition are shown in Table 12.1. Conditions can be enclosed in parentheses, and logical

operators AND and OR can be used to combine two or more conditions. Note: The format

Section 12.1 Databases and SQL 435

Url
one.html
two.html
four.html

Url Freq
one.html 5

four.html 2

two.html 1

SELECT Url FROM Keywords
WHERE Word = 'Paris'

(a)

SELECT Url, Freq FROM Keywords
WHERE Word = 'Paris'
ORDER BY Freq DESC

(b)

Figure 12.4 Result tables
for two queries. Table (a)
shows the URLs of pages
containing word 'Paris' in
table Keywords. Table (b)
shows the ranking of web
pages containing word
'Paris', based on the
frequency of the word, in
descending order.

of the WHERE clause is slightly different when the BETWEEN operator is used; it is

WHERE column BETWEEN value1 AND value2

Suppose we would like the result set in Figure 12.4(a) to be ordered by the frequency

of the word 'Paris' in the web page. In other words, suppose the question is “What is
the ranking of web pages containing word X, based on the number of occurrences of string
X in the page?” To order the records in the result set by a specific column value, the SQL

keyword ORDER BY can be used:

SELECT Url,Freq FROM Keywords
WHERE Word='Paris'
ORDER BY Freq DESC

This statement returns the result set shown in Figure 12.4(b). The keyword ORDER BY

is followed by a column name; the records selected will be ordered based on values in

that column. The default is an increasing ordering; in the statement, we used keyword

DESC (which stands for “descending”) to obtain an ordering that puts the page with most

occurrences of ‘Paris’ first.

Operator Explanation Usage

= Equal column = value
<> Not equal column <> value
> Greater than column > value
< Less than column < value
>= Greater than or equal column >= value
<= Less than or equal column <= value
BETWEEN Within an inclusive range column BETWEEN value1 and value2

Table 12.1 SQL
conditional operators.
Conditions can be enclosed
in parentheses, and logical
operators AND and OR can
be used to combine two or
more conditions.

Practice Problem
12.1

Write an SQL query that returns:

(a) The URL of every page that has a link to web page four.html
(b) The URL of every page that has an incoming link from page four.html
(c) The URL and word for every word that appears exactly three times in the web page

associated with the URL

(d) The URL, word, and frequency for every word that appears between three and five

times, inclusive, in the web page associated with the URL

436 Chapter 12 Databases and Data Processing

Built-In SQL Functions
To answer queries such as “How many pages contain the word Paris?” we need a way to

count the number of records obtained through a query. SQL has built-in functions for this

purpose. The SQL function COUNT(), when applied to a result table, returns the number

of rows in it:

SELECT COUNT(*) FROM Keywords
WHERE Word = 'Paris'

The result table obtained, shown in Figure 12.5(a), contains just one column and one record.

Note that the column no longer corresponds to a column of the table on which we made the

query.

To answer “What is the total number of occurrences of word Paris across all web
pages?” we need to add up the values in column Freq of every row of table Keywords
containing ‘Paris’ in the Word column. The SQL function SUM() can be used for this as

shown next:

SELECT SUM(Freq) FROM Keywords
WHERE Word = 'Paris'

The result table is illustrated in Figure 12.5(b).

Figure 12.5 Result tables
for three queries. Table (a)
contains the number of
pages in which the word
‘Paris’ appears. Table (b) is
the total number of
occurrences of word ‘Paris’
across all web pages in the
database. Table (c) contains
the number of outgoing
hyperlinks for each web
page.

3 8

Url
one.html 2

two.html 1

three.html 1

four.html 1

five.html 3

SELECT COUNT(*)
FROM Keywords
WHERE Word = 'Paris'

(a)

SELECT SUM(Freq)
FROM Keywords
WHERE Word = 'Paris'

(b)

SELECT Url, COUNT(*)
FROM Hyperlinks
GROUP BY Url

(c)

Clause GROUP BY
Suppose you now want to know “How many outgoing links does each web page have?” To

answer this, you need to add up the number of links for each distinct Url value. The SQL

clause GROUP BY groups the records of a table that have the same value in the specified

column. The next query will group the rows of table Hyperlinks by Url value and then

count the number of rows in each group:

SELECT COUNT(*) FROM Hyperlinks
GROUP BY Url

We modify this query slightly to also include the Web page URL:

SELECT Url, COUNT(*) FROM Hyperlinks
GROUP BY Url

The result of this query is shown in Figure 12.5(c).

Section 12.1 Databases and SQL 437

Practice Problem
12.2

For each question, write an SQL query that answers it:

(a) How many words, including duplicates, does page two.html contain?

(b) How many distinct words does page two.html contain?

(c) How many words, including duplicates, does each web page have?

(d) How many incoming links does each web page have?

The result tables for questions (c) and (d) should include the URLs of the web pages.

Making SQL Queries Involving Multiple Tables
Suppose we want to know “What web pages have a link to a page containing word ‘Bo-
gota’?” This question requires a lookup of both tables Keywords and Hyperlinks. We

would need to look up Keywords to find out the set S of URLs of pages containing word

‘Bogota’, and then look up Keywords to find the URLs of pages with links to pages in S.

The SELECT statement can be used on multiple tables. To understand the behavior of

SELECT when used on multiple tables, we develop a few examples. First, the query

SELECT * FROM Hyperlinks, Keywords

returns a table containing 104 records, each a combination of a record in Hyperlinks and

a record in Keywords. This table, shown in Figure 12.6 and referred to as a cross join,

has five named columns corresponding to the two columns of table Hyperlinks and three

columns of table Keywords.

It is, of course, possible to conditionally select some records in the cross join. For

example, the next query selects the 16 records (2 of which are shown in Figure 12.6) out of

the 104 in the cross join that contain ‘Bogota’ in column Word of table Keywords:

SELECT * FROM Hyperlinks, Keywords
WHERE Keywords.Word = 'Bogota'

Do pay attention to the syntax of this last SQL query. In a query that refers to columns

in multiple tables, you must add the table name and a dot before a column name. This is

to avoid confusion if columns in different tables have the same name. To refer to column

Word of table Keywords, we must use the notation Keywords.Word.

Hyperlinks Keywords
Url Link Url Word Freq
one.html two.html one.html Beijing 3

one.html two.html one.html Paris 5

one.html two.html one.html Chicago 5

one.html two.html two.html Bogota 3

...

five.html four.html four.html Nairobi 5

five.html four.html five.html Nairobi 7

five.html four.html five.html Bogota 2

SELECT * FROM Hyperlinks, Keywords

Figure 12.6 Joining
database tables.
The table consists of every
combination of a row from
table Hyperlinks and a
row from table Keywords.
Since there are 8 rows in
table Hyperlinks and 13 in
table Keywords, the cross
join will have 8×13 = 104

rows. Only the first 3 and
the last 3 rows are shown.

438 Chapter 12 Databases and Data Processing

Here is another example. The next query picks up only those records in the cross join

whose Hyperlink.Url and Keyword.Url values match:

SELECT * FROM Hyperlinks, Keywords
WHERE Hyperlinks.Url = Keywords.Url

The result of this query is shown in Figure 12.7.

Figure 12.7 Joining
database tables. The table
consists of those rows of the
table in Figure 12.6 that
have Hyperlinks.Link =
Keywords.Url.

Hyperlinks Keywords
Url Link Url Word Freq
one.html two.html two.html Bogota 3

one.html two.html two.html Beijing 2

one.html two.html two.html Paris 1

one.html three.html three.html Chicago 3

...

five.html four.html four.html Paris 2

five.html four.html four.html Nairobi 5

SELECT * FROM Hyperlinks, Keywords
WHERE Hyperlinks.Url = Keywords.Url

Conceptually, the table in Figure 12.7 consists of records that associate a hyperlink

(from Hyperlinks.Url to Hyperlinks.Link) to a word appearing in the web page

pointed to by the hyperlink (i.e., the web page with URL Hyperlinks.Link).

Now, our original question was “What web pages have a link to a page containing
‘Bogota’?” To answer this question, we need to select records in the cross join whose

Keyword.Word value is ‘Bogota’ and whose Keyword.Url value is equal to the value of

Hyperlinks.Link. Figure 12.8 shows these records.

Figure 12.8 Joining
database tables. This table
consists of those rows of the
table in Figure 12.7 that
have Keyword.Word =
'Bogota'.

Hyperlinks Keywords
Url Link Url Word Freq
one.html two.html two.html Bogota 3

four.html five.html five.html Bogota 2

five.html two.html two.html Bogota 3

SELECT * FROM Hyperlinks, Keywords
WHERE Keywords.Word = 'Bogota' AND Hyperlinks.Link = Keywords.Url

To pick up all the URLs of web pages with a link to a page containing ‘Bogota’, we

thus need to make the query shown and illustrated in Figure 12.9.

Figure 12.9 Joining
database tables. This
result table is just the
column Hyperlinks.Url
of the table shown in
Figure 12.8.

Hyperlinks
Url
one.html
four.html
five.html

SELECT Hyperlinks.Url FROM Hyperlinks, Keywords
WHERE Keywords.Word = 'Bogota' AND Hyperlinks.Link = Keywords.Url

Section 12.1 Databases and SQL 439

Statement CREATE TABLE
Of course, before we can make queries to a database, we need to create the tables and insert

records into it. When a database file is created, it will be empty and contain no table. The

SQL statement CREATE TABLE is used to create a table and has this format:

CREATE TABLE TableName
(

Column1 dataType,
Column2 dataType,
...

)

We spread the statement across multiple lines and indent the column definitions for visual

appeal, nothing else. We could have also written the whole statement in one line.

For example, to define the table Keywords, we would do:

CREATE TABLE Keywords
(

Url text,
Word text,
Freq int

)

The CREATE TABLE statement explicitly specifies the name and data type of each column

of the table. Columns Url and Word are of type text, which corresponds to the Python

str data type. Column Freq stores integer data. Table 12.2 lists a few SQL data types and

the corresponding Python data types.

SQL Type Python Type Explanation

INTEGER int Holds integer values

REAL float Holds floating-point values

TEXT str Holds string values, delimited with quotes

BLOB bytes Holds sequence of bytes

Table 12.2 A few SQL data
types. Unlike Python
integers, the SQL integers
are limited in size (to the
range from 231 to 231 1).

Statements INSERT and UPDATE
The SQL statement INSERT is used to insert a new record (i.e., row) into a database table.

To insert a complete row, with a value for every column of the database, this format is used:

INSERT INTO TableName VALUES (value1, value2, ...)

For example, to insert the first row of table Keywords, you would do

INSERT INTO Keywords VALUES ('one.html', 'Beijing', 3)

The SQL statement UPDATE is used to modify the data in a table. Its general format is

UPDATE TableName SET column1 = value1
WHERE column2 = value2

If we wanted to update the frequency count of ‘Bogota’ in page two.html, we would

update the table Keywords in this way:

UPDATE Keywords SET Freq = 4
WHERE Url = 'two.html' AND Word = 'Bogota'

440 Chapter 12 Databases and Data Processing

DETOUR
More on SQL

SQL is specifically designed to access and process data stored in a relational
database, that is, a collection of data items stored in tables that can be accessed
and processed in various ways. The term relational refers to to the mathematical
concept of relation, which is a set of pairs of items or, more generally, tuples of
items. A table can thus be viewed as a mathematical relation.

In this text, we have been writing SQL statements in an ad hoc fashion. The ad-
vantage of viewing tables through the prism of mathematics is that that the power
of abstraction and mathematics can be brought to bear to understand what can be
computed using SQL and how. Relational algebra is a branch of mathematics that
has been developed for precisely this purpose.

There are good online resources if you would like to learn more about SQL,
including

www.w3schools.com/sql/default.asp

12.2 Database Programming in Python
With a bit of SQL under our belt, we can now write applications that store data in databases

and/or make database queries. In this section, we show how to store the data grabbed by a

web crawler into a database and then mine the database in the context of a simple search

engine application. We start by introducing the database API we will use to access the

database files.

Database Engines and SQLite
The Python Standard Library includes a database API module sqlite3 that provides

Python developers a simple, built-in API for accessing database files. Unlike typical database

APIs, the sqlite3 module is not an interface to a separate database engine program. It is

an interface to a library of functions called SQLite that accesses the database files directly.

DETOUR
SQLite versus Other Database Management Systems

Application programs do not typically read from and write to database files di-
rectly. Instead, they send SQL commands to a database engine or, more formally,
a relational database management system (RDBMS). An RDBMS manages the
database and accesses the database files on the application’s behalf.

The first RDBMS was developed at the Massachusetts Institute of Technology
in the early 1970s. Significant RDBMSs in use today include commercial ones by
IBM, Oracle, Sybase, and Microsoft as well as open source ones such as Ingres,
Postgres, and MySQL. All these engines run as independent programs outside of
Python. In order to access them, you must use an API (i.e., a Python module)
that provides classes and functions that allow Python applications to send SQL

Section 12.2 Database Programming in Python 441

statements to the engine.
SQLite, however, is a library of functions that implements an SQL database

engine that executes in the context of the application rather than independent from
it. SQLite is extremely lightweight and commonly used by many applications, in-
cluding the Firefox and Opera browsers, Skype, Apple iOS and Google’s Android
operating system, to store data locally. For this reason, SQLite is said to be the
most widely used database engine.

Creating a Database with sqlite3
We now demonstrate the usage of the sqlite3 database API by going over the steps nec-

essary to store word frequencies and hyperlink URLs scanned from a web page into a

database. First, we need to create a connection to the database file, which is somewhat

equivalent to opening a text file:

>>> import sqlite3
>>> con = sqlite3.connect('web.db')

The function connect() is a function in module sqlite3 that takes as input the name of a

database file (in the current working directory) and returns an object of type Connection,

a type defined in the module sqlite3. The Connection object is associated with the

database file. In the statement, if database file web.db exists in the current working direc-

tory, the Connection object con will represent it; otherwise, a new database file web.db
is created.

Once we have a Connection object associated with the database, we need to create a

cursor object, which is responsible for executing SQL statements. The method cursor()
of the Connection class returns an object of type Cursor:

>>> cur = con.cursor()

A Cursor object is the workhorse of database processing. It supports a method which

takes an SQL statement, as a string, and executes it: method execute(). For example, to

create the database table Keywords, you would just pass the SQL statement, as a string, to

the execute() method:

>>> cur.execute("""CREATE TABLE Keywords (Url text,
Word text,
Freq int)""")

Now that we’ve created table Keywords, we can insert records into it. The SQL INSERT
INTO statement is simply passed as an input to the execute() function:

>>> cur.execute("""INSERT INTO Keywords
VALUES ('one.html', 'Beijing', 3)""")

In this example, the values inserted into the database ('one.html', 'Beijing' and 3) are

"hardcoded" in the SQL statement string expression. That is not typical, as usually SQL

statements executed within a program use values that come from Python variables. In order

to construct SQL statements that use Python variable values, we use a technique similar to

string formatting called parameter substitution.

442 Chapter 12 Databases and Data Processing

Suppose, for example, that we would like to insert a new record into the database, one

containing values:

>>> url, word, freq = 'one.html', 'Paris', 5

We construct the SQL statement string expression as usual, but we put a ? symbol as a

placeholder wherever a Python variable value should be. This will be the first argument to

the execute() method. The second argument is a tuple containing the three variables:

>>> cur.execute("""INSERT INTO Keywords
VALUES (?, ?, ?)", (url, word, freq))"""

The value of each tuple variable is mapped to a placeholder as shown in Figure 12.10.

Figure 12.10 Parameter
substitution. Placeholder ?
is placed in the SQL string
expression where the
variable value should go.

''INSERT INTO Keywords VALUES (? , ? , ?)'', (url , word , freq))

We can also assemble all the values into a tuple object beforehand:

>>> record = ('one.html','Chicago', 5)
>>> cur.execute("INSERT INTO Keywords VALUES (?, ?, ?)", record)

!

CAUTION
Security Issue: SQL Injection

It is possible to construct SQL statement string expressions using format strings
and the string format() method. That is, however, insecure, as it is vulnerable
to a security attack called an SQL injection attack. You should definitely not use
format strings to construct SQL expressions.

Committing to Database Changes and Closing the Database
Changes to a database file—including table creation or deletion or row insertions and

updates—are not actually written to the database file immediately. They are only recorded

temporarily, in memory. In order to ensure that the changes are written, you must commit

to the changes by having the Connection object invoke the commit() method:

>>> con.commit()

When you are done working with a database file, you need to close it just as you would

close a text file. The Connection object invokes the close() method to close the database

file:

>>> con.close()

Practice Problem
12.3

Implement function webData() that takes as input:

1. The name of a database file

2. The URL of a web page

3. A list of all hyperlink URLs in the web page

4. A dictionary mapping each word in the web page to its frequency in the web page

Section 12.2 Database Programming in Python 443

The database file should contain tables named Keywords and Hyperlinks defined as illus-

trated in Figures 12.2(a) and (b). Your function should insert a row into table Hyperlinks
for every link in the list, and a row into table Keywords for every (word, frequency) pair in

the dictionary. You should also commit and close the database file when done.

Querying a Database Using sqlite3
We now show how to make SQL queries from within a Python program. We make queries

against database file links.db, which contains the tables Hyperlinks and Keywords
shown in Figure 12.2.

File: links.db>>> import sqlite3
>>> con = sqlite3.connect('links.db')
>>> cur = con.cursor()

To execute an SQL SELECT statement, we just need to pass the statement, as a string,

to the cursor’s execute() method:

>>> cur.execute('SELECT * FROM Keywords')

The SELECT statement should return a result table. So where is it?

The table is stored in the Cursor object cur itself. If you want it, you need to fetch it,

which you can do in several ways. To obtain the selected records as a list of tuples, you can

use the fetchall() method (of the Cursor class):

>>> cur.fetchall()
[('one.html', 'Beijing', 3), ('one.html', 'Paris', 5),
('one.html', 'Chicago', 5), ('two.html', 'Bogota', 3)
...
('five.html', 'Bogota', 2)]

The other option is to treat the Cursor object cur as an iterator and iterate over it directly:

>>> cur.execute('SELECT * FROM Keywords')
<sqlite3.Cursor object at 0x15f93b0>
>>> for record in cur:

print(record)

('one.html', 'Beijing', 3)
('one.html', 'Paris', 5)
...
('five.html', 'Bogota', 2)

The second approach has the advantage of being memory efficient because no large list is

stored in memory.

What if a query uses a value stored in a Python variable? Suppose we would like to

learn what web pages contain the value of word, where word is defined as:

>>> word = 'Paris'

Once again, we can use parameter substitution:

>>> cur.execute('SELECT Url FROM Keywords WHERE Word = ?', (word,))
<sqlite3.Cursor object at 0x15f9b30>

444 Chapter 12 Databases and Data Processing

The value of word is placed into the SQL query at the placeholder position. Let’s check

that the query does find all the web pages containing the word ‘Paris’:

>>> cur.fetchall()
[('one.html',), ('two.html',), ('four.html',)]

Let’s try an example that uses values of two Python variables. Suppose we want to

know the URLs of web pages containing more than n occurrences of word, where:

>>> word, n = 'Beijing', 2

We again use parameter substitution, as illustrated in Figure 12.11:

>>> cur.execute("""SELECT * FROM Keywords
WHERE Word = ? AND Freq > ?""", (word, n))

<sqlite3.Cursor object at 0x15f9b30>

Figure 12.11 Two
parameter SQL
substitution. The first
variable is matched to the
first placeholder, and the
second variable to the
second placeholder.

'SELECT * FROM Keywords WHERE Word = ? AND Freq > ? ', (word , n))

!

CAUTION
Two Cursor Pitfalls

If, after executing the cur.execute() statement, you run

>>> cur.fetchall()
[('one.html', 'Beijing', 3), ('three.html', 'Beijing', 6)]

you will get the expected result table. If, however, you run cur.fetchall() again:

>>> cur.fetchall()
[]

you get nothing. The point is this: The fetchall() method will empty the Cursor
object buffer. This is also true if you fetch the records in the result table by iterating
over the Cursor object.

Another problem occurs if you execute an SQL query without fetching the result
of the previous query:

>>> cur.execute("""SELECT Url FROM Keywords
WHERE Word = 'Paris'""")

<sqlite3.Cursor object at 0x15f9b30>
>>> cur.execute("""SELECT Url FROM Keywords

WHERE Word = 'Beijing'""")
<sqlite3.Cursor object at 0x15f9b30>
>>> cur.fetchall()
[('one.html',), ('two.html',), ('three.html',)]

The fetchall() call returns the result of the second query only. The result of the
first is lost!

Section 12.3 Functional Language Approach 445

Practice Problem
12.4

A search engine is server application that takes a keyword from a user and returns the URLs

of web pages containing the keyword, ranked according to some criterion. In this practice

problem, you are asked to develop a simple search engine that ranks web pages based on

its frequency.

Write a search engine application based on the results of a web crawl that stored word

frequencies in a database table Keywords just like the one in Figure 12.2(b). The search

engine will take a keyword from the user and simply return the web pages containing the

keyword, ranked by the frequency of the keyword, in decreasing order.

>>> freqSearch('links.db')
Enter keyword: Paris
URL FREQ
one.html 5
four.html 2
two.html 1
Enter keyword:

12.3 Functional Language Approach
In this section we showcase MapReduce, a framework for data processing developed by

Google. Its key feature is that it is scalable, that is, it is able to process very large data

sets. It is robust enough to process large data sets using multiple compute nodes, whether

the compute nodes are cores on one microprocessor or computers in a cloud computing
platform. In fact, we show in the next section how to extend the framework we develop

here to utilize all the cores of your computer’s microprocessor.

In order to keep our MapReduce implementation as simple as possible, we introduce

a new Python construct, list comprehension. Both list comprehension and the MapReduce

framework have their origins in the functional programming language paradigm, which we

describe briefly.

List Comprehension
When you open a text file and use method readlines() to read the file, you will obtain a

list of lines. Each line in the list ends with the new line character \n. Suppose, for example,

that list lines was obtained that way:

>>> lines
['First Line\n','Second\n','\n', 'and Fourth.\n']

In a typical application, character \n gets in the way of processing the lines, and we

need to remove it. One way to do this would be to use a for loop and the familiar accumu-

lator pattern:

>>> newlines = []
>>> for i in range(len(lines)):

newlines.append(lines[i][:-1])

In each iteration i of the for loop, the last character of line i (the new line character \n) is

446 Chapter 12 Databases and Data Processing

removed and the modified line is added to accumulator list newlines:

>>> newlines
['First Line', 'Second', '', 'and Fourth.']

There is another way to accomplish the same task in Python:

>>> newlines = [line[:-1] for line in lines]
>>> newlines
['First Line', 'Second', '', 'and Fourth.']

The Python statement [line[:-1] for line in lines] constructs a new list from list

lines and is Python’s list comprehension construct. Here is how it works. Every item line
in list lines is used in order from left to right to generate an item in the new list by applying

line[:-1] to line. The order in which the items appear in the new list corresponds to the

order in which the corresponding items appear in the original list lines (see Figure 12.12).

Figure 12.12 List
comprehension. List
comprehension constructs
a new list from an existing
list. The same function is
applied to every item of the
existing list to construct
items of the new.

lines:

newlines:

'First Line\n''First Line\n' 'Second\n''Second\n' '\n''\n' 'and Fourth\n''and Fourth\n'

'First Line''First Line' 'Second''Second' '''' 'and Fourth''and Fourth'

[:-1] [:-1] [:-1] [:-1]

More generally, a list comprehension statement has this syntax:

[<expression> for <item> in <sequence/iterator>]

This statement evaluates into a list whose items are obtained by applying <expression>,

a Python expression typically involving variable <item>, to each item of iterable container

<sequence/iterator>. An even more general version may also include an optional con-

ditional expression:

[<expression> for <item> in <sequence/iterator> if <condition>]

In this case, the list obtained has elements that are obtained by applying expression to

each item of sequence/iterator for which condition is true.

Let’s try a few examples. In the next modification of the last example, the new list will

not contain blank strings that correspond to blank lines in the original file:

>>> [line[:-1] for line in lines if line! = '\n']
['First Line', 'Second', 'and Fourth.']

In the next example, we construct a list of even numbers up to 20:

>>> [i for i in range(0, 20, 2)]
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

In the last example, we compute the lengths of the strings in a list:

>>> [len(word) for word in ['hawk', 'hen', 'hog', 'hyena']]
[4, 3, 3, 5]

Section 12.3 Functional Language Approach 447

Practice Problem
12.5

Let the list of strings words be defined as:

>>> words = ['hawk', 'hen', 'hog', 'hyena']

Write list comprehension statements that use words as the original list to construct lists:

(a) ['Hawk', 'Hen', 'Hog', 'Hyena']
(b) [('hawk', 4), ('hen', 3), ('hog', 3), ('hyena', 5)]
(c) [[('h', 'hawk'), ('a', 'hawk'), ('w', 'hawk'), ('k', 'hawk')],

[('h', 'hen'), ('e', 'hen'), ('n', 'hen')], [('h', 'hog'),
('o', 'hog'), ('g', 'hog')], [('h', 'hyena'), ('y', 'hyena'),
('e', 'hyena'), ('n', 'hyena'), ('a', 'hyena')]]

The list in (c) requires some explanation. For every string s of the original list a new list of

tuples is created, such that each tuple maps a character of the string s to the string s itself.

DETOUR
Functional Programming

List comprehension is a programming construct borrowed from functional program-
ming languages. With origins in the SETL and NPL programming languages, list
comprehension became more widely known when incorporated in the functional
programming language Haskell and, especially, Python.

The functional language paradigm differs from the imperative, declarative, and
the object-oriented paradigm in that it does not have “statements,” only expres-
sions. A functional language program is an expression that consists of a func-
tion call that passes data and possible other functions as arguments. Examples of
functional programming languages include Lisp, Scheme, ML, Erlang, Scala, and
Haskel.

Python is not a functional language, but it borrows a few functional language
constructs that help create cleaner, shorter Python programs.

MapReduce Problem Solving Framework
We consider, one last time, the problem of computing the frequency of every word in a

string. We have used this example to motivate the dictionary container class and also to

develop a very simple search engine. We use this problem now to motivate a new approach,

called MapReduce, developed by Google for solving data processing problems.

Suppose we would like to compute the frequency of every word in the list

>>> words = ['two', 'three', 'one', 'three', 'three',
'five', 'one', 'five']

The MapReduce approach for doing this takes three steps.

In the first step, we create a tuple (word, 1) for every word in the list words. The

pair (word, 1) is referred to as a (key, value) pair, and the value of 1 for every key word
captures the count of that particular instance of a word. Note that there is a (word, 1) pair

for every occurrence of word in the original list words.

448 Chapter 12 Databases and Data Processing

Figure 12.13 MapReduce
for word frequency. List
comprehension is used
to map each word in list
words to a list [(word,1)].
Those new lists are stored
in list intermediate1.
Then all [(word,1)] lists of
intermediate1 containing
the same word are pulled
together to create tuple
(word, [1,1,...,1]). In
the last step, the 1s in every
such tuple are added up
into variable count, and
tuple (word, count) is
added to list frequency.

'two'

'three'

'one'

'three'

'three'

'five'

'one'

'five'

words

[('two', 1)]

[('three', 1)]

[('one', 1)]

[('three', 1)]

[('three', 1)]

[('five', 1)]

[('one', 1)]

[('five', 1)]

intermediate1

('two', [1])

('three', [1,1,1])

('one', [1,1])

('five', [1,1])

intermediate2

('two', 1)

('three', 3)

('one', 2)

('five', 2)

frequency

Each (key,value) pair is stored in its own list, and all these single-element lists are

contained in the list intermediate1, as shown in Figure 12.13.

The intermediate step of MapReduce pulls together all (word, 1) pairs with the same

word key and create a new (key, value) pair (word, [1,1,...,1]) where [1,1,...,1]
is a list of all the values 1 pulled together. Note that there is a 1 in [1,1,...,1] for every

occurrence of word in the original list words. We refer to the list of (key, value) pairs

obtained in this intermediate step as intermediate2 (see Figure 12.13).

In the final step, a new pair (word, count) is constructed by adding up all the 1s in

every (word, [1,1,...,1]) of intermediate2, as shown in Figure 12.13. We call this

final list of (key, value) pairs result.

Let’s see now how to do these steps in Python. The first step consists of constructing a

new list from list words by applying function occurrence() to every word in list words:

Module: ch12.py
1 def occurrence(word):
2 'returns list containing tuple (word, 1)'
3 return [(word, 1)]

Using list comprehension, we can express the first step of MapReduce succinctly:

>>> intermediate1 = [occurrence(word) for word in words]
>>> intermediate1
[[('two', 1)], [('three', 1)], [('one', 1)], [('three', 1)],
[('three', 1)], [('five', 1)], [('one', 1)], [('five', 1)]]

This step is referred to as the Map step of MapReduce, and function occurrence() is said

to be the map function of the word frequency problem.

Section 12.3 Functional Language Approach 449

!

CAUTION
Map Step Returns a List of Tuples

The function occurrence() returns a list containing just one tuple. You may won-
der why it does not return just the tuple itself.

The reason is that our goal is not just to solve the word frequency problem.
Our goal is to develop a general framework that can be used to solve a range of
problems. For problems other than the word frequency problem, the Map step may
return more than one tuple. We will see an example of this later in this section. So
we insist that the map function returns a list of tuples.

The intermediate step of MapReduce, called the Partition step, pulls together all pairs

(key, value1), (key, value2), ... (key, valuek)

contained in (sublists of) intermediate1 with the same key. For each unique key, a new

(key, values) pair is constructed where values is the list [value1, value2, ...,
valuek]. This step is encapsulated in function partition():

Module: ch12.py
1 def partition(intermediate1):
2 '''intermediate1 is a list containing [(key, value)] lists;
3 returns iterable container with a (key, values) tuple for
4 every unique key in intermediate1; values is a list that
5 contains all values in intermediate1 associated with key
6 '''
7 dct = {} # dictionary of (key, value) pairs
8

9 # for every (key, value) pair in every list of intermediate1
10 for lst in intermediate1:
11 for key, value in lst:
12

13 if key in dct: # if key already in dictionary dct, add
14 dct[key].append(value) # value to list dct[key]
15 else: # if key not in dictionary dct, add
16 dct[key] = [value] # (key, [value]) to dct
17

18 return dct.items() # return container of (key, values) tuples

Function partition() takes list intermediate1 and constructs list intermediate2:

>>> intermediate2 = partition(intermediate1)
>>> intermediate2
dict_items([('one', [1, 1]), ('five', [1, 1]), ('two', [1]),

('three', [1, 1, 1])])

Finally, the last step consists of constructing a new (key, count) pair from each

(key, values) pair of intermediate2 by just accumulating the values in values:

Module: ch12.py
1 def occurrenceCount(keyVal):
2 return (keyVal[0], sum(keyVal[1]))

450 Chapter 12 Databases and Data Processing

Again, list comprehension provides a succinct way to perform this step:

>>> [occurrenceCount(x) for x in intermediate2]
[('six', 1), ('one', 2), ('five', 2), ('two', 1), ('three', 3)]

This is referred to as the Reduce step of MapReduce. The function occurrenceCount()
is referred to as the reduce function for the word frequency problem.

MapReduce, in the Abstract
The MapReduce approach we used to compute word frequencies in the previous section

may seem like an awkward and strange way to compute word frequencies. It can be viewed,

as a more complicated version of the dictionary-based approach we have seen in Chapter 6.

There are, however, benefits to the MapReduce approach. The first benefit is that the ap-

proach is general enough to apply to a range of problems. The second benefit is that it is

amenable to an implementation that uses not one but many compute nodes, whether it is

several cores on a central processing unit (CPU) or thousands in a cloud computing system.

We go into the second benefit in more depth in the next section. What we would like

to do now is abstract the MapReduce steps so the framework can be used in a range of

different problems, by simply defining the problem specific map and reduce functions. In

short, we would like to develop a class SeqMapReduce that can be used to compute word

frequencies as easily as this:

>>> words = ['two', 'three', 'one', 'three', 'three',
'five', 'one', 'five']

>>> smr = SeqMapReduce(occurrence, occurrenceCount)
>>> smr.process(words)
[('one', 2), ('five', 2), ('two', 1), ('three', 3)]

We can then use the SeqMapReduce object smr to compute frequencies of other things. For

example, numbers:

>>> numbers = [2,3,4,3,2,3,5,4,3,5,1]
>>> smr.process(numbers)
[(1, 1), (2, 2), (3, 4), (4, 2), (5, 2)]

Furthermore, by specifying other, problem-specific, map and reduce functions, we can

solve other problems.

These specifications suggest that the class SeqMapReduce should have a constructor

that takes the map and reduce functions as input. The method process should take an

iterable sequence containing data and perform the Map, Partition, and Reduce steps:

Module: ch12.py
1 class SeqMapReduce(object):
2 'a sequential MapReduce implementation'
3 def __init__(self, mapper, reducer):
4 'functions mapper and reducer are problem specific'
5 self.mapper = mapper
6 self.reducer = reducer
7 def process(self, data):
8 'runs MapReduce on data with mapper and reducer functions'
9 intermediate1 = [self.mapper(x) for x in data] # Map

10 intermediate2 = partition(intermediate1)
11 return [self.reducer(x) for x in intermediate2] # Reduce

Section 12.3 Functional Language Approach 451

!

CAUTION
Input to MapReduce Should Be Immutable

Suppose we would like to compute frequencies of sublists in list lists:

>>> lists = [[2,3], [1,2], [2,3]]

It would seem that the same approach we used to count strings and numbers
would work:

>>> smr = SeqMapReduce(occurrence, occurrenceCount)
>>> smr.process(lists)
Traceback (most recent call last):
...
TypeError: unhashable type: 'list'

So . . . what happened? The problem is that lists cannot be used as keys of a
the dictionary inside function partition(). Our approach can work only with
hashable, immutable data types. By changing the lists to tuples, we are back in
business:

>>> lists = [(2,3), (1,2), (2,3)]
>>> m.process(lists)
[((1, 2), 1), ((2, 3), 2)]

Inverted Index
We now apply the MapReduce framework to solve the inverted index problem (also referred

to as the reverse index problem). There are many versions of this problem. The one we

consider is this: Given a bunch of text files, we are interested in finding out which words

appear in which file. A solution to the problem could be represented as a mapping that

maps each word to the list of files containing it. This mapping is called an inverted index.

For example, suppose we want to construct the inverted index for text files a.txt,

b.txt, and c.txt shown in Figure 12.14.

a.txt
Paris, Miami
Tokyo, Miami

b.txt
Tokyo
Tokyo, Quito

c.txt
Cairo, Cairo
Paris

Figure 12.14 Three text
files. An inverted index
maps each word to the list
of files containing the word.

An inverted index would map, say, 'Paris' to list ['a.txt', 'c.txt'] and 'Quito'
to ['b.txt']. The inverted index should thus be:

[('Paris', ['c.txt', 'a.txt']), ('Miami', ['a.txt']),
('Cairo', ['c.txt']), ('Quito', ['b.txt']),
('Tokyo', ['a.txt', 'b.txt'])]

To use MapReduce to obtain the inverted index, we must define the map and reduce

functions that will take the list of file names

['a.txt', 'b.txt', 'c.txt']

and produce the inverted index. Figure 12.15 illustrates how these functions should work.

452 Chapter 12 Databases and Data Processing

Figure 12.15 MapReduce
for the inverted index
problem. The Map step
creates a tuple (word,
file) for every word in a
file. The Partition step
collects all the (word,
file) tuples with the same
word. The output of the
Partition step is the desired
inverted index that maps
words to the files they are
contained in. The Reduce
step does not make any
changes to the output of
the Partition step.

a.txt

b.txt

c.txt

docs

(Tokyo, a.txt)

(Paris, a.txt)

(Miami, a.txt)

(Tokyo, b.txt)

(Quito, b.txt)

(Cairo, c.txt)

(Paris, c.txt)

intermediate1

(Tokyo, [a.txt,b.txt])

(Paris, [a.txt,c.txt])

(Miami, [a.txt])

(Quito, [b.txt])

(Cairo, [c.txt])

intermediate2

(...)

(...)

(...)

(...)

(...)

In the Map phase, the map function creates a list for every file. This list contains a

tuple (word, file) for every word word in the file. Function getWordsFromFile()
implements the map function:

Module: ch12.py
1 from string import punctuation
2 def getWordsFromFile(file):
3 '''returns list of items [(word, file)]
4 for every word in file'''
5 infile = open(file)
6 content = infile.read()
7 infile.close()
8

9 # remove punctuation (covered in Section 4.1)
10 transTable = str.maketrans(punctuation, ' '*len(punctuation))
11 content = content.translate(transTable)
12

13 # construct set of items [(word, file)] with no duplicates
14 res = set()
15 for word in content.split():
16 res.add((word, file))
17 return res

Note that this map function returns a set, not a list. That is not a problem because the only

requirement is that the returned container is iterable. The reason we use a set is to ensure

there are no duplicate entries [(word, file)], as they are not necessary and will only

slow down the Partition and Reduce steps.

After the Map step, the partition function will pull together all tuples (word, file)
with the same value of word and merge them into one tuple (word, files), where files
is the list of all files containing word. In other words, the partition function constructs the

inverted index.

Section 12.4 Parallel Computing 453

This means that the Reduce step does not need to do anything. The reduce function just

copies items to the result list, the inverted index.

Module: ch12.py
1 def getWordIndex(keyVal):
2 return (keyVal)

To compute the inverted index, you only need to do:

File: a.txt, b.txt, c.txt>>> files = ['a.txt', 'b.txt', 'c.txt']
>>> print(SeqMapReduce(getWordsFromFile, getWordIndex).

process(files))
[('Paris', ['c.txt', 'a.txt']), ('Miami', ['a.txt']),
('Cairo', ['c.txt']), ('Quito', ['c.txt', 'b.txt']),
('Tokyo', ['a.txt', 'b.txt'])]

Practice Problem
12.6

Develop a MapReduce-based solution constructing an inverted “character index” of a list

of words. The index should map every character appearing in at least one of the words to a

list of words containing the character. Your work consists of designing the mapper function

getChars() and reducer function getCharIndex().

>>> mp = SeqMapReduce(getChars, getCharIndex)
>>> mp.process(['ant', 'bee', 'cat', 'dog', 'eel'])
[('a', ['ant', 'cat']), ('c', ['cat']), ('b', ['bee']),
('e', ['eel', 'bee']), ('d', ['dog']), ('g', ['dog']),
('l', ['eel']), ('o', ['dog']), ('n', ['ant']),
('t', ['ant', 'cat'])]

12.4 Parallel Computing
Today’s computing often requires the processing of a tremendous amount of data. A search

engine continuously extracts information out of billions of web pages. Particle physics ex-

periments run at the Large Hadron Collider near Geneva, Switzerland, generate petabytes

of data per year that must be processed to answer basic questions about the universe. Com-

panies like Amazon, eBay, and Facebook keep track of millions of transactions daily and

use them in their data mining applications.

No computer is powerful enough to tackle the type of problems we have just described

by itself. Today, large data sets are processed in parallel using many, many processors. In

this section, we introduce parallel programming and a Python API that enables us to take

advantage of the multiple cores available on most current computers. While the practical

details of parallel computing on a distributed system is beyond the scope of this text, the

general principles we introduce in this chapter apply to such computing as well.

Parallel Computing
For several decades and until the mid-2000s, microprocessors on most personal computers

had a single core (i.e., processing unit). That meant that only one program could execute at

a time on such machines. Starting in the mid-2000s, major microprocessor manufacturers

454 Chapter 12 Databases and Data Processing

such as Intel and AMD started selling microprocessors with multiple processing units,

typically referred to as cores. Almost all personal computers sold today and many wireless

devices have microprocessors with two or more cores. The programs we have developed

so far have not made use of more than one core. To take advantage of them, we need to use

one of the Python parallel programming APIs.

DETOUR
Moore’s Law

Intel cofounder Gordon Moore predicted in 1965 that the number of transistors on a
microprocessor chip would double about every two years. Amazingly, his prediction
has held up so far. Thanks to the exponential increase in transistor density, the
processing power of microprocessors, measured in the number of instructions per
second, has seen tremendous growth over the last several decades.

Increasing transistor density can improve the processing power in two ways.
One way is to use the fact that if transistors are closer together, then the instruc-
tions can execute quicker. We can thus reduce the time between the execution of
instructions (i.e., increase the processor clock rate). Until the mid-2000s, that was
exactly what microprocessor manufacturers were doing.

The problem with increasing the clock rate is that it also increases power con-
sumption, which in turn creates problems such as overheating. The other way to in-
crease processing power is to reorganize the denser transistors into multiple cores
that can execute instructions in parallel. This approach also ends up increasing
the number of instructions that can be executed per second. Recently, processor
manufacturers have begun using this second approach, producing processors with
two, four, eight, and even more cores. This fundamental change in the architecture
of microprocessors is an opportunity but also a challenge. Writing programs that
use multiple cores is more complex than single-core programming.

Class Pool of Module multiprocessing
If your computer has a microprocessor with multiple cores, you can split the execution of

some Python programs into several tasks, which can be run in parallel by different cores.

One way to do this in Python is by using the Standard Library module multiprocessing.

If you do not know the number of cores on your computer, you can use the function

cpu_count() defined in module multiprocessing to find out:

>>> from multiprocessing import cpu_count
>>> cpu_count()
8

Your computer may have fewer cores, or more! With eight cores, you could, theoretically,

execute programs eight times faster. To achieve that speed, you would have to split the

problem you are solving into eight pieces of equal size and then let each core handle a piece

in parallel. Unfortunately, not all problems can be broken into equal-size pieces. But there

are problems, especially data processing problems, that can be, and they are motivating this

discussion.

We use the class Pool in module multiprocessing to split a problem and execute its

pieces in parallel. A Pool object represents a pool of one or more processes, each of which

is capable of executing code independently on an available processor core.

Section 12.4 Parallel Computing 455

DETOUR
What Is a Process?

A process is typically defined as a “program in execution.” But what does that really
mean? When a program executes on a computer, it executes in an “environment”
that keeps track of all the program instructions, variables, program stack, the state
of the CPU, and so on. This “environment” is created by the underlying operating
system to support the execution of the program. This “environment” is what we
refer to as a process.

Modern computers are multiprocessing, which means that they can run multi-
ple programs or, more precisely, multiple processes concurrently. The term con-
currently does not really mean “at the same time.” On a single-core microprocessor
computer architecture, only one process can really be executing at a given point.
What concurrently means in that case is that at any given point in time, there are
multiple processes (programs in execution), one of which is actually using the CPU
and making progress; the other processes are interrupted, waiting for the CPU to
be allocated to them by the operating system. In a multicore computer architec-
ture, the situation is different: Several processes can truly run at the same time, on
different cores.

We illustrate the usage of the class Pool in a simple example:

Module: parallel.py
1 from multiprocessing import Pool
2

3 pool = Pool(2) # create pool of 2 processes
4

5 animals = ['hawk', 'hen', 'hog', 'hyena']
6 res = pool.map(len, animals) # apply len() to every animals item
7

8 print(res) # print the list of string lengths

This program uses a pool of two processes to compute the lengths of strings in list animals.

When you execute this program in your system’s command shell (not the Python interactive

shell), you get:

> python parallel.py
[4, 3, 3, 5]

So, in program parallel.py, the map() method applies function len() to every item of

list animals and then returns a new list from the values obtained. Expression

pool.map(len, animals)

and the list comprehension expression

[len(x) for x in animals]

really do the same thing and evaluate to the same value. The only difference is how they do

it.

In the Pool-based approach, unlike the list comprehension approach, two processes are

used to apply the function len() to each item of list animals. If the host computer has

456 Chapter 12 Databases and Data Processing

at least two cores, the processor can execute the two processes at the same time (i.e., in

parallel).

To demonstrate that the two processes execute at the same time, we modify the pro-

gram parallel.py to explicitly show that different processes handle different items of list

animal. To differentiate between processes, we use the convenient fact that every process

has a unique integer ID. The ID of process can be obtained using the getpid() function

of the os Standard Library module:

Module: parallel2.py
1 from multiprocessing import Pool
2 from os import getpid
3

4 def length(word):
5 'returns length of string word'
6

7 # print the id of the process executing the function
8 print('Process {} handling {}'.format(getpid(), word))
9 return len(word)

10

11 # main program
12 pool = Pool(2)
13 res = pool.map(length, ['hawk', 'hen', 'hog', 'hyena'])
14 print(res)

The function length() takes a string and returns its length, just like len(); it also prints

the ID of the process executing the function. When we run the previous program at the

command line (not in the Python interactive shell), we get something like:

> python parallel2.py
Process 36715 handling hawk
Process 36716 handling hen
Process 36716 handling hyena
Process 36715 handling hog
[4, 3, 3, 5]

Thus, the process with ID 36715 handled strings 'hawk' and 'hog', while the process

with ID 36716 handled strings 'hen' and 'hyena'. On a computer with multiple cores,

the processes can execute completely in parallel.

!

CAUTION
Why Don’t We Run Parallel Programs in the Interactive Shell?

For technical reasons that go beyond the scope of this book, it is not possible, on
some operating system platforms, to run programs using Pool in the interactive
shell. For this reason, we run all programs that use a pool of processes in the
command-line shell of the host operating system.

To change the pool size in parallel2.py, you only need to change the input argument

of the Pool constructor. When a pool is constructed with the default Pool() constructor

(i.e., when the pool size is not specified) Python will decide on its own how many processes

to assign. It will not assign more processes than there are cores on the host system.

Section 12.4 Parallel Computing 457

Practice Problem
12.7

Write program notParallel.py that is a list comprehension version of parallel2.py.

Run it to check how many processes it uses. Then run parallel2.py several times, with

a pool size of 1, 3, and then 4. Also run it with the default Pool() constructor.

Parallel Speedup
To illustrate the benefit of parallel computing, we consider a computationally intensive

problem from number theory. We would like to compare the distribution of prime numbers

in several arbitrary ranges of integers. More precisely, we want to count the number of

prime numbers in several equal-size ranges of 100,000 large integers.

Suppose one of the ranges is from 12,345,678 up to but not including 12,445,678. To

find the prime numbers in this range, we can simply iterate through the numbers in the

range and check each whether it is prime. Function countPrimes() implements this idea

using list comprehension:

Module: primeDensity.py
1 from os import getpid
2

3 def countPrimes(start):
4 'returns the number of primes in range [start, start+rng)'
5

6 rng = 100000
7 formatStr = 'process {} processing range [{}, {})'
8 print(formatStr.format(getpid(), start, start+rng))
9

10 # sum up numbers i in range [start, start_rng) that are prime
11 return sum([1 for i in range(start,start+rng) if isprime(i)])

The function isprime() takes a positive integer and returns True if it is prime, False
otherwise. It is the solution to Problem 5.36. We use the next program to compute the

execution time of function countPrimes():

Module: primeDensity.py
1 from multiprocessing import Pool
2 from time import time
3

4 if __name__ == '__main__':
5

6 p = Pool()
7 # starts is a list of left boundaries of integer ranges
8 starts = [12345678, 23456789, 34567890, 45678901,
9 56789012, 67890123, 78901234, 89012345]

10

11 t1 = time() # start time
12 print(p.map(countPrimes,starts)) # run countPrimes()
13 t2 = time() # end time
14

15 p.close()
16 print('Time taken: {} seconds.'.format(t2-t1))

458 Chapter 12 Databases and Data Processing

If we modify the line p = Pool() to p = Pool(1), and thus have a pool with only

one process, we get this output:

> python map.py
process 4176 processing range [12345678, 12445678]
process 4176 processing range [23456789, 23556789]
process 4176 processing range [34567890, 34667890]
process 4176 processing range [45678901, 45778901]
process 4176 processing range [56789012, 56889012]
process 4176 processing range [67890123, 67990123]
process 4176 processing range [78901234, 79001234]
process 4176 processing range [89012345, 89112345]
[6185, 5900, 5700, 5697, 5551, 5572, 5462, 5469]
Time taken: 47.84 seconds.

In other words, a single process handled all eight integer ranges and took 47.84 seconds.

(The run time will likely be different on your machine.) If we use a pool of two processes,

we get a dramatic improvement in running time: 24.60 seconds. So by using two processes

running on two cores instead of just one process, we decreased the running time by almost

one-half.

A better way to compare sequential and parallel running times is the speedup, that is,

the ratio between the sequential and the parallel running times. In this particular case, we

have a speedup of
47.84

24.6
≈ 1.94.

What this means is that with two processes (running on two separate cores), we solved the

problem 1.94 times faster, or almost twice as fast. Note that this is, essentially, the best

we can hope for: two processes executing in parallel can be at most twice as fast as one

process.

With four processes, we get further improvement in running time: 16.78 seconds, which

corresponds to a speedup of 47.84/16.78 ≈ 2.85. Note that the best possible speedup with

four processes running on four separate cores is 4. With eight processes, we get some

further improvement in running time: 14.29 seconds, which corresponds to a speedup of

47.84/14.29 ≈ 3.35. The best possible is, of course, 8.

MapReduce, in Parallel
With a parallel version of list comprehension in our hands, we can modify our first, sequen-

tial MapReduce implementation to one that can run the Map and Reduce steps in parallel.

The only modification to the constructor is the addition of an optional input argument: the

desired number of processes.

Module: ch12.py
1 from multiprocessing import Pool
2 class MapReduce(object):
3 'a parallel implementation of MapReduce'
4

5 def __init__(self, mapper, reducer, numProcs = None):
6 'initialize map and reduce functions, and process pool'
7 self.mapper = mapper
8 self.reducer = reducer
9 self.pool = Pool(numProcs)

Section 12.4 Parallel Computing 459

The method process() is modified so it uses the Pool method map() instead of list com-

prehension in the Map and Reduce steps.

Module: ch12.py
1 def process(self, data):
2 'runs MapReduce on sequence data'
3

4 intermediate1 = self.pool.map(self.mapper, data) # Map
5 intermediate2 = partition(intermediate1)
6 return self.pool.map(self.reducer, intermediate2) # Reduce

Parallel versus Sequential MapReduce
We use the parallel implementation of MapReduce to solve the a name cross-checking

problem. Suppose that tens of thousands of previously classified documents have just been

posted on the web and that the documents mention various people. You are interested in

finding which documents mention a particular person, and you want to do that for every

person named in one or more documents. Conveniently, people’s names are capitalized,

which helps you narrow down the words that can be proper names.

The precise problem we are then going to solve is this: Given a list of URLs (of the

documents), we want to obtain a list of pairs (proper, urlList) in which proper is a

capitalized word in any document and urlList is a list of URLs of documents containing

proper. In order to use MapReduce, we need to define the map and reduce functions.

The map function takes a URL and should produce a list of (key, value) pairs. In this

particular problem, there should be a (key, value) pair for every capitalized word in the

document that the URL identifies, with the word being the key and the URL being the

value. So the map function is then:

Module: crosscheck.py
1 from urllib.request import urlopen
2 from re import findall
3

4 def getProperFromURL(url):
5 '''returns list of items [(word, url)] for every word
6 in the content of web page associated with url'''
7

8 content = urlopen(url).read().decode()
9 pattern = '[A-Z][A-Za-z\'\-]*' # RE for capitalized words

10 propers = set(findall(pattern, content)) # removes duplicates
11

12 res = [] # for every capitalized word
13 for word in propers: # create pair (word, url)
14 res.append((word, url))
15 return res

A regular expression, defined in line 8, is used to find capitalized words in line 9. (To review

regular expressions, see Section 11.3.) Duplicate words are removed by converting the list

returned by re function findall() to a set; we do that because duplicates are not needed

and to speed up the Partition and Reduce steps that follow.

The Partition step of MapReduce takes the output of the Map step and pulls together

all the (key, value) pairs with the same key. In this particular problem, the result of the

460 Chapter 12 Databases and Data Processing

Partition step is a list of pairs (word, urls) for every capitalized word; urls refers to the

list of URLs of documents containing word. Since these are exactly the pairs we need, no

further processing is required in the Reduce step:

Module: ch12.py
1 def getWordIndex(keyVal):
2 'returns input value'
3 return keyVal

How do our sequential and parallel implementations compare? In the next code, we

develop a test program that compares the running times of the sequential implementation

and a parallel implementation with four processes. (The tests were run on a machine with

eight cores.) Instead of classified documents we use, as our test bed, eight novels by Charles

Dickens, publicly made available by the Project Gutenberg:

Module: ch12.py
1 from time import time
2

3 if __name__ == '__main__':
4

5 urls = [# URLs of eight Charles Dickens novels
6 'http://www.gutenberg.org/cache/epub/2701/pg2701.txt',
7 'http://www.gutenberg.org/cache/epub/1400/pg1400.txt',
8 'http://www.gutenberg.org/cache/epub/46/pg46.txt',
9 'http://www.gutenberg.org/cache/epub/730/pg730.txt',

10 'http://www.gutenberg.org/cache/epub/766/pg766.txt',
11 'http://www.gutenberg.org/cache/epub/1023/pg1023.txt',
12 'http://www.gutenberg.org/cache/epub/580/pg580.txt',
13 'http://www.gutenberg.org/cache/epub/786/pg786.txt']
14

15 t1 = time() # sequential start time
16 SeqMapReduce(getProperFromURL, getWordIndex).process(urls)
17 t2 = time() # sequential stop time, parallel start time
18 MapReduce(getProperFromURL, getWordIndex, 4).process(urls)
19 t3 = time() # parallel stop time
20

21 print('Sequential: {:5.2f} seconds.'.format(t2-t1))
22 print('Parallel: {:5.2f} second.'.format(t3-t2))

Let’s run this test:

> python properNames.py
Sequential: 19.89 seconds.
Parallel: 14.81 seconds.

So, with four cores, we decreased the running time by 5.08 seconds, which corresponds to

a speedup of
19.89

14.81
≈ 1.34.

The best possible speedup with four cores is 4. In the previous example, we are using four

cores to get a speedup of 1.34, which is not close to the theoretically best speedup of 4.

Chapter 12 Chapter Summary 461

DETOUR
Why Cannot We Get a Better Speedup?

One reason we cannot get a better speedup is that there is always overhead when
running a program in parallel. The operating system has extra work to do when
managing multiple processes running of separate cores. Another reason is that
while our parallel MapReduce implementation executes the Map and Reduce steps
in parallel, the Partition step is still sequential. On problems that produce very large
intermediate lists to be processed in the Partition step, the Partition step will take
the same long time as on the sequential implementation. This effectively reduces
the benefit of parallel Map and Reduce steps.

It is possible do the Partition step in parallel, but to do so you would need
access to an appropriately configured distributed file system of the kind Google
uses. In fact, this distributed file system is the real contribution made by Google in
developing the MapReduce framework. To learn more about it, you can read the
original Google paper that describes the framework:

http://labs.google.com/papers/mapreduce.html

In Practice Problem 12.8, you will develop a program that has a more time-
intensive Map step and a less intensive Partition step; you should see a more
impressive speedup.

.

Practice Problem
12.8

You are given a list of positive integers, and you need to compute a mapping that maps a

prime number to those integers in the list that the prime number divides. For example, if

the list is [24,15,35,60], then the mapping is

[(2, [24, 60]), (3, [15, 60]), (5, [15, 35]), (7, [35])]

(Prime number 2 divides 24 and 60, prime number 3 divides 15 and 60, etc.)

You are told that your application will get very large lists of integers as input. Therefore,

you must use the MapReduce framework to solve this problem. In order to do so, you

will need to develop a map and a reduce function for this particular problem. If named

mapper() and reducer(), you would use them in this way to get the mapping described:

>>> SeqMapReduce(mapper, reducer).process([24,15,35,60])

After implementing the map and reduce functions, compare the running times of your

sequential and parallel MapReduce implementations, and compute the speedup, by devel-

oping a test program that uses a random sample of 64 integers between 10,000,000 and

20,000,000. You may use the sample() function defined in the module random().

Chapter Summary
This chapter focuses on modern approaches to processing data. Behind almost every mod-

ern “real” computer application, there is a database. Database files are often more suitable

than general-purpose files for storing data. This is why it is important to get an early expo-

sure to databases, understand their benefits, and know how to use them.

462 Chapter 12 Databases and Data Processing

This chapter introduces a small subset of SQL, the language used to access database

files. We also introduce the Python Standard Library module sqlite3, which is an API for

working with database files. We demonstrate the usage of SQL and the sqlite3 module in

the context of storing the results of a web crawl in a database file and then making search

engine-type queries.

Scalability is an important issue with regard to data processing. The amount of data

generated and processed by many current computer applications is huge. Not all programs

can scale and handle large amounts of data, however. We are thus particularly interested

in programming approaches that can scale (i.e., that can be run in parallel on multiple

processors or cores).

We introduce in this chapter several scalable programming techniques that have their

roots in functional languages. We introduce first list comprehensions, a Python construct

that enables, using a succinct description, the execution of a function on every item of

a list. We then introduce the function map(), defined in the Standard Library module

multiprocessing, that essentially enables the execution of list comprehensions in par-

allel using the available cores of a microprocessor. We then build on this to describe and

develop a basic version of Google’s MapReduce framework. This framework is used by

Google and other companies to process really big data sets.

While our programs are implemented to run on a single computer, the concepts and

techniques introduced in this chapter apply to distributed computing in general and espe-

cially to modern cloud computing systems.

Solutions to Practice Problems
12.1 The SQL queries are:

(a) SELECT DISTINCT Url FROM Hyperlinks WHERE Link = 'four.html'
(b) SELECT DISTINCT Link FROM Hyperlinks WHERE Url = 'four.html'
(c) SELECT Url, Word from Keywords WHERE Freq = 3
(d) SELECT * from Keywords WHERE Freq BETWEEN 3 AND 5

12.2 The SQL queries are:

(a) SELECT SUM(Freq) From Keywords WHERE Url = 'two.html'
(b) SELECT Count(*) From Keywords WHERE Url = 'two.html'
(c) SELECT Url, SUM(Freq) FROM Keywords GROUP BY Url
(d) SELECT Link, COUNT(*) FROM Hyperlinks GROUP BY Link

12.3 Make sure you use parameter substitution correctly, and do not forget to commit and

close:

import sqlite3
def webData(db, url, links, freq):

'''db is the name of a database file containing tables
Hyperlinks and Keywords;
url is the URL of a web page;
links is a list of hyperlink URLs in the web page;
freq is a dictionary that maps each word in the web page
to its frequency;

Chapter 12 Solutions to Practice Problems 463

webData inserts row (url, word, freq[word]) into Keywords
for every keyword in freq, and record (url, link) into
Hyperlinks, for every links in links

'''
con = sqlite3.connect(db)
cur = con.cursor()

for word in freq:
record = (url, word, freq[word])
cur.execute("INSERT INTO Keywords VALUES (?,?,?)", record)

for link in links:
record = (url, link)
cur.execute("INSERT INTO Keywords VALUES (?,?)", record)

con.commit()
con.close()

12.4 The search engine is a simple server program that iterates indefinitely and serves a

user search request in every iteration:

def freqSearch(webdb):
''''webdb is a database file containing table Keywords;

freqSearch is a simple search engine that takes a keyword
from the user and prints URLs of web pages containing it
in decreasing order of frequency of the word'''

con = sqlite3.connect(webdb)
cur = con.cursor()

while True: # serve forever
keyword = input("Enter keyword: ")

select web pages containing keyword in
decreasing order of keyword frequency
cur.execute("""SELECT Url, Freq

FROM Keywords
WHERE Word = ?
ORDER BY Freq DESC""", (keyword,))

print('{:15}{:4}'.format('URL', 'FREQ'))
for url, freq in cur:

print('{:15}{:4}'.format(url, freq))

12.5 The list comprehension constructs are:

(a) [word.capitalize() for word in words]: Every word is capitalized.

(b) [(word, len(word)) for word in words]: A tuple is created for every word.

(c) [[(c,word) for c in word] for word in words]: Every word is used to cre-

ate a list; the list is constructed from every character of the word, which can be done

using list comprehension too.

464 Chapter 12 Databases and Data Processing

12.6 The map function should map a word (string) to a list of tuples (c, word) for every

character c of word.

def getChars(word):
'''word is a string; the function returns a list of tuples

(c, word) for every character c of word'''
return [(c, word) for c in word]

The input to the reduce function is a tuple (c, lst) where lst contains words containing

c; the reduce function should simply eliminate duplicates from lst:

def getCharIndex(keyVal):
'''keyVal is a 2-tuple (c, lst) where lst is a list

of words (strings)

function returns (c, lst') where lst' is lst with
duplicates removed'''

return (keyVal[0], list(set(keyVal[1])))

12.7 The program is:

Module: notParallel.py
1 from os import getpid
2

3 def length(word):
4 'returns length of string word'
5 print('Process {} handling {}'.format(getpid(), word))
6 return len(word)
7

8 animals = ['hawk', 'hen', 'hog', 'hyena']
9 print([length(x) for x in animals])

It will, of course, use only one process when executed.

12.8 The map function, which we name divisors(), takes number and returns a list of

pairs (i, number) for every prime i dividing number:

from math import sqrt
def divisors(number):

'''returns list of (i, number) tuples for
every prime i dividing number'''

res = [] # accumulator of factors of number
n = number
i = 2
while n > 1:

if n%i == 0: # if i is a factor of n
collect i and repeatedly divide n by i
while i is a factor of n
res.append((i, number))
while n%i == 0:

n //= i
i += 1 # go to next i

return res

Chapter 12 Exercises 465

The Partition step will pull together all pairs (i, number) that have the same key i. The

list it constructs is actually the desired final list so the Reduce step should only copy the

(key, value) pairs:

def identity(keyVal):
return keyVal

Here is a test program:

from random import sample
from time import time
if __name__ == '__main__':

create list of 64 large random integers
numbers = sample(range(10000000, 20000000), 64)
t1 = time()
SeqMapReduce(divisors, identity).process(numbers)
t2 = time()
MapReduce(divisors, identity).process(numbers)
t3 = time()
print('Sequential: {:5.2f} seconds.'.format(t2-t1))
print('Parallel: {:5.2f} seconds.'.format(t3-t2))

When you run this test on a computer with a multicore microprocessor, you should see the

parallel MapReduce implementation run faster. Here is the result for a sample run using

four cores:

Sequential: 26.77 seconds.
Parallel: 11.18 seconds.

The speedup is 2.39.

Exercises

12.9 Write SQL queries on tables Hyperlinks and Keywords from Figure 12.2 that return

these results:

(a) The distinct words appearing in web page with URL four.html
(b) URLs of web pages containing either 'Chicago' or 'Paris'
(c) The total number of occurrences of every distinct word, across all web pages

(d) URLs of web pages that have an incoming link from a page containing 'Nairobi'

12.10 Write SQL queries on table WeatherData in Figure 12.16 that return:

(a) All the records for the city of London

(b) All the summer records

(c) The city, country, and season for which the average temperature is less than 20◦

(d) The city, country, and season for which the average temperature is greater than 20◦
and the total rainfall is less than 10 mm

(e) The maximum total rainfall

(f) The city, season, and rainfall amounts for all records in descending order of rainfall

(g) The total yearly rainfall for Cairo, Egypt

(h) The city name, country and total yearly rainfall for every distinct city

466 Chapter 12 Databases and Data Processing

Figure 12.16 A world
weather database
fragment. Shown are
the 24-hour average
temperature (in degrees
Celsius) and total rainfall
amount (in millimeters)
for Winter (1), Spring (2),
Summer (3), and Fall (4)
for several world cities.

City Country Season Temperature Rainfall
Mumbai India 1 24.8 5.9

Mumbai India 2 28.4 16.2

Mumbai India 3 27.9 1549.4

Mumbai India 4 27.6 346.0

London United Kingdom 1 4.2 207.7

London United Kingdom 2 8.3 169.6

London United Kingdom 3 15.7 157.0

London United Kingdom 4 10.4 218.5

Cairo Egypt 1 13.6 16.5

Cairo Egypt 2 20.7 6.5

Cairo Egypt 3 27.7 0.1

Cairo Egypt 4 22.2 4.5

12.11 Using module sqlite3, create a database file weather.db and table WeatherData
in it. Define the column names and types to match those in the table in Figure 12.16, then

enter all the rows shown into the table.

12.12 Using sqlite3 and within the interactive shell, open the database file weather.db
you created in Problem 12.11 and execute the queries from Problem 12.10 by running

appropriate Python statements.

12.13 Let list lst be defined as

>>> lst = [23, 12, 3, 17, 21, 14, 6, 4, 9, 20, 19]

Write list comprehension expression based on list lst that produce these lists:

(a) [3, 6, 4, 9] (the single-digit numbers in list lst)

(b) [12, 14, 6, 4, 20] (the even numbers in list lst)

(c) [12, 3, 21, 14, 6, 4, 9, 20] (the numbers divisible by 2 or 3 in list lst)

(d) [4, 9] (the squares in list lst)

(e) [6, 7, 3, 2, 10] (the halves of the even numbers in list lst)

12.14 Run program primeDensity.py with one, two, three, and four cores, or up to as

many cores as you have on your computer, and record the running times. Then write a

sequential version of the primeDensity.py program (using list comprehension, say) and

record its running time. Compute the speedup for each execution of primeDensity.py
with two or more cores.

12.15 Fine-tune the run time analysis of program properNames.py by recording the ex-

ecution time of each step—Map, Partition, and Reduce—of MapReduce. (You will have to

modify the class MapReduce to do this.) Which steps have better speedup than others?

Problems

12.16 Write function ranking() that takes as input the name of a database file containing

a table named Hyperlinks of the same format as the table in Figure 12.2(a). The function

should add to the database a new table that contains the number of incoming hyperlinks for

Chapter 12 Problems 467

every URL listed in the Link column of Hyperlinks. Name the new table and its columns

Ranks, Url, and Rank, respectively. When executed against database file links.db, the

wildcard query on the Rank table should produce this output:

File: links.db>>> cur.execute('SELECT * FROM Ranks')
<sqlite3.Cursor object at 0x15d2560>
>>> for record in cur:

print(record)

('five.html', 1)
('four.html', 3)
('one.html', 1)
('three.html', 1)
('two.html', 2)

12.17 Develop an application that takes the name of a text file as input, computes the

frequency of every word in the file, and stores the resulting (word, frequency) pairs in a

new table named Wordcounts of a new database file. The table should have columns Word
and Freq for storing the (word, frequency) pairs.

12.18 Develop an application that displays, using Turtle graphics, the n most frequently

occurring words in a text file. Assume that the word frequencies of the file have already

been computed and stored in a database file such as the one created in Problem 12.17. Your

application takes as input the name of this database file and the number n. It should then

display the n most frequent words at random positions of a turtle screen. Try using different

font sizes for the words: a very large font for the most frequently occurring word, a smaller

font for the next two words, an even smaller font for the next four words, and so on.

12.19 In Practice Problem 12.4, we developed a simple search engine that ranks web

pages based on word frequency. There are several reasons why that is a poor way to rank

web pages, including the fact that it can be easily manipulated.

Modern search engines such as Google’s use hyperlink information (among other things)

to rank web pages. For example, if a web page has few incoming links, it probably does not

contain useful information. If, however, a web page has many incoming hyperlinks, then it

likely contains useful information and should be ranked high.

Using the links.db database file obtained by crawling through the pages in Fig-

ure 12.1, and also the Rank table computed in Problem 12.16, redevelop the search engine

from Practice Problem 12.4 so it ranks web pages by number of incoming links.

File: links.db>>> search2('links.db')
Enter keyword: Paris
URL RANK
four.html 3
two.html 2
one.html 1
Enter keyword:

12.20 The UNIX text search utility grep takes a text file and a regular expression and

returns a list of lines in the text that contain a string that matches the pattern. Develop a

parallel version of grep that takes from the user the name of a text file and the regular

expression and then uses a pool of processes to search the lines of the file.

468 Chapter 12 Databases and Data Processing

12.21 We used the program primeDensity.py to compare the densities of prime numbers

in several large ranges of very large integers. In this problem, you will compare the densities

of twin primes. Twin primes are pairs of primes whose difference is 2. The first few twin

primes are 3 and 5, 5 and 7, 11 and 13, 17 and 19, and 29 and 32. Write an application that

uses all the cores on your computer to compare the number of twin primes across the same

ranges of integers we used in primeDensity.py.

12.22 Problem 10.25 asks you to develop function anagram() that uses a dictionary (i.e.,

a list of words) to compute all the anagrams of a given string. Develop panagram(), a

parallel version of this function, that takes a list of words and computes a list of anagrams

for each word.

12.23 At the end of this book there is an index, which maps words to page numbers of

pages containing the words. A line index is similar: It maps words to line numbers of text

lines in which they appear. Develop, using the MapReduce framework, an application that

takes as input the name of a text file and also a set of words, and creates a line index. Your

application should output the index to a file so words appear in alphabetical order, one

word per line; the line numbers, for each word, should follow the word and be output in

increasing order.

12.24 Redo the Problem 12.16 using MapReduce to compute the number of incoming

links for every web page.

12.25 A web-link graph is a description of the hyperlink structure of a set of linked web

pages. One way to represent the web-link graph is with a list of (url, linksList) pairs with

each pair corresponding to a web page; url refers to the URL of the page, and linksList

is a list of URLs of hyperlinks contained in the page. Note that this information is easily

collected by a web crawler.

The reverse web-link graph is another representation of the hyperlink structure of the set

of web pages. It can be represented as a list of (url, incomingList) pairs with url referring to

the URL of a web page and incomingList referring to a list of URLs of incoming hyperlinks.

So the reverse web-link graph makes explicit incoming links rather than outgoing links. It

is very useful for efficiently computing the Google PageRank of web pages.

Develop a function that takes a web-link graph, represented as described, and returns

the reverse web-link graph.

12.26 A web server usually creates a log for every HTTP request it handles and appends

the log string to a log file. Keeping a log file is useful for a variety of reasons. One particular

reason is that it can be used to learn what resources—identified by URLs—managed by the

server have been accessed and how often—referred to as the URL access frequency. In this

problem, you will develop a program that computes the URL access frequency from a given

log file.

Web server log entries are written in a well-known, standard format known as the Com-
mon Log Format. This is a standard format used by the Apache httpd web server as well

as other servers. A standard format makes it possible to develop log analysis programs that

mine the access log file. A log file entry produced in a common log format looks like this:

127.0.0.1 - - [16/Mar/2010:11:52:54 -0600] "GET /index.html HTTP/1.0" 200 1929

This log contains a lot of information. The key information, for our purposes, is the

requested resource, index.html.

Chapter 12 Problems 469

Write a program that computes the access frequency for each resource appearing in the

log file and writes the information into a database table with columns for the resource URL

and the access frequency. Writing the access frequency into a database makes the URL

access frequency amenable to queries and analysis.

12.27 Write an application that computes a concordance of a set of novels using MapRe-

duce. A concordance is a mapping that maps each word in a set of words to a list of

sentences from the novels that contain the word. The input for the application is the set of

names of text files containing the novels and the set of words to be mapped. You should

output the concordance to a file.

This page intentionally left blank

Index
!= operator

number not equal, 19, 34

overloading, 270

set not equal, 187, 188

string not equal, 23

** exponentiation operator, 17, 34

* operator

list repetition, 28

number multiplication, 16, 34

overloading, 270

in regular expression, 411, 413

string repetition, 24, 25

+= increment operator, 141

+ operator

list concatenation, 28

number addition, 16, 34

overloading, 270

in regular expression, 411, 413

string concatenation, 24, 25

- operator

negation unary operator, 34

overloading, 270

set difference, 187, 188

subtraction binary operator, 16, 34

.. parent folder, 111

. regular expression operator, 411, 413

// quotient operator, 17, 34

/ operator

number division, 16, 34

overloading, 270

<= operator

number less than or equal, 19, 34

overloading, 270

SQL less than or equal, 435

subset of, 187, 188

<> SQL not equal operator, 435

< operator

number less than, 18, 34

overloading, 270

proper subset of, 187, 188

SQL less than, 435

string less than, 23

== operator

number equal, 19, 34

overloading, 270, 273, 274

set equal, 187, 188

string equal, 23

versus = assignment operator, 22

= SQL equal operator, 435

= assignment statement, 12, 20–22, 75–79

and mutability, 77–78

multiple assignment, 79

simultaneous assignment, 79

swapping, 78–79

versus == equal operator, 22

>= operator

number greater than or equal, 19, 34

overloading, 270

SQL greater than or equal, 435

superset of, 187, 188

> operator

number greater than, 18, 34

overloading, 270

proper superset of, 187, 188

SQL greater than, 435

string greater than, 23

>>> prompt, 9, 16

? regular expression operator, 411, 413

[] operator

dictionary indexing, 175

list indexing, 27, 28

list slicing, 99

overloading, 287

in regular expression, 411, 413

string indexing, 25–27

string slicing, 98–99

tuple indexing, 182

two-dimensional list indexing, 147

471

472 Index

% remainder operator, 17, 34

& set intersection operator, 187, 188

^ operator

in regular expression, 412, 413

set symmetric difference, 187, 188

| operator

in regular expression, 412, 413

set union, 187, 188

abs() built-in function, 17, 34

absolute pathname, 110

abstraction, 3, 10

accumulator

for integer sum, 141

for integer product, 142

for list concatenation, 142

loop pattern, see iteration pattern

for string concatenation, 142

acronym() function, 142

__add__() method, 269

add() set method, 188

algebraic

expression, 16–18

operators, 16, 17, 34

algorithm, 3, 11

running time, see run time analysis

alignment in formatted output, 107

American Standard Code for Information In-

terchange (ASCII), 190–191

analyze() function, 416, 420–422

anchor, see HTML

and Boolean operator, 19, 20

Animal class, 259, 280

append() list method, 30

Application Programming Interface (API), 7

approxE() function, 152

approxPi() function, 196

Ariane rocket accident, 232

ARPANET, 6

assignment, see = assignment statement

attribute

class, see class

of HTML element, see HTML

instance, see instance

module, see module

automatic indexer, see web crawler

automation, 3

average.py program, 70

background widget option, 311, 314

backslash in file path, 111

base case, see recursion

before0() function, 156

Berners-Lee, Tim, 396, 397

BETWEEN SQL operator, 435

bgcolor() Screen method, 45

binary operator, 20

binary search, 374

bind() widget method, 324–329

binding, see event

Bird class, 279, 280

blackjack application, 198–202

blackjack() function, 202

bool Boolean type, see Boolean

George Boole, 20

Boolean

algebra, 20

expression, 18–20

mutability, 76

operators, 19

type, 18

values, 18

borderwidth widget option, 311, 314

bot, see web crawler

break statement, 155–156

browser, see web

bubblesort() function, 145

buffer overflow attack, 222

bug, see computer bug

builtins module, 238

bus, 5

Button tkinter class, 317–320

command option, 318

event handler, 318

bye() Screen method, 45

bytes built-in type, 194, 404

Calc class, 337–341

calc.py module, 337–341

camelCase, 22

canonical string representation, 272–274

Canvas tkinter class, 326–331

capitalize() string method, 100, 102

Card class, 262–263

ceil() math module function, 40

central processing unit (CPU), 4, 455

character encoding, 189–194

ASCII, 190–191

Index 473

of files, 194

Unicode, 191–194

UTF encodings, 193–194

cheers() recursive function, 356

choice() random module function, 197

chr() built-in function, 191

circle() Turtle method, 43, 44

cities() function, 154

cities2() function, 154

class, 33, 38

attribute, 242–244

attribute inheritance, 256–257

attribute search, 280–281

code reuse, 276

constructor, 36

constructor and repr() contract, 272–

276

default constructor, 261–262

defining new class, 252–287

defining new container, 263–268

documentation, 258

enabling iteration, 289–292

extending a method, 282

inheritance, 276–284

inheritance patterns, 282–283

method implementation, 243–244

namespace, 242–244, 253–254

overloaded constructor, 260–262

overloaded indexing operator, 287–289

overloaded operator, 268–276

overriding a method, 279–282

subclass, 278

superclass, 278

class statement, 255, 257, 279

clear() set method, 188

clearscreen() Screen method, 45

ClickIt class, 332

clickit.py module, 318, 319, 331

client, see web

clock rate, 454

close() file method, 112, 114

close() Connection method, 442

code point (Unicode), 191

code reuse

with classes, 276

with functions, 216

Collector class, 409

column grid() method option, 316

column formatted output, 106

columnspan grid() method option, 316

command Button widget option, 318

command line, 55

comment, 73

commit() Connection method, 442

compareHands() function, 202

comparison operators, 34

for numbers, 18–19

for sets, 188

for strings, 23

compiler, 7

complete() function, 179

computational thinking, 9–13

computer applications, 2

computer bug, 7

computer science, 2–4, 13

computer system, 3–7

computer virus, see virus

concatenation, see + operator

concurrent, 455

condition

in multiway if statement, 134–137

in one-way if statement, 61, 134

in two-way if statement, 64, 134

in while loop statement, 149

mutually exclusive, 136

connect() sqlite3 function, 441

Connection sqlite3 class, 441

method close(), 442

method commit(), 442

method cursor(), 441

constructor, see class

container class, see class

continue statement, 156–157

core (CPU), 454

cos() math module function, 40

count() list method, 30

count() string method, 100, 102

COUNT() SQL function, 436

countdown() recursive function, 352–354

counter loop pattern, see iteration pattern

counting operations, 368

cpu_count() multiprocessing function,

454

crawl1() function, 416

crawl2() function, 419

crawling, see web

CREATE TABLE SQL statement, 439

create_line() widget method, 327, 328

create_rectangle() widget method, 328

create_oval() widget method, 328

474 Index

cross join, see SQL

crosscheck.py module, 459–460

current working directory, 110

cursor, 113

Cursor sqlite3 class, 441

as an iterator, 443

method execute(), 441

method fetchall(), 443, 444

cursor() Connection method, 441

data type, 11–12

database, 430–445

column, 431

engine, 432, 440

file, 430, 431

management system, 432

programming, 440

record, 431

row, 431

SQLite, 440

SQLite command-line shell, 433

sqlite3 module, 440–445

structured data storage, 431

table, 431

Day class, 334

day.py module, 321, 322, 333

dealCard() function, 200

debugger, 7

decimal precision in formatted output, 107

decision structure, see if statement

Deck class, 264–266

decode() bytes method, 194, 404

def function definition statement, 70

default constructor, see class

default exception handler, see exception

delete() widget method, 328

for Entry, 321

for Text, 323

delimiter for method split(), 100

depth-first traversal, 418–422

DESC SQL clause, 435

developer, 2–4

dict dictionary type, see dictionary

dictionary, 172–181

for counting, 179–181

dict() constructor, 174

key-value pair, 173

methods, 176–178

multiway condition substitute, 178

mutability, 174

operators, 175–176

user-defined indexes, 172–173

view object, 178

dictionary order (strings), 24, 193

directory, 110

Disk class, 381–385

DISTINCT SQL clause, 433

divisors() function, 142

docstring, 73

multiline, 84

documentation, 73, 258

dot() Turtle method, 43, 44

double quotes, see string

Draw class, 336

draw.py module, 327, 328, 335

drawKoch() function, 362

dynamic.py module, 72

e math module Euler constant e, 40

editor, 54, 56

elif statement, see if statement

else clause, see if statement

emoticon, 43

emoticon() function, 83, 216

EmptyQueueError exception class, 286

encapsulation

with classes, 292

with functions, 217

with user-defined exceptions, 284, 286

end argument, see print()
Entry tkinter class, 320–322

deleting entry, 321

reading entry, 321

epoch, 123

__eq__() method, 273, 275

__len__() method, 275

error, see exception

escape sequence, 97

\", 96

\', 96

\n, 97, 114

interpreted by print(), 97

in regular expressions, 413

eval() built-in function, 58

event, 319

binding to event handler, 324–329

handler, 318, 319, 324, 337–341

loop, 319

Index 475

pattern, 324–329

type, 324

Event tkinter class, 324–326

attributes, 324

except statement, see exception

exception, 118–121, 227

catching a type of, 230

catching and handling, 228–235

default handler, 227, 230, 233

defining new, 284–287

exceptional control flow, 227–235

handler, 229, 230, 234

multiple handlers, 231

object, 120

raising, 227

raising in a program, 285

try/except statements, 229–230

type, 120

Exception class, 286

execute() Cursor method, 441

execution control structure, 12–13

decision, 59–64, 134–137

iteration, 64–69, 137–157

expand pack() method option, 314

experimental run time analysis, 370–373

expression

algebraic, see algebraic

Boolean, see Boolean

evaluation, 17

Extender class, 282

factorial()
iterative function, 142

recursive function, 356

False value, 18

feed() HTMLParser method, 406

fetchall() Cursor method, 443, 444

fibonacci() function, 152

Fibonacci numbers, 151, 369

field width in formatted output, 107

file, 109–118

appending to, 112, 122

binary, 109, 112, 404

character encoding, 194

closing, 117

cursor, 113

database, 430

flushing output, 118

logging access, 121–125

mode, 112

opening, 111–113

reading, 112–117

reading and writing, 112

reading patterns, 114–117

storage, 5

text, 109, 112

writing, 112, 117–118

filesystem, 109–111

absolute pathname, 110

current working directory, 110

directory, 110

folder, 110

pathname, 110

recursive structure, 365

relative pathname, 110

root directory, 110

tree structure, 110

fill pack() method option, 314

find() string method, 99, 102

findall() re function, 414

First-In First Out (FIFO), 266

float type, see floating point

floating point

float() constructor, 36

mutability, 76

type, 16

values, 16, 33

floor() math module function, 40

flowchart, 54

one-way if statement, 60, 61

three-way if statement, 135

two-way if statement, 63

while loop statement, 149

flushing output, 118

folder, 110

font widget option, 311

for loop statement, 64–67, 137

iteration patterns, 137–149

loop variable, 66

foreground widget option, 311, 314

format() string method, 104–109

format string, 104

for time, 124

formatted output, 102–109

forward() Turtle method, 42, 43

forward slash in file path, 111

fractal, 360–364

Koch curve, 360

snowflake, 363

476 Index

Fraction fractions class, 40

difference between float and, 41

fractions Standard Library module, 40–

41

Frame tkinter class, 329–331

frequency() function, 181

frequent() function, 379

from module import keyword, 241

function

built-in math, 17

call, 29

code reuse, 216

encapsulation, 217

local variable, 217–219

modifying global variable inside, 226

modularity, 217

recursive, see recursion

user-defined, 69–75

functional language, 447

list comprehension, 445–447

games of chance, 198–202

geometry (of GUI), see widget

get() dictionary method, 177

get() widget method

for Entry, 321

for Text, 323

getheaders() HTTPResponsemethod, 404

__getitem__() method, 288

getpid() os function, 456

getSource() function, 405

geturl() HTTPResponse method, 404

getWordsFromFile() function, 452

global keyword, 226

global scope, 223–227

global variable, 223

storing state in, 328

gmtime() time function, 124

Google, 447

goto() Turtle method, 43, 44

graphical user interface (GUI)

development, 310–341

history, 320

object-oriented approach, 331–341

graphics interchange format (GIF), 312

grid() widget method, 315–317

GROUP BY SQL clause, 436

growthrates() function, 109

handle_data() HTMLParser method, 406

handle_endtag() HTMLParsermethod, 406

handler

exception, see exception

GUI event, see event

HTML document parser, 406

handle_starttag() HTMLParsermethod,

406

hanoi() recursive function, 380–383

hard drive, 5

hardware, 4

height widget option, 311, 312

hello() function, 71, 74

hello.py module, 54

hello2() function, 153

help() built-in function, 38

higher-order programming, 371

HTML, 399–403

a anchor element, 401

absolute hyperlink, 402

body element, 401

document parsing, 405–408

document tree structure, 401

element, 400–401

element attribute, 401, 402

head element, 401

heading element, 400

href attribute, 402

html element, 401

hyperlink, 396, 401, 409

relative hyperlink, 402

resources, 403

tag, 400

title element, 401

HTMLParser html.parser class, 405

html.parser Standard Library module, 405–

408

HTTP, 398–399

hyperlink, see HTML

http.client Standard Library module, 403

HTTPResponse http.client class, 403

hyperlink, see HTML

HyperText Markup Language, see HTML

HyperText Transfer Protocol, see HTTP

IDLE, 8

editor, 54

running program, 54

Index 477

if statement

elif statement, 134

else clause, 62, 134

multiway, 134–137

one-way, 59–62, 134

ordering of conditions, 136–137

two-way, 62–64, 134

ignore0() function, 157

image widget option, 311, 312

immutable, 29, 76

parameter passing, 80–81

import statement, see module, 56

ImportError exception, 237

in operator

for dictionaries, 175

for lists, 28

for sets, 187, 188

for strings, 24, 25

incr2D() function, 148

incrementing, see += increment operator

indentation, 62

indented block

in class definition, 255, 257

in for loop statement, 67

in function definition, 70

in multiway if statement, 134

in one-way if statement, 61, 134

in two-way if statement, 64, 134

in while loop statement, 149

index, 25

in two-dimensional list, 147

IndexError exception, 119, 120

indexing operator, see [] operator

infinite loop pattern, see iteration pattern

inheritance, 276–284

extending a method, 282

by objects, 256–257

overriding a method, 282

patterns, 282–283

subclass, 278

superclass, 278

Inheritor class, 282

__init__() method, 261–262, 267

input() built-in function, 57

input.py module, 57

insert() list method, 30

insert() widget method

for Entry, 321

for Text, 323

INSERT INTO SQL statement, 439

instance

attribute, 257

variable, 255–256

int integer type, see integer

integer

int() constructor, 36

mutability, 76

type, 16

values, 16, 33

integrated development environment (IDE),

7, 8, 54, 56

interactive shell, 8

restarting, 54

interest() function, 150

Internet, 6

interpreter, 7, 17

inverted index, 451–453

IOError exception, 121

items() dictionary method, 177, 184

__iter__() method, 290

iteration

implementation in new classes, 289–292

through indexes of a list, 138–140

through integers in a range, 68–69, 138

through a list, 66, 137

through a string, 65, 137

iteration pattern

accumulator loop, 140–143

counter loop, 138–140

infinite loop, 153

iteration loop, 137–138

loop and a half, 153–155

nested loop, 143–145, 147–149

sequence loop, 151–152

iteration structure

for loop, see for loop statement

while loop, see while loop statement

iterator, 290

jump() function, 82, 216

key-value pair

dictionary, 173

MapReduce, 447

KeyboardInterupt exception, 120

KeyError exception, 174

keyLogger.py module, 325

keys() dictionary method, 176, 177

keyword (reserved), 23

478 Index

koch() recursive function, 361

Koch curve, 360–364

kthsmallest() function, 378

Label tkinter class, 310–316

for images, 312–315

for text, 310–311

language

HTML, 397

SQL, 432

left() Turtle method, 42, 43

left-to-right, 35

left-to-right evaluation, 16

len() built-in function

for dictionaries, 175

for lists, 28

for sets, 187

for strings, 25

overloading, 270, 275

lexicographic order, 193

library, 7

line ending in text file, 114

linear search, 374

LinkParser class, 407

Linux, 6

list, 27–31

comprehension, 445–447

concatenation, see + operator

indexing, see [] operator

length, see len() built-in function

list() constructor, 36

methods, 29–31

mutability, 29, 76, 77

operators, 27–29

repetition, see * operator

slicing, see [] operator

two-dimensional, 146–149

type, 27

value, 27

listdir() os module function, 366

local scope, 223–224

local variable, 217–219

localtime() time function, 124

log() math module function, 40

log file, 121

logging, 121–125

motivation, 122

loop and a half pattern, see iteration pattern

lower() string method, 102

Mac OS X, 5

__main__ module, 238

main memory, 4

mainloop() widget method, 310

maketrans() string method, 101

map() Pool method, 455

map MapReduce function, 450

MapReduce class, 458

MapReduce, 447–453, 458–461

inverted index, 451–453

name cross-checking, 459

sequential versus parallel, 460

word frequency, 447–450

master (widget), see widget

match object (regular expression), 415

math Standard Library module, 39–40

max() built-in function, 18, 28

method, 30, 31

call, 38

extending, 282

as a function in a namespace, 243–244

inheriting, 282

overriding, 279–282

Microsoft Windows, 5

min() built-in function, 18, 28

mode, see file mode

model, 3, 10

modularity

through classes, 293

through functions, 217

module, 39, 56, 235–242

attribute, 235–236

current working directory, 110

importing, 39, 235–242

importing all attributes, 241

importing module name, 240

importing some attributes, 240

__main__ module, 238

__name__ variable, 238–240

namespace, 236–242

search path, 236, 239

top-level, 238–240

user-defined, 56

Moore’s Law, 454

move() widget method, 328

multiple assignment, 79

multiprocessing Standard Library mod-

ule, 454–461

class Pool, 454–461

function cpu_count(), 454

Index 479

multiway, see if statement

mutable, 29, 76

parameter passing, 81–82

mutually exclusive conditions, 136

MyList class, 277

__name__ variable, 238–240

NameError exception, 119, 120

namespace, 219

class, 253–254

function call, 218–219

global, 223–227

local, 224

module, 236–242

object, 254

and the program stack, 219–223

negative index, 26, 27

nested() function, 144

nested loop pattern, see iteration pattern

nested statements, 67–68

nested2() function, 145

network, 5, 6

__next__() method, 290

not Boolean operator, 19, 20

numChars() function, 114

numLines() function, 116

numWords() function, 115

object, 31

class attributes inheritance, 256–257

instance variable, 255–256

namespace, 254

type, 32

value, 32, 33

object-oriented programming (OOP),

38, 252–292

GUI development, 331–341

Python, 32

occurrences

most frequently occurring item, 379

number of, 179–181, 420

using MapReduce, 447–450

one-way, see if statement

oneWay.py module, 60

oneWay2.py module, 61

open() built-in function, 111–113, 194

openLog() function, 121, 125

open source, 6

operating system, 5–6

operator, 31

algebraic, see algebraic

Boolean, see Boolean

as class method, 269–270

dictionary, see dictionary

as a function in a namespace, 270

list, see list

overloaded, see class

precedence, see precedence rule

regular expression, 411–415

set, see set

string, see string

or Boolean operator, 19, 20

ord() built-in function, 190

ORDER BY SQL clause, 435

os Standard Library module, 366

getpid() function, 456

listdir() function, 366

path.join() function, 366

OverflowError exception, 33, 120

overloaded, see class

overriding a method, 279–281

pack() widget method, 311, 313–315

packing widgets, see widget

padx, pady widget options, 311, 314

parallel.py module, 455

parallel computing, 453–461

versus concurrent, 455

speedup, 457

parallel2.py module, 456

parameter passing, 79–82

immutable parameter, 80–81

mutable parameter, 81–82

passing functions, 371

parameter substitution (SQL), 441

parent folder, 111

parser, 118

HTML document, see HTML

partition() MapReduce function, 449

pass statement, 121, 157

path sys module variable, 239

pathsys module variable, 236

path.join() os module function, 366

pathname, 110

absolute, 110

relative, 110

pattern() recursive function, 358

480 Index

peace.py module, 312

Peg class, 381–385

pencolor() Turtle method, 43

pendown() Turtle method, 43, 44

pensize() Turtle method, 43, 44

penup() Turtle method, 43, 44

perimeter.py program, 70

phone.py module, 315

PhotoImage tkinter class, 312

pi math module constant π , 40

placeholder

in format string, 104

in SQL query, 442

plotter.py module, 329

Point class, 252–258, 260–262

constructor and repr() contract,

272–274

implementation, 254–255

methods, 252

overloaded operators, 268

string representation, 270–272

Pool multiprocessing class, 454–461

method map(), 455

pop() method

dictionary, 176, 177

list, 30

precedence rule, 16, 18, 35

primeDensity.py module, 457

print() built-in function, 54, 56, 102–104

end argument, 103

sep argument, 102

versus return statement, 71

print2D() function, 147

process, 454

ID, 456

program, 2, 3, 54

editing, 54

executing, 54, 55

program stack, 219–223

buffer overflow attack, 222

stack frame, 221

programming, 7

language, 7

Project Gutenberg, 460

prompt

input() function, 57

Python shell, see >>> prompt

protocol, 397

HTTP, see HTTP

pseudocode, 11

pseudorandom number generator, 194

Python

background, 8

Standard Library, see Standard Library

modules

Queue class, 266–268, 284, 287, 288

empty queue exception, 286

enabling iteration, 290–292

overloaded operators, 269, 274–276

as subclass of list, 283

Queue2 class, 283

QueueIterator class, 291

quotes, see string

raise() built-in function, 285

raising exception, see exception

random Standard Library module, 194–198

random access memory (RAM), see main

memory

randomness, 196

randrange() randommodule function, 195

range() built-in function, 68–69

in counter loop pattern, 138

re Standard Library module, 414–415

read() file method, 112, 113

read() HTTPResponse method, 404

readline() file method, 112, 113

readlines() file method, 112, 116

real numbers, 33

recursion, 352–385

base case, 353

depth-first traversal, 418–422

filesystem traversal, 364–367

fractal, 360–364

function, 352

and the program stack, 356–357

recursive call, 352

recursive step, 354

recursive thinking, 352, 354–356

repeated recursive calls, 362

stopping condition, 353

virus scanning, 364–367

web crawling, 416–422

reduce MapReduce function, 450

regular expression, 411–415

escape sequences, 413

operators, 411–415

resources, 412

Index 481

relational

algebra, 440

database, 440

relative pathname, 110

relief widget option, 311, 314

remove() method

for lists, 30

for sets, 188

replace() string method, 100, 102

Replacer class, 282

__repr__() method, 276

repr() built-in function, 271

contract with constructor, 272–276

overloading, 270, 271, 275

reserved keywords, 23

result table, see SQL

return statement, 70–72

versus print() built-in function, 71

reverse() list method, 30

reverse() recursive function, 356

reverse index, see inverted index

rfib() recursive function, 369

run time analysis, 372

right() Turtle method, 42, 43

rlookup() function, 175

root directory, 110

row grid() method option, 316

rowspan grid() method option, 316

rpower() recursive function, 367

run time analysis, 367–373

experimental, 370–373

linear versus binary search, 376

safe_open() function, 232

sample() random module function, 197

scalability, 445

scan() recursive function, 365

scientific notation, 33

scope, 223

Screen turtle module class

constructor, 42

methods, 45

search() recursive function, 375

search() re function, 415

search engine, 415

search of a list, 374–379

binary, 374

duplicates, 377

linear, 374

linear versus binary, 376

search path, see module

SELECT SQL statement, 432–434

selecting kth smallest, 378

sep argument, see print()
SeqMapReduce class, 450

sequence loop pattern, see iteration pattern

server, see web

set, 185–189

comparison, 187

constructor, 186

for duplicate removal, 186

empty set, 186

methods, 188–189

operators, 187–188

setheading() Turtle method, 43, 45

setup (of Python IDE), 8

setx(), sety() Turtle methods, 43

shell, see interactive shell

shuffle() random module function, 197

shuffledDeck() function, 200

side pack() method option, 313

simultaneous assignment, 79

sin() math module function, 40

single quotes, see string

slicing, see [] operator

smileyPeace.py module, 313

snowflake fractal, 363

software, 4

software library, 7

sort() list method, 30

sorted() function, 140

speedup (parallel), 457, 460

spelling.py module, 65

split() string method, 100, 102

SQL, 432–440

conditional operators, 435

COUNT() function, 436

CREATE TABLE statement, 439

cross join, 437

DESC clause, 435

DISTINCT clause, 433

GROUP BY clause, 436

INSERT INTO statement, 439

ORDER BY clause, 435

parameter substitution, 441

querying multiple tables, 437

resources, 440

result table, 432

SELECT statement, 432–434

482 Index

SQL injection, 442

SUM() function, 436

UPDATE statement, 439

WHERE clause, 434–436

SQLite, 440

command-line shell, 433

sqlite3 Standard Library module, 440–445

class Connection, 441

class Cursor, 441

function connect(), 441

sqrt() math module function, 39, 40

stack frame, see program stack

Standard Library modules, 39

fractions, see fractions
html.parser, see html.parser
http.client, see http.client
math, see math
multiprocessing,

see multiprocessing
os, see os
random, see random
re, see re
sqlite3, see sqlite3
sys, see sys
time, see time
tkinter, see tkinter
turtle, see turtle
urllib.parse, see urllib.parse
urllib.request,

see urllib.request
StopIteration exception, 291

str() string constructor

informal string representation, 272

overloading, 270

str string type, see string

strftime() time function, 124

string, 23–27, 96–102

comparison, 24, 192

concatenation, see + operator

encoding, see character encoding

formatting, 104–109

methods, 99–102

methods return copy, 100

mutability, 29, 76

operators, 23–27

pattern matching, 411–415

quotes, 23, 96

repetition, see * operator

representation, 96–97

representation of object, 102, 271–274

slicing, see [] operator

str() constructor, see str() construc-

tor

triple quotes, 97

type, 23

value, 23

strip() string method, 102

structured data storage, see database

Structured Query Language, see SQL

subclass, 278

substring, 25

sum() built-in function, 28

SUM() SQL function, 436

superclass, 278

swapping, 78–79

syntax error, 118

sys Standard Library module, 236, 239

table, see database

TCP/IP, 6

temperature() function, 135

Text tkinter class, 323–326

text widget option, 311

text entry box

multiline, see Text tkinter class

single-line, see Entry tkinter class

time() time function, 123

time format directive, 124

time Standard Library module, 123–125

timing() function, 371

timingAnalysis() function, 372

Tk tkinter class, 310

tkinter Standard Library module, 310

coordinate system, 330

resources, 317

widgets, see widget

top-level module, 238–240

total() (Blackjack) function, 201

Tower of Hanoi problem, 379–385

translate() string method, 101, 102

tree

filesystem, 110

of recursive calls, 373

root, 401

structure of HTML document, 401

triple quotes, 97

True value, 18

truth table, 20

try statement, see exception

Index 483

tuple, 182–185

as dictionary keys, 183–184

mutability, 182

one-element tuple, 184

Turtle turtle class

constructor, 42

methods, 42–45

turtle Standard Library module, 41–45

Screen class, see Screen
Turtle class, see Turtle

Turtle graphics, 41, 360, 379

turtlefunctions.py module, 82

turtles() Screen method, 45

two-dimensional list, 146–149

two-way, see if statement

twoWay.py module, 63

type, 11–12, 31

in formatted output, 108

type() built-in function, 32

type conversion

explicit, 37

implicit, 17, 36

TypeError exception, 119, 120

unary operator, 20

undo() Turtle method, 43, 44

Unicode, 191–194

uniform() random module function, 196

Uniform Resource Locator, see URL

uniqueness testing, 377

UNIX, 5

update() dictionary method, 176, 177

UPDATE SQL statement, 439

upper() string method, 100, 102

URL, 397–398

absolute, 402

host, 397

pathname, 397

relative, 402

scheme, 397

urljoin() urllib.parse function, 409

urllib.request Standard Library module,

403–405

urllib.parse Standard Library module,

408–409

urlopen() urllib.request function, 403

user-defined

function, 69–75

module, 56

user-defined indexes, see dictionary

UTC time, 123

UTF encodings, 193–194

ValueError exception, 120

Van Rossum, Guido, 8

variable, 20–21

evaluation of, 21

global, 223

instance, 255–256

local, 217–219

naming convention, 22

naming in Python 3, 22

naming rules, 22–23

type, 32

unassigned, 21

vertical() recursive function, 354

view object, 178

virus, 364

scanner, 364–367

signature, 364

web, 396

browser, 396, 399, 400

client, 396

crawler, 415–422

page source file, 399

server, 396

server root directory, 397

WHERE SQL clause, 434–436

while loop statement, 149–151

iteration patterns, 151–155

widget, 310

Button tkinter class, 317–320

Canvas tkinter class, 326–331

constructor options, 311–316

coordinate system, 330

Entry tkinter class, 320–322

Frame tkinter class, 329–331

Label tkinter class, 310–316

for images, 312–315

for text, 310–311

mainloop() widget method, 310

master, 311, 329

mixing pack() and grid(), 316

placement, 311

placement with Frame, 329–331

placement with grid(), 315–317

484 Index

placement with pack(), 313–315

Text tkinter class, 323–326

Tk, 310

width widget option, 311, 312

wordcount() function, 181

World Wide Web, see WWW

wrapper function, 122

write() file method, 112, 117

WWW, 6, 396–403

history, 396

HTML, see HTML

HTTP, see HTTP

locator scheme, 397

naming scheme, 397

Python web API, 403–411

technologies, 397

URL, see URL

ZeroDivisionError exception, 119, 120

	Cover Page
	Half Title Page
	Title Page
	Copyright Page
	Dedication
	Contents
	Preface
	1 Introduction to Computer Science
	1.1 Computer Science
	What Do Computing Professionals Do?
	Models, Algorithms, and Programs
	Tools of the Trade
	What Is Computer Science?

	1.2 Computer Systems
	Computer Hardware
	Operating Systems
	Networks and Network Protocols
	Programming Languages
	Software Libraries

	1.3 Python Programming Language
	Short History of Python
	Setting Up the Python Development Environment

	1.4 Computational Thinking
	A Sample Problem
	Abstraction and Modeling
	Algorithm
	Data Types
	Assignments and Execution Control Structures

	Chapter Summary

	2 Python Data Types
	2.1 Expressions, Variables, and Assignments
	Algebraic Expressions and Functions
	Boolean Expressions and Operators
	Variables and Assignments
	Variable Names

	2.2 Strings
	String Operators
	Indexing Operator

	2.3 Lists
	List Operators
	Lists Are Mutable, Strings Are Not
	List Methods

	2.4 Objects and Classes
	Object Type
	Valid Values for Number Types
	Operators for Number Types
	Creating Objects
	Implicit Type Conversions
	Explicit Type Conversions
	Class Methods and Object-Oriented Programming

	2.5 Python Standard Library
	Module math
	Module fractions

	2.6 Case Study: Turtle Graphics Objects
	Chapter Summary
	Solutions to Practice Problems
	Exercises

	3 Imperative Programming
	3.1 Python Programs
	Our First Python Program
	Python Modules
	Built-In Function print ()
	Interactive Input with input ()
	Function eval ()

	3.2 Execution Control Structures
	One-Way Decisions
	Two-Way Decisions
	Iteration Structures
	Nesting Control Flow Structures
	Function range ()

	3.3 User-Defined Functions
	Our First Function
	print () versus return
	Function Definitions Are “Assignment” Statements
	Comments
	Docstrings

	3.4 Python Variables and Assignments
	Mutable and Immutable Types
	Assignments and Mutability
	Swapping

	3.5 Parameter Passing
	Immutable Parameter Passing
	Mutable Parameter Passing

	3.6 Case Study: Automating Turtle Graphics
	Chapter Summary
	Solutions to Practice Problems
	Exercises
	Problems

	4 Text Data, Files, and Exceptions
	4.1 Strings, Revisited
	String Representations
	The Indexing Operator, Revisited
	String Methods

	4.2 Formatted Output
	Function print ()
	String Method format ()
	Lining Up Data in Columns

	4.3 Files
	File System
	Opening and Closing a File
	Patterns for Reading a Text File
	Writing to a Text File

	4.4 Errors and Exceptions
	Syntax Errors
	Built-In Exceptions

	4.5 Case Study: Logging File Access
	A Thin Wrapper Function
	Logging File Names
	Getting and Formatting the Date and Time
	Final Implementation of openLog ()

	Chapter Summary
	Solutions to Practice Problems
	Exercises
	Problems

	5 Execution Control Structures
	5.1 Decision Control and the if Statement
	Three-Way (and More!) Decisions
	Ordering of Conditions

	5.2 for Loop and Iteration Patterns
	Loop Pattern: Iteration Loop
	Loop Pattern: Counter Loop
	Loop Pattern: Accumulator Loop
	Accumulating Different Types
	Loop Patterns: Nested Loop

	5.3 More on Lists: Two-Dimensional Lists
	Two-Dimensional Lists
	Two-Dimensional Lists and the Nested Loop Pattern

	5.4 While Loop
	5.5 More Loop Patterns
	Iteration Patterns: Sequence Loop
	Loop Pattern: Infinite Loop
	Loop Pattern: Loop and a Half

	5.6 Additional Iteration Control Statements
	break Statement
	continue Statement
	pass Statement

	Chapter Summary
	Solutions to Practice Problems
	Exercises
	Problems

	6 Containers and Randomness
	6.1 Dictionaries
	User-Defined Indexes as Motivation for Dictionaries
	Dictionary Class Properties
	Dictionary Operators
	Dictionary Methods
	A Dictionary as a Substitute for Multiway Condition
	Dictionary as a Collection of Counters

	6.2 Other Built-In Container Types
	Class tuple
	tuple Objects Can Be Dictionary Keys
	Dictionary Method items(), Revisited
	Class set
	Using the set Constructor to Remove Duplicates
	set Operators
	set Methods

	6.3 Character Encodings and Strings
	Character Encodings
	ASCII
	Unicode
	UTF-8 Encoding for Unicode Characters

	6.4 Module random
	Choosing a Random Integer
	Choosing a Random “Real”
	Shuffling, Choosing, and Sampling at Random

	6.5 Case Study: Games of Chance
	Blackjack
	Creating and Shuffling the Deck of Cards
	Dealing a Card
	Computing the Value of a Hand
	Comparing the Player’s and the House’s Hands
	Main Blackjack Function

	Chapter Summary
	Solutions to Practice Problems
	Exercises
	Problems

	7 Namespaces
	7.1 Encapsulation in Functions
	Code Reuse
	Modularity (or Procedural Decomposition)
	Encapsulation (or Information Hiding)
	Local Variables
	Namespaces Associated with Function Calls
	Namespaces and the Program Stack

	7.2 Global versus Local Namespaces
	Global Variables
	Variables with Local Scope
	Variables with Global Scope
	Changing Global Variables Inside a Function

	7.3 Exceptional Control Flow
	Exceptions and Exceptional Control Flow
	Catching and Handling Exceptions
	The Default Exception Handler
	Catching Exceptions of a Given Type
	Multiple Exception Handlers
	Controlling the Exceptional Control Flow

	7.4 Modules as Namespaces
	Module Attributes
	What Happens When Importing a Module
	Module Search Path
	Top-Level Module
	Different Ways to Import Module Attributes

	7.5 Classes as Namespaces
	A Class Is a Namespace
	Class Methods Are Functions Defined in the Class Namespace

	Chapter Summary
	Solutions to Practice Problems
	Exercises
	Problems

	8 Object-Oriented Programming
	8.1 Defining a New Python Class
	Methods of Class Point
	A Class and Its Namespace
	Every Object Has an Associated Namespace
	Implementation of Class Point
	Instance Variables
	Instances Inherit Class Attributes
	Class Definition, More Generally
	Documenting a Class
	Class Animal

	8.2 Examples of User-Defined Classes
	Overloaded Constructor Operator
	Default Constructor
	Playing Card Class

	8.3 Designing New Container Classes
	Designing a Class Representing a Deck of Playing Cards
	Implementing the Deck (of Cards) Class
	Container Class Queue
	Implementing a Queue Class

	8.4 Overloaded Operators
	Operators Are Class Methods
	Making the Class Point User Friendly
	Contract between the Constructor and the repr () Operator
	Making the Queue Class User Friendly

	8.5 Inheritance
	Inheriting Attributes of a Class
	Class Definition, in General
	Overriding Superclass Methods
	Extending Superclass Methods
	Implementing a Queue Class by Inheriting from list

	8.6 User-Defined Exceptions
	Raising an Exception
	User-Defined Exception Classes
	Improving the Encapsulation of Class Queue

	8.7 Case Study: Indexing and Iterators
	Overloading the Indexing Operators
	Iterators and OOP Design Patterns

	Chapter Summary
	Solutions to Practice Problems
	Exercises
	Problems

	9 Graphical User Interfaces
	9.1 Basics of tkinter GUI Development
	Widget Tk: The GUI Window
	Widget Label for Displaying Text
	Displaying Images
	Packing Widgets
	Arranging Widgets in a Grid

	9.2 Event-Based tkinter Widgets
	Button Widget and Event Handlers
	Events, Event Handlers, and mainloop ()
	The Entry Widget
	Text Widget and Binding Events
	Event Patterns and the tkinter Class Event

	9.3 Designing GUIs
	Widget Canvas
	Widget Frame as an Organizing Widget

	9.4 OOP for GUIs
	GUI OOP Basics
	Shared Widgets Are Assigned to Instance Variables
	Shared Data Are Assigned to Instance Variables

	9.5 Case Study: Developing a Calculator
	The Calculator Buttons and Passing Arguments to Handlers
	Implementing the “Unofficial” Event Handler click ()

	Chapter Summary
	Solutions to Practice Problems
	Exercises
	Problems

	10 Recursion
	10.1 Introduction to Recursion
	Recursive Functions
	Recursive Thinking
	Recursive Function Calls and the Program Stack

	10.2 Examples of Recursion
	Recursive Number Sequence Pattern
	Fractals
	Virus Scanner

	10.3 Run Time Analysis
	The Exponent Function
	Counting Operations
	Fibonacci Sequence
	Experimental Analysis of Run Time

	10.4 Searching
	Linear Search
	Binary Search
	Other Search Problems

	10.5 Case Study: Tower of Hanoi
	Classes Peg and Disk

	Chapter Summary
	Solutions to Practice Problems
	Exercises
	Problems

	11 The Web and Search
	11.1 The World Wide Web
	Web Servers and Web Clients
	“Plumbing” of the WWW
	Naming Scheme: Uniform Resource Locator
	Protocol: HyperText Transfer Protocol
	HyperText Markup Language
	HTML Elements
	Tree Structure of an HTML Document
	Anchor HTML Element and Absolute Links
	Relative Links

	11.2 Python WWW API
	Module urllib.request
	Module html.parser
	Overriding the HTMLParser Handlers
	Module urllib.parse
	Parser That Collects HTTP Hyperlinks

	11.3 String Pattern Matching
	Regular Expressions
	Python Standard Library Module re

	11.4 Case Study: Web Crawler
	Recursive Crawler, Version 0.1
	Recursive Crawler, Version 0.2
	The Web Page Content Analysis

	Chapter Summary
	Solutions to Practice Problems
	Exercises
	Problems

	12 Databases and Data Processing
	12.1 Databases and SQL
	Database Tables
	Structured Query Language
	Statement SELECT
	Clause WHERE
	Built-In SQL Functions
	Clause GROUP BY
	Making SQL Queries Involving Multiple Tables
	Statement CREATE TABLE
	Statements INSERT and UPDATE

	12.2 Database Programming in Python
	Database Engines and SQLite
	Creating a Database with sqlite3
	Committing to Database Changes and Closing the Database
	Querying a Database Using sqlite3

	12.3 Functional Language Approach
	List Comprehension
	MapReduce Problem Solving Framework
	MapReduce, in the Abstract
	Inverted Index

	12.4 Parallel Computing
	Parallel Computing
	Class Pool of Module multiprocessing
	Parallel Speedup
	MapReduce, in Parallel
	Parallel versus Sequential MapReduce

	Chapter Summary
	Solutions to Practice Problems
	Exercises
	Problems

	Index

